-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConvertNPYData.py
239 lines (182 loc) · 7.72 KB
/
ConvertNPYData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# coding: utf-8
# In[1]:
import os
from tqdm import tqdm
import numpy as np
import tensorflow as tf
# Read npy files, and convert it to tensorflow tfrecords format
# In[2]:
user = "bdonnot"
nnodes = 118
size = 5000
# user = "benjamin"
# nnodes = 30
# size = 10000
path_data_in = os.path.join("/home",user,"Documents","PyHades2","ampsdatareal_withreact_{}_{}".format(nnodes,size))
path_data_out = os.path.join("/home",user,"Documents","PyHades2","tfrecords_{}_{}".format(nnodes,size))
nquads = 186 if nnodes == 118 else 41
if not os.path.exists(path_data_out):
print("Creating the repository {}".format(path_data_out))
os.mkdir(path_data_out)
# In[3]:
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def _floats_feature(value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
# In[4]:
vars = ["prod_q", "flows_a","flows_MW", "loads_p", "loads_q", "loads_v", "prod_p", "prod_v",
"prod_p_target", "flowsext_a", "flowsext_MW"]
ds = "train"
# Save the results for the base case
# In[21]:
for ds in ["train","val","test"]:
# open the proper connection
writer = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}.tfrecord".format(ds)))
writer_small = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}_small.tfrecord".format(ds)))
# read the data (numpy)
dict_data = {}
for var in vars:
dict_data[var] = np.load(os.path.join(path_data_in,"{}_{}.npy".format(ds,var)))
#wirte it to tensorboard
for idx in tqdm(range(dict_data[vars[0]].shape[0])):
#write the whole set for a specific dataset
d_feature = {}
for var in vars:
x = dict_data[var][idx]
d_feature[var] = _floats_feature(x)
d_feature["deco_enco"] = _floats_feature([0. for _ in range(dict_data["flows_a"].shape[1])])
features = tf.train.Features(feature=d_feature)
example = tf.train.Example(features=features)
serialized = example.SerializeToString()
writer.write(serialized)
if idx < 100:
writer_small.write(serialized)
# Save the results for n-1
# In[37]:
import re
def quadnamefromfilename(fn):
tmp = re.sub("(^((test)|(val)|(train))\_)|","",fn)
# tmp = re.sub("(\_((loads_p)|(loads_q)|(loads_v)|(prod_p)|(prod_q)|(prod_v)|(transits_a)|(transits_MW))\.npy$)", "", tmp)
tmp = re.sub("_loads_p.npy$", "", tmp)
tmp = re.sub("_loads_q.npy$", "", tmp)
tmp = re.sub("_loads_v.npy$", "", tmp)
tmp = re.sub("_prod_p.npy$", "", tmp)
tmp = re.sub("_prod_p_target.npy$", "", tmp)
tmp = re.sub("_prod_q.npy$", "", tmp)
tmp = re.sub("_prod_v.npy$", "", tmp)
tmp = re.sub("_flows_a.npy$", "", tmp)
tmp = re.sub("_flows_MW.npy$", "", tmp)
tmp = re.sub("_flowsext_MW.npy$", "", tmp)
tmp = re.sub("_flowsext_a.npy$", "", tmp)
return tmp
# In[38]:
path_data_in_n1 = os.path.join(path_data_in,"N1")
qnames = set([quadnamefromfilename(el) for el in os.listdir(path_data_in_n1)
if os.path.isfile(os.path.join(path_data_in_n1, el))])
qnames = np.sort(list(qnames))
# In[39]:
id_q = {}
import copy
refbytefeatures = [0. for _ in range(nquads)]
for idx, qn in enumerate(qnames):
id_q[qn] = copy.deepcopy(refbytefeatures)
id_q[qn][idx] = 1.
# In[40]:
dataset = "N1"
# In[42]:
path_data_in_dataset = os.path.join(path_data_in, dataset)
for ds in ["train","val","test"]:
# for ds in ["test"]:
# open the proper connection
writer = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}-{}.tfrecord".format(dataset, ds)))
writer_small = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}-{}_small.tfrecord".format(dataset, ds)))
for qn in tqdm(qnames):
# read the data (numpy)
dict_data = {}
for var in vars:
dict_data[var] = np.load(os.path.join(path_data_in_dataset,"{}_{}_{}.npy".format(ds,qn,var)))
#wirte it to tensorboard
for idx in range(dict_data[vars[0]].shape[0]):
#write the whole lines for a specific dataset
d_feature = {}
for var in vars:
x = dict_data[var][idx]
d_feature[var] = _floats_feature(x)
d_feature["deco_enco"] = _floats_feature(id_q[qn])
features = tf.train.Features(feature=d_feature)
example = tf.train.Example(features=features)
serialized = example.SerializeToString()
writer.write(serialized)
if idx < 100:
writer_small.write(serialized)
# For n-2 data
# In[32]:
datasets_ = ["neighbours","random"]
# datasets_ = ["random"]
# datasets_ = ["neighbours"]
# datasets_ = ["two_changes"]
for dataset in datasets_:
path_data_in_dataset = os.path.join(path_data_in, dataset)
qnames = set([quadnamefromfilename(el) for el in os.listdir(path_data_in_dataset)
if os.path.isfile(os.path.join(path_data_in_dataset, el))])
qnames = np.sort(list(qnames))
qnames = [q for q in qnames if (q != "computation_infos.json" and q != 'computation_infos_tmp.json')]
for ds in ["train","val","test"]:
# open the proper connection
writer = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}-{}.tfrecord".format(dataset, ds)))
writer_small = tf.python_io.TFRecordWriter(os.path.join(path_data_out,"{}-{}_small.tfrecord".format(dataset, ds)))
for qn in tqdm(qnames):
# read the data (numpy)
dict_data = {}
for var in vars:
dict_data[var] = np.load(os.path.join(path_data_in_dataset,"{}_{}_{}.npy".format(ds,qn,var)))
#wirte it to tensorboard
for idx in range(dict_data[vars[0]].shape[0]):
#write the whole set for a specific dataset
d_feature = {}
for var in vars:
x = dict_data[var][idx]
d_feature[var] = _floats_feature(x)
qn1, qn2 = qn.split("@")
tmp = copy.deepcopy(id_q[qn1])
for id_, el in enumerate(id_q[qn2]):
if el:
tmp[id_] = el
d_feature["deco_enco"] = _floats_feature(tmp)
features = tf.train.Features(feature=d_feature)
example = tf.train.Example(features=features)
serialized = example.SerializeToString()
writer.write(serialized)
if idx < 100:
writer_small.write(serialized)
# Check for reading data
# In[46]:
tf.reset_default_graph()
filenames = [os.path.join(path_data_out,"{}.tfrecord".format(ds))]
var = "deco_enco"
print(var)
def _parse_function(example_proto, var, size):
features = {var: tf.FixedLenFeature((size,), tf.float32, default_value=[0.0 for _ in range(size)]) }
parsed_features = tf.parse_single_example(example_proto, features)
return parsed_features[var]
dataset = tf.contrib.data.TFRecordDataset(filenames)
dataset = dataset.map(lambda x : _parse_function(x,var,dict_data[var].shape[1])) # Parse the record into tensors.
dataset = dataset.repeat() # Repeat the input indefinitely.
dataset = dataset.batch(1)
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
# In[31]:
sess = tf.InteractiveSession()
sess.run(iterator.initializer)
# Start populating the filename queue.
# coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(coord=coord)
for i in range(20):
# Retrieve a single instance:
x_ = sess.run(next_element)
print("x_ : {}".format(x_))
# print("{} \n{}\n\n_______________________".format(x_,dataset_npy[i]))
sess.close()
# In[ ]: