diff --git a/src/auspex/analysis/helpers.py b/src/auspex/analysis/helpers.py index 1e363b6e..668923e1 100644 --- a/src/auspex/analysis/helpers.py +++ b/src/auspex/analysis/helpers.py @@ -13,10 +13,14 @@ def get_file_name(): root = tk.Tk() root.withdraw() # remove edges - filepath = filedialog.askopenfilename() + # TO-DO support legacy .h5 files... + #filepath = filedialog.askopenfilename() + # note .auspex 'files' are actually directories + filepath = filedialog.askdirectory() root.update() # fixes OSX hanging issue #https://stackoverflow.com/questions/21866537/what-could-cause-an-open-file-dialog-window-in-tkinter-python-to-be-really-slow + print(filepath) return filepath def open_data(num=None, folder=None, groupname="main", datasetname="data", date=datetime.date.today().strftime('%y%m%d')): @@ -67,6 +71,45 @@ def open_data(num=None, folder=None, groupname="main", datasetname="data", date= data_container = AuspexDataContainer(path.join(folder, data_file[0])) return data_container.open_dataset(groupname, datasetname) +def open_file(filepath=None, groupname="main", datasetname="data"): + """Convenience Load data from an `AuspexDataContainer` given a file. + + Parameters: + filepath (string) + path to file + groupname (string) + Group name of data to be loaded. + datasetname (string, optional) + Data set name to be loaded. Default is "data". + date (string, optional) + Date folder from which data is to be loaded. Format is "YYMMDD" Defaults to today's date. + + Returns: + data (numpy.array) + Data loaded from file. + desc (DataSetDescriptor) + Dataset descriptor loaded from file. + + Examples: + Loading a data container + + >>> data, desc = open_data('/path/to/my/data.auspex', "q1-main", date="190301") + + """ + if filepath is None: + # pull up dialog box + filepath = get_file_name() + else: + # assert we have an auspex file + p = re.compile(r".+-(\d+).auspex") + if not p.match(filepath): + filepath = None + + if filepath is None: + raise ValueError("Could not find file!") + + data_container = AuspexDataContainer(filepath) + return data_container.open_dataset(groupname, datasetname) def normalize_data(data, zero_id = 0, one_id = 1): metadata_str = [f for f in data.dtype.fields.keys() if 'metadata' in f]