diff --git a/README.md b/README.md index c5ceed0..e23a4bc 100644 --- a/README.md +++ b/README.md @@ -63,9 +63,9 @@ Below you can find the list of available implementations. |:---------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:----------------------| | One Shot Ask | [PlainJavaAskApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/ask/approaches/PlainJavaAskApproach.java) | Use Azure AI Search and Java OpenAI APIs. It first retrieves top documents from search and use them to build a prompt. Then, it uses OpenAI to generate an answer for the user question.Several search retrieval options are available: Text, Vector, Hybrid. When Hybrid and Vector are selected an additional call to OpenAI is required to generate embeddings vector for the question. | :white_check_mark: | :x: | | Chat | [PlainJavaChatApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/chat/approaches/PlainJavaChatApproach.java) | Use Azure AI Search and Java OpenAI APIs. It first calls OpenAI to generate a search keyword for the chat history and then answer to the last chat question. Several search retrieval options are available: Text, Vector, Hybrid. When Hybrid and Vector are selected an additional call to OpenAI is required to generate embeddings vector for the chat extracted keywords. | :white_check_mark: | :x: | -| One Shot Ask | [JavaSemanticKernelWithVectorStoreApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/ask/approaches/semantickernel/JavaSemanticKernelWithMemoryApproach.java) | Use Java Semantic Kernel framework with built-in VectorStore for embeddings similarity search. A semantic function [RAG.AnswerQuestion](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerQuestion/config.json) is defined to build the prompt using vector search results. An AzureAISearchVectorStoreRecordCollection instance is used to manage the AzureAISearch index populated by the documents ingestion process. | :x: | This approach is currently disabled within the UI, memory feature will be available in the next java Semantic Kernel GA release | +| One Shot Ask | [JavaSemanticKernelWithVectorStoreApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/ask/approaches/semantickernel/JavaSemanticKernelWithMemoryApproach.java) | Use Java Semantic Kernel framework with built-in VectorStore for embeddings similarity search. A semantic function [RAG.AnswerQuestion](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerQuestion/config.json) is defined to build the prompt using vector search results. An AzureAISearchVectorStoreRecordCollection instance is used to manage the AzureAISearch index populated by the documents ingestion process. | :x: | :white_check_mark: | | One Shot Ask | [JavaSemanticKernelChainsApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/ask/approaches/semantickernel/JavaSemanticKernelChainsApproach.java) | Use Java Semantic Kernel framework with semantic and native functions chaining. It uses an imperative style for AI orchestration through semantic kernel functions chaining. [InformationFinder.SearchFromQuestion](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/retrieval/semantickernel/AzureAISearchPlugin.java) native function and [RAG.AnswerQuestion](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerQuestion/config.json) semantic function are called sequentially. Several search retrieval options are available: Text, Vector, Hybrid. | :x: | :white_check_mark: | -| Chat | [JavaSemanticKernelWithVectorStoreApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/chat/approaches/semantickernel/JavaSemanticKernelWithMemoryChatApproach.java.ignore) | Use Java Semantic Kernel framework with built-in VectorStore for embeddings similarity search. A semantic function [RAG.AnswerConversation](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerQuestion/config.json) is defined to build the prompt using vector search results. An AzureAISearchVectorStoreRecordCollection instance is used to manage an AzureAISearch index populated by the documents ingestion process. | :x: | :x: This approach is currently disabled within the UI, memory feature will be available in the next java Semantic Kernel GA release | +| Chat | [JavaSemanticKernelWithVectorStoreApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/chat/approaches/semantickernel/JavaSemanticKernelWithMemoryChatApproach.java.ignore) | Use Java Semantic Kernel framework with built-in VectorStore for embeddings similarity search. A semantic function [RAG.AnswerConversation](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerQuestion/config.json) is defined to build the prompt using vector search results. An AzureAISearchVectorStoreRecordCollection instance is used to manage an AzureAISearch index populated by the documents ingestion process. | :x: | :white_check_mark: | | Chat | [JavaSemanticKernelChainsApproach](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/chat/approaches/semantickernel/JavaSemanticKernelChainsChatApproach.java) | Use Java Semantic Kernel framework with semantic and native functions chaining. It uses an imperative style for AI orchestration through semantic kernel functions chaining. [InformationFinder.SearchFromConversation](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/java/com/microsoft/openai/samples/rag/retrieval/semantickernel/AzureAISearchPlugin.java) native function and [RAG.AnswerConversation](https://github.com/Azure-Samples/azure-search-openai-demo-java/blob/main/app/backend/src/main/resources/semantickernel/Plugins/RAG/AnswerConversation/config.json) semantic function are called sequentially. Several search retrieval options are available: Text, Vector, Hybrid. | :x: | :white_check_mark: | ## Getting Started