forked from aakriti1318/HackCovid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
myTraining.py
38 lines (26 loc) · 1.04 KB
/
myTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
import pickle
def data_split(data,ratio):
np.random.seed(42)
shuffled = np.random.permutation(len(data))
test_set_size = int(len(data) * ratio)
test_indices = shuffled[:test_set_size]
train_indices = shuffled[test_set_size:]
return data.iloc[train_indices] , data.iloc[test_indices]
if __name__ == "__main__":
# Read the data
df = pd.read_csv('data.csv')
train,test = data_split(df,0.2)
X_train = train[['Fever','Body Pain','AGE','Runny Nose','Diff Breath']].to_numpy()
X_test = test[['Fever','Body Pain','AGE','Runny Nose','Diff Breath']].to_numpy()
Y_train = train[['Infection Prob']].to_numpy().reshape(736,)
Y_test = test[['Infection Prob']].to_numpy().reshape(183,)
clf = LogisticRegression()
clf.fit(X_train,Y_train)
# open a file, where you want to store the data
file = open('model.pkl', 'wb')
# dump information to that file
pickle.dump(clf, file)
file.close()