-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathservices.html
193 lines (161 loc) · 14.7 KB
/
services.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1.0" name="viewport">
<title>Services - Amir M. parvizi</title>
<meta content="" name="description">
<meta content="" name="keywords">
<!-- Favicons -->
<link href="assets/img/favicon.png" rel="icon">
<link href="assets/img/apple-touch-icon.png" rel="apple-touch-icon">
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,300i,400,400i,600,600i,700,700i|Raleway:300,300i,400,400i,500,500i,600,600i,700,700i|Poppins:300,300i,400,400i,500,500i,600,600i,700,700i" rel="stylesheet">
<!-- Vendor CSS Files -->
<link href="assets/vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<link href="assets/vendor/icofont/icofont.min.css" rel="stylesheet">
<link href="assets/vendor/owl.carousel/assets/owl.carousel.min.css" rel="stylesheet">
<link href="assets/vendor/boxicons/css/boxicons.min.css" rel="stylesheet">
<link href="assets/vendor/venobox/venobox.css" rel="stylesheet">
<link href="assets/vendor/aos/aos.css" rel="stylesheet">
<!-- Template Main CSS File -->
<link href="assets/css/style.css" rel="stylesheet">
</head>
<body>
<!-- ======= Header ======= -->
<header id="header" class="fixed-top">
<div class="container-fluid d-flex justify-content-between align-items-center">
<!-- <h1 class="logo"><a href="index.html">Amir Mohammad</a></h1> -->
<!-- Uncomment below if you prefer to use an image logo -->
<!-- <a href="index.html" class="logo"><img src="assets/img/logo.png" alt="" class="img-fluid"></a>-->
<nav class="nav-menu d-none d-lg-block">
<ul>
<li><a href="index.html">Home</a></li>
<li><a href="about.html">About</a></li>
<li><a href="resume.html">Resume</a></li>
<li class="active"><a href="services.html">Services</a></li>
<li><a href="portfolio.html">Portfolio</a></li>
<li><a href="contact.html">Contact</a></li>
</ul>
</nav><!-- .nav-menu -->
<div class="header-social-links">
<a href="#" class="twitter"><i class="icofont-twitter"></i></a>
<a href="#" class="facebook"><i class="icofont-facebook"></i></a>
<a href="#" class="instagram"><i class="icofont-instagram"></i></a>
<a href="#" class="linkedin"><i class="icofont-linkedin"></i></i></a>
</div>
</div>
</header><!-- End Header -->
<main id="main">
<!-- ======= Services Section ======= -->
<section id="services" class="services">
<div class="container" data-aos="fade-up">
<div class="section-title">
<h2>Services</h2>
<p>I can do research and work projects in the fields mentioned below or help in writing scientific articles.</p>
</div>
<div class="row">
<div class="col-lg-4 col-md-6 d-flex align-items-stretch" data-aos="zoom-in" data-aos-delay="100">
<div class="icon-box iconbox-blue">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,521.0016835830174C376.1290562159157,517.8887921683347,466.0731472004068,529.7835943286574,510.70327084640275,468.03025145048787C554.3714126377745,407.6079735673963,508.03601936045806,328.9844924480964,491.2728898941984,256.3432110539036C474.5976632858925,184.082847569629,479.9380746630129,96.60480741107993,416.23090153303,58.64404602377083C348.86323505073057,18.502131276798302,261.93793281208167,40.57373210992963,193.5410806939664,78.93577620505333C130.42746243093433,114.334589627462,98.30271207620316,179.96522072025542,76.75703585869454,249.04625023123273C51.97151888228291,328.5150500222984,13.704378332031375,421.85034740162234,66.52175969318436,486.19268352777647C119.04800174914682,550.1803526380478,217.28368757567262,524.383925680826,300,521.0016835830174"></path>
</svg>
<i class="bx bxl-dribbble"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Digital_image_processing">IMAGE PROCESSING</a></h4>
<p>Image processing refers to the manipulation and analysis of digital images using algorithms and computational techniques. It involves various operations such as enhancing, filtering, transforming, and analyzing images to extract useful information or to improve their quality for a particular application. Image processing finds applications in various fields including medicine, remote sensing, surveillance, industrial inspection, and entertainment.</p>
</div>
</div>
<div class="col-lg-4 col-md-6 d-flex align-items-stretch mt-4 mt-md-0" data-aos="zoom-in" data-aos-delay="200">
<div class="icon-box iconbox-orange ">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,582.0697525312426C382.5290701553225,586.8405444964366,449.9789794690241,525.3245884688669,502.5850820975895,461.55621195738473C556.606425686781,396.0723002908107,615.8543463187945,314.28637112970534,586.6730223649479,234.56875336149918C558.9533121215079,158.8439757836574,454.9685369536778,164.00468322053177,381.49747125262974,130.76875717737553C312.15926192815925,99.40240125094834,248.97055460311594,18.661163978235184,179.8680185752513,50.54337015887873C110.5421016452524,82.52863877960104,119.82277516462835,180.83849132639028,109.12597500060166,256.43424936330496C100.08760227029461,320.3096726198365,92.17705696193138,384.0621239912766,124.79988738764834,439.7174275375508C164.83382741302287,508.01625554203684,220.96474134820875,577.5009287672846,300,582.0697525312426"></path>
</svg>
<i class="bx bx-file"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Computer_vision">COMPUTER VISION</a></h4>
<p>Computer vision is a field of artificial intelligence and computer science that focuses on enabling computers to interpret and understand visual information from the real world, much like human vision. It involves the development of algorithms and techniques to extract meaningful insights and understanding from images and videos. Computer vision systems aim to replicate and augment human visual perception capabilities to solve a wide range of tasks and applications.</p>
</div>
</div>
<div class="col-lg-4 col-md-6 d-flex align-items-stretch mt-4 mt-lg-0" data-aos="zoom-in" data-aos-delay="300">
<div class="icon-box iconbox-pink">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,541.5067337569781C382.14930387511276,545.0595476570109,479.8736841581634,548.3450877840088,526.4010558755058,480.5488172755941C571.5218469581645,414.80211281144784,517.5187510058486,332.0715597781072,496.52539010469104,255.14436215662573C477.37192572678356,184.95920475031193,473.57363656557914,105.61284051026155,413.0603344069578,65.22779650032875C343.27470386102294,18.654635553484475,251.2091493199835,5.337323636656869,175.0934190732945,40.62881213300186C97.87086631185822,76.43348514350839,51.98124368387456,156.15599469081315,36.44837278890362,239.84606092416172C21.716077023791087,319.22268207091537,43.775223500013084,401.1760424656574,96.891909868211,461.97329694683043C147.22146801428983,519.5804099606455,223.5754009179313,538.201503339737,300,541.5067337569781"></path>
</svg>
<i class="bx bx-tachometer"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Machine_learning">MACHINE LEARNING</a></h4>
<p>Machine learning is a subset of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computers to learn and make predictions or decisions based on data, without being explicitly programmed to perform specific tasks. In essence, machine learning algorithms learn from patterns and relationships within data to make informed decisions or predictions.</p>
</div>
</div>
<div class="col-lg-4 col-md-6 d-flex align-items-stretch mt-4" data-aos="zoom-in" data-aos-delay="100">
<div class="icon-box iconbox-yellow">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,503.46388370962813C374.79870501325706,506.71871716319447,464.8034551963731,527.1746412648533,510.4981551193396,467.86667711651364C555.9287308511215,408.9015244558933,512.6030010748507,327.5744911775523,490.211057578863,256.5855673507754C471.097692560561,195.9906835881958,447.69079081568157,138.11976852964426,395.19560036434837,102.3242989838813C329.3053358748298,57.3949838291264,248.02791733380457,8.279543830951368,175.87071277845988,42.242879143198664C103.41431057327972,76.34704239035025,93.79494320519305,170.9812938413882,81.28167332365135,250.07896920659033C70.17666984294237,320.27484674793965,64.84698225790005,396.69656628748305,111.28512138212992,450.4950937839243C156.20124167950087,502.5303643271138,231.32542653798444,500.4755392045468,300,503.46388370962813"></path>
</svg>
<i class="bx bx-layer"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Convolutional_neural_network">CONVOLUTIONAL NEURAL NETWORK</a></h4>
<p>A Convolutional Neural Network (CNN) is a type of deep neural network commonly used in tasks involving image analysis and recognition. CNNs are specifically designed to process spatial data, such as images, by leveraging the spatial structure present in the data.</p>
</div>
</div>
<div class="col-lg-4 col-md-6 d-flex align-items-stretch mt-4" data-aos="zoom-in" data-aos-delay="200">
<div class="icon-box iconbox-red">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,532.3542879108572C369.38199826031484,532.3153073249985,429.10787420159085,491.63046689027357,474.5244479745417,439.17860296908856C522.8885846962883,383.3225815378663,569.1668002868075,314.3205725914397,550.7432151929288,242.7694973846089C532.6665558377875,172.5657663291529,456.2379748765914,142.6223662098291,390.3689995646985,112.34683881706744C326.66090330228417,83.06452184765237,258.84405631176094,53.51806209861945,193.32584062364296,78.48882559362697C121.61183558270385,105.82097193414197,62.805066853699245,167.19869350419734,48.57481801355237,242.6138429142374C34.843463184063346,315.3850353017275,76.69343916112496,383.4422959591041,125.22947124332185,439.3748458443577C170.7312796277747,491.8107796887764,230.57421082200815,532.3932930995766,300,532.3542879108572"></path>
</svg>
<i class="bx bx-slideshow"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Recurrent_neural_network">RECURRENT NEURAL NETWORK</a></h4>
<p>Recurrent Neural Networks (RNNs) are a class of neural networks designed to model sequential data by maintaining internal state or memory. Unlike traditional feedforward neural networks, which process inputs independently, RNNs have connections that form directed cycles, allowing them to exhibit temporal dynamics and process sequences of inputs.</p>
</div>
</div>
<div class="col-lg-4 col-md-6 d-flex align-items-stretch mt-4" data-aos="zoom-in" data-aos-delay="300">
<div class="icon-box iconbox-teal">
<div class="icon">
<svg width="100" height="100" viewBox="0 0 600 600" xmlns="http://www.w3.org/2000/svg">
<path stroke="none" stroke-width="0" fill="#f5f5f5" d="M300,566.797414625762C385.7384707136149,576.1784315230908,478.7894351017131,552.8928747891023,531.9192734346935,484.94944893311C584.6109503024035,417.5663521118492,582.489472248146,322.67544863468447,553.9536738515405,242.03673114598146C529.1557734026468,171.96086150256528,465.24506316201064,127.66468636344209,395.9583748389544,100.7403814666027C334.2173773831606,76.7482773500951,269.4350130405921,84.62216499799875,207.1952322260088,107.2889140133804C132.92018162631612,134.33871894543012,41.79353780512637,160.00259165414826,22.644507872594943,236.69541883565114C3.319112789854554,314.0945973066697,72.72355303640163,379.243833228382,124.04198916343866,440.3218312028393C172.9286146004772,498.5055451809895,224.45579914871206,558.5317968840102,300,566.797414625762"></path>
</svg>
<i class="bx bx-arch"></i>
</div>
<h4><a href="https://en.wikipedia.org/wiki/Generative_adversarial_network">GENERATIVE ADVERSARIAL NETWORK</a></h4>
<p>GAN stands for Generative Adversarial Network. It is a type of artificial intelligence framework introduced by Ian Goodfellow and his colleagues in 2014. GANs consist of two neural networks, namely the generator and the discriminator, which are trained simultaneously through a competitive process.</p>
</div>
</div>
</div>
</div>
</section><!-- End Services Section -->
</main><!-- End #main -->
<!-- ======= Footer ======= -->
<footer id="footer">
<div class="container">
<div class="copyright">
© Copyright <strong><span>Amir M. Parvizi</span></strong>. All Rights Reserved
</div>
<div class="credits">
Designed by <a href="">Amir M. Parvizi</a>
</div>
</div>
</footer><!-- End Footer -->
<div id="preloader"></div>
<a href="#" class="back-to-top"><i class="bx bx-up-arrow-alt"></i></a>
<!-- Vendor JS Files -->
<script src="assets/vendor/jquery/jquery.min.js"></script>
<script src="assets/vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<script src="assets/vendor/jquery.easing/jquery.easing.min.js"></script>
<script src="assets/vendor/php-email-form/validate.js"></script>
<script src="assets/vendor/waypoints/jquery.waypoints.min.js"></script>
<script src="assets/vendor/counterup/counterup.min.js"></script>
<script src="assets/vendor/owl.carousel/owl.carousel.min.js"></script>
<script src="assets/vendor/isotope-layout/isotope.pkgd.min.js"></script>
<script src="assets/vendor/venobox/venobox.min.js"></script>
<script src="assets/vendor/aos/aos.js"></script>
<!-- Template Main JS File -->
<script src="assets/js/main.js"></script>
</body>
</html>