-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBase Analysis.Rmd
168 lines (131 loc) · 4.55 KB
/
Base Analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
title: "Big Data Project Base Analysis"
output: html_document
date: "2023-05-10"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(ISLR2)
library(MASS)
library(tidyverse)
library(dplyr)
library(glmnet)
library(leaps)
library(FNN)
library(caret)
library(ROSE)
```
## Load in data and clean
```{r, warning=FALSE}
rm(list=ls())
base=read_csv("Base.csv")
# Fill -1 with NAs where appropriate
baseclean=base %>%
mutate(prev_address_months_count = na_if(prev_address_months_count, -1),
current_address_months_count = na_if(current_address_months_count, -1),
bank_months_count = na_if(bank_months_count, -1)) # Replacing -1 with NA
# Mutate new variables for missing info on prev_address_months_count and bank_months_na
baseclean=mutate_each(baseclean, funs(replace(., is.na(.), 0)), prev_address_months_count)
baseclean=mutate_each(baseclean, funs(replace(., is.na(.), 0)), bank_months_count)
baseclean=baseclean%>%
mutate(prev_address_na=case_when(prev_address_months_count==0 ~ 1),
bank_months_na=case_when(bank_months_count==0 ~ 1))
baseclean=mutate_each(baseclean, funs(replace(., is.na(.), 0)), prev_address_na)
baseclean=mutate_each(baseclean, funs(replace(., is.na(.), 0)), bank_months_na)
baseclean=na.omit(baseclean) # Drop last few cases with missing values
```
## Create training and test sets
```{r}
set.seed(125)
index = sample(1:nrow(baseclean), 0.8*nrow(baseclean)) # Doing an 80-20 train-test split
train = baseclean[index,] # Create the training data
test = baseclean[-index,] # Create the test data
```
## Resampling due to imbalanced nature of data
```{r}
over = ovun.sample(fraud_bool~., data = train, method = "over")$data
table(over$fraud_bool)
# Now have oversampled dataset with more than half of the data being fraud_bool==1
# Will still use original test set but will now use over dataset to estimate models
```
## LASSO
```{r Model Selection}
xtrain=model.matrix(fraud_bool~., over)[,-1]
ytrain=over$fraud_bool
xtest=model.matrix(fraud_bool~.,test)[,-1]
ytest=test$fraud_bool
cv.out=cv.glmnet(xtrain, ytrain, alpha =1)
bestlam=cv.out$lambda.min
#Creating training model using LASSO regression
lassomodel=glmnet(xtrain, ytrain, alpha=1, lambda=bestlam)
coef(lassomodel)
#Printing out the logistic model
lassomodel$beta
```
> Lots of small coefficients. Only drop device_fraud_count.
```{r}
#Fitting training model on test set
xtestold=xtest=model.matrix(fraud_bool~.,test)[,-1]
pred=predict(lassomodel, s=bestlam, newx=xtestold)
# Make prediction binary
pred_LASSO_bin=ifelse(pred > 0.5, 1, 0)
# Performance Metrics
## Percent accuracy
print(mean(pred_LASSO_bin==ytest))
## Confusion matrix
print(confusionMatrix(as.factor(pred_LASSO_bin), as.factor(ytest)))
## Test MSE
MSE=mean((pred-ytest)^2)
mean(pred==as.matrix(ytest))
print(MSE)
```
### Adjusting datasets by dropping device_fraud_count
```{r}
baseclean=baseclean%>%select(!device_fraud_count)
train=as.data.frame(train)%>%select(!device_fraud_count)
xtrain=as.data.frame(xtrain)%>%select(!device_fraud_count) # Also formats categorical variables as binary variables and chooses a base group for each
xtest=as.data.frame(xtestold)%>%select(!device_fraud_count)
```
## The Analysis
### LASSO - done above
### Logistic
```{r}
logistic = glm(fraud_bool~., data=train, family=binomial)
summary(logistic)
pred_Logit = predict(logistic, newdata=test, type="response")
pred_Logit = ifelse(pred_Logit > 0.5, 1, 0)
# Performance metrics
print(confusionMatrix(as.factor(pred_Logit), as.factor(ytest)))
## Test MSE
MSE=mean((pred_Logit-ytest)^2)
mean(pred_Logit==as.matrix(ytest))
print(MSE)
```
### LDA
```{r}
lda.model = lda(fraud_bool~., data=train)
lda.model
predmodel.train.lda = predict(lda.model, newdata=test)
# Performance metrics
confusionMatrix(as.factor(predmodel.train.lda$class), as.factor(ytest))
# Test MSE
predmodeltrainlda=as.data.frame(predmodel.train.lda)
predldaclass=as.numeric(predmodeltrainlda$class)
MSE=mean((predldaclass-ytest)^2)
mean(predmodel.train.lda$class==as.matrix(ytest))
print(MSE)
```
### QDA
```{r}
qda.model=qda(fraud_bool~., data=train)
qda.model
predmodel.train.qda = predict(qda.model, newdata=test)
# Performance Metrics
confusionMatrix(as.factor(predmodel.train.qda$class), as.factor(ytest))
# Test MSE
predmodeltrainqda=as.data.frame(predmodel.train.qda)
predqdaclass=as.numeric(predmodeltrainqda$class)
MSE=mean((predqdaclass-ytest)^2)
mean(predmodel.train.qda$class==as.matrix(ytest))
print(MSE)
```