|
| 1 | + |
| 2 | +Extended Kalman Filter Localization |
| 3 | +----------------------------------- |
| 4 | + |
| 5 | +.. image:: ekf_with_velocity_correction_1_0.png |
| 6 | + :width: 600px |
| 7 | + |
| 8 | +This is a velocity scale factor estimation using Extended Kalman Filter(EKF). |
| 9 | + |
| 10 | +This is for correcting the vehicle speed measured with scale factor errors due to factors such as wheel wear. |
| 11 | + |
| 12 | +The blue line is true trajectory, the black line is dead reckoning |
| 13 | +trajectory, |
| 14 | + |
| 15 | +the green point is positioning observation (ex. GPS), and the red line |
| 16 | +is estimated trajectory with EKF. |
| 17 | + |
| 18 | +The red ellipse is estimated covariance ellipse with EKF. |
| 19 | + |
| 20 | +Code: `PythonRobotics/extended_kalman_ekf_with_velocity_correctionfilter.py at master · |
| 21 | +AtsushiSakai/PythonRobotics <https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_ekf_with_velocity_correctionfilter.py>`__ |
| 22 | + |
| 23 | +Filter design |
| 24 | +~~~~~~~~~~~~~ |
| 25 | + |
| 26 | +In this simulation, the robot has a state vector includes 5 states at |
| 27 | +time :math:`t`. |
| 28 | + |
| 29 | +.. math:: \textbf{x}_t=[x_t, y_t, \phi_t, v_t, s_t] |
| 30 | + |
| 31 | +x, y are a 2D x-y position, :math:`\phi` is orientation, v is |
| 32 | +velocity, and s is a scale factor of velocity. |
| 33 | + |
| 34 | +In the code, “xEst” means the state vector. |
| 35 | +`code <https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_ekf_with_velocity_correctionfilter.py#L163>`__ |
| 36 | + |
| 37 | +And, :math:`P_t` is covariace matrix of the state, |
| 38 | + |
| 39 | +:math:`Q` is covariance matrix of process noise, |
| 40 | + |
| 41 | +:math:`R` is covariance matrix of observation noise at time :math:`t` |
| 42 | + |
| 43 | + |
| 44 | + |
| 45 | +The robot has a speed sensor and a gyro sensor. |
| 46 | + |
| 47 | +So, the input vecor can be used as each time step |
| 48 | + |
| 49 | +.. math:: \textbf{u}_t=[v_t, \omega_t] |
| 50 | + |
| 51 | +Also, the robot has a GNSS sensor, it means that the robot can observe |
| 52 | +x-y position at each time. |
| 53 | + |
| 54 | +.. math:: \textbf{z}_t=[x_t,y_t] |
| 55 | + |
| 56 | +The input and observation vector includes sensor noise. |
| 57 | + |
| 58 | +In the code, “observation” function generates the input and observation |
| 59 | +vector with noise |
| 60 | +`code <https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_ekf_with_velocity_correctionfilter.py#L34-L50>`__ |
| 61 | + |
| 62 | +Motion Model |
| 63 | +~~~~~~~~~~~~ |
| 64 | + |
| 65 | +The robot model is |
| 66 | + |
| 67 | +.. math:: \dot{x} = v \cos(\phi) |
| 68 | + |
| 69 | +.. math:: \dot{y} = v \sin(\phi) |
| 70 | + |
| 71 | +.. math:: \dot{\phi} = \omega |
| 72 | + |
| 73 | +So, the motion model is |
| 74 | + |
| 75 | +.. math:: \textbf{x}_{t+1} = f(\textbf{x}_t, \textbf{u}_t) = F\textbf{x}_t+B\textbf{u}_t |
| 76 | + |
| 77 | +where |
| 78 | + |
| 79 | +:math:`\begin{equation*} F= \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1\\ \end{bmatrix} \end{equation*}` |
| 80 | + |
| 81 | +:math:`\begin{equation*} B= \begin{bmatrix} cos(\phi) \Delta t s & 0\\ sin(\phi) \Delta t s & 0\\ 0 & \Delta t\\ 1 & 0\\ 0 & 0\\ \end{bmatrix} \end{equation*}` |
| 82 | + |
| 83 | +:math:`\Delta t` is a time interval. |
| 84 | + |
| 85 | +This is implemented at |
| 86 | +`code <https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_filter.py#L61-L76>`__ |
| 87 | + |
| 88 | +The motion function is that |
| 89 | + |
| 90 | +:math:`\begin{equation*} \begin{bmatrix} x' \\ y' \\ w' \\ v' \end{bmatrix} = f(\textbf{x}, \textbf{u}) = \begin{bmatrix} x + v\cos(\phi)\Delta t \\ y + v\sin(\phi)\Delta t \\ \phi + \omega \Delta t \\ v \end{bmatrix} \end{equation*}` |
| 91 | + |
| 92 | +Its Jacobian matrix is |
| 93 | + |
| 94 | +:math:`\begin{equation*} J_f = \begin{bmatrix} \frac{\partial x'}{\partial x}& \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial \phi} & \frac{\partial x'}{\partial v} & \frac{\partial x'}{\partial s}\\ \frac{\partial y'}{\partial x}& \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial \phi} & \frac{\partial y'}{\partial v} & \frac{\partial y'}{\partial s}\\ \frac{\partial \phi'}{\partial x}& \frac{\partial \phi'}{\partial y} & \frac{\partial \phi'}{\partial \phi} & \frac{\partial \phi'}{\partial v} & \frac{\partial \phi'}{\partial s}\\ \frac{\partial v'}{\partial x}& \frac{\partial v'}{\partial y} & \frac{\partial v'}{\partial \phi} & \frac{\partial v'}{\partial v} & \frac{\partial v'}{\partial s} \\ \frac{\partial s'}{\partial x}& \frac{\partial s'}{\partial y} & \frac{\partial s'}{\partial \phi} & \frac{\partial s'}{\partial v} & \frac{\partial s'}{\partial s} \end{bmatrix} \end{equation*}` |
| 95 | + |
| 96 | +:math:`\begin{equation*} = \begin{bmatrix} 1& 0 & -v s \sin(\phi) \Delta t & s \cos(\phi) \Delta t & \cos(\phi) v \Delta t\\ 0 & 1 & v s \cos(\phi) \Delta t & s \sin(\phi) \Delta t & v \sin(\phi) \Delta t\\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \end{equation*}` |
| 97 | + |
| 98 | +Observation Model |
| 99 | +~~~~~~~~~~~~~~~~~ |
| 100 | + |
| 101 | +The robot can get x-y position infomation from GPS. |
| 102 | + |
| 103 | +So GPS Observation model is |
| 104 | + |
| 105 | +.. math:: \textbf{z}_{t} = g(\textbf{x}_t) = H \textbf{x}_t |
| 106 | + |
| 107 | +where |
| 108 | + |
| 109 | +:math:`\begin{equation*} H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \end{bmatrix} \end{equation*}` |
| 110 | + |
| 111 | +The observation function states that |
| 112 | + |
| 113 | +:math:`\begin{equation*} \begin{bmatrix} x' \\ y' \end{bmatrix} = g(\textbf{x}) = \begin{bmatrix} x \\ y \end{bmatrix} \end{equation*}` |
| 114 | + |
| 115 | +Its Jacobian matrix is |
| 116 | + |
| 117 | +:math:`\begin{equation*} J_g = \begin{bmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} & \frac{\partial x'}{\partial \phi} & \frac{\partial x'}{\partial v} & \frac{\partial x'}{\partial s}\\ \frac{\partial y'}{\partial x}& \frac{\partial y'}{\partial y} & \frac{\partial y'}{\partial \phi} & \frac{\partial y'}{ \partial v} & \frac{\partial y'}{ \partial s}\\ \end{bmatrix} \end{equation*}` |
| 118 | + |
| 119 | +:math:`\begin{equation*} = \begin{bmatrix} 1& 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ \end{bmatrix} \end{equation*}` |
| 120 | + |
| 121 | +Extended Kalman Filter |
| 122 | +~~~~~~~~~~~~~~~~~~~~~~ |
| 123 | + |
| 124 | +Localization process using Extended Kalman Filter:EKF is |
| 125 | + |
| 126 | +=== Predict === |
| 127 | + |
| 128 | +:math:`x_{Pred} = Fx_t+Bu_t` |
| 129 | + |
| 130 | +:math:`P_{Pred} = J_f P_t J_f^T + Q` |
| 131 | + |
| 132 | +=== Update === |
| 133 | + |
| 134 | +:math:`z_{Pred} = Hx_{Pred}` |
| 135 | + |
| 136 | +:math:`y = z - z_{Pred}` |
| 137 | + |
| 138 | +:math:`S = J_g P_{Pred}.J_g^T + R` |
| 139 | + |
| 140 | +:math:`K = P_{Pred}.J_g^T S^{-1}` |
| 141 | + |
| 142 | +:math:`x_{t+1} = x_{Pred} + Ky` |
| 143 | + |
| 144 | +:math:`P_{t+1} = ( I - K J_g) P_{Pred}` |
| 145 | + |
| 146 | +Ref: |
| 147 | +~~~~ |
| 148 | + |
| 149 | +- `PROBABILISTIC-ROBOTICS.ORG <http://www.probabilistic-robotics.org/>`__ |
0 commit comments