-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpecSeg.py
98 lines (79 loc) · 4.01 KB
/
SpecSeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#https://youtu.be/csFGTLT6_WQ
# u-net model
import os
import numpy as np
import segmentation_models as sm
import tensorflow as tf
from tensorflow.keras.layers import (
BatchNormalization,
Conv2D,
Conv2DTranspose,
Dropout,
Input,
MaxPooling2D,
concatenate,
)
from tensorflow.keras.models import Model
os.environ["SM_FRAMEWORK"] = "tf.keras"
os.environ["_TF_KERAS_FRAMEWORK_NAME"] = "tf.keras"
sm.set_framework('tf.keras')
################################################################
@tf.function(experimental_follow_type_hints=True, jit_compile=True)
def SpecSeg(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
#Build the model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
#s = Lambda(lambda x: x / 255)(inputs) #No need for this if we normalize our inputs beforehand
s = inputs
#Contraction path
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c1)
c1 = BatchNormalization(axis=-1)(c1)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c2)
c2 = BatchNormalization(axis=-1)(c2)
p2 = MaxPooling2D((2, 2))(c2)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c3)
c3 = BatchNormalization(axis=-1)(c3)
p3 = MaxPooling2D((2, 2))(c3)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c4)
c4 = BatchNormalization(axis=-1)(c4)
p4 = MaxPooling2D(pool_size=(2, 2))(c4)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c5)
c5 = BatchNormalization(axis=-1)(c5)
#Expansive path
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c6)
u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c7)
u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c8)
u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c9)
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs], name = 'SpecSeg')
dice_loss = sm.losses.DiceLoss(class_weights=np.array([0.5, 0.5]))
focal_loss = sm.losses.CategoricalFocalLoss()
dice_loss + (1 * focal_loss)
[sm.metrics.IOUScore(threshold=0.5), sm.metrics.FScore(threshold=0.5)]
return model