forked from subailong/datalgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree.h
270 lines (209 loc) · 5.18 KB
/
tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//
// tree.h
// datalgo
//
// Created by Iyed Bennour on 06/11/2014.
// Copyright (c) 2014 Iyed Bennour. All rights reserved.
//
#ifndef __datalgo__tree__
#define __datalgo__tree__
#include <iostream>
#include <stack>
#include <queue>
template <typename value_type> class Tree {
public:
struct node_t {
node_t(value_type _val, node_t *par):val(_val) {
left = nullptr;
right = nullptr;
parent = par;
}
value_type val;
node_t *left;
node_t *right;
node_t *parent;
};
private:
node_t *_root;
public:
Tree():_root(nullptr) {}
void delete_nodes() {
_delete_tree(_root);
_root = nullptr;
}
const node_t* root() {
return _root;
}
size_t size() {
return _size(_root);
}
size_t length() {
return _length(_root);
}
void add(const value_type& value) {
_addNode(value, &_root, nullptr);
}
void add_nodes(value_type arr[], int begin, int end) {
_add_nodes(arr, begin, end, &_root, nullptr);
}
void in_order() {
_in_order(_root);
}
void in_order(std::vector<value_type>& v) {
_in_order(_root, v);
}
const node_t* find(value_type val) {
return _find(val, _root);
}
std::stack<node_t*> route_to_node(value_type val) {
std::stack<node_t*> stack;
_record_route(val, _root, stack);
return stack;
}
std::vector<std::vector<node_t*>> get_tree_levels() {
return _get_tree_levels(_root);
}
bool is_balanced() {
return _is_balanced(_root);
}
virtual ~Tree() {
delete_nodes();
}
private:
void _record_route(value_type val, node_t* n, std::stack<node_t*>& stack) {
if (n == nullptr) {
while (!stack.empty()) {
stack.pop();
}
return;
}
else {
if (n->val == val) {
stack.push(n);
return;
}
else if (val > n->val) {
stack.push(n);
_record_route(val, n->right, stack);
}
else {
stack.push(n);
_record_route(val, n->left, stack);
}
}
}
const node_t* _find(value_type val, node_t* n) {
if (n == nullptr) {
return nullptr;
}
else {
if (n->val == val) return n;
else if (val > n->val) return _find(val, n->right);
else return _find(val, n->left);
}
}
void _add_nodes(value_type sorted_arr[], int begin, int end, node_t **n, node_t *par) {
if (end < begin) {
return;
}
else {
int half = (begin + end) / 2;
*n = new node_t(sorted_arr[half], par);
_add_nodes(sorted_arr, begin, half - 1, &((*n)->left), *n);
_add_nodes(sorted_arr, half + 1, end, &((*n)->right), *n);
}
}
void _in_order(node_t *r) {
if (r) {
_in_order(r->left);
std::cout << r->val << "\n";
_in_order(r->right);
}
}
void _in_order(node_t *r, std::vector<value_type>& v) {
if (r) {
_in_order(r->left, v);
//std::cout << r->val << "\n";
v.push_back(r->val);
_in_order(r->right, v);
}
}
size_t _size(node_t *r) {
if (r == nullptr) return 0;
else return 1 + _size(r->left) + _size(r->right);
}
void _addNode(const value_type& val, node_t **root, node_t *par) {
if (*root == nullptr) {
*root = new node_t(val, par);
}
else {
if (val <= (*root)->val) {
_addNode(val, &((*root)->left), *root);
}
else
_addNode(val, &((*root)->right), *root);
}
}
void _delete_tree(node_t *node) {
if (node != nullptr) {
if (node->left == nullptr && node->right == nullptr) {
if (node->parent && node->parent->left == node) {
node->parent->left = nullptr;
}
else if (node->parent && node->parent->right == node) {
node->parent->right = nullptr;
}
delete node;
}
else {
_delete_tree(node->left);
_delete_tree(node->right);
delete node;
}
}
}
std::vector<std::vector<node_t*>> _get_tree_levels(node_t* root) {
std::queue<std::vector<node_t*>> queue;
std::vector<std::vector<node_t*>> levels;
if (root == nullptr) return levels;
queue.push({root});
levels.push_back({root});
while(!queue.empty()) {
auto l = queue.front();
std::vector<node_t*> v;
std::vector<node_t*> q;
for (auto& e :l) {
if (e->left != nullptr) {
v.push_back(e->left);
q.push_back(e->left);
}
if (e->right != nullptr) {
v.push_back(e->right);
q.push_back(e->right);
}
}
if (q.size() != 0)
queue.push(q);
levels.push_back(v);
queue.pop();
}
return levels;
}
size_t _length(node_t* n) {
if (n == nullptr)
return 0;
else {
return 1 + std::max(_length(n->left), _length(n->right));
}
}
bool _is_balanced(node_t* tree) {
if (tree == nullptr)
return true;
else {
size_t ltl = _length(tree->left);
size_t rtl = _length(tree->right);
return abs(ltl - rtl) <= 1 && _is_balanced(tree->left) && _is_balanced(tree->right);
}
}
};
#endif /* defined(__datalgo__tree__) */