-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
68 lines (55 loc) · 1.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import glob
import os
from datetime import datetime
from lightning import Trainer
from lightning.pytorch.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from trainer import AudioClassifier, AudioDataset
TRAINING_FILE_PATH = "data/"
SPLIT = 0.2
MAX_EPOCHS = 32
WORKERS = 8
BATCH_SIZE = 16
VAL_BATCH_LIMIT = 8
LEARNING_RATE = 1e-5
now = datetime.now().strftime("%Y%m%d%H%M%S")
if not os.path.exists("./out"):
os.mkdir("./out")
os.mkdir(f"./out/model_{now}")
checkpoint_callback = ModelCheckpoint(
monitor="val_loss",
save_top_k=2,
dirpath=f"out/model_{now}/",
filename="audio-classifier-{epoch:02d}",
)
files = glob.glob(f"{TRAINING_FILE_PATH}/*.wav")
train, test = train_test_split(files, shuffle=True, train_size=SPLIT)
train_dataset = AudioDataset(train)
test_dataset = AudioDataset(test)
print("Both dataset loaded.")
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers= WORKERS
)
test_loader = DataLoader(
test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
drop_last=False,
num_workers= WORKERS
)
print("Training started.")
trainer = Trainer(
max_epochs=MAX_EPOCHS,
accumulate_grad_batches=1,
limit_val_batches=VAL_BATCH_LIMIT,
callbacks=[checkpoint_callback],
# logger=logger,
)
classifier = AudioClassifier(learning_rate=LEARNING_RATE)
trainer.fit(classifier, train_loader, test_loader)