- <i>MCPL</i> takes a sentence (top-left) and a sample image (top-right) as input, feeding them into a pre-trained text-guided diffusion model comprising a text encoder \(c_\phi\) and a denoising network \(\epsilon_\theta\). The string's multiple prompts are encoded into a sequence of embeddings which guide the network to generate images \(\tilde{X}_0\) close to the target one \(X_0\). MCPL focuses on learning multiple learnable prompts (coloured texts), updating only the embeddings \(\{v^*\}\) and \(\{v^\&\}\) of the learnable prompts while keeping \(c_\phi\) and \(\epsilon_\theta\) frozen. We introduce <i>Prompts Contrastive Loss (PromptCL)</i> to help separate multiple concepts within learnable embeddings. We also apply <i>Attention Masking (AttnMask)</i>, using masks based on the average cross-attention of prompts, to refine prompt learning on images. Optionally we associate each learnable prompt with an adjective (e.g., "brown" and "rolling") to improve control over each learned concept, referred to as <i>Bind adj.</i>
0 commit comments