-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognition.py
110 lines (82 loc) · 3.36 KB
/
recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import face_recognition
import cv2
import numpy as np
import glob
import time
import csv
import pickle
# import mysql.connector
# import datetime
f=open("ref_name.pkl","rb")
ref_dictt=pickle.load(f) #ref_dict=ref vs name
f.close()
f=open("ref_embed.pkl","rb")
embed_dictt=pickle.load(f) #embed_dict- ref vs embedding
f.close()
############################################################################ encodings and ref_ids
known_face_encodings = [] #encodingd of faces
known_face_names = [] #ref_id of faces
for ref_id , embed_list in embed_dictt.items():
for embed in embed_list:
known_face_encodings +=[embed]
known_face_names += [ref_id]
#############################################################frame capturing from camera and face recognition
video_capture = cv2.VideoCapture(0)
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True :
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
#updating in database
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, ref_dictt[name], (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
font = cv2.FONT_HERSHEY_DUPLEX
# cv2.putText(frame, last_rec[0], (6,20), font, 1.0, (0,0 ,0), 1)
# Display the resulting imagecv2.putText(frame, ref_dictt[name], (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
# t.cancel()
break
# break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()