forked from bangawayoo/nlp-watermarking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_infill_ablation.py
389 lines (326 loc) · 14.9 KB
/
train_infill_ablation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import copy
from functools import partial
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import random
from accelerate import Accelerator
from datasets import Dataset
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import AdamW
from tqdm.auto import tqdm
from transformers import get_scheduler
from config import GenericArgs, InfillArgs, WatermarkArgs
from models.mask import MaskSelector
from models.kwd import KeywordExtractor
from utils.infill_config import INFILL_TOKENIZER, INFILL_MODEL
from utils.infill_utils import collator_for_masking_random, collator_for_masking_ours, tokenize_function
from utils.logging import getLogger
random.seed(1230)
# @record
def main():
infill_parser = InfillArgs()
generic_parser = GenericArgs()
wm_parser = WatermarkArgs()
infill_args, _ = infill_parser.parse_known_args()
generic_args, _ = generic_parser.parse_known_args()
wm_args, _ = wm_parser.parse_known_args()
DEBUG_MODE = generic_args.debug_mode
dtype = generic_args.dtype
dirname = f'./logs/train-infill/{dtype}/{generic_args.exp_name}'
logger = getLogger("TRAIN-INFILL",
dir_=dirname,
debug_mode=DEBUG_MODE)
augmented_data_path = f"./data/{dtype}-augmented.txt"
clean_text = []
corrupted_text = []
with open(augmented_data_path, "r", encoding="utf-8") as reader:
for line in reader:
line = line.split("[sep]")
for idx in range(len(line)-1):
clean_text.append(line[0])
corrupted_text.append(line[idx+1])
# shuffle the instances with fixed seed so that the clean-corrupted pairs are maintained
random.Random(0).shuffle(clean_text)
random.Random(0).shuffle(corrupted_text)
tokenizer = INFILL_TOKENIZER
batch = clean_text
corr_batch = corrupted_text
clean_dataset = Dataset.from_dict({"text": batch})
corr_dataset = Dataset.from_dict({"text": corr_batch})
feature = clean_dataset.map(tokenize_function, batched=True)
corr_feature = corr_dataset.map(tokenize_function, batched=True)
feature = feature.add_column("corr_input_ids", corr_feature['input_ids'])
feature = feature.add_column("corr_attention_mask", corr_feature['attention_mask'])
mask_kwargs = {'method': wm_args.mask_select_method,
"mask_order_by": wm_args.mask_order_by,
"keyword_mask": wm_args.keyword_mask}
mask_selector = MaskSelector(**mask_kwargs)
keyword_module = KeywordExtractor(ratio=wm_args.keyword_ratio)
# train model
pt_dataset = feature.train_test_split(
train_size=0.6,
test_size=0.4,
shuffle=False
)
eval_dataset = pt_dataset['test']
if DEBUG_MODE:
eval_dataset = eval_dataset.train_test_split(
train_size=0.8,
test_size=0.2,
shuffle=False)
eval_dataset = eval_dataset['test']
train_bs = 64 if not DEBUG_MODE else 8
if infill_args.masking_type == "random":
masking_p = infill_args.masking_p
collate_func = partial(collator_for_masking_random, masking_p=masking_p)
else:
collate_func = partial(collator_for_masking_ours, mask_selector=mask_selector, keyword_module=keyword_module)
# train_dataset = pt_dataset['train'].select(range(1))
train_dataset = pt_dataset['train']
train_dl = DataLoader(
train_dataset,
shuffle=False,
batch_size=train_bs,
collate_fn=collate_func
)
eval_dl = DataLoader(
eval_dataset,
shuffle=False,
batch_size=train_bs*2,
collate_fn=collate_func
)
# log data as texts
# cnt = 0
# for b_idx, (batch, corr_batch) in enumerate(train_dl):
# for b, cb in zip(batch["input_ids"], corr_batch["input_ids"]):
# logger.info(tokenizer.decode(b).replace("[PAD]", ""))
# logger.info(tokenizer.decode(cb).replace("[PAD]", "") + "\n")
# cnt += 1
# if cnt > 100:
# break
# exit()
model = INFILL_MODEL
params = [p for n, p in model.named_parameters()]
optimizer = AdamW(params, lr=5e-5)
num_train_epochs = infill_args.num_epochs
num_update_steps_per_epoch = len(train_dl)
num_training_steps = num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0.1,
num_training_steps=num_training_steps,
)
accelerator = Accelerator()
# load from checkpoint
if infill_args.model_ckpt:
model.from_pretrained(infill_args.model_ckpt)
optim_scheduler_states = torch.load(os.path.join(infill_args.model_ckpt, "/optim_state.pth"))
logger.info("Loading optimizer states from checkpoint dir ..")
optimizer.load_state_dict(optim_scheduler_states["optimizer"])
completed_epochs = optim_scheduler_states["epoch"]
completed_steps = optim_scheduler_states["steps"]
lr_scheduler.load_state_dict(optim_scheduler_states["scheduler"])
model, optimizer, train_dl, eval_dl = accelerator.prepare(
model, optimizer, train_dl, eval_dl
)
kl_criterion = torch.nn.KLDivLoss(reduction="batchmean")
eval_freq = 20000
log_freq = 1000
kl_weight = 1.0
topk = 32
optimize_topk = True
use_logit_loss = False
optimize_cls_token = False
mse_criterion = torch.nn.MSELoss()
logit_loss_w = 1.0
kl_type = infill_args.kl_type
ckpt_dir = f"./ckpt/{dtype}/{generic_args.exp_name}/"
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
def compute_loss(target_dist, pred_dist, kl_criterion, target_logit, pred_logit,
mse_criterion=None, optimize_topk=False,
use_logit_loss=False, kl_type="forward"):
# implement accuracy as metric
_, topk_target_idx = torch.topk(target_dist, topk, dim=-1)
_, topk_pred_idx = torch.topk(pred_dist, topk, dim=-1)
acc_list = []
for p_row, t_row in zip(topk_pred_idx, topk_target_idx):
isin_mask = torch.isin(p_row, t_row)
acc = isin_mask.sum() / isin_mask.numel()
acc_list.append(acc.unsqueeze(-1))
if optimize_topk:
row_idx = [[idx] * topk_target_idx.shape[1] for idx in range(topk_target_idx.shape[0])]
row_idx = [item for sublist in row_idx for item in sublist]
col_idx = torch.flatten(topk_target_idx).tolist()
bool_mask = torch.empty(target_dist.shape, dtype=torch.bool, device=target_dist.device)
bool_mask[:] = True
bool_mask[row_idx, col_idx] = False
target_dist[bool_mask] = 0
target_dist = target_dist / target_dist.sum(dim=-1, keepdim=True)
# target_dist[row_idx, col_idx] = 1
target_dist = target_dist + 1e-12
if kl_type == "reverse":
# use reverse kl
kl_loss = kl_criterion(target_dist.log(), pred_dist)
else:
# forward kl
kl_loss = kl_criterion(pred_dist.log(), target_dist)
### optimizing only for the topk ###
# topk_target_dist, topk_target_idx = torch.topk(target_dist, topk, dim=-1)
# topk_pred_dist = []
# for k_idx in range(topk):
# single_pred = pred_dist.gather(1, topk_target_idx[:, [k_idx]])
# topk_pred_dist.append(single_pred)
#
# topk_pred_dist = torch.cat(topk_pred_dist, dim=1)
# topk_pred_dist = topk_pred_dist / topk_pred_dist.sum(dim=-1, keepdim=True)
# topk_target_dist = topk_target_dist / topk_target_dist.sum(dim=-1, keepdim=True)
# kl_loss = kl_criterion(topk_pred_dist.log(), topk_target_dist)
logit_loss = torch.tensor(-1, dtype=torch.float, device=target_dist.device)
if use_logit_loss:
logit_loss = mse_criterion(pred_logit, target_logit)
if kl_loss == float("inf") or kl_loss == float("-inf"):
logger.info("KL loss is inf!")
breakpoint()
if acc_list:
acc_list = torch.cat(acc_list)
return kl_loss, logit_loss, acc_list
def evaluate(eval_dl, epoch, step, save_ckpt=False):
model.eval()
losses = {"mlm": [], "r_mlm": [], "acc": [], 'll': []}
for batch, corr_batch in eval_dl:
with torch.no_grad():
outputs = model(**batch)
masked_index = (batch['input_ids'] == tokenizer.mask_token_id).nonzero(as_tuple=True)
corr_outputs = model(**corr_batch)
corr_masked_index = (corr_batch['input_ids'] == tokenizer.mask_token_id).nonzero(as_tuple=True)
target_dist = F.softmax(outputs.logits[masked_index], dim=-1)
pred_dist = F.softmax(corr_outputs.logits[corr_masked_index], dim=-1)
kl_loss, logit_loss, acc = compute_loss(target_dist, pred_dist, kl_criterion,
outputs.logits[masked_index],
corr_outputs.logits[corr_masked_index],
mse_criterion=mse_criterion,
optimize_topk=optimize_topk,
use_logit_loss=use_logit_loss,
kl_type=kl_type)
bs = batch['labels'].shape[0]
loss = corr_outputs.loss
losses['mlm'].append(accelerator.gather(loss.repeat(bs)))
losses['r_mlm'].append(accelerator.gather(kl_loss.repeat(bs)))
if len(acc):
losses['acc'].append(acc)
losses['ll'].append(accelerator.gather(logit_loss.repeat(bs)))
logger.debug(f"At Step {step}:")
topk_token_idx = torch.topk(pred_dist, 5, dim=-1)[1]
for tti in topk_token_idx:
logger.debug(tokenizer.decode(tti))
log_output = ""
for k, v in losses.items():
if len(v):
mean_loss = torch.cat(v)[: len(pt_dataset['test'])].mean()
log_output += f"{k}: {mean_loss:.3f}\t"
losses[k] = []
logger.info(f">>>Eval at Epoch {epoch}, Step {step}/{num_training_steps}\t"
f"{log_output}")
if save_ckpt:
accelerator.wait_for_everyone()
unwrapped = accelerator.unwrap_model(model)
unwrapped.save_pretrained(
os.path.join(ckpt_dir, f"{step}")
)
accelerator.save(
{
"epoch": epoch,
"steps": step,
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict(),
},
os.path.join(ckpt_dir, f"{step}/optim_state.pth")
)
if infill_args.eval_init or infill_args.eval_only:
logger.info("Evaluating...")
# Evaluation pre-training
evaluate(eval_dl, 0, 0, save_ckpt=False)
if infill_args.eval_only:
exit()
step = 0
progress_bar = tqdm(range(num_training_steps))
for epoch in range(num_train_epochs):
# Train metric
tr_losses = {"mlm": [], "r_mlm": [], "acc": [], "ll": []}
for b_idx, (batch, corr_batch) in enumerate(train_dl):
model.train()
outputs = model(**batch)
if optimize_cls_token:
masked_index = torch.logical_or(batch['input_ids'] == tokenizer.mask_token_id,
batch['input_ids'] == 101).nonzero(as_tuple=True)
else:
masked_index = (batch['input_ids'] == tokenizer.mask_token_id).nonzero(as_tuple=True)
with torch.no_grad():
corr_outputs = model(**corr_batch)
if optimize_cls_token:
corr_masked_index = torch.logical_or(corr_batch['input_ids'] == tokenizer.mask_token_id,
corr_batch['input_ids'] == 101).nonzero(as_tuple=True)
else:
corr_masked_index = (corr_batch['input_ids'] == tokenizer.mask_token_id).nonzero(as_tuple=True)
ppl_loss = outputs.loss
# the target distribution is detached from graph
target_dist = F.softmax(outputs.logits[masked_index], dim=-1)
pred_dist = F.softmax(corr_outputs.logits[corr_masked_index], dim=-1)
if target_dist.shape[0] != pred_dist.shape[0]:
logger.info(
f"Number of masked tokens different for {b_idx} : target {target_dist.shape[0]} , pred: {pred_dist.shape[0]}")
breakpoint()
kl_loss, logit_loss, acc = compute_loss(target_dist, pred_dist, kl_criterion,
outputs.logits[masked_index], corr_outputs.logits[corr_masked_index],
mse_criterion=mse_criterion,
optimize_topk=optimize_topk,
use_logit_loss=use_logit_loss,
kl_type=kl_type)
if kl_loss == float("inf") or kl_loss == float("-inf"):
logger.info("KL loss is inf!")
breakpoint()
loss = ppl_loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
step += 1
bs = batch['labels'].shape[0]
tr_losses['mlm'].append(accelerator.gather(ppl_loss.detach().repeat(bs)))
tr_losses['r_mlm'].append(accelerator.gather(kl_loss.detach().repeat(bs)))
if len(acc):
tr_losses['acc'].append(acc)
tr_losses['ll'].append(accelerator.gather(logit_loss.detach().repeat(bs)))
if step % log_freq == 0:
log_output = ""
for k, v in tr_losses.items():
if len(v):
mean_loss = torch.cat(v).mean()
log_output += f"{k}: {mean_loss:.3f}\t"
tr_losses[k] = []
logger.info(f">>>Train log at Epoch {epoch}, Step {step}/{num_training_steps}\t"
f"{log_output}")
if step % eval_freq == 0 or step == num_training_steps:
# Evaluation
evaluate(eval_dl, epoch, step, save_ckpt=True)
accelerator.wait_for_everyone()
unwrapped = accelerator.unwrap_model(model)
unwrapped.save_pretrained(
os.path.join(ckpt_dir, f"last")
)
accelerator.save(
{
"epoch": epoch,
"steps": step,
"optimizer": optimizer.state_dict(),
"scheduler": lr_scheduler.state_dict()
},
os.path.join(ckpt_dir, "last/optim_state.pth")
)
if __name__ == "__main__":
main()