forked from bangawayoo/nlp-watermarking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
378 lines (320 loc) · 12.4 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
##
from utils.dataset_utils import get_result_txt, preprocess_txt, preprocess2sentence, get_dataset
from datasets import load_dataset
dtype = "wikitext"
filename = "watermarked.txt"
list_of_files = [f'results/ours/{dtype}/new/dep/{filename}', f'results/ours/{dtype}/new/dep-wo-cc/{filename}',
f'results/context-ls/{dtype}/paper/{filename}']
list_of_watermarks = [get_result_txt(i) for i in list_of_files]
list_of_sets = []
corpus, test_corpus, num_sample = get_dataset(dtype)
test_cover_texts = preprocess_txt(test_corpus)
test_cover_texts = preprocess2sentence(test_cover_texts, dtype + "-test", 0)
##
from spacy import displacy
from pathlib import Path
from models.kwd import KeywordExtractor
sample_sentence = test_cover_texts[1][9]
visual_options = {'compact': True, "distance": 100, "word_spacing": 40}
svg = displacy.render(sample_sentence, style="dep", options=visual_options)
output_path = Path("./visualization/fig/dep-tree.svg")
with output_path.open("w", encoding="utf-8") as fh:
fh.write(svg)
keyword_module = KeywordExtractor(ratio=0.3)
all_keywords, entity_keywords = keyword_module.extract_keyword([sample_sentence])
##
for idx, watermarked in enumerate(list_of_watermarks):
embedded_indices = []
lucky_cnt = 0
embedded_cnt = 0
for idx, (c_idx, sen_idx, sub_idset, sub_idx, clean_wm_text, key, msg) in enumerate(watermarked):
if len(msg) > 0:
embedded_cnt += 1
original = test_cover_texts[c_idx][sen_idx].text
compared = clean_wm_text
if original.replace(" ", "").strip() == compared.replace(" ", "").strip():
lucky_cnt += 1
hash_str = f"{c_idx},{sen_idx}"
hash_str = f"{idx}"
embedded_indices.append(hash_str)
print(lucky_cnt / embedded_cnt)
print(embedded_cnt / len(watermarked))
print("\n")
embedded_indices = set(embedded_indices)
list_of_sets.append(embedded_indices)
##
common = list_of_sets[0]
for idx, _ in enumerate(list_of_sets[:-1]):
common = common.intersection(list_of_sets[idx+1])
print(f"{len(common)} watermark samples available")
NAME = "samples"
SAVE_DIR = f"samples/{dtype}-{NAME}.csv"
f = open(SAVE_DIR, "w", newline="")
import csv
DELIMITER = '|'
wr = csv.writer(f, delimiter=DELIMITER, quoting=csv.QUOTE_MINIMAL)
result = []
result.append(["idx", "Original"] + list_of_files)
watermarked = list_of_watermarks[0]
for idx, (c_idx, sen_idx, sub_idset, sub_idx, clean_wm_text, key, msg) in enumerate(watermarked):
if str(idx) in common:
line = []
print(idx)
line.append(str(idx))
print("Original")
print(test_cover_texts[c_idx][sen_idx], end="\n\n")
line.append(test_cover_texts[c_idx][sen_idx].text)
print(list_of_files[0])
print(clean_wm_text, end="\n\n")
line.append(clean_wm_text)
for f_idx, wm_others in enumerate(list_of_watermarks[1:]):
c_idx, sen_idx, sub_idset, sub_idx, clean_wm_text, key, msg = wm_others[idx]
print(list_of_files[f_idx+1])
print(clean_wm_text, end="\n\n")
line.append(clean_wm_text)
result.append(line)
# wr.writerow(line)
print("\n")
import random
random.seed(1230)
random.shuffle(result)
wr.writerow(["idx", "Original", "dep", "wo-cc", "context-ls"])
wr.writerows(result)
f.close()
##
dtype = "wuthering_heights"
filename = "watermarked.txt"
NAME = "samples"
SAVE_DIR = f"./samples/{dtype}-{NAME}.csv"
result = []
with open(SAVE_DIR, "r") as f:
result = f.readlines()
result_parsed = [row.split("|") for row in result]
# for row in result_parsed[1:]:
# original = row[1]
# diff_marked = ""
# for method in row[2]:
# pass
#
# cnt = 0
# for row in result_parsed[1:]:
# original = row[1]
# compared = row[4]
# if original.replace(" ", "").strip() == compared.replace(" ", "").strip():
# cnt += 1
# print(cnt / (len(result_parsed)-1))
##
import difflib
sample_idx = 14
original = result_parsed[sample_idx][1]
print(original)
for i in range(2,5):
compared = result_parsed[sample_idx][i]
print(result_parsed[0][i])
for i,s in enumerate(difflib.ndiff(compared, original)):
if s[0] == "-" or s[0] == "+":
print(i, s)
print("\n")
##
import pandas as pd
import random
dtype = "wuthering_heights"
df = pd.read_csv(f"./samples/{dtype}-annotated.csv")
new_df = []
random.seed(0)
for idx in range(len(df)):
row = df.iloc[idx].to_list()[1:]
shuffled_indices = list(range(len(row)))
random.shuffle(shuffled_indices)
indices_str = " ".join([str(x) for x in shuffled_indices])
shuffled_row = [row[idx].replace("*", "") for idx in shuffled_indices]
shuffled_row.append(indices_str)
new_df.append(shuffled_row)
column_names = [f"method{i}" for i in range(len(row))]
new_df = pd.DataFrame(data=new_df, columns=column_names+['order'])
new_df.to_csv(f"./samples/amt/{dtype}-part1.csv")
new_df = []
for idx in range(len(df)):
row = df.iloc[idx].to_list()[1:]
original = row[0]
others = row[1:]
shuffled_indices = list(range(len(others)))
random.shuffle(shuffled_indices)
indices_str = " ".join([str(x) for x in shuffled_indices])
shuffled_row = [others[idx] for idx in shuffled_indices]
shuffled_row.append(indices_str)
original = "Reference: " + original
shuffled_row.insert(0, original)
new_df.append(shuffled_row)
column_names = [f"method{i}" for i in range(len(row))]
new_df = pd.DataFrame(data=new_df, columns=column_names+['order'])
new_df.to_csv(f"./samples/amt/{dtype}-part2.csv")
##
# preprocess and analyze AMT results
import pandas as pd
import numpy as np
# preprocess data
original_df = pd.read_csv("./samples/amt/cw-results.csv")
df = pd.read_csv("./samples/amt/cw-results.csv")
values = df.iloc[:, 3:].values
for ridx in range(values.shape[0]):
for cidx in range(values.shape[1]):
if not isinstance(values[ridx, cidx], int):
try:
v = int(values[ridx,cidx])
except:
all_ans = list(map(int, values[ridx,cidx].split(";")))
v = sum(all_ans) / len(all_ans)
values[ridx, cidx] = v
df = pd.DataFrame(values, columns=df.columns[3:]) # Part 1: 5*30 ; Part 2: 4*30
# get accuracy on the dummy questions
part2_df = pd.read_csv("./samples/amt/part2-agg.csv")
original = part2_df['method0'].apply(lambda x: x.replace("Reference: ", ""))
others = part2_df.iloc[:, range(2, 6)]
# find indices of the dummy questions (Part 2, those that are identical with reference)
dummy_q_idx = []
flattened_idx = 0
for r_idx, row in enumerate(others.values):
for sample in row:
if sample.replace("*", "").strip() == original[r_idx].strip():
dummy_q_idx.append(flattened_idx)
flattened_idx += 1
# compute accuracy for each row
part2_offset = 5*30 # start of Part2
dummy_q_idx = [x+part2_offset for x in dummy_q_idx]
acc = ((df.iloc[:, dummy_q_idx] == 5)|(df.iloc[:, dummy_q_idx] == 4)).sum(axis=1) / len(dummy_q_idx)
print(acc)
acc_threshold = 0.5
df = df[acc > acc_threshold] # filter out those with acc with lower than 0.90
print(df.shape[0])
# df = df.iloc[[7],:]
# Summarize score by methods
def restore_order(answers, ordering):
buffer = {}
num_col = answers.shape[-1]
replaced = [False for _ in range(num_col)]
for c_idx in range(num_col):
tmp = answers[:, ordering[c_idx]].copy()
buffer[ordering[c_idx]] = tmp
replaced[ordering[c_idx]] = True
if replaced[c_idx]:
d = buffer[c_idx]
else:
d = answers[:, c_idx]
answers[:, ordering[c_idx]] = d
return answers
part1_ordering = pd.read_csv("./samples/amt/part1-agg.csv")['order'].values
part1_result = []
for q_idx in range(0, 30):
start, end = 5*q_idx, 5*(q_idx+1)
# print(df.iloc[:, range(start, end)].columns)
answers = df.iloc[:, range(start, end)].values
ordering = list(map(int, part1_ordering[q_idx].split()))
# re-ordered to (original, dep, dep-wo-cc, context-ls, awt)
answers = restore_order(answers, ordering)
mean = answers.mean(0)
part1_result.append(mean[:, np.newaxis])
# 2d-array of (num. method, num. question)
part1_result = np.concatenate(part1_result, axis=1)
part1_result = (part1_result - part1_result[[0],:]).astype(float)
try:
part1_summary = {'mean': part1_result.mean(1), 'std': part1_result.std(1)}
except:
part1_summary = {'mean': part1_result.mean(1), 'std': None}
print(part1_summary)
part2_ordering = pd.read_csv("./samples/amt/part2-agg.csv")['order'].values
part2_result = []
for q_idx in range(0, 30):
start, end = 4 * q_idx + part2_offset, 4 * (q_idx + 1) + part2_offset
answers = df.iloc[:, range(start, end)].values
ordering = list(map(int, part2_ordering[q_idx].split()))
# re-ordered to (original, dep, dep-wo-cc, context-ls, awt)
answers = restore_order(answers, ordering)
mean = answers.mean(0)
part2_result.append(mean[:, np.newaxis])
part2_result = np.concatenate(part2_result, axis=1).astype(float)
try:
part2_summary = {'mean': part2_result.mean(1), 'std': part2_result.std(1)}
except:
part2_summary = {'mean': part2_result.mean(1), 'std': None}
print(part2_summary)
##
import os.path
from itertools import product
from datasets import load_dataset
import math
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "1"
import random
import re
import spacy
import string
import sys
import torch
from sentence_transformers import SentenceTransformer, util
from models.watermark import InfillModel
from utils.dataset_utils import preprocess2sentence, preprocess_txt
from utils.logging import getLogger
from utils.metric import Metric
from config import WatermarkArgs, GenericArgs, stop
from collections import defaultdict
import pickle
random.seed(1230)
if False:
infill_parser = InfillArgs()
generic_parser = GenericArgs()
infill_args, _ = infill_parser.parse_known_args()
generic_args, _ = generic_parser.parse_known_args()
model = InfillModel(infill_args)
DEBUG_MODE = infill_args.debug_mode
dtype = generic_args.dtype
start_sample_idx = 0
num_sample = generic_args.num_sample
# corpus = load_dataset(dtype)['train']['text']
# cover_texts = [t.replace("\n", " ") for t in corpus]
# cover_texts = preprocess_imdb(cover_texts)
# cover_texts = preprocess2sentence(cover_texts, dtype + "-train", start_sample_idx, num_sample,
# spacy_model=infill_args.spacy_model)
cover_texts, _ = model.return_dataset()
result = defaultdict(list)
examples = defaultdict(list)
spacy_tokenizer = spacy.load("en_core_web_sm")
for c_idx, sentences in enumerate(cover_texts[:500]):
for s_idx, sen in enumerate(sentences):
sen = spacy_tokenizer(sen.text)
structures = [t.pos_ for t in sen]
tokens = [t for t in sen]
for m_idx, struc in enumerate(structures):
# if str != "dep": # "dep" means unknown dependency
agg_cwi, agg_probs, mask_idx_pt, inputs = model.fill_mask(sen, [m_idx], train_flag=False, embed_flag=False)
candidate_texts, candidate_text_jp = model.generate_candidate_sentence(agg_cwi, agg_probs, mask_idx_pt, inputs)
entail_score = None
if candidate_texts:
entail_score, _ = model.compute_nli(candidate_texts, candidate_text_jp, sen.text)
if entail_score is not None:
result[struc].extend(entail_score.tolist())
examples[struc].append([sen.text, [t for t in sen][m_idx].text,
candidate_texts,
entail_score.tolist()])
as_lists = []
for k, v in result.items():
mean_score = sum(v) / len(v)
num_sample = len(v)
as_lists.append([k, f"{mean_score:.3f}", f"{num_sample}"])
as_lists.sort(key=lambda x: x[1], reverse=True)
for struc, mean, num_sample in as_lists:
print(f"{struc} {mean} for {num_sample} samples")
savedir = "analysis/pos_result.txt"
with open(savedir, "w") as wr:
for line in as_lists:
wr.write("\t".join(line) + "\n")
savedir = "analysis/pos_examples.pkl"
with open(savedir, "wb") as wr:
pickle.dump(examples, wr)
else:
with open("./analysis/dep_result.txt", "r") as f:
result = f.readlines()
deps = []
for r in result:
d = r.split("\t")[0]
print(r"'"+d+r"',", end=' ')