forked from alexanderbodard/P-O3-NILM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse.py
61 lines (38 loc) · 1.92 KB
/
analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Functions to perform basic analysis of REDD data
"""
import numpy as np
import matplotlib.pyplot as plt
import datetime
from files import read_dat_file, read_npy_file
THRESHOLD = 60 # Time gap threshold for moving data into separate files
PATH = "C:/users/arneb/P&O3/Data/REDD/data/low_freq" # Path to the low_freq folder of the REDD dataset
def analyse_time_gaps(house, channel, path=PATH, threshold=THRESHOLD):
"""
Analyses the time gaps in the .dat file of the given house and channel
"""
times, data = read_dat_file(path + f"/house_{house}/channel_{channel}.dat")
diffs = np.diff(times)
diff_counts = np.array(np.unique(diffs, return_counts=True)).transpose()
plt.plot(diffs)
plt.show()
print("\n\n******************************\n\n")
print(" Time gap: Number of occurences\n")
for d, c in diff_counts:
print(f"{d:10d}: {c:10d}")
print("\n\n******************************\n\n")
print("Time lost with current threshold: ", sum(diffs[abs(diffs) >= threshold]))
def skipped_time(times, threshold=THRESHOLD):
diffs = np.diff(times)
lt_threshold = np.array([diffs, np.arange(len(diffs))]).transpose()[diffs > threshold]
skipped = [(0, times[0])] + [(times[i], times[i + 1]) for _, i in lt_threshold]
return skipped
def time_interval(house, channel, path=PATH):
"""
Prints the starting and end dates of the data at the given house and channel
"""
times, _ = read_dat_file(path + f"/house_{house}/channel_{channel}.dat")
print(datetime.datetime.utcfromtimestamp(times[0]).strftime('%d-%m-%Y %H:%M:%S')
+ "\nto\n" +
datetime.datetime.utcfromtimestamp(times[-1]).strftime('%d-%m-%Y %H:%M:%S'))
return times[0], times[-1]