-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSMF.py
229 lines (209 loc) · 7.21 KB
/
SMF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import numpy as np
from numpy.linalg import inv
import utils
import pickle
import os
class Model:
def __init__(self, train_data=None, network=None, network_T=None, D=1, sigma=1,
sigma_u=1, sigma_v=1, sigma_w=1, iterations=10, load=False):
if load:
self.mean_U = np.load('model/E_U.npy')
self.mean_V = np.load('model/E_V.npy')
self.D = self.mean_U.shape[1]
self.network = network
with open('model/E_W.txt', 'rb') as fp:
self.mean_W = pickle.load(fp)
return
self.sigma = sigma
self.sigma_u = sigma_u
self.sigma_v = sigma_v
self.sigma_w = sigma_w
self.iterations = iterations
self.network = network
self.network_T = network_T
self.D = D
self.N, self.M, _ = np.max(train_data, axis=0)
self.N, self.M = int(self.N), int(self.M)
self.train_data = train_data
self.user_list, self.item_list = utils.data_to_list(self.N, self.M, self.train_data)
def init(self):
'''
initialized mean and cov of
Qs uniformly in [0, 1].
'''
self.mean_U = np.random.rand(self.N+1, self.D)
self.cov_U = np.random.rand(self.N+1, self.D, self.D)
self.mean_V = np.random.rand(self.M+1, self.D)
self.cov_V = np.random.rand(self.M+1, self.D, self.D)
self.mean_W = [[np.random.rand() for i1 in range(len(self.network[i]))] for i in range(self.N+1)]
self.var_W = [[np.random.rand() for i1 in range(len(self.network[i]))] for i in range(self.N+1)]
def test(self, data):
'''
return RMSE of model on validation data
'''
rmse = 0.
for i, j, score in data:
i, j = int(i), int(j)
pred = (self.E_U(i).T.dot(self.E_V(j)))[0,0]
for i1 in self.network[i]:
pred += (self.E_W(i, i1) * self.E_U(i1).dot(self.E_V(j)))[0,0]
rmse += (pred - score)**2
rmse /= data.shape[0]
rmse = np.sqrt(rmse)
return rmse
def predict(self, data):
'''
return prediction for given data.
data -> 2d array (user, item)
'''
preds = []
for i, j in data:
i, j = int(i), int(j)
pred = (self.E_U(i).T.dot(self.E_V(j)))[0,0]
for i1 in self.network[i]:
pred += (self.E_W(i, i1) * self.E_U(i1).dot(self.E_V(j)))[0,0]
preds.append(pred)
return np.array(pred)
def train(self):
self.init()
rmse = self.test(self.train_data)
rmse_list = [rmse]
print('iteration', 0, ' RMSE:', rmse)
for k in range(1, self.iterations+1):
for i in range(1, self.N+1):
for i1 in self.network[i]:
self.update_W(i, i1)
for i in range(1, self.N+1):
self.update_U(i)
for j in range(1, self.M+1):
self.update_V(j)
rmse = self.test(self.train_data)
print('iteration', k, ' RMSE:', rmse)
rmse_list.append(rmse)
if not os.path.exists('model/'):
os.makedirs('model/')
np.save('model/E_U.npy', self.mean_U)
np.save('model/E_V.npy', self.mean_V)
with open('model/E_W.txt', 'wb') as fp:
pickle.dump(self.mean_W, fp)
return rmse_list
def update_U(self, i):
'''
update mean and cov of Q(Ui)
'''
cov_inv = np.eye(self.D) / self.sigma_u
mean = 0
for j, score in self.user_list[i]:
E_VVJ = self.E_VV(j)
cov_inv += E_VVJ / self.sigma
mean += (score * self.E_V(j) - E_VVJ.dot(self.E_S(i).T)) / self.sigma
for i2 in self.network_T[i]:
for j, score in self.user_list[i2]:
E_VVJ = self.E_VV(j)
cov_inv += (self.E_WW(i2, i) * E_VVJ) / self.sigma
mean += self.E_W(i2, i) * \
(score * self.E_V(j) - E_VVJ.dot(self.E_U(i2) + self.E_S_(i2, i).T))
cov = inv(cov_inv)
mean = cov.dot(mean)
self.mean_U[i, :] = mean
self.cov_U[i, :, :] = cov
def update_V(self, j):
'''
update mean and cov of Q(Vj)
'''
cov_inv = np.eye(self.D) / self.sigma_v
mean = 0
for i, score in self.item_list[j]:
E_Si = self.E_S(i)
cov_inv += (self.E_UU(i)+ 2 * self.E_U(i).dot(E_Si) +
self.E_SS(i)) / self.sigma
mean += score * (self.E_U(i) + E_Si.T) / self.sigma
cov = inv(cov_inv)
mean = cov.dot(mean)
self.mean_V[j, :] = mean
self.cov_V[j, :, :] = cov
def update_W(self, i, i1):
'''
update mean and cov of Q(Wii')
'''
rho = 1. / self.sigma_w
mean = 0
for j, score in self.user_list[i]:
EUi1 = self.E_U(i1)
EUi = self.E_U(i)
E_VVJ = self.E_VV(j)
rho += (self.E_UVVU(i1, j)) / self.sigma
mean += (EUi1.T.dot(self.E_V(j)) * score -
EUi.T.dot(E_VVJ.dot(self.E_U(i1))) -
EUi1.T.dot(E_VVJ.dot(self.E_S_(i, i1)))) / self.sigma
var = 1. / rho
mean = var * mean
idx = self.network[i].index(i1)
self.mean_W[i][idx] = mean
self.var_W[i][idx] = var
def E_U(self, i):
'''
return EQ[Ui]
'''
return self.mean_U[i].reshape((self.D, 1))
def E_UU(self, i):
'''
return EQ[UiUi^T]
'''
m_u_i = self.mean_U[i].reshape((self.D, 1))
return (self.cov_U[i, :, :] + m_u_i.dot(m_u_i.T))
def E_V(self, j):
'''
return EQ[Vj]
'''
return self.mean_V[j].reshape((self.D, 1))
def E_VV(self, j):
'''
return E[VjVj^T]
'''
m_v_j = self.mean_V[j].reshape((self.D, 1))
return (self.cov_V[j, :, :] + m_v_j.dot(m_v_j.T))
def E_W(self, i, i1):
'''
return EQ[Wii']
'''
idx = self.network[i].index(i1)
return self.mean_W[i][idx]
def E_WW(self, i, i1):
'''
return EQ[Wii'Wii'^T]
'''
idx = self.network[i].index(i1)
return self.var_W[i][idx] + self.mean_W[i][idx]**2
def E_S(self, i):
'''
return EQ[Si]
'''
ret = np.zeros((self.D, 1))
for i1 in self.network[i]:
ret += self.E_W(i, i1) * self.E_U(i1)
return ret
def E_S_(self, i, k):
'''
return EQ[Si^(-k)]
'''
return self.E_S(i) - self.E_W(i, k) * self.E_U(k)
def E_SS(self, i):
'''
return EQ[Si^TSi]
'''
ret = 0
for i1 in self.network[i]:
ret += self.E_WW(i, i1) * self.E_UU(i1)
for i2 in self.network[i]:
if i1 != i2:
ret += self.E_W(i, i1) * self.E_W(i, i2) * self.E_U(i1) * self.E_U(i2).T
return ret
def E_UVVU(self, i, j):
'''
return EQ[Ui^TVjVj^TUi]
'''
e = np.ones((self.D, 1))
tmp1 = e.T.dot(self.E_UU(i).dot(e))
tmp2 = e.T.dot(self.E_VV(j).dot(e))
return tmp1 * tmp2