forked from facebookresearch/denoiser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverting_to_onnx.py
40 lines (27 loc) · 921 Bytes
/
converting_to_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import argparse
import torch
from denoiser.pretrained import add_model_flags, get_model
def convert(args):
model = get_model(args)
model = model.cuda()
print(model)
# dummy input
dummy_input = torch.zeros((1, 1, 256)).cuda()
# print(model(data))
input_names = [ "frame" ]
output_names = [ "output_frame" ]
print("Optimizing model...")
torch.onnx.export(model, dummy_input, "denoise.onnx", verbose=True, input_names=input_names, output_names=output_names, opset_version=11)
import onnx
print("Checking model is properly formated...")
# Load the ONNX model
model = onnx.load("denoise.onnx")
# Check that the model is well formed
onnx.checker.check_model(model)
def parse_args():
parser = argparse.ArgumentParser()
add_model_flags(parser)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
convert(args)