forked from 649453932/Chinese-Text-Classification-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_classifier.py
229 lines (191 loc) · 8.58 KB
/
my_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# coding: UTF-8
import os
import pickle as pkl
from importlib import import_module
import numpy as np
import torch
from train_eval import init_network
class MyClassifier:
def __init__(self, model_name, dataset, embedding, word):
print("品目分类器!\n")
self.dataset = dataset # 数据集目录
self.model_name = model_name # 模型
self.embedding = embedding # embedding
self.word = word # 数据集是否已分词
self.labels = []
# 读取类别
with open(self.dataset + '/data/class.txt', 'r', encoding='utf-8') as file:
for line in file:
s = line.strip()
self.labels.append(s)
print("%s" % s)
print("一共读取到%s个类别\n" % len(self.labels))
# 创建模型配置
x = import_module('models.' + self.model_name)
self.config = x.Config(self.dataset, self.embedding)
print("预测时使用cpu\n")
self.config.device = torch.device('cpu')
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True # 保证每次结果一样
print("加载词汇表vocab.pkl...")
self.vocab = self.build_dataset(self.config, self.word)
# eval
self.config.n_vocab = len(self.vocab)
self.model = x.Model(self.config).to(self.config.device)
if self.model_name != 'Transformer':
init_network(self.model)
print("加载模型参数ckpt文件...")
# 加载模型权重
self.model.load_state_dict(torch.load(self.config.save_path, map_location='cpu'))
self.model.eval()
def build_dataset(self, config, ues_word):
if ues_word:
print("按空格分词生成向量")
tokenizer = lambda x: x.split(' ') # 以空格隔开,word-level
else:
print("按字生成向量")
tokenizer = lambda x: [y for y in x] # char-level
if os.path.exists(config.vocab_path):
print("读取已生成的词汇表vocab.pkl")
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
print("读取训练集生成词汇表")
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
print(f"词汇大小: {len(vocab)}")
return vocab
def my_to_tensor(self, config, datas):
x = torch.LongTensor([_[0] for _ in datas]).to(config.device)
y = torch.LongTensor([_[1] for _ in datas]).to(config.device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[2] for _ in datas]).to(config.device)
return (x, seq_len), y
def my_to_tensorFastText(self, config, datas):
# xx = [xxx[2] for xxx in datas]
# indexx = np.argsort(xx)[::-1]
# datas = np.array(datas)[indexx]
x = torch.LongTensor([_[0] for _ in datas]).to(config.device)
y = torch.LongTensor([_[1] for _ in datas]).to(config.device)
bigram = torch.LongTensor([_[3] for _ in datas]).to(config.device)
trigram = torch.LongTensor([_[4] for _ in datas]).to(config.device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[2] for _ in datas]).to(config.device)
return (x, seq_len, bigram, trigram)
def str2numpy(self, text, config):
UNK, PAD = '<UNK>', '<PAD>'
tokenizer = lambda x: [y for y in x] # char-level
vocab = self.vocab
def to_numpy(content, pad_size=32):
word_line = []
token = tokenizer(content)
seq_len = len(token)
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
word_line.append(vocab.get(word, vocab.get(UNK)))
# 文本转换为向量,标签设置为-1
return [(word_line, -1, len(token))]
npy = to_numpy(text, config.pad_size)
return DatasetIterater(npy, config.batch_size, config.device)
def str2numpyFastText(self, text, config):
UNK, PAD = '<UNK>', '<PAD>'
tokenizer = lambda x: [y for y in x] # char-level
vocab = pkl.load(open(config.vocab_path, 'rb'))
def biGramHash(sequence, t, buckets):
t1 = sequence[t - 1] if t - 1 >= 0 else 0
return (t1 * 14918087) % buckets
def triGramHash(sequence, t, buckets):
t1 = sequence[t - 1] if t - 1 >= 0 else 0
t2 = sequence[t - 2] if t - 2 >= 0 else 0
return (t2 * 14918087 * 18408749 + t1 * 14918087) % buckets
def to_numpy(content, pad_size=32):
#FIXME 去掉空格
content = content.replace(" ", "")
words_line = []
token = tokenizer(content)
seq_len = len(token)
if pad_size:
if len(token) < pad_size:
token.extend([PAD] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
words_line.append(vocab.get(word, vocab.get(UNK)))
# fasttext ngram
buckets = config.n_gram_vocab
bigram = []
trigram = []
# ------ngram------
for i in range(pad_size):
bigram.append(biGramHash(words_line, i, buckets))
trigram.append(triGramHash(words_line, i, buckets))
# -----------------
return [(words_line, -1, seq_len, bigram, trigram)]
npy = to_numpy(text, config.pad_size)
npy = self.my_to_tensorFastText(config, npy)
return npy
def classify(self, text):
# FastText
if self.model_name == 'FastText':
data = self.str2numpyFastText(text, self.config)
outputs = self.model(data)
probabilities = torch.softmax(outputs, dim=1)
# 获取前5个最大概率及其索引
topk_values, topk_indices = torch.topk(probabilities, k=5, dim=1)
# 打印结果
for i in range(len(topk_indices[0])):
print(
f"{[self.labels[topk_indices[0].cpu().numpy()[i]]]} {topk_values[0].cpu().detach().numpy()[i]:.4f}")
# 概率值最大的预测结果
predict_result = torch.max(outputs.data, 1)[1].cpu().numpy()[0]
# 对应的分类
cls = self.labels[predict_result]
return cls
# 除了FastText
else:
data = self.str2numpy(text, self.config)
for texts, labels in data:
outputs = self.model(texts)
probabilities = torch.softmax(outputs, dim=1)
# 获取前5个最大概率及其索引
topk_values, topk_indices = torch.topk(probabilities, k=5, dim=1)
# 打印结果
for i in range(len(topk_indices[0])):
print(
f"{[self.labels[topk_indices[0].cpu().numpy()[i]]]} {topk_values[0].cpu().detach().numpy()[i]:.4f}")
# 概率值最大的预测结果
predict_result = torch.max(outputs.data, 1)[1].cpu().numpy()[0]
# 对应的分类
cls = self.labels[predict_result]
return cls
if __name__ == '__main__':
model_name = 'TextRNN_Att' # TextCNN, TextRNN, FastText, TextRCNN, TextRNN_Att, DPCNN, Transformer
# 搜狗新闻:embedding_SougouNews.npz, 腾讯:embedding_Tencent.npz, 随机初始化:random
# embedding = 'embedding_SougouNews.npz'
embedding = 'random'
word = False
dataset = 'goods' # 数据集目录
# fastText的embedding方式不一样
if model_name == 'FastText':
from utils_fasttext import build_vocab, MAX_VOCAB_SIZE, DatasetIterater
embedding = 'random'
else:
from utils import build_vocab, MAX_VOCAB_SIZE, DatasetIterater
classifier = MyClassifier(model_name=model_name, dataset=dataset, embedding=embedding, word=word)
while True:
# 输入关键字
keyword = input("请输入关键字(输入 q 退出):")
# 如果输入 q,则退出循环
if keyword.lower() == 'q':
print("程序已退出。")
break
# 对关键字进行分词
print("%s 预测:%s" % (keyword, classifier.classify(keyword)))