-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_main.py
76 lines (55 loc) · 2.47 KB
/
single_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
import time
from torch.utils.data import Dataset, DataLoader
from tpbte import Model
from embedding import MyDataset
from trainAndtest import train_test
import pandas as pd
vocab = 21
d_model = 512
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# device = 'cpu'
e_type = 'BLOSUM62'
criterion = nn.CrossEntropyLoss()
model1 = Model(src_vocab=vocab, tgt_vocab=vocab, emb_type=e_type, N=6, h=8, d_model=d_model,dropout=0.1, device=device)
model1 = model1.to(device)
good_model = model1
opt = torch.optim.Adam(model1.parameters(), lr=0.00005, betas=(0.9, 0.98), eps=1e-9)
n_epoch = 200
def single(load_path, param_path, epitope,model,epoch):
save_p = param_path
epitope = epitope
print('Epitope:', epitope)
path_i = load_path
data = MyDataset(path_i, emb_type=e_type)
train_size = int(0.8 * len(data))
test_size = len(data) - train_size
train, test = torch.utils.data.random_split(data, [train_size, test_size])
print(train_size, test_size)
b_size = 32
train_dataset = DataLoader(dataset=train, batch_size=b_size, shuffle=True, drop_last=True)
test_dataset = DataLoader(dataset=test, batch_size=b_size, shuffle=True, drop_last=False)
print('')
start = time.time()
#result = train_model(model1, train_dataset, opt, n_epoch=n_epoch, save_path=save_p, b_loss=10, e_type=e_type)
te_loss, acc, auc, pre, recall, spe, f1, mcc = train_test(model=model, train_dataset=train_dataset,test_dataset=test_dataset,n_epoch=n_epoch,
optimizer=opt,e_type=e_type,criterion=criterion)
end = time.time()
print('the time used is : ', end - start)
torch.cuda.empty_cache()
#te_loss, acc, auc, pre, recall, spe, f1, mcc = test_model(good_model, test_dataset, emb_type=e_type)
print('Accuracy, AUC, precision, recall, specificity, f1, mcc')
print(acc, auc, pre, recall, spe, f1, mcc)
def single_epitope(path):
save_related = pd.read_csv(path, names=['load_path', 'param_path', 'epitope'])
print(save_related)
for i, load_path in enumerate(save_related['load_path']):
epitope = save_related['epitope'][i]
param_path = save_related['param_path'][i]
single(load_path, param_path, epitope, model1, n_epoch)
mcpas = 'McPAS_menu.csv'
vdjdb = 'VDJdb_munu.csv'
single_epitope(mcpas)
single_epitope(vdjdb)