Skip to content

Latest commit

 

History

History
158 lines (119 loc) · 5.15 KB

README.md

File metadata and controls

158 lines (119 loc) · 5.15 KB

GOAL:Alpha Generation

Research Problem:Multi-factor model based on machine learning

EDA of A share

benchmark :CSI300

Getting data from A share(Daily frequancy data)

  • From Magnum Research

  • From JQData

  • From WIND(real-time data?)

Stock Data pre-procession

  • Excluding ST shares, science and technology board, B shares, new shares, delisted shares.
  • Exclude data with less than 14 days of trading per month.
  • Remove missing values.
  • Indent the data by 1% up or down.

1.Mutifactor Model

1.1 Feature engineering(Factor mining)

Replicate factor from research report

some useful link

  1. GTJA 191 【研报复现】国泰君安——191个短周期量价特征因子选股系列一 - 知乎 https://zhuanlan.zhihu.com/p/30195354 日频量化因子分类 - 知乎 https://zhuanlan.zhihu.com/p/270265896

  2. Alpha 101 数值型因子的大规模分层测试---WorldQuant 101、国泰191、Sundays100+ - 知乎 https://zhuanlan.zhihu.com/p/60872286

Research report

https://github.com/Barca0412/Introduction-to-Quantitative-Finance?tab=readme-ov-file

https://github.com/hugo2046/QuantsPlaybook

Interesting Paper (Trying use)

1.Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning

https://arxiv.org/abs/2306.12964

2.AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment https://arxiv.org/abs/2002.08245

1.2 Data preprocessing

  • Depolarizing data
  • Standardization data
  • Neutrelizing data

1.3 Single factor testing

  • Effectiveness(t-value&IC)
  • Monotone Stability:Group backtest method

1.4 Multi-factor testing

1.5 collinearity diagnostics

1.6 Factor recombination

  • single regression weighting
  • IC,RankIC weighting
  • Ranknet

1.7 Select stock from A share according to our model

Based on Machine learning

  • Linear Model
  • svm
  • Lasso regression
  • Random Forest
  • Xgboost
  • Catboost

2. Bulid Risk Model

3. Portfolio optimization

MAFS 5310 https://bookdown.org/shenjian0824/portr/#structure-of-the-book

  • Mean-variance portfolio
  • Markowitz portfolio
  • Maximum Sharpe ratio portfolio
  • Risk based portfolio ...

4.Build a Backtesting structure

Useful link for build a Backtesting structure

TODO:

1. Getting data and data preprocession

  • get_data.py
  • preprocess.py
  • data: To store data

2. Build a Backtesting structure and testing simple strategy

  • backtesting.py
  • simple_backtest.ipynbTo test backtest structure

3. Feature engineering

  • GTJA_191.py
  • Alpha_101.py
  • Myself_factor.py
  • factor_data To store all factor data

4. Factor testing

  • factor_analysis.py

5. Select stock based on ML

  • ML_selector.py

6. Portfolio optimization

  • portfolio_opt.py