- GOAL:Alpha Generation
- Research Problem:Multi-factor model based on machine learning
- 1.Mutifactor Model
- 2. Bulid Risk Model
- 3. Portfolio optimization
- 4.Build a Backtesting structure
- TODO:
-
From Magnum Research
-
From JQData
-
From WIND(real-time data?)
- Excluding ST shares, science and technology board, B shares, new shares, delisted shares.
- Exclude data with less than 14 days of trading per month.
- Remove missing values.
- Indent the data by 1% up or down.
-
GTJA 191 【研报复现】国泰君安——191个短周期量价特征因子选股系列一 - 知乎 https://zhuanlan.zhihu.com/p/30195354 日频量化因子分类 - 知乎 https://zhuanlan.zhihu.com/p/270265896
-
Alpha 101 数值型因子的大规模分层测试---WorldQuant 101、国泰191、Sundays100+ - 知乎 https://zhuanlan.zhihu.com/p/60872286
https://github.com/Barca0412/Introduction-to-Quantitative-Finance?tab=readme-ov-file
https://github.com/hugo2046/QuantsPlaybook
1.Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning
https://arxiv.org/abs/2306.12964
2.AutoAlpha: an Efficient Hierarchical Evolutionary Algorithm for Mining Alpha Factors in Quantitative Investment https://arxiv.org/abs/2002.08245
- Depolarizing data
- Standardization data
- Neutrelizing data
- Effectiveness(t-value&IC)
- Monotone Stability:Group backtest method
- single regression weighting
- IC,RankIC weighting
- Ranknet
- Linear Model
- svm
- Lasso regression
- Random Forest
- Xgboost
- Catboost
MAFS 5310 https://bookdown.org/shenjian0824/portr/#structure-of-the-book
- Mean-variance portfolio
- Markowitz portfolio
- Maximum Sharpe ratio portfolio
- Risk based portfolio ...
- backtrader
- backtrader中文教程
- Qlib
- QUANTAXIS 2.0.0
- QuantLib: the free/open-source library for quantitative finance
get_data.py
preprocess.py
data
: To store data
backtesting.py
simple_backtest.ipynb
;To test backtest structure
GTJA_191.py
Alpha_101.py
Myself_factor.py
factor_data
To store all factor data
factor_analysis.py
ML_selector.py
portfolio_opt.py