-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
233 lines (190 loc) · 9.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import csv
import cv2
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Flatten, Dense, Lambda, Activation, Dropout
from keras.layers.convolutional import Convolution2D
from keras.regularizers import l2
from keras.optimizers import Adam
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
### Image preprocessing pipeline
def preprocess(image, color='RGB'):
# by default use input image color space as is.
img = image
# convert to YUV color space
if color == 'BGR':
img = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
elif color == 'RGB':
img = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
# trim image to only see section with road
cropped_img = img[55:135,:,:]
# rescale to nvidea model input size
rescaled = cv2.resize(cropped_img,(200, 66), interpolation = cv2.INTER_LINEAR)
return rescaled
### Build neural network model
def PilotNet():
model = Sequential()
# Preprocess incoming data, centered around zero with small standard deviation
model.add(Lambda(lambda x: x/127.5-1.0,input_shape=(66,200,3)))
model.add(Convolution2D(24,5,5,subsample=(2,2), W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Convolution2D(36,5,5,subsample=(2,2), W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Convolution2D(48,5,5,subsample=(2,2), W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Convolution2D(64,3,3, W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Convolution2D(64,3,3, W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Flatten())
model.add(Dropout(0.2))
model.add(Dense(100, W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Dense(50, W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Dense(10, W_regularizer = l2(1e-6)))
model.add(Activation('elu'))
model.add(Dense(1, W_regularizer = l2(1e-6)))
model.add(Activation('tanh'))
adam = Adam(lr = 0.0001)
model.compile(optimizer= adam, loss='mse')
return model
### Load training data
def load_data(path, images, measurements, correction = 0.2, augment = True):
with open(path + "driving_log.csv") as csvfile:
reader = csv.reader(csvfile)
for row in reader:
# read in images from center, left and right cameras
for i in range(3):
source_path = row[i]
tokens = source_path.split('\\')
filename = tokens[-1]
local_path = path + "IMG/" + filename
# add images to data set
images.append((local_path,False))
if augment == True:
images.append((local_path,True))
steering_center = float(row[3])
# create adjusted steering measurements for the side camera images
steering_left = steering_center + correction
steering_right = steering_center - correction
# add steering angles to data set
if augment == True:
measurements.append(steering_center)
measurements.append(-steering_center)
measurements.append(steering_left)
measurements.append(-steering_left)
measurements.append(steering_right)
measurements.append(-steering_right)
else:
measurements.append(steering_center)
measurements.append(steering_left)
measurements.append(steering_right)
return images, measurements
def generator(samples, measurements, batch_size=32):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
samples, measurements = shuffle(samples, measurements)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
batch_labels = measurements[offset:offset+batch_size]
images = []
angles = []
for i in range(len(batch_samples)):
name = batch_samples[i][0]
image = cv2.imread(name)
angle = batch_labels[i]
if batch_samples[i][1] == True:
image = cv2.flip(image, 1)
# trim image to only see section with road
images.append(preprocess(image, color='BGR'))
angles.append(angle)
X_train = np.array(images)
y_train = np.array(angles)
yield shuffle(X_train, y_train)
### Load data, train and save convolutional neural network
if __name__ == '__main__':
samples = []
measurements = []
correction = 0.2 # this is a parameter to tune
samples, measurements = load_data("./data/Track1-Centerlane/", samples, measurements, correction = correction, augment = True)
samples, measurements = load_data("./data/Track1-Recovery/", samples, measurements, correction = correction, augment = True)
samples, measurements = load_data("./data/Track1-Counter-clock/", samples, measurements, correction = correction, augment = True)
print("Track1 Samples: ", len(samples))
samples, measurements = shuffle(samples, measurements)
train_samples, validation_samples, train_labels, validation_labels = train_test_split(samples, measurements, test_size=0.2)
model = PilotNet()
model.summary()
### Save un trained model. Do not save if model.h5 is going to be loaded from previous train.
model.save('model_init.h5')
# compile and train the model using the generator function
train_generator = generator(train_samples, train_labels, batch_size=32)
validation_generator = generator(validation_samples, validation_labels, batch_size=32)
"""
# Train for 10 epoch to gauge how model is performing
history_object = model.fit_generator(train_generator, samples_per_epoch= len(train_samples), validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=10)
### Save trained model
model.save('model.h5')
import matplotlib.pyplot as plt
### plot the training and validation loss for each epoch
plt.plot(history_object.history['loss'])
plt.plot(history_object.history['val_loss'])
plt.title('model mean squared error loss')
plt.ylabel('mean squared error loss')
plt.xlabel('epoch')
plt.legend(['training set', 'validation set'], loc='upper right')
plt.savefig('./examples/model_training_10epoch.jpg')
plt.show()
"""
history_object = model.fit_generator(train_generator, samples_per_epoch= len(train_samples), validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=5)
### Save trained model
model.save('model.h5')
### Training for jungle track
model.load_weights('model_init.h5')
initial_fc_weights = []
for layer in model.layers[-8:]:
initial_fc_weights.append(layer.get_weights())
# Training from previously saved model
model.load_weights('model.h5')
# Reduce dropout to 0.1
for layer in model.layers:
if isinstance(layer, Dropout):
layer.rate = 0.1
### Load data from jungle track
samples2 = []
measurements2 = []
correction2 = 0.5 # this is a parameter to tune
samples2, measurements2 = load_data("./data/Track2-Rightlane/", samples2, measurements2, correction = correction2, augment = False)
samples2, measurements2 = load_data("./data/Track2-Recovery/", samples2, measurements2, correction = correction2, augment = False)
samples2, measurements2 = load_data("./data/Track2-Counter-clock/", samples2, measurements2, correction = correction2, augment = False)
print("Track2 Samples: ", len(samples2))
samples2, measurements2 = shuffle(samples2, measurements2)
train_samples2, validation_samples2, train_labels2, validation_labels2 = train_test_split(samples2, measurements2, test_size=0.2)
train_generator2 = generator(train_samples2, train_labels2, batch_size=32)
validation_generator2 = generator(validation_samples2, validation_labels2, batch_size=32)
model.fit_generator(train_generator2, samples_per_epoch= len(train_samples2), validation_data=validation_generator2, nb_val_samples=len(validation_samples2), nb_epoch=2)
### Freeze initial 3 convolution layers.
for layer in model.layers[:6]:
layer.trainable = False
model.summary()
### Reset weights of fully connected layers
i= 0
for layer in model.layers[-8:]:
layer.set_weights(initial_fc_weights[i])
i=i+1
### Train on both tracks together
all_samples = np.append(samples,samples2,axis=0)
all_measurements = np.append(measurements,measurements2)
print(len(all_samples))
all_samples,all_measurements = shuffle(all_samples,all_measurements)
train_samples_all, validation_samples_all, train_labels_all, validation_labels_all = train_test_split(all_samples,all_measurements, test_size=0.2)
train_generator_all = generator(train_samples_all,train_labels_all, batch_size=32)
validation_generator_all = generator(validation_samples_all,validation_labels_all, batch_size=32)
model.fit_generator(train_generator_all, samples_per_epoch= len(train_samples_all), validation_data=validation_generator_all, nb_val_samples=len(validation_samples_all), nb_epoch=5)
model.fit_generator(train_generator, samples_per_epoch= len(train_samples), validation_data=validation_generator, nb_val_samples=len(validation_samples), nb_epoch=1)
for layer in model.layers[:6]:
layer.trainable = True
model.summary()
model.save('model2.h5')