-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconfig.yaml
132 lines (116 loc) · 3.2 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
datasets:
sequence-size: 5 # must be >= 1
combinations: [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]]
kitti:
root-path-sync: "datasets/KITTI/sync"
root-path-unsync: "datasets/KITTI/extract"
image-width: 720
image-height: 57
crop-factors: [0, 0] # [0, 4] # top, left
fov-up: 3.
fov-down: -25.
max-depth: 80.
min-depth: 1.
inverse-depth: true
train:
2011-10-03: [27, 42, 34]
2011-09-30: [16, 18, 20, 27, 28]
test:
2011-10-03: [27, 42, 34]
2011-09-30: [16, 18, 20, 27, 28, 33, 34]
validation:
#2011-09-26: [23, 39]
2011-09-30: [33, 34]
# channesl: x, y, z, remission, nx, ny ,nz, range)
mean-image: [-0.0014, 0.0043, -0.011, 0.2258, -0.0024, 0.0037, 0.3793, 0.1115]
std-image: [0.1269, 0.0951, 0.0108, 0.1758, 0.3436, 0.4445, 0.5664, 0.0884]
mean-imu: [-0.0685, 0.1672, 9.7967, -0., 0.0006, 0.0059]
std-imu: [0.8766, 0.9528, 0.3471, 0.0204, 0.0227, 0.1412]
### DeepLIO Network ##############################
deeplio:
dropout: 0.25
pretrained: false
model-path: ""
lidar-feat-net:
name: "lidar-feat-pointseg"
pretrained: false
model-path: ""
requires-grad: true
imu-feat-net:
name: "imu-feat-rnn"
pretrained: false
model-path: ""
requires-grad: true
odom-feat-net:
name: "odom-feat-rnn"
pretrained: false
model-path: ""
requires-grad: true
fusion-net:
name: "fusion-layer-soft"
requires-grad: true # only soft-fusion has trainable params
### Lidar Feature Netowrks ###########################
# feature network simple0 with conv layers
# feature network pointseg
lidar-feat-pointseg: # pointseg feature
dropout: 0.1
classes: ['unknown', 'object']
bypass: "simple"
fusion: add # [cat, sub, add]
part: "encoder" # [encoder]
lidar-feat-flownet:
dropout: 0.
fusion: add # [cat, sub, add]
lidar-feat-resnet:
dropout: 0.25
fusion: add # [cat, sub, add]
# feature network simple0 with bypassed conv layers
lidar-feat-simple-1:
dropout: 0.25
fusion: add # [cat, sub, add]
bypass: false
### IMU Feature Netowrks ###########################
# IMU Feature Netowrks
imu-feat-fc: # FC
input-size: 6 # !fixed! do not chanage
hidden-size: [128, 256, 512, 512, 256, 128]
dropout: 0.
imu-feat-rnn: # RNN
type: "lstm"
input-size: 6 # !fixed! do not chanage
hidden-size: 128
num-layers: 2
bidirectional: true
dropout: 0.1
### Fusion-Layer for DeepLIO Net ###########################
fusion-layer-cat:
type: "cat" # [cat]
fusion-layer-soft:
type: "soft" # [soft]
### Odometry Feature Netowrks ###########################
# odometry feature network with fully connected layers
odom-feat-fc:
size: [1024, 512, 256]
dropout: 0.
# odometry feature network with rnn-layers
odom-feat-rnn:
type: "lstm"
hidden-size: 1024
num-layers: 2
bidirectional: true
dropout: 0.
### Loss Configurations ###########################
losses:
active: 'hwsloss'
hwsloss:
params:
learn: true
sx: 0.
sq: -3.
lwsloss:
params:
beta: 1125.
loss-type: "local+global" # ["local", "global", "local+global"]
current-dataset: 'kitti'
channels: [0, 1, 2, 4, 5, 6] # channesl: x, y, z, remission, nx, ny. nz range
optimizer: 'adam'