-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_generate.py
347 lines (271 loc) · 10.6 KB
/
main_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import unidecode
import string
import random
import re
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
import time, math
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
all_characters = string.printable
n_characters = len(all_characters)
# get data
all_files = ""
for file in os.listdir('./data'):
all_files += unidecode.unidecode(open('./data/'+file).read()) + "\n"
file_len = len(all_files)
# use CUDA if available
use_cuda = False
if torch.cuda.is_available():
use_cuda = True
# define length of string to consider while training
chunk_len = 250
# get a random chunk of data of length 'chunk_len'
def random_chunk(chunk_len):
start_index = random.randint(0, file_len - chunk_len)
end_index = start_index + chunk_len + 1
return all_files[start_index:end_index]
# main model class
class TextGenerate(nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bi=True):
super(TextGenerate, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.bi = bi
self.encoder = nn.Embedding(input_size, hidden_size)
self.lstm = nn.LSTM(hidden_size, hidden_size, n_layers, bidirectional=self.bi)
if self.bi:
self.decoder = nn.Linear(hidden_size*2, output_size)
else:
self.decoder = nn.Linear(hidden_size, output_size)
self.out = nn.Linear(output_size, output_size)
self.dropout = nn.Dropout(0.1)
def forward(self, input, hidden, cell):
# encoder
input = self.encoder(input.view(1, -1))
input = self.dropout(input)
output, states = self.lstm(input.view(1, 1, -1), (hidden, cell))
output = output.permute(1, 0, 2)
# attention
if self.bi:
out1, out2 = output[:,:,:self.hidden_size], output[:,:,self.hidden_size:]
h1, h2 = states[0][states[0].size()[0] - 2,:,:], states[0][states[0].size()[0] - 1,:,:]
attn_wts_1 = F.softmax(torch.bmm(out1, h1.unsqueeze(2)).squeeze(2), 1)
attn_wts_2 = F.softmax(torch.bmm(out2, h2.unsqueeze(2)).squeeze(2), 1)
attn_1 = torch.bmm(out1.transpose(1, 2), attn_wts_1.unsqueeze(2)).squeeze(2)
attn_2 = torch.bmm(out2.transpose(1, 2), attn_wts_2.unsqueeze(2)).squeeze(2)
attn = torch.cat((attn_1, attn_2), 1)
else:
h = states.squeeze(0)
attn_wts = F.softmax(torch.bmm(output, h.unsqueeze(2)).squeeze(2), 1)
attn = torch.bmm(output.transpose(1, 2), attn_wts.unsqueeze(2)).squeeze(2)
# decoder
output = self.decoder(attn)
output = self.dropout(output)
output = self.out(output)
return output, states
def init_hidden(self):
if self.bi:
return Variable(torch.zeros(self.n_layers*2, 1, self.hidden_size))
else:
return Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
def init_cell(self):
if self.bi:
return Variable(torch.zeros(self.n_layers*2, 1, self.hidden_size))
else:
return Variable(torch.zeros(self.n_layers, 1, self.hidden_size))
# turn string into list of longs
def char_tensor(string):
tensor = torch.zeros(len(string)).long()
for c in range(len(string)):
tensor[c] = all_characters.index(string[c])
if use_cuda:
tensor = tensor.cuda()
return Variable(tensor)
# get random training data
def random_training_set(chunk_len=250):
chunk = random_chunk(chunk_len)
inp = char_tensor(chunk[:-1])
target = char_tensor(chunk[1:])
return inp, target
# evaluate model
def evaluate(target_str, prime_str='A', predict_len=100, temperature=0.8):
model.load_state_dict(torch.load('./model_generate.pt'))
model.eval()
hidden = model.init_hidden()
cell = model.init_cell()
if use_cuda:
hidden = hidden.cuda()
cell = cell.cuda()
prime_input = char_tensor(prime_str)
predicted = prime_str + "\n-------->\n"
# use priming string to "build up" hidden state
for p in range(len(prime_str) - 1):
_, states = model(prime_input[p], hidden, cell)
if use_cuda:
hidden, cell = states[0].cuda(), states[1].cuda()
else:
hidden, cell = states[0], states[1]
inp = prime_input[-1]
loss = 0.
for p in range(predict_len):
output, states = model(inp, hidden, cell)
if use_cuda:
output = output.cuda()
hidden, cell = states[0].cuda(), states[1].cuda()
else:
hidden, cell = states[0], states[1]
target = char_tensor(target_str[p])
loss += criterion(output, target)
# sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# add predicted character to string and use as next input
predicted_char = all_characters[top_i]
predicted += predicted_char
inp = char_tensor(predicted_char)
loss_tot = total_loss(loss, predict_len)
perplexity = perplexity_score(loss_tot)
return predicted, loss_tot, perplexity
# get loss
def total_loss(loss, predict_len):
loss_tot = loss.cpu().item()/predict_len
return loss_tot
# get perplexity
def perplexity_score(loss):
perplexity = 2**loss
return perplexity
# helper function for time elapsed
def time_since(since):
s = time.time() - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
# train model
def train(inp, target):
model.train()
target.unsqueeze_(-1)
hidden = model.init_hidden()
cell = model.init_cell()
if use_cuda:
hidden = hidden.cuda()
cell = cell.cuda()
model.zero_grad()
loss = 0
for c in range(chunk_len):
output, states = model(inp[c], hidden, cell)
if use_cuda:
output = output.cuda()
hidden, cell = states[0].cuda(), states[1].cuda()
else:
hidden, cell = states[0], states[1]
loss += criterion(output, target[c])
loss.backward()
model_optimizer.step()
torch.save(model.state_dict(), './model_generate.pt')
loss_tot = total_loss(loss, chunk_len)
perplexity = perplexity_score(loss_tot)
return loss_tot, perplexity
# generate text given context
def generate(prime_str='A', predict_len=100, temperature=0.8):
model.load_state_dict(torch.load('./model_generate.pt'))
model.eval()
hidden = model.init_hidden()
cell = model.init_cell()
if use_cuda:
hidden = hidden.cuda()
cell = cell.cuda()
prime_input = char_tensor(prime_str)
predicted = prime_str + "\n--------->\n"
# use priming string to "build up" hidden state
for p in range(len(prime_str) - 1):
_, states = model(prime_input[p], hidden, cell)
if use_cuda:
hidden, cell = states[0].cuda(), states[1].cuda()
else:
hidden, cell = states[0], states[1]
inp = prime_input[-1]
for p in range(predict_len):
output, states = model(inp, hidden, cell)
if use_cuda:
output = output.cuda()
hidden, cell = states[0].cuda(), states[1].cuda()
else:
hidden, cell = states[0], states[1]
# sample from the network as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# add predicted character to string and use as next input
predicted_char = all_characters[top_i]
predicted += predicted_char
inp = char_tensor(predicted_char)
return predicted
# main
if __name__ == "__main__":
n_epochs = 25000
print_every = 2500
plot_every = 100
hidden_size = 100
n_layers = 2
lr = 0.0005
bi = True
# define model
model = TextGenerate(n_characters, hidden_size, n_characters, n_layers, bi)
if use_cuda:
model = model.cuda()
model_optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# train the model
start = time.time()
all_losses = []
all_perplexities = []
loss_avg = 0.
perplexity_avg = 0.
for epoch in range(1, n_epochs + 1):
loss, perplexity = train(*random_training_set(chunk_len))
loss_avg += loss
perplexity_avg += perplexity
if epoch % print_every == 0:
print('[%s taken (%d epochs %d%% trained) Loss: %.4f Perplexity: %.4f]' % (time_since(start), epoch, epoch / n_epochs * 100, loss, perplexity))
if epoch % plot_every == 0:
all_losses.append(loss_avg / plot_every)
all_perplexities.append(perplexity_avg / plot_every)
loss_avg = 0.
perplexity_avg = 0.
# plt.figure()
# plt.plot(all_losses)
# plt.show()
# plt.figure()
# plt.plot(all_perplexities)
# plt.show()
# evaluation
chunk = random_chunk(500)
prime_str, target_str = chunk[:251], chunk[251:]
gen_text, loss, perplexity = evaluate(target_str, prime_str, 250, temperature=0.8)
print("\nLoss: ", loss, " Perplexity:" , perplexity, "\n")
print("\n", gen_text, "\n")
# training evaluation
# Pride and Prejudice - Jane Austen
print(generate("\nThe tumult of her mind, was now painfully great. She knew not how \
to support herself, and from actual weakness sat down and cried for \
half-an-hour. ", 300, temperature=0.8))
# Dracula - Bram Stoker
print(generate("\nTo believe in things that you cannot. Let me illustrate. I heard once \
of an American who so defined faith: 'that faculty which enables us to \
believe things which we know to be untrue.' For one, I follow that man. ", 300, temperature=0.8))
# outside evaluation
# Emma - Jane Austen
print(generate("\nDuring his present short stay, Emma had barely seen him; but just enough \
to feel that the first meeting was over, and to give her the impression \
of his not being improved by the mixture of pique and pretension, now \
spread over his air. ", 300, temperature=0.8))
# The Strange Case Of Dr. Jekyll And Mr. Hyde - Robert Louis Stevenson
print(generate("\nPoole swung the axe over his shoulder; the blow shook the building, and \
the red baize door leaped against the lock and hinges. A dismal \
screech, as of mere animal terror, rang from the cabinet. ", 300, temperature=0.8))