-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
206 lines (177 loc) · 7.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
'''
Provably Robust Cost-Sensitive Learning via Randomized Smoothing
'''
import argparse
import numpy as np
import time
import os
import pdb
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.optim.lr_scheduler import MultiStepLR
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import MNIST, CIFAR10, SVHN
from tqdm import tqdm
from train_utils import AverageMeter, accuracy, init_logfile, log
from model import resnet110, LeNet
from architectures import ARCHITECTURES, get_architecture
from datasets import get_dataset, DATASETS
from certify import certify
from process_HAM10k import load_ham_data
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MACER Train and Test')
parser.add_argument('--seed', default=1, type=int, metavar='N', help='seed')
parser.add_argument('--root', default='dataset_cache/', type=str, help='Dataset path')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset:imagenet,cifar10')
parser.add_argument('--resume_ckpt', default=None, type=str,
help = 'Checkpoint path to resume')
parser.add_argument('--ckptdir', default='ckpt/tmp/', type=str,
help = 'Checkpoints save directory')
parser.add_argument('--matdir', default='mat/tmp/', type=str,
help = 'Matfiles save directory')
parser.add_argument('--epochs', default = 440,
type = int, help='Number of training epochs')
parser.add_argument('--gauss_num', default = 16, type=int,
help='Number of Gaussian samples per input')
parser.add_argument('--batch_size', default=64, type=int, help='Batch size')
# params for train
parser.add_argument('--lr', default=0.01, type=float, help='Initial learning rate')
parser.add_argument('--sigma', default=0.5, type=float,
help='Standard variance of gaussian noise (also used in test)')
parser.add_argument('--lbd1', default = 3, type=float,
help='Weight of robustness loss')
parser.add_argument('--lbd2', default = 3, type=float,
help='Weight of robustness loss')
parser.add_argument('--gamma', default=8, type=float,
help='Hinge factor')
parser.add_argument('--left', default=-16.0, type=float,
help='left value for margin')
parser.add_argument('--gamma1', default=16.0, type=float,
help='Sensitive Hinge factor')
parser.add_argument('--gamma2', default=4.0, type=float,
help='Non Sensitive Hinge factor')
parser.add_argument('--beta', default=16.0, type=float,
help='Inverse temperature of softmax (also used in test)')
parser.add_argument('--seed_type', default=3, type=str,
help='seed type for single seed class') # 3
# params for test
parser.add_argument('--skip', default=1, type=int,
help = 'Number of skipped images per test image')
parser.add_argument('--num_classes', default=10, type=int,
help = 'Number of classes.')
parser.add_argument('--version', default='v0', type=str,
help = 'version of macer,v0: only correct cat; v1:')
parser.add_argument('--outfile', default='v1', type=str,
help = 'version of macer,v0: only correct cat; v1:')
parser.add_argument('--arch', default='cifar_resnet56', type=str,
help = 'end index for certification')
parser.add_argument('--type', default='single', type=str,
help = 'target type in pair-wise case: single or multiple')
parser.add_argument('--target_values', nargs='+', help='List of values')
parser.add_argument('--cs', default=True, type=bool,
help = 'short for contain sensitive,whether to contain sensitive class in normal radius optimization \
for keep sensitive class overall accuracy in pair-wise definition')
# params for certify
parser.add_argument("--N0", type=int, default=100)
parser.add_argument("--N", type=int, default=100000, help="number of samples to use")
parser.add_argument("--alpha", type=float, default=0.001, help="failure probability")
parser.add_argument("--certify_batch", type=float, default=1000, help="batch_size for certification")
args = parser.parse_args()
if args.version == 'v0':
from macer import train
elif args.version=='v1':
from pair_macer import train
ckptdir = None if args.ckptdir == 'none' else args.ckptdir
matdir = None if args.matdir == 'none' else args.matdir
if matdir is not None and not os.path.isdir(matdir):
os.makedirs(matdir)
if ckptdir is not None and not os.path.isdir(ckptdir):
os.makedirs(ckptdir)
checkpoint = None if args.resume_ckpt == 'none' else args.resume_ckpt
# Load dataset and build model
if args.dataset == 'mnist':
transform_train = transforms.Compose([
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
base_model = LeNet()
trainset = MNIST(
root = args.root, train=True, download=True, transform=transform_train)
testset = MNIST(
root = args.root, train=False, download=True, transform=transform_test)
elif args.dataset == 'cifar10':
base_model = get_architecture(args.arch,'cifar10')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
])
trainset = CIFAR10(
root = args.root, train=True, download=True, transform=transform_train)
testset = CIFAR10(
root = args.root, train=False, download=True, transform=transform_test)
elif args.dataset == 'ham':
base_model = get_architecture('cifar_resnet56','ham')
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose(
[
transforms.Resize(299), #299
transforms.CenterCrop(299), #299
transforms.ToTensor(),
normalize
]
)
trainset,testset = load_ham_data(transform)
pin_memory = (args.dataset=='imagenette')
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle = True, pin_memory=pin_memory,num_workers=1)
num_classes = args.num_classes
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
cudnn.benchmark = True
model = torch.nn.DataParallel(base_model)
optimizer = optim.SGD(
model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = MultiStepLR(
optimizer, milestones = [200,400], gamma=0.1) # [200, 400]
# Resume from checkpoint if required
start_epoch=0
if checkpoint is not None:
print('==> Resuming from checkpoint..')
print(checkpoint)
checkpoint = torch.load(checkpoint)
base_model.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch']
scheduler.step(start_epoch)
for epoch in tqdm(range(start_epoch + 1, args.epochs + 1)):
print('===train(epoch={})==='.format(epoch))
t1 = time.time()
model.train()
train(args.sigma, args.lbd1,args.lbd2, args.gauss_num, args.beta,
args.type, num_classes, model, trainloader, optimizer, device,epoch,args.gamma1,args.gamma2,args.seed_type)
# epoch -> args.cs
scheduler.step()
t2 = time.time()
print('Elapsed time: {}'.format(t2 - t1))
if ckptdir is not None and epoch%20==0:
# Save checkpoint
print('==> Saving {}.pth..'.format(epoch))
try:
state = {
'net': base_model.state_dict(),
'epoch': epoch,
}
torch.save(state, '{}/{}.pth'.format(ckptdir, epoch))
except OSError:
print('OSError while saving {}.pth'.format(epoch))
print('Ignoring...')