generated from ashleve/lightning-hydra-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault.yaml
49 lines (44 loc) · 1.63 KB
/
default.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
model_checkpoint_eval:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: validation/overall_cross_entropy_epoch # name of the logged metric which determines when model is improving
mode: "min" # "max" means higher metric value is better, can be also "min"
save_top_k: 3 # save k best models (determined by above metric)
save_last: False # additionaly always save model from last epoch
verbose: False
dirpath: "${current_experiment_dir}/checkpoints/"
filename: "eval_epoch"
auto_insert_metric_name: False
model_checkpoint_train:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: training/overall_cross_entropy_step
save_on_train_epoch_end: True
save_top_k: 0
save_last: true
train_time_interval:
_target_: datetime.timedelta
minutes: 15
mode: "min"
verbose: False
dirpath: "${current_experiment_dir}/checkpoints/"
filename: "last"
auto_insert_metric_name: False
model_summary:
_target_: pytorch_lightning.callbacks.RichModelSummary
max_depth: 7
rich_progress_bar:
_target_: pytorch_lightning.callbacks.TQDMProgressBar
refresh_rate: 1
process_position: 0
learning_rate_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: "step"
#validate_on_train_start:
# _target_: tali.base.callbacks.pytorch_lightning_custom.RunValidationOnTrainStart
#gs_file_monitor:
# _target_: tali.base.callbacks.cloud_storage_callbacks.GoogleStorageBucketRSyncClient
# bucket_name: 'tali-experiments'
# experiments_root_dir: ${current_experiment_dir}
# experiment_name: ${name}
# exclude_list: [.git/*]
# options_list: ['r', 'd', 'u', 'e']
# resume: ${resume}