generated from AntreasAntoniou/TALI-v1-0-legacy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
executable file
·128 lines (108 loc) · 4.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import dotenv
import hydra
from hydra.core.config_store import ConfigStore
from omegaconf import DictConfig
from rich.traceback import install
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dotenv.load_dotenv(override=True, verbose=True)
install(show_locals=False, extra_lines=1, word_wrap=True, width=350)
def collect_config_store():
from capit.configs.config_tree import Config, base_callbacks, wandb_callbacks
from capit.configs.datamodules import InstagramImageTextMultiModalDataModuleConfig
from capit.configs.hydra import add_hydra_configs
from capit.configs.loggers import (
TensorboardLoggerConfig,
WeightsAndBiasesLoggerConfig,
)
from capit.configs.mode import BaseMode
from capit.configs.models import (
CLIPImageTextMultiModalDatasetConfig,
CLIPWithPostProcessingImageTextModelConfig,
)
from capit.configs.optimizers import AdamWOptimizerConfig
from capit.configs.trainers import BaseTrainer, DDPTrainer, DPTrainer, MPSTrainer
config_store = ConfigStore.instance()
###################################################################################
config_store.store(name="config", node=Config)
###################################################################################
config_store.store(
group="callbacks",
name="base",
node=base_callbacks,
)
config_store.store(
group="callbacks",
name="wandb",
node=wandb_callbacks,
)
###################################################################################
config_store.store(
group="logger",
name="wandb",
node=dict(wandb=WeightsAndBiasesLoggerConfig()),
)
config_store.store(
group="logger",
name="tb",
node=dict(tensorboard_logger=TensorboardLoggerConfig()),
)
config_store.store(
group="logger",
name="wandb+tb",
node=dict(
tensorboard=TensorboardLoggerConfig(),
wandb=WeightsAndBiasesLoggerConfig(),
),
)
###################################################################################
config_store.store(
group="model",
name="clip",
node=CLIPImageTextMultiModalDatasetConfig,
)
config_store.store(
group="model",
name="clip-with-pp",
node=CLIPWithPostProcessingImageTextModelConfig,
)
###################################################################################
config_store.store(
group="datamodule",
name="InstagramImageTextMultiModal",
node=InstagramImageTextMultiModalDataModuleConfig,
)
###################################################################################
config_store.store(group="trainer", name="base", node=BaseTrainer)
config_store.store(group="trainer", name="gpu-dp", node=DPTrainer)
config_store.store(group="trainer", name="gpu-ddp", node=DDPTrainer)
config_store.store(group="trainer", name="mps", node=MPSTrainer)
###################################################################################
config_store = add_hydra_configs(config_store)
###################################################################################
config_store.store(
group="mode",
name="base",
node=BaseMode(),
)
###################################################################################
config_store.store(group="optimizer", name="AdamW", node=AdamWOptimizerConfig)
return config_store
config_store = collect_config_store()
@hydra.main(version_base=None, config_name="config")
def main(config: DictConfig):
# Imports can be nested inside @hydra.main to optimize tab completion
# https://github.com/facebookresearch/hydra/issues/934
from capit.base import utils
from capit.train_eval import train_eval
# A couple of optional utilities:
# - disabling python warnings
# - forcing debug-friendly configuration
# - verifying experiment name is set when running in experiment mode
# You can safely get rid of this line if you don't want those
utils.extras(config)
os.environ["WANDB_PROGRAM"] = config.code_dir
return train_eval(config)
if __name__ == "__main__":
main()