This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from rte-france/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheulerian_path.h
150 lines (139 loc) · 5.39 KB
/
eulerian_path.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Utility to build Eulerian paths and tours on a graph. For more information,
// see https://en.wikipedia.org/wiki/Eulerian_path.
// As of 10/2015, only undirected graphs are supported.
//
// Usage:
// - Building an Eulerian tour on a ReverseArcListGraph:
// ReverseArcListGraph<int, int> graph;
// // Fill graph
// std::vector<int> tour = BuildEulerianTour(graph);
//
// - Building an Eulerian path on a ReverseArcListGraph:
// ReverseArcListGraph<int, int> graph;
// // Fill graph
// std::vector<int> tour = BuildEulerianPath(graph);
//
#ifndef OR_TOOLS_GRAPH_EULERIAN_PATH_H_
#define OR_TOOLS_GRAPH_EULERIAN_PATH_H_
#include <vector>
#include "ortools/base/logging.h"
namespace operations_research {
// Returns true if a graph is Eulerian, aka all its nodes are of even degree.
template <typename Graph>
bool IsEulerianGraph(const Graph& graph) {
typedef typename Graph::NodeIndex NodeIndex;
for (const NodeIndex node : graph.AllNodes()) {
if ((graph.OutDegree(node) + graph.InDegree(node)) % 2 != 0) {
return false;
}
}
// TODO(user): Check graph connectivity.
return true;
}
// Returns true if a graph is Semi-Eulerian, aka at most two of its nodes are of
// odd degree.
// odd_nodes is filled with odd nodes of the graph.
template <typename NodeIndex, typename Graph>
bool IsSemiEulerianGraph(const Graph& graph,
std::vector<NodeIndex>* odd_nodes) {
CHECK(odd_nodes != nullptr);
for (const NodeIndex node : graph.AllNodes()) {
const int degree = graph.OutDegree(node) + graph.InDegree(node);
if (degree % 2 != 0) {
odd_nodes->push_back(node);
}
}
// TODO(user): Check graph connectivity.
return odd_nodes->size() <= 2;
}
// Builds an Eulerian path/trail on an undirected graph starting from node root.
// Supposes the graph is connected and is eulerian or semi-eulerian.
// This is an implementation of Hierholzer's algorithm.
// If m is the number of edges in the graph and n the number of nodes, time
// and memory complexity is O(n + m).
template <typename NodeIndex, typename Graph>
std::vector<NodeIndex> BuildEulerianPathFromNode(const Graph& graph,
NodeIndex root) {
typedef typename Graph::ArcIndex ArcIndex;
std::vector<bool> unvisited_edges(graph.num_arcs(), true);
std::vector<NodeIndex> tour;
if (graph.IsNodeValid(root)) {
std::vector<NodeIndex> tour_stack = {root};
std::vector<ArcIndex> active_arcs(graph.num_nodes());
for (const NodeIndex node : graph.AllNodes()) {
active_arcs[node] = *(graph.OutgoingOrOppositeIncomingArcs(node)).begin();
}
while (!tour_stack.empty()) {
const NodeIndex node = tour_stack.back();
bool has_unvisited_edges = false;
for (const ArcIndex arc :
graph.OutgoingOrOppositeIncomingArcsStartingFrom(
node, active_arcs[node])) {
const ArcIndex edge = arc < 0 ? graph.OppositeArc(arc) : arc;
if (unvisited_edges[edge]) {
has_unvisited_edges = true;
active_arcs[node] = arc;
tour_stack.push_back(graph.Head(arc));
unvisited_edges[edge] = false;
break;
}
}
if (!has_unvisited_edges) {
tour.push_back(node);
tour_stack.pop_back();
}
}
}
return tour;
}
// Builds an Eulerian tour/circuit/cycle starting and ending at node root on an
// undirected graph.
// This function works only on Reverse graphs
// (cf. ortools/graph/graph.h).
// Returns an empty tour if either root is invalid or if a tour cannot be built.
// As of 10/2015, assumes the graph is connected.
template <typename NodeIndex, typename Graph>
std::vector<NodeIndex> BuildEulerianTourFromNode(const Graph& graph,
NodeIndex root) {
std::vector<NodeIndex> tour;
if (IsEulerianGraph(graph)) {
tour = BuildEulerianPathFromNode(graph, root);
}
return tour;
}
// Same as above but without specifying a start/end root node (node 0 is taken
// as default root).
template <typename Graph>
std::vector<typename Graph::NodeIndex> BuildEulerianTour(const Graph& graph) {
return BuildEulerianTourFromNode(graph, 0);
}
// Builds an Eulerian path/trail on an undirected graph.
// This function works only on Reverse graphs
// (cf. ortools/graph/graph.h).
// Returns an empty tour if a tour cannot be built.
// As of 10/2015, assumes the graph is connected.
template <typename Graph>
std::vector<typename Graph::NodeIndex> BuildEulerianPath(const Graph& graph) {
typedef typename Graph::NodeIndex NodeIndex;
std::vector<NodeIndex> path;
std::vector<NodeIndex> roots;
if (IsSemiEulerianGraph(graph, &roots)) {
const NodeIndex root = roots.empty() ? 0 : roots.back();
path = BuildEulerianPathFromNode(graph, root);
}
return path;
}
} // namespace operations_research
#endif // OR_TOOLS_GRAPH_EULERIAN_PATH_H_