-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathquantize.py
811 lines (691 loc) · 27.7 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from tokenizer import get_tokenizer
try:
from GPTQ import GenericGPTQRunner, InputRecorder
from eval import get_task_dict, evaluate, lm_eval
except:
pass
from model import Transformer
##### Quantization Primitives ######
def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# assumes symmetric quantization
# assumes axis == 0
# assumes dense memory format
# TODO(future): relax ^ as needed
# default setup for affine quantization of activations
eps = torch.finfo(torch.float32).eps
# get min and max
min_val, max_val = torch.aminmax(x, dim=1)
# calculate scales and zero_points based on min and max
# reference: https://fburl.com/code/srbiybme
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
device = min_val_neg.device
# reference: https://fburl.com/code/4wll53rk
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scales = max_val_pos / (float(quant_max - quant_min) / 2)
# ensure scales is the same dtype as the original tensor
scales = torch.clamp(scales, min=eps).to(x.dtype)
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
# quantize based on qmin/qmax/scales/zp
# reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
x_div = x / scales.unsqueeze(-1)
x_round = torch.round(x_div)
x_zp = x_round + zero_points.unsqueeze(-1)
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
return quant, scales, zero_points
def get_group_qparams(w, n_bit=4, groupsize=128):
# needed for GPTQ with padding
if groupsize > w.shape[-1]:
groupsize = w.shape[-1]
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
torch.bfloat16
).reshape(w.shape[0], -1)
def pack_scales_and_zeros(scales, zeros):
assert scales.shape == zeros.shape
assert scales.dtype == torch.bfloat16
assert zeros.dtype == torch.bfloat16
return (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
)
.transpose(0, 1)
.contiguous()
)
def unpack_scales_and_zeros(scales_and_zeros):
assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2
assert scales_and_zeros.dtype == torch.float
return torch.split(scales_and_zeros.transpose(0, 1), 1, 2)
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
assert groupsize > 1
# needed for GPTQ single column quantize
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
groupsize = w.shape[-1]
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
min_val = zeros - scales * (2 ** (n_bit - 1))
max_int = 2**n_bit - 1
min_int = 0
w_int32 = (
to_quant.sub(min_val)
.div(scales)
.round()
.clamp_(min_int, max_int)
.to(torch.int32)
.reshape_as(w)
)
return w_int32
def group_quantize_tensor(w, n_bit=4, groupsize=128):
scales, zeros = get_group_qparams(w, n_bit, groupsize)
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
return w_int32, scales_and_zeros
def group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit=4, groupsize=128
):
assert groupsize > 1
# needed for GPTQ single column dequantize
if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1:
groupsize = w_int32.shape[-1]
assert w_int32.shape[-1] % groupsize == 0
assert w_int32.dim() == 2
w_int32_grouped = w_int32.reshape(-1, groupsize)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
w_dq = (
w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32)
)
return w_dq
def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128):
scales, zeros = unpack_scales_and_zeros(scales_and_zeros)
return group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit, groupsize
)
class QuantHandler:
def __init__(self, mod):
self.mod = mod
def create_quantized_state_dict(self) -> "StateDict":
pass
def convert_for_runtime(self) -> "nn.Module":
pass
class GPTQQuantHandler(QuantHandler):
"""
This class implements a GPTQ QuantHandler that can be used to apply GPTQ to a model in concert with the GenericGPTQRunner class.
Unlike the base QuantHandler class, the user does not need to implement the create_quantized_state_dict, instead they have to reimplement
__init__ such that it defines the functions for the quantization mode. User is expected to reimplement convert_for_runtime.
The following functions (which must be defined in __init__) are used to define the quantization mode for both GPTQ and
create_quantized_state_dict. Here is a description of each function.
get_qparams_func:
A function that calculates the quantization qparams for an input tensor.
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
qparams: it can have any format but will need to be handled by the other defined functions below.
quantize_func:
A function that applies quantization to an input tensor. It should be noted
that this function needs to be able to handle quantizing the entire weight tensor, a single group,
or a single column.
Args:
weight: A 2d weight tensor with non-integer dtype.
qparams: the output from get_qparams_func
Returns:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
dequantize_func:
A function that dequantizes an input quantized weight tensor. It should be noted
that this function needs to be able to handle dequantizing the entire weight tensor, a single group,
or a single column.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
weight: A 2d weight tensor with non-integer dtype.
combine_qparams_list_func:
A function that combines several qparams into one qparam.
Args:
qparams_list: a list of qparams objects, each obtained by calling get_qparams_func
on a single group from a weight tensor
Returns:
qparams: an object of the same format as the qparams above.
skip_layer_func:
A function that determines which linear layers should be skipped during GPTQ
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
skip: boolean indicating whether layer should be skipped
make_names_and_values_dict_func:
A function that prepares the qparams and quantized_weight and creates a dictionary indicating how they
should be inserted into the state_dict. Generally any packing of the weight and qparams should be done here.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
names_and_values_dict: a dictionary mapping the name of the parameters of the quantized module to the
corresponding quantized weights and qparams.
"""
def __init__(self):
assert self.mod is not None
assert self.get_qparams_func is not None
assert self.quantize_func is not None
assert self.dequantize_func is not None
assert self.combine_qparams_list_func is not None
assert self.make_names_and_values_dict_func is not None
@staticmethod
def get_inputs(
model,
tokenizer,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
) -> "MultiInput":
input_recorder = InputRecorder(
model,
tokenizer,
calibration_seq_length,
pad_calibration_inputs,
)
try:
lm_eval.tasks.initialize_tasks()
except:
pass
task_dict = get_task_dict(calibration_tasks)
print("Obtaining GPTQ calibration inputs on: ", calibration_tasks)
evaluate(
input_recorder,
task_dict,
limit=calibration_limit,
)
inputs = input_recorder.get_recorded_inputs()
assert inputs is not None, (
f"No inputs were collected, use a task other than {calibration_tasks}, "
+ "use option pad_calibration_inputs, or decrease calibration_sequence_length (currently "
+ f"{calibration_seq_length})"
)
print(f"Obtained {len(inputs[0].values)} calibration samples")
return inputs
@torch.no_grad()
def create_quantized_state_dict(
self,
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
) -> "StateDict":
inputs = GPTQQuantHandler.get_inputs(
self.mod,
tokenizer,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
)
print("Tracing model for GPTQ")
GPTQ_runner = GenericGPTQRunner(
self.mod,
inputs,
blocksize,
percdamp,
groupsize,
).configure_quantization_mode(
self.get_qparams_func,
self.quantize_func,
self.dequantize_func,
self.combine_qparams_list_func,
self.make_names_and_values_dict_func,
self.skip_layer_func,
)
print("Applying GPTQ to weights")
GPTQ_runner.run()
return GPTQ_runner.get_quantized_state_dict()
def convert_for_runtime(self) -> "nn.Module":
pass
##### Weight-only int8 per-channel quantized code ######
def replace_linear_weight_only_int8_per_channel(module):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
setattr(
module,
name,
WeightOnlyInt8Linear(
child.in_features, child.out_features, bias=child.bias is not None
),
)
else:
replace_linear_weight_only_int8_per_channel(child)
class WeightOnlyInt8QuantHandler:
def __init__(self, mod):
self.mod = mod
@torch.no_grad()
def create_quantized_state_dict(self):
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
int8_weight, scales, _ = dynamically_quantize_per_channel(
mod.weight.float(), -128, 127, torch.int8
)
cur_state_dict[f"{fqn}.weight"] = int8_weight
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
if mod.bias is not None:
cur_state_dict[f"{fqn}.bias"] = mod.bias
return cur_state_dict
def convert_for_runtime(self):
replace_linear_weight_only_int8_per_channel(self.mod)
return self.mod
class WeightOnlyInt8Linear(torch.nn.Module):
__constants__ = ["in_features", "out_features"]
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer(
"weight", torch.empty((out_features, in_features), dtype=torch.int8)
)
self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))
if bias:
self.register_buffer(
"bias", torch.zeros(out_features, dtype=torch.bfloat16)
)
else:
self.register_parameter("bias", None)
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales
if self.bias is not None:
output += self.bias
return output
##### weight only int4 per channel groupwise quantized code ######
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
weight_int32, scales_and_zeros = group_quantize_tensor(
weight_bf16, n_bit=4, groupsize=groupsize
)
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(
weight_int32, inner_k_tiles
)
return weight_int4pack, scales_and_zeros
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
origin_x_size = x.size()
x = x.reshape(-1, origin_x_size[-1])
c = torch.ops.aten._weight_int4pack_mm(
x, weight_int4pack, groupsize, scales_and_zeros
)
new_shape = origin_x_size[:-1] + (out_features,)
c = c.reshape(new_shape)
return c
def _check_linear_int4_k(k, groupsize=1, inner_k_tiles=1):
return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0
def replace_linear_int4(module, groupsize, inner_k_tiles, padding):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles):
setattr(
module,
name,
WeightOnlyInt4Linear(
child.in_features,
child.out_features,
bias=child.bias is not None,
groupsize=groupsize,
inner_k_tiles=inner_k_tiles,
padding=False,
),
)
elif padding:
setattr(
module,
name,
WeightOnlyInt4Linear(
child.in_features,
child.out_features,
bias=child.bias is not None,
groupsize=groupsize,
inner_k_tiles=inner_k_tiles,
padding=True,
),
)
else:
replace_linear_int4(child, groupsize, inner_k_tiles, padding)
class WeightOnlyInt4QuantHandler:
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
assert groupsize in [32, 64, 128, 256]
assert inner_k_tiles in [2, 4, 8]
@torch.no_grad()
def create_quantized_state_dict(self, use_cuda=True):
if use_cuda:
device = "cuda"
else:
device = "cpu"
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
out_features = mod.out_features
in_features = mod.in_features
assert out_features % 8 == 0, "require out_features % 8 == 0"
print(f"linear: {fqn}, in={in_features}, out={out_features}")
weight = mod.weight.data
if not _check_linear_int4_k(
in_features, self.groupsize, self.inner_k_tiles
):
if self.padding:
from model import find_multiple
import torch.nn.functional as F
print(
f"warning: {fqn} is padded to satisfy in_features % 1024 == 0"
)
padded_in_features = find_multiple(in_features, 1024)
weight = F.pad(
weight, pad=(0, padded_in_features - in_features)
)
else:
print(
f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, "
+ "and that groupsize and inner_k_tiles*16 evenly divide into it"
)
continue
weight_int4pack, scales_and_zeros = (
prepare_int4_weight_and_scales_and_zeros(
weight.to(torch.bfloat16).to(device=device),
self.groupsize,
self.inner_k_tiles,
)
)
cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to("cpu")
cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to("cpu")
if mod.bias is not None:
cur_state_dict[f"{fqn}.bias"] = mod.bias
return cur_state_dict
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4GPTQQuantHandler(GPTQQuantHandler):
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
from model import find_multiple
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
self.get_qparams_func = lambda w: get_group_qparams(w, 4, groupsize)
self.quantize_func = lambda w, qparams: group_quantize_tensor_from_qparams(
w, qparams[0], qparams[1], 4, groupsize
)
self.dequantize_func = lambda q, qparams: group_dequantize_tensor_from_qparams(
q, qparams[0], qparams[1], 4, groupsize
).float()
self.combine_qparams_list_func = lambda qparams_list: [
torch.cat(x, dim=1) for x in zip(*qparams_list)
]
# skip unless padding=True or its correctly sized
self.skip_layer_func = lambda linear_weight: not (
_check_linear_int4_k(linear_weight.shape[-1], groupsize, inner_k_tiles)
or padding
)
# we need to do the padding here, both for q and the qparams if necessary
def make_names_and_values_dict_func(q, qparams, bias=None):
k = q.shape[1]
new_k = find_multiple(k, 1024)
# how much we need to pad the weight
delta_k = new_k - q.shape[1]
final_q = torch.ops.aten._convert_weight_to_int4pack(
F.pad(q, pad=(0, delta_k)), inner_k_tiles
)
scales_and_zeros = pack_scales_and_zeros(*qparams)
# how many new groups we need for padded weight
delta_groups = new_k // groupsize - scales_and_zeros.shape[0]
final_s_and_z = F.pad(
scales_and_zeros, pad=(0, 0, 0, 0, 0, delta_groups), value=1
)
result = {"weight": final_q, "scales_and_zeros": final_s_and_z}
if bias is not None:
result["bias"] = bias
self.make_names_and_values_dict_func = make_names_and_values_dict_func
super().__init__()
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4Linear(torch.nn.Module):
__constants__ = ["in_features", "out_features"]
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self,
in_features: int,
out_features: int,
bias=False,
device=None,
dtype=None,
groupsize: int = 128,
inner_k_tiles: int = 8,
padding: bool = True,
) -> None:
super().__init__()
self.padding = padding
if padding:
from model import find_multiple
self.origin_in_features = in_features
in_features = find_multiple(in_features, 1024)
self.in_features = in_features
self.out_features = out_features
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
assert out_features % 8 == 0, "require out_features % 8 == 0"
assert (
in_features % (inner_k_tiles * 16) == 0
), "require in_features % (innerKTiles * 16) == 0"
self.register_buffer(
"weight",
torch.empty(
(
out_features // 8,
in_features // (inner_k_tiles * 16),
32,
inner_k_tiles // 2,
),
dtype=torch.int32,
),
)
self.register_buffer(
"scales_and_zeros",
torch.empty(
(in_features // groupsize, out_features, 2), dtype=torch.bfloat16
),
)
if bias:
self.register_buffer(
"bias", torch.zeros(out_features, dtype=torch.bfloat16)
)
else:
self.register_parameter("bias", None)
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = input.to(torch.bfloat16)
if self.padding:
import torch.nn.functional as F
input = F.pad(input, pad=(0, self.in_features - self.origin_in_features))
output = linear_forward_int4(
input, self.weight, self.scales_and_zeros, self.out_features, self.groupsize
)
if self.bias is not None:
output += self.bias
return output
def quantize(
checkpoint_path: Path = Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"),
mode: str = "int8",
# following arguments only available when setting int4 quantization.
groupsize: int = 128,
# following arguments only used for GPTQ
calibration_tasks: list = ["hellaswag"],
calibration_limit: int = 1000,
calibration_seq_length: int = 100,
pad_calibration_inputs: bool = False,
percdamp: float = 0.01,
blocksize: int = 128,
label: str = "",
) -> None:
assert checkpoint_path.is_file(), checkpoint_path
device = "cpu"
precision = torch.bfloat16
print("Loading model ...")
t0 = time.time()
with torch.device("meta"):
model = Transformer.from_name(checkpoint_path.parent.name)
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
model.load_state_dict(checkpoint, assign=True)
model = model.to(dtype=precision, device=device)
if mode == "int8":
print(
"Quantizing model weights for int8 weight-only symmetric per-channel quantization"
)
quant_handler = WeightOnlyInt8QuantHandler(model)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace(".pth", f"{label}int8.pth")
elif mode == "int4":
print(
"Quantizing model weights for int4 weight-only affine per-channel groupwise quantization"
)
quant_handler = WeightOnlyInt4QuantHandler(model, groupsize)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace(".pth", f"{label}int4.g{groupsize}.pth")
elif mode == "int4-gptq":
print(
"Quantizing model weights for int4 weight-only affine per-channel groupwise quantization using GPTQ..."
)
quant_handler = WeightOnlyInt4GPTQQuantHandler(model, groupsize)
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
quantized_state_dict = quant_handler.create_quantized_state_dict(
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
)
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace(".pth", f"{label}int4-gptq.g{groupsize}.pth")
else:
raise ValueError(
f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]"
)
quantize_path = dir_name / new_base_name
print(f"Writing quantized weights to {quantize_path}")
quantize_path.unlink(missing_ok=True) # remove existing file if one already there
torch.save(quantized_state_dict, quantize_path)
print(f"Quantization complete took {time.time() - t0:.02f} seconds")
return
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Quantize a model.")
parser.add_argument(
"--checkpoint_path",
type=Path,
default=Path(__file__).resolve().parent
/ "checkpoints/meta-llama/Meta-Llama-3-8B-Instruct/model.pth",
help="Model checkpoint path.",
)
parser.add_argument(
"--mode",
"-q",
type=str,
default="int8",
choices=["int8", "int4", "int4-gptq"],
help="type of quantization to perform",
)
parser.add_argument(
"--groupsize", type=int, default=32, help="Group size for int4 quantization."
)
parser.add_argument(
"--calibration_tasks",
type=str,
nargs="+",
default=["wikitext"],
help="tasks to do gptq calibration on, if doing gptq",
)
parser.add_argument(
"--calibration_limit",
type=int,
default=1000,
help="number of samples to use for gptq calibration",
)
parser.add_argument(
"--calibration_seq_length",
type=int,
default=100,
help="length of sequences to use for gptq calibration",
)
parser.add_argument(
"--pad_calibration_inputs",
type=bool,
default=False,
help="pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower",
)
parser.add_argument(
"--percdamp", type=float, default=0.01, help="gptq percentage dampening"
)
parser.add_argument("--blocksize", type=int, default=128, help="blocksize for gptq")
parser.add_argument(
"--label", type=str, default="_", help="label to add to output filename"
)
args = parser.parse_args()
quantize(
args.checkpoint_path,
args.mode,
args.groupsize,
args.calibration_tasks,
args.calibration_limit,
args.calibration_seq_length,
args.pad_calibration_inputs,
args.percdamp,
args.blocksize,
args.label,
)