-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgeneration_utils.py
594 lines (494 loc) · 19.7 KB
/
generation_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import itertools
import time
from typing import Optional, Tuple
from pathlib import Path
import torch
import torch._dynamo.config
import torch._inductor.config
from torch.nn.attention import SDPBackend, sdpa_kernel
import argparse
import yaml
from model import Transformer, find_multiple
from tokenizer import TokenizerInterface
default_device = "cuda" if torch.cuda.is_available() else "cpu"
def snake_to_capitalized(s):
return " ".join(word.capitalize() for word in s.split("_"))
def print_stats(stats_dict):
# Separate the stats into layered and non-layered
layered_stats = {}
non_layered_stats = {}
for key, value in stats_dict.items():
parts = key.rsplit("_", 1)
if len(parts) == 2 and parts[1].isdigit():
stat = snake_to_capitalized(parts[0])
layer = int(parts[1])
if stat not in layered_stats:
layered_stats[stat] = []
layered_stats[stat].append((layer, value))
else:
non_layered_stats[snake_to_capitalized(key)] = value
# Print non-layered stats
for key, value in non_layered_stats.items():
print(f"{key}: {value:.02f}")
# Print layered stats
for stat in sorted(layered_stats.keys()):
layers_list = sorted(layered_stats[stat])
layers_str = ", ".join(f"{layer}={value:.02f}" for layer, value in layers_list)
print(f"{stat} By Layer: {layers_str}")
def add_generation_arguments(parser: argparse.ArgumentParser):
group = parser.add_argument_group("generation_args")
# Generation hparams
group.add_argument(
"--checkpoint_path",
type=Path,
default=Path(__file__).resolve().parent
/ "checkpoints/meta-llama/Meta-Llama-3-8B-Instruct/model.pth",
help="Model checkpoint path.",
)
group.add_argument("--profile", type=Path, default=None, help="Profile path.")
group.add_argument(
"--compile", action="store_true", help="Whether to compile the model."
)
group.add_argument(
"--device", type=str, default=default_device, help="Device to use"
)
group.add_argument(
"--attn_top_k",
type=float,
default=1.0,
help="Fraction of top-K attentions over which to compute values. 1.0 means all V are used regardless of attention weight (QK).",
)
def merge_cache_config(args):
if not args.cache_config:
return args
# Get parent directory of current file
if not args.cache_config.endswith(".yaml"):
args.cache_config = args.cache_config + ".yaml"
yaml_fn = Path(__file__).parent / "cache_configs" / args.cache_config
assert yaml_fn.exists(), f"Cache config file {yaml_fn} does not exist."
with open(yaml_fn, "r") as f:
cache_kwargs = yaml.safe_load(f)
# Over-write args with cache_kwargs
args = argparse.Namespace(**{**vars(args), **cache_kwargs})
return args
def compute_max_seq_length(
model, prompt_lens: list[int], target_lens: list[int], max_new_tokens: int
) -> int:
max_prompt_length = max(len(prompt_lens[i]) for i in range(len(prompt_lens)))
# Should either pass target_lens or max_new_tokens
max_target_lens = (
0
if target_lens is None
else max(len(target_lens[i]) for i in range(len(target_lens)))
)
max_new_tokens = max(max_new_tokens, max_target_lens)
max_seq_length = max_prompt_length + max_new_tokens
if max_seq_length > model.config.block_size:
print(
f"Warning: The longest prompt puts the desired max_seq_length at {max_seq_length}, which is greater than models max of {model.config.block_size}."
)
print(f"Setting to model's max_seq_length of {model.config.block_size}.")
max_seq_length = model.config.block_size
print(f"Maximum context length of {max_seq_length} tokens.")
return max_prompt_length, max_seq_length
def device_sync(device):
if "cuda" in device:
torch.cuda.synchronize(device)
elif ("cpu" in device) or ("mps" in device):
pass
else:
print(f"device={device} is not yet suppported")
def logits_to_probs(logits, temperature: float = 1.0, top_k: Optional[int] = None):
logits = logits / max(temperature, 1e-5)
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
pivot = v.select(-1, -1).unsqueeze(-1)
logits = torch.where(logits < pivot, -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def greedy(logits, next_token):
probs = torch.nn.functional.softmax(logits[0, -1], dim=-1)
if next_token is None:
idx_next = torch.argmax(probs, keepdim=True).to(dtype=torch.int)
else:
idx_next = next_token
return idx_next, probs
def prefill(
model: Transformer,
x: torch.Tensor,
input_pos: torch.Tensor,
next_token: torch.Tensor = None,
**sampling_kwargs,
) -> torch.Tensor:
# input_pos: [B, S]
causal_mask = (
torch.tril(torch.ones(len(input_pos), len(input_pos), dtype=torch.bool))
.unsqueeze(0)
.unsqueeze(0)
.to(x.device)
)
logits = model(x, input_pos, mask=causal_mask, is_prefill=True)
return greedy(logits, next_token)
def decode_one_token(
model: Transformer,
x: torch.Tensor,
input_pos: torch.Tensor,
next_token: torch.Tensor = None,
attn_top_k: float = 1,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
# input_pos: [B, 1]
logits = model(
x,
input_pos,
is_prefill=False,
attn_top_k=attn_top_k,
)
return greedy(logits, next_token=next_token)
def decode_n_tokens(
model: Transformer,
cur_token: torch.Tensor,
input_pos: torch.Tensor,
decode_one_token: callable,
num_new_tokens: int,
terminator_ids: Optional[list] = None,
attn_top_k: float = 1,
prefix: Optional[torch.Tensor] = None,
**sampling_kwargs,
):
new_tokens, new_probs = [], []
for i in range(num_new_tokens):
with sdpa_kernel(
[SDPBackend.MATH]
): # Actually better for Inductor to codegen attention here
teacher_force = prefix is not None and i < len(prefix)
next_token = prefix[i].view(1) if teacher_force else None
next_token, next_prob = decode_one_token(
model,
cur_token,
input_pos,
next_token=next_token,
attn_top_k=attn_top_k,
**sampling_kwargs,
)
new_tokens.append(next_token.clone())
new_probs.append(next_prob.clone())
if terminator_ids and next_token in terminator_ids and not teacher_force:
break
input_pos += 1
cur_token = next_token.view(1, -1)
return new_tokens, new_probs
def model_forward(model, x, input_pos):
return model(x, input_pos)
def apply_pattern(
pattern: list[str | int],
out_size: int,
extension_strategy: str = "tile",
max_seq_length: int = None,
):
"""
Extend a given pattern across n_layers of the model.
"""
assert extension_strategy in {
"tile",
"repeat",
"pyramid",
"funnel",
}, "extension_strategy must be one of 'tile', 'repeat', 'pyramid', or 'funnel'."
assert (
out_size % len(pattern) == 0
), f"{len(pattern)} must be a divisible factor of the number of layers ({out_size})."
factor = out_size // len(pattern)
if extension_strategy in {"funnel", "pyramid"}:
assert (
len(pattern) == 1
), "Funnel and pyramid patterns must have a single element."
return apply_pyramid_pattern(
pattern[0],
max_seq_length,
out_size,
decreasing=extension_strategy == "pyramid",
)
elif extension_strategy == "tile":
return [item for item in pattern for _ in range(factor)]
else: # Repeat
return pattern * factor
def normalize_cache_length(
max_cache_length: float, max_seq_length: int, multiple_of: int = 8
) -> int:
"""
Computes the absolute cache length given the max_cache_length and max_seq_length.
"""
if 0 < max_cache_length <= 1:
max_cache_length = round(max_seq_length * max_cache_length)
else:
assert int(max_cache_length) == max_cache_length
max_cache_length = int(max_cache_length)
if max_cache_length > max_seq_length:
print(
f"FYI: max_cache_length ({max_cache_length}) is greater than max_seq_length ({max_seq_length}). Setting to {max_seq_length}"
)
max_cache_length = max_seq_length
return min(find_multiple(max_cache_length, multiple_of), max_seq_length)
def apply_pyramid_pattern(
max_cache_length: int,
max_seq_length: int,
model_n_layer: int,
decreasing: bool = True,
min_cache_length: int = 256,
):
# Implements https://arxiv.org/abs/2406.02069
# Paper finds best beta of 14
beta = 14
min_allowable = min(min_cache_length, max_cache_length)
total_len = max_cache_length * model_n_layer
min_cache_length = total_len / (model_n_layer * beta)
max_cache_length = 2 * total_len / model_n_layer
diff = (max_cache_length - min_cache_length) / model_n_layer
cache_lens = [min_cache_length]
for l in range(1, model_n_layer - 1):
cache_lens.append(min_cache_length + diff * l)
cache_lens.append(max_cache_length)
cache_lens = [normalize_cache_length(int(l), max_seq_length) for l in cache_lens]
overflow = 0
num_overflow = 0
for i in range(len(cache_lens)):
if cache_lens[i] < min_allowable:
overflow += min_allowable - cache_lens[i]
cache_lens[i] = min_allowable
num_overflow += 1
if num_overflow < len(cache_lens):
decr_amount = overflow // (len(cache_lens) - num_overflow)
for i in range(len(cache_lens)):
if cache_lens[i] > min_allowable:
# This will change the overall cache length slightly if min_allowable threshold is hit but should be very minor
cache_lens[i] = max(min_allowable, cache_lens[i] - decr_amount)
if decreasing:
cache_lens = cache_lens[::-1]
assert cache_lens[-1] < cache_lens[0], "Cache lengths should be decreasing."
else:
assert cache_lens[0] < cache_lens[-1], "Cache lengths should be increasing."
return cache_lens
def setup_caches(
model: Transformer,
tokenizer: TokenizerInterface,
device: torch.device,
max_seq_length: int,
cache_kwargs: dict = None,
) -> dict:
# Normalize max_cache_length to absolute cache length if provided as a fraction of the max seq sequence length
cache_kwargs["max_seq_length"] = max_seq_length
cache_kwargs["max_cache_length"] = list(
map(
lambda l: normalize_cache_length(l, max_seq_length),
cache_kwargs["max_cache_length"],
)
)
cache_kwargs["max_cache_length"] = apply_pattern(
pattern=cache_kwargs["max_cache_length"],
out_size=model.config.n_layer,
extension_strategy=cache_kwargs["cache_length_pattern"],
max_seq_length=max_seq_length,
)
assert len(cache_kwargs["cache_strategy"]) == len(
cache_kwargs["prompt_compression_strategy"]
), "You must specify a prompt_compression_strategy for each cache_strategy."
cache_kwargs["cache_strategy"] = apply_pattern(
pattern=cache_kwargs["cache_strategy"],
out_size=model.config.n_layer,
extension_strategy=cache_kwargs["cache_strategy_pattern"],
)
cache_kwargs["prompt_compression_strategy"] = apply_pattern(
pattern=cache_kwargs["prompt_compression_strategy"],
out_size=model.config.n_layer,
extension_strategy=cache_kwargs["cache_strategy_pattern"],
)
if type(cache_kwargs["recent_window"]) != list:
if cache_kwargs["recent_window"] <= 1:
cache_kwargs["recent_window"] = [
max(1, int(cache_kwargs["recent_window"] * l))
for l in cache_kwargs["max_cache_length"]
]
else:
cache_kwargs["recent_window"] = [
max(1, min(cache_kwargs["recent_window"], l))
for l in cache_kwargs["max_cache_length"]
]
assert cache_kwargs["global_tokens"] <= min(
cache_kwargs["max_cache_length"]
), "Global tokens must be less than max_cache_length."
if cache_kwargs["cache_strategy"][0] == "hybrid":
# We need to pass the special and punctuation token ids to the cache via cache_kwargs
cache_kwargs["token_ids"] = {
"special": tokenizer.special_ids(),
"punctuation": tokenizer.punctuation_ids(),
}
with torch.device(device):
model.setup_caches(max_batch_size=1, **cache_kwargs)
return cache_kwargs
def reset_caches(model: Transformer):
model.reset_caches()
def get_cache_stats(model: Transformer, prompt_len: int, gen_len: int):
return model.get_cache_stats(prompt_len, gen_len)
@torch.no_grad()
def generate(
model: Transformer,
prompt: torch.Tensor,
prefill: callable,
decode_one_token: callable,
max_new_tokens: int,
next_tokens: Optional[torch.Tensor] = None,
terminator_ids: Optional[list] = None,
feed_long_prompts: bool = False,
decode_first_token: bool = False,
attn_top_k: float = 1,
**sampling_kwargs,
) -> torch.Tensor:
"""
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
"""
# create an empty tensor of the expected final shape and fill in the current tokens
prompt_length = prompt.size(0)
device, dtype = prompt.device, prompt.dtype
min_cache_length = model.min_cache_length()
# Subtract 1 in case we need one generation step over which to compute attention, etc.
max_prompt_len = min_cache_length - 1
prefix = None
# If we asked to have prompt truncated and fed, we need to do split prompt into prompt and prefix
# We also define a rare yet important edge case: if |prompt| is exactly cache length
# We might have to start evictions before having had a change to record any state (attentions).
# In this scenario let's decrement prompt by 1 and start "generating" on the prefix
if (
feed_long_prompts and prompt_length > max_prompt_len
) or prompt_length == min_cache_length:
prompt, prefix = prompt[:max_prompt_len], prompt[max_prompt_len:]
max_new_tokens += len(prefix)
prompt_length = max_prompt_len
if decode_first_token:
prompt, prefix = prompt[:-1], prompt[-1:]
max_new_tokens += 1
prompt_length -= 1
# create an empty tensor (all -1) of the expected final shape and fill in the current tokens
# GPT-Fast had this as empty but the values of empty are non-deterministic
seq = torch.full((prompt_length + max_new_tokens,), -1, dtype=dtype, device=device)
seq[:prompt_length] = prompt
input_pos = torch.arange(0, prompt_length, device=device)
if next_tokens is not None: # We are in teacher forcing mode for Perplexity task
max_new_tokens = len(next_tokens)
next_token = next_tokens[0].view(1)
prefix = next_tokens[1:]
elif prefix is not None: # We are in partial teacher forcing due to a long prompt
next_token = prefix[0].view(1)
prefix = prefix[1:]
else:
next_token = prefix = None # We are in normal generation mode
# create an empty tensor (all -1) of the expected final shape and fill in the current tokens
# GPT-Fast had this as empty but the values of empty are non-deterministic
seq = torch.full((prompt_length + max_new_tokens,), -1, dtype=dtype, device=device)
seq[:prompt_length] = prompt
input_pos = torch.arange(0, prompt_length, device=device)
t0 = time.perf_counter()
ret = prefill(
model,
prompt.view(1, -1),
input_pos,
next_token=next_token,
**sampling_kwargs,
)
t1 = time.perf_counter()
prefill_seconds = t1 - t0
next_token = ret[0].clone()
next_tok_probs = ret[1].clone()
seq[prompt_length] = next_token
input_pos = torch.tensor([prompt_length], device=device, dtype=torch.int)
generated_tokens, generated_tok_probs = decode_n_tokens(
model,
next_token.view(1, -1),
input_pos,
decode_one_token,
max_new_tokens - 1,
terminator_ids=terminator_ids,
prefix=prefix,
attn_top_k=attn_top_k,
**sampling_kwargs,
)
t2 = time.perf_counter()
decode_seconds = t2 - t1
total_seconds = t2 - t0
prefill_tokens = prompt_length
decode_tokens = (
len(generated_tokens) + 1
) # +1 because we generate 1 token from prefill
decode_toks_per_sec = decode_tokens / decode_seconds
prefill_toks_per_sec = prefill_tokens / prefill_seconds
total_toks_per_sec = decode_tokens / total_seconds
perf_stats = {
"prefill_tokens": prefill_tokens,
"decode_tokens": decode_tokens,
"prefill_toks_per_sec": prefill_toks_per_sec,
"decode_toks_per_sec": decode_toks_per_sec,
"total_toks_per_sec": total_toks_per_sec,
"total_seconds": total_seconds,
"prefill_seconds": prefill_seconds,
"decode_seconds": decode_seconds,
"decode_seconds_frac_of_total": decode_seconds / total_seconds,
"memory_used_gb": torch.cuda.max_memory_reserved() / 1e9,
}
if len(generated_tokens) > 0:
seq[prompt_length + 1 : prompt_length + 1 + len(generated_tokens)] = torch.cat(
generated_tokens
)
# Truncate seq to first instance of -1 if -1 is present
if -1 in seq:
seq = seq[: torch.where(seq == -1)[0][0]]
return seq, [next_tok_probs] + generated_tok_probs, perf_stats
def load_model(checkpoint_path, device, precision, use_tp):
use_cuda = "cuda" in device
with torch.device("meta"):
model = Transformer.from_name(checkpoint_path.parent.name)
if "int8" in str(checkpoint_path):
print("Using int8 weight-only quantization!")
from quantize import WeightOnlyInt8QuantHandler
simple_quantizer = WeightOnlyInt8QuantHandler(model)
model = simple_quantizer.convert_for_runtime()
if "int4" in str(checkpoint_path):
print("Using int4 weight-only quantization!")
path_comps = checkpoint_path.name.split(".")
groupsize = int(path_comps[-2][1:])
from quantize import WeightOnlyInt4QuantHandler
simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize)
model = simple_quantizer.convert_for_runtime()
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
if "model" in checkpoint and "stories" in str(checkpoint_path):
checkpoint = checkpoint["model"]
model.load_state_dict(checkpoint, assign=True)
if use_tp:
from tp import apply_tp
print("Applying tensor parallel to model ...")
apply_tp(model)
model = model.to(device=device, dtype=precision)
return model.eval()
def get_model_size(model):
model_size = 0
for name, child in model.named_children():
if not isinstance(child, torch.nn.Embedding):
for p in itertools.chain(child.parameters(), child.buffers()):
model_size += p.numel() * p.dtype.itemsize
return model_size
def compile_funcs(compile=True):
if compile:
global decode_one_token, prefill
decode_one_token = torch.compile(
decode_one_token,
fullgraph=True,
# dynamic=True,
mode="reduce-overhead",
# options={"trace.graph_diagram": True, "trace.enabled": True}
)
prefill = torch.compile(
prefill,
fullgraph=True,
dynamic=True,
# options={"trace.graph_diagram": True, "trace.enabled": True}
)
return prefill, decode_one_token