forked from edward-zhu/umaru
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbm.lua
297 lines (246 loc) · 10 KB
/
rbm.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
--[[
Copyright (c) 2015, Nils Hammerla
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--]]
local Rbm = {}
Rbm.__index = Rbm
function Rbm.new(arg)
local self = setmetatable({}, Rbm)
-- parse parameters
-- network
self.n_visible = arg.n_visible
self.n_hidden = arg.n_hidden
-- unit type, default: sigmoids
self.v_activation = arg.v_activation or 'binary'
self.h_activation = arg.v_activation or 'binary'
self.useStates = arg.useStates or true
-- learning
self.learningRate = arg.learningRate or 0.1
self.minibatchSize = arg.minibatchSize or 100
self.momentum = arg.momemtum
self.momentumAfter = arg.momentumAfter or 5
self.CDsteps = arg.CDsteps or 1
-- regularisation
self.weightCost = arg.weightCost or -0.0000001
-- some variables to save progress
self.epoch = 0
self.epochError = 0
-- initialise weights
self:initWeights()
-- set up sampling functions for visible and hidden units
self.binarySampler = function(input)
local a = nn.Sigmoid()(input)
local s = torch.gt(a, torch.Tensor(a:size()):rand(a:size())):type(torch.getdefaulttensortype())
return a,s
end
self.reluSampler = function(input)
local n = torch.Tensor(input:size()):randn(input:size())
local a = nn.ReLU()(input+n)
return a,a
end
self.gaussSampler = function(input)
return input, input+torch.Tensor(input:size()):randn(input:size())
end
if self.h_activation == 'binary' then
self.h_sampler = self.binarySampler
elseif self.h_activation == 'relu' then
self.h_sampler = self.reluSampler
elseif self.h_activation == 'gaussian' then
self.h_sampler = self.gaussSampler
end
if self.v_activation == 'binary' then
self.v_sampler = self.binarySampler
elseif self.v_activation == 'relu' then
self.v_sampler = self.reluSampler
elseif self.v_activation == 'gaussian' then
self.v_sampler = self.gaussSampler
end
-- Set up an encoder and decoder (nn)
-- Weights in these networks point to the weight tensor in the rbm
self.encoder, self.decoder = self:getNN()
return self
end
function Rbm.initWeights(self)
-- Initialise weights
-- Basically reset the whole thing
local nV, nH = self.n_visible, self.n_hidden
self.W = torch.Tensor(nV,nH):randn(nV, nH):mul(0.1)
self.hbias = torch.Tensor(1,nH):zeros(1,nH)
self.vbias = torch.Tensor(1,nV):zeros(1,nV)
self.Winc = torch.Tensor(nV,nH):zeros(nV, nH)
self.hbias = torch.Tensor(1,nH):zeros(1, nH)
self.vbias = torch.Tensor(1,nV):zeros(1, nV)
end
function Rbm.HgivenV(self, v_sample)
-- sample hidden layer based on visible layer
local pre, post, states
-- h_in = v*W + h_bias
pre = torch.mm(v_sample, self.W):add(self.hbias:repeatTensor(v_sample:size(1),1))
post, states = self.h_sampler(pre)
if self.useStates == false then
states = post
end
return pre, post, states
end
function Rbm.VgivenH(self, h_sample)
-- sample visible layer given hidden layer
local pre, post, states
-- v_in = h*W' + v_bias
pre = torch.mm(h_sample, self.W:t()):add(self.vbias:repeatTensor(h_sample:size(1),1))
post, states = self.v_sampler(pre)
if self.useStates == false then
states = post
end
return pre, post, states
end
function Rbm.sampleChain(self, h, CDsteps)
-- sample markov chain for contrastive divergence training (starting from hidden state h)
start = h
local v_mean, v_sample, h_mean, h_sample
for i=1, CDsteps do
_, v_mean, v_sample = self:VgivenH(start)
_, h_mean, h_sample = self:HgivenV(v_sample)
start = h_sample -- reset
end
return v_mean, v_sample, h_mean, h_sample
end
function Rbm.freeEnergy(self,sample)
-- calculate free energy (for convergence check if required)
-- This is just for binary-binary rbms! (so far)
local wx_b = torch.mm(sample, self.W):add(self.hbias:repeatTensor(sample:size(1),1))
local vbias_term = torch.mm(sample, self.vbias:t())
local hidden_term = torch.log(torch.add(wx_b:exp(),1)):sum(2)
local e = -hidden_term - vbias_term
return e
end
function Rbm.updateParameters(self, v0)
-- calculate gradients for W, vbias, hbias and update weight matrices
local momentum
-- if we use momentum, then check which we want to use
if self.momemtum then
momentum = self.momentum[1]
end
if self.momentum and self.epoch > self.momentumAfter then
momentum = self.momentum[2]
end
-- sample first hidden layer
local _, h0_mean, h0_sample = self:HgivenV(v0)
-- get sample from markov chain
local v_model_mean, v_model_sample, h_model_mean, h_model_sample = self:sampleChain(h0_sample, self.CDsteps)
if momentum then
-- if momentum is set then memorise weights (soo much memory for this)
local ww = self.Winc:clone()
local vb = self.vbias:clone()
local hb = self.hbias:clone()
end
-- calculate derivatives and update matrices
-- calculate weight derivatives.
-- This looks a bit weird but splitting up the calculations is apparently
-- more memory efficient (still a mystery to me).
-- formulas (from Geoff Hinton and Ruslan Salakhutdinov's matlab code):
-- vishidinc = momentum*vishidinc + epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
-- visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
-- hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
self.Winc = torch.mm(v0:t(),h0_mean) -- posprods
self.Winc:add(torch.mm(v_model_mean:t(), h_model_mean):mul(-1)) -- -negprods
self.Winc:div(v0:size(1)) -- / numsamples
self.Winc:add(torch.mul(self.W, self.weightCost)) -- regularisation
self.Winc:mul(self.learningRate) -- * learning rate
-- visible bias
self.vbiasinc = v0:sum(1)
self.vbiasinc:add(-v_model_mean:sum(1))
self.vbiasinc:mul(self.learningRate)
self.vbiasinc:div(v0:size(1))
-- hidden bias
self.hbiasinc = h0_mean:sum(1)
self.hbiasinc:add(-h_model_mean:sum(1))
self.hbiasinc:mul(self.learningRate)
self.hbiasinc:div(v0:size(1))
if self.momentum and self.epoch > 1 then
-- momentum? if so add derivatives*momentum
self.Winc:add(torch.mul(ww, momentum))
self.vbiasinc:add(torch.mul(vb, momentum))
self.hbiasinc:add(torch.mul(hb, momentum))
end
-- update params
self.W:add(self.Winc)
self.vbias:add(self.vbiasinc)
self.hbias:add(self.hbiasinc)
end
function Rbm.train(self, data, epochs)
-- train an rbm on data for a number of epochs. If data is large this may run
-- into memory issues. If so use updateParameters()
local e, a
for e=1,epochs do
xlua.progress(e, epochs)
self.epoch = self.epoch + 1
for i=1,data:size(1),self.minibatchSize do
self:updateParameters(data[{{i,i+self.minibatchSize-1}, {}}])
end
collectgarbage() -- this is needed, not sure where the leak is
end
end
function Rbm.getNN(self)
-- construct an encoder and decoder network
-- these share the memory with the rbm so no just little overhead. This should
-- make stacking rbms and fine-tuning with backprop much easier.
local encoder, decoder
-- encoder: visible -> hidden
encoder = nn.Sequential()
encoder:add(nn.Linear(self.n_visible, self.n_hidden))
if self.h_activation == 'binary' then
encoder:add(nn.Sigmoid())
elseif self.h_activation == 'relu' then
encoder:add(nn.ReLU())
elseif self.h_activation == 'gaussian' then
-- linear is fine
end
encoder:get(1).weight = self.W:t() -- weight matrix is flipped in nn
encoder:get(1).bias = self.hbias[1]
-- decoder: hidden -> visible
decoder = nn.Sequential()
decoder:add(nn.Linear(self.n_hidden, self.n_visible))
if self.v_activation == 'binary' then
decoder:add(nn.Sigmoid())
elseif self.v_activation == 'relu' then
decoder:add(nn.ReLU())
elseif self.v_activation == 'gaussian' then
-- linear is fine
end
decoder:get(1).weight = self.W
decoder:get(1).bias = self.vbias[1]
return encoder, decoder
end
function Rbm.fromNN(self, encoder, decoder)
-- Parsing encoder (linear layer + non-linearity) for weights and hidden bias,
-- and hidden unit actiation. Parsing decoder for visible bias (and activation).
--
-- Assumes:
-- encoder = nn.Sequential()
-- encoder:add(nn.Linear())
-- encoder:add(nn.Sigmoid())
--
self.W = encoder.get(1).weight:t()
self.hbias[1] = encoder.get(1).bias
self.h_activation = encoder.get(2)
self.vbias[1] = decoder.get(1).bias
self.v_activation = decoder.get(2)
end
return Rbm