forked from edward-zhu/umaru
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.lua
103 lines (73 loc) · 2.01 KB
/
pretrain.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
require 'slider'
require 'loader'
require 'image'
RBM = require 'rbm'
require 'cutorch'
require 'cunn'
opt = {
input_size = 48,
epoch = 30,
-- sliding window
window_size = 10,
stride = 5,
-- RBM hyperparameters
hidden_size = 48 * 5,
-- miscellaneous
output_file = "wwr.rbm"
}
-- load samples
loader = Loader()
loader:load('wwr.txt')
loader:targetHeight(opt.input_size)
torch.setdefaulttensortype('torch.CudaTensor')
-- setup RBM
local n_visible = opt.input_size * opt.window_size
local rbm = RBM.new{n_visible=n_visible, n_hidden=opt.hidden_size, CDsteps=1, momentum={0.5, 0.9},
momentumAfter={5}, v_activation='binary', h_activation='relu',
learningRate=0.01}
-- train
for i = 1, opt.epoch do
-- for each sample
local im, p, total = loader:pickInSequential()
local input
while im do
xlua.progress(p, total)
im = im.img
slider = Slider()
slider:load(im:t())
-- for each window
input = slider:genSequence()
inputMatrix = nn.JoinTable(1):forward(input):reshape(slider.total, input[1]:size(1)):cuda()
rbm:updateParameters(inputMatrix)
im, p, total = loader:pickInSequential()
end
loader:reset()
print(string.format("total progress %d / %d eps.", i, opt.epoch))
end
-- save
rbm_data = {
n_visible = n_visible,
n_hidden = opt.hidden_size,
encoder = rbm.encoder:double(),
decoder = rbm.decoder:double()
}
paths.mkdir("rbm")
local output_path = "rbm/" .. opt.output_file
torch.save(output_path, rbm_data)
print("RBM network saved at " .. output_path)
-- test
mlp = nn.Sequential()
mlp:add(rbm.encoder)
mlp:add(rbm.decoder)
mlp:cuda()
loader:reset()
local im = loader:pickInSequential().img:cuda()
slider = Slider()
slider:load(im:t())
local input = slider:slide()
local output = mlp:forward(input:reshape(input:nElement()))
input = input:double()
output = output:double()
torch.setdefaulttensortype('torch.DoubleTensor')
image.save("1.png", input:reshape(opt.input_size, opt.window_size))
image.save("2.png", output:reshape(opt.input_size, opt.window_size))