-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper.py
138 lines (102 loc) · 4.2 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from collections import Counter
import pandas as pd
from urlextract import URLExtract
from wordcloud import WordCloud
import emoji
def show_stats(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
# Fetch the number of messages
num_messages = df.shape
words = []
# Fetch the total number of words a user has sent
for message in df["Message"]:
words.extend(message.split())
# Fetch the number of media a user has sent
num_media_shared = df[df["Message"] == "<Media omitted>"].shape[0]
# Fetch Number of Links shared
extractor = URLExtract()
urls = []
for message in df["Message"]:
urls.extend(extractor.find_urls(message))
return num_messages, len(words), num_media_shared, len(urls)
def busy_user(df):
x = df["User"].value_counts().head()
df = round(df["User"].value_counts() / df.shape[0] * 100, 2).reset_index().rename(
columns={'index': "Name", "User": "Percentage"})
return x, df
# Word cloud
def create_wordcloud(selected_user, df):
f = open("stop_hinglish.txt", "r")
stop_words = f.read()
if selected_user != "Overall":
df = df[df["User"] == selected_user]
temp = df[df["User"] != "group_notification"]
temp = temp[temp["Message"] != "<Media omitted>\n"]
def remove_stop_words(message):
y = []
for word in message.lower().split():
if word not in stop_words:
y.append(word)
return " ".join(y)
wc = WordCloud(width=500, height=500, min_font_size=10, background_color="White")
temp["Message"] = temp["Message"].apply(remove_stop_words)
df_wc = wc.generate(temp["Message"].str.cat(sep=" "))
return df_wc
# most common words
def most_common_words(selected_user, df):
f = open("stop_hinglish.txt", "r")
stop_words = f.read()
if selected_user != "Overall":
df = df[df["User"] == selected_user]
temp = df[df["User"] != "group_notification"]
temp = df[df["Message"] != "<Media omitted>\n"]
words = []
for message in temp["Message"]:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df = pd.DataFrame(Counter(words).most_common(20))
return most_common_df
def emoji_helper(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
emojis = []
for message in df["Message"]:
emojis.extend([c for c in message if emoji.is_emoji(c) == True])
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
return emoji_df
def monthly_timeline(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
timeline = df.groupby(["Year", "num_month", "Month"]).count()["Message"].reset_index()
time = []
for i in range(timeline.shape[0]):
time.append(timeline["Month"][i]+"-"+str(timeline["Year"][i]))
timeline["Time"] = time
return timeline
def daily_timeline(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
daily_timeline = df.groupby('only_date').count()["Message"].reset_index()
return daily_timeline
def week_activitymap(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
return df["day_name"].value_counts()
def month_activitymap(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
return df["Month"].value_counts()
def heatmap(selected_user, df):
if selected_user != "Overall":
df = df[df["User"] == selected_user]
user_heatmap = df.pivot_table(index="day_name", columns="Period", values="Message", aggfunc="count").fillna(0)
return user_heatmap
def get_sentiments(selected_user, df):
if selected_user!= "Overall":
df = df[df['User'] == selected_user]
Overall = df['Sentiment'].value_counts(sort = True, ascending= False).keys()[0]
positive_count = df['Sentiment'].value_counts(sort = True, ascending= False).values[0]
negative_count = df['Sentiment'].value_counts(sort = True, ascending= False).values[1]
return positive_count, negative_count, Overall