-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_parallel.py
264 lines (213 loc) · 9.6 KB
/
train_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
# set the device for training
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
import torch
import torch.nn.functional as F
import sys
import numpy as np
from datetime import datetime
from torchvision.utils import make_grid
from Code.lib.model import TMSOD
from Code.utils.data import SalObjDataset, test_dataset
from Code.utils.utils import clip_gradient, adjust_lr
from tensorboardX import SummaryWriter
import logging
import torch.backends.cudnn as cudnn
from Code.utils.options import opt
import torch.nn as nn
from smooth_loss import get_saliency_smoothness
import argparse
import Code.utils.misc as utils
from Code.utils.default import _C as cfg
import random
from torch.utils.data import DataLoader
import Code.utils.samplers as samplers
cudnn.benchmark = True
cfg = cfg
# parser = argparse.ArgumentParser(description="PyTorch TransMSOD Training")#argparse.ArgumentParser()
#
# args = parser.parse_args()
utils.init_distributed_mode(cfg.TRAIN)
device = torch.device(cfg.TRAIN.device)
seed = cfg.TRAIN.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# build the model
model = TMSOD()
if (opt.load is not None):
model.load_pre(opt.load)
print('load model from ', opt.load)
model.to(device)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
params = model.parameters()
# optimizer = torch.optim.Adam(params, opt.lr)
optimizer = torch.optim.AdamW(params, lr=opt.lr, weight_decay=cfg.TRAIN.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, cfg.TRAIN.lr_drop)
# set the path
train_image_root = opt.rgb_label_root
train_gt_root = opt.gt_label_root
train_depth_root = opt.depth_label_root
val_image_root = opt.val_rgb_root
val_gt_root = opt.val_gt_root
val_depth_root = opt.val_depth_root
save_path = opt.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
# load data
print('load data...')
dataset_train = SalObjDataset(train_image_root, train_gt_root, train_depth_root,
trainsize=opt.trainsize)
dataset_test = test_dataset(val_image_root, val_gt_root, val_depth_root, opt.trainsize)
if cfg.TRAIN.distributed:
sampler_train = samplers.DistributedSampler(dataset_train)
# sampler_val = samplers.DistributedSampler(dataset_test, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
# sampler_val = torch.utils.data.SequentialSampler(dataset_test)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, opt.batchsize, drop_last=True)
train_loader = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
num_workers=16,
pin_memory=True)
# test_loader = DataLoader(dataset_test, batch_size=1, sampler=sampler_val,
# drop_last=False, num_workers=cfg.TRAIN.num_workers,
# pin_memory=True)
total_step = len(train_loader)
if cfg.TRAIN.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[cfg.TRAIN.gpu], find_unused_parameters=True)
logging.basicConfig(filename=save_path + 'log.log', format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("BBSNet_unif-Train")
logging.info("Config")
logging.info(
'epoch:{};lr:{};batchsize:{};trainsize:{};clip:{};decay_rate:{};load:{};save_path:{};decay_epoch:{}'.format(
opt.epoch, opt.lr, opt.batchsize, opt.trainsize, opt.clip, opt.decay_rate, opt.load, save_path,
opt.decay_epoch))
# set loss function
CE = torch.nn.BCEWithLogitsLoss()
step = 0
# writer = SummaryWriter(save_path + 'summary')
best_mae = 1
best_epoch = 0
print(len(train_loader))
def structure_loss(pred, mask):
weit = 1 + 5 * torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none')
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1) / (union - inter + 1)
return (wbce + wiou).mean()
class SoftDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(SoftDiceLoss, self).__init__()
def forward(self, logits, targets):
num = targets.size(0)
smooth = 1
probs = torch.sigmoid(logits)
m1 = probs.view(num, -1)
m2 = targets.view(num, -1)
intersection = (m1 * m2)
score = 2. * (intersection.sum(1) + smooth) / (m1.sum(1) + m2.sum(1) + smooth)
score = 1 - score.sum() / num
return score
dice = SoftDiceLoss()
def train(train_loader, model, optimizer, epoch, save_path):
global step
model.train()
loss_all = 0
epoch_step = 0
if cfg.TRAIN.distributed:
sampler_train.set_epoch(epoch)
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# device_ids = [0, 1]
# if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
# model = torch.nn.DataParallel(model, device_ids)
# if torch.cuda.is_available():
# model = model.to(device)
try:
for i, (images, gts, depths) in enumerate(train_loader, start=1):
optimizer.zero_grad()
images = images.to(device)
gts = gts.to(device)
depths = depths.to(device)
##
out = model(images, depths)
sml = get_saliency_smoothness(torch.sigmoid(out), gts)
loss1_fusion = F.binary_cross_entropy_with_logits(out, gts)
# loss2_fusion = F.binary_cross_entropy_with_logits(out2_fusion, gts)
# loss3_fusion = F.binary_cross_entropy_with_logits(out3_fusion, gts)
# loss4_fusion = F.binary_cross_entropy_with_logits(out4_fusion, gts)
dice_loss = dice(out, gts)
loss_seg = loss1_fusion + sml + dice_loss
loss = loss_seg
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
step += 1
epoch_step += 1
loss_all += loss.data
if i % 50 == 0 or i == total_step or i == 1:
print(
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], loss: {:.4f} sml: {:.4f} loss1_fusion: {:0.4f} dice: {:0.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.data, sml.data, loss1_fusion.data,
dice_loss.data))
logging.info(
'#TRAIN#:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], loss: {:.4f} sml: {:.4f} loss1_fusion: {:0.4f} dice: {:0.4f}'.
format(epoch, opt.epoch, i, total_step, loss.data, sml.data, loss1_fusion.data, dice_loss.data))
loss_all /= epoch_step
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Loss_AVG: {:.4f}'.format(epoch, opt.epoch, loss_all))
# writer.add_scalar('Loss-epoch', loss_all, global_step=epoch)
if (epoch) % 5 == 0 and epoch >= 40:
torch.save(model.module.state_dict(), save_path + 'HyperNet_epoch_{}.pth'.format(epoch))
except KeyboardInterrupt:
print('Keyboard Interrupt: save model and exit.')
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(model.module.state_dict(), save_path + 'HyperNet_epoch_{}.pth'.format(epoch + 1))
print('save checkpoints successfully!')
raise
# test function
def val(test_loader, model, epoch, save_path):
global best_mae, best_epoch
model.eval()
with torch.no_grad():
mae_sum = 0
for i in range(test_loader.size):
image, gt, depth, name, img_for_post = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
depth = depth.cuda()
out= model(image, depth)
res = out
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
mae_sum += np.sum(np.abs(res - gt)) * 1.0 / (gt.shape[0] * gt.shape[1])
mae = mae_sum / test_loader.size
# writer.add_scalar('MAE', torch.tensor(mae), global_step=epoch)
print('Epoch: {} MAE: {} #### bestMAE: {} bestEpoch: {}'.format(epoch, mae, best_mae, best_epoch))
if epoch == 1:
best_mae = mae
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save(model.state_dict(), save_path + 'SPNet_epoch_best.pth')
print('best epoch:{}'.format(epoch))
logging.info('#TEST#:Epoch:{} MAE:{} bestEpoch:{} bestMAE:{}'.format(epoch, mae, best_epoch, best_mae))
if __name__ == '__main__':
print("Start train...")
for epoch in range(1, opt.epoch):
# cur_lr = adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
# writer.add_scalar('learning_rate', cur_lr, global_step=epoch)
# train
train(train_loader, model, optimizer, epoch, save_path)
# test
if epoch >= 40:
val(dataset_test, model, epoch, save_path)