-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptron.go
190 lines (174 loc) · 4.74 KB
/
perceptron.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
package main
import (
"encoding/csv"
"encoding/json"
"flag"
"fmt"
"io/ioutil"
"log"
"os"
"strconv"
"strings"
)
var (
trainFile string = "data\\iris_training.txt" //data file
testFile string = "data\\iris_test.txt" //data file
weightsString string
threshold float64
weightsNum []float64
alfa float64
desireAccurancy float64
)
type Object struct {
Params []float64
Name string
Lable int
Output int
}
type Objects struct {
Obj []Object
}
func init() {
flag.StringVar(&trainFile, "tr", trainFile, "train-file")
flag.StringVar(&testFile, "ts", testFile, "test-file")
flag.Float64Var(&desireAccurancy, "acc", desireAccurancy, "Desire accurancy")
flag.StringVar(&weightsString, "w", weightsString, "weights in form [val1,val2,valN]")
flag.Float64Var(&threshold, "t", threshold, "threshold")
flag.Float64Var(&alfa, "a", alfa, "alfa")
}
func readCsv(path string) ([][]string, error) {
dataFile, err := os.OpenFile(path, os.O_RDONLY, 0666)
if err != nil {
return nil, err
}
defer dataFile.Close()
if err == nil {
// Reading text from file
buf, rerr := ioutil.ReadAll(dataFile)
if rerr != nil {
fmt.Println("Read CSV error: " + rerr.Error())
}
// Parsing from comma-separated text
r := csv.NewReader(strings.NewReader(string(buf)))
records, err := r.ReadAll()
if err != nil {
fmt.Println("Parse CSV error: " + err.Error())
}
return records, nil
}
return nil, err
}
func convertStrArrayToJson(records [][]string) string {
// Converting from array of string to JSON
jsonData := ""
strNum := 0
dimension := len(records[1]) - 1
for _, record := range records {
wrongStr := false
if len(record) < dimension || len(record) > dimension+1 {
fmt.Println("Wrong parameters count")
wrongStr = true
}
// var objName string
objName := record[len(record)-1] // Cutting Object name
record = record[:len(record)-1]
strNum++
stringArray := "[" // Opening sq bracket
for _, arrField := range record { // Filling string representation of array
_, err := strconv.ParseFloat(arrField, 64)
if err != nil {
fmt.Println("Wrong parameters type in string: ", strNum)
wrongStr = true
}
stringArray += arrField + ","
}
stringArray = stringArray[:len(stringArray)-1] // Removing last ',' character
stringArray += "]" // Closing sq bracket
if !wrongStr {
jsonData += "{ \"name\": \"" + objName + "\", \"params\":" + stringArray + ", \"Distance\": [] }," // Converting to JSON
}
}
jsonData = "[" + jsonData[:len(jsonData)-1] + "]"
return jsonData
}
func (obj *Objects) readData(path string) {
records, err := readCsv(path)
if err == nil {
jsonData := convertStrArrayToJson(records)
json.Unmarshal([]byte(jsonData), &obj.Obj)
} else {
fmt.Println("Read CSV error: " + err.Error())
}
}
func stringToFloatArray(value string) {
str := value
err := json.Unmarshal([]byte(str), &weightsNum)
if err != nil {
log.Fatal(err)
}
}
func (obj *Object) computeOutput() {
var dotProduct float64
for i := range obj.Params {
dotProduct += obj.Params[i] * weightsNum[i]
}
// fmt.Println("Dot product:", dotProduct)
if dotProduct >= threshold {
obj.Output = 1
} else {
obj.Output = 0
}
}
func (obj *Object) train() {
err := obj.Lable - obj.Output
for i := range weightsNum {
weightsNum[i] += float64(err) * alfa * obj.Params[i]
}
threshold += float64(err) * alfa * -1
// fmt.Println("Weight vector: ", weightsNum, "threashold: ", threshold)
}
func (objects *Objects) assignLabels(name string) {
for i, obj := range objects.Obj {
if name == obj.Name {
objects.Obj[i].Lable = 0
} else {
objects.Obj[i].Lable = 1
}
}
}
func getResult() {
tr := new(Objects)
tr.readData(trainFile)
ts := new(Objects)
ts.readData(testFile)
chkName := tr.Obj[0].Name
tr.assignLabels(chkName)
ts.assignLabels(chkName)
accuracy := 0.0
for iter := 0; accuracy < desireAccurancy && iter < 1000000; iter++ {
counter := len(ts.Obj)
// Train perceptron
for _, obj_train := range tr.Obj {
obj_train.computeOutput()
if obj_train.Lable != obj_train.Output {
obj_train.train()
}
}
// fmt.Println("Weight vector: ", weightsNum, "threashold: ", threshold)
// Calculate accurancy in test data
for _, obj_test := range ts.Obj {
obj_test.computeOutput()
if obj_test.Output != obj_test.Lable {
counter--
}
}
accuracy = (float64(counter) / float64(len(ts.Obj))) * 100.0
fmt.Println("Accurancy [", iter, "]", accuracy, "%")
}
}
func main() {
flag.Parse()
stringToFloatArray(weightsString)
fmt.Println(weightsNum)
getResult()
}