forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
241 lines (216 loc) · 9.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from dgl.data import RedditDataset
import tqdm
import traceback
from ogb.nodeproppred import DglNodePropPredDataset
from functools import partial
from sampler import ClusterIter, subgraph_collate_fn
#### Neighbor sampler
class SAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout):
super().__init__()
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.layers = nn.ModuleList()
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
for i in range(1, n_layers - 1):
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
self.dropout = nn.Dropout(dropout)
self.activation = activation
def forward(self, g, x):
h = x
for l, conv in enumerate(self.layers):
h = conv(g, h)
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
return h
def inference(self, g, x, batch_size, device):
"""
Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
# During inference with sampling, multi-layer blocks are very inefficient because
# lots of computations in the first few layers are repeated.
# Therefore, we compute the representation of all nodes layer by layer. The nodes
# on each layer are of course splitted in batches.
# TODO: can we standardize this?
h = x
for l, conv in enumerate(self.layers):
h = conv(g, h)
if l != len(self.layers) - 1:
h = self.activation(h)
return h
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)
def evaluate(model, g, labels, val_nid, test_nid, batch_size, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
batch_size : Number of nodes to compute at the same time.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
inputs = g.ndata['feat']
model = model.cpu()
pred = model.inference(g, inputs, batch_size, device)
model.train()
return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid]), pred
def load_subtensor(g, labels, seeds, input_nodes, device):
"""
Copys features and labels of a set of nodes onto GPU.
"""
batch_inputs = g.ndata['feat'][input_nodes].to(device)
batch_labels = labels[seeds].to(device)
return batch_inputs, batch_labels
#### Entry point
def run(args, device, data):
# Unpack data
train_nid, val_nid, test_nid, in_feats, labels, n_classes, g, cluster_iterator = data
# Define model and optimizer
model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
model = model.to(device)
loss_fcn = nn.CrossEntropyLoss()
loss_fcn = loss_fcn.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
# Training loop
avg = 0
iter_tput = []
best_eval_acc = 0
best_test_acc = 0
for epoch in range(args.num_epochs):
iter_load = 0
iter_far = 0
iter_back = 0
iter_tl = 0
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
tic_start = time.time()
for step, cluster in enumerate(cluster_iterator):
cluster = cluster.int().to(device)
mask = cluster.ndata['train_mask'].to(device)
if mask.sum() == 0:
continue
feat = cluster.ndata['feat'].to(device)
batch_labels = cluster.ndata['labels'].to(device)
tic_step = time.time()
batch_pred = model(cluster, feat)
batch_pred = batch_pred[mask]
batch_labels = batch_labels[mask]
loss = loss_fcn(batch_pred, batch_labels)
optimizer.zero_grad()
tic_far = time.time()
loss.backward()
optimizer.step()
tic_back = time.time()
iter_load += (tic_step - tic_start)
iter_far += (tic_far - tic_step)
iter_back += (tic_back - tic_far)
tic_start = time.time()
if step % args.log_every == 0:
acc = compute_acc(batch_pred, batch_labels)
gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | GPU {:.1f} MB'.format(
epoch, step, loss.item(), acc.item(), gpu_mem_alloc))
toc = time.time()
print('Epoch Time(s): {:.4f} Load {:.4f} Forward {:.4f} Backward {:.4f}'.format(toc - tic, iter_load, iter_far, iter_back))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0 and epoch != 0:
eval_acc, test_acc, pred = evaluate(model, g, labels, val_nid, test_nid, args.val_batch_size, device)
model = model.to(device)
if args.save_pred:
np.savetxt(args.save_pred + '%02d' % epoch, pred.argmax(1).cpu().numpy(), '%d')
print('Eval Acc {:.4f}'.format(eval_acc))
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_test_acc = test_acc
print('Best Eval Acc {:.4f} Test Acc {:.4f}'.format(best_eval_acc, best_test_acc))
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
return best_test_acc
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=int, default=0,
help="GPU device ID. Use -1 for CPU training")
argparser.add_argument('--num-epochs', type=int, default=30)
argparser.add_argument('--num-hidden', type=int, default=256)
argparser.add_argument('--num-layers', type=int, default=3)
argparser.add_argument('--batch-size', type=int, default=32)
argparser.add_argument('--val-batch-size', type=int, default=10000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=1)
argparser.add_argument('--lr', type=float, default=0.001)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--save-pred', type=str, default='')
argparser.add_argument('--wd', type=float, default=0)
argparser.add_argument('--num_partitions', type=int, default=15000)
args = argparser.parse_args()
if args.gpu >= 0:
device = th.device('cuda:%d' % args.gpu)
else:
device = th.device('cpu')
# load ogbn-products data
data = DglNodePropPredDataset(name='ogbn-products')
splitted_idx = data.get_idx_split()
train_idx, val_idx, test_idx = splitted_idx['train'], splitted_idx['valid'], splitted_idx['test']
graph, labels = data[0]
labels = labels[:, 0]
num_nodes = train_idx.shape[0] + val_idx.shape[0] + test_idx.shape[0]
assert num_nodes == graph.number_of_nodes()
graph.ndata['labels'] = labels
mask = th.zeros(num_nodes, dtype=th.bool)
mask[train_idx] = True
graph.ndata['train_mask'] = mask
mask = th.zeros(num_nodes, dtype=th.bool)
mask[val_idx] = True
graph.ndata['valid_mask'] = mask
mask = th.zeros(num_nodes, dtype=th.bool)
mask[test_idx] = True
graph.ndata['test_mask'] = mask
graph.in_degree(0)
graph.out_degree(0)
graph.find_edges(0)
cluster_iter_data = ClusterIter(
'ogbn-products', graph, args.num_partitions, args.batch_size, th.cat([train_idx, val_idx, test_idx]))
idx = th.arange(args.num_partitions // args.batch_size)
cluster_iterator = DataLoader(cluster_iter_data, batch_size=32, shuffle=True, pin_memory=True, num_workers=4, collate_fn=partial(subgraph_collate_fn, graph))
in_feats = graph.ndata['feat'].shape[1]
print(in_feats)
n_classes = (labels.max() + 1).item()
# Pack data
data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph, cluster_iterator
# Run 10 times
test_accs = []
for i in range(10):
test_accs.append(run(args, device, data))
print('Average test accuracy:', np.mean(test_accs), '±', np.std(test_accs))