forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
57 lines (43 loc) · 1.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import torch
import dgl
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from dgl.nn import LabelPropagation
def main():
# check cuda
device = f'cuda:{args.gpu}' if torch.cuda.is_available() and args.gpu >= 0 else 'cpu'
# load data
if args.dataset == 'Cora':
dataset = CoraGraphDataset()
elif args.dataset == 'Citeseer':
dataset = CiteseerGraphDataset()
elif args.dataset == 'Pubmed':
dataset = PubmedGraphDataset()
else:
raise ValueError('Dataset {} is invalid.'.format(args.dataset))
g = dataset[0]
g = dgl.add_self_loop(g)
labels = g.ndata.pop('label').to(device).long()
# load masks for train / test, valid is not used.
train_mask = g.ndata.pop('train_mask')
test_mask = g.ndata.pop('test_mask')
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze().to(device)
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze().to(device)
g = g.to(device)
# label propagation
lp = LabelPropagation(args.num_layers, args.alpha)
logits = lp(g, labels, mask=train_idx)
test_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
print("Test Acc {:.4f}".format(test_acc))
if __name__ == '__main__':
"""
Label Propagation Hyperparameters
"""
parser = argparse.ArgumentParser(description='LP')
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--dataset', type=str, default='Cora')
parser.add_argument('--num-layers', type=int, default=10)
parser.add_argument('--alpha', type=float, default=0.5)
args = parser.parse_args()
print(args)
main()