forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
201 lines (165 loc) · 9.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import torch as th
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import dgl.function as fn
from utils import in_out_norm
from models import CompGCN_ConvE
from data_loader import Data
import numpy as np
from time import time
#predict the tail for (head, rel, -1) or head for (-1, rel, tail)
def predict(model, graph, device, data_iter, split='valid', mode='tail'):
model.eval()
with th.no_grad():
results = {}
train_iter = iter(data_iter['{}_{}'.format(split, mode)])
for step, batch in enumerate(train_iter):
triple, label = batch[0].to(device), batch[1].to(device)
sub, rel, obj, label = triple[:, 0], triple[:, 1], triple[:, 2], label
pred = model(graph, sub, rel)
b_range = th.arange(pred.size()[0], device = device)
target_pred = pred[b_range, obj]
pred = th.where(label.byte(), -th.ones_like(pred) * 10000000, pred)
pred[b_range, obj] = target_pred
#compute metrics
ranks = 1 + th.argsort(th.argsort(pred, dim=1, descending=True), dim =1, descending=False)[b_range, obj]
ranks = ranks.float()
results['count'] = th.numel(ranks) + results.get('count', 0.0)
results['mr'] = th.sum(ranks).item() + results.get('mr', 0.0)
results['mrr'] = th.sum(1.0/ranks).item() + results.get('mrr', 0.0)
for k in [1,3,10]:
results['hits@{}'.format(k)] = th.numel(ranks[ranks <= (k)]) + results.get('hits@{}'.format(k), 0.0)
return results
#evaluation function, evaluate the head and tail prediction and then combine the results
def evaluate(model, graph, device, data_iter, split='valid'):
#predict for head and tail
left_results = predict(model, graph, device, data_iter, split, mode='tail')
right_results = predict(model, graph, device, data_iter, split, mode='head')
results = {}
count = float(left_results['count'])
#combine the head and tail prediction results
#Metrics: MRR, MR, and Hit@k
results['left_mr'] = round(left_results['mr']/count, 5)
results['left_mrr'] = round(left_results['mrr']/count, 5)
results['right_mr'] = round(right_results['mr']/count, 5)
results['right_mrr'] = round(right_results['mrr']/count, 5)
results['mr'] = round((left_results['mr'] + right_results['mr']) /(2*count), 5)
results['mrr'] = round((left_results['mrr'] + right_results['mrr']) /(2*count), 5)
for k in [1,3,10]:
results['left_hits@{}'.format(k)] = round(left_results['hits@{}'.format(k)]/count, 5)
results['right_hits@{}'.format(k)] = round(right_results['hits@{}'.format(k)]/count, 5)
results['hits@{}'.format(k)] = round((left_results['hits@{}'.format(k)] + right_results['hits@{}'.format(k)])/(2*count), 5)
return results
def main(args):
# Step 1: Prepare graph data and retrieve train/validation/test index ============================= #
# check cuda
if args.gpu >= 0 and th.cuda.is_available():
device = 'cuda:{}'.format(args.gpu)
else:
device = 'cpu'
#construct graph, split in/out edges and prepare train/validation/test data_loader
data = Data(args.dataset, args.lbl_smooth, args.num_workers, args.batch_size)
data_iter = data.data_iter #train/validation/test data_loader
graph = data.g.to(device)
num_rel = th.max(graph.edata['etype']).item() + 1
#Compute in/out edge norms and store in edata
graph = in_out_norm(graph)
# Step 2: Create model =================================================================== #
compgcn_model=CompGCN_ConvE(num_bases=args.num_bases,
num_rel=num_rel,
num_ent=graph.num_nodes(),
in_dim=args.init_dim,
layer_size=args.layer_size,
comp_fn=args.opn,
batchnorm=True,
dropout=args.dropout,
layer_dropout=args.layer_dropout,
num_filt=args.num_filt,
hid_drop=args.hid_drop,
feat_drop=args.feat_drop,
ker_sz=args.ker_sz,
k_w=args.k_w,
k_h=args.k_h
)
compgcn_model = compgcn_model.to(device)
# Step 3: Create training components ===================================================== #
loss_fn = th.nn.BCELoss()
optimizer = optim.Adam(compgcn_model.parameters(), lr=args.lr, weight_decay=args.l2)
# Step 4: training epoches =============================================================== #
best_mrr = 0.0
kill_cnt = 0
for epoch in range(args.max_epochs):
# Training and validation using a full graph
compgcn_model.train()
train_loss=[]
t0 = time()
for step, batch in enumerate(data_iter['train']):
triple, label = batch[0].to(device), batch[1].to(device)
sub, rel, obj, label = triple[:, 0], triple[:, 1], triple[:, 2], label
logits = compgcn_model(graph, sub, rel)
# compute loss
tr_loss = loss_fn(logits, label)
train_loss.append(tr_loss.item())
# backward
optimizer.zero_grad()
tr_loss.backward()
optimizer.step()
train_loss = np.sum(train_loss)
t1 = time()
val_results = evaluate(compgcn_model, graph, device, data_iter, split='valid')
t2 = time()
#validate
if val_results['mrr']>best_mrr:
best_mrr = val_results['mrr']
best_epoch = epoch
th.save(compgcn_model.state_dict(), 'comp_link'+'_'+args.dataset)
kill_cnt = 0
print("saving model...")
else:
kill_cnt += 1
if kill_cnt > 100:
print('early stop.')
break
print("In epoch {}, Train Loss: {:.4f}, Valid MRR: {:.5}\n, Train time: {}, Valid time: {}"\
.format(epoch, train_loss, val_results['mrr'], t1-t0, t2-t1))
#test use the best model
compgcn_model.eval()
compgcn_model.load_state_dict(th.load('comp_link'+'_'+args.dataset))
test_results = evaluate(compgcn_model, graph, device, data_iter, split='test')
print("Test MRR: {:.5}\n, MR: {:.10}\n, H@10: {:.5}\n, H@3: {:.5}\n, H@1: {:.5}\n"\
.format(test_results['mrr'], test_results['mr'], test_results['hits@10'], test_results['hits@3'], test_results['hits@1']))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Parser For Arguments', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data', dest='dataset', default='FB15k-237', help='Dataset to use, default: FB15k-237')
parser.add_argument('--model', dest='model', default='compgcn', help='Model Name')
parser.add_argument('--score_func', dest='score_func', default='conve', help='Score Function for Link prediction')
parser.add_argument('--opn', dest='opn', default='ccorr', help='Composition Operation to be used in CompGCN')
parser.add_argument('--batch', dest='batch_size', default=1024, type=int, help='Batch size')
parser.add_argument('--gpu', type=int, default='0', help='Set GPU Ids : Eg: For CPU = -1, For Single GPU = 0')
parser.add_argument('--epoch', dest='max_epochs', type=int, default=500, help='Number of epochs')
parser.add_argument('--l2', type=float, default=0.0, help='L2 Regularization for Optimizer')
parser.add_argument('--lr', type=float, default=0.001, help='Starting Learning Rate')
parser.add_argument('--lbl_smooth', dest='lbl_smooth', type=float, default=0.1, help='Label Smoothing')
parser.add_argument('--num_workers', type=int, default=10, help='Number of processes to construct batches')
parser.add_argument('--seed', dest='seed', default=41504, type=int, help='Seed for randomization')
parser.add_argument('--num_bases', dest='num_bases', default=-1, type=int, help='Number of basis relation vectors to use')
parser.add_argument('--init_dim', dest='init_dim', default=100, type=int, help='Initial dimension size for entities and relations')
parser.add_argument('--layer_size', nargs='?', default='[200]', help='List of output size for each compGCN layer')
parser.add_argument('--gcn_drop', dest='dropout', default=0.1, type=float, help='Dropout to use in GCN Layer')
parser.add_argument('--layer_dropout', nargs='?', default='[0.3]', help='List of dropout value after each compGCN layer')
# ConvE specific hyperparameters
parser.add_argument('--hid_drop', dest='hid_drop', default=0.3, type=float, help='ConvE: Hidden dropout')
parser.add_argument('--feat_drop', dest='feat_drop', default=0.3, type=float, help='ConvE: Feature Dropout')
parser.add_argument('--k_w', dest='k_w', default=10, type=int, help='ConvE: k_w')
parser.add_argument('--k_h', dest='k_h', default=20, type=int, help='ConvE: k_h')
parser.add_argument('--num_filt', dest='num_filt', default=200, type=int, help='ConvE: Number of filters in convolution')
parser.add_argument('--ker_sz', dest='ker_sz', default=7, type=int, help='ConvE: Kernel size to use')
args = parser.parse_args()
np.random.seed(args.seed)
th.manual_seed(args.seed)
print(args)
args.layer_size = eval(args.layer_size)
args.layer_dropout = eval(args.layer_dropout)
main(args)