forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
147 lines (111 loc) · 5.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import dgl
import torch
import numpy as np
import torch.nn as nn
from model import PGNN
from sklearn.metrics import roc_auc_score
from utils import get_dataset, preselect_anchor
import warnings
warnings.filterwarnings('ignore')
def get_loss(p, data, out, loss_func, device, get_auc=True):
edge_mask = np.concatenate((data['positive_edges_{}'.format(p)], data['negative_edges_{}'.format(p)]), axis=-1)
nodes_first = torch.index_select(out, 0, torch.from_numpy(edge_mask[0, :]).long().to(out.device))
nodes_second = torch.index_select(out, 0, torch.from_numpy(edge_mask[1, :]).long().to(out.device))
pred = torch.sum(nodes_first * nodes_second, dim=-1)
label_positive = torch.ones([data['positive_edges_{}'.format(p)].shape[1], ], dtype=pred.dtype)
label_negative = torch.zeros([data['negative_edges_{}'.format(p)].shape[1], ], dtype=pred.dtype)
label = torch.cat((label_positive, label_negative)).to(device)
loss = loss_func(pred, label)
if get_auc:
auc = roc_auc_score(label.flatten().cpu().numpy(), torch.sigmoid(pred).flatten().data.cpu().numpy())
return loss, auc
else:
return loss
def train_model(data, model, loss_func, optimizer, device, g_data):
model.train()
out = model(g_data)
loss = get_loss('train', data, out, loss_func, device, get_auc=False)
optimizer.zero_grad()
loss.backward()
optimizer.step()
optimizer.zero_grad()
return g_data
def eval_model(data, g_data, model, loss_func, device):
model.eval()
out = model(g_data)
# train loss and auc
tmp_loss, auc_train = get_loss('train', data, out, loss_func, device)
loss_train = tmp_loss.cpu().data.numpy()
# val loss and auc
_, auc_val = get_loss('val', data, out, loss_func, device)
# test loss and auc
_, auc_test = get_loss('test', data, out, loss_func, device)
return loss_train, auc_train, auc_val, auc_test
def main(args):
# The mean and standard deviation of the experiment results
# are stored in the 'results' folder
if not os.path.isdir('results'):
os.mkdir('results')
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
print('Learning Type: {}'.format(['Transductive', 'Inductive'][args.inductive]),
'Task: {}'.format(args.task))
results = []
for repeat in range(args.repeat_num):
data = get_dataset(args)
# pre-sample anchor nodes and compute shortest distance values for all epochs
g_list, anchor_eid_list, dist_max_list, edge_weight_list = preselect_anchor(data, args)
# model
model = PGNN(input_dim=data['feature'].shape[1]).to(device)
# loss
optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4)
loss_func = nn.BCEWithLogitsLoss()
best_auc_val = -1
best_auc_test = -1
for epoch in range(args.epoch_num):
if epoch == 200:
for param_group in optimizer.param_groups:
param_group['lr'] /= 10
g = dgl.graph(g_list[epoch])
g.ndata['feat'] = torch.FloatTensor(data['feature'])
g.edata['sp_dist'] = torch.FloatTensor(edge_weight_list[epoch])
g_data = {
'graph': g.to(device),
'anchor_eid': anchor_eid_list[epoch],
'dists_max': dist_max_list[epoch]
}
train_model(data, model, loss_func, optimizer, device, g_data)
loss_train, auc_train, auc_val, auc_test = eval_model(
data, g_data, model, loss_func, device)
if auc_val > best_auc_val:
best_auc_val = auc_val
best_auc_test = auc_test
if epoch % args.epoch_log == 0:
print(repeat, epoch, 'Loss {:.4f}'.format(loss_train), 'Train AUC: {:.4f}'.format(auc_train),
'Val AUC: {:.4f}'.format(auc_val), 'Test AUC: {:.4f}'.format(auc_test),
'Best Val AUC: {:.4f}'.format(best_auc_val), 'Best Test AUC: {:.4f}'.format(best_auc_test))
results.append(best_auc_test)
results = np.array(results)
results_mean = np.mean(results).round(6)
results_std = np.std(results).round(6)
print('-----------------Final-------------------')
print(results_mean, results_std)
with open('results/{}_{}_{}.txt'.format(['Transductive', 'Inductive'][args.inductive], args.task,
args.k_hop_dist), 'w') as f:
f.write('{}, {}\n'.format(results_mean, results_std))
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--task', type=str, default='link', choices=['link', 'link_pair'])
parser.add_argument('--inductive', action='store_true',
help='Inductive learning or transductive learning')
parser.add_argument('--k_hop_dist', default=-1, type=int,
help='K-hop shortest path distance, -1 means exact shortest path.')
parser.add_argument('--epoch_num', type=int, default=2000)
parser.add_argument('--repeat_num', type=int, default=10)
parser.add_argument('--epoch_log', type=int, default=100)
args = parser.parse_args()
main(args)