-
Notifications
You must be signed in to change notification settings - Fork 0
/
web.py
313 lines (248 loc) · 8.67 KB
/
web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import numpy as np
import flask
import pickle
from flask import Flask, render_template, request, Markup, url_for
from nltk import word_tokenize
import stopword
from nltk.stem import PorterStemmer
import time
from shutil import copyfile
from difflib import SequenceMatcher
from selenium import webdriver
from nltk.stem import WordNetLemmatizer
import os
import cv2
import numpy as np
from keras.models import load_model
from PIL import Image, ImageSequence
import tensorflow as tf
os.environ['KMP_DUPLICATE_LIB_OK']='True'
global graph
graph = tf.get_default_graph()
wordnet_lemmatizer = WordNetLemmatizer()
# # CONSTANTS
SIGN_PATH = "/Users/user/Desktop/wchhack"
DOWNLOAD_WAIT = 10
SIMILIARITY_RATIO = 0.9
contractions={"what's":" what is",
"can't": "can not",
"he's": "he is",
"it's": "it is",
"doesn't": "does not",
"don't": "do not",
"let's": "let us",
"you're": "you are",
"+": "plus",
"-": "minus",
"/": "divide",
"*": "multiply",
"i'm":"i am"}
labels_dict = {'A':0,'B':1,'C':2,'D':3,'E':4,'F':5,'G':6,'H':7,'I':8,'J':9,'K':10,'L':11,'M':12,
'N':13,'O':14,'P':15,'Q':16,'R':17,'S':18,'T':19,'U':20,'V':21,'W':22,'X':23,'Y':24,
'Z':25,'space':26,'del':27,'nothing':28}
app = Flask(__name__)
im = Image.open("static/demo.gif")
ch = 'a'
index = 1
for frame in ImageSequence.Iterator(im):
frame.save("static/%s.png" % ch)
ch = chr(ord(ch) + 1)
size = 64,64
global model
model = load_model('sign_detection.h5')
@app.route('/')
# @app.route('/index')
def index():
return flask.render_template('index.html')
@app.route("/audiotoalexa/", methods=["GET", "POST"])
def move_forward():
import speech_recognition as sr
r = sr.Recognizer()
with sr.Microphone() as source:
print("Say Something")
audio = r.listen(source)
text = r.recognize_google(audio)
text=str(text)
print("Google thinks you said:\n" ,text )
words = process_text(text)
# print (words)
# Download words that have not been downloaded in previous sessions.
real_words = []
for w in words:
real_name = find_in_db(w)
if real_name:
print(w + " is already in db as " + real_name)
real_words.append(real_name)
else:
real_words.append(download_word_sign(w))
words = real_words
# Concatenate videos and save output video to folder
merge_signs(words)
import cv2
cap = SIGN_PATH + "/static/out.mp4"
# while(1):
# ret, frame = cap.read()
# # cv2.imshow('frame',frame)
# if cv2.waitKey(1) & 0xFF == ord('q') or ret==False :
# cap.release()
# cv2.destroyAllWindows()
# break
# cv2.imshow('frame',frame)
# cv2.waitKey(10)
# cap.release()
# cv2.destroyAllWindows()
# time.sleep(1)
return flask.render_template('forward.html', message=text)
# Get words
def download_word_sign(word):
browser = webdriver.Chrome("/Applications/Google Chrome.app")
browser.get("http://www.aslpro.com/cgi-bin/aslpro/aslpro.cgi")
first_letter = word[0]
letters = browser.find_elements_by_xpath('//a[@class="sideNavBarUnselectedText"]')
for letter in letters:
if first_letter == str(letter.text).strip().lower():
letter.click()
break
# Show drop down menu ( Spinner )
spinner = browser.find_elements_by_xpath("//option")
best_score = -1.
closest_word_item = None
for item in spinner:
item_text = item.text
# if stem == str(item_text).lower()[:len(stem)]:
s = similar(word, str(item_text).lower())
if s > best_score:
best_score = s
closest_word_item = item
print(word, " ", str(item_text).lower())
print("Score: " + str(s))
if best_score < SIMILIARITY_RATIO:
print(word + " not found in dictionary")
return
real_name = str(closest_word_item.text).lower()
print("Downloading " + real_name + "...")
closest_word_item.click()
time.sleep(DOWNLOAD_WAIT)
in_path = "/Users/user/Downloads/" +real_name + ".swf"
out_path = SIGN_PATH + "/static/" + real_name + ".mp4"
convert_file_format(in_path, out_path)
browser.close()
return real_name
def convert_file_format(in_path, out_path):
# Converts .swf filw to .mp4 file and saves new file at out_path
from ffmpy import FFmpeg
ff = FFmpeg(
inputs = {in_path: None},
outputs = {out_path: None})
ff.run()
def get_words_in_database():
import os
vids = os.listdir(SIGN_PATH+"/download")
vid_names = [v[:-4] for v in vids]
return vid_names
def process_text(text):
# Split sentence into words
for word in text.split():
if word.lower() in contractions:
text = text.replace(word, contractions[word.lower()])
words=word_tokenize(text)
# Remove all meaningless words
usefull_words = [str(w).lower() for w in words if w.lower() not in set(stopword.words())]
for i in range(len(usefull_words)):
usefull_words[i]=wordnet_lemmatizer.lemmatize(usefull_words[i])
if usefull_words[i].isnumeric():
num=list(usefull_words[i])
del usefull_words[i]
for j in range(len(num)):
usefull_words.insert(i+j, num[j])
# TODO: Add stemming to words and change search accordingly. Ex: 'talking' will yield 'talk'.
# from nltk.stem import PorterStemmer
# ps = PorterStemmer()
# usefull_stems = [ps.stem(word) for word in usefull_words]
# print("Stems: " + str(usefull_stems))
# TODO: Create Sytnax such that the words will be in ASL order as opposed to PSE.
return usefull_words
def merge_signs(words):
# Write a text file containing all the paths to each video
with open("vidlist.txt", 'w') as f:
for w in words:
if w:
f.write("file '" + SIGN_PATH + "/download/" + w + ".mp4'\n")
command = "ffmpeg -f concat -safe 0 -i vidlist.txt -c copy output.mp4 -y"
import shlex
# Splits the command into pieces in order to feed the command line
args = shlex.split(command)
import subprocess
process = subprocess.Popen(args)
process.wait() # Block code until process is complete
copyfile("output.mp4",SIGN_PATH + "/static/out.mp4") # copyfile(src, dst)
# remove the temporary file (it used to ask me if it should override previous file).
import os
os.remove("output.mp4")
def in_database(w):
db_list = get_words_in_database()
from nltk.stem import PorterStemmer
ps = PorterStemmer()
s = ps.stem(w)
for word in db_list:
if s == word[:len(s)]:
return True
return False
def similar(a, b):
# Returns a decimal representing the similiarity between the two strings.
return SequenceMatcher(None, a, b).ratio()
def find_in_db(w):
best_score = -1.
best_vid_name = None
for v in get_words_in_database():
s = similar(w, v)
if best_score < s:
best_score = s
best_vid_name = v
if best_score > SIMILIARITY_RATIO:
return best_vid_name
global gif_to_text
@app.route("/predicttext/",methods=['GET','POST'])
def predicttext():
print('touchpoint')
output_sentence = 'Alexa '
for image in sorted(os.listdir('static/')):
try:
if image.endswith(".png"):
temp_img = cv2.imread('static' + '/' + image)
temp_img = cv2.resize(temp_img, size)
test_image = np.expand_dims(temp_img, axis = 0)
with graph.as_default():
result = model.predict(test_image)
for letter, index in labels_dict.items():
if index == result.argmax():
if letter!='space':
output_sentence = output_sentence + letter
else:
output_sentence = output_sentence + ' '
except Exception as e:
pass
output_sentence = output_sentence.replace('WHAT',"WHAT'S")
print(output_sentence)
gif_to_text = output_sentence
return flask.render_template('index.html',your_prediction_appears_here=output_sentence)
@app.route("/texttospeech/",methods=['GET','POST'])
def texttospeech():
from gtts import gTTS
import pyglet
import time, os
lang = 'en'
text = "Alexa WHAT'S THE WEATHER"
file = gTTS(text = text, lang = lang)
try:
filename = "static/temp.mp3"
file.save(filename)
music = pyglet.media.load(filename, streaming = False)
music.play()
time.sleep(music.duration)
#
os.remove(filename)
except Exception:
pass
return flask.render_template('index.html')
app.run(host='127.0.0.1', port=5000,debug=True)