-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
180 lines (142 loc) · 6.12 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import sys
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__)))
sys.path.append(project_root)
from deployement.chroma_db_functions import close_chroma_db_connection, check_and_process_documents
from werkzeug.utils import secure_filename
from flask import Flask, request, jsonify
from deployement.main_reasoning import reasoning
from flask_cors import CORS
import requests
import shutil
import time
import json
app = Flask(__name__)
CORS(app) # This allows all origins
# Define the upload folder
UPLOAD_FOLDER = os.path.join(os.path.dirname(__file__), 'data', 'raw')
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# Ensure the upload folder exists
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
# PROMPT_TEMPLATE = """
# Answer this question in a clear, unboring matter, based on the following context:
# {context}
# -----
# Answer this question based on the above context, without citing the context in your answer:
# {question};/
# Answer:
# """
def stream_response(response_text):
"""Stream the response one character at a time to simulate typing."""
delay = 0.0001 # Adjust this delay to control the typing speed
for char in response_text:
yield char
time.sleep(delay)
MLFLOW_MODEL_URL = "http://127.0.0.1:5001/invocations"
# @app.route('/query', methods=['POST'])
# def handle_query():
# data = request.json
# print(f"here's the data request: {data}")
# query = data.get('query')
# if not query:
# return jsonify({"error": "No query provided"}), 400
# try:
# # Prepare data for MLflow model
# print("i'm before mlflow_payload")
# mlflow_payload = {"instances": [{"query": query}]}
# # Send request to MLflow-served model
# print("i'm before response")
# response = requests.post(MLFLOW_MODEL_URL, json=mlflow_payload)
# print("i'm after mlflow_payload")
# # Check if the request was successful
# if response.status_code == 200:
# # Extract the response from the MLflow model
# print("If this shows up, it means this should work")
# model_response = response.json()
# print(f"this is the model's response: {model_response}")
# response_text = model_response.get('predictions', {}).get('responses', 'No response')
# print(f"this is the response_Text : {response_text}")
# return jsonify({"response": response_text})
# else:
# print("i'm in error that means response is not working")
# return jsonify({"error": f"MLflow model request failed: {response.text}"}), 500
# except requests.RequestException as e:
# return jsonify({"error": f"Request to MLflow model failed: {str(e)}"}), 500
@app.route('/query', methods=['POST'])
def handle_query():
data = request.json
print(f"Received data: {data}")
query = data.get('query')
if not query:
return jsonify({"error": "No query provided"}), 400
try:
# Modify payload to match exact MLflow serving expectations
mlflow_payload = {
"dataframe_split": {
"columns": ["query"],
"data": [[query]]
}
}
print(f"Payload to MLflow: {json.dumps(mlflow_payload)}")
# Send request to MLflow model
response = requests.post(
MLFLOW_MODEL_URL,
json=mlflow_payload,
)
print(f"MLflow Response Status: {response.status_code}")
print(f"MLflow Response Content: {response.text}")
# Check if the request was successful
if response.status_code == 200:
model_response = response.json()
print(f"Parsed Model Response: {model_response}")
# Extract response from the nested structure
response_text = model_response.get('predictions', {}).get('responses', 'No response found')
print(f"Extracted Response Text: {response_text}")
return jsonify({"response": response_text})
else:
return jsonify({
"error": f"MLflow model request failed",
"status_code": response.status_code,
"details": response.text
}), 500
except requests.RequestException as e:
print(f"Request Exception: {e}")
return jsonify({"error": f"Request to MLflow model failed: {str(e)}"}), 500
except Exception as e:
print(f"Unexpected Error: {e}")
return jsonify({"error": f"Unexpected error: {str(e)}"}), 500
@app.route('/upload', methods=['POST'])
def handle_upload():
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
if file:
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
# Here you would typically process the file and add it to Chroma DB
# You can call your processing function here
check_and_process_documents()
return jsonify({"message": f"File {filename} uploaded successfully to {file_path}"}), 200
# Route to clear doc data
@app.route('/clear_cv_data', methods=['POST'])
def clear_cv_data():
chroma_folder = './data/chroma'
try:
close_chroma_db_connection()
# Check if the chroma folder exists and delete its contents
if os.path.exists(chroma_folder):
for filename in os.listdir(chroma_folder):
file_path = os.path.join(chroma_folder, filename)
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
# shutil.rmtree(file_path)
shutil.rmtree(chroma_folder)
return jsonify({"message": "ChromaDB data cleared successfully"}), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(debug=True)