-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
83 lines (64 loc) · 2.99 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from flask import Flask, request, jsonify, send_file
import os
import cv2
import numpy as np
import tensorflow as tf
from collections import deque
app = Flask(__name__)
# Load your pretrained model
model = tf.keras.models.load_model('LRCN_model__Date_Time_2024_07_07__16_03_46__Loss_0.39749324321746826__Accuracy_0.8640000224113464.h5')
# Constants
IMAGE_HEIGHT, IMAGE_WIDTH = 64, 64
SEQUENCE_LENGTH = 20
CLASSES_LIST = ["WalkingWithDog", "TaiChi", "JumpRope", "HorseRace"]
def frames_extraction(video_path):
frames_list = []
video_reader = cv2.VideoCapture(video_path)
video_frames_count = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
skip_frames_window = max(int(video_frames_count/SEQUENCE_LENGTH), 1)
for frame_counter in range(SEQUENCE_LENGTH):
video_reader.set(cv2.CAP_PROP_POS_FRAMES, frame_counter * skip_frames_window)
success, frame = video_reader.read()
if not success:
break
resized_frame = cv2.resize(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))
normalized_frame = resized_frame / 255
frames_list.append(normalized_frame)
video_reader.release()
return frames_list
def predict_on_video(video_file_path, output_file_path, SEQUENCE_LENGTH):
video_reader = cv2.VideoCapture(video_file_path)
Original_video_width = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
Original_video_height = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
video_writer = cv2.VideoWriter(output_file_path, cv2.VideoWriter_fourcc('M', 'P', '4', 'V'),
video_reader.get(cv2.CAP_PROP_FPS), (Original_video_width, Original_video_height))
frames_queue = deque(maxlen=SEQUENCE_LENGTH)
predicted_class_name = ''
while video_reader.isOpened():
ok, frame = video_reader.read()
if not ok:
break
resized_frame = cv2.resize(frame, (IMAGE_HEIGHT, IMAGE_WIDTH))
normalized_frame = resized_frame / 255
frames_queue.append(normalized_frame)
if len(frames_queue) == SEQUENCE_LENGTH:
predicted_labels_probabilities = model.predict(np.expand_dims(frames_queue, axis = 0))[0]
predicted_label = np.argmax(predicted_labels_probabilities)
predicted_class_name = CLASSES_LIST[predicted_label]
cv2.putText(frame, predicted_class_name, (10, 115), cv2.FONT_HERSHEY_SIMPLEX, 5, (0, 0, 0), 5)
video_writer.write(frame)
video_reader.release()
video_writer.release()
@app.route('/predict', methods=['POST'])
def predict():
if 'video' not in request.files:
return "Please provide a video file", 400
video_file = request.files['video']
input_video_path = 'input_video.mp4'
output_video_path = 'output_video.mp4'
video_file.save(input_video_path)
predict_on_video(input_video_path, output_video_path, SEQUENCE_LENGTH)
return send_file(output_video_path, mimetype='video/mp4')
if __name__ == '__main__':
app.run(debug=True)
# http://127.0.0.1:5000/predict