Data ingestion, processing, and analysis code for Cell states beyond transcriptomics: integrating structural organization and gene expression in hiPSC-derived cardiomyocytes
The recommended installation procedure is to create a conda environment and then pip install into that environment.
Clone this repository, then
cd fish_morphology_code
conda create --name cardio_fish_data python=3.7
conda activate cardio_fish_data
pip install -e .
After following the "Normal users" installation instructions,
pip install -e .[all]
pre-commit install
See the open data release (produced by this code) for instructions to download the data:
To run the image normalization code, from the main repo dir:
contrast_and_segment quilt_data/metadata.csv quilt_data/supporting_files/channel_defs.json --out_dir=output_data
Before running cellprofiler, download auto-contrasted images from quilt (ex. download_2D_contrasted --test=True
) into current working directory.
Create an image set list in format accepted by cellprofiler's LoadData module.
make_cellprofiler_image_set \
--image_csv ./quilt_data_contrasted_test/metadata.csv \
--defaults_json fish_morphology_code/cellprofiler/cellprofiler_image_set_defaults.json \
--path_key rescaled_2D_fov_tiff_path \
--local_path ./quilt_data_contrasted_test \
--out_loc ./test_image_set_list.csv
Run cellprofiler pipeline in this repository using test image set list as input:
#!/bin/bash
mkdir cp_out
cellprofiler \
-p fish_morphology_code/cellprofiler/cp_3i_image_processing.cppipe \
--run-headless \
--data-file ./test_image_set_list.csv \
-o ./cp_out \
-L 10
To run cellprofiler on slurm, first:
module load anaconda3
source activate cellprofiler-3.1.8
To merge features, also need these files from repo:
- fov metadata:
data/input_segs_and_tiffs/labkey_fov_metadata.csv
) - structure scores with fov id:
data/structure_scores_fov.csv
merge_cellprofiler_output \
--cp_csv_dir cp_out \
--csv_prefix napari_ \
--out_csv cp_out/cp_features.csv \
--normalized_image_manifest quilt_data_contrasted_test/metadata.csv \
--fov_metadata fish_morphology_code/data/input_segs_and_tiffs/labkey_fov_metadata.csv \
--structure_scores fish_morphology_code/data/structure_scores_fov.csv \
--prepend_local ./quilt_data_contrasted \
--relative_columns "rescaled_2D_fov_tiff_path,rescaled_2D_single_cell_tiff_path"
To run the pytest
tests defined in fish_morphology_code/tests
via tox
, use
make build
This will take a while the first time setting up the test environment.
Uploading to quilt should happen infrequently, so all the code has been put in the data
directory outside of the main fish_morphology_code
library.
All uploading can be done in the data
directory using python distribute_<your_dataset>.py
.
@article {Gerbin2020.05.26.081083,
author = {Gerbin, Kaytlyn A and Grancharova, Tanya and Donovan-Maiye, Rory and Hendershott, Melissa C and Brown, Jackson and Dinh, Stephanie Q and Gehring, Jamie L and Hirano, Matthew and Johnson, Gregory R and Nath, Aditya and Nelson, Angelique and Roco, Charles M and Rosenberg, Alex B and Sluzewski, M Filip and Viana, Matheus P and Yan, Calysta and Zaunbrecher, Rebecca J and Cordes Metzler, Kimberly R and Menon, Vilas and Palecek, Sean P and Seelig, Georg and Gaudreault, Nathalie and Knijnenburg, Theo and Rafelski, Susanne M and Theriot, Julie A and Gunawardane, Ruwanthi N},
title = {Cell states beyond transcriptomics: integrating structural organization and gene expression in hiPSC-derived cardiomyocytes},
elocation-id = {2020.05.26.081083},
year = {2020},
doi = {10.1101/2020.05.26.081083},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2020/05/27/2020.05.26.081083},
eprint = {https://www.biorxiv.org/content/early/2020/05/27/2020.05.26.081083.full.pdf},
journal = {bioRxiv}
}