From 341ef3ec71240b55075187b62096484a738422d2 Mon Sep 17 00:00:00 2001 From: alireza-akhavan Date: Mon, 2 Dec 2019 22:09:30 +0330 Subject: [PATCH] new file: 01_simple-RNN.ipynb new file: 02_1_simple-RNN-diffrent-sequence-length.ipynb new file: 02_2_simple-RNN-diffrent-sequence-length.ipynb new file: 03_1_Cryptocurrency-predicting.ipynb new file: 03_2_Cryptocurrency-predicting.ipynb new file: 04_simple-CNN-LSTM.ipynb new file: 05-1-video-action-recognition-train-extract-features-with-cnn.ipynb new file: 05-2_video-action-recognition-train-rnn.ipynb new file: 06_analogy-using-embeddings.ipynb new file: 07_text-classification-Emojify.ipynb new file: 08_shahnameh-text-generation-language-model.ipynb new file: 09_add-numbers-with-seq2seq.ipynb new file: 10_Neural-machine-translation-with-attention-for-date-convert.ipynb new file: 11_nmt-with-attention.ipynb new file: 12_image-captioning-with-attention.ipynb new file: TimeDistributed.ipynb new file: final_cnn_lstm.ipynb new file: images/attn_mechanism.png new file: images/attn_model.png new file: images/cosine_sim.png new file: images/data_set.png new file: images/date_attention.png new file: images/date_attention2.png new file: images/embedding1.png new file: images/emojifier-v2.png new file: images/image_1.png new file: images/poorly_trained_model.png new file: images/table.png new file: logo.png new file: nmt_utils.py --- 01_simple-RNN.ipynb | 693 +++++ ..._simple-RNN-diffrent-sequence-length.ipynb | 485 ++++ ..._simple-RNN-diffrent-sequence-length.ipynb | 818 ++++++ 03_1_Cryptocurrency-predicting.ipynb | 596 ++++ 03_2_Cryptocurrency-predicting.ipynb | 562 ++++ 04_simple-CNN-LSTM.ipynb | 647 +++++ ...tion-train-extract-features-with-cnn.ipynb | 326 +++ 05-2_video-action-recognition-train-rnn.ipynb | 477 +++ 06_analogy-using-embeddings.ipynb | 341 +++ 07_text-classification-Emojify.ipynb | 1263 ++++++++ ...nameh-text-generation-language-model.ipynb | 1327 +++++++++ 09_add-numbers-with-seq2seq.ipynb | 512 ++++ ...tion-with-attention-for-date-convert.ipynb | 962 +++++++ 11_nmt-with-attention.ipynb | 1261 ++++++++ 12_image-captioning-with-attention.ipynb | 2547 +++++++++++++++++ TimeDistributed.ipynb | 119 + final_cnn_lstm.ipynb | 488 ++++ images/attn_mechanism.png | Bin 0 -> 172401 bytes images/attn_model.png | Bin 0 -> 277594 bytes images/cosine_sim.png | Bin 0 -> 106128 bytes images/data_set.png | Bin 0 -> 206021 bytes images/date_attention.png | Bin 0 -> 134251 bytes images/date_attention2.png | Bin 0 -> 132831 bytes images/embedding1.png | Bin 0 -> 334776 bytes images/emojifier-v2.png | Bin 0 -> 155065 bytes images/image_1.png | Bin 0 -> 245447 bytes images/poorly_trained_model.png | Bin 0 -> 10314 bytes images/table.png | Bin 0 -> 89024 bytes logo.png | Bin 0 -> 1480662 bytes nmt_utils.py | 251 ++ 30 files changed, 13675 insertions(+) create mode 100644 01_simple-RNN.ipynb create mode 100644 02_1_simple-RNN-diffrent-sequence-length.ipynb create mode 100644 02_2_simple-RNN-diffrent-sequence-length.ipynb create mode 100644 03_1_Cryptocurrency-predicting.ipynb create mode 100644 03_2_Cryptocurrency-predicting.ipynb create mode 100644 04_simple-CNN-LSTM.ipynb create mode 100644 05-1-video-action-recognition-train-extract-features-with-cnn.ipynb create mode 100644 05-2_video-action-recognition-train-rnn.ipynb create mode 100644 06_analogy-using-embeddings.ipynb create mode 100644 07_text-classification-Emojify.ipynb create mode 100644 08_shahnameh-text-generation-language-model.ipynb create mode 100644 09_add-numbers-with-seq2seq.ipynb create mode 100644 10_Neural-machine-translation-with-attention-for-date-convert.ipynb create mode 100644 11_nmt-with-attention.ipynb create mode 100644 12_image-captioning-with-attention.ipynb create mode 100644 TimeDistributed.ipynb create mode 100644 final_cnn_lstm.ipynb create mode 100644 images/attn_mechanism.png create mode 100644 images/attn_model.png create mode 100644 images/cosine_sim.png create mode 100644 images/data_set.png create mode 100644 images/date_attention.png create mode 100644 images/date_attention2.png create mode 100644 images/embedding1.png create mode 100644 images/emojifier-v2.png create mode 100644 images/image_1.png create mode 100644 images/poorly_trained_model.png create mode 100644 images/table.png create mode 100644 logo.png create mode 100644 nmt_utils.py diff --git a/01_simple-RNN.ipynb b/01_simple-RNN.ipynb new file mode 100644 index 0000000..0e5e69a --- /dev/null +++ b/01_simple-RNN.ipynb @@ -0,0 +1,693 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

مقدمات شبکه‌های بازگشتی و SimpleRNN

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, SimpleRNN\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
ایجاد مجموعه داده
\n", + "\n", + "
\n", + "ایجاد یک سری سینوسی برای 1500 گام زمانی با نویز تصادفی.
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXeY1lT2x79nKsPQGfoAQ1NAisAIiIAooAiu/ATsBduy1rXuLuraXcWytrWiKNZF14qKNOlFYKgCQxn6IGXoZWDq/f3xJjOZvHlrbpKb5H6eZ5553yRv7slNcnJy7rnnEGMMEolEIvEXCU4LIJFIJBL7kcpfIpFIfIhU/hKJROJDpPKXSCQSHyKVv0QikfgQqfwlEonEh0jlL5FIJD5EKn+JRCLxIVL5SyQSiQ9JclqAUGRkZLCsrCynxZBIJBJXsXz58gOMsQaRthNW+WdlZSEnJ8dpMSQSicRVENGOaLaTbh+JRCLxIVL5SyQSiQ+Ryl8ikUh8iFT+EolE4kNMK38iqkZES4loNRGtI6KnDLZJJaIviSiPiJYQUZbZdiUSiUQSPzws/yIAFzLGugI4G8AQIuqt2+ZWAIcZY20BvArgBQ7tSiQSiSROTCt/FuCE8jVZ+dOXBxsO4GPl89cABhIRmW1bIpFIJPHBxedPRIlEtArAfgAzGGNLdJs0A7ALABhjpQCOAqjPo22JhCd/HDmF2Rv2Oy2GRGI5XJQ/Y6yMMXY2gEwAPYmok24TIys/qHgwEY0hohwiyikoKOAhWsys2HkY2w+cdKRtpzlaWOK0CI5y9xcr0GfcLNw8cZnTokgcZPmOw764F7hG+zDGjgCYA2CIblU+gOYAQERJAGoDOGTw+/GMsWzGWHaDBhFnJ1vCiLcXYcDLcxxp20m+XZGPrk9Px7o/jjotimP8tGaP0yJIHKasnGHkO4tw08SlTotiOTyifRoQUR3lcxqAQQA26DabDGC08nkUgFmMsSDLX+IcczYG3rQ27zsRYUuJHzj/pdk4b9wsp8WwnZKycgDAut3HHJbEenhY/k0AzCaiNQCWIeDz/4mIniaiy5RtJgCoT0R5AB4AMJZDuxKOlCvP4vu+XIUVOw8DAE6XlOG5KbkoLC51UjSJhTzw1SpkPzsDhcWlmL+50tW642Ahdh855aBk9lJYXIqVOw+jtDxwHyT4YAaU6cRujLE1ALoZLH9c8/k0gCvMtiWxjnLNi9hj36/Fz3/th8+X7MT4eVuRkpiAhy4+00HpJFbx7YrdAIAHvlyNqev2YtaD56N1gxoOS2UPa3cfxYmiUvRuXR8PfrUav6zdiwmjswEAiT4IRvTB800SDeXllZ/V50CCcv0fP+39wS89I99ZhKOn/HPcU9ftBQCcLCoLWrdh7zEUHC+yWyTLufQ/C3D1+N8AAL/vDox13fpxIJPwyeIyeN0zLZW/BADANMFX6qe05EQAwOmScoNfeJvlOw5juqIQvcqCzQeClrHgIDwMeW0+LvRwEERRaRnyDwe7uD5auN1+YWxEKv8Q5B8uBAA89eM6dH1qusPSWMPRUyUoKStH1tifMW3dvorlqsWTlhJQ/qdKgq1BP+Blw+9IYTGun6CfjhOa40XeHff5eNF2w+Xr93h70NfXyv+Oz5bjhhA3wIQF2wAEnv5eff3v+tR03P3FiqDlqtKrluwP5d/3hVkY+c6ioOXlHtb+6sBmLKz/w5vKsCjEm62HTz8Anyv/X9buxXyDV18goPS1Mz1Ly8rx3JRcHDjhLd+n1uJXUV/9kxMDTv+SsnLsOlSIrLE/Y85G781+zT98Cst3HA5aHod+dA1JCbEPaC7fETQ1xxMkJhr3hZELzEv4WvlHIkdzsc/ffADj523FP79b66BE9qC3eAjANmXW89tzttgvkEN42fL38KHFTHKEuM5FeQeqhMF6BWFr+IpAkuaimKW8BZwu9bYLBAhWegxA7bRkAMChk8UOSOQMXtaP8RybV/sjMdRbkHLA134QcA1vHzfMJonsQVr+AK58d7GhX1/7avzpb4GayGVe9gXoIE1KJvWoTxV7/+GnUu7hc+3lt5pYSQrp9gFmrA92i3oFqfwBLN1+CFPXBud1SU4K7h4/3DNGh6hGAPlptq+XFWSoQ9Mv33WoMOJv3E4oy58xhj9/klPxvchjb/3S7aNABolHjQbF/GD5Mwa8PScPL07dCCCQ9yerfjoAoNBHlr+q7JZtP4T66Smemvka7QSmfi/OtlgS5wnl89ff6mf+cyoA77h/pOUfhuTE4O4pK2fYUuDt5GeMMUyYv63KsolKLHRRaTmen5LrmYdgOCV4urQMpWXluOLdxbjw33NtlMp64j19t3+6HG/O2sxXGIcJafnbLIfdSOUfBqOLYun2Qxj477lYuTM4NNArMADhCq29N28r5nkk+iGcAfzi1I0Vg31eI54wRsYYpq7bi5enb7JAIucIFewTyjDwStoHqfzDkBxiIAgAdmp8oW7iolfnYozGj2kEY0CkvFbHPDLxLdJtvHRb1dj2krJyT9z8oSz/WRv2I2vsz/YK4zBlIbKXhDrLHjj9AKTyD0uCBzP7bdp3AtMjRDCUM4ZIc4COnXb/wO8H87fiu5W7o97+dEkZ2j36C/4zK89Cqewh1APs9V9Du3Q8ovOCyKiREtP2XukHXyn/tbuP4vK3F+K0QbqCNwz8mF6uMR/Oes0/fAoHToSP5y90ca6XjXuPY/eRU3j251w89L/VUf9ua0FgotsPq6J/YIhKPNbrUz+u5y+IAxwpLDbUAUGE6KP+L872xNufr6J9npy8Dit3HsGa/KPo2apelXVGWf28TKRr1ysDukZc/Nq8uH53qiTwwEtPdf9t4wHdFTdnPz0D2S3rRtwu1LjI7iOnUM6AMF5hV8CjjGNzIppNRLlEtI6I7jXYZgARHSWiVcrf40b7shp1ALe0PLoUxeHOrdtvHrPiu/zw40J9Hrr5wdj9mRl47Pu1np7DEIrrP1iCr5fnAwByNLmcQvVEODUhLf8ApQAeZIytIKKaAJYT0QzGmP4dcT5j7FIO7cWNOpMv2pt3QZ5x0jeJP1Fn/LpY9+PQyWJ8+tsO3NK3ldOi2M6CvAMx3dPhIqJcfAlUYNryZ4ztYYytUD4fB5ALoJnZ/VqBOoD7yoxNUWUoDDcY6MaMf9qMnF6wXOxGVfpeSPtg1vL/aOG2yBu5hShnO3sNrgO+RJSFQD1fo+Doc4loNRH9QkRn8Ww3WtQZuyt3HsHIdxY7IYKjaAfsPH5dW4L6wCzzgFYw+/B/6sf1ninwHsqQC9dDHrgE+Cl/IqoB4BsA9zHG9FUfVgBoyRjrCuA/AL4PsY8xRJRDRDkFBfwnEYXM3qcQS3zzbhcOEGutPbMX77hfNni2uEcovGT5D3olvkFvLV7oh3CEu0fc+Oavh4vyJ6JkBBT/54yxb/XrGWPHGGMnlM9TACQTUYbBduMZY9mMsewGDRrwEK0KkZR/LLhxliPvQb6Xp2/kuj/RKddY/nuOnoouXNDDeCUSOtRtMTPXuxk9AT7RPgRgAoBcxtgrIbZprGwHIuqptHvQbNuxcLqkzLBqlZ/QRi94wXKJBzPujgrlX85w7vOzcPtny3mJZQvfrsjnur/7Jq3iuj834QW3D49on/MA3ADgdyJSr4ZHALQAAMbYuwBGAbiDiEoBnAJwNbN5xDGWmZx+gEfvu9Hwi6d2rQrTuX3mbHRXfiN9qgqz5BiUvnQjXlDk8WBa+TPGFiCCHmCMvQngTbNtmcHNsdm88GNst56SUIlcouDmicsAuHfAV4YuGxPP+TRjRIiCb9I7uP9UmWfP0dNOi+A4PO5Zo9oPbsBvs9ij5YVfNsT8m05PTLNAEntx/zz1aHGptWYVHyv5+c3gth698cOlWLxFWr+Sqmw9cNJpERxBWv4+5fk4rB23M29TAUrK+F4J+4/JtymJO/GP8pfaX8IJbaRUz+d+dVCS6Ji9cT/GfrPGaTE8x6+5+3DRq3NNjSM5iW/cPlYMdm4tOIHZGwtwqw/zpEjcQWlZOW7+aJnTYniSh/63GocLS3D8dCnqpcdWE0AEfGP5WzE4P/KdRXjmp/UoKvX3ZB+/s2nfcadFCEn3Z2Y4LYIQWOGeO1kcuO+TXJrb2TfK34ppBSeUgiZujf4wi1+Tw+kPe5/Afn8vVFwzyyeLt1vinisudae7R8U3yl/Cn9kum+Qk8SeP/7DO0v271QbyjfK34gSp+/x99xHM2iB26ojjp71RcF0EXHqvW8KDX61GqUsHPLnh0gvCP8rfgjOk7nHkO4txy8Qc7vvnyQUvz3VaBInNfLFkp+VtfLMiHxv2ijvmIQmNp5X/kq0HK5JZeWA2dkwUlZZhr2ZG74ETRQ5K421EHPNhjOGR7363qS1bmhEWtyZJ9HSo51XjfwMAjOieaUmop8gDnvd8sRLT1+/DnIcGYMQ7i5wWx1MIfNorsDP3jFuVn9/xtOWvUl7OrPH5898lN6avD4xBTFq2C4dOFjssjcRu7Kw1IPLD0I6CMyIffzh8ofyPF/k33C3RF2dYoqfIxjBEkXXfO3O3WN4GA3CquAwHXeZa9YVqKCtnQrtorCTBK+WWhKLqtVRcJt4kP1uVv8D31oz19kThDX9rAXo8O9OWtnjhC+VfWl5uaainyEjlzx/9eb9lYg5W7jyMrLE/CzPhq8hOt49tLcWOHQ8mxhg27TtheTu84VHGsTkRzSaiXCJaR0T3GmxDRPQGEeUR0Roi6m623UhofX1l5cx30T4qUvnzx+hSUlNkLxSkYEqxjbH3IhtBAovmODyifUoBPMgYW0FENQEsJ6IZjLH1mm0uAdBO+esF4B3lv2U8NyW3UsAy5tsqVtLnby+iPGvtvdzFvbfsuO/FPfrwmFYNjLE9jLEVyufjAHIBNNNtNhzAJyzAbwDqEFETs22H4xtNseoTRaV4/dfNVjYnLP9dustpERyBMYadBwsBAMdOl+CwjyKeNu07bqvyF9muskO2aev2Wt+IBXCN8yeiLADdACzRrWoGQKuF8pVle3i2Hwo7ZjqKyu4j/izdN2HBNjz7cy5+uqcvLn97IdciLiIPcC7MO4DrPliC63u3sK1N0XrjjyOnUC05EfXSU2xR/o9+t9b6RiyAm1OAiGoA+AbAfYyxY/rVBj8JOi1ENIaIcogop6DAXNIw0rx/FxaLF43hFeZvFjO527LthwAAuw4Vcq/edbhQ3DxJaknCtbv1t6B1iPYs7DNuFno9F4i8EUw0oeCi/IkoGQHF/zlj7FuDTfIBNNd8zwTwh34jxth4xlg2Yyy7QYMGPEQDAJyW+fYt44YJS7Fg8wFMX7cXxwRMHmeXD14UJaMerp3yiDiepj7wRX5Lcxoe0T4EYAKAXMbYKyE2mwzgRiXqpzeAo4wxW1w+AHDah5a/nQOPy3ccxphPl+OBL1fb16igOJ3nRz3vq3cdcVQOUZC6PzQ8LP/zANwA4EIiWqX8DSWi24nodmWbKQC2AsgD8D6AOzm0GzUni+2b4fv18nxkjf0ZR0+JZwVbRaHSv7sOFTosSSXyprcPxoDez/2KAS/NdlqUIER8KxEF0wO+jLEFMPbpa7dhAO4y21a8/Lb1kG1tfbRwGwBg58FCdM6sbVu7TqLeYE6HORYWl+JEUSka1qymWWqPUKLoGCfePBhj2CvI5DY9UvmHxrNZPZ3y9SUpgfUl5c4WuCDY5/cVZQLdle8txtrdx7B93DDHZHD6AegEgpx+XPne4irurid+WCvMtSkinlX+TpGUELj7yxy+6uxsXhTjShvhYrdIgnSBI4hy/pduq/qG//HiHQ5J4g48O/+THDLBVOV/xbuLfVM6Uc3n7lSfh8Nuke6dtMrRsQ8nToHM5+9OPKv8nXL7JGvyKeTtd1+yp3hYYuOYSjSUllmTyC9aFjiY38eJx68olr8kNjyr/CPxjyHtue+TMYakxMrbT0RL2ArW7wm4W0Q5Wm0649w9kSc7PfGnjqbb1Bobzihghmd/Wh/V8XJv2/YWJTzwrM8/kuJNTgy9/ta+rZCemoQ3YswH9O2K3RVuHwBIEEUb2oQoSkCr/F+bGfkcdm7m/qisY6dK8cGCbY60LSdSuRPPWv6RLshwq2/qk4XmddNibnPnoUIkJVR2qdMTfqKF11uQKEog1hKGPN7QxDhyZ/DzsbsZzyr/SIQrcE0Uv0Ko6vaJaxemWLXrCAqOx1ZOLsljryixxnbzPnyfePsqkdrflXjW7ROJcAoigeKz2Rmc9/P/31sLUS89JabfJHLSfhv2HsfsDftxQfuGXPYXL4FTG71GcvqcccHBQ5DRPpUUlZYhNSnRaTGiwreWf7g4/IDlH99+V+48HKdE/DgUY+76pDDjH7HyxOR13PYVC9rU1bF6n7TPvovPahRX+2vyKycXEQiMMSzfcdg+V5iD+tdpb9/mfcfR7enpzgqhEOs4oZNI5W9AAlFcyn/G+n3IP1yphNxSQpGX5Q84M7lt8ZaDOG/crIrvsVqi2ve8eBXZrkNV6yZ8v2o3Rr6zCJNXByWv9RxOK/+Ji7YLk2b74An3FA3yrfIP5/YhxDdYu13JpV6xH3fofq4+fyeU/8a9VcMby1lsCon7eSJg24HARK9tumvCMhx1+zjH0cISfG5xsaa3ro2+5Lhb7nnAx8o/vNsnPsv/lC7KxC0XQmICv8tAO5B+36SVGPfLBm77jpZYXS3aNzRe52zFjoD7z45n4cmiUhx10PJ1Mspr20HrH67DusRScdYlNz18PODbsWmtkOt4KQC3hHryLPKufaP6flXA5dG7dT0MONO+QeBYVZH2fPPQYwTNLF8bFOOAl+fEHOHFEyctf7vusDMb1cTGfcdj+s17c7egtJzhrgvaWiSVOXxr+ddJCx8RwyMChAh4dcYmvDZzk+l9WQlXy78sOJvp7Z8t57b/aGAsNq+/lWMzdlj+Tip+wNka2Xa9Xb9/Y3bMv3n+lw14adpGC6Thg2+VPwCc17Z+yHW83OCv/7o5qlmmTmK1z79+eiq3/UdDrMY2bwWiNRz8kE9+7ibn6jjb9XYd7TXiFlcvwK+G74dEtJ+IDMvYE9EAIjqqqfT1OI92zUAEfHDjOcbrwOeicst9z1P5nzQomVkrLZnb/qNh/LytMfmhrZzjJvPJW4tdyjbBYxMhAX6W/0QAQyJsM58xdrby9zSndk2RlmI8GSPeAV89dkx+yRr7M16Zbu7VkmeoJwDkHy7E23PyKr6ncJxHEA3/W54f4y/4yqfdmygpL7yKXco/WgPJTY8ILsqfMTYPgFh5faPk5Su6omvzOkHLeZxEq+97VbG8MSsvaN3gjtFPVuKt/G/+aBlenFr5QLLSanpy8jo8+eN6U/uwUoFI1W8tdrl9or1HfOf2iZJziWg1Ef1CRGfZ2G5YRvXIROdmwZE/XCx/y5V/5eessT/jsGZmbyz6NonjgC+AoAk3VuYOmrhou+HyeAd8eZyyqtFDUv1biWiWv5uwS/mvANCSMdYVwH8AfG+0ERGNIaIcIsopKLBvEEkf7RFI98wj06O1N75+7+s1udynrdsX9X7CpXdYNPbCWMVCiS7ih/fDhTdW3tZ+8/mv2HkYZzz6Cw6csCcCSfr848eWu5IxdowxdkL5PAVAMhFlGGw3njGWzRjLbtCggbk24/zdt3f2Qc1qyVwuqmFvLKj4PHvDfvM71KG3KuM1MsO90jatE3tq6yDlb7PPH4itL3iHemp354doHy3vzd2C4rJyLNtmjxfYLrdP9D5/9zwkbFH+RNSYlPg3IuqptHvQjrajQXu6ureoG7SMBzdPXMZ5j8EPuHjfNHj7/PXKn/f+oyGW8EPe1uPsDZVt+0z3o1gppJOSZM/bntWW/+e39QLgzDVsNVxm+BLRfwEMAJBBRPkAngCQDACMsXcBjAJwBxGVAjgF4GpmsTM0llNlNKHLDUnZ9D0Yr4shkfOxlpRVFYT3/nnDW7xFWypr+DLG8NrMTViYdwD/u70P34YQSO0gEsVlNit/i/ffrlENALG5Lict3VnFTcQYEzJtOBflzxi7JsL6NwG8yaMtuxDwXAWht/TjdTFYbdWIbjVVGfDlYJJoH37lLLpSkvFy1xcruOzn0aEd8K8puab3U1SiKH+eOUPCYPV9qhousVzCY7/9vcr3TxbvwOg+WRyl4oPYI3EO4grlH+z3iQurlXOyTYogXqI5101qV4t6f9oUF3uOno5HpKhZvp1P/Yg/92+NDk1C57uKFtXyT022tqDJ6ZIyFBwvstyiVi3+aNsxcr3+KGhab7HvSgdx08CNiig+fz1W3Z8/rNrNZT/6c/3zX/uiRb3qVZZlxlDTuUTjf5uZG33UldPwCGdUff76fc3asA9HCvnlur/142U4518zLb9LeQSqiTrsI5V/KFyg+/WWf7wuCzvGN35YtRtZY3+uUnHLLLzSRetv8LOa1g6a+Beu5rMeW2sacDx1qhEw9pL2ce9D7SfttXi0sAS3TMzBnz/JMSWfloV5gXgRqy1/HoaRqHM9PKv8zXa3FZfU5n3HYy6xGA69pa8faI0Wqy3/ZnXS8IOS3nnDnmMRto4eXlIbDeaVl+vHU6Lfn53Kn+eZu7xbs4r/r17V1dS+tNdmmaL8Nu8/YWqfKv1e1FRts1ixxmoYCarnDfGs8o8FowvICoti8KvzcPFr87jtTy92vKmTrZq9mKb4fTfvP4FZyjyHWCxou9BGIzWsFchAWlRaNVxV/zBwivfnbUWPZ2ZUfOd5nd54bktsfHYIGtWqhsu7Zca1jzxFwWuvTdW4KIvTONFSVFpWpWQmz7Oy9JGBQcu4WP6az8Wl5cK8CXhW+Zs9ZVbZwjxzr/OaQGTV7EXV+pulmeDmRJnHSGgN/8eGdQRQOXCpIorc/5qSi4Mc3x61EBFSk/gM1GqvTfX5xOPBz/PNWU+SQWCC1jAY1SMT/c+If/LpiaJSnPHPX4RJ8e5Z5W/a7eMGnz+n/VgVh290r/NQot+tzMeKnYe5Wb3aV3s102txadXU1KIof7dg1Ful5cGFfmLl2Kmq8xp4GtFGV5PWMHr5iq64vFvTsPswEkeVUc299XXMWWetwbPKPxaMTpiRr++lUV2sFyYGeF34VqXeMXq95aFE7/9yNUa8vcj0flSMXu2D3D6CvKrrEdVI0XaX+pmH5c/jAWKGeKIAGYCDJ4pw5+d85mTwwrPK3wq3T93q4Us/2g4nfWRV4jUjfSmiz9/oQV+sU/5lHJR/WTnD6zM34/hp54qtx8KlMRUu1xPcXzyen3rdz/NhQAQ0jTCfI55w6s37jqPHszPx++6j8YpmCZ5V/mavM/3vB5xpLtGcFfDKGmqd2ydYPrMDp1YMlhlZ/kHKn8NDa8rve/DqzE14nkOIqiqPlYb/a1edHfdvq5wmjqdMr+xfmsq3Ru7U+/ub+r3R5Vmoq24nytuaZ5W/WfSK670beghz0lREd/sY6Uuzlr/WHcPrfBiNd+sHfBvVin6GbyjUB8ppg1KXsfL6zE0ArI1zNxoAjZaqup+f9tffl2v/4GdNEwi1qtlbctRJpPKHsRLVZ6ZMTUp0VPnP3VSAGyYsqbCctxScQDdNyJ8Z7My9U2biNb3b09PxsCZvyukS80oUMFagesv/neu6m25HvcxmrN+Hv/1vtal9Ld0uduE8q4ZISjmEi5pB0KGfuPCt8q+RGj6nXXFp5Vm+Y0AbANbPJgzHHZ8tx/zNB3BKUXhzN8ZX7MZI0duZwdSM++RwYQm+W1mZ0uHACevC/vTKv36NVG77Pl5UGkedYXehdc/xVJiWRl3ZdBuI4kHwrfLXTt+/58K2QetVy39Y5yb4x5DAdHcnz5nattmoEyPlb2eJOhEHfI3QK38gYP1f0qlx3Ps0O14xde2eis9qN8Z65ux6y4vmSDfsPYZjMQ5+6wferbTEf7y7r3U7FwDfKn8tDQ38uaryT9ZUoTqzcU0u7V306tyYy9yp1vltH+fg5Wkb8dmSHXG1nWqQZ91et487lH9RWbDyv6RzE5yTVc92WU4Vl2HxloO4/bPgUMFYrciumbVRPcXajJuALtQzxDZDXpuPa9//LeK+8vYfx/zNgTddvfHA9WrS7axzZu3gTSI2GFkiUZJGSuUfAtW3qB30alI7DdvHDTO97037TiD72ZkVU+GjQrlelmw7hDdn52Frwcm42n73+h4Y1KFR1V2L8h4aBrvTKzTmMMCrJ94j6PD4VIzRJUVzKkVARo3owp2jlW/t7si5nga9Mg83TFgKIPg64NkNPAam3TQmwEX5E9GHRLSfiNaGWE9E9AYR5RHRGiIyP3pmMSXlquVv3fMxlnS/x0/zqdjUsn51PD38rJh+89a1zp8uffSN1Uwa09vwuJ16Th7XVewqKi3HpKU7bVc2N5/XCs3rRU5vXSXah6OQwW5Dfvu2qy9FsbW4VPICMBGBSl2fhFh/CYB2yl8vAO8o/4VFfTVuWJPfQJ8oROPjH9k9E+NGdgYADOvSBHd9wafteO8vffSV1TStk4amddKQlpIdVxF7QzgqlzX5R7Em//fIGxpgRve0ykjHTX1a4Zmf1ofdLpLbJ94Hwl8+rZq8kK/lz2ebSAii+7mVcZxHRFlhNhkO4BOlbu9vRFSHiJowxvaE+Y2jDO/aDKdLyjGye3zZDaMh3IXLGMOhk8Vco0xUIsVvTxidjYE615DTxJuuOlq6t6iDa3q2CFp+YXt+/RCrW2HXoUI01xWV4SNHfHxyS0/0a5eB40WlkZV/hFZ4jf3EOmCs5f5BZ+BVZb4EIG4KD6uwy+ffDMAuzfd8ZZmwJCQQrunZwtJC1NpC33q+WLoTPZ6diY17j3Ntk7HwA7zbxw0TTvEDwNJt1sa1f3vnebgiu7mlbcSiWxblHUC/F2fj+5V8qpXFy1d/Obfi83ltM0AU3UQo7bEazvTmpGfNGAX6KD9VzHBv+5Gs9knLdkXYAth+sBAlZeVYmHegItmbE9il/I36LOisEdEYIsohopyCgvji2OPl7eu646d77A3tmr85tPKftylw/FsL+BTA0BLK7dOjZV3ubemJx7jK3XMs7loFvLHrlT1Xeeiv2nWE+771xxDOGOjZqjK6KZZjv/HDpVi96wibC/7LAAAgAElEQVSen5KL3s/9GrQ+Wit7GefJbMM6V+Yr0vre7xjQpmIwe/r9/THnoQGGv+/XLgOtG6SblmP/8SJc98ESXD9hScWywuLSKvWfrcYu5Z8PQGtWZQIIqmrMGBvPGMtmjGU3aGBvLp2hnZugU7Pg0C6nmLbOutqvRjf7iscG4/PbQg/DrH7iItzQu6VlMoVj3zFriqD/eHdfzHzgfEv2bUQ8NqoVg4N6ORpY4FoEgCcmr8N787YaWvnRKv8r3l3MVaamdSqjuLRRbv8Y0r7ie53qKcjKMFbwDWtVw6wHB5iWQx3zWPfHMTw3JRcA0PHxabj7i5Wm9x0tvAZ8IzEZwN1ENAmBgd6jTvr7B7Zv6FTTjtOwVqphFs966eFD+GqnJfMb+IyRWPzDnZvVjjp7Yt30ZGTW5e9T58lHC7dz3Z8+rPfhS9pjSJQT12J9EIUb1NWf01emb8SRUyV4eninimVT1+6NrcEo0BvW9w5sh+0H4wub5sX4eVvRNTMw6XTqOv7HHAouyp+I/gtgAIAMIsoH8ASAZABgjL0LYAqAoQDyABQCuJlHu/GQ889BqFnNrmeeeYiAlTsPc9tfalJilZtyzZMXRf1brdUUL9qBwB9W7cZ/ZuVh+n39w1YTi8WvG8t8NbvH9/TtMcYcmWOhbfEv57eJuP3Em8/BZ7/tjLmdcM/sxVsOVvn+xqw8AMBtfVujRf3AA9kKV5/+jeP+wWdwbyMa9NfCXV/Yn+ufV7TPNRHWMwB38WgrGvYcPYUjhcZRABkWveJaBWPAiHf4FS4BAtbfoA4NcWV285iyGP6pS1McPFGMpyNEeoRDO8B176RVAAJT9hPCeJS/yok8iFaBKEHUBugtTMaEFreCAWc2xIAzY39bDufaGfOpsWK/78uV+PbO82JuK1rcMsPcDjw5w/fc52c5LQJXeFmoN5+XVfH5g9Hn4KKzYstTk5BAuKVvK1MyvD9/Gzbtiy2CSVsDOBJW61Izlvr4eVurfNcqx+LScny6eHuFchKlyLcZ4tGzVr8J8SjKw4Nw0WunOKT8jgZPKv9QPD+is9MihKXzE9MwceG2Kst43gtWFW2JFX0Ek9H9WFRahke/+z3mHEhWw7MLtYf9zpwteOyHdZaHdtr5UMndEzl1QyzEEgnz4U3ZhsvLyxl+vLsvHnDI3aPyYJiU3h0en2qLDO5xfnPAaBKPSBwvKsWTP67HTedVWtdb4szhY4SdCdzCEeT7BsP+46dRr3pKxQS0qWv34vMlO3GyKLa0FtEq5+t6tUAzhwawVbT9sPfYKQDBtYOtZER3oafaBHHzxGVRb1s7zdidWVbO0DmztmHSNr/hK8tfZEJZZC9N41emTpQEbvojPVlUhp7/+hWPT16HrQUnwBirUIzfrwqKCA5LNEfYqFYq/nV557CDzHagdfucLgko/WrJ1tySQzsHXHwPDD4TTw3vhFrVkvDSqK6WtGUV4ebF6AlVo0IUt48ISOUfBx/dfI7TIsSFIIZ/kOWvWvdfLNmJC/89t0rBlliJ5gGXHqGQjxOoft5qydakW35pVFdsHzcMfdtlYFSPTKx58mJh3gStINSx8coO+/ilHbnsx0mk8o+DCzSRD2P6t+ZSDMUOg8TOil3hGD9vC1ZrZq7uOFhYZX20cfrxYqYfePag9pyrWUtTLMoiK8q5/3zJDkz53fopPqEtfz77Nxv4IALimUAWoZZi5E3L+tVRNz0FBcfjH5gsLSvH23O2cJTKGKfdHCqr84/iiyWVcePaKe5mieYI7a4NEAqt28f6KCWLG4iSR78zzPpeAS8xQx0vz3N/Q++W+PS3+IoqRcKOOSC+sfxFju/9ZkU+XpmxKfKGJrmoozgJ276MJXY/BkJZfHMeGlCRn1+U7I1aKVSxyxnDL7/vwRu/bubalijKPxK8zkxIy5+jHujQpBa3femZu8n63Ga+sfytykvTKkQOkFhQB/usZMMzQyzzJwtFCCWXlZGuUbDmm0lJTDBdYIYxhk37jmPB5gNQBS9nDHd8zn+2p5Vun37tMmIajLWDUMd7k2aui1msHDw+ZEO2T89Z/oXFxqGBVuRFB4A+bTIs2S9Pfry7rz8UP8IPavNQgOqreBqHOrg/r9mDy95cUGXGtFUF7q00/LkWVOG0M/3QSa1qSVjwjwvQu3V9LvsHgDILM3DO2Wi95e9B5W/P7DgtZq7XNfn8U/bq4ZGTx07M9Gc4BZ9ZNw1/7tcq5ASgaBjVIxPX9GyOhy4yP0lo7Le/a976AgdtlXvSSsufR+1b3uj95YM6NuKexM/K+kKTV8cW4hwPnlP+osxijZbL3lxombWnwvvGn3pfP7w0qgvXffIi3LESER4d1hFtG9aMe//VkhPx/IguqKWZRJRVP36londFWaX8rbwt7C6lGA12RDeVldtbWpQ3nlP+ooS0xcLpEmvfVnj3SfvGtXBFdnNc3k28GaJORDSZicpQz42q9K1T/hZa/hxFXrnzCGZtMF/Lgkf4dSRsLivNHc8pf7LxiNwyScaqPnn1qrOR+/QQPHxJe+77jldXOXFKzDSpXkNqBJLIUWmhMOv2+XjR9irfb5mYY2p/gD3RTaJEjcWL55S/XZb/N3f0wfy/X2BLW2axsk/SUhKjyglvF3adf+19b6ZJ1U2pRsu4Mf3AIJM1n5+YvI6TJJUkEFn+ABCp8l88eFD529NOj5Z1HatsFSsueUGpQrw60C7l361FnYrP5tw+Vb+7zfJf9fhg3Nq3Ff4xhP/bnxmIELIOLy/OP8PeUrO84aL8iWgIEW0kojwiGmuw/iYiKiCiVcrfbTzaNcIZn7/YNyzZVnbceex60LWsn453rw9MGjPTpH6MQpTZx5Ho2zYQ4lynegqICHWrR18UyA4IVKU0qVUTHNc+dbEl+7UD05O8iCgRwFsABiNQqH0ZEU1mjOnLPX3JGLvbbHuR5bG6Bf5YnWPdjX0Sv8/fiQHf+H+rHzfabyJNiJ18emtPbq4vI9b9YS6/U3IiVbkWhnRqYlYkQ6yKLjwnq64l+9XCw/LvCSCPMbaVMVYMYBKA4Rz2GxdujPaxGj91iROD8OHerNIiTK7TKw9eOZ6yW1qrPIioylsL77fLYW8siPu3Y/q3Rv0aqbZc91bNcUhKsN4jz6OFZgC0iVrylWV6RhLRGiL6moiac2jXEL3yf++GHnj96rOtag4A8MjQDlz3x/NN4MVRXZCa5I/ZvYBToZ6h1111TvhLXZRke2YRaaKXGoJshyHowvH5Cngof6Me1nfJjwCyGGNdAMwE8LHhjojGEFEOEeUUFMQ3vVl7L9WqloSLz2qM4WdbG48+onsm16pQb83O47KfhjVTcWW2Zc9ZIRFNl3ZoEn5CmdWTEifefA4Wjr3Q0jYAeyuQRSJZye1gh+Wvvmm2aWA+x5fd8FD++QC0GiYTQJW5yYyxg4wx1Zn5PoAeRjtijI1njGUzxrIbNIhvJN2palXT7+8fd+in3np4eTqfDJ9udfcwxlAS59x5O91+6nkL1+YATe0HI6x2U1VPSbKlXKXVExVjITVJUf42BDpUS07ERzefg09u7cV1v3a8SfFQ/ssAtCOiVkSUAuBqAJO1GxCRdrTlMgC5HNqNiJ0PgvTUJNTVRBeIgJvHPx4KU+A6HEbHrJYw5I2a0veys5vGvQ+rTpHdpz7eh7UVqJa/XW+BF5zZEPUFu/ejwbTyZ4yVArgbwDQElPpXjLF1RPQ0EV2mbPZXIlpHRKsB/BXATWbbFRHRVK2blX+86G/4rpm1K/L48yYrIx1bnhuKkd0zQ24T6QxYdYrs9kVf16uFvQ2GITkx0Kmi1KwWFS75/BljUwBM0S17XPP5YQAP82grFtxy7q26T20IGBCOVjrfa2ICWaoEEhPIstKLbqJO9RQM6tAIM3PN5+UxS93qASvczvEft+gaLfKq5YhoF4AfLf+/9K+aasKOPkhOCtOGQ6fAh6ceANCrVb2KCCr1of/PYXyj8byCpyt52X39izaT1o/KXz+AakcfhLP8I10Tbg4VFBF9f24fN8yWdkW796NBWv4cEUHXapNsNantriIuVmCH60v7wBHhGgCABy86E/XSUyKGmnoNpzJtinLeY8HTyt8tAz48r1et4fvSFV357ThK/s9E5IsKz9vXjvKV2utM/6YR6RK0Slf1bl0fKx4bjJrVxMq5YzVuT7OsYsdheFr5+xGt8qmdZv+N/9rV3WxvMxwv2lxxzB3mhndxSvW78bx7Wvnb7vMX4ArQyiDabFe7GdShERrWtMf19beLz8SkMb2DroFIp8DqpH5+QU2x7VRSVLd4GbR4Wvm7sTCGWbSWvxsHoXgworuazsO+83/XBW3Ru3X9oNf1SErBf1eoNZzbuj4A+TCNBU9H+xQW2TvlPF5ly3Uqt0YEO42Rfw7rgDMaiTG4eEmnJvh2xW6nxZDYiHqtOzbg60ir5vC05V9sc4XleC+812Zu5iaD9iK0M9Tztn6t0V+wykYiGIERZ/jaIoU93HxelmNtq4ZXuUP55Vzo9fG28reb1KQEjD63Jf53+7mOyVA18sQxMUxhVmmriczObl4nwpb8uX/wGUHLrgqTWVWA5xM3zmubYVtcfSi81J9W40nlf2H78JkUrYKI8NTwTo4oHSPcOAjFg45Na2HG/f1x1wVtbW9b3yYR8PDQ0PVtRXg78QLqpe6Uz5/3vWbHUXhS+X940zloXKsabjy3pSPtO6ly7xxQmd7ArZY/D9o1qilEoRQCoU710BkfRSqC4mbUM+2VOH878OyA72+PDHSsbSctbjXNsNNySCS2olzrToV6AsDI7pk4eLIIczbGV4jKbjxp+TuNVLmSChya4es3RLD8/31lV/RrJ1bQQzik8rcApw1up9xdvPCTK4T3kY7qkYk61f2V0gEAMmoEXGvDu1pbsjUSiS6y/Dzr9nESp90tT112Fp667CzH2v9zv1Z4f/42x9p3E7wN1ZcdyOckArXSkpH79BBUS3bWnk10UW0HLpIS0RAi2khEeUQ01mB9KhF9qaxfQkRZPNp1A9osm3ZBZG0Bk0g8OqyjY22LQFdttFcE5X6quNRaYXwCY0BaSqLjhleirv27HYg4ixbTyp+IEgG8BeASAB0BXENE+rv/VgCHGWNtAbwK4AWz7bqBQR0awi5DoHEtmb5ZFH6467yKpHqRXFgni8UpfO5mRHEV6u/3zpm1nREkCniopp4A8hhjWxljxQAmARiu22Y4gI+Vz18DGEhOP6ItZukjA/HWdd1tG9D78KZzsPqJi+xpTBI16vkf0Y2/LzqjRir3ffLgmzvsn+QoysC5flZ9Urzhxi5J6dwMwC7N93xlmeE2SsH3owDqc2hbWBrWqobUJOtzyaukJCU4ksLZChirHMBzK3rT5pxW9bi3oe2jd6/vjr8POZN7G/HQo2U928+fKMo/STPi27t1vaDKciLBY8DX6Oj0pyKabUBEYwCMAYAWLVqYl8xHiPYeVT0lEYUmXBpeKUFppU4qOF5U8XlIpyYWthQ7dsfbC6L7q1y3t/ZtLbTy52H55wPQJi/JBPBHqG2IKAlAbQCH9DtijI1njGUzxrIbNHBPvKwIiHaJVU8x99bj9pma6vmwMt3AwZPFlu3bLGU2a39RUjk3qZ1W5bt+AFgkeCj/ZQDaEVErIkoBcDWAybptJgMYrXweBWAWE+VseQTRhlDSTCr/UienanIgOyvg5klJck/oH0/KbT5/ovRzz1b1qhg+nrb8FR/+3QCmAcgF8BVjbB0RPU1ElymbTQBQn4jyADwAICgcVOItXr+6G843keLZbsuRN29c3Q1T/trPdzV0Vex8c7tzQBsM6yyO26u3UliGUHUMQDS4TPJijE0BMEW37HHN59MAruDRltuw6xYQ7RLr3qIuPr6lJxZtOYBbJ+bgVEn0/v/Pl+w07TZymrSURHRsWivyhh7Fzip69w8+A0kCTq4iAlrWT3dajJCI12OSuBDM61NBnzYZ6No89ljnSG6fWtXk5HSRZ/PaWVRFtEtf69HOqJEaV40DO+YtSOXvEbxWr7e4NLz2MBrj+OzWXlaJIyTJArsU7LT8RRvvaqRMuExPFdtAkcrfIwh2/VvK08PPMjzehrXEnPRkFSkCujpU3B6tZYbH/9QRL1/RFb0smNvBE3GvHo/g43tAYjHJAiv/Tk3tS2sgmt1TPSUJo3pkCvdGokfcq0ciiZFUQcL97CJZOd50AQfHP721p21pHgTXscLir7vFQ7SoV73Kd7/dANrDTSDgzWu7CR1ZYQXJiYTZDw3AvL9f4LQoQdSpnoIeLeth+T8HWd6W6Ba2qEjlbzl8/T6qn1fvT/TTDaA/0lppybi0S1NHZHGSlMQEtMpIR31BE7wBEFo2vyOVv8uoWS0J8/52AZ69vFOV5f5R/fDfa04IZDpo96APy+3bNiPs9naMFUrl7zKIgBb1qwdlDK2WLJ7f10oeu9TfBWMAoFkdWcPBLfRoWbfKdxHqD0jlbzH8n+DGVm96qr+U/4jumVjx2GCnxXCUtg1rOi2CJEr0qcxEiAKUyt9lhPJ4iBzzzRu1C9RJTn4b6JW4HxGUv9hT0CRR46cBX5Wa1ZLxwY3Z6K57pRYZIjFufIm96E+5dPv4gGqcY7CNVPy4EZ25tuEmBnVshHrp7qn65b9HtDXcN6id0yLEREZ61agnEZLWSuVvMc8O74R7LmzLbX9GBv7VPWXVM4m/uG/QGU6LEBO1qydj/dMXVy6Qyt/71E1PwYMX8aut6rUEbvHgZg+XH91zkbi0S3y5+K/okclZEmupnlLpZRch95FU/i5D6g53Y/b0bXhmCBc5RCIjzolgL4zsgk3PXsJZGnuIpPrteDSYUv5EVI+IZhDRZuW/4cgbEZUR0SrlT1/iUeJxruvVEgDwl/6t4/p9qwzvRPOYfXi7cT6HVf75hAQSpnxjrIhQxdZsz40F8CtjrB2AXxG6POMpxtjZyt9lIbbxBeEKO7x7ffeIv3ej4f+nrk2xfdwwPDy0Q8WySWN6R/17/QQZv7u+frqnL765o4/TYkTNvQPbYcLobLQO8RD349tspAFfOx4OZpX/cAAfK58/BvB/JvfnaS7p1Djs+rOiSIOr9Rm3rF/dVJ1cJ0hSClqrdU6jQQAjiRs8HlydmtUOeiCKDBFhYIdGIS0XPz7MRbikzcb5N2KM7QEAxtgeImoYYrtqRJQDoBTAOMbY90YbEdEYAGMAoEULb0WwbHluaMRLPNZBoLl/Ey+bYySm3tcPOdsPOy2G7Qw5qzE+XbwDgzo2whu/bo5rH9f2cvc90bhWNWwtOBm0XISYd7sY3LEROjerjV9z94XdTgifPxHNJKK1Bn/DY2inBWMsG8C1AF4jojZGGzHGxjPGshlj2Q0auMuijURiAiFBsXpV61dPuFfBuy8IhIu6/RW5bcOapkNTu2TaVyiEF3XTUzDl3n5olVE98sYheO5yd8/neOva7njcICdTNJZ//zMaROUWFZ33b8zGXwe2izzgK0JiN8bYIMZYJ4O/HwDsI6ImAKD83x9iH38o/7cCmAOgG7cjcCEJIZQ/YwxvX2d8gasDW25X/vGgtQw3PDMEnZq5T/mr+NHFoVI3PQWXd2tW8f3C9gFHQTTXdPvGNTGkU3whoSIS6S3/ht4tLZfBrM9/MoDRyufRAH7Qb0BEdYkoVfmcAeA8AOtNtutqWtYztv7KGVA9xIzgUhGmBDqF5tDdGO0iqSRBo+ljGdT02iOzvDz8+pE2zGEwq/zHARhMRJsBDFa+g4iyiegDZZsOAHKIaDWA2Qj4/H2t/D//cy/D5YyF9n6qN4ofLUcvPfb8+OZWBc3xs+BFIfHSNQCIcTymBnwZYwcBDDRYngPgNuXzIgDudlZypmFN4zzs5QxBV0XHJrXQs1U9/KlrU/xnVp5UHhJXY+Tx9OM17YU4fwlHaqUlBfkC61RPxpOXnYWs+unoklkbz/s4iZuXuLRLE09NXouWqm6f4PXDOnvHry86UvkLwG19W+GXe/uhSe20kKP8KUkJmHx3X/RpE778m1fQRkSJYCXxQp2nwQBk1Y8/8setJIQx8/u0qY9b+mbZJ4yDiHBJS+XvEGM0qQ5SkhLQoUktAGIkfHKaz27thdkPDaj47qUe0aq+cIrQq4Q75MClH7lPRrksoZsRItznspiLQzwytANqpyXjpWkbqyz3c1CPStuGNdC4duW4iAD3CX+YPzN8VnH7KP+1/RCpSzY+OwTJCe63WUW4pN3fiy7GyJ2hX+YH/aDPVOnlY1aPjYEZDn56He0xV0awBSAKbfcPUNKYpCYlhpwn4yZ6t67ntAhS+TvJsC5NAaDKxBcRLAK70cfuu//WDs2gDo1webdmeOzSjr50+6jHbKS/WYi3obl/G4A+bb011vXEn87CzAfON1zXrmENW2SQyt9BWmWkY/u4YWjXqGbFMrtOvAhc16sFXrmyK4BApspQeOmBWC05Ea9edTaa1E6DB7wXMZOQQLjrgjb44S7N+SbDj5pl3ntIJicmoE2DqtFe6ux+u6536fMXDO2DwOv8S5OrpnldTeSL7l73UrSPFj/6/AHgbxe3N1xOZOzy80s3NaoVKGpj12CwD20P8Vn52GCnRXAU1dIbfW4gv4k3VT+Q6BetFgIjHedFKz8U+oc/VQ4I2YJU/gJSNz2l4nOHxrUclMRZsrOcHxSzkr8ObIf2jaN705v1oLF/2M08P6IzRnRvVlHbIeDzD97OL8/IBM0cEFvas6kdSZz84xLjV2QvE5ThyKOmf9uGNTD1vv4V37UD/3paN/DeWFDzetXxypVnIyVRqiHAeBDc0vbsbU4SK8k+uTG0tVjLlMkO2rBIP/DCyC5Oi+AooX3+/jD9Vcs/VL0P3sgBX4kQpGlSWZeWBWcwXfHYYCFmRVpJSlICruvVAqvzj2Dt7mMVyx8Z6o+3P8aMff7+UP2VJNqk/P1hVkpcQQulzoFeyTMG1EtPQUaNVCfEsoXMumkAAhFQP93Tr8q6Hi29Pfahxa8+/49v6VnxxmvX275U/hJhGNyxEQCgZrVkAP646QFg4dgLMeXefiHXJyf6oyOIKl0fRJXXQ520lHA/8wTnn9EApUqFlySbzrd0+0iE4ZGhHTCmf2vUU6Kd1IHANI9X72pWJy3kuquym6NjE29HfKkKPyUpAW0b1sD/nd0Utw9og/Y+iHRrUa86dh4qBFDp7nSFz5+IrgDwJALVunoqRVyMthsC4HUAiQA+YIyNM9OuxJskJhAa1apM6HZh+4Z4YPAZGH1ulnNCOcwLo7w/CNyrVT3cdUEbjO6ThcQEwmtX+6fE94/39MWxUyUAKgMd7PL5m7X81wIYAeC9UBsQUSKAtxAo85gPYBkRTfZ7KUdJZBISCH8d2M5pMRxDnfHpdRISKOSsX69TOy0ZtdMCbk51pKtGqj0OGbNlHHOBiKFYPQHkMca2KttOAjAcPi/iHonp9/f3ZipjSVSsfepi217/JWLQu3V93DmgDW7p28qW9ux4xDQDsEvzPR+AYQVzIhoDYAwAtGjRwnrJBOYMH+X4kQRjl/UnEYfEBMLfh9j3BhTxCiOimQAaG6x6lDH2QxRtGJkvhjYtY2w8gPEAkJ2dLe1eiUQisYiIyp8xNshkG/kAmmu+ZwL4w+Q+JRKJRGICO+L8lwFoR0StiCgFwNUAJtvQrkQikUhCYEr5E9HlRJQP4FwAPxPRNGV5UyKaAgCMsVIAdwOYBiAXwFeMsXXmxJZIJBKJGcxG+3wH4DuD5X8AGKr5PgXAFDNtSSQSiYQfMr2DRCKR+BCp/CUSicSHSOUvkUgkPoRELY5NRAUAdpjYRQaAA5zEsQLR5QPEl1F0+QApIw9Elw8QS8aWjLEGkTYSVvmbhYhyGGPZTssRCtHlA8SXUXT5ACkjD0SXD3CHjHqk20cikUh8iFT+EolE4kO8rPzHOy1ABESXDxBfRtHlA6SMPBBdPsAdMlbBsz5/iUQikYTGy5a/RCKRSELgOeVPREOIaCMR5RHRWAflaE5Es4kol4jWEdG9yvJ6RDSDiDYr/+sqy4mI3lDkXkNE3W2SM5GIVhLRT8r3VkS0RJHvSyUZH4goVfmep6zPskm+OkT0NRFtUPryXJH6kIjuV87vWiL6LxFVc7oPiehDItpPRGs1y2LuMyIarWy/mYhG2yDjS8p5XkNE3xFRHc26hxUZNxLRxZrlltzvRvJp1j1ERIyIMpTvjvShaRhjnvlDoEbwFgCtAaQAWA2go0OyNAHQXflcE8AmAB0BvAhgrLJ8LIAXlM9DAfyCQP2D3gCW2CTnAwC+APCT8v0rAFcrn98FcIfy+U4A7yqfrwbwpU3yfQzgNuVzCoA6ovQhAoWKtgFI0/TdTU73IYD+ALoDWKtZFlOfAagHYKvyv67yua7FMl4EIEn5/IJGxo7KvZwKoJVyjydaeb8byacsb45AksodADKc7EPTx+i0AFwPJpBddJrm+8MAHnZaLkWWHxCoY7wRQBNlWRMAG5XP7wG4RrN9xXYWypQJ4FcAFwL4Sbl4D2huwIr+VC74c5XPScp2ZLF8tRTlSrrlQvQhKqvU1VP65CcAF4vQhwCydIo1pj4DcA2A9zTLq2xnhYy6dZcD+Fz5XOU+VvvR6vvdSD4AXwPoCmA7KpW/Y31o5s9rbh+jkpHNHJKlAuX1vhuAJQAaMcb2AIDyv6GymROyvwbg7wDKle/1ARxhgTTcehkq5FPWH1W2t5LWAAoAfKS4pj4gonQI0oeMsd0AXgawE8AeBPpkOcTqQ5VY+8zpe+kWBKxphJHFVhmJ6DIAuxljq3WrhJAvVrym/KMuGWkXRFQDwDcA7mOMHQu3qcEyy2QnoksB7GeMLY9SBif6NgmBV+93GGPdAJxEwGURCrv7sC6A4Qi4IpoCSAdwSRgZhLs+EVomx2QlokcBlAL4XF0UQhbbZCSi6gAeBTo5XqgAAAIhSURBVPC40eoQcoh4vivwmvIXqmQkESUjoPg/Z4x9qyzeR0RNlPVNAOxXltst+3kALiOi7QAmIeD6eQ1AHSJS6zxoZaiQT1lfG8AhC+VT28xnjC1Rvn+NwMNAlD4cBGAbY6yAMVYC4FsAfSBWH6rE2meO3EvKoOilAK5jiq9EEBnbIPCQX63cM5kAVhBRY0HkixmvKX9hSkYSEQGYACCXMfaKZtVkAOqo/2gExgLU5TcqkQO9ARxVX9OtgDH2MGMskzGWhUA/zWKMXQdgNoBRIeRT5R6lbG+pFcMY2wtgFxGdqSwaCGA9BOlDBNw9vYmounK+VfmE6UMNsfbZNAAXEVFd5Q3nImWZZRDREAD/AHAZY6xQJ/vVSrRUKwDtACyFjfc7Y+x3xlhDxliWcs/kIxDQsRcC9WFMOD3owPsPgZH3TQhEATzqoBx9EXjFWwNglfI3FAEf768ANiv/6ynbE4C3FLl/B5Bto6wDUBnt0xqBGysPwP8ApCrLqynf85T1rW2S7WwAOUo/fo9A1IQwfQjgKQAbAKwF8CkCESmO9iGA/yIwBlGCgJK6NZ4+Q8Dvnqf83WyDjHkI+MjV++VdzfaPKjJuBHCJZrkl97uRfLr121E54OtIH5r9kzN8JRKJxId4ze0jkUgkkiiQyl8ikUh8iFT+EolE4kOk8pdIJBIfIpW/RCKR+BCp/CUSicSHSOUvkUgkPkQqf4lEIvEh/w/C5YlIlMTOCQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "t = np.arange(0,1500)\n", + "x = np.sin(0.02*t)+ np.random.rand(1500) * 2\n", + "plt.plot(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
جدا کردن داده آموزشی و آزمون
\n", + "\n", + "
\n", + "1000 مقدار اول برای آموزش و 500 تای آخر برای تست در نظر گرفته شده است.
" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "train,test = x[0:1000], x[1000:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
آماده سازی داده و ایجاد ورودی و label
\n", + "\n", + "
\n", + "در شبکه های RNN برای ورودی Step در نظر میگیریم.\n", + "برای شبکه های RNN مهمه که ورودی به شکل دنباله ای از داده باشد. در اینجا step طول دنباله ی ورودی را تعیین میکند. برای مثال اگر x را به عنوان داده خام داشته باشیم:\n", + "
\n", + "
\n", + "\n", + " x = [1,2,3,4,5,6,7,8,9,10]\n", + " \n", + " for step=1, x input and its y prediction becomes:\n", + " \n", + " x y\n", + " 1 2\n", + " 2 3\n", + " 3 4\n", + " 4 5\n", + " ..\n", + " 9 10\n", + " \n", + " for step=3, x and y contain:\n", + " \n", + " x y\n", + " 1,2,3 4\n", + " 2,3,4 5\n", + " 3,4,5 6\n", + " 4,5,6 7\n", + " ...\n", + " 7,8,9 10\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "step = 10\n", + "\n", + "# convert into dataset data and label\n", + "def convertToDataset(data, step):\n", + " #data = np.append(data,np.repeat(data[-1,],step))\n", + " X, Y =[], []\n", + " for i in range(len(data)-step):\n", + " d=i+step \n", + " X.append(data[i:d,])\n", + " Y.append(data[d,])\n", + " return np.array(X), np.array(Y)\n", + "\n", + "trainX,trainY =convertToDataset(train,step)\n", + "testX,testY =convertToDataset(test,step)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(990, 10)\n", + "(490, 10)\n" + ] + } + ], + "source": [ + "print(trainX.shape)\n", + "print(testX.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
تغییر ابعاد داده برای ورودی دادن به شبکه
\n", + "\n", + "
\n", + "ورودی یک شبکه RNN در Keras به صورت زیر است:\n", + "
\n", + "\n", + " (NumberOfSequences, TimeSteps, ElementsPerStep)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n", + "testX = np.reshape(testX, (testX.shape[0],testX.shape[1], 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(990, 10, 1)\n", + "(490, 10, 1)\n" + ] + } + ], + "source": [ + "print(trainX.shape)\n", + "print(testX.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
معماری شبکه و compile آن
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(SimpleRNN(units=64, activation=\"tanh\"))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='rmsprop')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "به نظر شما model.summary() را می‌توانیم صدا بزنیم؟ چرا؟\n", + "
\n", + "model.input\n", + "چه چیزی بر می‌گرداند!\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
آموزش مدل
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + " - 7s - loss: 0.7639\n", + "Epoch 2/100\n", + " - 1s - loss: 0.4325\n", + "Epoch 3/100\n", + " - 1s - loss: 0.4140\n", + "Epoch 4/100\n", + " - 1s - loss: 0.4124\n", + "Epoch 5/100\n", + " - 1s - loss: 0.4048\n", + "Epoch 6/100\n", + " - 1s - loss: 0.4024\n", + "Epoch 7/100\n", + " - 1s - loss: 0.3989\n", + "Epoch 8/100\n", + " - 1s - loss: 0.3947\n", + "Epoch 9/100\n", + " - 1s - loss: 0.3917\n", + "Epoch 10/100\n", + " - 1s - loss: 0.3912\n", + "Epoch 11/100\n", + " - 1s - loss: 0.3889\n", + "Epoch 12/100\n", + " - 1s - loss: 0.3908\n", + "Epoch 13/100\n", + " - 1s - loss: 0.3847\n", + "Epoch 14/100\n", + " - 1s - loss: 0.3862\n", + "Epoch 15/100\n", + " - 1s - loss: 0.3829\n", + "Epoch 16/100\n", + " - 1s - loss: 0.3755\n", + "Epoch 17/100\n", + " - 1s - loss: 0.3829\n", + "Epoch 18/100\n", + " - 1s - loss: 0.3742\n", + "Epoch 19/100\n", + " - 1s - loss: 0.3674\n", + "Epoch 20/100\n", + " - 1s - loss: 0.3691\n", + "Epoch 21/100\n", + " - 1s - loss: 0.3724\n", + "Epoch 22/100\n", + " - 1s - loss: 0.3703\n", + "Epoch 23/100\n", + " - 1s - loss: 0.3643\n", + "Epoch 24/100\n", + " - 1s - loss: 0.3625\n", + "Epoch 25/100\n", + " - 1s - loss: 0.3631\n", + "Epoch 26/100\n", + " - 1s - loss: 0.3631\n", + "Epoch 27/100\n", + " - 1s - loss: 0.3628\n", + "Epoch 28/100\n", + " - 1s - loss: 0.3552\n", + "Epoch 29/100\n", + " - 1s - loss: 0.3560\n", + "Epoch 30/100\n", + " - 1s - loss: 0.3585\n", + "Epoch 31/100\n", + " - 1s - loss: 0.3478\n", + "Epoch 32/100\n", + " - 1s - loss: 0.3495\n", + "Epoch 33/100\n", + " - 1s - loss: 0.3499\n", + "Epoch 34/100\n", + " - 1s - loss: 0.3411\n", + "Epoch 35/100\n", + " - 1s - loss: 0.3415\n", + "Epoch 36/100\n", + " - 1s - loss: 0.3381\n", + "Epoch 37/100\n", + " - 1s - loss: 0.3396\n", + "Epoch 38/100\n", + " - 1s - loss: 0.3311\n", + "Epoch 39/100\n", + " - 1s - loss: 0.3328\n", + "Epoch 40/100\n", + " - 1s - loss: 0.3291\n", + "Epoch 41/100\n", + " - 1s - loss: 0.3262\n", + "Epoch 42/100\n", + " - 1s - loss: 0.3210\n", + "Epoch 43/100\n", + " - 1s - loss: 0.3249\n", + "Epoch 44/100\n", + " - 1s - loss: 0.3210\n", + "Epoch 45/100\n", + " - 1s - loss: 0.3164\n", + "Epoch 46/100\n", + " - 1s - loss: 0.3159\n", + "Epoch 47/100\n", + " - 1s - loss: 0.3071\n", + "Epoch 48/100\n", + " - 1s - loss: 0.3031\n", + "Epoch 49/100\n", + " - 1s - loss: 0.3018\n", + "Epoch 50/100\n", + " - 1s - loss: 0.2984\n", + "Epoch 51/100\n", + " - 1s - loss: 0.3010\n", + "Epoch 52/100\n", + " - 1s - loss: 0.2901\n", + "Epoch 53/100\n", + " - 1s - loss: 0.2881\n", + "Epoch 54/100\n", + " - 1s - loss: 0.2847\n", + "Epoch 55/100\n", + " - 1s - loss: 0.2789\n", + "Epoch 56/100\n", + " - 1s - loss: 0.2759\n", + "Epoch 57/100\n", + " - 1s - loss: 0.2741\n", + "Epoch 58/100\n", + " - 1s - loss: 0.2668\n", + "Epoch 59/100\n", + " - 1s - loss: 0.2603\n", + "Epoch 60/100\n", + " - 1s - loss: 0.2589\n", + "Epoch 61/100\n", + " - 1s - loss: 0.2579\n", + "Epoch 62/100\n", + " - 1s - loss: 0.2502\n", + "Epoch 63/100\n", + " - 1s - loss: 0.2473\n", + "Epoch 64/100\n", + " - 1s - loss: 0.2426\n", + "Epoch 65/100\n", + " - 1s - loss: 0.2319\n", + "Epoch 66/100\n", + " - 1s - loss: 0.2306\n", + "Epoch 67/100\n", + " - 1s - loss: 0.2281\n", + "Epoch 68/100\n", + " - 1s - loss: 0.2242\n", + "Epoch 69/100\n", + " - 1s - loss: 0.2205\n", + "Epoch 70/100\n", + " - 1s - loss: 0.2181\n", + "Epoch 71/100\n", + " - 1s - loss: 0.2095\n", + "Epoch 72/100\n", + " - 1s - loss: 0.2083\n", + "Epoch 73/100\n", + " - 1s - loss: 0.2023\n", + "Epoch 74/100\n", + " - 1s - loss: 0.1980\n", + "Epoch 75/100\n", + " - 1s - loss: 0.1979\n", + "Epoch 76/100\n", + " - 1s - loss: 0.1899\n", + "Epoch 77/100\n", + " - 1s - loss: 0.1857\n", + "Epoch 78/100\n", + " - 1s - loss: 0.1832\n", + "Epoch 79/100\n", + " - 1s - loss: 0.1764\n", + "Epoch 80/100\n", + " - 1s - loss: 0.1780\n", + "Epoch 81/100\n", + " - 1s - loss: 0.1701\n", + "Epoch 82/100\n", + " - 1s - loss: 0.1676\n", + "Epoch 83/100\n", + " - 1s - loss: 0.1635\n", + "Epoch 84/100\n", + " - 1s - loss: 0.1614\n", + "Epoch 85/100\n", + " - 1s - loss: 0.1601\n", + "Epoch 86/100\n", + " - 1s - loss: 0.1538\n", + "Epoch 87/100\n", + " - 1s - loss: 0.1492\n", + "Epoch 88/100\n", + " - 1s - loss: 0.1477\n", + "Epoch 89/100\n", + " - 1s - loss: 0.1400\n", + "Epoch 90/100\n", + " - 1s - loss: 0.1365\n", + "Epoch 91/100\n", + " - 1s - loss: 0.1354\n", + "Epoch 92/100\n", + " - 1s - loss: 0.1334\n", + "Epoch 93/100\n", + " - 1s - loss: 0.1303\n", + "Epoch 94/100\n", + " - 1s - loss: 0.1269\n", + "Epoch 95/100\n", + " - 1s - loss: 0.1231\n", + "Epoch 96/100\n", + " - 1s - loss: 0.1245\n", + "Epoch 97/100\n", + " - 1s - loss: 0.1151\n", + "Epoch 98/100\n", + " - 1s - loss: 0.1133\n", + "Epoch 99/100\n", + " - 1s - loss: 0.1130\n", + "Epoch 100/100\n", + " - 1s - loss: 0.1077\n" + ] + } + ], + "source": [ + "history = model.fit(trainX,trainY, epochs=100, batch_size=16, verbose=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "حالا model.summary() را می‌توانیم صدا بزنیم؟ چرا؟\n", + "
\n", + " الان\n", + "model.input\n", + "چه چیزی بر می‌گرداند؟\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW99/HPLycnCQkhgRAIJEACRCDMIaAoYsUJxaF1aNE6Xluut05tnw5469NanvZW7X1dq9ZbtVY7qdRqB6pY2op1qAqEQZAAEuZAICEMGSDDSdbzRw4xhEzCCSf75Pt+vfIi+5yVc37bjV9W1llrL3POISIikSUq3AWIiEjoKdxFRCKQwl1EJAIp3EVEIpDCXUQkAincRUQikMJdRCQCKdxFRCKQwl1EJAJFh+uN+/fv7zIzM8P19iIinrRy5cr9zrnUjtqFLdwzMzPJz88P19uLiHiSme3oTDsNy4iIRCCFu4hIBFK4i4hEoLCNuYtI91NXV0dRURHV1dXhLqXHi4uLIyMjA7/ff1I/r3AXkSZFRUUkJiaSmZmJmYW7nB7LOUdZWRlFRUVkZWWd1GtoWEZEmlRXV5OSkqJgDzMzIyUl5ZR+g1K4i8hxFOzdw6leB8+F+4rtB/jvJZsI1DeEuxQRkW7Lc+G+eudBfvpmIdUBhbtIpCkrK2PSpElMmjSJtLQ00tPTm45ra2s79Rq33XYbmzZtarfNE088wfPPPx+KkpkxYwZr1qwJyWuFkuc+UI2N9gFQU1dP71jPlS8i7UhJSWkKygceeIDevXvzjW9847g2zjmcc0RFtd43fe655zp8nzvvvPPUi+3mPNdzj41uLLlWwzIiPUZhYSHjxo3jjjvuIDc3l+LiYubNm0deXh5jx45lwYIFTW2P9aQDgQDJycnMnz+fiRMnMn36dEpKSgC4//77+clPftLUfv78+UybNo1Ro0bx3nvvAVBVVcU111zDxIkTuf7668nLy+uwh/7b3/6W8ePHM27cOP7zP/8TgEAgwE033dT0+GOPPQbAI488Qk5ODhMnTuTGG28M+X8zz3V9Y/2N4V5Tp3AX6Urf/8t6CvaUh/Q1cwb34XtXjD2pny0oKOC5557jySefBODBBx+kX79+BAIBzj//fK699lpycnKO+5nDhw9z3nnn8eCDD/L1r3+dZ599lvnz55/w2s45li9fzqJFi1iwYAF//etfefzxx0lLS+OVV17hww8/JDc3t936ioqKuP/++8nPzycpKYkLL7yQV199ldTUVPbv38+6desAOHToEAAPP/wwO3bsICYmpumxUPJgzz04LKMxd5EeZcSIEUydOrXp+MUXXyQ3N5fc3Fw2bNhAQUHBCT/Tq1cvLr30UgCmTJnC9u3bW33tq6+++oQ27777LnPnzgVg4sSJjB3b/j9Ky5YtY9asWfTv3x+/388NN9zA22+/zciRI9m0aRP33nsvS5YsISkpCYCxY8dy44038vzzz5/0QqX2eK/nHhyWqQnUh7kSkch2sj3srpKQkND0/ebNm3n00UdZvnw5ycnJ3Hjjja3OCY+JiWn63ufzEQgEWn3t2NjYE9o45z5VfW21T0lJYe3atbz++us89thjvPLKKzz99NMsWbKEt956iz//+c/84Ac/4KOPPsLn832q92yPeu4i4jnl5eUkJibSp08fiouLWbJkScjfY8aMGbz00ksArFu3rtXfDJo766yzePPNNykrKyMQCLBw4ULOO+88SktLcc5x3XXX8f3vf59Vq1ZRX19PUVERs2bN4sc//jGlpaUcOXIkpPV7ruceE60xd5GeLjc3l5ycHMaNG8fw4cM555xzQv4ed999NzfffDMTJkwgNzeXcePGNQ2ptCYjI4MFCxbwmc98BuccV1xxBXPmzGHVqlXcfvvtOOcwMx566CECgQA33HADFRUVNDQ08O1vf5vExMSQ1m+f9lePUMnLy3Mns1nHh7sOcdUT/+IXt+RxwZiBXVCZSM+1YcMGxowZE+4yuoVAIEAgECAuLo7Nmzdz8cUXs3nzZqKjT1+fuLXrYWYrnXN5Hf2s53ruTbNlNCwjIl2osrKSCy64gEAggHOOp5566rQG+6nyTqVBn4y56wNVEek6ycnJrFy5MtxlnDQPfqAaXMSknrtIlwjXUK0c71Svg2fDXcMyIqEXFxdHWVmZAj7Mjt3PPS4u7qRfw3vDMv5j95ZRuIuEWkZGBkVFRZSWloa7lB7v2E5MJ8t74a5FTCJdxu/3n/TOP9K9eG5YJjrKMNOwjIhIezoV7mY228w2mVmhmZ1w1x0ze8TM1gS/Pjaz0N8F55P3IjY6SuEuItKODodlzMwHPAFcBBQBK8xskXOuaS2uc+5rzdrfDUzuglqbxEb7qKnTsIyISFs603OfBhQ657Y652qBhcBV7bS/HngxFMW1RT13EZH2dSbc04FdzY6Lgo+dwMyGAVnA0jaen2dm+WaWfyqfxsf6Fe4iIu3pTLi3tgV3W5Ng5wIvO+daHTNxzj3tnMtzzuWlpqZ2tsYTxEb7tIhJRKQdnQn3ImBIs+MMYE8bbefSxUMycGxYRmPuIiJt6Uy4rwCyzSzLzGJoDPBFLRuZ2SigL/B+aEs8kcbcRUTa12G4O+cCwF3AEmAD8JJzbr2ZLTCzK5s1vR5Y6E7DuuXG2TIKdxGRtnRqhapzbjGwuMVj321x/EDoympfTHQUh47Unq63ExHxHM+tUAUNy4iIdMSb4e73KdxFRNrhzXCPjtIKVRGRdng33NVzFxFpk0fDXYuYRETa481w1+0HRETa5c1wj46itr6BhgZtBSYi0hqPhnvjVnu19eq9i4i0xpPhHnNsqz2tUhURaZUnw137qIqItM/j4a6eu4hIa7wZ7v7GMXf13EVEWufNcA/23Ks15i4i0ipPh7tmy4iItM6j4R4cllHPXUSkVd4Md79my4iItMeT4R7j02wZEZH2eDLc4/wKdxGR9ngy3D8Zc9ewjIhIazwa7uq5i4i0x6PhfmwRk8JdRKQ1nQp3M5ttZpvMrNDM5rfR5vNmVmBm683shdCWeTzNlhERaV90Rw3MzAc8AVwEFAErzGyRc66gWZts4D7gHOfcQTMb0FUFwyezZbQbk4hI6zrTc58GFDrntjrnaoGFwFUt2nwZeMI5dxDAOVcS2jKPFxVlxPi0G5OISFs6E+7pwK5mx0XBx5o7AzjDzP5lZh+Y2exQFdiW2OgorVAVEWlDh8MygLXyWMv97aKBbOAzQAbwjpmNc84dOu6FzOYB8wCGDh36qYttLiY6SmPuIiJt6EzPvQgY0uw4A9jTSps/O+fqnHPbgE00hv1xnHNPO+fynHN5qampJ1szEOy5a1hGRKRVnQn3FUC2mWWZWQwwF1jUos2fgPMBzKw/jcM0W0NZaEuxfp/CXUSkDR2Gu3MuANwFLAE2AC8559ab2QIzuzLYbAlQZmYFwJvAN51zZV1VNBwbc9ewjIhIazoz5o5zbjGwuMVj3232vQO+Hvw6LTQsIyLSNk+uUIXGVar6QFVEpHXeDXd/lBYxiYi0wbvhrmEZEZE2eTjcNVtGRKQtng13LWISEWmbZ8Ndtx8QEWmbt8NdwzIiIq3ybrj7NRVSRKQt3g33YM+9cf2UiIg05+lwdw7q6hXuIiIteTjcG/dRra3XuLuISEveDfdj+6jq5mEiIifwbLgf20dVM2ZERE7k2XBv6rkr3EVETuDdcA+OuWs6pIjIiTwc7sfG3NVzFxFpycPhfqznrnAXEWnJu+HeNOauYRkRkZa8G+4alhERaZOHw12LmERE2uLhcNewjIhIWzoV7mY228w2mVmhmc1v5flbzazUzNYEv74U+lKPF6NhGRGRNkV31MDMfMATwEVAEbDCzBY55wpaNP2dc+6uLqixVZ/03BXuIiItdabnPg0odM5tdc7VAguBq7q2rI7F+rWISUSkLZ0J93RgV7PjouBjLV1jZmvN7GUzGxKS6tqh2TIiIm3rTLhbK4+1vIn6X4BM59wE4B/Ar1p9IbN5ZpZvZvmlpaWfrtIWoqOMKNOwjIhIazoT7kVA8554BrCneQPnXJlzriZ4+HNgSmsv5Jx72jmX55zLS01NPZl6m5gZsdHaak9EpDWdCfcVQLaZZZlZDDAXWNS8gZkNanZ4JbAhdCW2LdavTbJFRFrT4WwZ51zAzO4ClgA+4Fnn3HozWwDkO+cWAfeY2ZVAADgA3NqFNTeJjY6iVuEuInKCDsMdwDm3GFjc4rHvNvv+PuC+0JbWscZhGYW7iEhLnl2hCo0LmTTmLiJyIk+He2x0lKZCioi0wvvhrmEZEZETeDzcNRVSRKQ13g53TYUUEWmVt8NdY+4iIq3yeLhrWEZEpDUeD3ctYhIRaY2nwz1Gs2VERFrl6XDXClURkdZ5O9z9WqEqItIab4d7dBR19Y76hpa3lxcR6dk8Hu6NW+3pQ1URkeN5PNyPbZKtoRkRkea8He7+xvKP1incRUSa83S4j05LBOBPq/d00FJEpGfxdLhPGdaPWaMH8L9vFnKgqjbc5YiIdBueDneA+y4dTVVtgMfe2BzuUkREug3Ph3v2wES+MHUIv/1gB9v3V4W7HBGRbsHz4Q7wtQvPICY6ioeXbMQ5zXkXEenUBtnd3YA+cXz53OE8+sZmxj/wN7L6J3DGwETuuWAkw1ISwl2eiMhp16meu5nNNrNNZlZoZvPbaXetmTkzywtdiZ1z16yRPHj1eK6dkkFyvJ8l6/dy+WPvsnhd8ekuRUQk7DrsuZuZD3gCuAgoAlaY2SLnXEGLdonAPcCyrii0I35fFHOnDW06Ljp4hLteWM1Xnl/FTWcNY97M4WT07YWZhaM8EZHTqjPDMtOAQufcVgAzWwhcBRS0aPf/gIeBb4S0wpOU0Teel/59Oj9espGfv7ON33ywg4F9Ypma2Y8LxgzgwjEDSYzzh7tMEZEu0ZlwTwd2NTsuAs5s3sDMJgNDnHOvmlm3CHdovN/7d+bk8IWpQ3h/Sxkrth9k2bYyXl1bTEx0FDOzU7l2SgYXjhlAtC8iPlsWEQE6F+6tjWM0TUkxsyjgEeDWDl/IbB4wD2Do0KEdtA6dkQMSGTkgkZumZ9LQ4Fi96xCL1xXz2tpi/rFhH4OT4vjiWcP43OR0Bif3Om11iYh0Feto6qCZTQcecM5dEjy+D8A596PgcRKwBagM/kgacAC40jmX39br5uXlufz8Np8+LQL1DbyxsYRfv7+dfxWWAY23NJg1egCj0hLp5feREBtNenIvhqXEHzdeXxOoxzBiotXjF5HTx8xWOuc6nLTSmXCPBj4GLgB2AyuAG5xz69to/0/gG+0FO3SPcG9ua2kl/9iwjzc2lJC/4+AJ94hPSYghd1hf4mN8bCguZ0tpFYlx0XzzklHMnToUX5Q+qBWRrtfZcO9wWMY5FzCzu4AlgA941jm33swWAPnOuUWnXm74DU/tzbzU3sybOYKK6jpKK2o4UltPVU2ALaVVrNxxkFU7D1JTV8+YQX24OCeN/B0H+M4fP+J3K3Zxy/RM9pZXs6W0kpq6Bs4fPYALxwwgOT4m3KcmIj1Qhz33rtLdeu4nwznHog/38MPXNlBSUQNAWp84APaWV+OLMs7N7s+CK8cxNCW+6efW7DrEr97bzp3nj2DkgMSw1C4i3hSyYZmuEgnhfkxVTYCdB44wtF88CbHROOdYt/swr3+0l+c/2EGDgx9+bhyXTxjMk29t4ZG/f0ygwZEYF83PvjiFGdn9w30KIuIRCvduoujgEb66cA35Ow4ypF8vdh04yuUTBnHn+SP56sI1FJZW8oPPjuP6aadv9pCIeJfCvRsJ1Dfw2BubeXHFLr51ySiunZKBmVFRXcddL6zmrY9L+dzkdL53Rc4JY/THfgtYurGE3rHRjE9PYlx6EgmxEXFbIBH5lBTuHhGob+DxpYU88WYhyfExLLhqLAMSY9lcUsmG4nLe2FDC7kNHMYNjl8oMLs4ZyHcuyzluLF9EIp/C3WPW7znMN3+/loLi8qbHevl9nD0ihdnj0rhwzEACDY51uw+xbNsBfvP+DgINjjtmDudLM4fTR7dSEOkRFO4eVFffwOsf7aV3rI/sAYmkJ/ciqo3583sPV/Oj1zfw5zWN+8cO7RfP6LREkuP9lB8NcPhoHTWBTzYO90UZfl8Ufl8Uw1Li+T8XjyKpl/5BEPEahXsPsWbXId7dXMqGvRVsKC6nqiZAUi8/feL8xPl9HFtUG6h3BBoaqA00sH5POWlJcfz0hlwmDUk+7vUaGhwb91awr6KamdmpWpwl0s2EbBGTdG+ThiSfENAdWbXzIHe/sJprf/Yet5+bRS+/j0NH6ig6eJT8HQc4dKQOgOumZPDQNRPa/O1BRLovhXsPlDu0L6/dM4NvvbyWp97aCkBiXDSpibFcnDOQM7NS2FxSyZNvbSEhNprvXZGj++CLeIzCvYdKjo/h6ZvzOHy0joQY3wm3PHbOEahv4Jl3txEdZUwcksymvRVsKa2ksiZATaAB5xy3z8hi9rhBYToLEWmLwr2Ha+tDVTPjO3PGUFVbzzPvbgMaP5Qd1i+ePr38xPmjKKms5Y7fruLbs0dzx3nD1bsX6UYU7tImM+MHnx3HlRMHk9TLz/DUBOL8vqbnq+vq+ebLa3norxvZvr+Km6YP42hdPdV19WQPSCQtKS6M1Yv0bAp3aZcvypg+IqXV5+L8Ph79wiSyUuJ5bGkhv8v/ZMMuM5g6rB9zJgyib0IM2/dXsX1/FRMykrjl7Ez18kW6mKZCSkis2nmQ/RU19Irx4fdFsXzbAV5bW8ymfRVNbVISYiirquWqSYN56JoJx/0WICKdo6mQclrlDu173PFZw1O454JstpZWUlvfQGZKArHRUfzvP7fw4yWb2F52hG9fMoqdB47w8b5K/D7j8gmDGZfeR716kRBQz11OuyXr9/K1363hSG3jCto4fxQNDVBb38CI1ASunJjOBWMGkDOoj+bYi7SgFarSre0sO8LmkgqyBySS0bcXFdUBXltXzB9XF7Fi+0EA+veO5aKcgfz7zOFk9k9o+tnqunq2llYxKi1RK2ilx1G4i2eVVtTw9selvLmphL8X7CPQ4LgmN53LJwzm7wX7WPThHg4frWNQUhxX56Zz7ZQhZDULf5FIpnCXiFBSXs3P3trC88t2UhtoIDY6itnj0jgzK4W/Fezl7Y9LaXBw/qhUvjxzONOHp2jMXiKawl0iyt7D1azeeZCzR/Y/buHV3sPV/G7FLn79/nbKqmoZnZbIiAG9SYjx0SfOz03ThzEsRb16iRwKd+lRquvq+dPq3by8sogDR2o5UlPPgapaEmJ9/PzmPPIy+4W7RJGQCGm4m9ls4FHABzzjnHuwxfN3AHcC9UAlMM85V9Deayrcpatt31/Fbb9cwe6DR/nxdRO4alJ6uEsSOWWdDfeojhqYmQ94ArgUyAGuN7OcFs1ecM6Nd85NAh4G/uckahYJqcz+CfzhP85m0tBk7l24hq88v5J3NpfS0BCe31ZFTqfOLGKaBhQ657YCmNlC4CqgqWfunCtv1j4B0P890i30TYjhN7dP45G/b2bhip0sXreXIf16MX14CkP6xjM0JZ7coX0Z0u/4vWgbGpzm2IundSbc04FdzY6LgDNbNjKzO4GvAzHArJBUJxICsdE+5l86mq9emM2S9Xt5eWUR/9xUSklFTVObsYP7cOm4NKJ9USzbWsaK7QcZlZbIs7dO1XaE4kkdjrmb2XXAJc65LwWPbwKmOefubqP9DcH2t7Ty3DxgHsDQoUOn7Nix4xTLFzl51XX17Cg7wtsfl/L6R8Ws2nkIgBGpCUwcksxfPtzDxIxkfn37NOJjdKcO6R5C9oGqmU0HHnDOXRI8vg/AOfejNtpHAQedc0ntva4+UJXupqS8GjMjNTEWgNfWFnP3i6s4Z2R/nrklj9ho3ehMwi+UNw5bAWSbWRawG5gL3NDizbKdc5uDh3OAzYh4zIA+x99/fs6EQVTVTOBbr6zlmp+9x7nZqUxITyJ3WF8G9tG96qV76zDcnXMBM7sLWELjVMhnnXPrzWwBkO+cWwTcZWYXAnXAQeCEIRkRL/r81CEA/Or97fz87a0EgjNtcocmc9n4QVw+YbA2JZFuSYuYRDqpuq6eTXsreLdwP6+tLaaguBy/z7hleiZ3z8omKV4fvErX0wpVkS62bX8VT/5zCy+t3EVyLz93nj9SPXnpcgp3kdOkYE85P3itgPe2lAGQM6gP541KZezgPoxOSyQzJYFoX4frBUU6ReEucho55/h4XyVLN5bw5sYSVu48SH1wfL53bDT/edkYrp82RHeslFOmcBcJo+q6egpLKtm0t4I/rC7iX4VlXDJ2IA9ePYG+CTHhLk88LGT3lhGRTy/O72NcehLXTMngN/92JvfPGcPSjSVc+ug7LN24L9zlSQ+gcBfpYlFRxpfOHc4fv3IOiXHR/Nsv87n7xdWUNrv9gUioaVhG5DSqDTTw5Ftb+OnSQuL8UUzL6sfQfgkMS4lnYJ84UhNjGdgnlvTkXhqfl1aFcoWqiIRITHQU91yQzWXjB/HoG5v5eG8F/yos42hd/XHtZp6RyiOfn0hK79gwVSpep567SJg55yitrKGkvIbSyhoK9pTz6Bub6Rcfw+M3TGaqdpGSZjRbRsTDPtp9mLteWMWug0f53OR0zh81gBnZ/XX7YVG4i3hdRXUd/7V4A6+tLaa8OoAvyjjvjFT+feZwpmX105h8D6VwF4kQgfoG1uw6xBsbS/jdil0cqKpl8tBkvj17NGcNTwl3eXKaKdxFItDR2npeXrmLJ9/aSmlFDc/eOpUZ2f3DXZacRlrEJBKBesX4uGl6Jq/dM4PhqQl8+df5rNh+INxlSTekcBfxoOT4GH5z+5kMSo7jtudWsHTjPg5U1RKu38Sl+9GwjIiHFR8+yuefep9dB44CjTcpGzGgN9My+zItK4Vpmf10n/kIozF3kR7i8JE6Vmw/wM4DR9h54AgFxeWs2XWI2kADfp9xUc5ArssbwszsVHxRmmHjdVqhKtJDJMX7uTBn4HGPVdfV8+GuQ/ytYB9/XL2bxev2MrBPLJ+dnM7VkzMYlZYYpmrldFHPXSTC1QYaWLpxH7/PL+KfH5dS3+AYnZbIWcNTyMvsy7TMfidsDi7dl4ZlROQE+ytr+MuHe1iyfi9rdh2iuq4BX5Txf+eM4dZzssJdnnSChmVE5AT9e8dy2zlZ3HZOFnX1DRTsKefxpYU88JcCtu6v4ruX52hLwAjRqatoZrPNbJOZFZrZ/Fae/7qZFZjZWjN7w8yGhb5UEQklvy+KiUOSeeqmKXz53Cx+/f4ObvvlChYu38k/N5VQWFKpqZUe1mHP3cx8wBPARUARsMLMFjnnCpo1Ww3kOeeOmNl/AA8DX+iKgkUktHxRxnfm5DA8tTcPLFrPO5v3Nz03Y2R/vndFDtkD9QGs13RmWGYaUOic2wpgZguBq4CmcHfOvdms/QfAjaEsUkS63vXThnLtlAz2lVez93A1q3ce4vGlm5n96DvcMj2Tr5w/gv66v7xndCbc04FdzY6LgDPbaX878PqpFCUi4eH3RZHRN56MvvHkZfbjmikZ/PffNvHce9v47Qc7mDNhEDdNH8botER8UYY/KooozZ3vljoT7q1duVYH4szsRiAPOK+N5+cB8wCGDh3ayRJFJFz6JcTwX58bz+0zsvjN+zt4eWURf1y9+7g2n500mB9+bjwJsZqf0Z10OBXSzKYDDzjnLgke3wfgnPtRi3YXAo8D5znnSjp6Y02FFPGeypoAr68rpqyqlvoGx97D1Ty/bAcjB/TmqZvyyOqfEO4SI17I5rmbWTTwMXABsBtYAdzgnFvfrM1k4GVgtnNuc2cKVLiLRIZ3Npdyz4urCdQ7vn3paK7OTSc+Rr34rhLSRUxmdhnwE8AHPOuc+6GZLQDynXOLzOwfwHigOPgjO51zV7b3mgp3kchRdPAI97y4mlU7D5EYG83VuelcNTmd8elJ+DVvPqS0QlVETivnHCt3HOS3H+xg8bq91NY3EB/jY8qwvlwxcTDXTcnQ1oAhoHAXkbA5WFXLe1vKWLatjH8V7mdLaRVnj0jhoWsmMKRfPEDTAikF/qejcBeRbsE5x4vLd/FfizfQ4BwX5wxk54EjFJZUkhTv5ydfmMyUYX3DXaZnaJs9EekWzIwbzhzKkq/NZPrwFP61pQy/L4orJg4GYO7T7/Or97brVgchpo+0ReS0SE/uxS9unXrcY4eP1PG1l9bwveBtD+ZMSGNaVgrpyb3CVGXkULiLSNgkxft55uY8fvbWFp56awv/2LAPgGEp8Vw3JYPP5w3RveZPksbcRaRbqG9wbNpbwfJtZfytYB/vbSkjOso4f/QAzszqx/j0JMamJ9G7h6+E1QeqIuJpW0sreXH5Tl5bW8yew9VNj/fvHUtG315k9U/gS+dmMXZwUhirPP0U7iISMUorali3+xAFe8rZdeAoRYeO8NHuciprAtx2diZfu+iMHnNvG+3EJCIRIzUxllmjBzJr9CcbgR8+UsdDSzbyzLvbWLyumLtmZXN1bjpxfl8YK+0+1HMXEU9bueMA3/9LAWuLDtM33s8XzxzGudn9GTGgNykJMRG3SErDMiLSYzjnWL7tAM+8u41/bNjHsVhL6uXnlunDuOeC7IjZG1bDMiLSY5gZZw5P4czhKewrr2bj3gq2lFSyfNsBHltayPLtB3hs7uQeNa1SPXcRiWivrCzi/j99REJsNN+6ZBSXjEsjqZc/3GWdNA3LiIgEfbyvgnteXM3GvRXE+KKYeUZ/pmb2Y2CfOAb0iSUzJYFBSXGeGJ/XsIyISNAZAxN5/d5z+bDoMK9+uIfX1hXzjw3HbxjXv3cM49OTmDKsLxeMGcjotERPhH1b1HMXkR7HOUdlTYB95TXsK6+msKSSdbsPs67oMJv2VQCN98K5KGcgl08YRO7Qvt1mI3ANy4iInISS8mqWbizh7wX7eKdwP7WBBtL6xHHZ+EFcMyU97CtiFe4iIqeoorqOpRtLeHVtMW9tKqW2voHRaYmcm92fveU17Ciror7B8fC1E05b6CvcRURC6NCRWv7y4R5eXrWbj3bilw4XAAAF1klEQVQfJj25F8NS4tm8r5KqmgDP3JLHmcNTurwOhbuISBdxzjV92Lrn0FFu+sUyig4e5ac35HJRzsAOfvrUaLaMiEgXaT6LZnByL35/x9nc9ssVfPnX+fTvHcvotERGDuhNYlw0sdFRxMdEM2fCIAaexkVU6rmLiIRAVU2Al/J3sX5POZv2VrCltJKjdfVNt0KIjY7i1rMzueO8EfRNiDnp9wlpz93MZgOPAj7gGefcgy2enwn8BJgAzHXOvfzpSxYR8a6E2GhuOyfruMecc9TVO4oOHuGnSwt5+p2tvLBsJz+8ejxXBveQ7Sod3knHzHzAE8ClQA5wvZnltGi2E7gVeCHUBYqIeJWZERMdxfDU3vzPFybx13tnMn1ECpkp8V3+3p3puU8DCp1zWwHMbCFwFVBwrIFzbnvwuYYuqFFEJCKMSkvk6Zs7HFEJic7cAzMd2NXsuCj42KdmZvPMLN/M8ktLS0/mJUREpBM6E+6trbk9qU9hnXNPO+fynHN5qampJ/MSIiLSCZ0J9yJgSLPjDGBP15QjIiKh0JlwXwFkm1mWmcUAc4FFXVuWiIicig7D3TkXAO4ClgAbgJecc+vNbIGZXQlgZlPNrAi4DnjKzNZ3ZdEiItK+Ts1zd84tBha3eOy7zb5fQeNwjYiIdAORsWOsiIgcR+EuIhKBwnZvGTMrBXac5I/3B/aHsByv6Inn3RPPGXrmeffEc4ZPf97DnHMdziUPW7ifCjPL78yNcyJNTzzvnnjO0DPPuyeeM3TdeWtYRkQkAincRUQikFfD/elwFxAmPfG8e+I5Q8887554ztBF5+3JMXcREWmfV3vuIiLSDs+Fu5nNNrNNZlZoZvPDXU9XMLMhZvammW0ws/Vmdm/w8X5m9ncz2xz8s2+4aw01M/OZ2WozezV4nGVmy4Ln/Lvg/Y0iipklm9nLZrYxeM2n95Br/bXg3++PzOxFM4uLtOttZs+aWYmZfdTssVavrTV6LJhta80s91Te21Ph3sldoSJBAPg/zrkxwFnAncHznA+84ZzLBt4IHkeae2m8h9ExDwGPBM/5IHB7WKrqWo8Cf3XOjQYm0nj+EX2tzSwduAfIc86No3ELz7lE3vX+JTC7xWNtXdtLgezg1zzgZ6fyxp4Kd5rtCuWcqwWO7QoVUZxzxc65VcHvK2j8nz2dxnP9VbDZr4DPhqfCrmFmGcAc4JngsQGzgGN78kbiOfcBZgK/AHDO1TrnDhHh1zooGuhlZtFAPFBMhF1v59zbwIEWD7d1ba8Cfu0afQAkm9mgk31vr4V7yHaF8gozywQmA8uAgc65Ymj8BwAYEL7KusRPgG8Bx7ZrTAEOBe9MCpF5vYcDpcBzweGoZ8wsgQi/1s653cB/07j/cjFwGFhJ5F9vaPvahjTfvBbuIdsVygvMrDfwCvBV51x5uOvpSmZ2OVDinFvZ/OFWmkba9Y4GcoGfOecmA1VE2BBMa4LjzFcBWcBgIIHGYYmWIu16tyekf9+9Fu49ZlcoM/PTGOzPO+f+EHx437Ff04J/loSrvi5wDnClmW2ncbhtFo09+eTgr+0Qmde7CChyzi0LHr9MY9hH8rUGuBDY5pwrdc7VAX8Azibyrze0fW1Dmm9eC/cesStUcKz5F8AG59z/NHtqEXBL8PtbgD+f7tq6inPuPudchnMuk8brutQ590XgTeDaYLOIOmcA59xeYJeZjQo+dAFQQARf66CdwFlmFh/8+37svCP6ege1dW0XATcHZ82cBRw+NnxzUpxznvoCLgM+BrYA3wl3PV10jjNo/HVsLbAm+HUZjWPQbwCbg3/2C3etXXT+nwFeDX4/HFgOFAK/B2LDXV8XnO8kID94vf8E9O0J1xr4PrAR+Aj4DRAbadcbeJHGzxTqaOyZ397WtaVxWOaJYLato3Em0Um/t1aoiohEIK8Ny4iISCco3EVEIpDCXUQkAincRUQikMJdRCQCKdxFRCKQwl1EJAIp3EVEItD/B4i6kUYC80VaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "loss = history.history['loss']\n", + "plt.plot(loss, label='Training loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
ارزیابی مدل
" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.08597392486502425\n" + ] + } + ], + "source": [ + "trainScore = model.evaluate(trainX, trainY, verbose=0)\n", + "print(trainScore)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
رسم سری اصلی و پیش بینی برای داده های آموزشی و تست
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "trainPredict = model.predict(trainX)\n", + "testPredict= model.predict(testX)\n", + "predicted=np.concatenate((trainPredict,testPredict),axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXe41NTWh3972jnUQzv0cgQpIk0E7IKCiti7YsOuXAt2Qa9iver9vIpdsHsVC4p6QUEs2EEp0kF67x1Om5ns748kM0kmyaTstCHv88CZSdlZk7Ky9tprr0UopQgJCQkJKRwiXgsQEhISEsKWULGHhISEFBihYg8JCQkpMELFHhISElJghIo9JCQkpMAIFXtISEhIgREq9pCQkJACI1TsISEhIQVGqNhDQkJCCoyYFwdt1KgRLSsr8+LQISGFzZIl/N+OHb2VI8QRZs6cuY1SWppvO08Ue1lZGWbMmOHFoUNCCpt+/fi/U6d6KUWIQxBCVhvZLnTFhISEhBQYoWIPCQkJKTBCxR4SEhJSYISKPSQkJKTACBV7SEhISIFhW7ETQooJIX8QQuYQQhYQQh5mIVhISEhIiDVYhDtWATiRUrqPEBIH8Ash5GtK6TQGbYeEhISEmMS2xU559glf48K/sN5eSEiIN1AKzP0Y2LYMWPat19J4ApMJSoSQKICZAA4G8BKldDqLdkNCWLFxdwXG/LQS5/ZsgS4tSrwWJ8RJlnwFfHZd9vvI3d7J4hFMBk8ppWlKaQ8ALQH0IYR0UW5DCLmeEDKDEDJj69atLA5rinU7y3H7R3+hMpl2/dheM2PVDizetMdrMTzj24WbcdS/vsebv67E4DGhh7Dgqdipunj++t147tu/XRbGG5hGxVBKdwGYCmCgyrrRlNJelNJepaV5Ux0w59EJCzF+9npMXeL+S8Vrzn/1dwx87mevxfCMaSu2Zz4TQjyUxGHWzQQ2zAa4NMBxqptwHMUXf61Hmitkb6niGqeqAQCnv/ALnvt2qQfyuA+LqJhSQkg94XMNAAMALLbbLmtqFfFep31VKY8l8Y51O8szn1NpDsm0+sNfaBww13zyCKB6P7Dmd+CZjpg0fyMqquU91I9mrMVtH/6F/04zlHKkMHhMbkhSWsgvNR4WFnszAD8QQuYC+BPAFErpBAbtMqW2qNgrkx5L4h3HPvVD5vPRT36Pno9M8VAa9zhgFLs0ZmH/Ftz431kY+eUCXDz6d7z643IAwLa9VQCALXsrvRDQHVR6ZZ/OXJf5XNCdFQHbg6eU0rkADmMgi6OIFvv+6gL3sS/8Ati/Deh9je5mW4QH/ECgOpXtmeyuSGLdznK0rF/TQ4kcQsUS/WjGWgDAtBU7cGPfdohEiNamBcOWvZVorFh25ydzMp85ShFVumsKjANm5mlUeItzhf66/vgKYOIdXkvhK5QGnLTnUlgYv7c5Cnw9byPK7puIPQXWi125rVx3/fXvFn7K8ANGsYsP95+r+RFz+sYp2PfEwVi/q8JDqZxl6ea9eHTCQq/FCHELmn/MRHwOKChensq7Z1bnUYRBI9/4+A8HQABFQSr2iuo0HvpiPvaqWCI//c1fVLJ2GmpXb8XQ/850WzxXOObJ73Hp69Pxxi8rvRbFfdIp4O/J2LKnAje+NxP7qwrc/Sai4l8ZGPkD7UnWv0yQ0ewQvDJ47aflbkjnItpq7Z34k5iauN1FWbyhIBX7+9NX453fV+OlH7I3rPQlfsN72a5YVYrDsi37MGPVDhcldJ71uyqwu8JYF3vsH2vw9CTfBTJZ5+dngA8uxFfj38OkBZvwy7JtXkvkErmK/dXEc5hSdE/mu6jMOUoz/vYJcze6Ip1b6BnsfaNzURbZ7JosXlGQij0l+NFlYU2S/tnkBdkLSykw4D8/4vxXf3dNPrcwGqs8/LN5eHnq8sIJA9u5CgAQLT9QFLqAgeuXccVQIFKoMf0GfxfHUXw5Z0NBxvQXpGJXI6JxrTcXcNhXyuQNW5UqlLh2/neXH3CzjA0odsGepVA8E/u28BOcCgCj76uPZ6zFrWNn473fVzkpjicUtGJ/7acV+FgI9yIaHbRd5YUVEWCHgon3FgYRUwecXjcxeEoVs3BfPRZ4/USHBPMfaY7ivs/mAQC27iu80N/CUOzblgHTR6uuumfcXJeF8Tk7VqJ62yrVVeUFNsjYsXoBVhUPRieyxmtR3EFhsB9KcgfORWW+aU8F9kjHYPYVkt85v8m+ctu+zOd1OwsvMq4wFPsbA4Cv7+ajITQoVHeiaZ7vgcSL3TNfDx7xVeZz4VjsvIbrU/UbAOCYyHzVzXZXJPH6zysKZ2xBodmbktyAAPEx+GreJizetNcFmdzHyLO+eU/WSv/irw0ou28i/m/yEgelcpfCUOyV8rScDfcsQmvCWyDtyHrgkyGIcvldLvPX78bq7fsdEdGvSP3wD34xHx/+UQDWreCS0FPXCzfswT8/n4/HJi7C75IkYYHGxOCpFlv2FO6YkxQ1I+blqcs8kMQZCkOxiwgP9AUzL8VPRXys6lPxMcCC8Wi6P/9EndNf+AV9/z3VSQkdg1KKTUtn5Sx/Lv4i5hbppxcQmbF6Z8bvWOgMev5nzFvPGwRVycIaNNZj9Xb9yUgLNhRAemeSX62l0oXSS1OHSaEN7xFHhLQfUFLgRZ3G/rEW5351ssS9SHFn7BOcHf3NS7E8Qgh3zUSAqJupO8v5dK4cpdhVXo0V2/ajZ+v67ojoBAqLXfmry+6bmLcJriDcUvl9MSmNtMaFQkFZ7JXJXHdLvtu0A1nrjDAuM2P1DhST7O9vgp24Jfa5hxJ5x+bd/GBYvuhNMY47zVGc+eKvOPflgL8EDUTF5G2iAPS6urtJ/sOSKhY7R5GT5jioFJRiHzxae5KR1jv8m6J7EUdhDBpyNPsrIwXeQ1Fj7Y5y3PjezEzeeXFQtCNZiyJUy7YtQjWe5P6DZtgOjlKs2cHvE+wkcflkz//bgvzrN++pFFJo5D7tM4tulH1PadQiuPOTv5wQzXUKSrH/vSm3tqHYDdfrnBWEm4YCnORXRok5y+NQsgpHRRawlspVHv7fAkxasAlbhUln4rW/KDYVT8fl4bAnR2bgZPobRsTfl+XnTga0i76/KoX9VdoBAquKB+ON+P/lbScwEUIz3wbK+aifiuo0Fm3cgxvem4lHJyzENpW49IZEHgGkNXlvztrCqI9aGIpd6HvpWali96wu9qnG9xYCUl9yFOYU1MSiERibeJy1SK4idq8jGR97ll4ReSgbJ9z6BFQ2pTyog2r3fjoXm3bLI1qUBkv/6Gw8ERuj204gfv2mecD/bgM+vwkAcMfHf+HUUT9nMrVqdbrESDlA22KvU1wYw47BV+zlOwCOd6VEwGHpZvXYXPEm/zjxKCYW3a+6Lsj8vmK77FeYVeyFgDggFiHywVMAaEHkIY3iuYqAygYMg6rY1+woz7mP1e7rwTH9XPS7K5KywiS+JCm8wPbzmVpnCKm4K6rTGBYbh4GLR6juVhfZUGYti71Q8ucEX7E/fVDmYwQUJz37k+7mnSKFMViqZOPuSlDJ5YwciIpdUMpaj2YjZLvZosUeAZUNGAbVFQPk9ljzqah2ZD2UNvo94+ZiyFt/sBWMOaLM/C/MFNGhFMNinxlqQW3wFAAiwdeIAApBsUvoHFmNVcWDZctEq63N32/jm8TdqvsVgsUOgJnFLuasDxqiS0VLoc0ovinzWRyPiIArCIud0tz7WO++PiYyD98V3Y0Loj/mrPtteUAmbIkuWEn+G6NohXWGFrsP0Rsc6r7/V3SIrFddp3wAduyvVt3O70hdD/fH3rfczhVv+t1iUycpKHY1V4wSLR97UsP3GgSU97Fer6094Z+FQ8kqJ0VyBoVSFvPKp/Nodun98PrPK1S3IaFi9wEb5KFJRcRapkblpQyqYpdGxRwflc8gvSw6xW1xXEdrQEwNqY9dqg9GfbcUZfdNDFyO7nnrd2deaCJawQTnRX7CyPi7ALRffuXVQQgBFlwxmQLdxq/ZTo2sroWh1oOu2Ef31V39ZGw0SpA/98u0on8gJoll18rd7lfEG5rTuZyPxd+Sfb8w+gM+TTwEABga/cI54Vwk64rJjYpRkvWxczJLb9xMvoxcVQHk/NVS7LfExufdd8pCP2d7VLzACMHl0W9wCbFvvATt2deiMGJ7NLg4NtXQdnVJBZqT7VhDmwAIXndMNC7N2JhPx7Nhb/fEP2IrkEdk3CiCok6oTDyLI4UkYrLB0+Eq+XG0Btf8SJqjaEs2oCWRV4wiGq4Yac8u12Kn8L3dKr6Ihee0Pt2NR+Nv592tLsnNk3Ne5Cf8wnXBZjQAEPrYC47G2Jn5HJi39v5twCMNsW2hOAAWFMGdQVTFYg+mEclNaLW0+ArUxT5JXIW6Ag+Sr3387PX4vuiunOX1iHpvleoo9mAFEohRMca2fiomn6RWF/vwTOJVvJt4MrNsxuqdmLxgEzMJvSJU7AI1SNavHpi39urfAC6FJuPOAkAD9UiyZPX2/Si7byJWbDWWcrkR2SMbPFUjSIq9xqYZqssfjr+julzqslP+evHO93evVS41JVFDezWT5Kf/IXE7To7ypQAbEfls00nzQ8VeMNwY/Z/XIlgge4MfGVmk62MvZOaskz+YxEAyLNEdoRUW+r85G4IxvX79LJz255WmduF0enaBstjFcEeDXey4JM3GQZHNeDz2JoDc8+Hrd5pBDkxNoMIx0WyeFKM3iudIFE8dlFt8JAP0IGugVMD5Us+2JpuRAB8VoYwkEXniq8UYP1s9PNYvJNMcVo++xPR+ej72QCh2xfWNalzDfIhRdEqDKEoIyu6biH99tciafD4gVOwqRAgweMw0fDVvo9ei6KOwTPXitrUIxIOch2iqAgMj2dj7fGfh7cS/8VL8eWFb7d//6zL/TtShlGLygk2W8qdTmStGqdiDgHzmacymFlMqdtEV+9pP6rHuQSBU7CoQEPy2fDuGvp9bkchfUMknotvF1qIQ0vt2m/soXk08hy6EfxCNpFOoRfgMgEdEFgtT64EYUjgr8gvE8/rprHXOCMyAcTPX4eYPZlvat5BcMZXJNBZvsJeRUXk+rl1xK86J/GyrTa8JFXuQUVhr1MLl1FLsvk8EJaHmfl4B1ybW6nV+V8Snmrg59jlGJV7GoMh0ZrI5xSobtXmliuyq6CTUQkXmu6jYfW25C/f95j2V6PTPSbZfRspeS/vy2Xg28QpiQXHJqhAqdhUCE19CpRZ7fm95PeRmvsy1bvlW1GK7/YswIYnaexDFkNcSjTBBP2EnaEeq2OMkjf6RXMt/b2XK95O0VgnFUewqdk7jvqmZMBZt40dCxS5BVHzS2eRl903ED4u3eCRRPpQWu75i+6v4hrwtXhfl62L+sixAicComCOGQy+y2HJmS9/bZ3M+BKa9AkppJhzTyrhKj4jcd1xX5UU2Yvw8XPTaNGtyOk72vm9JtmJIbLKt1rSiyeLR4KrHwM483bavCo0YtxkTFIKyPNrYP9bghE6NGR+NAcpoEAsP+cOxt2Xfz4j+jjHp0wN2U/Pn4bbYZzgyYj+SwYqydIXx/Iv5yZ39hBJwbJBavNLPf63dxewYTBHve0rwfvxxtInYM7ysPDd+J0hPL8+utVi7eTt6PfYt86azMxfly/0U10opxQ3vzcDUJVuwZofc0rKikJRpF3bR2gCAhN1QAxchwgU7hKy2105AXHBv/bIq8zlB7Cfrimgodr9DQVCf7LPdjmixnxL5A83g30goMwTPYn+uC+o1PxbAUMcOwaVTuCn6Jd5Jn4xyFDt2HCtQCkxesBmTF2zGuZEl+E+CX/5G4hlNX6EZ9qEGACARQIu9RCUXiLXWfPQmV6E6zaE7WYYltBWT9uQWexDg5T0ysgB7aA3brXEgSCCJ1xLPYRnXPLPcTwadWYKn2AHU2fALnFTsNZZ+iXvjH6Ix2YmHU+Zm9TmN1J5S3ndak23MIHZLg2Sxm6qwoIN4PhtgL1+Aw6cd2jlF16KElGNC+kgmFrZ09m2QLHaAT+Bnlw6R9Tgtwo8nlDDoAfgBf965WnDOjtJnuqQpPmyuFvi/xEd2jHRCCmGgyLUIoo+dFffGP8SdsY+ZtskSsWfSnSxnMg9By8d+IHFJ7HsAwC5aR7Z8T2USZfdNxNd+n6yoIEhPb6ZotVOI0RTKKep+Cn+UiubkQxg3mjLPBxBmFnu2nQERfnLaF3+tx9u/rsSEuRuYHIMlhFAm90BEZrH7hGQFsEZjPoEDOXzEFBPKgdRlW3gL/tWAzUK17YohhLQC8C6ApgA4AKMppaPstqtK2lqFJKOI1o+fkz9Rx60rsY6kbx5xA7A4D+oRRk9+vRgbd/M9t9O7Nc/Zy0uU+detMiI+NvPZNxb7l7cC8z4Ghs0H6inHEtjLWCTk7lf+fjFCLmiTlVj42FMA7qSUziKE1AEwkxAyhVK6kEHbcjinFbu8UIM4iOYnVwylQF3sRxoRR6TKZOHwz082gP0H/Zro17KHWpzFGwtQz4UNPlHsm+byf6tVfN4OWuzKq50SFHtU74Go3A2U7wAaHMRcLqvYdsVQSjdSSmcJn/cCWASghd12VZH42PsQ9pnXRJ81l1Hs/oNSYG7xdZhddL2j1pWfXmZKtuytxO4K/kFcvnUfkwf9qMgC2XfRYo9FguWttIvvrrpLveeEisW+bV81Fm7gi7Xo3gZjTgSe7+GkeKZhetcSQsoAHAbAmWQbElfMx0WPMm8+mvGxM2+aGeJLJ0HSzip23z3hWfo8/i3u/9dTmL58K/o/8yN2Mig+nkJM9ps5ENwd+xCDUt/Zbtsycz8GPrrM1UP6xhWj8opJpjn8tpyN+0lJgogWu/z3PzKBdzxE9Vwx25c5IpMdmCl2QkhtAJ8CGEYpzalJRgi5nhAygxAyY+tWi9PVhcFTFvHaamj52P2k5KSSOZmZcfOKeVj150TH2rfDWZFf8WLk34jNfB0AUJm0P6ieQlThiiH4R+xL3F35vO22LfPZdcAidwvA+Eex5/LslL8xeMx0LN2SW/LQLvke8WCNOTFS7ISQOHil/j6l9DO1bSiloymlvSilvUpLS60diFMfuWaF6GN/7Uf+DezHiSqycEcHHkLxN38TvxNlEwdjztpd+PCPNcyPY4emhE/WVbNyMwA2L7gkolCmQT4Q8fOvXipEqOypcG6sTeuZ0rXYfQiLqBgC4A0Aiyil/7Evkg6Cj90pxS5e1LTCxy6+rNfvqkDd4hjqFMcdOb4RpJ2Jx+JvsW9fcW7PeulXAMDFfVozP5ZdpHWA7HJsZD5KJbUvCzF/iBGUio1Sitlrd+GwVvU8qoMqedkKH1mFt0oRf7eWkRC0qBgWFvsxAC4HcCIh5C/h3yAG7eYi+NgTxJmJSrfFVDsbGY558nuc/sIvjhzbENNeQclTrFOfBQ+l8mHxyJUqChqHFjvPuJnrcO7Lv+GreS4XeFZ5iWRcpA68YMTrXygWO4uomF8opYRS2o1S2kP49xUL4XIP5uzM0zOi/LRivUu4ejubfCSW+PN1747tIZRSjPlpBbbsEWcCCxAxHJW9Bee5xZ6yPyBsBeW5XL6VTzRnp7AHCyYv2IRqIVVxmnNuHEDLYj/gFLuruBSukr25fRbH7nBKBcCfIZ4rt+3H418twg3/nSlfQQg6kjXoGGFfws5zi/2b+z06MH8HtCGb8EXiARSn7JWdsy8OxS9Lt+GG92bi56XbcGJkFpb9ODb/fhbRStNxQA6euoe+2rmq+m7GR5NczAl34BShYPKGXfYTD1kTyPlydWdHf0MP4q/wLfGh2r6Pt2Kl5dseib/tyDHVFLs4vdwVNi/Iv40DiL/69tg4dI+sQLudv6ImKkHA8YbFyBLg+8dclATYvr8q8/nNxP/hktgPLhxfTmixO0kei30e19a5Y894A68lngMAHPPU984dRw+XeizHROa7chyjiJkms3VYszODq2juQPZirhW2K5I5mSWqUoVpwH9+tNWmLarceamIL80GQjWxVCSOhcVX44iVrwBpwT30q4choA6j5dYLLXZH0VdsLPyid8Q+zinYcPheuSL3bAKTw2MMIn6NZa5WFPokhKAKidztEFNVzGaIw9mEc3mR3GS7K5JYtfAPVw4rXvu6QgbJiNBLbL/5a1eOrwbn4gMnvfePicyTLA8WwcrH7sIFvjX2efZwwt+rN7Gf5WoJF1wxfkR8sEWLXXzI1u+sQBVyLXYKYrnuqUgMXhdyzt7rF732O2pvno1xRc4flWT+iuXnxEgUiQ3oqvVKwbl420sHT99P/AtllR+4d3CGBMtiz6PYtUa0f0kfau1wfntP+0Gxb1kE/PmGq4cUL3tWsfMLVu0oR5WKbUKh7koxg/eKPcviTXtduxOVvbVMKmupMnfDgpYcz83+o2Zv1WeqIB/BstjzXGItK82qgu4TWWxpPydIpTlE0mnv38QvH8n/7X2Na4cULfa0QqFQqu5jB+wrds9dMQrcco9lB6ZFi53LrPFKu7mZRrsJUS/g7ZvIOIN4ridMYfECW30onAijs8pTkxYjUuFMAiQlaufr5akeRcpU7QXViVvWKl9n1xUT95HFDrApe2gE0VDOKnjBYkcEngTDUmrqsX83dZIjYigLx/udYCn2PDfWFtRTXR6sd63A+lnAnmzVnu8WbzG86xKuJXNxnp60hHmbedmzEfhXSxTPGi1bLH3xqCt2Yt8VozO7eef+auwqd3gCkTIRnU2lOqT6HqMHln2rX8kbNxyJuBw1wD+1n85ahw9M5Cqye921+HPVTkfadYpgKfa8NxbBCq4p00O+HH+OaXuGGXMCMCqb4zkRqBqkjNjHT2Pf8evbAKQDezwU6q96CoIRqWttHXoxp6zak+WwR6egxyNTbLVvhgSSKIK9xFdbaYmh7aRzBADgmI3vZNZ4wRu/rMSitVsM98CMutCWcf6qhsWaYGkLA4OHagOoy6n1izgo6k6YmSrp7MSMonjUOzm8oGInsH87AKCGUFRcRFQ+R9I5muMnH6VPsHX4WVx7W/uz5O/iK/F24mlbbWi5rJTkRMUIUOKRKwbAkuIheCo2Ov+GyOZV1+PW6pvxbtoZl41fCJZiN3BjiV2xUalzMsseS12Gy6qHYxOt75hkTlMU89elKrtvorMzcJ8qA94/DwBQLYQ0HkzWAyNLcFCErxjfBctUFTsL9aNln+6pdLY8o1MYHXZXWuzZFUS7x7xrjWMTqEQ5Loj9ZGh7Iy+wBEkiZsdlU74D2LnK+v4u4C9tkQ8DPr4I4S/YR6msxVaNOH7huvovfNEERSZqb9r9nVp7c4pBzKOf/N6ViIUK8AHcZ0X4zJqnRbIFutQVu/3rrOXTfmC8W7Ny2Z5Xo5P3cqJiMtKQTKGbHNme6wq8dapdEZWCAABeT/yf4V2eSl6M3bRW3u3+4trZGlznnu0CjOqOZVv2Wm7DaYKl2A3c7BWUVwJqFgrLjH3z1+9G2X0TMzURHWPdTGD8jagRZRelMbDqSQzRyasjfaivi05AMXiXUFIyU+TCqHv5OlLg3VDi9ZMOkJm5pgvbXIZFOr5zKWrJoAZFpqH19p8NH89PmHXF5D5rEWDKP/mPaZWBY7H4NGOakR2Sb/rP/1Sue6Z2KQDVyUVllR9gGW1pa55CJMlHyHw+e0OeLb0jWIrdgHU4JHkP0v1HYjMa4MbqYbi0enhm3UqGA6uTF/ADe98u2sysTVXGDQHmjEVp9XpmTe6gdbCf1tBc3y6SvWHvj3+AO2LjAACpdPb8Px0fA8DdQAlxkow09M+Ixf4X107yzajlmsvLiedx17Z/Gtrfbxh1xTSCmJdcDiUEWDKJsVTmyKeMKUjO4OkLqbMzn8tpduoui+iZGgn/jnsFTLHnvxjraGNEj7sdnZrWwSSuD37lumbW3Zq8xUnpnKF2EwBA/TS7GPZ8D3kDyHshtVGBTmQN9u3KlcENvd4r8jd6kcVIqVx+Iz72iekjMtuupUbLMmr/ssZwIfSN4Rvzo1S/nGv+RPIS1W0/KXpEoxXi8szn3OtaDP0QUw4EcSJX7M+kLsRFVfzL+ISqZzLLWcws9tu4lxT/SqaK8Zv9iIMa5CzbgboshXGHdX8CABKUXdx0UlG4WUlUsa4mqcSkovvAvTmQmQxmOTP6O6hKEXMj8d3iNhQEdyZvwk3Vt+Xd5zhJAqi6kE9O+aIoWFb711zvnHP3TvoU3X1Uo2JcVey517U4T8gnp2KxA8B0egjKKj/AZmR1wgY0tC1hsY8j1YKl2E1YMQ+c3hnf3dk3d0Wf6xkK5B4RE5kd852lNPRvyKhics7Z0d8AAM2qVuZu/OsoV7roaURUrXM1y0u5nTTufS9q4mvuiEz+oCRVPxc9I9mZtjOKbpStk/t9ncKcxa4Wp76X1sBqrjGmcj1y1uUbYFYdPLWbXfS9c4Bx1lNRvJQYpbuegsh87Hp8ku6LO4pGmhNgzTRg4ZeZr35W7AWVK0ZKPBpBu9LauSsG/RsLpk3GoZHVeDp5Ie6Jf8xQPueIMsxdkkIUtXT8g30ixmeZRr97iP8w0tlKO2mNFG9qvtJcxZ6bofCq5L1IJJPYjxpYVTxY99hO1dh1mq5V2WRt0sHgZ5PnmY8cIhGk01wekyAPy4X01+dbSyJ3RJ7cTWo+dm0IZkRzX3i6vCnv5fi5wHXBWuxKohGCp8/rBiBrwU3jOltub/t+3jWydW9Vni3ZcNO2J5i1lUIUN/Zrl39DH6Flsdch+WvQiq8EqTsiiRj2Q3sAWUlNxSSpoCGegzVcKUalz8sbTZQzeIoIKqpdiuGv3q8iQX60XDEHIgeMYh8/9Ghc2JsPdRMtODu5Ej+YzueveG/aany70OHIGAPso8Wa686tGin7nkbEt8U0tEgjqqrYz4n+amBvQbHbyCP+pBAF5F/0r6e4VpwTkM9iV8Z5U0I002JbJlUF7FU8Oyt/Ap5obil8kkMEcRO9qxcHHwa07Wds23iwqkYFS7Hr3FjSUCY15Gk3rSv2BJLoTFZhVfFgtCN8COKsNd4nCNKbAp/M8bixSUIqThhyAy2LXY+76DA8E7kqa7Fr7H90Zf6HtoxsyllGKcXrP6/Ajv0OJwQzwISaDwrkAAAgAElEQVT0UbLvXwrfbz7hYADAWtoYo1Ln4NrknQCMx7VnsZ9YLYePLgOe6SBfttLYDFM1OBDDOXVqxKPo1rIecMUX+DIxKO/2p0enWZbLC4Kl2HUs9rOq9ascSY01cTBpL2qaFuHB2Lu4XYjrPiky0/T+TjGHartW1F9g9q2vUYmXbbdhFA7E9ASzSTgaH0ZPl/RO1PffBZWxGAP8tXYXHpu4CHd9MsfS/rqY7J3OVdT7FX9zt5YlmSXPpi7AWtokb1tFKmGFlEQyKXyZsfSb3GVp6+4eSo27YqTu8Ti15r4Z9tFflvZzg2Apdh1lJHYxNfeU7PpU6mL0rfoPVlPzE5Yui32Hk6KzDEplgUnD+UrwJnk2db7mulyLna8X6ksoBaa9krM4AmrYYhe3I0Jzmb00frPV65cUJmzt9WH+GPGXNiupgZkPDDC17x2xT1TDHZm5Yjgdd4kdxQ6CW5M3G9o2ItHssQL0ywdLsetYMeYMHGJJqecc04ncM9PMW8F/cy10u9YplVgG4llF7jwsnQJMui9ncQxpDI+PNdSEOEiadcDwnw5tXoIzuudm+rykTxtLoj74hVt5Y8wjta4b1jZXLLUh2as6BqOm2C0lRVurnTE1lbQejMCBYDltYWjbCAkVu4/QUex5lCwN2GChGc6vHqm7PilR7FPShzsiw4jx8/JvZISkepSLlaRNYkLCyVxvAEC869l4/JwuOdulLd4aizf5JwmUUhFXIsEvt2B7nB/9CfWIfFJWmhLVKk4Xvvq7+QNo8duLSO9QmSthEDPjBlJXTMyiK8bPBEux68x88zJzY1WSw7x1zsZx67EHyox2BD+l+VQKQ6rvRloyCeeV1BnCJ7YvOjFKyD7qcplJsyq2EBWe3sW0NZ8QqmlX1bskrTKj1VVS1UBSmQLZ3vV5OHlFzrIuLepi/NCj8chZ+Yu71yeKNLxEXVXIXm5j+hsTTu1ts3MV8M39KFr5nbE2VDCjA6IGXTFBDZ8MmGLXs9gt72qZxmQX2pH1ePPXlTjjxV+w3sn85Ca5IjkcJ9T+AlO5w1RdMelEHQ+kMoDGyztqIreH+IBHVBSI2tiCp14pSoHHSoHHm6LdiK/woVgGzqZQexQDwnNHnoxxNx6Nw1rXx6ldmpluryqlkOfXUcAmRS9t/QyDrako4LR9Baqn2F+7XN5TJQZdMQuKrjJ8fD+NtQRLsdtwxWhxbtVIjEham+Z8TexrfFeUTX+7r9Kfb/ekimLf17ArFh3vXlSLXdoT89ktIyR7x7xyaU8A6nExRl4ZSleHWuSIJXZnC6anOYrHv1oEwLi9PoPrgNuqh2re/aL+qlscz0yBj1qYMblmp2KC1pQHgVePM92OTCgZ9t+uelFTpXXk4wzSU3BIY+05IAmSxkFko6Hjdx052dB2bhAsxW7DitHacxbtwMzv7NdAE2luGOkLcEdr/URQbrNi6z58/vMs1XXHRBcYbicT3Ci5IH2EpHBq14izcFstKR7iak56LWZy7fEFd6xs2Taqn+xOVGoT0kcaPo660rT6PCraYtRl0lPsykNEJTdC7Zj+8a+Kepuu2ArBUuwOWOwA8OzlR+XfyAB+SR0hngtKKaIRIrPYs6GAbCYpseSOj+fg7M0v2m4n64rJXaf2qzmLPvaBkT9xXXQCLtr7LrBhNj+TkgU7VoJsUH/BKaHCIyzNBbMTWTeb2u8VQ/1uTt6qWoxC/Tha58iAUuY4vpxcRigvFLv8GDKXXJ4QSz3ppO36aTZ3sBS77uBpnl11bp6OrVtgBtdBc30+GmE36qAcXlVy1yNKiKqPHYDvxK1Msk22FSFE5YHO3c6IYtfa4v74Bzh//1hgdD/88eIQY4KlqoB9W9TXUQAThhlrB0A686Lmf+d2Whfb81jstRLmc/9pRZxEVSJlcvjxSeDpg3Q2cF4hljWSBxhEpD9HrSKUQQ4a/pXlfZ0kYIpd7wawrqXq14zj4uoHLO8/o/gm/FE01PL+TkKIehy740p969/Aov+Z2oWVYlcbPBUtNFXFbvM4IvV2GJyB+slVwP+pp4DYW5UCVkw1LINS4SqtVrXfG40QXNLHWIlArXZFjosulC9Qe0Zz7gMVi52B1a6X8qBR7SJMvDXrspK6YnDoOSp7mMdPdlKwFLutOHZ1Hj27C2LRCFI2MxjXINWWXTGb91Qyt1ZF+IEytQIVrDLGaPBSbz4XiAHKq1P4bfk2VCbZTlmPRHKvu7orhs3xCIAteyuRSuf5HUsmSnZSphg2dw6UCtcp27dX5G/V5VdFv5YvMKKgcy4BG6nNPMOyiKljb9fd1stQaqsES7HbCHfUokHNhMU92XHEE9/hhvfY552hyFomYiEG6Xnyy2DvA+PnY/CY6ai/13geeC0+SJ2Ie5N8MRWZxS7+Vfzm1y4/HJxFazG33DOHPo9/h0cmLFTd3ghmE23lLZjB6Bo3JrsMtm/kXLLzsb+V4gMApqQPz5v7SXoYmdx5TlL/yGxDsoQ+dgcQb/ABh6gnOVK7d14cfBgGdc2mFljKGZuOrIVVy29V8WD0X/G0rWNLkYohDpStp/JSYH7KFbN86z4cTpbg66Lh+TfOw4jUtdgolD2LqsWxK77XSsRwYqfGedtVi6PXUqrfLLCextmsYk9SfStVq1dmJeTRUPuqSlqxTc51obBqmonjCdO4Q0ztd9fJHQ1v2yqy1VTbfiBYit3A4OkzF3SXLW9eoh2jenq35jIFZ/eNu3jTHqzYui//hgAfvzzmRGAvnw72itgU/L2Z/RR1redX3UHjDQ2j+/FWwt6LbUL6CFxfLe9SiykF5MtyfdDn9myZt/1DImvzbpOtrWrwPlJRgkYVexWN4e3UyXgzraxDa+yqJqJsyrrlPjMUE+ZuQN9//4C0pqVDgB+z15tSzrLVPiZ9Gv6TPB/vpk/OLOtV+QqO5rSrNHVuVhendjU/SSsfocVuFV1XjHBDK+7rJhnFrn/SJw87HntK7cWz3/zBbJz4zI/4bdm2/BuPvQRYPxN4Jms5nPys9VzUAHBG1WM5y0TLTO1x94vVftOe51GX2Ju1e3PyNnwj5IQRkQ+eCn8V+9k7A0r/uLkHe/aaHXhqktz9dErkT0P77kcxRqaGoALFusfWusSJmEOPPqW4Z9xcrN5ejgqtcSNCgB8ez3wdO3215cNVIYHn0+fKMphuQwl2W0zFbAd/PE08TK4uIeRNQsgWQojD6e7yK3bljWz0ZHdsWgc7+/3LolxyBr8+PXdhOglMeYjPXggAVXuYHEvKuIeuwV9cO/wzmZ0GrZxWL56n2sUxtGpgvDSck/SucKZgh5q7gRCgQ5Paku/sHsdsCT5j2w8eMw3jZ0tn1FI8m8hNWayG0g20jpYCAMrzpK8WKWKk2NUsdvH3a59Z+ZoJczeA9bCv3nX1iT3jKKxe228DUPYJ2eNwrphUJI4lXP5uuSW++Afw63PA+0LedI5x0QIARcU1cUH6Mcyi2Zh8UbHP4PiewQ7UQf9OjdGzdX00K/GHYncKohrHTvDN7X0xfujROLhxbUkhCiso2s64YozxfPRZTCrKpig+M/KbiSPLtdNvXBfQa77FJtpAIZM6TlrseV1RCs16+64nQd84WWNjYDrXybQYXuhuP7li7MX4CVBKfyKElLFoK8+RdNapuxzU3txPn99NNa8LxyruTWTjXKBOM6B2aW4sL3UmvFGJaLX+K3UJxqZPwKgbz8bhbeq7cmyviRBg8BFt8OqPy1EjIfcpH9a6Pr69o6+99nMUO4+mEfHWINk40UlE7napp8yoqIPqEGWr3jnLimLqvnRWFnsuNPdTHhO5d7VKD1fCRsXLygindWuGD/+Uj4v4tQSBEzBR7K5hIW1v5mGTLLuwl/rkDJZ6nVIK8tpxQO0mwF3yGOBej03Bt7QC9dgdThNxht3nt/RD29JaqGlh1qEjJCsALoXy3dstFCg0RoQQ3DuwI+48uQPiUfaKrH9UHgaXndavcSOt1i+8bW4uhTGbtFaRumK/sHcrTFuxA98usleIPTfaUeKKWfkjUL7ByF66mK3PWhyP4Kh2DXMUu/hyb1lfv6f6UupM/CP2paljArzFPm3FdnRLL8DO3XvQotfppttghWuDp4SQ6wkhMwghM7ZutRg+ZOCVq7TQn72oBy47sjV6ts5vpaap8fJr+ZixWihwvS/3wdm2rxqplDOZIKXhZ5QCvdvw1k6TusWqSn1TvZ6OyKFKqgp481Rg3QzgpT7Av1qi5svd8++nQbfKMbrr2zSsCUKII0pdDbtdcTPF1Y3ep7WK1F8WdYvjGH25/eR3SeVkLC6FqJAGt9aH5wJf3oz84Y76GP2t952q7rIZdTFf4/jgxrXx8qU98e8LVO65RtkghudT5xo6XkuSmxbi4tHTUPP9M9BiwqWZZZTS3PPkMK4pdkrpaEppL0ppr9LSUouNyN0Xe2n2zZvJ6KfYpVWDmnjs7K6G4nZZuGLqoBwxpFCVZxYl84rvAkr/5hPndsVXtx6Xk7ZUpHFvYzcxE7YuBtb8BvxvGLDLfmGOPagluwekjLmiF546r5vtY5iBmBw8VfJUXP9FJcXoIfRcLqJ+7VY5BjjnNcPHlrWhlOTF3lgYyzfj2KTFbjBJ2xVHtclZdkb35jirR3Z+yqCuzVC3OK4iksQgMijfL0XD0IWs0Fx/wv9NxbZ9VfjPlL/R/v6vUVHtjvsVCFq4Iye3cp9OXZS56Ee05Sel2LHOtONujTOv+Fo8H38xr1FipnCEEY5r3yhn2aldm6I4HkXn5tpJodSKUViGUuC/5wPLtKrgCMfi2BUkGNpgNE6rejxn+Umdm2haq06h5vZzinzKp3lJMR447ZA80SH8uj2oBRTpJw4zzD5+XsbRkWyA3BLF/IzdFeaSbhntyUh7q8e1L0XDWgnccHxbYweh0rEB48/E+MRDkuPLr/zKbfvx0Z9r8cL3ywAAe6vcK8TB5M4nhIwF0A9AI0LIOgAPUUq1ZwhYRae6+ZPndQcStW2N9vOuGOucFeHD9gZF/0C++AbWFvuQo8sAiA8rxR8j+psqYryPFqM2qcy/oR7JcmDZFGBVnvDFrYvtHUfCnlhDLKBsJtvYRdMVk07J4rZZkE/5HNqiBNcel1+pXdy7FW/RJvUHMM3yQeKJzOc0R2Um5Ivf/437TbSll45Xiwa1Epj5z5NM7weYezHnc7+N+m6pJRnswsRip5ReQiltRimNU0pbOqLUAVCVvMligd3aRXFNd4NROM6eh31UQlKRKK/Fzlaxd2/FD8V+dtPRuP74tiitU2Rs2rjg3kr2uNK2DFt28wWQacQ9SznmlyT4kMaxKx72pd8Av/yH6bHyKR+jZ+XJ87rhqHYN829oA6WsVUlz40vvp80paEuuMAuuGECu2NWUfHWKk6x3714NlCtm+WbtgtGJuH2rLc0wHkp6EZNpLueSKxU7Rwl6kGWWj9dIsM67tCjBiEH6XXAZQi7q+nWUBbHNc9IzQkWhiFb+d/Y3tlo+GK/QimP/cdmO3I1tEsSMgyJEJ7pNSTWNYgEtM7StGAGWL+pFjxW9HzZXFNtIPnqBbxdtZh9SrUGgFDvVKXgbjdj/KRxnzxUjRapv7hk3F+WKgROlYqcAPi960PRxnk5eaEW8LGIvKGavtwNQPB7nO2qUSBT7HmP1Ii2j8gwmXIqCyUV98PS138zXa81/JH3lU6+mygChA1iJBDKj2H/nDjW8bVEsilcv64mx1xkv+SeRCgCwvVEvVgX/chj+2Ty8byN9ghkCpdjjRH5DyG8q+xYMi8FTNb6ckxvLG1G86c28+UU+SvXDy+mzLcsFIFvOLWpPEdTFfpwe5f20kYrt2eZf66f6+1mhzH3+7tV98N2dFiYenf+WbVmyE5Tk17KKuqNkpTx4hnGF6DbExOS8m5LyalJ/ce10tx/YpRka19VO/JePJFMdkJu1csNum+NYBgmWYo8orVyJMmfQJW9byi5xEJE83BEC1CKM6mGyRrTYo/YsduUsTJHY/k24dexsfL94M35eaiA5mkmSaflxj+9QilYNLEx56mI/7DOiMW5SDfaKnQrRYPEowTmHtcjEarctrY3ureqhtksRQZYsdhP7lEOupK0MpJqhZjxi2c11fGSu7Ps9sY+wqvhS5hFwRgiUYleeIPkFsH/Bj+9QyqQdQP6eaUS0xwZsHYOF4ygtWuz2Co7kGwy++u0ZeOKrRbaOIUXM6cNy4seI5DX4Kd0VN1TrV9TRQivc0ezMSTU+SJ0g+y4eIxaJ4NmLemRitRvXKUINBuNNLMlNvWD9mpmZxGUK4YHt3rIEVnXARdEfZN+HCrNXi+BemKOIT+aXG4NwOoqd0SBaUTwCFi9Y6c1bj1OvPuMLxAiWhL2J/UaifNqTdbaOIeXm5K0AgGqGiv2DdH98kO6vu81SrgXaR9R95pkXbc771v4LeCfqKFpUz2bqT+S/v1vFDMstsXhJ6kEIwX+vOQJ438K+Gsu1enJOEiiLXTlBibXFzpKIZIAoReWnuQTGkz0peTV1Ol5OnWl5/xxOGAEcewfQ7SLZ4onpPqaaSRDtge22hPexP594ybx8GuwTZpwee3Aj1Cl2zz7R6yXVI/vRiyyWbUEpZdKziun2Vr3j4Ej+8ROlxX7W3rGWj8dRh1UWpThWZbKfEQioam9EqthfmbrcsmhmCLhil8DIdKEGpy/rwVEie5iVj3UtWB9AeSM1CCtpU9myz4Yebbk9FJcAAx4ConFwcd5q71/1b2yg5m7uS6Jas02BlsReabEtNDddWkq4dZuV1MC8kafYap8lV8SmZAZPl2/dh/LqNBMVHFOJogIYzxy2QFOyM+82WuMvVmBzNtVg024vklv026n0IXoESrGXV1ZiB80OcDphtUxJ6HfFjcAP8GhPUS4i1n1u1Qrv2ZTbjzeU4MwMO2gd0+fWyANulQFVuWXzxC65Y3nFbbC/Oo3KZBr9n/kR1783g5HFrt5bZfcEOBdfzcIVIUYWcYhgappP4nVH9Y0AgNI6RfjeSiSUKtbPAwFVfYkpe1tu4L+nQodHt52A66vvwEepfgCUI+RsbvHPi85E28r/2mqDgmDuGu1JKXYGU1KQD4y1b1JHY0vr8B1Kc7eG3s3bndjrfu5RKXMmKjZRsV933EG2jgEAfTuUomOe82lUSY/8Yj7+Lroc7VZ+wESxxzVcMcHwsdtnqDCmwiGCG5K346jKF/AZdzwA4M/7B9iPaGNwIo+PzsOLiVE5y5W9rY277ZWBNEKgFPuGaHPMoJ0yFoATg6cg5pWaEgrg/yYvknyXy/Z8/AXLbScdHO8mhP/dFCTj6jCKXkjXnfFxtuTSO56YvfD+0zpj1ZOn2Wrznav7YPLtx9uWDQBGLDgNCZLGI/F3mJgcWt15v9St1YNlZaE0IqhCAhvhbBoEq5SS3JKXUSJ/NtyYfBooxS6iei8zvsFXnDPB8r4UEVmXTKnYO2hEVRghKbHYWZfiEqUceeahpsPKlBal02wDX9LOuUpA2nyf7pF3m7o0m9GQiSuG6AUO+BsWPvYtlHc3zqdlGDagve32NHGgzJKyNxuPOn/tAqXYRetEfFA4GsHk4lOZHqOJMGstlrA+e40CuoOndqCOXjL+/J5zWAvcNsBcnUm3J2GI58Ht9AFRcLg6eY+pfZx0xbDOgbarBStfdRYWv38ebYuzqh7BqNR5OOIgJ6x155StsrflRjKwQCl2EWmypdF1/gE8kFvJxCqjLu6BZy7ojtal1gvXEcgHjOxaV++n5AO6szjeYpnIHWGr3RwyvR4CEHOTXAYoysQ5ySXV2aSvbg+exoj+C4yA4jjFDMRjJbnJLR9XodjnUj4lL2tXDCVx3J28nmmbrHqWc+jB4BBB47p28xrp4bzFzi4jld4xA0RW7QgWOyIgkSiDBFZZ6tVM4LzDWwK7rU+miYBDVHLxjojYm3FZDvnvW05boKzyA1tt6kJINlWewGKuFTpF1mrs4C6LuNaZz04o9uM7lAIaBZ4S0E85WwcVeC/xpGzZHQzGGKQW++lVj2Ep5WfesrbYKYANlK1FrMyLZJd2DFN/ZHDQiFYOnrpRiSWQFnsko9gJIk7l445ZT/0ZBSebqPC0iZJnaszJk/iIHcK5pDTHYvdTgXdpD8gJV8y7V2tPzlKGHSphPe4hIo0Am0/bogpiCgi293+tolgg/PduTkqzS24qFOcJlGIXe51ZNwdhbrFkiFtX7BFCMTrxLBMxNtH6+JPrmH9DFmTOJVXJqe6fh136YMRc9rHnGyR2IknVOtoIDySvYt6uGkWxCD641kraW21YTqkva8hPohPHOKcNtz/vRIYLg6cOHCKHQCp2abIllhkZZcSsD54CwGER60UzpOyhNTUtqK4tSpgcQ5Uci90bxf4Xp1beLSuLoSpRDInntdjZ82jyMmyF+iQ0R34+Y789y9bGDz0GAMAJ2pHd9XfuPppFOzjWthbB6c/I4C/qTSe0R9t+nZ05BIPCHSzQyjQy4ZZjraWnNXRQChx0nGxR54g7BQKUXF99Z84y6UvG6QpKY1KDcF3sq8z3/IqdvTmm91K9qZ8Tbjq255SlxV6/Fu+CEhU7+9KI2eu3hdZDY8I+gZ8bg6f+0F4GEcOERB975+YlKHYyRenI3a7W79SG/93lNDuI2qVFCUpqsM7zLXlImnYF7t/MrOW+kTmW9lNTatLHwqn37wPJq/BW6hQ8nrpMtjxfbnUnFLvWhLlVT56Gq46xP+MWANBMiM3veQVzi72JA8pRnOTDbIxN+ZuHr8f7ZWwLkIu44Yrxg9YyTNYVI54Z57vhhDNXeJc1VMgZx38OLmdEf7e0Xz4XUMwhzf5fjQLKZ1U/qrufM4rdBXdTSQtgpFA3YNWvzh/PLsJpdqyYeVFt3HrSocDr7JsOB08VEMVfvybK+DXNtiyZawr9tGeAWqVAUV3+O8Pza9VKUVNqorK/sW87dGjizBjL21f1xlPndZUteyt1Cv6mrXT3Y6nYZ3MHA3BJsUvx6XMlhb2PXUByozo1fqMsnegEgVLsIpmHh/hT/FWKtLp24Ksm8jeY00UG0PV84O5lQFTsyLG7sa3KrqfY7zu1k2O5Uvp1bIyLerd2LurKAHuoEAEinLsf090wptYNLhzZH4pdmdXz8DbZAWRXBk8d0i9hVIwGERddMX7CdVcMS4vd8n76PnaniUvCKY1Y4yzvyEdSl+OndFdM4w4BAFyZvA8TajAssqKFTwwm5XjGe9dk5xcc2pyPCGM3eK5ybQPQc9EiUD727Immiu8O0qgjsG2JqV1Y+1m9862ztNittaWm2B3vuUhImFbs7K7WctoCVySHM2vPMD5VaDUTWXX13jV9sHTLPucmKAJwynAMLXYF4mmeLlgwqM8oIkCPqycBN5odTGKZpjQqUW7B9bVaTV6mptir8kSmsCQekyr2/LCePp+DcE3aNqrl5EEcbJsN9Wom0LusAcMW1VwxDin2MFeMHPE8v54ehLMvvQldmjgUwy6lZgP+n0cMTd5WEFExVmVXt/TdUzzxKMkUN/8knT/zoVMpBaTM/udJzob5Nu3Chz9G48C6P507Th4qaCL/RsyRXL/Qx+42BFxd/egEL2GpdtbQJgxbMwtLi91aW1ounH4dS+2IYxipj30eVZsF6wyrOO3rXr9WAjUSDir2eA3ghh+Blr2dO4YO76f646Kqf2rOtnWEkx4B6rYASqXpqp2y2J0nUIpdepq9LuKrB/sCGGKa4uC6YqwW9BV/8+aBY/Bj66HoWfkqAODtq7QTdbHk0bO7qC6vouqdXVbX/ubkLUzaCSL7UIzp9BB3D9q2L3DHQiAhcXE55YoJwx3lSEPb/KzYWZNNUxxcxW5V4YmKvbL9aeh60cPYgbrMZDLCCR0bqy6/IXmH6nJWij0IGRZD/EugFLsUt5M/mYG1ZNlYIP6T1++0XpWvmN7HrsUeIQQNannhcwVw6aegAx6WLdJSvCzKwPHw7YvZDAuRr9Pqrh7fvNQ4Z6qCha4YBXJXjGdi5MUpV0z2u4u0Pgq44J3MV46STL1RM0SJNcXO+eFl1n4AyLHDDG3K+tqf2b25ov3CwWxdXdeh7JKXyZoNB0+1cTZ+1V/kWuwu/varJwGHnp35ajWcz6rCE2PWRddbG59YsFq/hvV0mSBHQuUjDa0BYJ8829SpOr6hj13GMxd2z3wur3K3eLIZapMKpu1VCnHb4gxET277a761tbt1VwyPqNgnDzse80aebEsWqxzXvpHrx3TDuvOKlN/Vj1OumNBil9OmYS1MGnYcTuzUGO0dSv7EgkHRP2y3sYvWwsGV7wIA9qEmLk08j70DXwDgkVuiadf82+hg38fOfy+OR1Gn2L0JSlI4yROp5QdmPXjqxmQWTUqcDSlOaUQW+QanXDGOtConUIodADo1rYs3h/R2doKGD+BAkJLMH1sVaYVzj+Cz/REvbHabBcOtF1vwwP2kAWfoJxSQiX3EjcAlHzrWfErDFeObM6hQ7CdXPQUA2EgbyAqqm242tNj9R+/0G64cR0+NeaLjCMHsmsfgluqbLe1uN1rED0MqUut5BddMdRt2UTHq1HDToIlEgI6nqq76OJV/Fm4+kpo+dp+gKI8p7aVV25i0H1ZQ8iF7qJM5OrKodekT0Qhu6NsWn950tCsyKJnU5Rn8j8seex017nO26ooR8cO8BU5ySdajFHhgC/aX9pBtwzwBnNBc52Z1MWxAe4y6uIf+Di7xafp4221oW+zya/3mkF647jgX8kIpadYNOPIfma+ivNtoXfwjeZvlZgNjsRNCBhJClhBClhFC7mPRpu9ofwoA97qJapYfIQTDTz0EXZwsYq3DXad0xAOn8QO4B1e+iyHV9xje127dSz9EQbWsV0O+IFaU85SyllJ8mTSolcCwAR3QuK69IuusYDFZrgLG3HsndmqC+09zIS+UGl3Pz3zcQmZRN78AABciSURBVOvh3uR1uLr6bqyj1lNaBEKxE0KiAF4CcCqAzgAuIYR4dBUc5MJ3gTuXyNK4Oov86hfFve9cxaMRnNCJn4mZQgxbqPFcHjHYizDwgV7Ho2d3wcuX9pQvVCSKYuWKyaaR4P/6oMMig0UMulghSolvfOwAlNJ8lD4BW1HflkssKK6YPgCWUUpXUEqrAXwI4CwG7fqLeDFQpynG3XSUK4cTFUSEAHee1AFvD3EnN0o+pDUm98C4W8q+Yvdes9UqimFQV7lvPV5DHp3FPLtjpvSA979fCovZoRQkUyUqCEh/cyzqr+uhhIVibwFgreT7OmFZQdKpqTO5SpT+apKx1Ahu6d8erX0yMcdqKocYCb5iVyNRLH+5sVbs7Ur5F8epXdiVW2QBq7xFdl/4biK9skP7qfc2lLyVOiW3HRe6JCwCSdWucI7ohJDrAVwPAK1bWw8VKlSWcK3QMrot81202N3IBGeG2kXWbpk4UraO61O9zqe4lVCf7GXafMsGNbD40YEoinnvipPCqoqV2n3hm1wxOtzUrx0wNf92+1Aj/0YOwOLqrAMgncnQEsAG5UaU0tGU0l6U0l6lpe7k0g4Sw5PXyr5nfaz+opZFxd6FrMy7zT6qPTDoV4tdOXGrCdnFpFmpciuOR33nimGm2G325BynJGuEWnnhqD2/gRg8BfAngPaEkIMIIQkAFwP4kkG7BxT7IVdq/nqMs8QtDh4n8jzAHSrfwUPJIZrr/TB4KqWO+II75nZvBfEIVq6YB5NX5izzlcVeO2uEfnDdkaZ3V3dnBKA0HqU0RQi5GcBkAFEAb1JKF9iW7ABD+aAQm+GBTtKspBgbd1cybbMacV1l4SeL/fUreqFj0zr8lwhbF8lWWoJSsjvz3ZNZxi7ybvoUdCJrMTj2ver6p8/r5rJE2vRsbb6ik9qYS1B87KCUfgXgKxZtBY0zqx5Fv8gc3BEfZ6sdZdfWz4/z78P7Y29lEi/9sByYbr89sQycnqXmI72OAZ2dK1e4TaHY/cpWWo9ZW8rrLtV7F/b2UwlM8zehqmJnIUoe/DUiE0DW0VL8RdvZbkep2P3ue6xTHMd9p3bKv2EeHk5ejpOrnwYAzKbakQZ+8zE7TVePJqEZoVvlGEs5+bXw2ziSJhbuQbV5DWFpvIDAwieo5YbwWVAMc6oRR7WQlng1bYolN67zWCK/4N8LL85fEJNimWUx1wp/cB0zaah95VPXxYrFnktosQcEFgNJvq8m4xDKOOaM7/oAJZuu1//8Ta25SZbRFriw+iFUCAEDP3PyyCL/KfqsPF/84xj8dPcJeff4V/IS4ZM3PvYDU5swRutGTFNjN+j36R7wt1fdOYI0QcUNcsogFuBtodRr33C9cWilO1lTbUEIureqZ2iyYKZAjHrAI1Ox1AgVOwO0FPsM2tHQ/lcnjSfTCjJbae6s3agBxd6xyYFhxUuLO/ftwOfk8UspQCl/jOiPZy/qnn9DCZdU3493UycBUH9e9ssm8vDr/TYpy4zxlSljGVrswUVLsT+TvMBlSfyN2lmK5QnrnD6iPz4b6k2aYrdZRbNpA07r2hR/P3YqmpV4M3NRj8Z1i3HOYS1xw/FtDe+zlpZiBmfM0BGxOmeCOVrdpht+1txFdM86nZ9fC5/XpgoGVMPlopVv2gjbaeFZqWqpexfSNrr7NPFJmlq3IYQg4TuL1S7GlJxvxxeUCr5mQ72Nhf/DcMfAEiFsJxNNaXgpBlqMOPAzY9Mnyr4fWfkCpnK5hSOeTl6ItVwpbq6+xS3RfAGr2Zx+hIBK0mQE7HfWUa+WpQcXumKCTRoRFKE6Z/nv6c6GMv1V0tzCzGuLO2Er+AkgtRI+Lx9mgo/T/WTfN0Hd4ukx+FEcVz0KEzh3UiT7hcApPJPi7gTfC12vUXnr5dSZALR7wJ5x9STgnNeAiOJZ1BnZ1vexh4Onvubm6luwG7VRjGTOuiEGB0Q/TGdDp9IdTwMgf15qWky65Te20hKspsZSz558qL9S1OZjC8NZmEHCTLoDAuAnrhtuqB6GZ1Pnq26T9KtnuF5roPvFKissKnZWcukQKnYbiBZlDVTlrKtCwnyDjQ8FAOyJZy1Zv1vsa7lskqQbq4fh9KrHNLY0dzs/dnYXdGhSO/+GPuC4queYtFPIrhgegslcHx0FLr9H/JayOgcdiz3riskldMUEhGKS64oBgDXUZE6RvvcC10zB6pqHZhbdfGJ7O6I5zjXJuzKfJ3F9MJ8ai5R4KqlmAWW57Mg2+Ob2vrZkc4sqJFCl4lIzS9BcMWZi7M0UIGnXOBgvdD1oJiomd/wtKKXxDli6teTzZXyb7qm6fivqoW3lfw0/9JFoFGiVLYH37/O74fzDW9oX1EF2U+Pl8aS8kj6TsSTewuJR3UQbYHjyWqyo2Q1o1IFBi85i5jVkRLGL25zSxfxgpTfkPwOqW4QWu4+J1cCXNx+LNg1rYivq467kDaqbcSYiWcVEV0FK1Ro0K9Mp9sLeRKJrqu/E2PSJ+IsejDEHvwTEihhJ5hx6FvsuWgu/pg/V3kAHMUVzzzbm0+S6iq4rhletoY89SNw8Axg2D0D2jaxnkRSy8vO5F9Q1Lqh+EGNT+XOIaPEddzj+cQKf3TLGOMe7UzSqrf3y2UZLcGnyflPtiU9JPBrBhFuOxauXHW5DOjfQGzwVtwjDHYNDo/aZyiriNWpSR/smr6Hhg89HMJQmf3NL0wV8mj7O8N4DAxYBo8Uq2gyj06eb2mc6l0173LBWAi3q8VZ/nWKfRocouOxI/cllUlabGm8i6NKixHIZRj+gHxUT+tgDw5VHG7/J8xGkxE8/38tbqQ1rZ2eIjqD/wNXVd2ntIqN5Pf9NmbeKnaiWolgEF/RqiTtP6oBbfD5gLmJmyj8tRFVjMSrGDQrwbLvLhb341KWJHhcidcg5qtv8lO6qulyLcw5rAQDoXdbAnnAuUKyY9t6qQQ0c3Lg2vud64lgDYYBBeonlw27q5Xg0glv6t0cNn4e4GsGK+3GXOBBfIyjzAvLHsatGxYSuGP8ztF87LH38VJTULUH6PPXUo2Yf+GMOboRVT56GgxpZizjxgggheOKcrhh73ZEZZW1kBqHfilRb4dGzu2DYgPa2Zky+fmXv/BsVOG+nB6J64DNAr6u9FsUYBqwStU3CwdMAQAjJdEnjGoNeKcWEjIuq/okXUmcDKIBZixLzY/ARrdGyfjY6RFnuTw1pkerj2qtPNfc7lx/ZBsMGdDD9Apf6Xzs3z01pHGTMKK8XLjkMAJBGFOmeV+VO3Q8gVZSfoKiWbsSNiVfBHZ3wIREN8zOpyPI4nR6C6alO+Jtria+4I9wQzUGy4/9KpD5n5cstg7DJPQM7Ymg/7ZqnQcDIi+xA4fX0IMPbntG9Oe76ZA6qUmyT6blKzYZA+fbM171Cfvk6qMjZtHMz51/i4Z3oAlJLLuNHBMH/uKORtpHa1xeI1odKn1Oq6F5JnaG6uxiz7/fZ40Y4IBR7s9xsnErW3LQcH6fNhX4GcqxFKvSAh2Wr9lJesdcmuYq9sQupqEOL3QWkuTFe01BwwSXXYheVtdRifzd9iurekYw/Pvia3WxUjJlp9p5SVBeo2gM8uNOQBo5GDxS1kp3FguIS2ZrltDkA4DMTob8sOVCugKekadaSkz7K39/ZF0XxKE7491RUpwPcDQVkD7z40YiiE33sXEB0nB5Wo2L2ohZ8XVZl2DwgVQkYnDgVi1rvhboR4+0IihfeTtRFWeUHAIDbB3TAs9/+7ao4oWJ3mG4tS9A53hDYyH+XKru2pXyyo+/v6ovV28u9EM8+Opa2EddENoKGlUDeYSXE79iqUWjUsCE+d0AeZpgMP4ypxLePurgHbvvwL819gpRGI4NB/1G3ViX5N2LMAeAU9JYvbz4Whx6VHUiaTw/K2aZl/Zo45uBgRoSou2J4DCn2TCvB1+xVyJ/s7ZPU8ZnPBMA6Woq9xNf2umlisVx78aweLXT3CcpsWzkSxa5jmXhRlDtU7G7Q7cLMx9+4Lh4K4gC1hHzsfe/OWaV0xagFDZECcsUYUeybkDvprAB+ugwruW4+vuEoPHh6Z9RMBFHB6xMq9pDgEa8BjNwNHD4kZ9WVR8t7J2rKW/SxF8LgqdSCO67qWVxffTvmcWWyLaQzEQMzeKrH4I8zH8XcNzELiqysUS1cfWxub9bXSF0xOm6ZqORF9/oVvZyUKEPhvR695sL3gGgCeCvttSSec3KX5sAs/W0KycfevWUJsI3/vJY2wVraBPXS+/B0ZExmm2WcvksicHTIRjtdVX0PWpBtmGzCYv/fzcc6IZVLZB2JesQkXdXDXUpFHFrsrOl8JtBxIGb98yTMfGCA19J4wnlCcZAW9fOnRMiEOxaA9Tp+6DE5y5QDqjtQF+dWjQRQIBa7hBtP6oaltKXmRD01urZ0f2CRGVpW+kHHy742LcnGrbsVrx8qdodoUCuBhjr5qguZy49sg+VPDEJp3fzFJwrJx66m0PZQ+TlQVeYF8NsB4Nb+7bHqydO8FsNbOp0OXPk/2aKYBwmRQsXuMj1aBTw3jAEIIYhGCECMhztyheCLAYBrvwNuyfqfJnO98XTsBpxQ9QzGpY/HryqD5y0b2Ku+FOIVahm++Pu4hSQdNZHO8XAprDNU7C5zRvfmXovgHgb6nZkkYAWi19GyF9CwHQ5rLb7ACY666G6spM1wV/JG2Sxk8ey8cPFhrovpNKcc2gT3DOzotRjOIru/5ff6a5dnqz9FpRZ76IopTMToD7cGUTzFSFpT4W/BWOwC44ceg45N+Ph0ZQk5qd+9U9M6KKlprNh5kHjt8l6BT+qWH+37uzienX0r1etueWVCxe4yogLr2brwXTKq3PQ7cM23ma+dhEx3XVoEeBBNA2nEz4hBnVS36dCksCYnHbjIDRNp+K40NXXCpZj2ULG7jDhISAKZzo4BTToDrbJFJfp2KMXUu/rlnZkYRLJ5cCguOLwVSmrE0aqBxPcKiqfO6+aVeCF2UXuGxXkZGrskTJQTtEOo2F0mk+XWWzF8RVmAKkWZ4fTuzQAAjesWoX6tBOY8dDIOa1Vf5oophDJ4By7ag6dS16LULeOWQRdOUHIZMV77gLLYm/cEVgCX9GnttSSuclPfdrjiqDLULpI/ZpspP74yleuO/NnNA8AtswCqnZ10I22AZpLvn950NB6buBDnC/MdAovO4Kmo1zs19cbVZkuxE0IuADASwCEA+lBKZ7AQqiAZMhEo3wG6mf9aCLU+DXHrbKBWKVYVHXi+ZEJIjlKnADaiIe5v9ymGnFQgdU4bttNc1aXydaQQxWIAU24/Hsu37sPhbeqrTuYqJJqX8C63y49q48nx7Vrs8wGcC+A1BrIUNmX81Glu41IA8gGVgqZBW9XFf4zoj/3VB27ahT5dD0H7poU3YKzk2+FnYGc5X/ezfZM6aF9Qg8Xaz3BJzbink7Vs+dgppYsopUtYCXMgcKxQsLlvx1KPJfGWxnWLcVCB+tb1uK1/exzSrC76dWzstSiu0LSkGIe4UOPTE0wYZw1qJRwUJJfQx+4yh7WuH067PoA5uHFtfH2bN+XSQlijptjV42F+uKsfKlzsoeZV7ISQbwE0VVl1P6X0C6MHIoRcD+B6AGjd+sAaRAsJCTmwKakRR0kN9yai5VXslFImKQoppaMBjAaAXr16FdY0w5CQkAMPVVeMP8bOwjj2kJCQECv4OADClmInhJxDCFkH4CgAEwkhk9mIFRISEhIAul8CXGHYI+0atgZPKaXjAYxnJEtISEhIsDjnVf7vognCAn94mUNXTEhISIhdfOaWCRV7SEhISIERKvaQkJCQAiNU7CEhISF2iQjDlVF3Z5hqEc48DQkJCbHLwQOAY+8AjrrZa0kAhIo9JCQkxD6RKDDgIa+lyBC6YkJCQkIKjFCxh4SEhBQYoWIPCQkJKTBCxR4SEhJSYISKPSQkJKTACBV7SEhISIERKvaQkJCQAiNU7CEhISEFBqHU/TSThJCtAFZb3L0RgG0MxXECv8vod/mAUEYW+F0+wP8y+k2+NpTS0nwbeaLY7UAImUEp7eW1HHr4XUa/yweEMrLA7/IB/pfR7/JpEbpiQkJCQgqMULGHhISEFBhBVOyjvRbAAH6X0e/yAaGMLPC7fID/ZfS7fKoEzsceEhISEqJPEC32kJCQkBAdAqXYCSEDCSFLCCHLCCH3eSRDK0LID4SQRYSQBYSQ24TlDQghUwghS4W/9YXlhBDyvCDzXEJIT5fkjBJCZhNCJgjfDyKETBfk+4gQkhCWFwnflwnry1ySrx4hZBwhZLFwLo/y4Tm8XbjG8wkhYwkhxV6fR0LIm4SQLYSQ+ZJlps8bIeRKYfulhJArHZbv38J1nksIGU8IqSdZN1yQbwkh5BTJcseedTUZJevuIoRQQkgj4bvr55AJlNJA/AMQBbAcQFsACQBzAHT2QI5mAHoKn+sA+BtAZwBPA7hPWH4fgKeEz4MAfA2AADgSwHSX5LwDwAcAJgjfPwZwsfD5VQA3CZ+HAnhV+HwxgI9cku8dANcKnxMA6vnpHAJoAWAlgBqS8zfE6/MI4HgAPQHMlywzdd4ANACwQvhbX/hc30H5TgYQEz4/JZGvs/AcFwE4SHi+o04/62oyCstbAZgMfo5NI6/OIZPf6LUAJi7GUQAmS74PBzDcB3J9AeAkAEsANBOWNQOwRPj8GoBLJNtntnNQppYAvgNwIoAJwk25TfJwZc6lcCMfJXyOCdsRh+WrKyhNoljup3PYAsBa4cGNCefxFD+cRwBlCsVp6rwBuATAa5Llsu1Yy6dYdw6A94XPsmdYPIduPOtqMgIYB6A7gFXIKnZPzqHdf0FyxYgPmsg6YZlnCN3twwBMB9CEUroRAIS/jYXNvJD7OQD3AOCE7w0B7KKUplRkyMgnrN8tbO8kbQFsBfCW4C56nRBSCz46h5TS9QD+D8AaABvBn5eZ8Nd5FDF73rx8lq4GbwFDRw7X5SOEnAlgPaV0jmKVb2Q0Q5AUO1FZ5llIDyGkNoBPAQyjlO7R21RlmWNyE0JOB7CFUjrToAxenNcY+K7wK5TSwwDsB+9C0MJ1GQU/9VngXQTNAdQCcKqOHL66PwW0ZPJEVkLI/QBSAN4XF2nI4fYzUxPA/QAeVFutIYsfr3eGICn2deB9YCItAWzwQhBCSBy8Un+fUvqZsHgzIaSZsL4ZgC3CcrflPgbAmYSQVQA+BO+OeQ5APUKIWLxcKkNGPmF9CYAdDsonHnMdpXS68H0ceEXvl3MIAAMArKSUbqWUJgF8BuBo+Os8ipg9b66fT2Fw8XQAl1LBd+Ej+dqBf4HPEZ6blgBmEUKa+khGUwRJsf8JoL0QlZAAP0D1pdtCEEIIgDcALKKU/key6ksA4sj4leB97+LyK4TR9SMB7Ba7zU5AKR1OKW1JKS0Df46+p5ReCuAHAOdryCfKfb6wvaOWB6V0E4C1hJCOwqL+ABbCJ+dQYA2AIwkhNYVrLsrom/Mowex5mwzgZEJIfaFncrKwzBEIIQMB3AvgTEppuULui4WIooMAtAfwB1x+1iml8yiljSmlZcJzsw58gMQm+OQcmsZrJ7/JAY9B4KNQlgO43yMZjgXf5ZoL4C/h3yDw/tTvACwV/jYQticAXhJkngegl4uy9kM2KqYt+IdmGYBPABQJy4uF78uE9W1dkq0HgBnCefwcfGSBr84hgIcBLAYwH8B74KM3PD2PAMaC9/knwSuga6ycN/C+7mXCv6sclm8ZeH+0+Ly8Ktn+fkG+JQBOlSx37FlXk1GxfhWyg6eun0MW/8KZpyEhISEFRpBcMSEhISEhBggVe0hISEiBESr2kJCQkAIjVOwhISEhBUao2ENCQkIKjFCxh4SEhBQYoWIPCQkJKTBCxR4SEhJSYPw/cVqsOIOZN68AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(x)\n", + "plt.plot(predicted)\n", + "plt.axvline(len(trainX), c=\"r\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
ورودی مدل با طول متفاوت
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "testX,testY =convertToDataset(test,50)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(450, 50, 1)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "testX = np.reshape(testX, (testX.shape[0],testX.shape[1], 1))\n", + "testX.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "همان طور که مشخص است کد با خطا مواجه می‌شود! چرا؟!
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "Error when checking input: expected sequential_1_input to have shape (10, 1) but got array with shape (50, 1)", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m#trainPredict = model.predict(trainX)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mtestPredict\u001b[0m\u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtestX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[1;31m#predicted=np.concatenate((trainPredict,testPredict),axis=0)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, x, batch_size, verbose, steps)\u001b[0m\n\u001b[0;32m 1147\u001b[0m 'argument.')\n\u001b[0;32m 1148\u001b[0m \u001b[1;31m# Validate user data.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1149\u001b[1;33m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_standardize_user_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1150\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstateful\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1151\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m>\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mbatch_size\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[1;36m0\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36m_standardize_user_data\u001b[1;34m(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)\u001b[0m\n\u001b[0;32m 749\u001b[0m \u001b[0mfeed_input_shapes\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 750\u001b[0m \u001b[0mcheck_batch_axis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;31m# Don't enforce the batch size.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 751\u001b[1;33m exception_prefix='input')\n\u001b[0m\u001b[0;32m 752\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 753\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0my\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tensorflow\\lib\\site-packages\\keras\\engine\\training_utils.py\u001b[0m in \u001b[0;36mstandardize_input_data\u001b[1;34m(data, names, shapes, check_batch_axis, exception_prefix)\u001b[0m\n\u001b[0;32m 136\u001b[0m \u001b[1;34m': expected '\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mnames\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m' to have shape '\u001b[0m \u001b[1;33m+\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 137\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m+\u001b[0m \u001b[1;34m' but got array with shape '\u001b[0m \u001b[1;33m+\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 138\u001b[1;33m str(data_shape))\n\u001b[0m\u001b[0;32m 139\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mValueError\u001b[0m: Error when checking input: expected sequential_1_input to have shape (10, 1) but got array with shape (50, 1)" + ] + } + ], + "source": [ + "testPredict= model.predict(testX)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.input" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/02_1_simple-RNN-diffrent-sequence-length.ipynb b/02_1_simple-RNN-diffrent-sequence-length.ipynb new file mode 100644 index 0000000..492cf47 --- /dev/null +++ b/02_1_simple-RNN-diffrent-sequence-length.ipynb @@ -0,0 +1,485 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

تغییر در طول بازه‌های زمانی ورودی شبکه

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense, SimpleRNN\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "t = np.arange(0,1500)\n", + "x = np.sin(0.02*t)+ np.random.rand(1500) * 2\n", + "\n", + "train,test = x[0:1000], x[1000:]\n", + "\n", + "# convert into dataset data and label\n", + "def convertToDataset(data, step):\n", + " #data = np.append(data,np.repeat(data[-1,],step))\n", + " X, Y =[], []\n", + " for i in range(len(data)-step):\n", + " d=i+step \n", + " X.append(data[i:d,])\n", + " Y.append(data[d,])\n", + " return np.array(X), np.array(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "train_step = 10\n", + "test_step = 20\n", + "\n", + "trainX,trainY =convertToDataset(train,train_step)\n", + "testX,testY =convertToDataset(test,test_step)\n", + "\n", + "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n", + "testX = np.reshape(testX, (testX.shape[0],testX.shape[1], 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(990, 10, 1)\n", + "(480, 20, 1)\n" + ] + } + ], + "source": [ + "print(trainX.shape)\n", + "print(testX.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
معماری شبکه و compile آن
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(SimpleRNN(units=64, input_shape=(None, 1), activation=\"tanh\"))\n", + "model.add(Dense(1))\n", + "model.compile(loss='mean_squared_error', optimizer='rmsprop')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "simple_rnn_1 (SimpleRNN) (None, 64) 4224 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 65 \n", + "=================================================================\n", + "Total params: 4,289\n", + "Trainable params: 4,289\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.input" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
آموزش مدل
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "حالا با این پیاده سازی به نظر شما میتوانیم در طول آموزش هم طول timestep متفاوت داشته باشیم؟
\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + " - 4s - loss: 0.5067\n", + "Epoch 2/100\n", + " - 0s - loss: 0.4110\n", + "Epoch 3/100\n", + " - 0s - loss: 0.4095\n", + "Epoch 4/100\n", + " - 0s - loss: 0.3995\n", + "Epoch 5/100\n", + " - 1s - loss: 0.3934\n", + "Epoch 6/100\n", + " - 0s - loss: 0.3865\n", + "Epoch 7/100\n", + " - 0s - loss: 0.3920\n", + "Epoch 8/100\n", + " - 1s - loss: 0.3851\n", + "Epoch 9/100\n", + " - 1s - loss: 0.3858\n", + "Epoch 10/100\n", + " - 0s - loss: 0.3869\n", + "Epoch 11/100\n", + " - 0s - loss: 0.3804\n", + "Epoch 12/100\n", + " - 0s - loss: 0.3806\n", + "Epoch 13/100\n", + " - 0s - loss: 0.3736\n", + "Epoch 14/100\n", + " - 0s - loss: 0.3740\n", + "Epoch 15/100\n", + " - 0s - loss: 0.3662\n", + "Epoch 16/100\n", + " - 0s - loss: 0.3708\n", + "Epoch 17/100\n", + " - 0s - loss: 0.3668\n", + "Epoch 18/100\n", + " - 0s - loss: 0.3632\n", + "Epoch 19/100\n", + " - 0s - loss: 0.3697\n", + "Epoch 20/100\n", + " - 0s - loss: 0.3612\n", + "Epoch 21/100\n", + " - 0s - loss: 0.3619\n", + "Epoch 22/100\n", + " - 0s - loss: 0.3577\n", + "Epoch 23/100\n", + " - 0s - loss: 0.3577\n", + "Epoch 24/100\n", + " - 0s - loss: 0.3534\n", + "Epoch 25/100\n", + " - 0s - loss: 0.3537\n", + "Epoch 26/100\n", + " - 0s - loss: 0.3556\n", + "Epoch 27/100\n", + " - 0s - loss: 0.3499\n", + "Epoch 28/100\n", + " - 0s - loss: 0.3484\n", + "Epoch 29/100\n", + " - 0s - loss: 0.3455\n", + "Epoch 30/100\n", + " - 0s - loss: 0.3415\n", + "Epoch 31/100\n", + " - 0s - loss: 0.3393\n", + "Epoch 32/100\n", + " - 0s - loss: 0.3332\n", + "Epoch 33/100\n", + " - 0s - loss: 0.3361\n", + "Epoch 34/100\n", + " - 0s - loss: 0.3387\n", + "Epoch 35/100\n", + " - 0s - loss: 0.3236\n", + "Epoch 36/100\n", + " - 0s - loss: 0.3313\n", + "Epoch 37/100\n", + " - 0s - loss: 0.3276\n", + "Epoch 38/100\n", + " - 0s - loss: 0.3225\n", + "Epoch 39/100\n", + " - 0s - loss: 0.3239\n", + "Epoch 40/100\n", + " - 0s - loss: 0.3161\n", + "Epoch 41/100\n", + " - 0s - loss: 0.3075\n", + "Epoch 42/100\n", + " - 0s - loss: 0.3118\n", + "Epoch 43/100\n", + " - 0s - loss: 0.3085\n", + "Epoch 44/100\n", + " - 0s - loss: 0.3020\n", + "Epoch 45/100\n", + " - 0s - loss: 0.2969\n", + "Epoch 46/100\n", + " - 0s - loss: 0.2989\n", + "Epoch 47/100\n", + " - 0s - loss: 0.2919\n", + "Epoch 48/100\n", + " - 0s - loss: 0.2893\n", + "Epoch 49/100\n", + " - 0s - loss: 0.2869\n", + "Epoch 50/100\n", + " - 0s - loss: 0.2843\n", + "Epoch 51/100\n", + " - 0s - loss: 0.2818\n", + "Epoch 52/100\n", + " - 0s - loss: 0.2788\n", + "Epoch 53/100\n", + " - 0s - loss: 0.2698\n", + "Epoch 54/100\n", + " - 0s - loss: 0.2686\n", + "Epoch 55/100\n", + " - 0s - loss: 0.2606\n", + "Epoch 56/100\n", + " - 0s - loss: 0.2595\n", + "Epoch 57/100\n", + " - 0s - loss: 0.2569\n", + "Epoch 58/100\n", + " - 0s - loss: 0.2531\n", + "Epoch 59/100\n", + " - 0s - loss: 0.2535\n", + "Epoch 60/100\n", + " - 0s - loss: 0.2413\n", + "Epoch 61/100\n", + " - 0s - loss: 0.2381\n", + "Epoch 62/100\n", + " - 0s - loss: 0.2340\n", + "Epoch 63/100\n", + " - 0s - loss: 0.2337\n", + "Epoch 64/100\n", + " - 0s - loss: 0.2308\n", + "Epoch 65/100\n", + " - 0s - loss: 0.2165\n", + "Epoch 66/100\n", + " - 0s - loss: 0.2228\n", + "Epoch 67/100\n", + " - 0s - loss: 0.2148\n", + "Epoch 68/100\n", + " - 0s - loss: 0.2090\n", + "Epoch 69/100\n", + " - 0s - loss: 0.2065\n", + "Epoch 70/100\n", + " - 0s - loss: 0.2043\n", + "Epoch 71/100\n", + " - 0s - loss: 0.1964\n", + "Epoch 72/100\n", + " - 0s - loss: 0.1957\n", + "Epoch 73/100\n", + " - 1s - loss: 0.1896\n", + "Epoch 74/100\n", + " - 1s - loss: 0.1830\n", + "Epoch 75/100\n", + " - 0s - loss: 0.1827\n", + "Epoch 76/100\n", + " - 1s - loss: 0.1808\n", + "Epoch 77/100\n", + " - 0s - loss: 0.1748\n", + "Epoch 78/100\n", + " - 0s - loss: 0.1662\n", + "Epoch 79/100\n", + " - 0s - loss: 0.1674\n", + "Epoch 80/100\n", + " - 0s - loss: 0.1636\n", + "Epoch 81/100\n", + " - 0s - loss: 0.1580\n", + "Epoch 82/100\n", + " - 0s - loss: 0.1580\n", + "Epoch 83/100\n", + " - 0s - loss: 0.1476\n", + "Epoch 84/100\n", + " - 0s - loss: 0.1502\n", + "Epoch 85/100\n", + " - 0s - loss: 0.1431\n", + "Epoch 86/100\n", + " - 0s - loss: 0.1377\n", + "Epoch 87/100\n", + " - 0s - loss: 0.1369\n", + "Epoch 88/100\n", + " - 0s - loss: 0.1321\n", + "Epoch 89/100\n", + " - 0s - loss: 0.1286\n", + "Epoch 90/100\n", + " - 0s - loss: 0.1256\n", + "Epoch 91/100\n", + " - 0s - loss: 0.1229\n", + "Epoch 92/100\n", + " - 0s - loss: 0.1206\n", + "Epoch 93/100\n", + " - 0s - loss: 0.1167\n", + "Epoch 94/100\n", + " - 0s - loss: 0.1145\n", + "Epoch 95/100\n", + " - 0s - loss: 0.1071\n", + "Epoch 96/100\n", + " - 0s - loss: 0.1078\n", + "Epoch 97/100\n", + " - 0s - loss: 0.1038\n", + "Epoch 98/100\n", + " - 0s - loss: 0.1023\n", + "Epoch 99/100\n", + " - 0s - loss: 0.0970\n", + "Epoch 100/100\n", + " - 0s - loss: 0.0994\n" + ] + } + ], + "source": [ + "history = model.fit(trainX,trainY, epochs=100, batch_size=16, verbose=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
ارزیابی مدل
" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.07633800416281729\n" + ] + } + ], + "source": [ + "trainScore = model.evaluate(trainX, trainY, verbose=0)\n", + "print(trainScore)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
رسم سری اصلی و پیش بینی برای داده های آموزشی و تست
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "trainPredict = model.predict(trainX)\n", + "testPredict= model.predict(testX)\n", + "predicted=np.concatenate((trainPredict,testPredict),axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXec1FTXx3936hY6LL0sICBFBUUQUUQBQez19bFj76I++lgeEdtj7xUsKCoqViwgonSQJr3q0jtLW1hgd2cm9/0jyUwmk2QymdTZ+/18YGeSzL0n7eTk3HPPIZRSMBgMBiN38DktAIPBYDDMhSl2BoPByDGYYmcwGIwcgyl2BoPByDGYYmcwGIwcgyl2BoPByDGYYmcwGIwcgyl2BoPByDGYYmcwGIwcI+BEpw0aNKDFxcVOdM1g5DZr1vB/O3RwVg6GJfz111+7KaVF6bZzRLEXFxdjwYIFTnTNYOQ2ffvyf6dOdVIKhkUQQjbq2Y65YhgMBiPHYIqdwWAwcgym2BkMBiPHYIqdwWAwcoysFTshJI8QMo8QsoQQsoIQ8oQZgjEYDAbDGGZExVQCOINSWk4ICQKYSQiZQCmdY0LbDAaDwciQrBU75UswlQtfg8I/VpaJwWAwHMIUHzshxE8IWQxgF4BJlNK5ZrTLMJ/Jq3di2/4jTothH7tWgW6cjdklu0Epxbb9R1AZjTktFYNhKaYodkppjFLaFUBzAD0IIV3k2xBCbiaELCCELCgtLTWjW4YBrv94Ac57a6bTYtjHOyeBjDoLV3wwF1/O34yTn5uM+8YucVoqx9i6/whGzVrvtBgMizE1KoZSuh/AVACDFNaNpJR2p5R2LypKOyOWYSG7y6ucFsER1u8+BAD4feVOhyVxjiGj5uGJn1Zi14EKp0UxjyVfARtnOy2FqzAjKqaIEFJH+JwPoD+A1dm2y7CWikgMpQcrnRbDVvjhIMBHiMOSOEfZkQgAgMulUbDvbwZGnaW4isupHdWPGRZ7EwBTCCFLAcwH72P/2YR2GRZy0+gFOPGZ350Ww1LkN3VU+F6N9Xq14usFm9HmkfHYWp3GlASyVuyU0qWU0m6U0mMppV0opU+aIZhZLN2yH+e9NRNHqtiAmZQZ/+x2WgTLWb/nUNL3mKjYnRCGYTs/LtkGACjZVZ5my9wj52eePvnTSizdUoZlW8ucFoVhM1T2Fj76Tz4xHqnGJrv8mOQihyqjuHn0Auwoy6FxhAxxJG2vnfh8/E0cq6a+NpFdBysQ9OX8c1wX1VivVwt+XroNv0kGyKvj6c55xR4QFHtFNIaywxHULgg6LJEz9HjmD6dFcADlh3l1vNFFqsNDTW7DKe3z9rIjKKoRRsCfm8ZObu6VBL+g2IeMmo/jnvwtZT2lFI+PW441Ow7aLRqDYQkrtx/AuMVbFddVB1cMp7CTizbtQ/FDv2BHWQX2HapCr2cn4/EfV6AqyjkgofXkvGJX8qeW7DqIldsOAOAnbHzy50Zc//F8u0VjOEQu+9gpgANHIrjny8WK63dVgxBXeTQUAcGnc/jxlZklu3Gggg/5/HzuJrT/7wTb5bODnFfsfoV7uP8r0zH4jRn2C2MTFZEY3pr8DyKx3LRG9KJmnfoIf4xml+ReZJA4liS+qS7fWoY3//gHALD/cPWYmKY0njZ33d74Z1INnHG5r9h9uX8S5Yycvg4v/fY3PpujqzxizqLmdSCE4KbRC3DFB3OxescBW2WymmiM3+uaefzw2XlvzcTLk/4GpRSHJCG/OfzSojj5qrrFsue8Yq+OswwPCzfwYRa7r8jeQ1XxOP79hyMOS2Muon95/+EIZpXsjis5ubLLZV+73Mf+y7JtDkniHDml2PcfrsK0v5MTjKWz2Mctzq2T/uyEVXhv2tqMf1cRiSGaY64bvcpr897D2LTnsLXCOMCoWRvin6Ncbp1bLeSK/Yt5m5O+VwdbL6cU+51jFuHaj+bhld/W4N6v+MEjXxrF/uLENQBy51Vt1MwN8c9Uh2br/dxkAMDRj/2Ky0fmRm2UAxURFD/0C35cohwZIufUF6agz4tTLJbKHqRnPOgncSUW42jS9UAI73/Xc414jRyzTwzhLcVedQgYczmwf5PiajHP+BuTS/D9oq2YsmZXtRkwiiN5jum5Z6UPtAUb91kgkP2IU8jfnpL5m4v3SZx0v4/AL2j2qMwXM21NKc55c2aKNZsLKIU7Vje8pdhX/wL8PQH4QzkdjXzy0ZBR8zGrZI9qcxe9M8tU8dzGy5P+TplWXUy2o7/vL4ckso4Nuw/hzjELq3cRjU1zk0z28cu2xxV6LJas7MQ8Op4fPP7hjvjHvwTDpLpmdJTiLcWehsKQ9kRaP2LAxj/j3xdu2m+1SLYjdzx9NT9hkTUnpZgavh8fhF62VygbeOCbJfh56XYs2rQ/pwcG1Vg47UfgozMRKE+MGUn1m9xiV3JQluwqj8d4e4bFn8U/XvzubOwpr8ytlMQGyRnFvmXfYcxME5d8T+BbYNQgHE/+VlwvTlryMvIYXgqKf3bys2qnhYY6IZIt7BGKh9QrDOGDGesclsZ+3p+4AADgjyhnMpywfDvOfTO1cpb0Idj/lWm45F0PFKxYP0PVHXskEkMszZNdbfD0i3mbcOMnC7KVzhXkjGL/vxHpB/7aE34wrYgoW+q/Lt9uqkxOILfMKAUGvDodAOAnuWvKlB2JYHjgY7R/tzkmLN+Bi3zTUQuH0v5OfOh5nYMo4D9wUcX1w8atwD5JaKeacvt7pwdS3H5yDvB6V9XV6Vwx8pnHK7cdwIRl2/Hwd8vw+6rcqK7lLcWu8STeeyjzQdLzfTNRC4kL2fNqr+QPFBOlhxPFhrwrbBfHTqIcxXUBPhfQ0WQTXgm9hxeDI5K2IeDwL/8fCCKh/B4bt8JWOa2inOYDAAJV+t46xdmXFBRLNu/3nl+aqo+lpBs8lT/TBr8xA7d9vtAEodyDtxR7HMmp2b8JWPARHiYfIwx9yp0AaE224/XQO3g9+HZ8ued9s59dhKnh+5MWUQA+7z+y0iJ1QRWAHzBuKHszu9g/A88GP8Qt/p9slc0OMj3DESGufc66vTj/7Vn4YGbuuK/SPaNy/27IhbS9H/QHynfiGh/wt78xPosNUN1UekLzwSdDakxyI8RPFUpBqsGlHOMo4Fdf38u3As0JP3mtHskN94uUTOfcjJjGK/It+/iJWau2584x0YrN/3X5DtTJz/3U3d5X7OUJn5gP+mYmSBUdldwSYqFfr9MIe7ET9eLf0yn2XPAzpxsw+yL0jOq6fFR4Oi3U4+OWG35451pCLEq1LfLfV+3MGT+6Fh51xSiT7hJtQvYK2ymf+k/nbERFJIY569Rj371Af3/CX6jmirnKPwl/hHi3zSPfL7NLNMtQyuinmgRMtmZZ+EaszLsexQ/9gts+816M/yd/blS8phugDHnQTtMrjiPmygxUSrX3pRH24rPgM0lja7lITin2dHT1pZ+JeNcXi3D5yDnYXe6NvNVnvDwVo2atBw4lQj2T3kio8oPs6eAotPVtF7ZPfiSuKy3H/8av8tTNLlXs4v5SndZogCTe9CYs32GuYA6yIO82zTcVKd4509pwlGqOld0W+BGn+FfgIn9q6GcukVOKXe/rKAHwQ+gxAEAn30Z+4pLAJKFWoleiBNaVHsITP60EPhqkuJ6mPSap628cvQAjp6/DRo8nxpKe1+pKN1+J5vpcywAao9pXvPiwz/Vxp5xS7HL+zz8FA33KlZFCJCbZbmrKes+d9j3/KC6mVHvsIYBYig9LfKh5IucGpcDhvUmLxJu2q0850iMXb+p0+7Qh7wq8G3xVdb0XTrUeaBqLnRNUXq5HiuW0Yn8++D5GhNQvZpEaSLVMvXyhH+/7B3moxJOBUbh26VWaDolL/NNRHEl2UYkTODxxCGa+CrzQGo2RGBcxYzgwGuMU/fZuRc/D6iy/evlH7+xpgn9/vSRlWYzTfkvlqonF7rGomHQTD/S6YpK3U3p6p3dhOI+aD/wi/0z4weF8/2zgsPZxeS74AbAbGIsx8WWiYvTEw23lDwCABqQsviidNabnOjnq0Qk4oVVdfHvbydnJZwNdyDqc488u5fIaDyYD++avLXgpL3mZ3Mf+WZAfY7gq8iiAhCtG6y2WUur5urgeU+wCWR50XYrd7UrtyH7E/PmqqzuRRFm8TK2TxOF1+0EAEOEnI1UgFF9E0qRO0Hv1/OWRNMY/h/+ruT4fFZrrAY+kEtDBwk3J5+wUvzCzWIhk5uKKXcOqp8q1kr1ETrli1M7FX+FbNH+n9PR2vUp7vhXID7eqrpbKr9ef2J5sBiYNw9pS/ib3hCciyiutSiQmnaR7kHX0bUQbkgOVs767GZj5WtrNVuVdb4Mw7uDR75enpKqWkhg8VcdLLjg1ckyxK5+Q+rKZhvKTKiq+9mQzXgy8Bx84d4f6CbL5V36nugknObWXKQwOK/F56H/ArNdRDwel3bgbQbFLz6k4w1SNE31/Y3L437jd/wOmhu61UDiTWfE9sFOS22bpV8Dvjzsnj8M0hXI214OV6hMNEz52dVeMJ4IG0pBTil2/nS1zxQhxzO8GX8OlgeloTba7W6lx6UPUpDHc/w1+nlHzfuGi98I4g6jY7/T/EF/0YnCkrp8+GByLYl/yLMSr/JOADS4twPL1dcC79vj8xy3eik9mb7ClL6PMDN8jWyJEc2lMQBcNHj84HEdKoKQzXH3v68STip2jFM9OWGXaJCK9qQhcgyyz3ZX+31M3MRAbEotf9Hz7W/Z6oA5slL8GTvAp59jPlKeDo4CPB5vSlpWUHrR2At09Xy7G4z+6O/OlTzaWcq6PL6IjGiS9fakzqsVfXOCfhXHhYfHfSOEoxYGKSLzEohfxpGLfdbASI6atw6MZTIXXyvwoumLChH+FoyDufmoLObcp4bNePRP8KGUTI+LHJNYMwE9U2nUw/cCbo0RdLp9F5IK7wGyO8vHjJqKL/PPQsynbiAaPOOu6jUKaa45S/N+IOej/yjSLJLUeTyp20f8dkdVx1LJR1+RdF//8RujtpHWn+xYjiCiaE95nR0GSbpx/dh5E2WEXJQgTFDvRyEltyGKnwuQNyRT7/W7ab5GZrwJ7kmPvjeyvl6lee6sXIZWExkNPfp3IrX6AfzCs2u698E8p3lTswl/5xU1AMTTwDVqRHaiPMvnPVOns25i0PUWyxTvg1ek4/20X5ZbQ4WPv4tuQcbOixR6QuKZcZxge2gP8PhwYfUHSYtFaqw58PGt92jKQ1RHxzVsrqIWjcpWn5GN320WfOd6KYxcPuPBHHs7+aJCfZNPXtwRjY30zalqaCIp3xVCs3HYAzeryseIb3JQ3RYdiN0JMSGguHXNw3wCqIE8kfdm7XGX4TysBABflKa/XCvfsQVahCdmDcdwpiusboAz48S6E0A9VcFHe8mglEAhrbuIDh0IcwfEVa/AXOihuIz8ySsdq4GvTjUrpGrxpsROC5wMjcX3p84rru/rWophklqUvhITLQSxNMfiNGbjsvdTBFcfRcMFkQ8JiT7TvWuPFYsEG+uahNsoxYtpabNidOw+RseGn8Hronfh3Ag4NwU/qmRe+HQvybgMWjsYg3zynREyl9G/g6YbA0q81NyMAXgq+h0fLnkAr2f1/IlmNECJJYcCA8hyPnQcSA9M/L92GsfM3G5fdITyp2EGB/wtMxcnlk1Q3uTnwS0ZNPhd8X9p8XG+scWMRCpWCxVk3q+CKcR/2eJdHhF7D28HX8eyE1bjyg7m29JkZ2g+26/0TdLVyl/8HzMu7A81QmlRK0FW5VHYKQRKTnwRi6te+DxTFhA9fLZDlof86/CTuCXyb6mNPs593jlmEB79dakBoZ/GmYreAHr41Sd/95VsdkkQHFin2aFyxJ9p3rcVug+IRB9OPRNyX2lZLIRFQDAt+qqudPn5eaTUm8gyZLmT/JmDmKxobyEfHkmmAA/EJSiKueoCZSNaKnRDSghAyhRCyihCyghAinzVgOs02jbO0/aGB79B6dA/VmW2OY7GPPckVk6MXfib4XKjlAiblmhcVnV/2luYKhbdnLTC8NrBJkuBst3J6aiC99V2GwhSLXX5qW5CdmqHRXsEMiz0K4H5KaUcAJwG4gxDSyYR2HeNUYWJDI7cWurZIsVOVm9yNUBAMfn2GLX25MdOfVhGRTKSNz8QkLlTs64U48qVfJZZpDKCq1TIW4eBTsNiT93tG+F6MDT1pQFh3kbVip5Rup5QuFD4fBLAKQLNs23USF1zS2lg0eCoivfR9VQeARZmlJLAHipU2xRq7T62b9/AV5y6kZDxNkyHTMYi6ykpnsXMgunzsx6kUaPESpvrYCSHFALoBcONok27ceCNLqYokXhW1khkZRZr2tum0B4BxtwPbFpvejzHsVzg+F1rsWkosCP1jMK5wxZT8ruJiUTjuzY5XbeaGwASENPadA8F1gYmyHlz6AMsS0xQ7IaQGgG8BDKWUpphShJCbCSELCCELSku1s+85jdtP9vTViVCuO/zmjzdI9z9weBcA4PDhcnw6Z6Pjkzc+n7sx/UYmEZ8I5wa9vj7Z7dSeqIfgtSI7VdfJcUWpuM8uBt7qnrpcPPBS0dK4IYskkT1yOJD4gHi8C70yegxTFDshJAheqX9OKVXMJUspHUkp7U4p7V5UVGSwJ3crXNuQXNxmvTZe4p8WL3wsVeyi8f7BjPV47IflmLNur9LPLWfngQqc8fJUvPbbal6uI/vwfWiYLX27wmJflBzl8k1Y3Q9cl+hPXpUoPOFCH7sSNN0bKr8/AQXLnUrUXYxqV1LyXGJAGWZExRAAHwJYRSnVikXyDEVCmTW3XtyEJi7aU33mxNi+FByRaD9pEIqnrILvsyLqTOjfyOnrsK70EKQPd/FBZBXxogwu0OvpFZox5InfRFxV7Fl6/HUGDvTzLUpZFpOkExDfVNTu8Z6+VfrlcyFmWOy9AVwN4AxCyGLhn/vznnoYIrnJ84j5SbqS9RiV/O881upY5b10m2I/hpg3uJdwxShb7MUP/eKumbdpAgfEMxgRQnelSCNiEvmmpOc88Vk8HnVxAD2I95S8GVExMymlhFJ6LKW0q/BvvBnCMZTRyupoSvsqFzu/zmbKS4Hvb4U/JlZKsu4RI287XvjYDZpdoth/SlPjNBPULFfpHk9ds8u0/gwhEa3ssL40zZWSGrgiyYo9tfap0rX1RegZjA0/hX92HrQ8B76ZsJmnXmPk6ei18H5Lu2hDtqOnaKXEr3WHlNvvw4ElX6DL3t8EKaxT7Bf5lDN4btxzGE/9vNKyfnVhmSsmfVRMMOCUmki95j6eqf22IirsKoX8hlIfe6L2qVSxp/Z8tI8fpB7w6jT0eWGKHqFdgbeyOzKAbQuhktTPNJ4IfgIAKK4YE1/mdDSMkoVlNj18q1XXfThzPdoW1cAVPVta1r8mFil2TsXHnqTY/Q4pduFNKUZp3LFSWRWBnqSTSnH+Rix2ER+oK1NLqOEpi91p5cJwYham3EVg3TWQLhLikQwqdpmORde+uism8f3Bb5Zi+Vb99Q3MJsal+r7ToZRyIQbp4KmSxa5+jMUHxU2jF+jq32k8pdhnlexxWgRQSjFi2lrsKKsuJdnEwVMX+Jlh7UCmvG237DMACy12fROURD/7p3M2YuMe5wZT0824rUN42ZQUu3SPxIlM0mXJrhjZTFyh30kr9c8RcBJPKfaFm5zP3fLshNV4dsJq3PKpN57cuUJqAKb5uDW8FYD1rpiUXDHJxDigIhLDYz8sx6W21ShIfbD6iL7joPQAkLYWJLGUpVpvA16La/eUYrc76K4Z2Q0/YijEEdzi/wngOIyczg/eLNni3KuprVD1aAkn+rc2vtqlin3vOmD336Y2KZaC5GiqS0L6vRYOoQj7EZOch7IjztXB1ZsjpwFJvT+VHtxqb2XituJEJi8kxpPiqcFTu2+7N0NvYWBsPg7QQlwRmAysOQdS1XakKob8UGq8bC4i3tcHKiI46pHxGDXkRJzazugMYuP9W+tjd6lif6Ob6U3+lXcbbqq6T3WCknic54bvQD6pwsvUuYpK0tTReovADJHlhAHSXzsDffMV+ibg42lcem2o4C2L3YHB03P8c1FIBH965EjSuqqYt57iZrBi2wFEOYq3p1g76zOBfYOnrnbFWEA3X4lqrhjRfMknfMK5NnumIvhax6QSkpajMKCila44HQ2IdjbQmxSqriWiZ7x1r3tKsTt128XDpEpX4Tr/r47I8PfOg5j5j/2FP/aUC5MyhJuMEyIU/DZXn0jEHVuHvO2jfNtQAy4qYm4yUUl+8tSZp8nfT1//MvyHdqIh2Y/KKIfySmuqeCkiufGzcYmolctUyisj75pZ7Fbi0LGNF8Cd8TKGB0c7IsOZr07HVR/amw2ZgEPLCj62W1SsYuiZbbMxU3z89lrsN+isHepFYtSv4YpJRvTFi2zaY8cDj++zMpqQLRuLXYkrA3+gJO8a1EJypI+4t14qPiPFU4rdMYudyi9zmvTHMirLgd+HY/H6Hem3tYCzfakPEjGk2D6LPTnc0m7FThwuOMFx1vUfgV9SwDxZYbrVLWWVgu3uW4NjfBvi34nsumOumByEkx0m2y76ac8DM1/Fb5+9bE9/MqTZEzcIscucYEE3jW4BJg0DVlpbf1bETyPgb7PMjv3PsZ66t1V6VPH9OafkRky3rppPVKLYtSYoAYi/Of078BXsJ/MJSplymm+JSs/Wz3i2AqbYdZBaJ9Emqvi82kGHAm8u9CeKO+w7zPshOUrRnJTif1uHALNeB8ZeY6kM2/bzr/wXbH4et/p/svTYb6f1UpbdE/geG/KutLBXbRZtsG5cJQa/6gQluSLzRw4CAC7wzwbgXMZLv0UKtpAoJ/iKu2J0xs+7BU8pdqcyCjhmscf4CATq05EcwwLk+w3wir0e7Kk1CgBz1ycKe1zkn5Hxsc9k+zyXVadftnQhRm4407L2o5D62OWumGRsmYW77Jv4x8poDD8v3c7LIuk6QKzJ11KII4rLE+l9mWK3EGc0e0xFsVOr5eF4K5n4nVHsSuFhMY639JzAZ8AV075hDd3b9tEoWtLf9xcAYMqaXZhVYkN0UnkpyDdDLO0iCr/q4KBaCmNV9qwFdqknUdPFtzfEP45dsAWT15SKnccxe/BUJD/loc53qpYkTZGSP4D96iUL7cRTij1Ti31g5XOm9OuYK0aw2J1S7FLER1mvXWNVrRsrkCdp0vJ1Dotcm/T9IM2P//6ByM1p+8oj6hb7ByF+nGPIqPm48gMbopPG3Y4uksE8K0iy2GWuhhN8yTNd0956bx4PvKN/PEOV4bWBGS+jKpq466T3m1WDp2oGQ0bhjp9dBLzTyzyhssBTij1T1tDkFKtzuI5YzLXJuB25tWKbK4YTJoO4QLEDQA+yGufteANjw0850j8fda1+7CfFEgWRrwy8itMrX4m/xh+kBehW8Z5m+/nIrJDC/A178b/xFlXXqbI+nJADUQ137OdPLi0X0oj1Np15H4BSGo9Iklrpdit2IDUqZvNejXNTddBEqYyT04odAOZxHeKfX45ciiM082zmaj52K33+Y+ZuwpSV2/gvPj7zQ1PYP0FJSogo39wHKuyZjehL4xCQvlmt87fCbtSWxCMD+1BLs/3U13FtLn3vz3juIFP59CJgo3LRDzPhaOKIpos2qUHsz2Yq3mf5kjcpu+LJu/lKsCI8BLXI4ZR+T31hCn5d7kwIsl5yXrHLiRrYZbkrxg4e+X4ZqOCKiQopfQb6U3NZ2EUHsiUpSkbKnWNSCwdnxfLveJ/t8NrxKAwgfeihVO2nvsanP4dBiwbmMmbtH7Z083LoPdzs52djWhVtYgwKSpXdH1b52OXcE/g+KVJGLsuKbe5OAuixJGCZX3zyVywjA3/qg6fWIk4aWbY98/zX87gO6OFbY5osL4fU3RjBHYsB9DCtL3wzBFCIBPIRbR97kmInyROa3KS23ESBoLyUFab6URNdXPPW70VxgwI0NFMoSsFR5YFyp2aAyt9o3F7zx1sWu4GDKbfTjFnszoQ7iv00InvRgWzK6LeXVz1mhUiKdIpaUA+US3XvBBDTPPZKjho73rVyobKXksJMN2C4fGsZLhvxJ855Q+I2+vGulGR5RqAq/dvvY1deP27JVkvkMAtPKfbm9Qqy+j0BNWSxq0XFWH1DixfTC8H3MTH8UEa/VYpBt4poSsqFLNrSyJjpTzN4Kl3jE3ZfPjXcCnJAryta7M1IqeK2k0P3YfvUj3DOm7xC33VQMui8cDSwNIPZqYoHT3TFpF4LTlns8qtn816Nh9ehPcCGmXxKEIfwlGKvXxjK6vcEqW4VADi38mnN36Uqdnte70/xr7C4B3Oo4kxQmuumAod2Y/LqXaqb+NKMdnBJHnW5Kyb5l70rXkeUmnP5czmg2a8NTEpZ9mbwTcVt2/h24PTVj5vTsdKx03DFWDVBKR0ZvaVv+hP4+Gxg71rrBEqDpxS7EdNoJtcl6fsi7qiUbZbRNng5conuNt8IvgXRqgD4WXLP/LLStugQt1ERpfjmry3GG+A4YPT5wCfnat4+6S12qY89+a/8V1tRhEFVJs1zcJFeV7q+jRI2HOKYyYNe/eApuWKcSsaVNo49Io0aEqvCOKdePaXYfTRzxfl69CJs4vhKP4RQfBAbjD/PHIeZp3yStN1W2kB3m/38ixBCND6Y++1fW/H+jPV4dZIJ5cv2rAWWfq24KqjzRlvFteDlrHwRp1dan0CMA8G/v1ZOoqQP4UbYtVIzHXC6OHalqBildSIltDk6V3yYkaRKJFnsa6cAFc5FTFTCvDkP6azUfFSgEfZqbpMWJWPt0C74qw4qW+wOKfYfwsPQXMU1BQD47dHE53h9WueKoXtLsXOZ5/Kg8GEbGiR9L6/TEfuKkqM4vuNOzVwgCmD1eFz8e2+EUYVRszbgYLZW+zu9gO9uVFz1SPALXU1cVsW/Jq+lzRQTW5lN1v58yc09YGx71c3SpRTQjopRvsnya9TJSFQlPpuzkU+ve2g38OkFwNfXZd2mEW6putfU9tL5s78IPYO5eXemrsgkQ9jSLxUXd988StFKlmYctZvTfRpDOhFQAAAgAElEQVRhvfs2JD7H6zgyxa4LfwaKvVPFRynLEhOLqIJlmNlJIKK9PukxhCMH0Izwk4fWlmYemphELLPZj0pU2RzFmn2cvz5fRkaKPf5Xu+25j/TT1bcWT/+yik+vGxVex0vNCzPNhEPIfPKdFumOXVefCT7kDcoTscKRMlsTb+nxoSttE41xeHHiakRi0nXMFZMRPoUQODUOSy5yqhC1URWLYS3XBO9HB6dtS83aoxQA4aNsROvGDQNpyQrOenm4bAchdR4zP2L6B09FH7vYhcpvzKoX8vyvWSbAMgGlwIBscLK4RChabmsOdKOBCr8s2463p6zFsq37Ewtd4Irx1AQlI64YNUp2lePeKuP+5/hF7+MVu5hnxA0xzaJiv+P0tmhVJwhYXN1NVKiTV+/EGUc3MtCCvmMWJlH8N/iZRivqrhjxJtvINcR62iRlu1wgZlKUj4g9ilX5+Idj5WjlcPUqPXCV/Bt62ZEo4pHUe4Q0E8xi14c/A4s9HdFYdhcNgTATVlDsP4YfQz/fX6bFNP838Knh34oi3HH6UTi7aytFt5SZiIp95TaDedozOGjH+dRzs0hbUcoMCACnVb2G6yL/0d2flAZIMyhq9OSvnw5UZJ/jPmpyOmXLLPZDu/l/gKofuujQ37gqYE9qBcNsW4QLJ5yIQb55yct3Luf/Mh+7PjLxsacjqhCjVkrUBhpTT5APXJIrBgD6+paYFvp2Y8C4mZ2oD8r/lbqlrBhMFQdPg36jl5M5B006iCveU9FgIQCgJvhkTucc2wTf3nayofYX5N0W/7xk836NLTOgfBfwybnAdzdl3ZTprhjDFnMahfZiW/6fBoWRLKNt7GAbP5jaR6WsHouK0Umm4Y4Th/bByKtPkLyMJyYWKc1wfCF0l2I7V/p/T5UFFDs3lwDbFyctc5uPXV50ehNtiOKKMfHvn0b7Z92fqFBCAYOXkwXHTHyo7a97DICE0m9etwAntKqbVds3+Mej5vupuccPVBqYPCOUP4zsWIlXJ/2dlSvPMxZ7zqCmuFlUTEZMajkUt1YN1b19h8Y1cWbnxlhE+UkbpTQR2lY7PzXe169ioShVEiKgmPbVKynLKiIuyRAI/rrKkxVMraTJ+/1Y9Pqs++GyVewmWuxjo6ehrM258XtqXbvrcUvVUIzn+PBWpXvtwsonMurnseBnaONLTdt68TuzMpYZHK88Dx3cjzf/WIOt+43nWakAPzO7vF4nw21IMexjz0iheWeMoz3ZghASxmVpOT+uxrtlFfaDKXZ9REkIv3KZZxF8OXoZBlY+h39o8/iy209PnaHny6Bg7X8CX2Jo4DvZUorrRs3HT0u2ZSyjmYi3o2j8dWmWyENuRSikeFGHfBT48x3sLTuIiPhGtGYCXxWnTCNpkkkWOwXwYPQWbBvwDiqjfP/5oSAmcj1AhUv9uOa1U363hGq7BdTo61uEgb5EKuVDlQZmalLeEKhDD+CxwKeYvXaPIVkAft4CAHCB7HIqiehV7LXgXE4UO7kq8AeeDiTGq16e9E/8c5Jij8exs8FTXRj1X3PwpVRTkluyAR9BIAML5YrA5JRl4qmdtHJnxjKaSY28IJ6/+Bjkh/h9lOpNM2cmioiDp0dtHQdMfBijX7w7MRN14Wj+r8RlJWfqGnOOV3xsgQAHjvCWVVHNcNI2g7o0Sfmd0Tj8j0MvYkToVUO/BQDsXQ/MT8x8Pc8/Gw9+o1531W70umKGB0fLlug8ntFKLxnsAIATfalhrf8KTEleEJ/HwCx2XVjlvp72QF/MeaQfbjy1OKt2RB++U352MalV09oF+L8TEw+yZMWeXSI1JeI+9hgf+lUTR/CjnreWQ7uB5d/hzjELDfW7kUvOAs5JBo1rF/APsA6Na+LBQXwVrRphtbcVs29Ane19NAiYNyL+1c64bT3oVewFGZYUjDPmMnhOs0tQnS+yW1DszBWjj3hulpiB6f/SdmT3T6v6hWhQI4yWdbKbuZdI55tVM4Y5pfJ1xTEIqTjfxPqY3m8QMWzIuwLF6xIpD3Rd0l9eCXwzBA2JsQiTx6PXJn2X3mif3tATb/yrG/KCflzRg3/ImTUZKT06L4DyZD+9eYOV5uyo3geN4ct93VSjv3SM1r6d6EJ0lkN00BXjqQlK8WyK1JjYXVvUQYMaYfTtUKTSQXY3VhPC+0eNVHoygx2oj1+5+jhadl9TStGx4iN8e/speCJcwEfKvG1evzWFupCFh/hiIBTQTOYVp4zPCGm0UPJm2hD3Vt2GV0PvCkv4PiMxDs3q5KNZnXwAQEzw4QUMh2Pag21F0nWSzRtEJMZhR1kFWshrKERl1r0HJ4j19S3B8libpKNzhl/J1ehxi50Q8hEhZBchZLkZ7akhhoIZveCa1c3HB9d2T/GvJzrILqKlj38ZmmAPxi/b4aroGAA4gjwgkI92jWqiTVENU9uWp2xoQUoV5wmoYVShqaV6OFiR/KCokccbAvcOUE8wZi7GbmizXDFm1T3R+waRch62zMPQrxbj1BemoDIquw+eNrWIniPoPk85MHj6MYBBJrWliqgrlK7bfTRZWf06NNVd06hmsqvF7yO4sFuzxAITfCgNyT4AfC1INcoro5i9dnfWfenF6mRzRBYmOtC/AABwuEqfJW5UsfNJfFN3Sh67Hw74seG5s3H1Sa0M9ZM5/P5s2H0I28v0hy+aVR2I2OyKSTl/f32MX5ZuB5B4W0KkApg0zBS5RMqoOdE/maL7evW6j51SOh3INjGzjn4gWuypN8CE2IlJE2+KaoRTthEH0UTW/m8wXv2/rpIOsr+xxFOpNYA69MvFuOL9udh1oCJ5xcofs+4fSM1/8p+zOqBmXgDF9QtNaT+lP5ULvdOwidoPy3g+F2Nw8Cn2fWJxdhOQsoWCovihX9D3pano9Wxq9JTaJCS3DZ6Kha7ToXX+4rs6bwQw6/WU9QcqjL/Z3he5Lf1GFiA3ZDS2TPq2dMt+rN+dZfZXndj2rkAIuZkQsoAQsqC0VCNhvQb/PbsTTmpTT9dUZ6ly++bWXvjv2R3VXTAipih2MTWw+jartvMTnioisv4yqRUp4ZHIDXg8khhIbCXza55xdCMsGz4wHv4oZ0DlC4b6FdFjwazffRjFD/2CnfKHGQCjw29qYYpWJvbq5UufBVD+FrF6R2KC24Rl29H64fFYW6oU+22WYneP3zq+R/s3K66vtfJzw23vozWN/bB/ZhPS5CQyhqY5zjJXzHlvzcLpL03Nqm+92KbYKaUjKaXdKaXdi4pUBi/TkBf0o0Y4qKJI1A9y9+J6uPHUNuk74LL3i0tDHnceqMC0v9UfYmbpnzGxfvgkNjD+/aXLjsvo99KJWz/GemXcvx5Lc/IavpbpjH92A4f3AuumxdddpZCyQQ+Ukvis4mzo2Vp//pwvQs+k3abscHLqi0GvzcAGwVIbv5yPhFm+NTWhWBAxFEF/hNABmo9nIldgOVeM96Ln6P6d2Wg92A9XRjG7ZLej/uYUfNnGjLjfFeOpqBgeqjmo80TkarQnWzDAiL/cBItdhKPAxe/OxpZ9R7DhubOF9ikQi8TdND4L4u9+vusUjXjt9DwZuQbn+f/M6Dd6LPbdByWW+pjLgC3zcSRYF/lQmOChEw4+bKCpE4700KBGOF4c/atbegHD+eVltAC1hSgfoxxWGDjfc6gSxQ14V1hHshFH/fNXyjY+QjE/73bd/VAQvB87B+/HnFPqgPb5H/rVYsxeuwcrTorBbEdgWotZDV92OXX0+9hZuGNGaJ3OUbGzAAD9HFbslFJs2ccPnMU4yg/o/fEEMPNVBIQSd1bEVXdpljplPhOiBl7iNHdDsFpKdvGuhyNVUdCdK0EAVEUiyM9cxDjZOC4W/Fc5+VkFQqiN7BS7EvEBbAATwg8Dxuo6JLepcuTFKCA38PfOgwCAqFmhOhIMK/YsFa74hpqu/zcm/4NbB52Iz+dutGx8Sw2zwh2/APAngA6EkC2EkBvMaFcNPWFYQZ+BXTPRxy6N9ntvmlBCbMEoAEAe5QeldMV6W4U/DJySWiMzZiBDYCZRLY+NW4HKCB8tY8XNbpiLPsCa4NGWeaetGBZVUyyOXlcy4vaVBdar4WOapSyNsE/Xdh/M3IDxy7bjiZ9WYsjH89P/wETMior5F6W0CaU0SCltTinNvvS7al/ph4bG3NgTdQsNTJ3PMo4dSK6rGhBM8hcnJtfAzLLGhzk8tgvoPxz/PrM9Pr2hB1B0NACjFrvGDim8OYlRIdnWSjU1iuTYSxG57jfLJglZEXLqhssIAJoT9dDdlnQbwqgybl1rYEWberg0MJ3vP41hQuHLokZBdrjnnS0D0hW5PfmoBsYaNiGOvbVvB27wTQCiHyLgJ7KJOgmlL+3upYlrUBD243YDd/0xFR9kJe+dZ7TjP7SZhXaP/mJIsen5jfJNmN2NabYS7tKsNkpNapOAQyEqUA7rYq2dUmxyWpBdisvzUYHvubvxc7AnQI43vV+nXDEA0JZoZCsVoADygs4odhcNVeuDQtlSCxMTqiuZ4Ip5OjAKZ/nno87uearuINFSFQdR35pSghd+NVbZ/qBZisMfQAQBQ8UatCxnpfQKZilk/fHE9nOX/wcsz7sRdcGHOooPc3eoYnNRO59hIXd5b98Kiyx2g2Q5eAoAf4QfSNs/BYmnj7Ybzyl2IFmRiIUjSrjmapvrp9BYGKYU8W2CUiAoKTxBKY1fiaJCf2dqiSz1gPO3vRH3iJaiVnoJMmsv91NzUyMAxmRrRXagKynBv4Nj48vO9s8BABQRPqyRgq/aVW6kypIKU7huAIC3ruiGekZcjyahdv6lFctcFe5okywciGOpRTzpipEq9jW0OW6rHIod4GORzz2uqfGGO18IfDPEFNl80SNoQSLYCz5KhR8bSHbFfDZnE2rlmZ8fPTsyV21dfSWq66S3fEPsw7FJxaiN2VzruMYYUPUiujSvh9PaFwGzDTWjiJG3iWnh+1KWJerOJtxut3++EL+v2glkl0QUAHBJ5TAsEWL4j2teBwsfG4Dih37JvmEDqF0x4vJ6pBxY+Jbp/VKjdqlJij3dWwgFSZ2EaBOeU+yU0iQfewx+bAVvaa96cpDq7EpdmDiyddK8uzAOQDHGKKxNKI/DVe5KFmaEC/zqmlVqsX8degKtfLsMZ+cUIaCIwQ+/j+DoJrXS/yDDtrOlGdkDCJk+E7MUKX4zsQDLAnp0/LN42XZrWQd1CxQs97w6QIVJxbcVSGexW4W09Xei5+H2gEpKjk4XACt/kAhmj8VOQRDjmCtGFxTA45HrUJHfGAAQkfiE3RDlpXYxUyCu5YiCf6I2yjO++bZQg4PEtkARRhUCJb8CABqQMrTy8YNs2d7w0tNsdu5780tu2DcO8P3tvdGhscI0+2A+MLwMaNXbkn6V9vGhwBiMCmWXqiIdUotZ8ygff3Xy97A5xoAeiz1mtOxblnjOYgeArSjC0lPfRY/fLsQGrnF8uRvid9UKYksTP1HKAaB4PDAa0UOXACjEkrybgfWZ9dWn8jXjgloMAcUYyfT754KJ6J0QiQnbGG9bietOLs66epXZilhsb8Y/9mXzBAA07cY/9bYvBmJCigN5LnSTUDqPtwZ+tqQvKVLFeohmMNWtRiMLpEmFghgu55ktnlTsAFBerzNuqRqKaVwiL4oL9LoqkmEkEEoRQAxDAhPBrfkdz+BTQ21yJr9wDTunE1oXFQJfpN82HX5wOMH3T/oNDSAdY5FG3Qw/r3PWbZuv2HnenbrW1HaT+lC68G+eCiz5Cvj+ZoCzVrHbFVF/gBagliTdg9hrCdcUvds1BDbobMjGwVOnymR6zxUTn5pNMJHrgQok0vO6WK/zcgvC30S+R1CoGpQuJj8TZj90Rla/v/6U1ji9gzmFEKxMQSuGOVIYL3Cuhl+mJA9kYgkq4mBIpl8YmBeT20X154bPBLvcTSdUvqclhH4ysADvrrozg4aToQ4qds9a7ErICywY4tqfUbltOcKTHsq+LRWu8f2KUj8fqmfmTdG0TrZKyDz07JfbSsEBQEHIB0imRGT7VpS6jzbuszyLoWUWuz1EZOpKPDfK5VY0yECxL6HqWWFfC72j+VsOBP8bv1p3X2biOYtdygsXH4vLuvPx68c2r21OHu7WpwI9b86+HRm8yyBxU+stYpCOD6/tjptObW1KW2ZiXmHmVKQhhGpFK4wivyFiWSt2efvmK3bVq16ciEOEvyYmuUvqxuR9+iiqrxib/l5lRyiDtL3ZTazyeAUlRyDAZSe2wDMXHoNBnRvjhUuONa1pQwnEVOhBVqEZSvHlvM2ISZRQtqf85io+gVedgiAePbtTIjWwS9Bzs2c7G7G80lgR7EwwkhRNyrG+dQgiihpCxkizyt9JCQVUrlfRlyxez1d+A/S+B3h4i6n9m/3mFdF5zI2nFNB/Tt33TqkPz7li5Ac66PfhvatPMLUPM/Okjw0/BY4StPnxc1wWjiFfaHqIf0JW7f7GnWiCdNahR4EZVQji70p2lZse7ii/wrK12J8JfoTBvrno7V+B5Vwxrq36T1btiQw+pjHGL9uBt684Hg0UykACSCgwUcE36gQMeBKoVKre5B6MTDxqWFPlGAgtJmGbxe4cnrXYvXS4xVJ+UkUWJtZbm4YxwaKz0n+eFMdudj/Ck0LMcpltBkoA6O3nk6938W3AX3nm1Ol8+dKuGH/3qTj7WI1CI6KlLo8CMTl8TC3E1yhax/yn2Enxz2Jd4xb1CnBUkUa+c59sdrcJuWLcjmcVu9foSVaprquZRWEHSwbdwwZrSUqwwuUgIn1oFITMfukU23a36ZAf8qNT0zQTbUSFnuJ6cPe+aSn27bR+/PPIa7oDAEJaqXH7DQNa90leloFiD8CbM8M9p9jNHiyzixa+XcgjEcV1n4aetVka69FzQ9QnBw21LVXsZ3YyebKJLFe8WyJ37qy6Cw9EMhzUl7ti4su9q9jzkQg60FUC8tT7U/c3Ax87U+w2Y2Uleis43bdIdV1Xn/HJK+5QO6mYkkZZBenAbPw6CJgV6ikqdl9KX07yM9cLX8f6YjHXFp+Er9D3I5+KYne9xa6ulvIl11WyCpCcp1CaN84MfOwhmO8ynb9hr+ltyvGsYvcaZ/vnZfX7VVxLkySxhzwov52YQYoV/cg24MF1yhtnilgExWUWu8gFVU9hTN6/9G0sj4qJL3e5Yqfqaum72CkKS2XnKJSmvmgGir2U1tG9rV7sSPzHFLtHUCtZ51bPVBjWWexiAYc+7YX8+aFCIGRWpSK5Yvcwaq6YDBSbE2i5YmZzXeKfiXS7TBKcZeBjL0UddKr4SH/bOrDjmvKcYpdWe69ORFUiU60ac4jcOBW3Vg01/PuwhRZ7Hqrw+32nYfT1Pcxv/OxXgPy6WAd+4lu24Y6OojZ46vKoEEOzfVueBNwyXd+2Ge7/YTMS6Euw44XJs1ety98mTUfvpA2zIE2Ow6+cccUZVhkoNoMgiVl3/o+/GvjPBtztewQ3Vt2PA9S6mqV6uakqtZCHLtTCHV2O7hBT+UUQH2dJY+xkMHgqcmu9DzP+jWr3Npil3jrjAF8xB0Dzus7fcHYyJdYt/lkaHWGVJybbvDtmWOxvRi9QXH6A5lueovnuc0/C75y5E9+M8geXXAha966ruWJcjvEZpcLv0r3FGnBF7fBrzBfIEGaxK3Djqa0x/9H+aN0gzQBJjrGStkJxxRhc3vRXfB3ra3l/YrTJZ9F+hn6vVrk+E16OXqa4/PXoxZbbPBd0a4Zzjm1i6eDpt7FTdW1neJJUfPDU3a4Xw9QQMpEef62wQOdx8vmBOxdYIpIemGJXgBCCIs3pw7lJIq46+ao4Wqlijkn8fNcpGDBI2WpOR1OhNJzZ9Kp4Ex/GBttyc7x06XGWPkCqdJcIzFIKvRb7oOez68du8mrzlaF6381/j18UOlwxDdoB10lqxHa+SPMnFEA5NcfXzlwxjDji66k0cu23e/ugjlKNS5Po0qw2GjU0NgHIqpmnag84K8gL+hH0W9dPpi6HL246Kf1GSR0IYXV6FPvwMuCkWzNr30bmc+3Tb6THFdOqd+ImKpaETl46Km3zZuWNYRY7I454qUp9y7bUU2x3pqGfFcKaog7xMESbBs+t7CZTRVErP0PfsJimNwdcMcMiQ3RspeN4DhmftSzZwsIdGXGUQsBsUeyEYDGnXmxAjSsCUywQxv5se3lB624Ro75z3bOuOUGxe2zwVImWDXS4HLVcMQX1U5c5hB2z5r1/xqsZ/TsmXCN2TU66vOox9Kx4y57O0sDZbLFbOZ5jeYy8aLGnC+9LNwXfZpQu6/sHddLxS42L4r5VwKM7jYpk6s1mYlZw9T6s74JhBqKl2rpBIY5tXhsAkgp3WEkFwtgF86dWGyHhirFHs1uZK8bytw/xGAXTDPr9S6N6eYMO5smTBYTTMQ1ffDNRui8C4fTHwSaYj50Rh1L+agj4CYb2bwdCgLZaOahzlMTgqffJVLFn/Bxv1h045T7gwhHa22mlYzDZjVPCNTX0Ox+no5Sk3qiYDPjhjkSqAvNaZa4Y57htNnCxebPNskW8qAI+H844uhHWP3s2auYFNX9jbv/uUKV2u2JEKpHsknkmcgXOqXw6qzbNKOKhic8H9H8cqJVOmWrI4ZIp3lwoTe55AFYrTLNaZxa7kzTqDBxzidNSxIkKKQUCFobfqZEf9MNuG/mXmFo6A16OeoXWhXkmIZjJ2/zNkhaXoRCraXYZNw3lRHGCepkPnqth5GF2buXTiNXVUbDdQo2pZa2XZZh2wo47yd1p3hhxIsKpMrPQtl7+uP80bN57GBhte9cpUBD8+8z2CAfsCuHjb+mYzCVBQbJWzJn+vq7wMDuhlc3jHdf9ArzS0ZSm9Lz5Sbc5v/JJLKNt4vMWmtXJByrUfimJY791FuDP/o22bgHfRuemtUFLlbcppXVQm+ivgmZ1OgyAWez6OU5nDmyLEC32bHO4GKFpnXz0bJMIF9tO69kug4jtWYp78jVK9/gapKzK1pWSscu8Tj4m3HMqhp3TOat+M8bBcMkl9CgAACe8ORWENB7ocTkp0LgLUJT9wG+r+oUYd0dvDD9PPSonUzelHa4YZrF7BDG7o5UzId2E2l7a7uvveTPQ82YcejZ5yjkvR7aKXfv3V1U9jJAsmVrHJnp8zWZCgBrmlR80ev7KK/lKRjXzAsABlY0s0pjHteDfkNSGbzN9wLOUAm7g0k+Ay5z3QSR87M6fMp+Fhar1cOHxzW3v0wl/+AbaGJNlmR0tQUkhnvaf5PXD9mJzuF180Xj/GYa6MvrGVRXlr7mGNbVCFkVXjMFODJKxYmeDpy6g8wVAp/OdliJeaKOehblh9OLkOwMF4f2sNpMfTj7uYvipldhWHatWs9RlHc9L/u7zg5NOdDKsnYz9rleb+rinXzs8d/ExGk07dWW67y3aFMVOCBlECFlDCCkhhDxkRpuMZNo1rouFjw1A7QL7QhzVeCl6qWN9F+bbr9QBoEfboqTvgUD2t046vW3bW4KY/hYAOgwWPihJRyWfjCkzo7/z+QjuHdBeO+md1MduIznpYyeE+AG8DWAAgC0A5hNCfqSUrsy2bUaCqC9oX4hfGqwo8JuODhUfg4MPT17UJf3GFhAMJD9QQ/7so3LS3d+Wx7krceknQFU5cGAr/12ihSgnVezGHjp6VG7WOfCNvuo06w5s1crTbs758EpUTA8AJZTSdZTSKgBfAnDed2EhOx1QbOVwT8UoK4tPqFGJECII4F89sosdN0w4OZ8KsSE6KeJEbEMgBBTUS+SXCSVmN+dLEqLRNMrpf5HUKLJ+lS+qWrezacLFYjiNQ7YKU5qfXRFluTKV1is+9mYANku+bxGW5RYtEhNmbqj6t23dTuW6obhijO01T7VwQrE7Tl7tpK9lR6JZN5nuOFbZodgfXK+8vGFH4Iz/Apd+nFhUU/rGqK2dlNxIa2kznRa7UbLUmAZzyWTsivFIVIySlCnnjxByMyFkASFkQWmpSqS/mzkhkQ+6DPblaPERPhqAczYQJQmpRbWGsz9CxRGadkv6akbYZSiNn94Wi71AZU4CIUCfB5LSEUgfRLE0hoba8dFz3CpgcBzJTFP47FeAwS8lLaoRTpXrhcj/5azFvgVAC8n35gC2yTeilI6klHanlHYvKiqSr3Y/krNhp49Z7JWzLUQiPXZY7K57K2hzGnD7HMzj+EkvQRNmvhbWT32xHS9JpeCIK0YnO/2NNddbnpJYCTMHT0+8AehxU9Ii0TcelezbDO4YAxa79Zhx9OcDaEcIaU0ICQG4HMCPJrTrWioQRnHFGFv6EmPGXaTXHQnumv7A6fh1qL7iz5bRsGPcxZDNDOCfYz1xVdXDmFN7cMo6qQvDdblkJNfgQZ92Dne1gV89SjBrV4zFN4v0vBjpyROFNiilUQB3ApgIYBWAsZTSFdm2y+ARLVc3WeyTuW7pN8oSuQJoWb8ARze2e9ZlKi3q8uGW2dycMfgxkzsGkUAhMLwMle3Ojq9zJBJGN/qjYtQeSqZExQxdBty1UEdL1vCh7+L4ZyMuOa+4YkApHU8pbU8pbUspfcaMNqsLP8WUCxRzNDnvuJsUu9RFYNUUf9e5YgQqarcFAGwLFhtuQ9wzv8Id7mrFTqWKPfPBUx49Fnuac1+nJVC/rcYG1l47P5D+iMUnqBFXumLc68SrJhyhyqXX4sWrBVeMHeVNGelZfuwjeOifjmjSoSsebloLMFDaVVQESu4cR3zTupFchGmyjGbnisky3NFiIygU8CMSDcCPCCiMhDt6wBXDyA61G0C0eHwudMVMf+B0y/twS2EPOf5QHubToxHlONxympbVqI64b+JgHCFSn60P/SpfxJCqB+LLXr+8K+Y+0i8Lqc2HpomKicGHvpUvG2rbeDlCA9dM7QzmRQjN+30k/tbK36eJfpdzxXqbsbr8JoYAABP4SURBVBSm2DPhniXAHfNMbVI9LIynTQN+YpKL9Dpa1i/gZyhaiGi13dJ4LHD/35b2lQl92hehc9NaGNq/veE24q4Y8e6T5A3nKMFa2gxTJOMYXZrVRqNaLqjXKXXFpLE6KQg20CYpy/W4mrJ3w2Xw+9v/BB5Ym1GzVOJ+kfc0nTs2bTOe8bFXG+oWA0UdUFzfvFmgP8RO0VxfI8SfophbfDFBYd/9/GQVq33hB/21gZrmpY3Nllp5Qfxy96lo30g7KkSbZFcM9SU8olJXzPldm2Lmf05H26IaWfRlJlLFnsYVo5IkTc2QiUreAAzrvYDg1jz5Lv2/CdcAClNz7WtRr0Y4fiSozMf+WvRi5R/ZDPOxG+C3e0/jXSNZDhOPjJ6NBVTZ8uOjDmIQZ3EP7d9OcTtbuWIsUHQ0/9mm4gsuKblpKqIiEH2t1BdMWQfwrprmdd2TSiL5tVH7xGQ6VpCs2JNn4+UFdbbl8wPDyzLqNyOEXX7xkmNB3xEt9mTTJgo/HozchEL1Mk+2wBS7AdLNGMwE+avpH7Fu6OdfJBk8pdjw3NmpP3SC9gMTnwXFbrUv3E0uKLMQ9ykeFaNisbsP/Ra7Wjik2umU7neVZObp0uFn2pI0KxMa1MjDXhVXDACMjWmPQdlxTbv5KqoWyBXjvhptk5dTF+USkGKxxb6IO8rS9p1EHhUjtdilD3p3qTNkGO6YoSuG8g+39VwjjI6dGV9eKy+IGmG32Z9SH3vm4Y52wBS74yRfFF2OPQGA5MZwrWK37mLuV/ki3o+55C3FAuRRMVKL3XWzTdVI82BXe/NQU4Jikrs3ohclWexuRbofyZ/dgUeuotxEfhFMjnXFkcIWso2qn2LnswDm7qUpj4qRWuydm0mySLrNECyU5Hgi2uGOmU60ipd+JLGMxbIdQpIGTzPFDuWfu3ePHTyyPaufyy+JKgQRCfE39loqZNVzq5NZsNjEKfZW0dzi9p0gbrELrphgKJEOt36NxP7akd41Iy5LhLhedEILjQ31Z3dcetIrwK2z4qUfg/CAYgeQFxTj2JMHT93ilmGKPRtC5kQsjGn1FAD+Iqld3A1XVz2E+yK38SsbHm1KH6ZD9CXDOrfyacNdjLj6BDxxnjMVk6xEnlIg2O2K+DpO4uLQHQ1iFzUaAvX56KyOTbUznKpNMpLXit3Z8hygcZeExY7s89xbR0L2mnn8W5Yhi90GY81lV071Qjy9+0J8CtSTTumPDo1rYgZ3LEpoc+Dan4Bz33BOQC1EBZTGJRN/8zDAwM6NkR9yT4ER85ClFGhwFNDvcQDJPvaHznLpQx1I64rxQ9mFKFdp4tUjKnZ3W+yp4Z439WkjU+7usNjdNtxcLdla0BG4bTbqFXVMXtG6jzMC6SFuWZobz1wdSBk8BYBjLgFmv4n1LS4Glu/HRcc3i1uFriTN4KlPRbHLEVXlu/Ri1IwdwJex0xH0u0M5aiKcu6t6FmPLqgLggP6f2uFcZYrdLTTqHP8475F+iLplpqkaYhy7X7vAdjrFvovWQUOyP2lZ1xZ1bHlddYr4HAWpYq/TEvjPehyYvxnAfutjtwvqA4f3ZP47US6Dil3NdbEfNXFv5A78OvRUFNUIAy8pbuYwEtklb6zN6+RnpNjtgCl2FyDXYQ3dkBckLWKoXvpkUFoo1XL94Y7ehqXyAgmLPXVdTLgYlFL6msqdC4BKA9pIvFjTKHa9rhj5A7xlvQIUhLyglhJpezONEMsPWu9eZO/J2XLUAKclcAbhxiZpwjFzOWzRKKJin7RqZ8o6MYunL4sKTbooqMfnPjJKOsVOlK+L4dFrMSPWBX0rX8bJFS4dP9IDMeZX79qiDprWsT7Si9112XLVNyn5KaR1K2fGOst/kRuYVF/SrQU1rETc4wNHIinrjhISfh3f0r66uhkRd8VoKzO1qJgS2hxXRx7BBtoE25BZ8i13Idn/2sm1a/t3VE9ad8pR9uwzU+xm0ffh+MflXOv454CK5QIAM+IpPj2o3MRc4jnsC9fFoOdSFh1XMVLzJ2opXwGgZ5v6mPHg6bjkhOZmSGchqYr9jqq745/1Dp6KvHLZcejQqCbyTCgSbgvx3afA2a/EF/dqU18z+2v9GtpjUmbBFLtZ9H0o/vEwElWR8lCluPkW2gAzuWMsF8syRFcMOHSveNeUJrtWjMCxFe+b0pZtnHQbcGJyNfsyaKfZjSt2lWdii3oFtlTZMQZJ+iNlA01Yqmo+djXOOqYJJt7bx3oXlGlIUn6EE+c7FPBpvsxc06vYWrEEmGK3gH00caJLaW3FbS6tfDz+2ZNGr+iKoRS7obyPamyl9RPNSJbvR00cQKEJwrkbcR+pF9/UREwOd/QEUo2tUoYv3YS9dOvNgil2C9iPRBGGw8jDJq4oaf02Wg/bUV/+M28hDLwFT7sPDw7qoLnptFhyVRm5NXdD1f24pHKYqeK5hRIudYLWeo6fkObJB3ocbQU1M3yaTXLYiPSEqTzYBnVu7Ir6xEyxW8AcLjHRKIwIwiR1kEzKTX3aWC2S+eTVAoaXgRxzCW7vq5xi9/XohQBSE0LJB9b+4E7AAuriWZZZEFUI59xEGzogiclo+BuWc8Xw1/DywKgelLOvXnZiC1c8sJlit4BKJAZIwqhS9bOLuKf0mXkMi1yLV6OXAEiNZZdXyMlllBT7XuGN7vXLu6Ws8wwKKQXqFyau+1i22i2cmXvPFroKOX2C+aquGMAdLjam2C1mOW2NMLQt9lyDEh9GxwYC8eiP5MtM6orZRV0a1mcSUYVbrIryqQLaFnl4PEHBYq8nifjgsvVH3L0IuGthdm0YodedSfnxkzjzGeDhrbxij7+FKih25/U6U+xW81r0YjwWHeK0GI6i5oop4ZrihqoHnBDJNsbFUmfRRoQJ33YNpJlKXKGnyv7QoIQ7TW9KDFUlWFgfqN82Q+FMYOAzwDCVVAs+XyIC5v8+BbpdBdRPdUO6IR2GF+buepoY/Pg61hfzCk4DLd+F6eF7UcI1S//DHCLVFcNf+N/FTo1H1BSG/Pjhjt4I+nPL1hgVG4THg58mLasUbruAz8P7KrXYT7odaHsGGhcmUmFkbbG7nYYdgfPfVlzlhj338JXlbl6IXAYM+TX+vZwLYxNthCurHsaJD/zkngLVlpBszc3nOsjW8pd+ozqJiRwUQLtGNVHcwIvuicStPCo6ULYu1bL1tMUuIrVKBz0LtBsA6XHQ72N3gxo0F/muD+3fDv07NsJnN/S0TQam2C3indgFQKte8e+1C3i/6skDLkF+rbpOiWUPEmvuhFZ1MSo2KGn1qNggoMVJiB57pd2SWcvglzDk6bFpNxNrenpTseuTOZbrFrsGnEyz3973KHxwbXec0s6+SCHmirGJRwd3RJ/2RQh48mbWwflv86lgv7g8qaTbZzf0xP4jVcCriU130nrADR+jx5YyYMouAO4YcDJMm9OB+R8ATZWjXDZxRWhZ3A7YNBsA754DlLM7egftE6ZfsXv6ICgi7vp1Jxfj6l6tEArYbz8zi90m+nVshKDflzRV/PXLu2LUkBMdlMpEul0FtD0jZXF+yI8mtZWz2R3TvDb+fvosAMCATuqJk1xPx3OAh7cAzbsrru5T9Tpw/QQglAhrvaBrUxenDcie5nX1lo308hNdDX6f2jWq4VgoM7PYHeT8rjk6iJpGYUkzOoYCPsx5uB/qFdqTHMkywjXTb3PrTNzyEl8Q+jUvx7ADAAgw4CnFKl9tiwoxqEtjLNtapvC73Ceest7BtxFmsVtAwEcQduD1y6s0rp3nyOuq7dRrjYlcjryhgQK97waadk0sCvID3/lFrXHDKa1TfnFUw4T1OrAz/4bmaRecCuI+OelqYxa7BSx/Qh4ZUU2I36XaV/QSzoMpFBg8Wm9jRe2By0YDbU5HXtCPprXzgMrE6h/v7I1OwyZaL6PDiIOnTnraqoGZZD95QT/ybCh/5TrExEiNOqlu0rHiIyynua3YJw51cRFyq+l0Pp9HSAGlkne5OMzQpRk/N6NVfedCd5nFbjHPXXQMOjZRvtBzjkAIuOZHoPExwJN/4qJuqWMIR+CFeq7Z0aFxTWDgs3wUzCKnpbEIHT4UCuCbWB9c4p+eTTOe45perdCzTT0c3di5+54pdjMZ8FRS0n0AuLxHS4eEcYg2fLrWlU8ORFheDSdgfa1H19Drdv7fol+clsRk9JvY71/THR/PfhqXrEh9g+nboSEmrtiJtg1zLwEeIcRRpQ4wxW4uve9Ov001IeW1e8ivQJ2WwLOLnRHIIZ46vzMmr97ltBiO0KVZbbx06XHAitR1l5/YAoM6N0Zdr0dDuZSsfOyEkEsJISsIIRwhRDmIl8EA+Fm4tXM0vFODq3sVY9SQHuk3rCbUygugWZ18EEKYUreQbC325QAuAjDCBFkYDEaOs3jYmU6LUC3ISrFTSlcByOkZdAyGmQR8BEN6FzsthmN4p1i1t2E+doatPHVBF7TPwQEzvZT8b7DTIphEDoaz5BBpFTsh5HcAjRVWPUopHae3I0LIzQBuBoCWLatZpAgjztUntXJaBEY2FPcGdq0A8us5LQlDg7SKnVLa34yOKKUjAYwEgO7du7PHPYPhRQb+Dzjxpmo5EO4l2MxTBoOhH3+QTx3AcDXZhjteSAjZAqAXgF8IIbmfCILBYDBcTrZRMd8D+N4kWRgMBsObFDQADu92Woo4LCqGwWAwsuW2WcD+TU5LEYcpdgaDwciWmo35fy6BDZ4yGAxGjsEUO4PBYOQYTLEzGAxGjsEUO4PBYOQYTLEzGAxGjsEUO4PBYOQYLNyRwWBYy8UfAgUsaZidMMXOYDCs5ZhLnJag2sFcMQwGg5FjMMXOYDAYOQZT7AwGg5FjMMXOYDAYOQZT7AwGg5FjMMXOYDAYOQZT7AwGg5FjMMXOYDAYOQahlNrfKSGlADYa/HkDAO6pQaWM22V0u3wAk9EM3C4f4H4Z3SZfK0ppUbqNHFHs2UAIWUAp7e60HFq4XUa3ywcwGc3A7fIB7pfR7fKpwVwxDAaDkWMwxc5gMBg5hhcV+0inBdCB22V0u3wAk9EM3C4f4H4Z3S6fIp7zsTMYDAZDGy9a7AwGg8HQwFOKnRAyiBCyhhBSQgh5yCEZWhBCphBCVhFCVhBC7hGW1yOETCKE/CP8rSssJ4SQNwSZlxJCjrdJTj8hZBEh5Gfhe2tCyFxBvq8IISFheVj4XiKsL7ZJvjqEkG8IIauFY9nLhcfwXuEcLyeEfEEIyXP6OBJCPiKE7CKELJcsy/i4EUKuFbb/hxByrcXyvSic56WEkO8JIXUk6x4W5FtDCBkoWW7Zva4ko2TdvwkhlBDSQPhu+zE0BUqpJ/4B8ANYC6ANgBCAJQA6OSBHEwDHC59rAvgbQCcALwB4SFj+EIDnhc+DAUwAQACcBGCuTXLeB2AMgJ+F72MBXC58fg/AbcLn2wG8J3y+HMBXNsn3CYAbhc8hAHXcdAwBNAOwHkC+5Phd5/RxBNAHwPEAlkuWZXTcANQDsE74W1f4XNdC+c4EEBA+Py+Rr5NwH4cBtBbub7/V97qSjMLyFgAmgp9j08CpY2jKPjotQAYnoxeAiZLvDwN42AVyjQMwAMAaAE2EZU0ArBE+jwDwL8n28e0slKk5gD8AnAHgZ+Gi3C25ueLHUriQewmfA8J2xGL5aglKk8iWu+kYNgOwWbhxA8JxHOiG4wigWKY4MzpuAP4FYIRkedJ2ZssnW3chgM+Fz0n3sHgM7bjXlWQE8A2A4wBsQEKxO3IMs/3nJVeMeKOJbBGWOYbwut0NwFwAjSil2wFA+NtQ2MwJuV8D8CAATvheH8B+SmlUQYa4fML6MmF7K2kDoBTAKMFd9AEhpBAuOoaU0q0AXgKwCcB28MflL7jrOIpketycvJeuB28BQ0MO2+UjhJwHYCuldIlslWtkzAQvKXaisMyxkB5CSA0A3wIYSik9oLWpwjLL5CaEnANgF6X0L50yOHFcA+Bfhd+llHYDcAi8C0EN22UU/NTng3cRNAVQCOAsDTlcdX0KqMnkiKyEkEcBRAF8Li5SkcPue6YAwKMAhimtVpHFjec7jpcU+xbwPjCR5gC2OSEIISQIXql/Tin9Tli8kxDSRFjfBMAuYbndcvcGcB4hZAOAL8G7Y14DUIcQIhYvl8oQl09YXxvAXgvlE/vcQimdK3z/Bryid8sxBID+ANZTSksppREA3wE4Ge46jiKZHjfbj6cwuHgOgCup4LtwkXxtwT/Alwj3TXMACwkhjV0kY0Z4SbHPB9BOiEoIgR+g+tFuIQghBMCHAFZRSl+RrPoRgDgyfi1437u4/BphdP0kAGXia7MVUEofppQ2p5QWgz9GkymlVwKYAkAsFy+XT5T7EmF7Sy0PSukOAJsJIR2ERf0ArIRLjqHAJgAnEUIKhHMuyuia4ygh0+M2EcCZhJC6wpvJmcIySyCEDALwHwDnUUoPy+S+XIgoag2gHYB5sPlep5Quo5Q2pJQWC/fNFvABEjvgkmOYMU47+TMc8BgMPgplLYBHHZLhFPCvXEsBLBb+DQbvT/0DwD/C33rC9gTA24LMywB0t1HWvkhExbQBf9OUAPgaQFhYnid8LxHWt7FJtq4AFgjH8QfwkQWuOoYAngCwGsByAJ+Cj95w9DgC+AK8zz8CXgHdYOS4gfd1lwj/hlgsXwl4f7R4v7wn2f5RQb41AM6SLLfsXleSUbZ+AxKDp7YfQzP+sZmnDAaDkWN4yRXDYDAYDB0wxc5gMBg5BlPsDAaDkWMwxc5gMBg5BlPsDAaDkWMwxc5gMBg5BlPsDAaDkWMwxc5gMBg5xv8DBJM4cqomQ18AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(x)\n", + "plt.plot(predicted)\n", + "plt.axvline(len(trainX), c=\"r\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/02_2_simple-RNN-diffrent-sequence-length.ipynb b/02_2_simple-RNN-diffrent-sequence-length.ipynb new file mode 100644 index 0000000..281a76d --- /dev/null +++ b/02_2_simple-RNN-diffrent-sequence-length.ipynb @@ -0,0 +1,818 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

تغییر در طول بازه‌های زمانی ورودی شبکه - روش 2

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "import pandas as pd\n", + "import numpy as np\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, SimpleRNN\n", + "from tensorflow.keras.callbacks import ModelCheckpoint\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "%matplotlib inline\n", + "\n", + "t = np.arange(0,1500)\n", + "x = np.sin(0.02*t)+ np.random.rand(1500) * 2\n", + "\n", + "train,test = x[0:1000], x[1000:]\n", + "\n", + "# convert into dataset data and label\n", + "def convertToDataset(data, step):\n", + " #data = np.append(data,np.repeat(data[-1,],step))\n", + " X, Y =[], []\n", + " for i in range(len(data)-step):\n", + " d=i+step \n", + " X.append(data[i:d,])\n", + " Y.append(data[d,])\n", + " return np.array(X), np.array(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "train_step = 10\n", + "test_step = 20\n", + "\n", + "trainX,trainY =convertToDataset(train,train_step)\n", + "testX,testY =convertToDataset(test,test_step)\n", + "\n", + "trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))\n", + "testX = np.reshape(testX, (testX.shape[0],testX.shape[1], 1))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(990, 10, 1)\n", + "(480, 20, 1)\n" + ] + } + ], + "source": [ + "print(trainX.shape)\n", + "print(testX.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
معماری شبکه و compile آن
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def build_model(sequence_length):\n", + " model = Sequential()\n", + " model.add(SimpleRNN(units=64, input_shape=(sequence_length, 1), activation=\"tanh\"))\n", + " model.add(Dense(1))\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "simple_rnn (SimpleRNN) (None, 64) 4224 \n", + "_________________________________________________________________\n", + "dense (Dense) (None, 1) 65 \n", + "=================================================================\n", + "Total params: 4,289\n", + "Trainable params: 4,289\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = build_model(10)\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.input" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
آموزش مدل
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Directory where the checkpoints will be saved\n", + "checkpoint_dir = './notebook02_training_checkpoints'\n", + "# Name of the checkpoint files\n", + "checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt_{epoch}\")\n", + "\n", + "checkpoint_callback=ModelCheckpoint(\n", + " filepath=checkpoint_prefix,\n", + " save_weights_only=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 3s - loss: 0.4920\n", + "Epoch 2/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.4102\n", + "Epoch 3/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.4077\n", + "Epoch 4/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3988\n", + "Epoch 5/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3925\n", + "Epoch 6/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.4015\n", + "Epoch 7/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.4000\n", + "Epoch 8/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3984\n", + "Epoch 9/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3925\n", + "Epoch 10/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3851\n", + "Epoch 11/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3976\n", + "Epoch 12/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3905\n", + "Epoch 13/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3893\n", + "Epoch 14/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3872\n", + "Epoch 15/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3872\n", + "Epoch 16/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3846\n", + "Epoch 17/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3850\n", + "Epoch 18/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3761\n", + "Epoch 19/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3787\n", + "Epoch 20/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - 1s - loss: 0.3866\n", + "Epoch 21/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3835\n", + "Epoch 22/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3744\n", + "Epoch 23/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3782\n", + "Epoch 24/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3821\n", + "Epoch 25/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3776\n", + "Epoch 26/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3718\n", + "Epoch 27/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3717\n", + "Epoch 28/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3737\n", + "Epoch 29/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3653\n", + "Epoch 30/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3704\n", + "Epoch 31/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3659\n", + "Epoch 32/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3701\n", + "Epoch 33/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3663\n", + "Epoch 34/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3637\n", + "Epoch 35/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3555\n", + "Epoch 36/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3543\n", + "Epoch 37/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3566\n", + "Epoch 38/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3466\n", + "Epoch 39/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3438\n", + "Epoch 40/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - 1s - loss: 0.3463\n", + "Epoch 41/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3561\n", + "Epoch 42/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3459\n", + "Epoch 43/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3381\n", + "Epoch 44/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3365\n", + "Epoch 45/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3412\n", + "Epoch 46/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3426\n", + "Epoch 47/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3295\n", + "Epoch 48/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3220\n", + "Epoch 49/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3177\n", + "Epoch 50/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3178\n", + "Epoch 51/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3078\n", + "Epoch 52/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3301\n", + "Epoch 53/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3137\n", + "Epoch 54/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.3016\n", + "Epoch 55/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2949\n", + "Epoch 56/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2980\n", + "Epoch 57/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2944\n", + "Epoch 58/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2972\n", + "Epoch 59/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2902\n", + "Epoch 60/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - 1s - loss: 0.2859\n", + "Epoch 61/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2773\n", + "Epoch 62/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2800\n", + "Epoch 63/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2620\n", + "Epoch 64/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2646\n", + "Epoch 65/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2577\n", + "Epoch 66/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2543\n", + "Epoch 67/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2483\n", + "Epoch 68/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2405\n", + "Epoch 69/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2337\n", + "Epoch 70/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2342\n", + "Epoch 71/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2173\n", + "Epoch 72/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2247\n", + "Epoch 73/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2170\n", + "Epoch 74/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2205\n", + "Epoch 75/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2102\n", + "Epoch 76/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2108\n", + "Epoch 77/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1987\n", + "Epoch 78/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1991\n", + "Epoch 79/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.2037\n", + "Epoch 80/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - 1s - loss: 0.1884\n", + "Epoch 81/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1865\n", + "Epoch 82/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1899\n", + "Epoch 83/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1786\n", + "Epoch 84/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1767\n", + "Epoch 85/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1744\n", + "Epoch 86/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1722\n", + "Epoch 87/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1584\n", + "Epoch 88/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1574\n", + "Epoch 89/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1525\n", + "Epoch 90/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1518\n", + "Epoch 91/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1574\n", + "Epoch 92/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1444\n", + "Epoch 93/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1486\n", + "Epoch 94/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1365\n", + "Epoch 95/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1379\n", + "Epoch 96/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1279\n", + "Epoch 97/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1311\n", + "Epoch 98/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1216\n", + "Epoch 99/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n", + " - 1s - loss: 0.1223\n", + "Epoch 100/100\n", + "WARNING:tensorflow:This model was compiled with a Keras optimizer () but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.\n", + "\n", + "Consider using a TensorFlow optimizer from `tf.train`.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - 1s - loss: 0.1285\n" + ] + } + ], + "source": [ + "history = model.fit(trainX,trainY, epochs=100, batch_size=16,\n", + " verbose=2, callbacks=[checkpoint_callback])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#
ارزیابی مدل
" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'./notebook02_training_checkpoints\\\\ckpt_100'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.train.latest_checkpoint(checkpoint_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "model = build_model(20)\n", + "\n", + "model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))\n", + "\n", + "model.compile(loss='mean_squared_error', optimizer='adam')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.841938066482544\n" + ] + } + ], + "source": [ + "trainScore = model.evaluate(testX, testY, verbose=0)\n", + "print(trainScore)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/03_1_Cryptocurrency-predicting.ipynb b/03_1_Cryptocurrency-predicting.ipynb new file mode 100644 index 0000000..15680bf --- /dev/null +++ b/03_1_Cryptocurrency-predicting.ipynb @@ -0,0 +1,596 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

تخمین قیمت ارزهای دیجیتال

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "##
مجموعه داده
\n", + "\n", + "
مجموعه داده را می‌توانید از مسیر زیر دانلود کنید
\n", + "\n", + "http://dataset.class.vision/rnn/crypto_data.zip" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " time low high open close volume\n", + "0 1528968660 96.580002 96.589996 96.589996 96.580002 9.647200\n", + "1 1528968720 96.449997 96.669998 96.589996 96.660004 314.387024\n", + "2 1528968780 96.470001 96.570000 96.570000 96.570000 77.129799\n", + "3 1528968840 96.449997 96.570000 96.570000 96.500000 7.216067\n", + "4 1528968900 96.279999 96.540001 96.500000 96.389999 524.539978\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "\n", + "df = pd.read_csv(\"crypto_data/LTC-USD.csv\", names=['time', 'low', 'high', 'open', 'close', 'volume'])\n", + "\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BTC-USD\n", + "LTC-USD\n", + "BCH-USD\n", + "ETH-USD\n", + " BTC-USD_close BTC-USD_volume LTC-USD_close LTC-USD_volume \\\n", + "time \n", + "1528968720 6487.379883 7.706374 96.660004 314.387024 \n", + "1528968780 6479.410156 3.088252 96.570000 77.129799 \n", + "1528968840 6479.410156 1.404100 96.500000 7.216067 \n", + "1528968900 6479.979980 0.753000 96.389999 524.539978 \n", + "1528968960 6480.000000 1.490900 96.519997 16.991997 \n", + "\n", + " BCH-USD_close BCH-USD_volume ETH-USD_close ETH-USD_volume \n", + "time \n", + "1528968720 870.859985 26.856577 486.01001 26.019083 \n", + "1528968780 870.099976 1.124300 486.00000 8.449400 \n", + "1528968840 870.789978 1.749862 485.75000 26.994646 \n", + "1528968900 870.000000 1.680500 486.00000 77.355759 \n", + "1528968960 869.989990 1.669014 486.00000 7.503300 \n" + ] + } + ], + "source": [ + "main_df = pd.DataFrame() # begin empty\n", + "\n", + "ratios = [\"BTC-USD\", \"LTC-USD\", \"BCH-USD\", \"ETH-USD\"] # the 4 ratios we want to consider\n", + "for ratio in ratios: # begin iteration\n", + " print(ratio)\n", + " dataset = f'crypto_data/{ratio}.csv' # get the full path to the file.\n", + " df = pd.read_csv(dataset, names=['time', 'low', 'high', 'open', 'close', 'volume']) # read in specific file\n", + "\n", + " # rename volume and close to include the ticker so we can still which close/volume is which:\n", + " df.rename(columns={\"close\": f\"{ratio}_close\", \"volume\": f\"{ratio}_volume\"}, inplace=True)\n", + "\n", + " df.set_index(\"time\", inplace=True) # set time as index so we can join them on this shared time\n", + " df = df[[f\"{ratio}_close\", f\"{ratio}_volume\"]] # ignore the other columns besides price and volume\n", + "\n", + " if len(main_df)==0: # if the dataframe is empty\n", + " main_df = df # then it's just the current df\n", + " else: # otherwise, join this data to the main one\n", + " main_df = main_df.join(df)\n", + "\n", + "main_df.fillna(method=\"ffill\", inplace=True) # if there are gaps in data, use previously known values\n", + "main_df.dropna(inplace=True)\n", + "print(main_df.head()) # how did we do??" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "SEQ_LEN = 60 # how long of a preceeding sequence to collect for RNN\n", + "FUTURE_PERIOD_PREDICT = 3 # how far into the future are we trying to predict?\n", + "RATIO_TO_PREDICT = \"LTC-USD\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "main_df['future'] = main_df[f'{RATIO_TO_PREDICT}_close'].shift(-FUTURE_PERIOD_PREDICT)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BTC-USD_closeBTC-USD_volumeLTC-USD_closeLTC-USD_volumeBCH-USD_closeBCH-USD_volumeETH-USD_closeETH-USD_volumefuture
time
15289687206487.3798837.70637496.660004314.387024870.85998526.856577486.0100126.01908396.389999
15289687806479.4101563.08825296.57000077.129799870.0999761.124300486.000008.44940096.519997
15289688406479.4101561.40410096.5000007.216067870.7899781.749862485.7500026.99464696.440002
15289689006479.9799800.75300096.389999524.539978870.0000001.680500486.0000077.35575996.470001
15289689606480.0000001.49090096.51999716.991997869.9899901.669014486.000007.50330096.400002
\n", + "
" + ], + "text/plain": [ + " BTC-USD_close BTC-USD_volume LTC-USD_close LTC-USD_volume \\\n", + "time \n", + "1528968720 6487.379883 7.706374 96.660004 314.387024 \n", + "1528968780 6479.410156 3.088252 96.570000 77.129799 \n", + "1528968840 6479.410156 1.404100 96.500000 7.216067 \n", + "1528968900 6479.979980 0.753000 96.389999 524.539978 \n", + "1528968960 6480.000000 1.490900 96.519997 16.991997 \n", + "\n", + " BCH-USD_close BCH-USD_volume ETH-USD_close ETH-USD_volume \\\n", + "time \n", + "1528968720 870.859985 26.856577 486.01001 26.019083 \n", + "1528968780 870.099976 1.124300 486.00000 8.449400 \n", + "1528968840 870.789978 1.749862 485.75000 26.994646 \n", + "1528968900 870.000000 1.680500 486.00000 77.355759 \n", + "1528968960 869.989990 1.669014 486.00000 7.503300 \n", + "\n", + " future \n", + "time \n", + "1528968720 96.389999 \n", + "1528968780 96.519997 \n", + "1528968840 96.440002 \n", + "1528968900 96.470001 \n", + "1528968960 96.400002 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "main_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def classify(current, future):\n", + " if float(future) > float(current):\n", + " return 1\n", + " else:\n", + " return 0" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "main_df['target'] = list(map(classify, main_df[f'{RATIO_TO_PREDICT}_close'], main_df['future']))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BTC-USD_closeBTC-USD_volumeLTC-USD_closeLTC-USD_volumeBCH-USD_closeBCH-USD_volumeETH-USD_closeETH-USD_volumefuturetarget
time
15289687206487.3798837.70637496.660004314.387024870.85998526.856577486.0100126.01908396.3899990
15289687806479.4101563.08825296.57000077.129799870.0999761.124300486.000008.44940096.5199970
15289688406479.4101561.40410096.5000007.216067870.7899781.749862485.7500026.99464696.4400020
15289689006479.9799800.75300096.389999524.539978870.0000001.680500486.0000077.35575996.4700011
15289689606480.0000001.49090096.51999716.991997869.9899901.669014486.000007.50330096.4000020
\n", + "
" + ], + "text/plain": [ + " BTC-USD_close BTC-USD_volume LTC-USD_close LTC-USD_volume \\\n", + "time \n", + "1528968720 6487.379883 7.706374 96.660004 314.387024 \n", + "1528968780 6479.410156 3.088252 96.570000 77.129799 \n", + "1528968840 6479.410156 1.404100 96.500000 7.216067 \n", + "1528968900 6479.979980 0.753000 96.389999 524.539978 \n", + "1528968960 6480.000000 1.490900 96.519997 16.991997 \n", + "\n", + " BCH-USD_close BCH-USD_volume ETH-USD_close ETH-USD_volume \\\n", + "time \n", + "1528968720 870.859985 26.856577 486.01001 26.019083 \n", + "1528968780 870.099976 1.124300 486.00000 8.449400 \n", + "1528968840 870.789978 1.749862 485.75000 26.994646 \n", + "1528968900 870.000000 1.680500 486.00000 77.355759 \n", + "1528968960 869.989990 1.669014 486.00000 7.503300 \n", + "\n", + " future target \n", + "time \n", + "1528968720 96.389999 0 \n", + "1528968780 96.519997 0 \n", + "1528968840 96.440002 0 \n", + "1528968900 96.470001 1 \n", + "1528968960 96.400002 0 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "main_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
جدا کردن دیتای آموزش و ارزیابی
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "times = sorted(main_df.index.values) # get the times\n", + "last_5pct = sorted(main_df.index.values)[-int(0.05*len(times))] # get the last 5% of the times\n", + "\n", + "validation_main_df = main_df[(main_df.index >= last_5pct)] # make the validation data where the index is in the last 5%\n", + "main_df = main_df[(main_df.index < last_5pct)] # now the main_df is all the data up to the last 5%" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we need to **balance** and **normalize** this data. \n", + "\n", + "By **balance**, we want to make sure the classes have equal amounts when training, so our model doesn't just always predict one class.\n", + "\n", + "One way to counteract this is to use class weights, which allows you to weight loss higher for lesser-frequent classifications. That said, I've never personally seen this really be comparable to a real balanced dataset.\n", + "\n", + "We also need to take our data and make sequences from it.\n", + "\n", + "So...we've got some work to do! We'll start by making a function that will process the dataframes, so we can just do something like:\n", + "\n", + " train_x, train_y = preprocess_df(main_df) \n", + " validation_x, validation_y = preprocess_df(validation_main_df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's start by **removing the future column** (the actual target is called literally target and only needed the future column temporarily to create it). \n", + "\n", + "Then, we need to **scale our data**:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn import preprocessing # pip install sklearn ... if you don't have it!\n", + "\n", + "def preprocess_df(df):\n", + " df = df.drop(\"future\", 1) # don't need this anymore.\n", + "\n", + " for col in df.columns: # go through all of the columns\n", + " if col != \"target\": # normalize all ... except for the target itself!\n", + " df[col] = df[col].pct_change() # pct change \"normalizes\" the different currencies (each crypto coin has vastly diff values, we're really more interested in the other coin's movements)\n", + " df.dropna(inplace=True) # remove the nas created by pct_change\n", + " df[col] = preprocessing.scale(df[col].values) # scale between 0 and 1.\n", + "\n", + " df.dropna(inplace=True) # cleanup again... jic. Those nasty NaNs love to creep in." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alright, we've normalized and scaled the data! \n", + "\n", + "Next up, **we need to create our actual sequences**. \n", + "\n", + "To do this:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from collections import deque\n", + "import random\n", + "\n", + "\n", + "sequential_data = [] # this is a list that will CONTAIN the sequences\n", + "prev_days = deque(maxlen=SEQ_LEN) # These will be our actual sequences. They are made with deque, which keeps the maximum length by popping out older values as new ones come in\n", + "\n", + "for i in df.values: # iterate over the values\n", + " prev_days.append([n for n in i[:-1]]) # store all but the target\n", + " if len(prev_days) == SEQ_LEN: # make sure we have 60 sequences!\n", + " sequential_data.append([np.array(prev_days), i[-1]]) # append those bad boys!\n", + "\n", + "random.shuffle(sequential_data) # shuffle for good measure." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
منبع:
\n", + "\n", + "https://becominghuman.ai/recurrent-neural-networks-rnn-deep-learning-w-python-tensorflow-keras-p-7-c21bc374d4dc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/03_2_Cryptocurrency-predicting.ipynb b/03_2_Cryptocurrency-predicting.ipynb new file mode 100644 index 0000000..7b159d9 --- /dev/null +++ b/03_2_Cryptocurrency-predicting.ipynb @@ -0,0 +1,562 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

تخمین قیمت ارزهای دیجیتال - قسمت 2

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Balancing Recurrent Neural Network sequence data for our crypto predicting RNN" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from collections import deque\n", + "import random\n", + "import numpy as np\n", + "from sklearn import preprocessing\n", + "\n", + "SEQ_LEN = 60 # how long of a preceeding sequence to collect for RNN\n", + "FUTURE_PERIOD_PREDICT = 3 # how far into the future are we trying to predict?\n", + "RATIO_TO_PREDICT = \"LTC-USD\"\n", + "\n", + "\n", + "def classify(current, future):\n", + " if float(future) > float(current): # if the future price is higher than the current, that's a buy, or a 1\n", + " return 1\n", + " else: # otherwise... it's a 0!\n", + " return 0\n", + "\n", + "\n", + "def preprocess_df(df):\n", + " df = df.drop(\"future\", 1) # don't need this anymore.\n", + "\n", + " for col in df.columns: # go through all of the columns\n", + " if col != \"target\": # normalize all ... except for the target itself!\n", + " df[col] = df[col].pct_change() # pct change \"normalizes\" the different currencies (each crypto coin has vastly diff values, we're really more interested in the other coin's movements)\n", + " df.dropna(inplace=True) # remove the nas created by pct_change\n", + " df[col] = preprocessing.scale(df[col].values) # scale between 0 and 1.\n", + "\n", + " df.dropna(inplace=True) # cleanup again... jic. Those nasty NaNs love to creep in.\n", + "\n", + " sequential_data = [] # this is a list that will CONTAIN the sequences\n", + " prev_days = deque(maxlen=SEQ_LEN) # These will be our actual sequences. They are made with deque, which keeps the maximum length by popping out older values as new ones come in\n", + "\n", + " for i in df.values: # iterate over the values\n", + " prev_days.append([n for n in i[:-1]]) # store all but the target\n", + " if len(prev_days) == SEQ_LEN: # make sure we have 60 sequences!\n", + " sequential_data.append([np.array(prev_days), i[-1]]) # append those bad boys!\n", + "\n", + " random.shuffle(sequential_data) # shuffle for good measure.\n", + "\n", + "\n", + "main_df = pd.DataFrame() # begin empty\n", + "\n", + "ratios = [\"BTC-USD\", \"LTC-USD\", \"BCH-USD\", \"ETH-USD\"] # the 4 ratios we want to consider\n", + "for ratio in ratios: # begin iteration\n", + " dataset = f'crypto_data/{ratio}.csv' # get the full path to the file.\n", + " df = pd.read_csv(dataset, names=['time', 'low', 'high', 'open', 'close', 'volume']) # read in specific file\n", + "\n", + " # rename volume and close to include the ticker so we can still which close/volume is which:\n", + " df.rename(columns={\"close\": f\"{ratio}_close\", \"volume\": f\"{ratio}_volume\"}, inplace=True)\n", + "\n", + " df.set_index(\"time\", inplace=True) # set time as index so we can join them on this shared time\n", + " df = df[[f\"{ratio}_close\", f\"{ratio}_volume\"]] # ignore the other columns besides price and volume\n", + "\n", + " if len(main_df)==0: # if the dataframe is empty\n", + " main_df = df # then it's just the current df\n", + " else: # otherwise, join this data to the main one\n", + " main_df = main_df.join(df)\n", + "\n", + "main_df.fillna(method=\"ffill\", inplace=True) # if there are gaps in data, use previously known values\n", + "main_df.dropna(inplace=True)\n", + "#print(main_df.head()) # how did we do??\n", + "\n", + "main_df['future'] = main_df[f'{RATIO_TO_PREDICT}_close'].shift(-FUTURE_PERIOD_PREDICT)\n", + "main_df['target'] = list(map(classify, main_df[f'{RATIO_TO_PREDICT}_close'], main_df['future']))\n", + "\n", + "#print(main_df.head())\n", + "\n", + "times = sorted(main_df.index.values) # get the times\n", + "last_5pct = sorted(main_df.index.values)[-int(0.05*len(times))] # get the last 5% of the times\n", + "\n", + "validation_main_df = main_df[(main_df.index >= last_5pct)] # make the validation data where the index is in the last 5%\n", + "main_df = main_df[(main_df.index < last_5pct)] # now the main_df is all the data up to the last 5%" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Continuing along in our **preprocess_df** function, we can balance by doing:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def preprocess_df(df):\n", + " df = df.drop(\"future\", 1) # don't need this anymore.\n", + "\n", + " for col in df.columns: # go through all of the columns\n", + " if col != \"target\": # normalize all ... except for the target itself!\n", + " df[col] = df[col].pct_change() # pct change \"normalizes\" the different currencies (each crypto coin has vastly diff values, we're really more interested in the other coin's movements)\n", + " df.dropna(inplace=True) # remove the nas created by pct_change\n", + " df[col] = preprocessing.scale(df[col].values) # scale between 0 and 1.\n", + "\n", + " df.dropna(inplace=True) # cleanup again... jic.\n", + "\n", + "\n", + " sequential_data = [] # this is a list that will CONTAIN the sequences\n", + " prev_days = deque(maxlen=SEQ_LEN) # These will be our actual sequences. They are made with deque, which keeps the maximum length by popping out older values as new ones come in\n", + "\n", + " for i in df.values: # iterate over the values\n", + " prev_days.append([n for n in i[:-1]]) # store all but the target\n", + " if len(prev_days) == SEQ_LEN: # make sure we have 60 sequences!\n", + " sequential_data.append([np.array(prev_days), i[-1]]) # append those bad boys!\n", + "\n", + " random.shuffle(sequential_data) # shuffle for good measure.\n", + "\n", + " buys = [] # list that will store our buy sequences and targets\n", + " sells = [] # list that will store our sell sequences and targets\n", + "\n", + " for seq, target in sequential_data: # iterate over the sequential data\n", + " if target == 0: # if it's a \"not buy\"\n", + " sells.append([seq, target]) # append to sells list\n", + " elif target == 1: # otherwise if the target is a 1...\n", + " buys.append([seq, target]) # it's a buy!\n", + "\n", + " random.shuffle(buys) # shuffle the buys\n", + " random.shuffle(sells) # shuffle the sells!\n", + "\n", + " lower = min(len(buys), len(sells)) # what's the shorter length?\n", + "\n", + " buys = buys[:lower] # make sure both lists are only up to the shortest length.\n", + " sells = sells[:lower] # make sure both lists are only up to the shortest length.\n", + "\n", + " sequential_data = buys+sells # add them together\n", + " random.shuffle(sequential_data) # another shuffle, so the model doesn't get confused with all 1 class then the other.\n", + "\n", + " X = []\n", + " y = []\n", + "\n", + " for seq, target in sequential_data: # going over our new sequential data\n", + " X.append(seq) # X is the sequences\n", + " y.append(target) # y is the targets/labels (buys vs sell/notbuy)\n", + "\n", + " return np.array(X), y # return X and y...and make X a numpy array!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## We can now preprocess our data with:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
BTC-USD_closeBTC-USD_volumeLTC-USD_closeLTC-USD_volumeBCH-USD_closeBCH-USD_volumeETH-USD_closeETH-USD_volumefuturetarget
time
15289687206487.3798837.70637496.660004314.387024870.85998526.856577486.0100126.01908396.3899990
15289687806479.4101563.08825296.57000077.129799870.0999761.124300486.000008.44940096.5199970
15289688406479.4101561.40410096.5000007.216067870.7899781.749862485.7500026.99464696.4400020
15289689006479.9799800.75300096.389999524.539978870.0000001.680500486.0000077.35575996.4700011
15289689606480.0000001.49090096.51999716.991997869.9899901.669014486.000007.50330096.4000020
\n", + "
" + ], + "text/plain": [ + " BTC-USD_close BTC-USD_volume LTC-USD_close LTC-USD_volume \\\n", + "time \n", + "1528968720 6487.379883 7.706374 96.660004 314.387024 \n", + "1528968780 6479.410156 3.088252 96.570000 77.129799 \n", + "1528968840 6479.410156 1.404100 96.500000 7.216067 \n", + "1528968900 6479.979980 0.753000 96.389999 524.539978 \n", + "1528968960 6480.000000 1.490900 96.519997 16.991997 \n", + "\n", + " BCH-USD_close BCH-USD_volume ETH-USD_close ETH-USD_volume \\\n", + "time \n", + "1528968720 870.859985 26.856577 486.01001 26.019083 \n", + "1528968780 870.099976 1.124300 486.00000 8.449400 \n", + "1528968840 870.789978 1.749862 485.75000 26.994646 \n", + "1528968900 870.000000 1.680500 486.00000 77.355759 \n", + "1528968960 869.989990 1.669014 486.00000 7.503300 \n", + "\n", + " future target \n", + "time \n", + "1528968720 96.389999 0 \n", + "1528968780 96.519997 0 \n", + "1528968840 96.440002 0 \n", + "1528968900 96.470001 1 \n", + "1528968960 96.400002 0 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "main_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "train_x, train_y = preprocess_df(main_df)\n", + "validation_x, validation_y = preprocess_df(validation_main_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(77922, 60, 8)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "train data: 77922 validation: 3860\n", + "Dont buys: 38961, buys: 38961\n", + "VALIDATION Dont buys: 1930, buys: 1930\n" + ] + } + ], + "source": [ + "print(f\"train data: {len(train_x)} validation: {len(validation_x)}\")\n", + "print(f\"Dont buys: {train_y.count(0)}, buys: {train_y.count(1)}\")\n", + "print(f\"VALIDATION Dont buys: {validation_y.count(0)}, buys: {validation_y.count(1)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cryptocurrency-predicting RNN Model" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "EPOCHS = 10 # how many passes through our data\n", + "BATCH_SIZE = 64 # how many batches? Try smaller batch if you're getting OOM (out of memory) errors.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next let's build the model, first we need some imports:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Dropout, LSTM, LSTM, BatchNormalization" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(LSTM(128, input_shape=(train_x.shape[1:]), return_sequences=True))\n", + "model.add(Dropout(0.2))\n", + "model.add(BatchNormalization()) #normalizes activation outputs, same reason you want to normalize your input data.\n", + "\n", + "model.add(LSTM(128, return_sequences=True))\n", + "model.add(Dropout(0.1))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(LSTM(128))\n", + "model.add(Dropout(0.2))\n", + "model.add(BatchNormalization())\n", + "\n", + "model.add(Dense(32, activation='relu'))\n", + "model.add(Dropout(0.2))\n", + "\n", + "model.add(Dense(2, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)\n", + "\n", + "# Compile model\n", + "model.compile(\n", + " loss='sparse_categorical_crossentropy',\n", + " optimizer=opt,\n", + " metrics=['accuracy']\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 77922 samples, validate on 3860 samples\n", + "Epoch 1/10\n", + "77922/77922 [==============================] - 64s 824us/sample - loss: 0.7148 - accuracy: 0.5225 - val_loss: 0.6867 - val_accuracy: 0.5394\n", + "Epoch 2/10\n", + "77922/77922 [==============================] - 54s 696us/sample - loss: 0.6858 - accuracy: 0.5489 - val_loss: 0.6803 - val_accuracy: 0.5619\n", + "Epoch 3/10\n", + "77922/77922 [==============================] - 57s 737us/sample - loss: 0.6814 - accuracy: 0.5628 - val_loss: 0.6759 - val_accuracy: 0.5692\n", + "Epoch 4/10\n", + "77922/77922 [==============================] - 58s 750us/sample - loss: 0.6799 - accuracy: 0.5662 - val_loss: 0.6769 - val_accuracy: 0.5759\n", + "Epoch 5/10\n", + "77922/77922 [==============================] - 60s 766us/sample - loss: 0.6783 - accuracy: 0.5713 - val_loss: 0.6793 - val_accuracy: 0.5694\n", + "Epoch 6/10\n", + "77922/77922 [==============================] - 60s 768us/sample - loss: 0.6765 - accuracy: 0.5742 - val_loss: 0.6838 - val_accuracy: 0.5601\n", + "Epoch 7/10\n", + "77922/77922 [==============================] - 61s 779us/sample - loss: 0.6728 - accuracy: 0.5817 - val_loss: 0.6794 - val_accuracy: 0.5689\n", + "Epoch 8/10\n", + "77922/77922 [==============================] - 63s 811us/sample - loss: 0.6681 - accuracy: 0.5919 - val_loss: 0.6800 - val_accuracy: 0.5777\n", + "Epoch 9/10\n", + "77922/77922 [==============================] - 74s 944us/sample - loss: 0.6624 - accuracy: 0.6010 - val_loss: 0.6829 - val_accuracy: 0.5676\n", + "Epoch 10/10\n", + "77922/77922 [==============================] - 69s 885us/sample - loss: 0.6539 - accuracy: 0.6140 - val_loss: 0.6973 - val_accuracy: 0.5609\n" + ] + } + ], + "source": [ + "# Train model\n", + "history = model.fit(\n", + " train_x, np.array(train_y),\n", + " batch_size=BATCH_SIZE,\n", + " epochs=EPOCHS,\n", + " validation_data=(validation_x, np.array(validation_y)))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test loss: 0.6973084882133366\n", + "Test accuracy: 0.56088084\n" + ] + } + ], + "source": [ + "# Score model\n", + "score = model.evaluate(validation_x, np.array(validation_y), verbose=0)\n", + "print('Test loss:', score[0])\n", + "print('Test accuracy:', score[1])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
منبع:
\n", + "\n", + "https://becominghuman.ai/recurrent-neural-networks-rnn-deep-learning-w-python-tensorflow-keras-p-7-c21bc374d4dc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/04_simple-CNN-LSTM.ipynb b/04_simple-CNN-LSTM.ipynb new file mode 100644 index 0000000..2a2e1a1 --- /dev/null +++ b/04_simple-CNN-LSTM.ipynb @@ -0,0 +1,647 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

حرکت توپ

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import random\n", + "import numpy as np\n", + "import cv2\n", + "from keras.models import Sequential \n", + "from keras.layers import Conv2D \n", + "from keras.layers import MaxPooling2D \n", + "from keras.layers import LSTM \n", + "from keras.layers import Dense \n", + "from keras.layers import Flatten \n", + "from keras.layers import TimeDistributed" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "size = 30" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# generate the next frame in the sequence \n", + "def next_frame(last_step, column, size): \n", + " frame = np.zeros((size,size)) \n", + " # define the scope of the next step \n", + " lower = max(0, last_step-3) \n", + " upper = min(frame.shape[0]-1, last_step+3) \n", + " # choose the row index for the next step \n", + " step = random.randint(lower, upper) \n", + " # add the new step \n", + " cv2.circle(frame,(column, step),3,255,-1)\n", + " #frame[step, column] = 1 \n", + " return frame, step" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# generate a sequence of frames of a dot moving across an image \n", + "def build_frames(size): \n", + " frames = list() \n", + "\n", + " step = random.randint(0, size-1) \n", + " # decide if we are heading left or right \n", + " right = 1 if random.random() < 0.5 else 0 \n", + " col = 0 if right else size-1 \n", + "\n", + " # create all frames \n", + " for i in range(0, size): \n", + " col = i if right else size-1-i \n", + " frame, step = next_frame(step, col, size) \n", + " frames.append(frame) \n", + " return frames, right" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# generate multiple sequences of frames and reshape for network input \n", + "def generate_examples(size, n_patterns): \n", + " X, y = list(), list() \n", + " for _ in range(n_patterns): \n", + " frames, right = build_frames(size) \n", + " X.append(frames) \n", + " y.append(right) \n", + " # resize as [samples, timesteps, width, height, channels] \n", + " X = np.array(X).reshape(n_patterns, size, size, size, 1)\n", + " y = np.array(y).reshape(n_patterns, 1) \n", + " return X, y" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Right -->\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKw0lEQVR4nO3dT4ychXnH8e+vmFyAg6kBWcTppgj1wgEqK5egih4SUV8Mh0TJyZEqOYciwS0oPcRHVAFVDxUSLVbcqiWKRFMshEoQoiKniLXlgh03hUZOYlhhIh+AU5rw9LCvo43Z3Vnmz74Dz/cjjWbm3Zl5H73yd+d931lrUlVI+vT7g7EHkLQ7jF1qwtilJoxdasLYpSaMXWpizyxPTnIv8HfANcA/VtUj2z1+3759tbKyMssqN3Xq1Km5v6b0SVVV2Wz51LEnuQb4e+BLwEXg1SQnq+onWz1nZWWF1dXVaVe53Sxzf03p02aW3fgvAG9W1c+q6tfA94DD8xlL0rzNEvutwC833L84LJO0hGaJfbN954/87W2So0lWk6y+++67M6xO0ixmif0icGDD/c8Cb1/9oKp6sqoOVtXBm266aYbVSZrFLLG/Ctye5PNJPgN8DTg5n7EkzdvUZ+Or6jdJHgBeYP2jt+NVdW5uk328Wbb8mWfqpXUzfc5eVc8Dz89pFkkL5F/QSU0Yu9SEsUtNGLvUhLFLTRi71MRMH70tCz9LlybznV1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYmn+15v/c01aLN/ZpSaMXWrC2KUmjF1qwtilJoxdaiLbfSnixCcnF4D3gd8Cv6mqgxMeP/3KJO1IVW36OfY8Pmf/86r61RxeR9ICuRsvNTFr7AX8MMmpJEfnMZCkxZh1N/6LVfV2kpuBF5P8d1W9svEBwy8BfxFII5vpBN3vvVByDPigqh7d5jGeoJMWbKsTdFPvxie5LskNV24DXwbOTvt6khZrlt34W4AfDP9bbQ/wr1X1H3OZStLczW03fkcrczdeWri578ZL+mQxdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5FKSsxuW3ZjkxSRvDNd7FzumpFnt5J39u8C9Vy17GHipqm4HXhruS1piE2OvqleAy1ctPgycGG6fAO6b81yS5mzPlM+7parWAKpqLcnNWz0wyVHg6JTrkTQn08a+Y1X1JPAkQJJa9PokbW7as/HvJNkPMFxfmt9IkhZh2thPAkeG20eAZ+czjqRFSdX2e9ZJngbuAfYB7wDfAf4d+D7wOeAXwFeq6uqTeJu9lrvx0oJVVTZbPjH2eTJ2afG2it2/oJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4lObth2bEkbyU5M1wOLXZMSbPayTv7d4F7N1n+t1V153B5fr5jSZq3ibFX1SvAxK9jlrTcZjlmfyDJa8Nu/t65TSRpIaaN/QngNuBOYA14bKsHJjmaZDXJ6pTrkjQHqarJD0pWgOeq6o6P87NNHjt5ZZJmUlXZbPlU7+xJ9m+4ez9wdqvHSloOeyY9IMnTwD3AviQXge8A9yS5EyjgAvDNBc4oaQ52tBs/t5W5Gy8t3Fx34yV98hi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS01MjD3JgSQvJzmf5FySB4flNyZ5Mckbw/XexY8raVoTv9hx+Hrm/VV1OskNwCngPuAbwOWqeiTJw8DeqvrWhNfyix2lBZv6ix2raq2qTg+33wfOA7cCh4ETw8NOsP4LQNKS+ljH7ElWgLuAHwO3VNUarP9CAG6e93CS5mfPTh+Y5HrgGeChqnov2XRPYbPnHQWOTjeepHmZeMwOkORa4Dnghap6fFj2U+Ceqlobjuv/s6r+ZMLreMwuLdjUx+xZfwt/Cjh/JfTBSeDIcPsI8OysQ0panJ2cjb8b+BHwOvDhsPjbrB+3fx/4HPAL4CtVdXnCa/nOLi3YVu/sO9qNnxdjlxZv6t14SZ8Oxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSEzv5FtcDSV5Ocj7JuSQPDsuPJXkryZnhcmjx40qa1k6+xXU/sL+qTie5ATgF3Ad8Ffigqh7d8cr8Ykdp4bb6Ysc9O3jiGrA23H4/yXng1vmOJ2nRPtYxe5IV4C7Wv5sd4IEkryU5nmTvnGeTNEc7jj3J9cAzwENV9R7wBHAbcCfr7/yPbfG8o0lWk6zOYV5JU5p4zA6Q5FrgOeCFqnp8k5+vAM9V1R0TXsdjdmnBtjpm38nZ+ABPAec3hj6cuLvifuDsrENKWpydnI2/G/gR8Drw4bD428DXWd+FL+AC8M3hZN52r+U7u7RgW72z72g3fl6MXVq8qXfjJX06GLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MSeXV7fr4Cfb7i/b1i2LJxne8s2DyzfTGPP80db/WBXv8X1IytPVqvq4GgDXMV5trds88DyzbRs82zkbrzUhLFLTYwd+5Mjr/9qzrO9ZZsHlm+mZZvnd0Y9Zpe0e8Z+Z5e0S0aJPcm9SX6a5M0kD48xw1XzXEjyepIzSVZHmuF4kktJzm5YdmOSF5O8MVzvHXmeY0neGrbTmSSHdnGeA0leTnI+ybkkDw7LR9lG28wz2jaaZNd345NcA/wP8CXgIvAq8PWq+smuDvL7M10ADlbVaJ+PJvkz4APgn6rqjmHZ3wCXq+qR4Zfi3qr61ojzHAM+qKpHd2OGq+bZD+yvqtNJbgBOAfcB32CEbbTNPF9lpG00yRjv7F8A3qyqn1XVr4HvAYdHmGOpVNUrwOWrFh8GTgy3T7D+j2nMeUZTVWtVdXq4/T5wHriVkbbRNvMsrTFivxX45Yb7Fxl/IxXwwySnkhwdeZaNbqmqNVj/xwXcPPI8AA8keW3Yzd+1w4qNkqwAdwE/Zgm20VXzwBJso82MEXs2WTb2RwJfrKo/Bf4C+KthF1Yf9QRwG3AnsAY8ttsDJLkeeAZ4qKre2+3172Ce0bfRVsaI/SJwYMP9zwJvjzDH71TV28P1JeAHrB9qLIN3hmPDK8eIl8YcpqreqarfVtWHwD+wy9spybWsh/UvVfVvw+LRttFm84y9jbYzRuyvArcn+XySzwBfA06OMAcASa4bTrCQ5Drgy8DZ7Z+1a04CR4bbR4BnR5zlSkxX3M8ubqckAZ4CzlfV4xt+NMo22mqeMbfRRFW16xfgEOtn5P8X+OsxZtgwyx8D/zVczo01D/A067t9/8f63s9fAn8IvAS8MVzfOPI8/wy8DrzGemT7d3Geu1k/3HsNODNcDo21jbaZZ7RtNOniX9BJTfgXdFITxi41YexSE8YuNWHsUhPGLjVh7FITxi418f9cJWQ+EszjSwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKy0lEQVR4nO3dT4ychXnH8e+vmFyAgyl/ZDm4ThHqhYOpLS5BFT0kor4YDonCyZEqbQ5FgltQeghHVAWqnpDcguJWLRESpVgIlSBERU4RtuUaO24CjdzEeIUV+QCc0oSnh30dbZfdnWX+7Lvh+X6k0c68OzPvo1f+7vu+M7ueVBWSPv/+YOwBJG0PY5eaMHapCWOXmjB2qQljl5rYNcuDkzwA/B1wHfAPVfXkhPtv+D7fwYMHN13XqVOnphlRaqeqst7yTPs+e5LrgJ8BXwEuAW8DD1fVTzZ5zIYrmzRHsu78ktbYKPZZDuPvBd6rqp9X1a+BHwBHZng+SQs0S+x7gV+uun1pWCZpB5rlnH29Q4VPHYsnWQKWZliPpDmYJfZLwB2rbn8RuLz2TlV1DDgGm5+zS1qsWQ7j3wbuSvKlJF8AvgGcmM9YkuZt6tir6jfAI8BrwAXghao6v9ljDh48SFWte9nC+qa6SFox0/vsVfUq8OqcZpG0QP4GndSEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9TETH/19vtgsz9z9T+xVCfu2aUmjF1qwtilJoxdasLYpSaMXWric//Wm2+vSSvcs0tNGLvUhLFLTRi71ISxS00Yu9TETG+9JbkIfAT8FvhNVR2ax1CS5m8e77P/eVX9ag7PI2mBPIyXmpg19gJ+mORUkqV5DCRpMWY9jP9yVV1OchvwepL/qqq3Vt9h+CGwBLBv374ZVydpWjPt2avq8vD1CvAScO869zlWVYeq6tCtt946y+okzWDq2JPckOSma9eBrwLn5jWYpPma5TD+duCl4a/KdgH/UlX/PpepJM1dNvvfV+e+smTDlU2awz9VlbamqtaNxbfepCaMXWrC2KUmjF1qwtilJoxdamLH/O+yvrUmLZZ7dqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJ3kuyZUk51YtuznJ60neHb7uXuyYkma1lT3794EH1ix7HHijqu4C3hhuS9rBJsZeVW8BV9csPgIcH64fBx6c81yS5mzaD4m4vaqWAapqOcltG90xyRKwNOV6JM3Jwj8RpqqOAccAktSi1ydpfdO+Gv9Bkj0Aw9cr8xtJ0iJMG/sJ4Ohw/Sjw8nzGkbQoqdr8yDrJ88D9wC3AB8B3gX8DXgD2Ab8AvlZVa1/EW++5PIyXFqyq1v2U1Imxz5OxS4u3Uez+Bp3UhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTE2JM8l+RKknOrlj2R5P0kZ4bL4cWOKWlWW9mzfx94YJ3lf1tVB4bLq/MdS9K8TYy9qt4CJn4cs6SdbZZz9keSnB0O83fPbSJJCzFt7M8AdwIHgGXgqY3umGQpyckkJ6dcl6Q5SFVNvlOyH3ilqu7+LN9b576TVyZpJlWV9ZZPtWdPsmfVzYeAcxvdV9LOsGvSHZI8D9wP3JLkEvBd4P4kB4ACLgLfWuCMkuZgS4fxc1uZh/HSws31MF7S7x9jl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJibEnuSPJm0kuJDmf5NFh+c1JXk/y7vB19+LHlTStiR/sOHw8856qOp3kJuAU8CDwTeBqVT2Z5HFgd1V9e8Jz+cGO0oJN/cGOVbVcVaeH6x8BF4C9wBHg+HC346z8AJC0Q32mc/Yk+4F7gB8Dt1fVMqz8QABum/dwkuZn11bvmORG4EXgsar6MFn3SGG9xy0BS9ONJ2leJp6zAyS5HngFeK2qnh6W/RS4v6qWh/P6/6iqP5nwPJ6zSws29Tl7VnbhzwIXroU+OAEcHa4fBV6edUhJi7OVV+PvA34EvAN8Miz+Divn7S8A+4BfAF+rqqsTnss9u7RgG+3Zt3QYPy/GLi3e1Ifxkj4fjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJrbyKa53JHkzyYUk55M8Oix/Isn7Sc4Ml8OLH1fStLbyKa57gD1VdTrJTcAp4EHg68DHVfW9La/MD3aUFm6jD3bctYUHLgPLw/WPklwA9s53PEmL9pnO2ZPsB+5h5bPZAR5JcjbJc0l2z3k2SXO05diT3Ai8CDxWVR8CzwB3AgdY2fM/tcHjlpKcTHJyDvNKmtLEc3aAJNcDrwCvVdXT63x/P/BKVd094Xk8Z5cWbKNz9q28Gh/gWeDC6tCHF+6ueQg4N+uQkhZnK6/G3wf8CHgH+GRY/B3gYVYO4Qu4CHxreDFvs+dyzy4t2EZ79i0dxs+LsUuLN/VhvKTPB2OXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5rYtc3r+xXwP6tu3zIs2ymcZ3M7bR7YeTONPc8fbfSNbf0U10+tPDlZVYdGG2AN59ncTpsHdt5MO22e1TyMl5owdqmJsWM/NvL613Keze20eWDnzbTT5vmdUc/ZJW2fsffskrbJKLEneSDJT5O8l+TxMWZYM8/FJO8kOZPk5EgzPJfkSpJzq5bdnOT1JO8OX3ePPM8TSd4fttOZJIe3cZ47kryZ5EKS80keHZaPso02mWe0bTTJth/GJ7kO+BnwFeAS8DbwcFX9ZFsH+f8zXQQOVdVo748m+TPgY+Afq+ruYdnfAFer6snhh+Luqvr2iPM8AXxcVd/bjhnWzLMH2FNVp5PcBJwCHgS+yQjbaJN5vs5I22iSMfbs9wLvVdXPq+rXwA+AIyPMsaNU1VvA1TWLjwDHh+vHWfnHNOY8o6mq5ao6PVz/CLgA7GWkbbTJPDvWGLHvBX656vYlxt9IBfwwyakkSyPPstrtVbUMK/+4gNtGngfgkSRnh8P8bTutWC3JfuAe4MfsgG20Zh7YAdtoPWPEnnWWjf2WwJer6k+BvwD+ajiE1ac9A9wJHACWgae2e4AkNwIvAo9V1Yfbvf4tzDP6NtrIGLFfAu5YdfuLwOUR5vidqro8fL0CvMTKqcZO8MFwbnjtHPHKmMNU1QdV9duq+gT4e7Z5OyW5npWw/rmq/nVYPNo2Wm+esbfRZsaI/W3griRfSvIF4BvAiRHmACDJDcMLLCS5AfgqcG7zR22bE8DR4fpR4OURZ7kW0zUPsY3bKUmAZ4ELVfX0qm+Nso02mmfMbTRRVW37BTjMyivy/w389RgzrJrlj4H/HC7nx5oHeJ6Vw77/ZeXo5y+BPwTeAN4dvt488jz/BLwDnGUlsj3bOM99rJzunQXODJfDY22jTeYZbRtNuvgbdFIT/gad1ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS038H2YLouUPA4DRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxklEQVR4nO3dTYxdhXmH8edfTDbAwpQPWcSuU4S6QaopFpugii4SUW8Mi0Rh5UiVJosiwS4oXYQlqgJRV0huseJWLVEkSrFQVYIQFVlF2JZr7LgJFDmJYYQVeQGs0oQ3izlOp2Zm7nA/5oz9Pj/pau49c+eeV0d+5pxzr+2TqkLSte8Pxh5A0tYwdqkJY5eaMHapCWOXmjB2qYkds/xwkgeBvwOuA/6hqp6a8Hw/55MWrKqy1vJM+zl7kuuAnwFfAi4AbwKPVNVPNvgZY5cWbL3YZzmMvw94p6rerapfA98HDs7wepIWaJbY7wB+uerxhWGZpG1olnP2tQ4VPnWYnmQJWJphPZLmYJbYLwC7Vz3+PPD+lU+qqsPAYfCcXRrTLIfxbwJ3JflCks8BXwOOzWcsSfM29Z69qn6T5FHgFVY+ejtSVWfnNtmn17fu95I133yUtMrUH71NtbIZDuONXdqcRXz0JukqYuxSE8YuNWHsUhPGLjVh7FITWxr7vffeS1VNddvIIl5Tuta4Z5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eamOnCjle7Sf/yzf/IUtcS9+xSE8YuNWHsUhPGLjVh7FITxi41MdNHb0nOAx8BvwV+U1X75zHUVvGjNXUyj8/Z/6KqfjWH15G0QB7GS03MGnsBP0xyIsnSPAaStBizHsZ/sareT3Ib8GqS/66qN1Y/YfglsASwZ8+eGVcnaVoz7dmr6v3h60XgReC+NZ5zuKr2V9X+W2+9dZbVSZrB1LEnuSHJTZfvA18GzsxrMEnzNcth/O3Ai8PHVzuAf6mq/5jLVJLmburYq+pd4E/nOIukBfKjN6kJY5eaMHapCWOXmjB2qQljl5rIpP9hda4rS6Ze2UZz+k9Vpf9TVWsG4Z5dasLYpSaMXWrC2KUmjF1qwtilJq6aCzv68Zo0G/fsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjUxMfYkR5JcTHJm1bKbk7ya5O3h687FjilpVpvZs38PePCKZU8Ar1XVXcBrw2NJ29jE2KvqDeDSFYsPAkeH+0eBh+Y8l6Q5m/Z/qrm9qpYBqmo5yW3rPTHJErA05XokzcnC/1uqqjoMHIbZrggjaTbTvhv/QZJdAMPXi/MbSdIiTBv7MeDQcP8Q8NJ8xpG0KBMv7JjkeeAB4BbgA+DbwL8BPwD2AL8AvlJVV76Jt9ZreRgvLdh6F3a8aq7iKmlzvIqr1JyxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9TExNiTHElyMcmZVcueTPJeklPD7cBix5Q0q83s2b8HPLjG8u9W1b7h9u/zHUvSvE2MvareACZejlnS9jbLOfujSU4Ph/k75zaRpIWYNvZngTuBfcAy8PR6T0yylOR4kuNTrkvSHKSqJj8p2Qu8XFV3f5bvrfHcySuTNJOqylrLp9qzJ9m16uHDwJn1nitpe9gx6QlJngceAG5JcgH4NvBAkn1AAeeBbyxwRklzsKnD+LmtzMN4aeHmehgv6epj7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41MTH2JLuTvJ7kXJKzSR4blt+c5NUkbw9fdy5+XEnTmnhhx+HyzLuq6mSSm4ATwEPA14FLVfVUkieAnVX1zQmv5YUdpQWb+sKOVbVcVSeH+x8B54A7gIPA0eFpR1n5BSBpm/pM5+xJ9gL3AD8Gbq+qZVj5hQDcNu/hJM3Pjs0+McmNwAvA41X1YbLmkcJaP7cELE03nqR5mXjODpDkeuBl4JWqemZY9lPggapaHs7r/7Oq/mTC63jOLi3Y1OfsWdmFPwecuxz64BhwaLh/CHhp1iElLc5m3o2/H/gR8BbwybD4W6yct/8A2AP8AvhKVV2a8Fru2aUFW2/PvqnD+Hkxdmnxpj6Ml3RtMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmtjMVVx3J3k9ybkkZ5M8Nix/Msl7SU4NtwOLH1fStDZzFdddwK6qOpnkJuAE8BDwVeDjqvrOplfmhR2lhVvvwo47NvGDy8DycP+jJOeAO+Y7nqRF+0zn7En2Avewcm12gEeTnE5yJMnOOc8maY42HXuSG4EXgMer6kPgWeBOYB8re/6n1/m5pSTHkxyfw7ySpjTxnB0gyfXAy8ArVfXMGt/fC7xcVXdPeB3P2aUFW++cfTPvxgd4Dji3OvThjbvLHgbOzDqkpMXZzLvx9wM/At4CPhkWfwt4hJVD+ALOA98Y3szb6LXcs0sLtt6efVOH8fNi7NLiTX0YL+naYOxSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhM7tnh9vwJ+vurxLcOy7cJ5Nrbd5oHtN9PY8/zRet/Y0qu4fmrlyfGq2j/aAFdwno1tt3lg+8203eZZzcN4qQljl5oYO/bDI6//Ss6zse02D2y/mbbbPL836jm7pK0z9p5d0hYZJfYkDyb5aZJ3kjwxxgxXzHM+yVtJTiU5PtIMR5JcTHJm1bKbk7ya5O3h686R53kyyXvDdjqV5MAWzrM7yetJziU5m+SxYfko22iDeUbbRpNs+WF8kuuAnwFfAi4AbwKPVNVPtnSQ/z/TeWB/VY32+WiSPwc+Bv6xqu4elv0tcKmqnhp+Ke6sqm+OOM+TwMdV9Z2tmOGKeXYBu6rqZJKbgBPAQ8DXGWEbbTDPVxlpG00yxp79PuCdqnq3qn4NfB84OMIc20pVvQFcumLxQeDocP8oK3+YxpxnNFW1XFUnh/sfAeeAOxhpG20wz7Y1Rux3AL9c9fgC42+kAn6Y5ESSpZFnWe32qlqGlT9cwG0jzwPwaJLTw2H+lp1WrJZkL3AP8GO2wTa6Yh7YBttoLWPEnjWWjf2RwBer6s+AvwT+ejiE1ac9C9wJ7AOWgae3eoAkNwIvAI9X1Ydbvf5NzDP6NlrPGLFfAHavevx54P0R5vi9qnp/+HoReJGVU43t4IPh3PDyOeLFMYepqg+q6rdV9Qnw92zxdkpyPSth/XNV/euweLRttNY8Y2+jjYwR+5vAXUm+kORzwNeAYyPMAUCSG4Y3WEhyA/Bl4MzGP7VljgGHhvuHgJdGnOVyTJc9zBZupyQBngPOVdUzq741yjZab54xt9FEVbXlN+AAK+/I/w/wN2PMsGqWPwb+a7idHWse4HlWDvv+l5Wjn78C/hB4DXh7+HrzyPP8E/AWcJqVyHZt4Tz3s3K6dxo4NdwOjLWNNphntG006ebfoJOa8G/QSU0Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9TE7wBfWcCNLrlUXQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKsUlEQVR4nO3dT4yc9X3H8fenmFyAgykCWY5Tpwj1wsEUlEtQRQ+JqC+GQ6JwcqRKzqFIcAtKD/ERVUDUE5JbrLhVSxSJplioKkGIipwibMs1dtwEGjmJYYUV+QCc0oRvDvs42i67O8v82WfM9/2SRjv77OzMV4/83uf3zHh3UlVI+vT7o7EHkLQzjF1qwtilJoxdasLYpSaMXWpi1yzfnORB4O+BG4B/rKonJ9ze1/mkBauqbLQ9077OnuQG4GfAl4DLwBvAI1X1ky2+x9ilBdss9lmW8V8A3q6qn1fVb4DvAYdmuD9JCzRL7HuBX635/PKwTdISmuWcfaOlwseW6UmOAEdmeBxJczBL7JeBfWs+/yzw7vobVdUx4Bh4zi6NaZZl/BvAXUk+n+QzwNeAk/MZS9K8TX1kr6rfJnkUeJnVl96OV9WFuU0maa6mfultqgdzGS8t3CJeepN0HTF2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmZ3thxWWz1RzOTDf/2ntSOR3apCWOXmjB2qQljl5owdqkJY5eamOmltySXgA+A3wG/rar7pr2vRb3n3Cz368t2+jSZx+vsf1lVv57D/UhaIJfxUhOzxl7AD5OcTnJkHgNJWoxZl/FfrKp3k9wOvJLkf6rq9bU3GH4I+INAGlnm9cRYkqPAh1X11Ba32fTBFvUE3Sx8gk7Xo6ra8B/u1Mv4JDclueXadeDLwPlp70/SYs2yjL8D+MFw9NsF/GtV/edcppI0d3Nbxm/rwVzGSws392W8pOuLsUtNGLvUhLFLTRi71ISxS03saOz33nsvVbXhZRltNuuyzittxSO71ISxS00Yu9SEsUtNGLvUhLFLTfhbb1vwt950PfK33qTmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYmLsSY4nuZLk/JpttyZ5Jclbw8fdsw6SZOrLGPcrXW+2c2T/LvDgum1PAK9W1V3Aq8PnkpbYxNir6nXg6rrNh4ATw/UTwENznkvSnO2a8vvuqKoVgKpaSXL7ZjdMcgQ4MuXjSJqTaWPftqo6BhyDrf8slaTFmvbZ+PeS7AEYPl6Z30iSFmHa2E8Ch4frh4EX5zOOpEWZ+NdlkzwPPADcBrwHfBv4d+D7wOeAXwJfqar1T+JtdF8u46UF2+yvyy7Nn5KWNB/+KWmpOWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmJsSc5nuRKkvNrth1N8k6Ss8Pl4GLHlDSr7RzZvws8uMH271TVgeHyH/MdS9K8TYy9ql4HJr4ds6TlNss5+6NJzg3L/N1zm0jSQkwb+7PAncABYAV4erMbJjmS5FSSU1M+lqQ5SFVNvlGyH3ipqu7+JF/b4LaTH0zSTKoqG22f6sieZM+aTx8Gzm92W0nLYdekGyR5HngAuC3JZeDbwANJDgAFXAK+scAZJc3Btpbxc3swl/HSws11GS/p+mPsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjUxMfYk+5K8luRikgtJHhu235rklSRvDR93L35cSdOa+MaOw9sz76mqM0luAU4DDwFfB65W1ZNJngB2V9U3J9yXb+woLdjUb+xYVStVdWa4/gFwEdgLHAJODDc7weoPAElL6hOdsyfZD9wD/Bi4o6pWYPUHAnD7vIeTND+7tnvDJDcDLwCPV9X7yYYrhY2+7whwZLrxJM3LxHN2gCQ3Ai8BL1fVM8O2nwIPVNXKcF7/X1X1ZxPux3N2acGmPmfP6iH8OeDitdAHJ4HDw/XDwIuzDilpcbbzbPz9wI+AN4GPhs3fYvW8/fvA54BfAl+pqqsT7ssju7Rgmx3Zt7WMnxdjlxZv6mW8pE8HY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapie28i+u+JK8luZjkQpLHhu1Hk7yT5OxwObj4cSVNazvv4roH2FNVZ5LcApwGHgK+CnxYVU9t+8F8Y0dp4TZ7Y8dd2/jGFWBluP5BkovA3vmOJ2nRPtE5e5L9wD2svjc7wKNJziU5nmT3nGeTNEfbjj3JzcALwONV9T7wLHAncIDVI//Tm3zfkSSnkpyaw7ySpjTxnB0gyY3AS8DLVfXMBl/fD7xUVXdPuB/P2aUF2+ycfTvPxgd4Dri4NvThibtrHgbOzzqkpMXZzrPx9wM/At4EPho2fwt4hNUlfAGXgG8MT+ZtdV8e2aUF2+zIvq1l/LwYu7R4Uy/jJX06GLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MSuHX68XwO/WPP5bcO2ZeE8W1u2eWD5Zhp7nj/Z7As7+i6uH3vw5FRV3TfaAOs4z9aWbR5YvpmWbZ61XMZLTRi71MTYsR8b+fHXc56tLds8sHwzLds8fzDqObuknTP2kV3SDhkl9iQPJvlpkreTPDHGDOvmuZTkzSRnk5waaYbjSa4kOb9m261JXkny1vBx98jzHE3yzrCfziY5uIPz7EvyWpKLSS4keWzYPso+2mKe0fbRJDu+jE9yA/Az4EvAZeAN4JGq+smODvL/Z7oE3FdVo70+muQvgA+Bf6qqu4dtfwdcraonhx+Ku6vqmyPOcxT4sKqe2okZ1s2zB9hTVWeS3AKcBh4Cvs4I+2iLeb7KSPtokjGO7F8A3q6qn1fVb4DvAYdGmGOpVNXrwNV1mw8BJ4brJ1j9xzTmPKOpqpWqOjNc/wC4COxlpH20xTxLa4zY9wK/WvP5ZcbfSQX8MMnpJEdGnmWtO6pqBVb/cQG3jzwPwKNJzg3L/B07rVgryX7gHuDHLME+WjcPLME+2sgYsWeDbWO/JPDFqvpz4K+AvxmWsPq4Z4E7gQPACvD0Tg+Q5GbgBeDxqnp/px9/G/OMvo82M0bsl4F9az7/LPDuCHP8QVW9O3y8AvyA1VONZfDecG547RzxypjDVNV7VfW7qvoI+Ad2eD8luZHVsP6lqv5t2DzaPtponrH30VbGiP0N4K4kn0/yGeBrwMkR5gAgyU3DEywkuQn4MnB+6+/aMSeBw8P1w8CLI85yLaZrHmYH91OSAM8BF6vqmTVfGmUfbTbPmPtooqra8QtwkNVn5P8X+NsxZlgzy58C/z1cLow1D/A8q8u+/2N19fPXwB8DrwJvDR9vHXmefwbeBM6xGtmeHZznflZP984BZ4fLwbH20RbzjLaPJl38H3RSE/4POqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5ea+D0lzpW08WMfkAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKuElEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoCqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHvYx2i67O8v82WfM9/2SRjv7eHbmq0d+7/N7ZnZ3UlVI+uz7g7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OMmDwN8CNwB/X1VPTri9r/NJC1ZV2Wx7pn2dPckNwC+ArwCXgTeAR6rqZ9t8jbFLC7ZV7LMs478EvF1Vv6yq3wI/AA7PcH+SFmiW2PcBv173+eVhm6QlNMs5+2ZLhU8s05OsACszPI6kOZgl9svA/nWffx54d+ONquoYcAw8Z5fGNMsy/g3g7iRfTPI54BvAyfmMJWnepj6yV9XvkjwKvMzaS2/Hq+rC3CaTNFdTv/Q21YO5jJcWbhEvvUm6jhi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03M8pbNJLkEfAD8HvhdVd03j6Ekzd9MsQ/+vKp+M4f7kbRALuOlJmaNvYAfJzmdZGUeA0lajFmX8V+uqneT3AG8kuS/qur19TcYvgn4jUAaWapqPneUHAU+rKqntrnNfB5M0paqKpttn3oZn+TmJLdeuw58FTg/7f1JWqxZlvF3Aj9Kcu1+/rmq/n0uU0mau7kt43f0YC7jpYWb+zJe0vXF2KUmjF1qwtilJoxdasLYpSbm8VtvS227lxaHnxGQWvDILjVh7FITxi41YexSE8YuNWHsUhPXzUtvi/jtvFnu05ftdL3xyC41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSExNjT3I8yZUk59dtuy3JK0neGj7umXWQqtr2smyup1kl2NmR/fvAgxu2PQG8WlV3A68On0taYhNjr6rXgasbNh8GTgzXTwAPzXkuSXM27V+qubOqVgGqajXJHVvdMMkKsDLl40iak4X/WaqqOgYcA0jiCa00kmmfjX8vyV6A4eOV+Y0kaRGmjf0kcGS4fgR4cT7jSFqUTHqpKMnzwAPA7cB7wPeAfwV+CHwB+BXwtara+CTeZvc19TJ+2V7S8q/LallV1ab/OSfGPk/GLi3eVrH7E3RSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41sfA/XjEv0/7iyXa/QOMvs6gTj+xSE8YuNWHsUhPGLjVh7FITxi41YexSE9fN6+zT8rV0aY1HdqkJY5eaMHapCWOXmjB2qQljl5qYGHuS40muJDm/btvRJO8kOTtcDi12TEmz2smR/fvAg5ts/5uqOjhc/m2+Y0mat4mxV9XrwMS3Y5a03GY5Z380yblhmb9nbhNJWohpY38WuAs4CKwCT291wyQrSU4lOTXlY0mag2z3N9o+vlFyAHipqu75NP+2yW0nP5ikmVTVpr8QMtWRPcnedZ8+DJzf6raSlsPE33pL8jzwAHB7ksvA94AHkhwECrgEfGuBM0qagx0t4+f2YC7jpYWb6zJe0vXH2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYmLsSfYneS3JxSQXkjw2bL8tyStJ3ho+7ln8uJKmNfGNHYe3Z95bVWeS3AqcBh4CvglcraonkzwB7Kmqb0+4L9/YUVqwqd/YsapWq+rMcP0D4CKwDzgMnBhudoK1bwCSltSnOmdPcgC4F/gpcGdVrcLaNwTgjnkPJ2l+btzpDZPcArwAPF5V7yebrhQ2+7oVYGW68STNy8RzdoAkNwEvAS9X1TPDtp8DD1TV6nBe/x9V9ScT7sdzdmnBpj5nz9oh/Dng4rXQByeBI8P1I8CLsw4paXF28mz8/cBPgDeBj4bN32HtvP2HwBeAXwFfq6qrE+7LI7u0YFsd2Xe0jJ8XY5cWb+plvKTPBmOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmdvIvr/iSvJbmY5EKSx4btR5O8k+TscDm0+HElTWsn7+K6F9hbVWeS3AqcBh4Cvg58WFVP7fjBfGNHaeG2emPHG3fwhavA6nD9gyQXgX3zHU/Son2qc/YkB4B7WXtvdoBHk5xLcjzJnjnPJmmOdhx7kluAF4DHq+p94FngLuAga0f+p7f4upUkp5KcmsO8kqY08ZwdIMlNwEvAy1X1zCb/fgB4qarumXA/nrNLC7bVOftOno0P8BxwcX3owxN31zwMnJ91SEmLs5Nn4+8HfgK8CXw0bP4O8AhrS/gCLgHfGp7M2+6+PLJLC7bVkX1Hy/h5MXZp8aZexkv6bDB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJG3f58X4D/M+6z28fti0L59ness0DyzfT2PP80Vb/sKvv4vqJB09OVdV9ow2wgfNsb9nmgeWbadnmWc9lvNSEsUtNjB37sZEffyPn2d6yzQPLN9OyzfOxUc/ZJe2esY/sknbJKLEneTDJz5O8neSJMWbYMM+lJG8mOZvk1EgzHE9yJcn5ddtuS/JKkreGj3tGnudokneG/XQ2yaFdnGd/kteSXExyIcljw/ZR9tE284y2jybZ9WV8khuAXwBfAS4DbwCPVNXPdnWQ/z/TJeC+qhrt9dEkfwZ8CPxDVd0zbPtr4GpVPTl8U9xTVd8ecZ6jwIdV9dRuzLBhnr3A3qo6k+RW4DTwEPBNRthH28zzdUbaR5OMcWT/EvB2Vf2yqn4L/AA4PMIcS6WqXgeubth8GDgxXD/B2n+mMecZTVWtVtWZ4foHwEVgHyPto23mWVpjxL4P+PW6zy8z/k4q4MdJTidZGXmW9e6sqlVY+88F3DHyPACPJjk3LPN37bRivSQHgHuBn7IE+2jDPLAE+2gzY8SeTbaN/ZLAl6vqT4G/AP5qWMLqk54F7gIOAqvA07s9QJJbgBeAx6vq/d1+/B3MM/o+2soYsV8G9q/7/PPAuyPM8bGqenf4eAX4EWunGsvgveHc8No54pUxh6mq96rq91X1EfB37PJ+SnITa2H9U1X9y7B5tH202Txj76PtjBH7G8DdSb6Y5HPAN4CTI8wBQJKbhydYSHIz8FXg/PZftWtOAkeG60eAF0ec5VpM1zzMLu6nJAGeAy5W1TPr/mmUfbTVPGPuo4mqatcvwCHWnpH/b+C7Y8ywbpY/Bv5zuFwYax7gedaWff/L2urnL4E/BF4F3ho+3jbyPP8IvAmcYy2yvbs4z/2sne6dA84Ol0Nj7aNt5hltH026+BN0UhP+BJ3UhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTfwfl4CTy8FL7rEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKwUlEQVR4nO3dQYyc9XnH8e+vQC7AwRSBLMepU4R64WAqlEtQRQ6JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGilCgSTbFQVYIQFTlF2JZr7GwTaOQmhhVW5ANwShOeHPZ1tF12d5bZmX3Hfr4fabSzr2dnHl7td9//O7PspKqQdP37s7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixp18cZIHge8ANwD/XFVPTri9r/NJc1ZV2Wh7pn2dPckNwC+BLwKXgDeAR6rq51t8jbFLc7ZZ7DtZxn8OeLuqflVVvwN+CBzewf1JmqOdxL4P+M2azy8N2yQtoJ2cs2+0VPjYMj3JErC0g8eRNAM7if0SsH/N558G3l1/o6o6BhwDz9mlMe1kGf8GcHeSzyb5FPBV4ORsxpI0a1Mf2avq90keBV5m9aW341V1YWaTSZqpqV96m+rBXMZLczePl94kXUOMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmdvKWzSS5CHwA/AH4fVXdN4uhJM3ejmIffKGqfjuD+5E0Ry7jpSZ2GnsBP0lyOsnSLAaSNB87XcZ/vqreTXIH8EqS/66q19feYPgh4A8CaWSpqtncUXIU+LCqntriNrN5MEmbqqpstH3qZXySm5PcevU68CXg/LT3J2m+drKMvxP4cZKr9/MvVfUfM5lK0szNbBm/rQdzGS/N3cyX8ZKuLcYuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNTGL93q7Zk36Y5vDX86Vrgse2aUmjF1qwtilJoxdasLYpSaMXWrC2KUmJsae5HiSy0nOr9l2W5JXkrw1fNwz3zG3VlVTXca6X2kM2zmyfxd4cN22J4BXq+pu4NXhc0kLbGLsVfU6cGXd5sPAieH6CeChGc8lacam/XXZO6tqBaCqVpLcsdkNkywBS1M+jqQZmfvvxlfVMeAYQBJPaKWRTPts/HtJ9gIMHy/PbiRJ8zBt7CeBI8P1I8CLsxlH0rxkG/+b5/PAA8DtwHvAt4F/A34EfAb4NfDlqlr/JN5G9zWXZfyivdzl/xqrMVXVht+AE2OfJWOX5m+z2P0NOqkJY5eaMHapCWOXmjB2qYlr5q/LLtoz7lvZalafqddYPLJLTRi71ISxS00Yu9SEsUtNGLvUxDXz0ttWL1kt2styvrymReSRXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmJsae5HiSy0nOr9l2NMk7Sc4Ol0PzHXPijFNdxrpfaQzbObJ/F3hwg+3/WFUHh8u/z3YsSbM2Mfaqeh2Y+HbMkhbbTs7ZH01ybljm75nZRJLmYtrYnwXuAg4CK8DTm90wyVKSU0lOTflYkmYg2/n7bUkOAC9V1T2f5N82uO1C/bG4Sf/tPtmma1FVbfiNO9WRPcneNZ8+DJzf7LaSFsPEvy6b5HngAeD2JJeAbwMPJDkIFHAR+PocZ5wbj9zqZFvL+Jk92IIt46Xr0UyX8ZKuPcYuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhMTY0+yP8lrSZaTXEjy2LD9tiSvJHlr+Lhn/uNKmtbEN3Yc3p55b1WdSXIrcBp4CPgacKWqnkzyBLCnqr4x4b58Y0dpzqZ+Y8eqWqmqM8P1D4BlYB9wGDgx3OwEqz8AJC2oT3TOnuQAcC/wM+DOqlqB1R8IwB2zHk7S7Ny43RsmuQV4AXi8qt5PNlwpbPR1S8DSdONJmpWJ5+wASW4CXgJerqpnhm2/AB6oqpXhvP4/q+qvJtyP5+zSnE19zp7VQ/hzwPLV0AcngSPD9SPAizsdUtL8bOfZ+PuBnwJvAh8Nm7/J6nn7j4DPAL8GvlxVVybcl0d2ac42O7Jvaxk/K8Yuzd/Uy3hJ1wdjl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJ7byL6/4kryVZTnIhyWPD9qNJ3klydrgcmv+4kqa1nXdx3QvsraozSW4FTgMPAV8BPqyqp7b9YL6xozR3m72x443b+MIVYGW4/kGSZWDfbMeTNG+f6Jw9yQHgXlbfmx3g0STnkhxPsmfGs0maoW3HnuQW4AXg8ap6H3gWuAs4yOqR/+lNvm4pyakkp2Ywr6QpTTxnB0hyE/AS8HJVPbPBvx8AXqqqeybcj+fs0pxtds6+nWfjAzwHLK8NfXji7qqHgfM7HVLS/Gzn2fj7gZ8CbwIfDZu/CTzC6hK+gIvA14cn87a6L4/s0pxtdmTf1jJ+Voxdmr+pl/GSrg/GLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41ceMuP95vgf9d8/ntw7ZF4TxbW7R5YPFmGnuev9jsH3b1XVw/9uDJqaq6b7QB1nGerS3aPLB4My3aPGu5jJeaMHapibFjPzby46/nPFtbtHlg8WZatHn+ZNRzdkm7Z+wju6RdMkrsSR5M8oskbyd5YowZ1s1zMcmbSc4mOTXSDMeTXE5yfs2225K8kuSt4eOekec5muSdYT+dTXJoF+fZn+S1JMtJLiR5bNg+yj7aYp7R9tEku76MT3ID8Evgi8Al4A3gkar6+a4O8v9nugjcV1WjvT6a5G+AD4HvVdU9w7Z/AK5U1ZPDD8U9VfWNEec5CnxYVU/txgzr5tkL7K2qM0luBU4DDwFfY4R9tMU8X2GkfTTJGEf2zwFvV9Wvqup3wA+BwyPMsVCq6nXgyrrNh4ETw/UTrH4zjTnPaKpqparODNc/AJaBfYy0j7aYZ2GNEfs+4DdrPr/E+DupgJ8kOZ1kaeRZ1rqzqlZg9ZsLuGPkeQAeTXJuWObv2mnFWkkOAPcCP2MB9tG6eWAB9tFGxog9G2wb+yWBz1fVXwN/C/z9sITVxz0L3AUcBFaAp3d7gCS3AC8Aj1fV+7v9+NuYZ/R9tJkxYr8E7F/z+aeBd0eY40+q6t3h42Xgx6yeaiyC94Zzw6vniJfHHKaq3quqP1TVR8A/scv7KclNrIb1g6r612HzaPtoo3nG3kdbGSP2N4C7k3w2yaeArwInR5gDgCQ3D0+wkORm4EvA+a2/atecBI4M148AL444y9WYrnqYXdxPSQI8ByxX1TNr/mmUfbTZPGPuo4mqatcvwCFWn5H/H+BbY8ywZpa/BP5ruFwYax7geVaXff/H6urn74A/B14F3ho+3jbyPN8H3gTOsRrZ3l2c535WT/fOAWeHy6Gx9tEW84y2jyZd/A06qQl/g05qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJv4Ik4C99gMKbDEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyklEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx75vc/vmdn1pKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OcmDwHeBG4B/qKonJ9ze1/mkBauqbLY9077OnuQG4OfAl4BLwBvAI1X1022+x9ilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD9JCzRL7PuAX637/NKwTdISmuWcfbOlwieW6UlWgJUZHkfSHMwS+yVg/7rPPwu8t/FGVXUMOAaes0tjmmUZ/wZwd5LPJ/kM8DXg5HzGkjRvUx/Zq+q3SR4FXmbtpbfjVXVhbpNJmqupX3qb6sFcxksLt4iX3iRdQ4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZmectmkrwDfAj8DvhtVd03j6Ekzd9MsQ/+sqp+PYf7kbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqveS3AG8kuS/q+r19TcYfgj4g0AaWapqPneUHAU+qqqntrnNfB5M0paqKpttn3oZn+TmJLdevQ58GTg/7f1JWqxZlvF3Aj9McvV+/qWq/mMuU0mau7kt43f0YC7jpYWb+zJe0rXF2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJibGnuR4kstJzq/bdluSV5K8NXzcs9gxJc1qJ0f27wEPbtj2BPBqVd0NvDp8LmmJTYy9ql4HrmzYfBg4MVw/ATw057kkzdmNU37fnVW1ClBVq0nu2OqGSVaAlSkfR9KcTBv7jlXVMeAYQJJa9ONJ2ty0z8a/n2QvwPDx8vxGkrQI08Z+EjgyXD8CvDifcSQtSqq2X1kneR54ALgdeB/4DvBvwA+AzwG/BL5SVRufxNvsvlzGSwtWVdls+8TY58nYpcXbKnZ/g05qwtilJoxdasLYpSaMXWpi4b9Bdy3b7pWKZNMnPKWl5ZFdasLYpSaMXWrC2KUmjF1qwtilJq77l94W9Yc+096vL9lpLB7ZpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWpiYuxJjie5nOT8um1Hk7yb5OxwObTYMbdXVVtels12sy7jvLp+7OTI/j3gwU22/11VHRwu/z7fsSTN28TYq+p1YOLbMUtabrOcsz+a5NywzN8zt4kkLcS0sT8L3AUcBFaBp7e6YZKVJKeSnJrysSTNQXbypFCSA8BLVXXPp/naJrddyDNQ19MTW/4fdZpVVW36j2iqI3uSves+fRg4v9VtJS2Hif+7bJLngQeA25NcAr4DPJDkIFDAO8A3FjjjRNsdDZftqO+RW2PZ0TJ+bg+2oGX8doxd3cx1GS/p2mPsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNTHxT1yvdbP8ldl2fzHnX6/pWuORXWrC2KUmjF1qwtilJoxdasLYpSau+5feZuHLa7qeeGSXmjB2qQljl5owdqkJY5eaMHapiYmxJ9mf5LUkF5NcSPLYsP22JK8keWv4uGfx40qa1sQ3dhzennlvVZ1JcitwGngI+DpwpaqeTPIEsKeqvjnhvpbrXRal69DUb+xYVatVdWa4/iFwEdgHHAZODDc7wdoPAElL6lOdsyc5ANwL/AS4s6pWYe0HAnDHvIeTND87/nXZJLcALwCPV9UHO/1V0iQrwMp040mal4nn7ABJbgJeAl6uqmeGbT8DHqiq1eG8/j+r6s8m3I/n7NKCTX3OnrVD+HPAxauhD04CR4brR4AXZx1S0uLs5Nn4+4EfA28CHw+bv8XaefsPgM8BvwS+UlVXJtyXR3ZpwbY6su9oGT8vxi4t3tTLeEnXB2OXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmdvIvr/iSvJbmY5EKSx4btR5O8m+TscDm0+HElTWsn7+K6F9hbVWeS3AqcBh4Cvgp8VFVP7fjBfGNHaeG2emPHG3fwjavA6nD9wyQXgX3zHU/Son2qc/YkB4B7WXtvdoBHk5xLcjzJnjnPJmmOdhx7kluAF4DHq+oD4FngLuAga0f+p7f4vpUkp5KcmsO8kqY08ZwdIMlNwEvAy1X1zCZfPwC8VFX3TLgfz9mlBdvqnH0nz8YHeA64uD704Ym7qx4Gzs86pKTF2cmz8fcDPwbeBD4eNn8LeIS1JXwB7wDfGJ7M2+6+PLJLC7bVkX1Hy/h5MXZp8aZexku6Phi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9TEjbv8eL8G/nfd57cP25aF82xv2eaB5Ztp7Hn+ZKsv7Oq7uH7iwZNTVXXfaANs4DzbW7Z5YPlmWrZ51nMZLzVh7FITY8d+bOTH38h5trds88DyzbRs8/zBqOfsknbP2Ed2SbtklNiTPJjkZ0neTvLEGDNsmOedJG8mOZvk1EgzHE9yOcn5ddtuS/JKkreGj3tGnudokneH/XQ2yaFdnGd/kteSXExyIcljw/ZR9tE284y2jybZ9WV8khuAnwNfAi4BbwCPVNVPd3WQ/z/TO8B9VTXa66NJ/gL4CPjHqrpn2Pa3wJWqenL4obinqr454jxHgY+q6qndmGHDPHuBvVV1JsmtwGngIeDrjLCPtpnnq4y0jyYZ48j+BeDtqvpFVf0G+D5weIQ5lkpVvQ5c2bD5MHBiuH6CtX9MY84zmqparaozw/UPgYvAPkbaR9vMs7TGiH0f8Kt1n19i/J1UwI+SnE6yMvIs691ZVauw9o8LuGPkeQAeTXJuWObv2mnFekkOAPcCP2EJ9tGGeWAJ9tFmxog9m2wb+yWBL1bVnwN/BfzNsITVJz0L3AUcBFaBp3d7gCS3AC8Aj1fVB7v9+DuYZ/R9tJUxYr8E7F/3+WeB90aY4w+q6r3h42Xgh6ydaiyD94dzw6vniJfHHKaq3q+q31XVx8Dfs8v7KclNrIX1z1X1r8Pm0fbRZvOMvY+2M0bsbwB3J/l8ks8AXwNOjjAHAEluHp5gIcnNwJeB89t/1645CRwZrh8BXhxxlqsxXfUwu7ifkgR4DrhYVc+s+9Io+2irecbcRxNV1a5fgEOsPSP/P8C3x5hh3Sx/CvzXcLkw1jzA86wt+/6PtdXPXwN/DLwKvDV8vG3kef4JeBM4x1pke3dxnvtZO907B5wdLofG2kfbzDPaPpp08TfopCb8DTqpCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmvg91QOWzqcAqTsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKx0lEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx75vc/vmdn1pKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OcmDwHeBG4B/qKonJ9ze1/mkBauqbLY9077OnuQG4OfAl4BLwBvAI1X1022+x9ilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD9JCzRL7PuAX637/NKwTdISmuWcfbOlwieW6UlWgJUZHkfSHMwS+yVg/7rPPwu8t/FGVXUMOAaes0tjmmUZ/wZwd5LPJ/kM8DXg5HzGkjRvUx/Zq+q3SR4FXmbtpbfjVXVhbpNJmqupX3qb6sFcxksLt4iX3iRdQ4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZmectmkrwDfAj8DvhtVd03j6Ekzd9MsQ/+sqp+PYf7kbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqveS3AG8kuS/q+r19TcYfgj4g0AaWapqPneUHAU+qqqntrnNfB5M0paqKpttn3oZn+TmJLdevQ58GTg/7f1JWqxZlvF3Aj9McvV+/qWq/mMuU0mau7kt43f0YC7jpYWb+zJe0rXF2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJibGnuR4kstJzq/bdluSV5K8NXzcs9gxJc1qJ0f27wEPbtj2BPBqVd0NvDp8LmmJTYy9ql4HrmzYfBg4MVw/ATw057kkzdmNU37fnVW1ClBVq0nu2OqGSVaAlSkfR9KcTBv7jlXVMeAYQJJa9ONJ2ty0z8a/n2QvwPDx8vxGkrQI08Z+EjgyXD8CvDifcSQtSqq2X1kneR54ALgdeB/4DvBvwA+AzwG/BL5SVRufxNvsvlzGSwtWVdls+8TY58nYpcXbKnZ/g05qwtilJoxdasLYpSaMXWpi4b9Bd73a7lWMZNMnQ6VReWSXmjB2qQljl5owdqkJY5eaMHapidYvvS3qj4BmuV9fttOieGSXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmJsSc5nuRykvPrth1N8m6Ss8Pl0GLHnF5VbXlZRtfavLp27OTI/j3gwU22/11VHRwu/z7fsSTN28TYq+p1YOLbMUtabrOcsz+a5NywzN8zt4kkLcS0sT8L3AUcBFaBp7e6YZKVJKeSnJrysSTNQXbyxE+SA8BLVXXPp/naJrfd9WeZrqcntvz/6bQTVbXpP5SpjuxJ9q779GHg/Fa3lbQcJv7vskmeBx4Abk9yCfgO8ECSg0AB7wDfWOCMM9nuaLiMR32P3lqUHS3j5/ZgIyzjt2Psuh7NdRkv6dpj7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjUx8U9cr2ez/IXZdn8x51+uaRl5ZJeaMHapCWOXmjB2qQljl5owdqmJ1i+9zcKX13St8cguNWHsUhPGLjVh7FITxi41YexSExNjT7I/yWtJLia5kOSxYfttSV5J8tbwcc/ix5U0rYlv7Di8PfPeqjqT5FbgNPAQ8HXgSlU9meQJYE9VfXPCfS3fOylK15mp39ixqlar6sxw/UPgIrAPOAycGG52grUfAJKW1Kc6Z09yALgX+AlwZ1WtwtoPBOCOeQ8naX52/OuySW4BXgAer6oPdvrroklWgJXpxpM0LxPP2QGS3AS8BLxcVc8M234GPFBVq8N5/X9W1Z9NuB/P2aUFm/qcPWuH8OeAi1dDH5wEjgzXjwAvzjqkpMXZybPx9wM/Bt4EPh42f4u18/YfAJ8Dfgl8paquTLgvj+zSgm11ZN/RMn5ejF1avKmX8ZKuD8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhM7eRfX/UleS3IxyYUkjw3bjyZ5N8nZ4XJo8eNKmtZO3sV1L7C3qs4kuRU4DTwEfBX4qKqe2vGD+caO0sJt9caON+7gG1eB1eH6h0kuAvvmO56kRftU5+xJDgD3svbe7ACPJjmX5HiSPXOeTdIc7Tj2JLcALwCPV9UHwLPAXcBB1o78T2/xfStJTiU5NYd5JU1p4jk7QJKbgJeAl6vqmU2+fgB4qarumXA/nrNLC7bVOftOno0P8BxwcX3owxN3Vz0MnJ91SEmLs5Nn4+8Hfgy8CXw8bP4W8AhrS/gC3gG+MTyZt919eWSXFmyrI/uOlvHzYuzS4k29jJd0fTB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJG3f58X4N/O+6z28fti0L59ness0DyzfT2PP8yVZf2NV3cf3Egyenquq+0QbYwHm2t2zzwPLNtGzzrOcyXmrC2KUmxo792MiPv5HzbG/Z5oHlm2nZ5vmDUc/ZJe2esY/sknbJKLEneTDJz5K8neSJMWbYMM87Sd5McjbJqZFmOJ7kcpLz67bdluSVJG8NH/eMPM/RJO8O++lskkO7OM/+JK8luZjkQpLHhu2j7KNt5hltH02y68v4JDcAPwe+BFwC3gAeqaqf7uog/3+md4D7qmq010eT/AXwEfCPVXXPsO1vgStV9eTwQ3FPVX1zxHmOAh9V1VO7McOGefYCe6vqTJJbgdPAQ8DXGWEfbTPPVxlpH00yxpH9C8DbVfWLqvoN8H3g8AhzLJWqeh24smHzYeDEcP0Ea/+YxpxnNFW1WlVnhusfAheBfYy0j7aZZ2mNEfs+4FfrPr/E+DupgB8lOZ1kZeRZ1ruzqlZh7R8XcMfI8wA8muTcsMzftdOK9ZIcAO4FfsIS7KMN88AS7KPNjBF7Ntk29ksCX6yqPwf+CvibYQmrT3oWuAs4CKwCT+/2AEluAV4AHq+qD3b78Xcwz+j7aCtjxH4J2L/u888C740wxx9U1XvDx8vAD1k71VgG7w/nhlfPES+POUxVvV9Vv6uqj4G/Z5f3U5KbWAvrn6vqX4fNo+2jzeYZex9tZ4zY3wDuTvL5JJ8BvgacHGEOAJLcPDzBQpKbgS8D57f/rl1zEjgyXD8CvDjiLFdjuuphdnE/JQnwHHCxqp5Z96VR9tFW84y5jyaqql2/AIdYe0b+f4BvjzHDuln+FPiv4XJhrHmA51lb9v0fa6ufvwb+GHgVeGv4eNvI8/wT8CZwjrXI9u7iPPezdrp3Djg7XA6NtY+2mWe0fTTp4m/QSU34G3RSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNfF7pkeT0b9OB0kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHPZxtF12d5b5s8+Y7/slrXb28ezMV4/83uf3zMzupKqQ9On3R2MPIGl3GLvUhLFLTRi71ISxS00Yu9TEjbN8c5IHge8CNwD/UFVPTri+z/NJC1ZV2Wx7pn2ePckNwM+BLwGXgTeAR6rqp9t8j7FLC7ZV7LMs478AvF1Vv6iq3wDfBw7PcHuSFmiW2PcBv1r39eVhm6QlNMs5+2ZLhY8t05OsACsz3I+kOZgl9svA/nVffxZ4d+OVquoYcAw8Z5fGNMsy/g3g7iSfT/IZ4GvAyfmMJWnepj6yV9VvkzwKvMzaU2/Hq+rC3CaTNFdTP/U21Z25jJcWbhFPvUm6jhi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03M8pbNJLkEfAD8DvhtVd03j6Ekzd9MsQ/+sqp+PYfbkbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqneT3AG8kuS/q+r19VcYfgj4g0AaWapqPjeUHAU+rKqntrnOfO5M0paqKpttn3oZn+TmJLdeuwx8GTg/7e1JWqxZlvF3Aj9Mcu12/qWq/mMuU0mau7kt43d0Zy7jpYWb+zJe0vXF2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJibGnuR4kitJzq/bdluSV5K8NXzes9gxJc1qJ0f27wEPbtj2BPBqVd0NvDp8LWmJTYy9ql4Hrm7YfBg4MVw+ATw057kkzdmNU37fnVW1ClBVq0nu2OqKSVaAlSnvR9KcTBv7jlXVMeAYQJJa9P1J2ty0j8a/l2QvwPD5yvxGkrQI08Z+EjgyXD4CvDifcSQtSqq2X1kneR54ALgdeA/4DvBvwA+AzwG/BL5SVRsfxNvstlzGSwtWVdls+8TY58nYpcXbKnZfQSc1YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITC//jFR1t98tFyaa/oyAtnEd2qQljl5owdqkJY5eaMHapCWOXmjB2qQmfZ9/GIv4Y5yy36XP0moVHdqkJY5eaMHapCWOXmjB2qQljl5qYGHuS40muJDm/btvRJO8kOTt8HFrsmJJmtZMj+/eABzfZ/ndVdXD4+Pf5jiVp3ibGXlWvAxPfjlnScpvlnP3RJOeGZf6euU0kaSGmjf1Z4C7gILAKPL3VFZOsJDmV5NSU9yVpDrKT12onOQC8VFX3fJJ/2+S683+x+QIt4rXxs/C18dqJqtr0P8pUR/Yke9d9+TBwfqvrSloOE3/rLcnzwAPA7UkuA98BHkhyECjgEvCNBc64MMt25J7Ev1qrWexoGT+3O1uyZfz1Fvt2jF3XzHUZL+n6Y+xSE8YuNWHsUhPGLjVh7FITrf+67KSnq5btqTmfXtMsPLJLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTbT+rbdJpv0tM/8KrJaRR3apCWOXmjB2qQljl5owdqkJY5eamBh7kv1JXktyMcmFJI8N229L8kqSt4bPexY/7vUhyZYf0lgmvrHj8PbMe6vqTJJbgdPAQ8DXgatV9WSSJ4A9VfXNCbe1XH+uVfoUmvqNHatqtarODJc/AC4C+4DDwInhaidY+wEgaUl9onP2JAeAe4GfAHdW1Sqs/UAA7pj3cJLmZ8cvl01yC/AC8HhVvb/T888kK8DKdONJmpeJ5+wASW4CXgJerqpnhm0/Ax6oqtXhvP4/q+rPJtyO5+zSgk19zp61Q/hzwMVroQ9OAkeGy0eAF2cdUtLi7OTR+PuBHwNvAh8Nm7/F2nn7D4DPAb8EvlJVVyfclkd2acG2OrLvaBk/L8YuLd7Uy3hJnw7GLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITO3kX1/1JXktyMcmFJI8N248meSfJ2eHj0OLHlTStnbyL615gb1WdSXIrcBp4CPgq8GFVPbXjO/ONHaWF2+qNHW/cwTeuAqvD5Q+SXAT2zXc8SYv2ic7ZkxwA7mXtvdkBHk1yLsnxJHvmPJukOdpx7EluAV4AHq+q94FngbuAg6wd+Z/e4vtWkpxKcmoO80qa0sRzdoAkNwEvAS9X1TOb/PsB4KWqumfC7XjOLi3YVufsO3k0PsBzwMX1oQ8P3F3zMHB+1iElLc5OHo2/H/gx8Cbw0bD5W8AjrC3hC7gEfGN4MG+72/LILi3YVkf2HS3j58XYpcWbehkv6dPB2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJm7c5fv7NfC/676+fdi2LJxne8s2DyzfTGPP8ydb/cOuvovrx+48OVVV9402wAbOs71lmweWb6Zlm2c9l/FSE8YuNTF27MdGvv+NnGd7yzYPLN9MyzbPH4x6zi5p94x9ZJe0S0aJPcmDSX6W5O0kT4wxw4Z5LiV5M8nZJKdGmuF4kitJzq/bdluSV5K8NXzeM/I8R5O8M+yns0kO7eI8+5O8luRikgtJHhu2j7KPtplntH00ya4v45PcAPwc+BJwGXgDeKSqfrqrg/z/mS4B91XVaM+PJvkL4EPgH6vqnmHb3wJXq+rJ4Yfinqr65ojzHAU+rKqndmOGDfPsBfZW1ZkktwKngYeArzPCPtpmnq8y0j6aZIwj+xeAt6vqF1X1G+D7wOER5lgqVfU6cHXD5sPAieHyCdb+M405z2iqarWqzgyXPwAuAvsYaR9tM8/SGiP2fcCv1n19mfF3UgE/SnI6ycrIs6x3Z1Wtwtp/LuCOkecBeDTJuWGZv2unFeslOQDcC/yEJdhHG+aBJdhHmxkj9myybeynBL5YVX8O/BXwN8MSVh/3LHAXcBBYBZ7e7QGS3AK8ADxeVe/v9v3vYJ7R99FWxoj9MrB/3defBd4dYY4/qKp3h89XgB+ydqqxDN4bzg2vnSNeGXOYqnqvqn5XVR8Bf88u76ckN7EW1j9X1b8Om0fbR5vNM/Y+2s4Ysb8B3J3k80k+A3wNODnCHAAkuXl4gIUkNwNfBs5v/1275iRwZLh8BHhxxFmuxXTNw+zifkoS4DngYlU9s+6fRtlHW80z5j6aqKp2/QM4xNoj8v8DfHuMGdbN8qfAfw0fF8aaB3ietWXf/7G2+vlr4I+BV4G3hs+3jTzPPwFvAudYi2zvLs5zP2une+eAs8PHobH20TbzjLaPJn34CjqpCV9BJzVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITvwepOnAK4kcL6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKzUlEQVR4nO3dQYyc9XnH8e+vQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQlPDvs62i67O8vszLyDn+9HGu3su7Mzj17td+f/zrv2pKqQdP37o7EHkLQYxi41YexSE8YuNWHsUhPGLjVx426+OcmDwHeBG4B/qKonJ9ze83zSnFVVNtueac+zJ7kB+DnwJeAy8AbwSFX9dJvvMXZpzraKfTfL+C8Ab1fVL6rqN8D3gcO7uD9Jc7Sb2PcBv1r3+eVhm6QltJtj9s2WCh9bpidZAVZ28TiSZmA3sV8G9q/7/LPAuxtvVFXHgGPgMbs0pt0s498A7k7y+SSfAb4GnJzNWJJmbepn9qr6bZJHgZdZO/V2vKouzGwySTM19am3qR7MZbw0d/M49SbpU8TYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWpiN2/ZTJJLwAfA74DfVtV9sxhK0uztKvbBX1bVr2dwP5LmyGW81MRuYy/gR0lOJ1mZxUCS5mO3y/gvVtW7Se4AXkny31X1+vobDL8E/EUgjSxVNZs7So4CH1bVU9vcZjYPJmlLVZXNtk+9jE9yc5Jbr10Hvgycn/b+JM3XbpbxdwI/THLtfv6lqv5jJlNJmrmZLeN39GAu46W5m/kyXtKni7FLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS01MjD3J8SRXkpxft+22JK8keWv4uGe+Y0rarZ08s38PeHDDtieAV6vqbuDV4XNJS2xi7FX1OnB1w+bDwInh+gngoRnPJWnGbpzy++6sqlWAqlpNcsdWN0yyAqxM+TiSZmTa2Hesqo4BxwCS1LwfT9Lmpn01/r0kewGGj1dmN5KkeZg29pPAkeH6EeDF2YwjaV5Stf3KOsnzwAPA7cB7wHeAfwN+AHwO+CXwlara+CLeZvflMl6as6rKZtsnxj5Lxi7N31ax+xd0UhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITE2NPcjzJlSTn1207muSdJGeHy6H5jnn9qKptL9K87OSZ/XvAg5ts/7uqOjhc/n22Y0matYmxV9XrwMS3Y5a03HZzzP5oknPDMn/PzCaSNBfTxv4scBdwEFgFnt7qhklWkpxKcmrKx5I0A9nJi0JJDgAvVdU9n+Rrm9y2/StQk/Z3kgVNoutVVW36QzTVM3uSves+fRg4v9VtJS2HGyfdIMnzwAPA7UkuA98BHkhyECjgEvCNOc64lOZ1mmza+3VFoEl2tIyf2YNdR8v4ZTsnbuy6ZqbLeEmfPsYuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSExP/iWtny/Yv27az3az+iziBz+xSG8YuNWHsUhPGLjVh7FITxi414am3bWx3ymrZTst5ek2T+MwuNWHsUhPGLjVh7FITxi41YexSExNjT7I/yWtJLia5kOSxYfttSV5J8tbwcc/8x5U0rYlv7Di8PfPeqjqT5FbgNPAQ8HXgalU9meQJYE9VfXPCfS3Xyeld8Dy7ltXUb+xYVatVdWa4/gFwEdgHHAZODDc7wdovAElL6hMdsyc5ANwL/AS4s6pWYe0XAnDHrIeTNDs7/nPZJLcALwCPV9X7O102JlkBVqYbT9KsTDxmB0hyE/AS8HJVPTNs+xnwQFWtDsf1/1lVfzbhfpbrQHcXPGbXspr6mD1rP0XPARevhT44CRwZrh8BXtztkJLmZyevxt8P/Bh4E/ho2Pwt1o7bfwB8Dvgl8JWqujrhvpbr6XAXfGbXstrqmX1Hy/hZuZ5in9YOfrkuaBJdr6Zexku6Phi71ISxS00Yu9SEsUtNGLvUhP+77IJ5ak1j8ZldasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZ28i6u+5O8luRikgtJHhu2H03yTpKzw+XQ/MeVNK2dvIvrXmBvVZ1JcitwGngI+CrwYVU9teMH840dpbnb6o0dJ/5X0lW1CqwO1z9IchHYN9vxJM3bJzpmT3IAuJe192YHeDTJuSTHk+yZ8WySZmjHsSe5BXgBeLyq3geeBe4CDrL2zP/0Ft+3kuRUklMzmFfSlCYeswMkuQl4CXi5qp7Z5OsHgJeq6p4J9+MxuzRnWx2z7+TV+ADPARfXhz68cHfNw8D53Q4paX528mr8/cCPgTeBj4bN3wIeYW0JX8Al4BvDi3nb3ZfP7NKcbfXMvqNl/KwYuzR/Uy/jJV0fjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdauLGBT/er4H/Xff57cO2ZeE821u2eWD5Zhp7nj/Z6gsLfRfXjz14cqqq7httgA2cZ3vLNg8s30zLNs96LuOlJoxdamLs2I+N/PgbOc/2lm0eWL6Zlm2ePxj1mF3S4oz9zC5pQUaJPcmDSX6W5O0kT4wxw4Z5LiV5M8nZJKdGmuF4kitJzq/bdluSV5K8NXzcM/I8R5O8M+yns0kOLXCe/UleS3IxyYUkjw3bR9lH28wz2j6aZOHL+CQ3AD8HvgRcBt4AHqmqny50kP8/0yXgvqoa7fxokr8APgT+saruGbb9LXC1qp4cfinuqapvjjjPUeDDqnpqETNsmGcvsLeqziS5FTgNPAR8nRH20TbzfJWR9tEkYzyzfwF4u6p+UVW/Ab4PHB5hjqVSVa8DVzdsPgycGK6fYO2Hacx5RlNVq1V1Zrj+AXAR2MdI+2ibeZbWGLHvA3617vPLjL+TCvhRktNJVkaeZb07q2oV1n64gDtGngfg0STnhmX+wg4r1ktyALgX+AlLsI82zANLsI82M0bs2WTb2KcEvlhVfw78FfA3wxJWH/cscBdwEFgFnl70AEluAV4AHq+q9xf9+DuYZ/R9tJUxYr8M7F/3+WeBd0eY4w+q6t3h4xXgh6wdaiyD94Zjw2vHiFfGHKaq3quq31XVR8Dfs+D9lOQm1sL656r612HzaPtos3nG3kfbGSP2N4C7k3w+yWeArwEnR5gDgCQ3Dy+wkORm4MvA+e2/a2FOAkeG60eAF0ec5VpM1zzMAvdTkgDPARer6pl1XxplH201z5j7aKKqWvgFOMTaK/L/A3x7jBnWzfKnwH8NlwtjzQM8z9qy7/9YW/38NfDHwKvAW8PH20ae55+AN4FzrEW2d4Hz3M/a4d454OxwOTTWPtpmntH20aSLf0EnNeFf0ElNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxO8BjW2N2yK9zfsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKx0lEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHPZxtF12d5b5s8/g7/sljXb28ezMV4/2vc/vmdn1pKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OMmDwHeBG4B/qKonJ9ze1/mkBauqbLY9077OnuQG4OfAl4DLwBvAI1X1022+xtilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD9JCzRL7PuAX637/PKwTdISmuWcfbOlwseW6UlWgJUZHkfSHMwS+2Vg/7rPPwu8u/FGVXUMOAaes0tjmmUZ/wZwd5LPJ/kM8DXg5HzGkjRvUx/Zq+q3SR4FXmbtpbfjVXVhbpNJmqupX3qb6sFcxksLt4iX3iR9ihi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03M8pbNJLkEfAD8DvhtVd03j6Ekzd9MsQ/+sqp+PYf7kbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqneT3AG8kuS/q+r19TcYfgj4g0AaWapqPneUHAU+rKqntrnNfB5M0paqKpttn3oZn+TmJLdeuw58GTg/7f1JWqxZlvF3Aj9Mcu1+/qWq/mMuU0mau7kt43f0YC7jpYWb+zJe0qeLsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyMPcnxJFeSnF+37bYkryR5a/i4Z7FjSprVTo7s3wMe3LDtCeDVqrobeHX4XNISmxh7Vb0OXN2w+TBwYrh+AnhoznNJmrMbp/y6O6tqFaCqVpPcsdUNk6wAK1M+jqQ5mTb2HauqY8AxgCS16MeTtLlpn41/L8legOHjlfmNJGkRpo39JHBkuH4EeHE+40halFRtv7JO8jzwAHA78B7wHeDfgB8AnwN+CXylqjY+ibfZfbmMlxasqrLZ9omxz5OxS4u3Vez+Bp3UhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTE2JMcT3Ilyfl1244meSfJ2eFyaLFjSprVTo7s3wMe3GT731XVweHy7/MdS9K8TYy9ql4HJr4ds6TlNss5+6NJzg3L/D1zm0jSQkwb+7PAXcBBYBV4eqsbJllJcirJqSkfS9IcpKom3yg5ALxUVfd8kn/b5LaTH0zSTKoqm22f6sieZO+6Tx8Gzm91W0nL4cZJN0jyPPAAcHuSy8B3gAeSHAQKuAR8Y4EzSpqDHS3j5/ZgLuOlhZvrMl7Sp4+xS00Yu9SEsUtNGLvUhLFLTUx8nV27a7uXQpNNX1GRdsQju9SEsUtNGLvUhLFLTRi71ISxS0340tsCLOovCae9X1+yE3hkl9owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5qYGHuS/UleS3IxyYUkjw3bb0vySpK3ho97Fj/u8qiqLS/LZrtZl3FeLcbEN3Yc3p55b1WdSXIrcBp4CPg6cLWqnkzyBLCnqr454b6um++s6ykS/wT2+jL1GztW1WpVnRmufwBcBPYBh4ETw81OsPYDQNKS+kTn7EkOAPcCPwHurKpVWPuBANwx7+Ekzc+O/6eaJLcALwCPV9X7O136JVkBVqYbT9K8TDxnB0hyE/AS8HJVPTNs+xnwQFWtDuf1/1lVfzbhfq6bE13P2bWspj5nz9p3wnPAxWuhD04CR4brR4AXZx1S0uLs5Nn4+4EfA28CHw2bv8XaefsPgM8BvwS+UlVXJ9zXdXM49MiuZbXVkX1Hy/h5uZ5i386y/SAw5l6mXsZLuj4Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03s+H+q0c7N8ldm2/3FnH+9pll4ZJeaMHapCWOXmjB2qQljl5owdqkJX3pbMr68pkXxyC41YexSE8YuNWHsUhPGLjVh7FITO3kX1/1JXktyMcmFJI8N248meSfJ2eFyaPHjSprWTt7FdS+wt6rOJLkVOA08BHwV+LCqntrxgzV5Y0dpTFu9sePEX6qpqlVgdbj+QZKLwL75jidp0T7ROXuSA8C9rL03O8CjSc4lOZ5kz5xnkzRHO449yS3AC8DjVfU+8CxwF3CQtSP/01t83UqSU0lOzWFeSVOaeM4OkOQm4CXg5ap6ZpN/PwC8VFX3TLgfz9mlBdvqnH0nz8YHeA64uD704Ym7ax4Gzs86pKTF2cmz8fcDPwbeBD4aNn8LeIS1JXwBl4BvDE/mbXdfHtmlBdvqyL6jZfy8GLu0eFMv4yVdH4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrixl1+vF8D/7vu89uHbcvCeba3bPPA8s009jx/stU/7Oq7uH7swZNTVXXfaANs4DzbW7Z5YPlmWrZ51nMZLzVh7FITY8d+bOTH38h5trds88DyzbRs8/zBqOfsknbP2Ed2SbtklNiTPJjkZ0neTvLEGDNsmOdSkjeTnE1yaqQZjie5kuT8um23JXklyVvDxz0jz3M0yTvDfjqb5NAuzrM/yWtJLia5kOSxYfso+2ibeUbbR5Ps+jI+yQ3Az4EvAZeBN4BHquqnuzrI/5/pEnBfVY32+miSvwA+BP6xqu4Ztv0tcLWqnhx+KO6pqm+OOM9R4MOqemo3Ztgwz15gb1WdSXIrcBp4CPg6I+yjbeb5KiPto0nGOLJ/AXi7qn5RVb8Bvg8cHmGOpVJVrwNXN2w+DJwYrp9g7ZtpzHlGU1WrVXVmuP4BcBHYx0j7aJt5ltYYse8DfrXu88uMv5MK+FGS00lWRp5lvTurahXWvrmAO0aeB+DRJOeGZf6unVasl+QAcC/wE5ZgH22YB5ZgH21mjNizybaxXxL4YlX9OfBXwN8MS1h93LPAXcBBYBV4ercHSHIL8ALweFW9v9uPv4N5Rt9HWxkj9svA/nWffxZ4d4Q5/qCq3h0+XgF+yNqpxjJ4bzg3vHaOeGXMYarqvar6XVV9BPw9u7yfktzEWlj/XFX/OmwebR9tNs/Y+2g7Y8T+BnB3ks8n+QzwNeDkCHMAkOTm4QkWktwMfBk4v/1X7ZqTwJHh+hHgxRFnuRbTNQ+zi/spSYDngItV9cy6fxplH201z5j7aKKq2vULcIi1Z+T/B/j2GDOsm+VPgf8aLhfGmgd4nrVl3/+xtvr5a+CPgVeBt4aPt408zz8BbwLnWIts7y7Ocz9rp3vngLPD5dBY+2ibeUbbR5Mu/gad1IS/QSc1YexSE8YuNWHsUhPGLjVh7FITxi41YexSE78HWeyZy2nKEeIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKzqFIcAtKDvERVUCVE5JbrLhVSxSJplioKkGIipwibMs1dtwEGrmJYYUV+QCc0oRvDvs42prdnWX+PYO/75c02tlnZ2e+evB75/fMs+ykqpB0/fujsQeQtBzGLjVh7FITxi41YexSE8YuNXHjLN+c5EHgu8ANwD9U1ZMTbu95PmnBqiqbbc+059mT3AD8HPgScAl4A3ikqn66zfcYu7RgW8U+yzL+C8DbVfWLqvoN8H3g4Az3J2mBZol9D/CrDZ9fGrZJWkGzHLNvtlT42DI9yWHg8AyPI2kOZon9ErB3w+efBd699kZVdRQ4Ch6zS2OaZRn/BnB3ks8n+QzwNeDEfMaSNG9TP7NX1W+TPAq8zPqpt2NVdX5uk0maq6lPvU31YC7jpYVbxKk3SZ8ixi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE7O8ZTNJLgIfAL8DfltV981jKEnzN1Psg7+sql/P4X4kLZDLeKmJWWMv4EdJTiU5PI+BJC3GrMv4L1bVu0nuAF5J8t9V9frGGww/BPxBII0sVTWfO0qOAB9W1VPb3GY+DyZpS1WVzbZPvYxPcnOSW69eB74MnJv2/iQt1izL+DuBHya5ej//UlX/MZepJM3d3JbxO3owl/HSws19GS/p08XYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmJsae5FiSy0nObdh2W5JXkrw1fNy12DElzWonz+zfAx68ZtsTwKtVdTfw6vC5pBU2Mfaqeh24cs3mg8Dx4fpx4KE5zyVpzm6c8vvurKo1gKpaS3LHVjdMchg4POXjSJqTaWPfsao6ChwFSFKLfjxJm5v21fj3kuwGGD5ent9IkhZh2thPAIeG64eAF+czjqRFSdX2K+skzwMPALcD7wHfAf4N+AHwOeCXwFeq6toX8Ta7L5fx0oJVVTbbPjH2eTJ2afG2it3foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5JjSS4nObdh25Ek7yQ5M1wOLHZMAVTVlhdpkp08s38PeHCT7X9XVfuHy7/PdyxJ8zYx9qp6HZj4dsySVtssx+yPJjk7LPN3zW0iSQsxbezPAncB+4E14OmtbpjkcJKTSU5O+ViS5iA7eXEnyT7gpaq655N8bZPb+krSDLb7b5VkiZNolVXVpv8YpnpmT7J7w6cPA+e2uq2k1XDjpBskeR54ALg9ySXgO8ADSfYDBVwEvrHAGa8rizpNNsv9uiroYUfL+Lk9mMv4lTwnbuzXl7ku4yV9+hi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUz8X1z1ya3i/9m2Hf8oRg8+s0tNGLvUhLFLTRi71ISxS00Yu9SEp94WYLvTVat4Ws7Taz34zC41YexSE8YuNWHsUhPGLjVh7FITE2NPsjfJa0kuJDmf5LFh+21JXkny1vBx1+LHlTStiW/sOLw98+6qOp3kVuAU8BDwdeBKVT2Z5AlgV1V9c8J9rd5J5iXzPLsWbeo3dqyqtao6PVz/ALgA7AEOAseHmx1n/QeApBX1iY7Zk+wD7gV+AtxZVWuw/gMBuGPew0manx3/umySW4AXgMer6v2dLv2SHAYOTzeepHmZeMwOkOQm4CXg5ap6Ztj2M+CBqlobjuv/s6r+bML9rN4B65J5zK5Fm/qYPev/Ep4DLlwNfXACODRcPwS8OOuQkhZnJ6/G3w/8GHgT+GjY/C3Wj9t/AHwO+CXwlaq6MuG+Vu9pbcl8ZteibfXMvqNl/LwY+2z8K7DaiamX8ZKuD8YuNWHsUhPGLjVh7FITxi414V+X/RTx9Jpm4TO71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03s5F1c9yZ5LcmFJOeTPDZsP5LknSRnhsuBxY8raVo7eRfX3cDuqjqd5FbgFPAQ8FXgw6p6ascP5hs7Sgu31Rs7TvxT0lW1BqwN1z9IcgHYM9/xJC3aJzpmT7IPuJf192YHeDTJ2STHkuya82yS5mjHsSe5BXgBeLyq3geeBe4C9rP+zP/0Ft93OMnJJCfnMK+kKU08ZgdIchPwEvByVT2zydf3AS9V1T0T7sdjdmnBtjpm38mr8QGeAy5sDH144e6qh4Fzsw4paXF28mr8/cCPgTeBj4bN3wIeYX0JX8BF4BvDi3nb3ZfP7NKCbfXMvqNl/LwYu7R4Uy/jJV0fjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdauLGJT/er4H/3fD57cO2VeE821u1eWD1Zhp7nj/Z6gtLfRfXjz14crKq7httgGs4z/ZWbR5YvZlWbZ6NXMZLTRi71MTYsR8d+fGv5TzbW7V5YPVmWrV5/mDUY3ZJyzP2M7ukJRkl9iQPJvlZkreTPDHGDNfMczHJm0nOJDk50gzHklxOcm7DttuSvJLkreHjrpHnOZLknWE/nUlyYInz7E3yWpILSc4neWzYPso+2mae0fbRJEtfxie5Afg58CXgEvAG8EhV/XSpg/z/mS4C91XVaOdHk/wF8CHwj1V1z7Dtb4ErVfXk8ENxV1V9c8R5jgAfVtVTy5jhmnl2A7ur6nSSW4FTwEPA1xlhH20zz1cZaR9NMsYz+xeAt6vqF1X1G+D7wMER5lgpVfU6cOWazQeB48P146z/YxpzntFU1VpVnR6ufwBcAPYw0j7aZp6VNUbse4Bfbfj8EuPvpAJ+lORUksMjz7LRnVW1Buv/uIA7Rp4H4NEkZ4dl/tIOKzZKsg+4F/gJK7CPrpkHVmAfbWaM2LPJtrFPCXyxqv4c+Cvgb4YlrD7uWeAuYD+wBjy97AGS3AK8ADxeVe8v+/F3MM/o+2grY8R+Cdi74fPPAu+OMMcfVNW7w8fLwA9ZP9RYBe8Nx4ZXjxEvjzlMVb1XVb+rqo+Av2fJ+ynJTayH9c9V9a/D5tH20WbzjL2PtjNG7G8Adyf5fJLPAF8DTowwBwBJbh5eYCHJzcCXgXPbf9fSnAAODdcPAS+OOMvVmK56mCXupyQBngMuVNUzG740yj7aap4x99FEVbX0C3CA9Vfk/wf49hgzbJjlT4H/Gi7nx5oHeJ71Zd//sb76+Wvgj4FXgbeGj7eNPM8/AW8CZ1mPbPcS57mf9cO9s8CZ4XJgrH20zTyj7aNJF3+DTmrC36CTmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYnfA072it4mUsYKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx547/N7ZtY7qSokXf/+aOwBJO0OY5eaMHapCWOXmjB2qQljl5q4cZZvTvIg8F3gBuAfqurJCbf3dT5pwaoqm23PtK+zJ7kB+DnwJeAS8AbwSFX9dJvvMXZpwbaKfZZl/BeAt6vqF1X1G+D7wOEZ7k/SAs0S+z7gV+s+vzRsk7SEZjln32yp8IllepIVYGWGx5E0B7PEfgnYv+7zzwLvbbxRVR0DjoHn7NKYZlnGvwHcneTzST4DfA04OZ+xJM3b1Ef2qvptkkeBl1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0nXEGOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYlZ3rKZJO8AHwK/A35bVffNYyhJ8zdT7IO/rKpfz+F+JC2Qy3ipiVljL+BHSU4nWZnHQJIWY9Zl/Ber6r0kdwCvJPnvqnp9/Q2GHwL+IJBGlqqazx0lR4GPquqpbW4znweTtKWqymbbp17GJ7k5ya1XrwNfBs5Pe3+SFmuWZfydwA+TXL2ff6mq/5jLVJLmbm7L+B09mMt4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDR/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw6fS1piE2OvqteBKxs2HwZODNdPAA/NeS5Jc3bjlN93Z1WtAlTVapI7trphkhVgZcrHkTQn08a+Y1V1DDgGkKQW/XiSNjfts/HvJ9kLMHy8PL+RJC3CtLGfBI4M148AL85nHEmLkqrtV9ZJngceAG4H3ge+A/wb8APgc8Avga9U1cYn8Ta7L5fx0oJVVTbbPjH2eTJ2afG2it3foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4nOb9u29Ek7yY5O1wOLXZMSbPayZH9e8CDm2z/u6o6OFz+fb5jSZq3ibFX1evAxLdjlrTcZjlnfzTJuWGZv2duE0laiGljfxa4CzgIrAJPb3XDJCtJTiU5NeVjSZqDVNXkGyUHgJeq6p5P87VNbjv5wSTNpKqy2fapjuxJ9q779GHg/Fa3lbQcbpx0gyTPAw8Atye5BHwHeCDJQaCAd4BvLHBG7cB2K7Rk0x/0amZHy/i5PZjL+IUxdl0112W8pGuPsUtNGLvUhLFLTRi71ISxS01MfJ1du2sRL4XOcp++bHf98MguNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNeG/ettlu/kHPufBP2R5/fDILjVh7FITxi41YexSE8YuNWHsUhMTY0+yP8lrSS4muZDksWH7bUleSfLW8HHP4se99iXZ9rJsrqVZtb2Jb+w4vD3z3qo6k+RW4DTwEPB14EpVPZnkCWBPVX1zwn1dWy8yj2DZXoc36mvP1G/sWFWrVXVmuP4hcBHYBxwGTgw3O8HaDwBJS+pTnbMnOQDcC/wEuLOqVmHtBwJwx7yHkzQ/O/512SS3AC8Aj1fVBztd3iVZAVamG0/SvEw8ZwdIchPwEvByVT0zbPsZ8EBVrQ7n9f9ZVX824X6W64R0CXnOrllNfc6etf/azwEXr4Y+OAkcGa4fAV6cdUhJi7OTZ+PvB34MvAl8PGz+Fmvn7T8APgf8EvhKVV2ZcF/LddhaQh7ZNautjuw7WsbPi7FPZuya1dTLeEnXB2OXmjB2qQljl5owdqkJY5ea8K/LLplpX+ryr8BqEo/sUhPGLjVh7FITxi41YexSE8YuNeFLb9cJX17TJB7ZpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZ28i6u+5O8luRikgtJHhu2H03ybpKzw+XQ4seVNK2dvIvrXmBvVZ1JcitwGngI+CrwUVU9teMH840dpYXb6o0dJ/579qpaBVaH6x8muQjsm+94khbtU52zJzkA3Mvae7MDPJrkXJLjSfbMeTZJc7Tj2JPcArwAPF5VHwDPAncBB1k78j+9xfetJDmV5NQc5pU0pYnn7ABJbgJeAl6uqmc2+foB4KWqumfC/XjOLi3YVufsO3k2PsBzwMX1oQ9P3F31MHB+1iElLc5Ono2/H/gx8Cbw8bD5W8AjrC3hC3gH+MbwZN529+WRXVqwrY7sO1rGz4uxS4s39TJe0vXB2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJm7c5cf7NfC/6z6/fdi2LJxne8s2DyzfTGPP8ydbfWFX38X1Ew+enKqq+0YbYAPn2d6yzQPLN9OyzbOey3ipCWOXmhg79mMjP/5GzrO9ZZsHlm+mZZvnD0Y9Z5e0e8Y+skvaJaPEnuTBJD9L8naSJ8aYYcM87yR5M8nZJKdGmuF4kstJzq/bdluSV5K8NXzcM/I8R5O8O+yns0kO7eI8+5O8luRikgtJHhu2j7KPtplntH00ya4v45PcAPwc+BJwCXgDeKSqfrqrg/z/md4B7quq0V4fTfIXwEfAP1bVPcO2vwWuVNWTww/FPVX1zRHnOQp8VFVP7cYMG+bZC+ytqjNJbgVOAw8BX2eEfbTNPF9lpH00yRhH9i8Ab1fVL6rqN8D3gcMjzLFUqup14MqGzYeBE8P1E6z9zzTmPKOpqtWqOjNc/xC4COxjpH20zTxLa4zY9wG/Wvf5JcbfSQX8KMnpJCsjz7LenVW1Cmv/cwF3jDwPwKNJzg3L/F07rVgvyQHgXuAnLME+2jAPLME+2swYsWeTbWO/JPDFqvpz4K+AvxmWsPqkZ4G7gIPAKvD0bg+Q5BbgBeDxqvpgtx9/B/OMvo+2Mkbsl4D96z7/LPDeCHP8QVW9N3y8DPyQtVONZfD+cG549Rzx8pjDVNX7VfW7qvoY+Ht2eT8luYm1sP65qv512DzaPtpsnrH30XbGiP0N4O4kn0/yGeBrwMkR5gAgyc3DEywkuRn4MnB+++/aNSeBI8P1I8CLI85yNaarHmYX91OSAM8BF6vqmXVfGmUfbTXPmPtooqra9QtwiLVn5P8H+PYYM6yb5U+B/xouF8aaB3ietWXf/7G2+vlr4I+BV4G3ho+3jTzPPwFvAudYi2zvLs5zP2une+eAs8Pl0Fj7aJt5RttHky7+Bp3UhL9BJzVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITvwflV3YisX2Q1QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx547/N7ZtY7qSokXf/+aOwBJO0OY5eaMHapCWOXmjB2qQljl5q4cZZvTvIg8F3gBuAfqurJCbf3dT5pwaoqm23PtK+zJ7kB+DnwJeAS8AbwSFX9dJvvMXZpwbaKfZZl/BeAt6vqF1X1G+D7wOEZ7k/SAs0S+z7gV+s+vzRsk7SEZjln32yp8IllepIVYGWGx5E0B7PEfgnYv+7zzwLvbbxRVR0DjoHn7NKYZlnGvwHcneTzST4DfA04OZ+xJM3b1Ef2qvptkkeBl1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0nXEGOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYlZ3rKZJO8AHwK/A35bVffNYyhJ8zdT7IO/rKpfz+F+JC2Qy3ipiVljL+BHSU4nWZnHQJIWY9Zl/Ber6r0kdwCvJPnvqnp9/Q2GHwL+IJBGlqqazx0lR4GPquqpbW4znweTtKWqymbbp17GJ7k5ya1XrwNfBs5Pe3+SFmuWZfydwA+TXL2ff6mq/5jLVJLmbm7L+B09mMt4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDR/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw6fS1piE2OvqteBKxs2HwZODNdPAA/NeS5Jc3bjlN93Z1WtAlTVapI7trphkhVgZcrHkTQn08a+Y1V1DDgGkKQW/XiSNjfts/HvJ9kLMHy8PL+RJC3CtLGfBI4M148AL85nHEmLkqrtV9ZJngceAG4H3ge+A/wb8APgc8Avga9U1cYn8Ta7L5fx0oJVVTbbPjH2eTJ2afG2it3foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4nOb9u29Ek7yY5O1wOLXZMSbPayZH9e8CDm2z/u6o6OFz+fb5jSZq3ibFX1evAxLdjlrTcZjlnfzTJuWGZv2duE0laiGljfxa4CzgIrAJPb3XDJCtJTiU5NeVjSZqDVNXkGyUHgJeq6p5P87VNbjv5wSTNpKqy2fapjuxJ9q779GHg/Fa3lbQcbpx0gyTPAw8Atye5BHwHeCDJQaCAd4BvLHBGzWjS6i3Z9ECg68yOlvFzezCX8aMw9l7muoyXdO0xdqkJY5eaMHapCWOXmjB2qYmJr7NreSzqZdJp79eX7K4tHtmlJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJvxXb0tmN/8A6Kz8Q5bXFo/sUhPGLjVh7FITxi41YexSE8YuNTEx9iT7k7yW5GKSC0keG7bfluSVJG8NH/csftzrX5ItL8tmu1mXcd7uJr6x4/D2zHur6kySW4HTwEPA14ErVfVkkieAPVX1zQn3de28iLyElu01eINeTlO/sWNVrVbVmeH6h8BFYB9wGDgx3OwEaz8AJC2pT3XOnuQAcC/wE+DOqlqFtR8IwB3zHk7S/Oz412WT3AK8ADxeVR/sdAmXZAVYmW48SfMy8ZwdIMlNwEvAy1X1zLDtZ8ADVbU6nNf/Z1X92YT7Wa6TzmuM5+zaianP2bP2X/Q54OLV0AcngSPD9SPAi7MOKWlxdvJs/P3Aj4E3gY+Hzd9i7bz9B8DngF8CX6mqKxPua7kOTdcYj+zaia2O7Dtaxs+Lsc/G2LUTUy/jJV0fjF1qwtilJoxdasLYpSaMXWrCvy57DZn2pS7/CqzAI7vUhrFLTRi71ISxS00Yu9SEsUtN+NJbA760JvDILrVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjWxk3dx3Z/ktSQXk1xI8tiw/WiSd5OcHS6HFj+upGnt5F1c9wJ7q+pMkluB08BDwFeBj6rqqR0/mG/sKC3cVm/sOPHfs1fVKrA6XP8wyUVg33zHk7Ron+qcPckB4F7W3psd4NEk55IcT7JnzrNJmqMdx57kFuAF4PGq+gB4FrgLOMjakf/pLb5vJcmpJKfmMK+kKU08ZwdIchPwEvByVT2zydcPAC9V1T0T7sdzdmnBtjpn38mz8QGeAy6uD3144u6qh4Hzsw4paXF28mz8/cCPgTeBj4fN3wIeYW0JX8A7wDeGJ/O2uy+P7NKCbXVk39Eyfl6MXVq8qZfxkq4Pxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNXHjLj/er4H/Xff57cO2ZeE821u2eWD5Zhp7nj/Z6gu7+i6un3jw5FRV3TfaABs4z/aWbR5YvpmWbZ71XMZLTRi71MTYsR8b+fE3cp7tLds8sHwzLds8fzDqObuk3TP2kV3SLhkl9iQPJvlZkreTPDHGDBvmeSfJm0nOJjk10gzHk1xOcn7dttuSvJLkreHjnpHnOZrk3WE/nU1yaBfn2Z/ktSQXk1xI8tiwfZR9tM08o+2jSXZ9GZ/kBuDnwJeAS8AbwCNV9dNdHeT/z/QOcF9Vjfb6aJK/AD4C/rGq7hm2/S1wpaqeHH4o7qmqb444z1Hgo6p6ajdm2DDPXmBvVZ1JcitwGngI+Doj7KNt5vkqI+2jScY4sn8BeLuqflFVvwG+DxweYY6lUlWvA1c2bD4MnBiun2Dtf6Yx5xlNVa1W1Znh+ofARWAfI+2jbeZZWmPEvg/41brPLzH+TirgR0lOJ1kZeZb17qyqVVj7nwu4Y+R5AB5Ncm5Y5u/aacV6SQ4A9wI/YQn20YZ5YAn20WbGiD2bbBv7JYEvVtWfA38F/M2whNUnPQvcBRwEVoGnd3uAJLcALwCPV9UHu/34O5hn9H20lTFivwTsX/f5Z4H3RpjjD6rqveHjZeCHrJ1qLIP3h3PDq+eIl8ccpqrer6rfVdXHwN+zy/spyU2shfXPVfWvw+bR9tFm84y9j7YzRuxvAHcn+XySzwBfA06OMAcASW4enmAhyc3Al4Hz23/XrjkJHBmuHwFeHHGWqzFd9TC7uJ+SBHgOuFhVz6z70ij7aKt5xtxHE1XVrl+AQ6w9I/8/wLfHmGHdLH8K/NdwuTDWPMDzrC37/o+11c9fA38MvAq8NXy8beR5/gl4EzjHWmR7d3Ge+1k73TsHnB0uh8baR9vMM9o+mnTxN+ikJvwNOqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5ea+D0pwnYiUJS66QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKx0lEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvtstDW7O8v82Wfs7/sljXb22dmZrx547/N7ZtY7qSokXf/+aOwBJO0OY5eaMHapCWOXmjB2qQljl5q4cZZvTvIg8F3gBuAfqurJCbf3dT5pwaoqm23PtK+zJ7kB+DnwJeAS8AbwSFX9dJvvMXZpwbaKfZZl/BeAt6vqF1X1G+D7wOEZ7k/SAs0S+z7gVxs+vzRsk7SEZjln32yp8IllepIVYGWGx5E0B7PEfgnYv+HzzwLvXX2jqjoGHAPP2aUxzbKMfwO4O8nnk3wG+Bpwcj5jSZq3qY/sVfXbJI8CL7P20tvxqrowt8kkzdXUL71N9WAu46WFW8RLb5KuIcYuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhOzvGUzSd4BPgR+B/y2qu6bx1CS5m+m2Ad/WVW/nsP9SFogl/FSE7PGXsCPkpxOsjKPgSQtxqzL+C9W1XtJ7gBeSfLfVfX6xhsMPwT8QSCNLFU1nztKjgIfVdVT29xmPg8maUtVlc22T72MT3JzklvXrwNfBs5Pe3+SFmuWZfydwA+TrN/Pv1TVf8xlKklzN7dl/I4ezGW8tHBzX8ZLurYYu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxMTYkxxPcjnJ+Q3bbkvySpK3ho97FjumpFnt5Mj+PeDBq7Y9AbxaVXcDrw6fS1piE2OvqteBK1dtPgycGK6fAB6a81yS5uzGKb/vzqpaBaiq1SR3bHXDJCvAypSPI2lOpo19x6rqGHAMIEkt+vEkbW7aZ+PfT7IXYPh4eX4jSVqEaWM/CRwZrh8BXpzPOJIWJVXbr6yTPA88ANwOvA98B/g34AfA54BfAl+pqqufxNvsvlzGSwtWVdls+8TY58nYpcXbKnZ/g05qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdamJi7EmOJ7mc5PyGbUeTvJvk7HA5tNgxJc1qJ0f27wEPbrL976rq4HD59/mOJWneJsZeVa8DE9+OWdJym+Wc/dEk54Zl/p65TSRpIaaN/VngLuAgsAo8vdUNk6wkOZXk1JSPJWkOUlWTb5QcAF6qqns+zdc2ue3kB5M0k6rKZtunOrIn2bvh04eB81vdVtJyuHHSDZI8DzwA3J7kEvAd4IEkB4EC3gG+scAZtWDbre6STQ8SugbtaBk/twdzGb+UjP36MtdlvKRrj7FLTRi71ISxS00Yu9SEsUtNTHydXdeGRb2EOsv9+rLdcvHILjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjXhv3q7huzmHwedB/+Q5XLxyC41YexSE8YuNWHsUhPGLjVh7FITE2NPsj/Ja0kuJrmQ5LFh+21JXkny1vBxz+LH7S3JlpdldK3Ne72b+MaOw9sz762qM0luBU4DDwFfB65U1ZNJngD2VNU3J9zXtfVC8TVkGV+DN+pxTP3GjlW1WlVnhusfAheBfcBh4MRwsxOs/QCQtKQ+1Tl7kgPAvcBPgDurahXWfiAAd8x7OEnzs+Nfl01yC/AC8HhVfbDTJVqSFWBluvEkzcvEc3aAJDcBLwEvV9Uzw7afAQ9U1epwXv+fVfVnE+5n+U4srxOes2vd1OfsWfsv9hxwcT30wUngyHD9CPDirENKWpydPBt/P/Bj4E3g42Hzt1g7b/8B8Dngl8BXqurKhPtavsPPdcIju9ZtdWTf0TJ+Xox9cYxd66Zexku6Phi71ISxS00Yu9SEsUtNGLvUhH9d9joxy8tc/hXYHjyyS00Yu9SEsUtNGLvUhLFLTRi71IQvvcmX15rwyC41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41sZN3cd2f5LUkF5NcSPLYsP1okneTnB0uhxY/rqRp7eRdXPcCe6vqTJJbgdPAQ8BXgY+q6qkdP5hv7Cgt3FZv7Djx37NX1SqwOlz/MMlFYN98x5O0aJ/qnD3JAeBe1t6bHeDRJOeSHE+yZ86zSZqjHcee5BbgBeDxqvoAeBa4CzjI2pH/6S2+byXJqSSn5jCvpClNPGcHSHIT8BLwclU9s8nXDwAvVdU9E+7Hc3ZpwbY6Z9/Js/EBngMubgx9eOJu3cPA+VmHlLQ4O3k2/n7gx8CbwMfD5m8Bj7C2hC/gHeAbw5N5292XR3ZpwbY6su9oGT8vxi4t3tTLeEnXB2OXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5q4cZcf79fA/274/PZh27Jwnu0t2zywfDONPc+fbPWFXX0X1088eHKqqu4bbYCrOM/2lm0eWL6Zlm2ejVzGS00Yu9TE2LEfG/nxr+Y821u2eWD5Zlq2ef5g1HN2Sbtn7CO7pF0ySuxJHkzysyRvJ3lijBmumuedJG8mOZvk1EgzHE9yOcn5DdtuS/JKkreGj3tGnudokneH/XQ2yaFdnGd/kteSXExyIcljw/ZR9tE284y2jybZ9WV8khuAnwNfAi4BbwCPVNVPd3WQ/z/TO8B9VTXa66NJ/gL4CPjHqrpn2Pa3wJWqenL4obinqr454jxHgY+q6qndmOGqefYCe6vqTJJbgdPAQ8DXGWEfbTPPVxlpH00yxpH9C8DbVfWLqvoN8H3g8AhzLJWqeh24ctXmw8CJ4foJ1v5nGnOe0VTValWdGa5/CFwE9jHSPtpmnqU1Ruz7gF9t+PwS4++kAn6U5HSSlZFn2ejOqlqFtf+5gDtGngfg0STnhmX+rp1WbJTkAHAv8BOWYB9dNQ8swT7azBixZ5NtY78k8MWq+nPgr4C/GZaw+qRngbuAg8Aq8PRuD5DkFuAF4PGq+mC3H38H84y+j7YyRuyXgP0bPv8s8N4Ic/xBVb03fLwM/JC1U41l8P5wbrh+jnh5zGGq6v2q+l1VfQz8Pbu8n5LcxFpY/1xV/zpsHm0fbTbP2PtoO2PE/gZwd5LPJ/kM8DXg5AhzAJDk5uEJFpLcDHwZOL/9d+2ak8CR4foR4MURZ1mPad3D7OJ+ShLgOeBiVT2z4Uuj7KOt5hlzH01UVbt+AQ6x9oz8/wDfHmOGDbP8KfBfw+XCWPMAz7O27Ps/1lY/fw38MfAq8Nbw8baR5/kn4E3gHGuR7d3Fee5n7XTvHHB2uBwaax9tM89o+2jSxd+gk5rwN+ikJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdauL36N52H655MgQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx547/N7ZnY9qSokXf/+aOwBJO0OY5eaMHapCWOXmjB2qQljl5q4cZZvTvIg8F3gBuAfqurJCbf3dT5pwaoqm23PtK+zJ7kB+DnwJeAS8AbwSFX9dJvvMXZpwbaKfZZl/BeAt6vqF1X1G+D7wOEZ7k/SAs0S+z7gV+s+vzRsk7SEZjln32yp8IllepIVYGWGx5E0B7PEfgnYv+7zzwLvbbxRVR0DjoHn7NKYZlnGvwHcneTzST4DfA04OZ+xJM3b1Ef2qvptkkeBl1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0nXEGOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYlZ3rKZJO8AHwK/A35bVffNYyhJ8zdT7IO/rKpfz+F+JC2Qy3ipiVljL+BHSU4nWZnHQJIWY9Zl/Ber6r0kdwCvJPnvqnp9/Q2GHwL+IJBGlqqazx0lR4GPquqpbW4znweTtKWqymbbp17GJ7k5ya1XrwNfBs5Pe3+SFmuWZfydwA+TXL2ff6mq/5jLVJLmbm7L+B09mMt4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDR/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw6fS1piE2OvqteBKxs2HwZODNdPAA/NeS5Jc3bjlN93Z1WtAlTVapI7trphkhVgZcrHkTQn08a+Y1V1DDgGkKQW/XiSNjfts/HvJ9kLMHy8PL+RJC3CtLGfBI4M148AL85nHEmLkqrtV9ZJngceAG4H3ge+A/wb8APgc8Avga9U1cYn8Ta7L5fx0oJVVTbbPjH2eTJ2afG2it3foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4nOb9u29Ek7yY5O1wOLXZMSbPayZH9e8CDm2z/u6o6OFz+fb5jSZq3ibFX1evAxLdjlrTcZjlnfzTJuWGZv2duE0laiGljfxa4CzgIrAJPb3XDJCtJTiU5NeVjSZqDVNXkGyUHgJeq6p5P87VNbjv5wSTNpKqy2fapjuxJ9q779GHg/Fa3lbQcbpx0gyTPAw8Atye5BHwHeCDJQaCAd4BvLHBGSXOwo2X83B7MZby0cHNdxku69hi71ISxS00Yu9SEsUtNGLvUxMTX2dXbdi/NJpu+wqMl5ZFdasLYpSaMXWrC2KUmjF1qwtilJnzprYFF/WXjLPfry3a7zyO71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTE2JPsT/JakotJLiR5bNh+W5JXkrw1fNyz+HG1lara8rKMrrV5rwcT39hxeHvmvVV1JsmtwGngIeDrwJWqejLJE8CeqvrmhPvyv+SCXE+R+Oevs5n6jR2rarWqzgzXPwQuAvuAw8CJ4WYnWPsBIGlJfapz9iQHgHuBnwB3VtUqrP1AAO6Y93CS5mfH/1JNkluAF4DHq+qDnS61kqwAK9ONJ2leJp6zAyS5CXgJeLmqnhm2/Qx4oKpWh/P6/6yqP5twP9fPieWS8ZxdV019zp61Pf8ccPFq6IOTwJHh+hHgxVmHlLQ4O3k2/n7gx8CbwMfD5m+xdt7+A+BzwC+Br1TVlQn3df0cfpaMR3ZdtdWRfUfL+Hkx9nEs4w8Cg16cqZfxkq4Pxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITO/6XanTtmuUvzLb7izn/cu3a4pFdasLYpSaMXWrC2KUmjF1qwtilJnzpTdvy5bXrh0d2qQljl5owdqkJY5eaMHapCWOXmtjJu7juT/JakotJLiR5bNh+NMm7Sc4Ol0OLH1fStHbyLq57gb1VdSbJrcBp4CHgq8BHVfXUjh/MN3aUFm6rN3ac+Es1VbUKrA7XP0xyEdg33/EkLdqnOmdPcgC4l7X3Zgd4NMm5JMeT7JnzbJLmaMexJ7kFeAF4vKo+AJ4F7gIOsnbkf3qL71tJcirJqTnMK2lKE8/ZAZLcBLwEvFxVz2zy9QPAS1V1z4T78ZxdWrCtztl38mx8gOeAi+tDH564u+ph4PysQ0panJ08G38/8GPgTeDjYfO3gEdYW8IX8A7wjeHJvO3uyyO7tGBbHdl3tIyfF2OXFm/qZbyk64OxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtN3LjLj/dr4H/XfX77sG1ZOM/2lm0eWL6Zxp7nT7b6wq6+i+snHjw5VVX3jTbABs6zvWWbB5ZvpmWbZz2X8VITxi41MXbsx0Z+/I2cZ3vLNg8s30zLNs8fjHrOLmn3jH1kl7RLRok9yYNJfpbk7SRPjDHDhnneSfJmkrNJTo00w/Ekl5OcX7fttiSvJHlr+Lhn5HmOJnl32E9nkxzaxXn2J3ktycUkF5I8NmwfZR9tM89o+2iSXV/GJ7kB+DnwJeAS8AbwSFX9dFcH+f8zvQPcV1WjvT6a5C+Aj4B/rKp7hm1/C1ypqieHH4p7quqbI85zFPioqp7ajRk2zLMX2FtVZ5LcCpwGHgK+zgj7aJt5vspI+2iSMY7sXwDerqpfVNVvgO8Dh0eYY6lU1evAlQ2bDwMnhusnWPufacx5RlNVq1V1Zrj+IXAR2MdI+2ibeZbWGLHvA3617vNLjL+TCvhRktNJVkaeZb07q2oV1v7nAu4YeR6AR5OcG5b5u3ZasV6SA8C9wE9Ygn20YR5Ygn20mTFizybbxn5J4ItV9efAXwF/Myxh9UnPAncBB4FV4OndHiDJLcALwONV9cFuP/4O5hl9H21ljNgvAfvXff5Z4L0R5viDqnpv+HgZ+CFrpxrL4P3h3PDqOeLlMYepqver6ndV9THw9+zyfkpyE2th/XNV/euwebR9tNk8Y++j7YwR+xvA3Uk+n+QzwNeAkyPMAUCSm4cnWEhyM/Bl4Pz237VrTgJHhutHgBdHnOVqTFc9zC7upyQBngMuVtUz6740yj7aap4x99FEVbXrF+AQa8/I/w/w7TFmWDfLnwL/NVwujDUP8Dxry77/Y23189fAHwOvAm8NH28beZ5/At4EzrEW2d5dnOd+1k73zgFnh8uhsfbRNvOMto8mXfwNOqkJf4NOasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZ+D8brls7FCKy+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxElEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZrx77vc/vmVl7UlVIuv790dgDSNodxi41YexSE8YuNWHsUhPGLjVx4yzfnORB4LvADcA/VNWTE27v63zSglVVNtueaV9nT3ID8HPgS8Al4A3gkar66TbfY+zSgm0V+yzL+C8Ab1fVL6rqN8D3gcMz3J+kBZol9n3Ar9Z9fmnYJmkJzXLOvtlS4RPL9CQrwMoMjyNpDmaJ/RKwf93nnwXe23ijqjoGHAPP2aUxzbKMfwO4O8nnk3wG+Bpwcj5jSZq3qY/sVfXbJI8CL7P20tvxqrowt8kkzdXUL71N9WAu46WFW8RLb5KuIcYuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhOzvGUzSd4BPgR+B/y2qu6bx1CS5m+m2Ad/WVW/nsP9SFogl/FSE7PGXsCPkpxOsjKPgSQtxqzL+C9W1XtJ7gBeSfLfVfX6+hsMPwT8QSCNLFU1nztKjgIfVdVT29xmPg8maUtVlc22T72MT3JzkluvXge+DJyf9v4kLdYsy/g7gR8muXo//1JV/zGXqSTN3dyW8Tt6MJfx0sLNfRkv6dpi7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSExNjT3I8yeUk59dtuy3JK0neGj7uWeyYkma1kyP794AHN2x7Ani1qu4GXh0+l7TEJsZeVa8DVzZsPgycGK6fAB6a81yS5uzGKb/vzqpaBaiq1SR3bHXDJCvAypSPI2lOpo19x6rqGHAMIEkt+vEkbW7aZ+PfT7IXYPh4eX4jSVqEaWM/CRwZrh8BXpzPOJIWJVXbr6yTPA88ANwOvA98B/g34AfA54BfAl+pqo1P4m12Xy7jpQWrqmy2fWLs82Ts0uJtFbu/QSc1YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNTEx9iTHk1xOcn7dtqNJ3k1ydrgcWuyYkma1kyP794AHN9n+d1V1cLj8+3zHkjRvE2OvqteBiW/HLGm5zXLO/miSc8Myf8/cJpK0ENPG/ixwF3AQWAWe3uqGSVaSnEpyasrHkjQHqarJN0oOAC9V1T2f5mub3Hbyg0maSVVls+1THdmT7F336cPA+a1uK2k53DjpBkmeBx4Abk9yCfgO8ECSg0AB7wDfWOCMkuZgR8v4uT2Yy3hp4ea6jJd07TF2qQljl5owdqkJY5eaMHapiYmvs0tbmfSybbLpK0AaiUd2qQljl5owdqkJY5eaMHapCWOXmvClN018CW2379eX7BbDI7vUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxMTYk+xP8lqSi0kuJHls2H5bkleSvDV83LP4cTWNqtr2smyupVmvJRPf2HF4e+a9VXUmya3AaeAh4OvAlap6MskTwJ6q+uaE+/JPawTXUyT+89fJpn5jx6paraozw/UPgYvAPuAwcGK42QnWfgBIWlKf6pw9yQHgXuAnwJ1VtQprPxCAO+Y9nKT52fH/VJPkFuAF4PGq+mCny6kkK8DKdONJmpeJ5+wASW4CXgJerqpnhm0/Ax6oqtXhvP4/q+rPJtzP9XPyeA3xnL2Xqc/Zs7Z3nwMuXg19cBI4Mlw/Arw465CSFmcnz8bfD/wYeBP4eNj8LdbO238AfA74JfCVqroy4b6un0PMNcQjey9bHdl3tIyfF2NfTsv2w8CgZzP1Ml7S9cHYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdamLH/1ONrl/T/iuzHfzz6KnuV4vhkV1qwtilJoxdasLYpSaMXWrC2KUmfOlNU/OltWuLR3apCWOXmjB2qQljl5owdqkJY5ea2Mm7uO5P8lqSi0kuJHls2H40ybtJzg6XQ4sfV9K0dvIurnuBvVV1JsmtwGngIeCrwEdV9dSOH8w3dpQWbqs3dpz4SzVVtQqsDtc/THIR2Dff8SQt2qc6Z09yALiXtfdmB3g0ybkkx5PsmfNskuZox7EnuQV4AXi8qj4AngXuAg6yduR/eovvW0lyKsmpOcwraUoTz9kBktwEvAS8XFXPbPL1A8BLVXXPhPvxnF1asK3O2XfybHyA54CL60Mfnri76mHg/KxDSlqcnTwbfz/wY+BN4ONh87eAR1hbwhfwDvCN4cm87e7LI7u0YFsd2Xe0jJ8XY5cWb+plvKTrg7FLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03cuMuP92vgf9d9fvuwbVk4z/aWbR5YvpnGnudPtvrCrr6L6ycePDlVVfeNNsAGzrO9ZZsHlm+mZZtnPZfxUhPGLjUxduzHRn78jZxne8s2DyzfTMs2zx+Mes4uafeMfWSXtEtGiT3Jg0l+luTtJE+MMcOGed5J8maSs0lOjTTD8SSXk5xft+22JK8keWv4uGfkeY4meXfYT2eTHNrFefYneS3JxSQXkjw2bB9lH20zz2j7aJJdX8YnuQH4OfAl4BLwBvBIVf10Vwf5/zO9A9xXVaO9PprkL4CPgH+sqnuGbX8LXKmqJ4cfinuq6psjznMU+KiqntqNGTbMsxfYW1VnktwKnAYeAr7OCPtom3m+ykj7aJIxjuxfAN6uql9U1W+A7wOHR5hjqVTV68CVDZsPAyeG6ydY+8s05jyjqarVqjozXP8QuAjsY6R9tM08S2uM2PcBv1r3+SXG30kF/CjJ6SQrI8+y3p1VtQprf7mAO0aeB+DRJOeGZf6unVasl+QAcC/wE5ZgH22YB5ZgH21mjNizybaxXxL4YlX9OfBXwN8MS1h90rPAXcBBYBV4ercHSHIL8ALweFV9sNuPv4N5Rt9HWxkj9kvA/nWffxZ4b4Q5/qCq3hs+XgZ+yNqpxjJ4fzg3vHqOeHnMYarq/ar6XVV9DPw9u7yfktzEWlj/XFX/OmwebR9tNs/Y+2g7Y8T+BnB3ks8n+QzwNeDkCHMAkOTm4QkWktwMfBk4v/137ZqTwJHh+hHgxRFnuRrTVQ+zi/spSYDngItV9cy6L42yj7aaZ8x9NFFV7foFOMTaM/L/A3x7jBnWzfKnwH8NlwtjzQM8z9qy7/9YW/38NfDHwKvAW8PH20ae55+AN4FzrEW2dxfnuZ+1071zwNnhcmisfbTNPKPto0kXf4NOasLfoJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapid8DobmZy8QOaqgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKzElEQVR4nO3dT4xd9XmH8edbIBtgYYpAluPUKULdsDAVyiaoootE1BvDIlFYOVKlyaJIsAtKFvESVUCVFZJbrLhVSxSJplioKkGIiqwibMs1dtwEGrmJYYQVeQGs0oQ3izmOpsPM3OH+mXPN+3yk0dw5vnPvqyOeOb9zzww3VYWkT78/GnsASbvD2KUmjF1qwtilJoxdasLYpSZunOWbkzwIfBe4AfiHqnpywv29zictWFVls+2Z9jp7khuAnwNfAi4DbwCPVNVPt/keY5cWbKvYZ1nGfwF4u6p+UVW/Ab4PHJ7h8SQt0Cyx7wN+te7ry8M2SUtolnP2zZYKH1umJ1kBVmZ4HklzMEvsl4H9677+LPDuxjtV1THgGHjOLo1plmX8G8DdST6f5DPA14CT8xlL0rxNfWSvqt8meRR4mbVLb8er6sLcJpM0V1NfepvqyVzGSwu3iEtvkq4jxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE7O8ZTNJLgEfAL8DfltV981jKEnzN1Psg7+sql/P4XEkLZDLeKmJWWMv4EdJTidZmcdAkhZj1mX8F6vq3SR3AK8k+e+qen39HYYfAv4gkEaWqprPAyVHgQ+r6qlt7jOfJ5O0parKZtunXsYnuTnJrdduA18Gzk/7eJIWa5Zl/J3AD5Nce5x/qar/mMtUkuZubsv4HT2Zy3hp4ea+jJd0fTF2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJibEnOZ7kSpLz67bdluSVJG8Nn/csdkxJs9rJkf17wIMbtj0BvFpVdwOvDl9LWmITY6+q14GrGzYfBk4Mt08AD815LklzduOU33dnVa0CVNVqkju2umOSFWBlyueRNCfTxr5jVXUMOAaQpBb9fJI2N+2r8e8l2QswfL4yv5EkLcK0sZ8Ejgy3jwAvzmccSYuSqu1X1kmeBx4AbgfeA74D/BvwA+BzwC+Br1TVxhfxNnssl/HSglVVNts+MfZ5MnZp8baK3d+gk5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eamBh7kuNJriQ5v27b0STvJDk7fBxa7JiSZrWTI/v3gAc32f53VXVw+Pj3+Y4lad4mxl5VrwMT345Z0nKb5Zz90STnhmX+nrlNJGkhpo39WeAu4CCwCjy91R2TrCQ5leTUlM8laQ5SVZPvlBwAXqqqez7Jv21y38lPJmkmVZXNtk91ZE+yd92XDwPnt7qvpOVw46Q7JHkeeAC4Pcll4DvAA0kOAgVcAr6xwBl1ndpu1ZhsevDRAu1oGT+3J3MZ34qxj2Ouy3hJ1x9jl5owdqkJY5eaMHapCWOXmph4nV29LerS7LSP6yW76Xlkl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5rwr960sL9sW4RJs/pXcVvzyC41YexSE8YuNWHsUhPGLjVh7FITE2NPsj/Ja0kuJrmQ5LFh+21JXkny1vB5z+LH1SIk2fJj2Ww36zLOu0wmvrHj8PbMe6vqTJJbgdPAQ8DXgatV9WSSJ4A9VfXNCY91/VzQFbB81+ANerKp39ixqlar6sxw+wPgIrAPOAycGO52grUfAJKW1Cc6Z09yALgX+AlwZ1WtwtoPBOCOeQ8naX52/OuySW4BXgAer6r3d7qcSrICrEw3nqR5mXjODpDkJuAl4OWqembY9jPggapaHc7r/7Oq/mzC4yzXCaAm8pz9+jP1OXvW9u5zwMVroQ9OAkeG20eAF2cdUtLi7OTV+PuBHwNvAh8Nm7/F2nn7D4DPAb8EvlJVVyc81nIdJjSRR/brz1ZH9h0t4+fF2K8/xn79mXoZL+nTwdilJoxdasLYpSaMXWrC2KUm/L/LaluzXOra7rKdl9B2n0d2qQljl5owdqkJY5eaMHapCWOXmvDSmxbGy2vLxSO71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MRO3sV1f5LXklxMciHJY8P2o0neSXJ2+Di0+HElTWsn7+K6F9hbVWeS3AqcBh4Cvgp8WFVP7fjJfGNHaeG2emPHiX/PXlWrwOpw+4MkF4F98x1P0qJ9onP2JAeAe1l7b3aAR5OcS3I8yZ45zyZpjnYce5JbgBeAx6vqfeBZ4C7gIGtH/qe3+L6VJKeSnJrDvJKmNPGcHSDJTcBLwMtV9cwm/34AeKmq7pnwOJ6zSwu21Tn7Tl6ND/AccHF96MMLd9c8DJyfdUhJi7OTV+PvB34MvAl8NGz+FvAIa0v4Ai4B3xhezNvusTyySwu21ZF9R8v4eTF2afGmXsZL+nQwdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiRt3+fl+Dfzvuq9vH7YtC+fZ3rLNA8s309jz/MlW/7Cr7+L6sSdPTlXVfaMNsIHzbG/Z5oHlm2nZ5lnPZbzUhLFLTYwd+7GRn38j59ness0DyzfTss3zB6Oes0vaPWMf2SXtklFiT/Jgkp8leTvJE2PMsGGeS0neTHI2yamRZjie5EqS8+u23ZbklSRvDZ/3jDzP0STvDPvpbJJDuzjP/iSvJbmY5EKSx4bto+yjbeYZbR9NsuvL+CQ3AD8HvgRcBt4AHqmqn+7qIP9/pkvAfVU12vXRJH8BfAj8Y1XdM2z7W+BqVT05/FDcU1XfHHGeo8CHVfXUbsywYZ69wN6qOpPkVuA08BDwdUbYR9vM81VG2keTjHFk/wLwdlX9oqp+A3wfODzCHEulql4Hrm7YfBg4Mdw+wdp/TGPOM5qqWq2qM8PtD4CLwD5G2kfbzLO0xoh9H/CrdV9fZvydVMCPkpxOsjLyLOvdWVWrsPYfF3DHyPMAPJrk3LDM37XTivWSHADuBX7CEuyjDfPAEuyjzYwRezbZNvYlgS9W1Z8DfwX8zbCE1cc9C9wFHARWgad3e4AktwAvAI9X1fu7/fw7mGf0fbSVMWK/DOxf9/VngXdHmOMPqurd4fMV4IesnWosg/eGc8Nr54hXxhymqt6rqt9V1UfA37PL+ynJTayF9c9V9a/D5tH20WbzjL2PtjNG7G8Adyf5fJLPAF8DTo4wBwBJbh5eYCHJzcCXgfPbf9euOQkcGW4fAV4ccZZrMV3zMLu4n5IEeA64WFXPrPunUfbRVvOMuY8mqqpd/wAOsfaK/P8A3x5jhnWz/CnwX8PHhbHmAZ5nbdn3f6ytfv4a+GPgVeCt4fNtI8/zT8CbwDnWItu7i/Pcz9rp3jng7PBxaKx9tM08o+2jSR/+Bp3UhL9BJzVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITvwf8hnYi6ZAajgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKwElEQVR4nO3dQYyc9XnH8e+vQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQlPDvs62i67M8vszL6Dn+9HGu3su7Mzj175u+//nVnvpKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixp18c5IHge8CNwD/UFVPTrm9r/NJC1ZV2Wx7Zn2dPckNwM+BLwGXgTeAR6rqpxO+x9ilBdsq9p0s478AvF1Vv6iq3wDfBw7v4P4kLdBOYt8H/Grd55eHbZKW0E7O2TdbKnxsmZ5kBVjZweNImoOdxH4Z2L/u888C7268UVUdA46B5+zSmHayjH8DuDvJ55N8BvgacHI+Y0mat5mP7FX12ySPAi+z9tLb8aq6MLfJJM3VzC+9zfRgLuOlhVvES2+SPkWMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmdvKWzSS5BHwA/A74bVXdN4+hJM3fjmIf/GVV/XoO9yNpgVzGS03sNPYCfpTkdJKVeQwkaTF2uoz/YlW9m+QO4JUk/11Vr6+/wfBDwB8E0shSVfO5o+Qo8GFVPTXhNvN5MElbqqpstn3mZXySm5Pceu068GXg/Kz3J2mxdrKMvxP4YZJr9/MvVfUfc5lK0tzNbRm/rQdzGS8t3NyX8ZI+XYxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWpiauxJjie5kuT8um23JXklyVvDxz2LHVPSTm3nyP494MEN254AXq2qu4FXh88lLbGpsVfV68DVDZsPAyeG6yeAh+Y8l6Q5u3HG77uzqlYBqmo1yR1b3TDJCrAy4+NImpNZY9+2qjoGHANIUot+PEmbm/XZ+PeS7AUYPl6Z30iSFmHW2E8CR4brR4AX5zOOpEVJ1eSVdZLngQeA24H3gO8A/wb8APgc8EvgK1W18Um8ze7LZby0YFWVzbZPjX2ejF1avK1i9zfopCaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWpi4W8SIW1m0h86TTb9e4naIY/sUhPGLjVh7FITxi41YexSE8YuNTE19iTHk1xJcn7dtqNJ3klydrgcWuyYWkZVNfNljPvtbjtH9u8BD26y/e+q6uBw+ff5jiVp3qbGXlWvA1PfjlnSctvJOfujSc4Ny/w9c5tI0kLMGvuzwF3AQWAVeHqrGyZZSXIqyakZH0vSHGQ7T2okOQC8VFX3fJKvbXJbn0G5jizjE2L+Xj1U1aY7YaYje5K96z59GDi/1W0lLYep/+styfPAA8DtSS4D3wEeSHIQKOAS8I0FzihpDra1jJ/bg7mMv664jF9Oc13GS/r0MXapCWOXmjB2qQljl5owdqkJ/7qsJlrGl9cm8a/Wbs0ju9SEsUtNGLvUhLFLTRi71ISxS0340psmmvRy1TK+LNf95bVJPLJLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyNPcn+JK8luZjkQpLHhu23JXklyVvDxz2LH1fLJMnMlzHut7upb+w4vD3z3qo6k+RW4DTwEPB14GpVPZnkCWBPVX1zyn0t3/+J1Cj8K7CLM/MbO1bValWdGa5/AFwE9gGHgRPDzU6w9gNA0pL6ROfsSQ4A9wI/Ae6sqlVY+4EA3DHv4STNz7b/Uk2SW4AXgMer6v3tLrWSrAArs40naV6mnrMDJLkJeAl4uaqeGbb9DHigqlaH8/r/rKo/m3I/nrML8Jx9kWY+Z8/ann8OuHgt9MFJ4Mhw/Qjw4k6HlLQ423k2/n7gx8CbwEfD5m+xdt7+A+BzwC+Br1TV1Sn35ZFdgEf2RdrqyL6tZfy8GLu0eDMv4yVdH4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSa28y6u+5O8luRikgtJHhu2H03yTpKzw+XQ4seVNKvtvIvrXmBvVZ1JcitwGngI+CrwYVU9te0H840dpYXb6o0db9zGN64Cq8P1D5JcBPbNdzxJi/aJztmTHADuZe292QEeTXIuyfEke+Y8m6Q52nbsSW4BXgAer6r3gWeBu4CDrB35n97i+1aSnEpyag7zSprR1HN2gCQ3AS8BL1fVM5t8/QDwUlXdM+V+PGeXFmyrc/btPBsf4Dng4vrQhyfurnkYOL/TISUtznaejb8f+DHwJvDRsPlbwCOsLeELuAR8Y3gyb9J9eWSXFmyrI/u2lvHzYuzS4s28jJd0fTB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJG3f58X4N/O+6z28fti0L55ls2eaB5Ztp7Hn+ZKsv7Oq7uH7swZNTVXXfaANs4DyTLds8sHwzLds867mMl5owdqmJsWM/NvLjb+Q8ky3bPLB8My3bPH8w6jm7pN0z9pFd0i4ZJfYkDyb5WZK3kzwxxgwb5rmU5M0kZ5OcGmmG40muJDm/btttSV5J8tbwcc/I8xxN8s6wn84mObSL8+xP8lqSi0kuJHls2D7KPpowz2j7aJpdX8YnuQH4OfAl4DLwBvBIVf10Vwf5/zNdAu6rqtFeH03yF8CHwD9W1T3Dtr8FrlbVk8MPxT1V9c0R5zkKfFhVT+3GDBvm2QvsraozSW4FTgMPAV9nhH00YZ6vMtI+mmaMI/sXgLer6hdV9Rvg+8DhEeZYKlX1OnB1w+bDwInh+gnW/jGNOc9oqmq1qs4M1z8ALgL7GGkfTZhnaY0R+z7gV+s+v8z4O6mAHyU5nWRl5FnWu7OqVmHtHxdwx8jzADya5NywzN+104r1khwA7gV+whLsow3zwBLso82MEXs22Tb2SwJfrKo/B/4K+JthCauPexa4CzgIrAJP7/YASW4BXgAer6r3d/vxtzHP6PtoK2PEfhnYv+7zzwLvjjDHH1TVu8PHK8APWTvVWAbvDeeG184Rr4w5TFW9V1W/q6qPgL9nl/dTkptYC+ufq+pfh82j7aPN5hl7H00yRuxvAHcn+XySzwBfA06OMAcASW4enmAhyc3Al4Hzk79r15wEjgzXjwAvjjjLtZiueZhd3E9JAjwHXKyqZ9Z9aZR9tNU8Y+6jqapq1y/AIdaekf8f4NtjzLBulj8F/mu4XBhrHuB51pZ9/8fa6uevgT8GXgXeGj7eNvI8/wS8CZxjLbK9uzjP/ayd7p0Dzg6XQ2PtownzjLaPpl38DTqpCX+DTmrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmfg8tscnzZpAFhwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxklEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHPZxtF12d5b5s8+Y7/sljXb22dmZrx75vc/vmVnvpKqQ9On3R2MPIGl3GLvUhLFLTRi71ISxS00Yu9TEjbN8c5IHge8CNwD/UFVPTri9r/NJC1ZV2Wx7pn2dPckNwM+BLwGXgTeAR6rqp9t8j7FLC7ZV7LMs478AvF1Vv6iq3wDfBw7PcH+SFmiW2PcBv1r3+eVhm6QlNMs5+2ZLhY8t05OsACszPI6kOZgl9svA/nWffxZ4d+ONquoYcAw8Z5fGNMsy/g3g7iSfT/IZ4GvAyfmMJWnepj6yV9VvkzwKvMzaS2/Hq+rC3CaTNFdTv/Q21YO5jJcWbhEvvUm6jhi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03M8pbNJLkEfAD8DvhtVd03j6Ekzd9MsQ/+sqp+PYf7kbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqneT3AG8kuS/q+r19TcYfgj4g0AaWapqPneUHAU+rKqntrnNfB5M0paqKpttn3oZn+TmJLdeuw58GTg/7f1JWqxZlvF3Aj9Mcu1+/qWq/mMuU0mau7kt43f0YC7jpYWb+zJe0vXF2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJibGnuR4kitJzq/bdluSV5K8NXzcs9gxJc1qJ0f27wEPbtj2BPBqVd0NvDp8LmmJTYy9ql4Hrm7YfBg4MVw/ATw057kkzdmNU37fnVW1ClBVq0nu2OqGSVaAlSkfR9KcTBv7jlXVMeAYQJJa9ONJ2ty0z8a/l2QvwPDxyvxGkrQI08Z+EjgyXD8CvDifcSQtSqq2X1kneR54ALgdeA/4DvBvwA+AzwG/BL5SVRufxNvsvlzGSwtWVdls+8TY58nYpcXbKnZ/g05qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdamJi7EmOJ7mS5Py6bUeTvJPk7HA5tNgxJc1qJ0f27wEPbrL976rq4HD59/mOJWneJsZeVa8DE9+OWdJym+Wc/dEk54Zl/p65TSRpIaaN/VngLuAgsAo8vdUNk6wkOZXk1JSPJWkOUlWTb5QcAF6qqns+ydc2ue3kB5M0k6rKZtunOrIn2bvu04eB81vdVtJyuHHSDZI8DzwA3J7kMvAd4IEkB4ECLgHfWOCMama71Way6UFLO7CjZfzcHsxlvHbA2Gcz12W8pOuPsUtNGLvUhLFLTRi71ISxS01MfJ1dmtYiXtad5T67v2znkV1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwv/1pqnt5h8rnYfuf8jSI7vUhLFLTRi71ISxS00Yu9SEsUtNTIw9yf4kryW5mORCkseG7bcleSXJW8PHPYsfV8skybaXZXM9zboIE9/YcXh75r1VdSbJrcBp4CHg68DVqnoyyRPAnqr65oT7ur5emNVMlu11+C5RT/3GjlW1WlVnhusfABeBfcBh4MRwsxOs/QCQtKQ+0Tl7kgPAvcBPgDurahXWfiAAd8x7OEnzs+Nfl01yC/AC8HhVvb/TJVGSFWBluvEkzcvEc3aAJDcBLwEvV9Uzw7afAQ9U1epwXv+fVfVnE+5nuU7itFCes49j6nP2rO2h54CL10IfnASODNePAC/OOqSkxdnJs/H3Az8G3gQ+GjZ/i7Xz9h8AnwN+CXylqq5OuK/l+lGvhfLIPo6tjuw7WsbPi7H3YuzjmHoZL+nTwdilJoxdasLYpSaMXWrC2KUm/OuyWphpX+rq/ldgF8Uju9SEsUtNGLvUhLFLTRi71ISxS0340puWji+vLYZHdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqmJnbyL6/4kryW5mORCkseG7UeTvJPk7HA5tPhxJU1rJ+/iuhfYW1VnktwKnAYeAr4KfFhVT+34wXxjR2nhtnpjx4n/n72qVoHV4foHSS4C++Y7nqRF+0Tn7EkOAPey9t7sAI8mOZfkeJI9c55N0hztOPYktwAvAI9X1fvAs8BdwEHWjvxPb/F9K0lOJTk1h3klTWniOTtAkpuAl4CXq+qZTb5+AHipqu6ZcD+es0sLttU5+06ejQ/wHHBxfejDE3fXPAycn3VISYuzk2fj7wd+DLwJfDRs/hbwCGtL+AIuAd8Ynszb7r48sksLttWRfUfL+Hkxdmnxpl7GS/p0MHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYkbd/nxfg3877rPbx+2LQvn2d6yzQPLN9PY8/zJVl/Y1Xdx/diDJ6eq6r7RBtjAeba3bPPA8s20bPOs5zJeasLYpSbGjv3YyI+/kfNsb9nmgeWbadnm+YNRz9kl7Z6xj+ySdskosSd5MMnPkryd5IkxZtgwz6UkbyY5m+TUSDMcT3Ilyfl1225L8kqSt4aPe0ae52iSd4b9dDbJoV2cZ3+S15JcTHIhyWPD9lH20TbzjLaPJtn1ZXySG4CfA18CLgNvAI9U1U93dZD/P9Ml4L6qGu310SR/AXwI/GNV3TNs+1vgalU9OfxQ3FNV3xxxnqPAh1X11G7MsGGevcDeqjqT5FbgNPAQ8HVG2EfbzPNVRtpHk4xxZP8C8HZV/aKqfgN8Hzg8whxLpapeB65u2HwYODFcP8HaP6Yx5xlNVa1W1Znh+gfARWAfI+2jbeZZWmPEvg/41brPLzP+TirgR0lOJ1kZeZb17qyqVVj7xwXcMfI8AI8mOTcs83fttGK9JAeAe4GfsAT7aMM8sAT7aDNjxJ5Nto39ksAXq+rPgb8C/mZYwurjngXuAg4Cq8DTuz1AkluAF4DHq+r93X78Hcwz+j7ayhixXwb2r/v8s8C7I8zxB1X17vDxCvBD1k41lsF7w7nhtXPEK2MOU1XvVdXvquoj4O/Z5f2U5CbWwvrnqvrXYfNo+2izecbeR9sZI/Y3gLuTfD7JZ4CvASdHmAOAJDcPT7CQ5Gbgy8D57b9r15wEjgzXjwAvjjjLtZiueZhd3E9JAjwHXKyqZ9Z9aZR9tNU8Y+6jiapq1y/AIdaekf8f4NtjzLBulj8F/mu4XBhrHuB51pZ9/8fa6uevgT8GXgXeGj7eNvI8/wS8CZxjLbK9uzjP/ayd7p0Dzg6XQ2Pto23mGW0fTbr4G3RSE/4GndSEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtN/B5z9XYiVD+LdAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyElEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHPZxtF12d5b5s8/g7/sljXb22dmZrx75vc/vmVnvpKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OcmDwHeBG4B/qKonJ9ze1/mkBauqbLY9077OnuQG4OfAl4DLwBvAI1X1022+x9ilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD9JCzRL7PuAX637/PKwTdISmuWcfbOlwseW6UlWgJUZHkfSHMwS+2Vg/7rPPwu8u/FGVXUMOAaes0tjmmUZ/wZwd5LPJ/kM8DXg5HzGkjRvUx/Zq+q3SR4FXmbtpbfjVXVhbpNJmqupX3qb6sFcxksLt4iX3iR9ihi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS03M8pbNJLkEfAD8DvhtVd03j6Ekzd9MsQ/+sqp+PYf7kbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqneT3AG8kuS/q+r19TcYfgj4g0AaWapqPneUHAU+rKqntrnNfB5M0paqKpttn3oZn+TmJLdeuw58GTg/7f1JWqxZlvF3Aj9Mcu1+/qWq/mMuU0mau7kt43f0YC7jpYWb+zJe0qeLsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyMPcnxJFeSnF+37bYkryR5a/i4Z7FjSprVTo7s3wMe3LDtCeDVqrobeHX4XNISmxh7Vb0OXN2w+TBwYrh+AnhoznNJmrMbp/y+O6tqFaCqVpPcsdUNk6wAK1M+jqQ5mTb2HauqY8AxgCS16MeTtLlpn41/L8legOHjlfmNJGkRpo39JHBkuH4EeHE+40halFRtv7JO8jzwAHA78B7wHeDfgB8AnwN+CXylqjY+ibfZfbmMlxasqrLZ9omxz5OxS4u3Vez+Bp3UhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTE2JMcT3Ilyfl1244meSfJ2eFyaLFjSprVTo7s3wMe3GT731XVweHy7/MdS9K8TYy9ql4HJr4ds6TlNss5+6NJzg3L/D1zm0jSQkwb+7PAXcBBYBV4eqsbJllJcirJqSkfS9IcpKom3yg5ALxUVfd8kq9tctvJDyZpJlWVzbZPdWRPsnfdpw8D57e6raTlcOOkGyR5HngAuD3JZeA7wANJDgIFXAK+scAZJc3Bjpbxc3swl/HSws11GS/p08fYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSYm/nVZaZlM+gOpyaZ/a1F4ZJfaMHapCWOXmjB2qQljl5owdqmJibEn2Z/ktSQXk1xI8tiw/bYkryR5a/i4Z/Hj6npRVVNdxrrf68HEN3Yc3p55b1WdSXIrcBp4CPg6cLWqnkzyBLCnqr454b567FVNtGyBXU+vz0/9xo5VtVpVZ4brHwAXgX3AYeDEcLMTrP0AkLSkPtE5e5IDwL3AT4A7q2oV1n4gAHfMezhJ87PjX5dNcgvwAvB4Vb2/02VPkhVgZbrxJM3LxHN2gCQ3AS8BL1fVM8O2nwEPVNXqcF7/n1X1ZxPuZ7lO1DQaz9kXZ+pz9qztheeAi9dCH5wEjgzXjwAvzjqkpMXZybPx9wM/Bt4EPho2f4u18/YfAJ8Dfgl8paquTriv5fpxrtF4ZF+crY7sO1rGz4ux6xpjX5ypl/GSrg/GLjVh7FITxi41YexSE8YuNeFfl9XCLNvLa9vZbtbr5WU5j+xSE8YuNWHsUhPGLjVh7FITxi414UtvWpjtXrJatpflrpeX17bjkV1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYifv4ro/yWtJLia5kOSxYfvRJO8kOTtcDi1+XEnT2sm7uO4F9lbVmSS3AqeBh4CvAh9W1VM7fjDf2FEz2sG/112aZHlt9caOE/8/e1WtAqvD9Q+SXAT2zXc8SYv2ic7ZkxwA7mXtvdkBHk1yLsnxJHvmPJukOdpx7EluAV4AHq+q94FngbuAg6wd+Z/e4vtWkpxKcmoO80qa0sRzdoAkNwEvAS9X1TObfP0A8FJV3TPhfjxn10w8Z59sq3P2nTwbH+A54OL60Icn7q55GDg/65CSFmcnz8bfD/wYeBP4aNj8LeAR1pbwBVwCvjE8mbfdfXlk10w8sk+21ZF9R8v4eTF2afGmXsZLuj4Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxI27/Hi/Bv533ee3D9uWhfNsb9nmgeWbaex5/mSrL+zqu7h+7MGTU1V132gDbOA821u2eWD5Zlq2edZzGS81YexSE2PHfmzkx9/Ieba3bPPA8s20bPP8wajn7JJ2z9hHdkm7ZJTYkzyY5GdJ3k7yxBgzbJjnUpI3k5xNcmqkGY4nuZLk/LpttyV5Jclbw8c9I89zNMk7w346m+TQLs6zP8lrSS4muZDksWH7KPtom3lG20eT7PoyPskNwM+BLwGXgTeAR6rqp7s6yP+f6RJwX1WN9vpokr8APgT+saruGbb9LXC1qp4cfijuqapvjjjPUeDDqnpqN2bYMM9eYG9VnUlyK3AaeAj4OiPso23m+Soj7aNJxjiyfwF4u6p+UVW/Ab4PHB5hjqVSVa8DVzdsPgycGK6fYO0f05jzjKaqVqvqzHD9A+AisI+R9tE28yytMWLfB/xq3eeXGX8nFfCjJKeTrIw8y3p3VtUqrP3jAu4YeR6AR5OcG5b5u3ZasV6SA8C9wE9Ygn20YR5Ygn20mTFizybbxn5J4ItV9efAXwF/Myxh9XHPAncBB4FV4OndHiDJLcALwONV9f5uP/4O5hl9H21ljNgvA/vXff5Z4N0R5viDqnp3+HgF+CFrpxrL4L3h3PDaOeKVMYepqveq6ndV9RHw9+zyfkpyE2th/XNV/euwebR9tNk8Y++j7YwR+xvA3Uk+n+QzwNeAkyPMAUCSm4cnWEhyM/Bl4Pz237VrTgJHhutHgBdHnOVaTNc8zC7upyQBngMuVtUz6740yj7aap4x99FEVbXrF+AQa8/I/w/w7TFmWDfLnwL/NVwujDUP8Dxry77/Y23189fAHwOvAm8NH28beZ5/At4EzrEW2d5dnOd+1k73zgFnh8uhsfbRNvOMto8mXfwNOqkJf4NOasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZ+DzTxyZ8dfxCFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyklEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/sljXb22dmZL4/83uf3zCw7qSokXf/+aOwBJO0OY5eaMHapCWOXmjB2qQljl5q4cZZvTvIg8F3gBuAfqurJCbf3dT5pwaoqm23PtK+zJ7kB+DnwJeAS8AbwSFX9dJvvMXZpwbaKfZZl/BeAt6vqF1X1G+D7wOEZ7k/SAs0S+z7gV+s+vzRsk7SEZjln32yp8IllepIVYGWGx5E0B7PEfgnYv+7zzwLvbbxRVR0DjoHn7NKYZlnGvwHcneTzST4DfA04OZ+xJM3b1Ef2qvptkkeBl1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0nXEGOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYlZ3rKZJO8AHwK/A35bVffNYyhJ8zdT7IO/rKpfz+F+JC2Qy3ipiVljL+BHSU4nWZnHQJIWY9Zl/Ber6r0kdwCvJPnvqnp9/Q2GHwL+IJBGlqqazx0lR4GPquqpbW4znweTtKWqymbbp17GJ7k5ya1XrwNfBs5Pe3+SFmuWZfydwA+TXL2ff6mq/5jLVJLmbm7L+B09mMt4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDR/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw6fS1piE2OvqteBKxs2HwZODNdPAA/NeS5Jc3bjlN93Z1WtAlTVapI7trphkhVgZcrHkTQn08a+Y1V1DDgGkKQW/XiSNjfts/HvJ9kLMHy8PL+RJC3CtLGfBI4M148AL85nHEmLkqrtV9ZJngceAG4H3ge+A/wb8APgc8Avga9U1cYn8Ta7L5fx0oJVVTbbPjH2eTJ2afG2it3foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4nOb9u29Ek7yY5O1wOLXZMSbPayZH9e8CDm2z/u6o6OFz+fb5jSZq3ibFX1evAxLdjlrTcZjlnfzTJuWGZv2duE0laiGljfxa4CzgIrAJPb3XDJCtJTiU5NeVjSZqDVNXkGyUHgJeq6p5P87VNbjv5wSTNpKqy2fapjuxJ9q779GHg/Fa3lbQcbpx0gyTPAw8Atye5BHwHeCDJQaCAd4BvLHBGSXOwo2X83B7MZby0cHNdxku69hi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTEvy4rXUu2+wOqyaZ/h7ENj+xSE8YuNWHsUhPGLjVh7FITxi41MTH2JPuTvJbkYpILSR4btt+W5JUkbw0f9yx+XHVQVVNfFnG/14uJb+w4vD3z3qo6k+RW4DTwEPB14EpVPZnkCWBPVX1zwn1dP3tOC7NsgV1rr89P/caOVbVaVWeG6x8CF4F9wGHgxHCzE6z9AJC0pD7VOXuSA8C9wE+AO6tqFdZ+IAB3zHs4SfOz41+XTXIL8ALweFV9sNOlTZIVYGW68STNy8RzdoAkNwEvAS9X1TPDtp8BD1TV6nBe/59V9WcT7me5Tsa0lDxnn83U5+xZ+y99Drh4NfTBSeDIcP0I8OKsQ0panJ08G38/8GPgTeDjYfO3WDtv/wHwOeCXwFeq6sqE+1quH9laSh7ZZ7PVkX1Hy/h5MXbthLHPZuplvKTrg7FLTRi71ISxS00Yu9SEsUtN+NdlNYple3ltOzv4XZRdmmQ2HtmlJoxdasLYpSaMXWrC2KUmjF1qwpfeNIrtXq5atpflrpWX1ibxyC41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41sZN3cd2f5LUkF5NcSPLYsP1okneTnB0uhxY/rqRp7eRdXPcCe6vqTJJbgdPAQ8BXgY+q6qkdP5hv7KgF2+7f8/Xyv6pOstUbO078/9mrahVYHa5/mOQisG++40latE91zp7kAHAva+/NDvBoknNJjifZM+fZJM3RjmNPcgvwAvB4VX0APAvcBRxk7cj/9Bbft5LkVJJTc5hX0pQmnrMDJLkJeAl4uaqe2eTrB4CXquqeCffjObsWynP2rc/Zd/JsfIDngIvrQx+euLvqYeD8rENKWpydPBt/P/Bj4E3g42Hzt4BHWFvCF/AO8I3hybzt7ssjuxbKI/vWR/YdLePnxdilxZt6GS/p+mDsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITN+7y4/0a+N91n98+bFsWzrO9ZZsHlm+msef5k62+sKvv4vqJB09OVdV9ow2wgfNsb9nmgeWbadnmWc9lvNSEsUtNjB37sZEffyPn2d6yzQPLN9OyzfMHo56zS9o9Yx/ZJe2SUWJP8mCSnyV5O8kTY8ywYZ53kryZ5GySUyPNcDzJ5STn1227LckrSd4aPu4ZeZ6jSd4d9tPZJId2cZ79SV5LcjHJhSSPDdtH2UfbzDPaPppk15fxSW4Afg58CbgEvAE8UlU/3dVB/v9M7wD3VdVor48m+QvgI+Afq+qeYdvfAleq6snhh+KeqvrmiPMcBT6qqqd2Y4YN8+wF9lbVmSS3AqeBh4CvM8I+2maerzLSPppkjCP7F4C3q+oXVfUb4PvA4RHmWCpV9TpwZcPmw8CJ4foJ1v4xjTnPaKpqtarODNc/BC4C+xhpH20zz9IaI/Z9wK/WfX6J8XdSAT9KcjrJysizrHdnVa3C2j8u4I6R5wF4NMm5YZm/a6cV6yU5ANwL/IQl2Ecb5oEl2EebGSP2bLJt7JcEvlhVfw78FfA3wxJWn/QscBdwEFgFnt7tAZLcArwAPF5VH+z24+9gntH30VbGiP0SsH/d558F3hthjj+oqveGj5eBH7J2qrEM3h/ODa+eI14ec5iqer+qfldVHwN/zy7vpyQ3sRbWP1fVvw6bR9tHm80z9j7azhixvwHcneTzST4DfA04OcIcACS5eXiChSQ3A18Gzm//XbvmJHBkuH4EeHHEWa7GdNXD7OJ+ShLgOeBiVT2z7kuj7KOt5hlzH01UVbt+AQ6x9oz8/wDfHmOGdbP8KfBfw+XCWPMAz7O27Ps/1lY/fw38MfAq8Nbw8baR5/kn4E3gHGuR7d3Fee5n7XTvHHB2uBwaax9tM89o+2jSxd+gk5rwN+ikJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdauL3ErvMnIFMLLEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKyElEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/slrXb28ezMV4/8nuf3zOzupKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OcmDwHeBG4B/qKonJ1zf1/mkBauqbLY9077OnuQG4OfAl4BLwBvAI1X1022+x9ilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD1JCzRL7PuAX637+tKwTdISmuWcfbOlwieW6UlWgJUZ7kfSHMwS+yVg/7qvPwu8t/FKVXUMOAaes0tjmmUZ/wZwd5LPJ/kM8DXg5HzGkjRvUx/Zq+q3SR4FXmbtpbfjVXVhbpNJmqupX3qb6s5cxksLt4iX3iRdQ4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZmectmkrwDfAj8DvhtVd03j6Ekzd9MsQ/+sqp+PYfbkbRALuOlJmaNvYAfJTmdZGUeA0lajFmX8V+sqveS3AG8kuS/q+r19VcYHgR8IJBGlqqazw0lR4GPquqpba4znzuTtKWqymbbp17GJ7k5ya1XLwNfBs5Pe3uSFmuWZfydwA+TXL2df6mq/5jLVJLmbm7L+B3dmct4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDZ/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw5fS1piE2OvqteBKxs2HwZODJdPAA/NeS5Jc3bjlN93Z1WtAlTVapI7trpikhVgZcr7kTQn08a+Y1V1DDgGkKQWfX+SNjfts/HvJ9kLMHy+PL+RJC3CtLGfBI4Ml48AL85nHEmLkqrtV9ZJngceAG4H3ge+A/wb8APgc8Avga9U1cYn8Ta7LZfx0oJVVTbbPjH2eTJ2afG2it2foJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmpgYe5LjSS4nOb9u29Ek7yY5O3wcWuyYkma1kyP794AHN9n+d1V1cPj49/mOJWneJsZeVa8DE9+OWdJym+Wc/dEk54Zl/p65TSRpIaaN/VngLuAgsAo8vdUVk6wkOZXk1JT3JWkOUlWTr5QcAF6qqns+zb9tct3JdyZpJlWVzbZPdWRPsnfdlw8D57e6rqTlcOOkKyR5HngAuD3JJeA7wANJDgIFvAN8Y4EzSpqDHS3j53ZnLuOlhZvrMl7StcfYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWpiYuxJ9id5LcnFJBeSPDZsvy3JK0neGj7vWfy4kqY18Y0dh7dn3ltVZ5LcCpwGHgK+DlypqieTPAHsqapvTrgt39hRWrCp39ixqlar6sxw+UPgIrAPOAycGK52grUHAElL6lOdsyc5ANwL/AS4s6pWYe0BAbhj3sNJmp8bd3rFJLcALwCPV9UHyaYrhc2+bwVYmW48SfMy8ZwdIMlNwEvAy1X1zLDtZ8ADVbU6nNf/Z1X92YTb8ZxdWrCpz9mzdgh/Drh4NfTBSeDIcPkI8OKsQ0panJ08G38/8GPgTeDjYfO3WDtv/wHwOeCXwFeq6sqE2/LILi3YVkf2HS3j58XYpcWbehkv6fpg7FITxi41YexSE8YuNWHsUhM7/nFZ6Vq33cvMO/3x72uZR3apCWOXmjB2qQljl5owdqkJY5ea8KU3XVMW9Vuas9zutfKynUd2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYmdvIvr/iSvJbmY5EKSx4btR5O8m+Ts8HFo8eNKmtZO3sV1L7C3qs4kuRU4DTwEfBX4qKqe2vGd+caO2oHdfLPRRRvj11+3emPHib/PXlWrwOpw+cMkF4F98x1P0qJ9qnP2JAeAe1l7b3aAR5OcS3I8yZ45zyZpjnYce5JbgBeAx6vqA+BZ4C7gIGtH/qe3+L6VJKeSnJrDvJKmNPGcHSDJTcBLwMtV9cwm/34AeKmq7plwO9fPyZgWxnP22Wx1zr6TZ+MDPAdcXB/68MTdVQ8D52cdUtLi7OTZ+PuBHwNvAh8Pm78FPMLaEr6Ad4BvDE/mbXdb189DthbGI/tstjqy72gZPy/Grlkt4wPBsv112amX8ZKuD8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSExP/Bp20TGb5DbPtfmNu2X5zbRE8sktNGLvUhLFLTRi71ISxS00Yu9SEsUtN+Dq72ujwWvp2PLJLTRi71ISxS00Yu9SEsUtNGLvUxG6/9PZr4H/XfX37sG1ZOM/2lm0eWL6Zxp7nT7b6h119F9dP3HlyqqruG22ADZxne8s2DyzfTMs2z3ou46UmjF1qYuzYj418/xs5z/aWbR5YvpmWbZ4/GPWcXdLuGfvILmmXjBJ7kgeT/CzJ20meGGOGDfO8k+TNJGeTnBpphuNJLic5v27bbUleSfLW8HnPyPMcTfLusJ/OJjm0i/PsT/JakotJLiR5bNg+yj7aZp7R9tEku76MT3ID8HPgS8Al4A3gkar66a4O8v9nege4r6pGe300yV8AHwH/WFX3DNv+FrhSVU8OD4p7quqbI85zFPioqp7ajRk2zLMX2FtVZ5LcCpwGHgK+zgj7aJt5vspI+2iSMY7sXwDerqpfVNVvgO8Dh0eYY6lU1evAlQ2bDwMnhssnWPvPNOY8o6mq1ao6M1z+ELgI7GOkfbTNPEtrjNj3Ab9a9/Ulxt9JBfwoyekkKyPPst6dVbUKa/+5gDtGngfg0STnhmX+rp1WrJfkAHAv8BOWYB9tmAeWYB9tZozYN/tzIWO/JPDFqvpz4K+AvxmWsPqkZ4G7gIPAKvD0bg+Q5BbgBeDxqvpgt+9/B/OMvo+2Mkbsl4D9677+LPDeCHP8QVW9N3y+DPyQtVONZfD+cG549Rzx8pjDVNX7VfW7qvoY+Ht2eT8luYm1sP65qv512DzaPtpsnrH30XbGiP0N4O4kn0/yGeBrwMkR5gAgyc3DEywkuRn4MnB+++/aNSeBI8PlI8CLI85yNaarHmYX91PW/oDcc8DFqnpm3T+Nso+2mmfMfTRRVe36B3CItWfk/wf49hgzrJvlT4H/Gj4ujDUP8Dxry77/Y23189fAHwOvAm8Nn28beZ5/At4EzrEW2d5dnOd+1k73zgFnh49DY+2jbeYZbR9N+vAn6KQm/Ak6qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5r4PT3NbPgSBUjkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKwUlEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZr7LgJNKKJYYUV+QCc0oRvDvs42i67O8v82Wfs7/slrXbm2dmZrx75vc/vmVnvpKqQdP37o7EHkLQ7jF1qwtilJoxdasLYpSaMXWrixlm+OcmDwHeBG4B/qKonJ9ze1/mkBauqbLY9077OnuQG4OfAl4BLwBvAI1X1022+x9ilBdsq9lmW8V8A3q6qX1TVb4DvA4dnuD9JCzRL7PuAX627fmnYJmkJzXLOvtlS4RPL9CQrwMoMjyNpDmaJ/RKwf931zwLvbbxRVR0DjoHn7NKYZlnGvwHcneTzST4DfA04OZ+xJM3b1Ef2qvptkkeBl1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0nXEGOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qYlZ3rKZJO8AHwK/A35bVffNYyhJ8zdT7IO/rKpfz+F+JC2Qy3ipiVljL+BHSU4nWZnHQJIWY9Zl/Ber6r0kdwCvJPnvqnp9/Q2GHwL+IJBGlqqazx0lR4GPquqpbW4znweTtKWqymbbp17GJ7k5ya1XLwNfBs5Pe3+SFmuWZfydwA+TXL2ff6mq/5jLVJLmbm7L+B09mMt4aeHmvoyXdG0xdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5HKS8+u23ZbklSRvDZ/3LHZMSbPayZH9e8CDG7Y9AbxaVXcDrw7XJS2xibFX1evAlQ2bDwMnhssngIfmPJekObtxyu+7s6pWAapqNckdW90wyQqwMuXjSJqTaWPfsao6BhwDSFKLfjxJm5v22fj3k+wFGD5fnt9IkhZh2thPAkeGy0eAF+czjqRFSdX2K+skzwMPALcD7wPfAf4N+AHwOeCXwFeqauOTeJvdl8t4acGqKpttnxj7PBm7tHhbxe5v0ElNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyMPcnxJJeTnF+37WiSd5OcHT4OLXZMSbPayZH9e8CDm2z/u6o6OHz8+3zHkjRvE2OvqteBiW/HLGm5zXLO/miSc8Myf8/cJpK0ENPG/ixwF3AQWAWe3uqGSVaSnEpyasrHkjQHqarJN0oOAC9V1T2f5mub3Hbyg0maSVVls+1THdmT7F139WHg/Fa3lbQcbpx0gyTPAw8Atye5BHwHeCDJQaCAd4BvLHBGSXOwo2X83B7MZby0cHNdxku69hi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS01MjD3J/iSvJbmY5EKSx4bttyV5Jclbw+c9ix9X0rQmvrHj8PbMe6vqTJJbgdPAQ8DXgStV9WSSJ4A9VfXNCfflGztKCzb1GztW1WpVnRkufwhcBPYBh4ETw81OsPYDQNKS+lTn7EkOAPcCPwHurKpVWPuBANwx7+Ekzc+NO71hkluAF4DHq+qDZNOVwmbftwKsTDeepHmZeM4OkOQm4CXg5ap6Ztj2M+CBqlodzuv/s6r+bML9eM4uLdjU5+xZO4Q/B1y8GvrgJHBkuHwEeHHWISUtzk6ejb8f+DHwJvDxsPlbrJ23/wD4HPBL4CtVdWXCfXlklxZsqyP7jpbx82LsWlbbdbDT56eWxdTLeEnXB2OXmjB2qQljl5owdqkJY5ea2PGvy0rXgkW8lDzLfS7Ty3Ye2aUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUm/F9vuqbs5h9InYdl+kOWHtmlJoxdasLYpSaMXWrC2KUmjF1qYifv4ro/yWtJLia5kOSxYfvRJO8mOTt8HFr8uJKmtZN3cd0L7K2qM0luBU4DDwFfBT6qqqd2/GC+saMWbNlehx/jr8tu9caOE3+ppqpWgdXh8odJLgL75juepEX7VOfsSQ4A97L23uwAjyY5l+R4kj1znk3SHO049iS3AC8Aj1fVB8CzwF3AQdaO/E9v8X0rSU4lOTWHeSVNaeI5O0CSm4CXgJer6plNvn4AeKmq7plwP8t1QqXrjufsW5+z7+TZ+ADPARfXhz48cXfVw8D5WYeUtDg7eTb+fuDHwJvAx8PmbwGPsLaEL+Ad4BvDk3nb3ddy/djVdccj+9ZH9h0t4+fF2LVoxj7DMl7S9cHYpSaMXWrC2KUmjF1qwtilJvzrsrquTPtS1zL9FdhF8cguNWHsUhPGLjVh7FITxi41YexSE770JnH9vLy2HY/sUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjWx2//F9dfA/667fvuwbVk4z/aWbR5YvpnGnudPtvrCrr6L6ycePDlVVfeNNsAGzrO9ZZsHlm+mZZtnPZfxUhPGLjUxduzHRn78jZxne8s2DyzfTMs2zx+Mes4uafeMfWSXtEtGiT3Jg0l+luTtJE+MMcOGed5J8maSs0lOjTTD8SSXk5xft+22JK8keWv4vGfkeY4meXfYT2eTHNrFefYneS3JxSQXkjw2bB9lH20zz2j7aJJdX8YnuQH4OfAl4BLwBvBIVf10Vwf5/zO9A9xXVaO9PprkL4CPgH+sqnuGbX8LXKmqJ4cfinuq6psjznMU+KiqntqNGTbMsxfYW1VnktwKnAYeAr7OCPtom3m+ykj7aJIxjuxfAN6uql9U1W+A7wOHR5hjqVTV68CVDZsPAyeGyydY+8c05jyjqarVqjozXP4QuAjsY6R9tM08S2uM2PcBv1p3/RLj76QCfpTkdJKVkWdZ786qWoW1f1zAHSPPA/BoknPDMn/XTivWS3IAuBf4CUuwjzbMA0uwjzYzRuybvfXG2C8JfLGq/hz4K+BvhiWsPulZ4C7gILAKPL3bAyS5BXgBeLyqPtjtx9/BPKPvo62MEfslYP+6658F3hthjj+oqveGz5eBH7J2qrEM3h/ODa+eI14ec5iqer+qfldVHwN/zy7vpyQ3sRbWP1fVvw6bR9tHm80z9j7azhixvwHcneTzST4DfA04OcIcACS5eXiChSQ3A18Gzm//XbvmJHBkuHwEeHHEWa7GdNXD7OJ+ytqbsT0HXKyqZ9Z9aZR9tNU8Y+6jiapq1z+AQ6w9I/8/wLfHmGHdLH8K/NfwcWGseYDnWVv2/R9rq5+/Bv4YeBV4a/h828jz/BPwJnCOtcj27uI897N2uncOODt8HBprH20zz2j7aNKHv0EnNeFv0ElNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxO8Bm0xy9aUPJ3IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKsklEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ+JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGrligSTbFQVYIQFTlF2JZrTNwEGrmJYYUV+QCc0oRvDvs42prdnWX+PQPf90ta7cyzszNfPfJ75/fM7PpJVSHp0++Pxh5A0nIYu9SEsUtNGLvUhLFLTRi71MT1s3xzkvuB7wLXAf9QVY9PuL3v80kLVlXZanumfZ89yXXAz4EvAZeA14CHquqnO3yPsUsLtl3ssyzjvwC8VVW/qKrfAN8HDs9wf5IWaJbY9wG/2nT90rBN0gqa5Zh9q6XCR5bpSdaAtRkeR9IczBL7JWD/puufBd659kZVdQw4Bh6zS2OaZRn/GnBnks8n+QzwNeDkfMaSNG9TP7NX1W+TPAy8yMZbb8er6o25TSZprqZ+622qB3MZLy3cIt56k/QJYuxSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNTHLKZtJchF4H/gd8NuqumceQ0mav5liH/xlVf16DvcjaYFcxktNzBp7AT9KcjrJ2jwGkrQYsy7jv1hV7yS5DXgpyX9X1aubbzD8EPAHgTSyVNV87ig5CnxQVU/scJv5PJikbVVVtto+9TI+yY1Jbr56GfgycH7a+5O0WLMs428Hfpjk6v38S1X9x1ymkjR3c1vG7+rBXMZLCzf3ZbykTxZjl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eamBh7kuNJLic5v2nbLUleSvLm8HnPYseUNKvdPLN/D7j/mm2PAS9X1Z3Ay8N1SStsYuxV9Spw5ZrNh4ETw+UTwANznkvSnF0/5ffdXlXrAFW1nuS27W6YZA1Ym/JxJM3JtLHvWlUdA44BJKlFP56krU37avy7SfYCDJ8vz28kSYswbewngSPD5SPA8/MZR9KipGrnlXWSZ4H7gFuBd4HvAP8G/AD4HPBL4CtVde2LeFvdl8t4acGqKlttnxj7PBm7tHjbxe5v0ElNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyMPcnxJJeTnN+07WiSt5OcHT4OLXZMSbPazTP794D7t9j+d1V1cPj49/mOJWneJsZeVa8CE0/HLGm1zXLM/nCSc8Myf8/cJpK0ENPG/jRwB3AQWAee3O6GSdaSnEpyasrHkjQHqarJN0oOAC9U1V0f52tb3Hbyg0maSVVlq+1TPbMn2bvp6oPA+e1uK2k1XD/pBkmeBe4Dbk1yCfgOcF+Sg0ABF4FvLHBGSXOwq2X83B7MZby0cHNdxkv65DF2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5qYGHuS/UleSXIhyRtJHhm235LkpSRvDp/3LH5cSdOaeGLH4fTMe6vqTJKbgdPAA8DXgStV9XiSx4A9VfXNCffliR2lBZv6xI5VtV5VZ4bL7wMXgH3AYeDEcLMTbPwAkLSiPtYxe5IDwN3AT4Dbq2odNn4gALfNezhJ83P9bm+Y5CbgOeDRqnov2XKlsNX3rQFr040naV4mHrMDJLkBeAF4saqeGrb9DLivqtaH4/r/rKo/m3A/HrNLCzb1MXs2nsKfAS5cDX1wEjgyXD4CPD/rkJIWZzevxt8L/Bh4Hfhw2PwtNo7bfwB8Dvgl8JWqujLhvnxmlxZsu2f2XS3j58XYpcWbehkv6dPB2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmdn2SCKmrXfwPzEuaZDY+s0tNGLvUhLFLTRi71ISxS00Yu9TEbs7iuj/JK0kuJHkjySPD9qNJ3k5ydvg4tPhxJU1rN2dx3QvsraozSW4GTgMPAF8FPqiqJ3b9YJ7YUSNa5klMd2NR789vd2LHib9UU1XrwPpw+f0kF4B98x1P0qJ9rGP2JAeAu9k4NzvAw0nOJTmeZM+cZ5M0R7uOPclNwHPAo1X1HvA0cAdwkI1n/ie3+b61JKeSnJrDvJKmNPGYHSDJDcALwItV9dQWXz8AvFBVd024n9U6aFIr3Y/Zd/NqfIBngAubQx9euLvqQeD8rENKWpzdvBp/L/Bj4HXgw2Hzt4CH2FjCF3AR+MbwYt5O97VaP1rVSvdn9l0t4+fF2DWm7rH7G3RSE8YuNWHsUhPGLjVh7FITxi414f8uq0+VVXt7bSc7zbqIt+V8ZpeaMHapCWOXmjB2qQljl5owdqkJ33rTp8pOb1mt2ttyyz4hpM/sUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjWx7D9x/TXwv5uu3zpsWxXOs7NVmwc+xkxL+pPSsffRn2z3haWexfUjD56cqqp7RhvgGs6zs1WbB1ZvplWbZzOX8VITxi41MXbsx0Z+/Gs5z85WbR5YvZlWbZ4/GPWYXdLyjP3MLmlJRok9yf1JfpbkrSSPjTHDNfNcTPJ6krNJTo00w/Ekl5Oc37TtliQvJXlz+Lxn5HmOJnl72E9nkxxa4jz7k7yS5EKSN5I8MmwfZR/tMM9o+2iSpS/jk1wH/Bz4EnAJeA14qKp+utRB/v9MF4F7qmq090eT/AXwAfCPVXXXsO1vgStV9fjwQ3FPVX1zxHmOAh9U1RPLmOGaefYCe6vqTJKbgdPAA8DXGWEf7TDPVxlpH00yxjP7F4C3quoXVfUb4PvA4RHmWClV9Spw5ZrNh4ETw+UTbPxjGnOe0VTVelWdGS6/D1wA9jHSPtphnpU1Ruz7gF9tun6J8XdSAT9KcjrJ2sizbHZ7Va3Dxj8u4LaR5wF4OMm5YZm/tMOKzZIcAO4GfsIK7KNr5oEV2EdbGSP2rX5ncey3BL5YVX8O/BXwN8MSVh/1NHAHcBBYB55c9gBJbgKeAx6tqveW/fi7mGf0fbSdMWK/BOzfdP2zwDsjzPEHVfXO8Pky8EM2DjVWwbvDseHVY8TLYw5TVe9W1e+q6kPg71nyfkpyAxth/XNV/euwebR9tNU8Y++jnYwR+2vAnUk+n+QzwNeAkyPMAUCSG4cXWEhyI/Bl4PzO37U0J4Ejw+UjwPMjznI1pqseZIn7KRt/xfIMcKGqntr0pVH20XbzjLmPJqqqpX8Ah9h4Rf5/gG+PMcOmWf4U+K/h442x5gGeZWPZ939srH7+Gvhj4GXgzeHzLSPP80/A68A5NiLbu8R57mXjcO8ccHb4ODTWPtphntH20aQPf4NOasLfoJOaMHapCWOXmjB2qQljl5owdqkJY5eaMHapid8Dotts9l3IDagAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKuklEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMepU4R64WAqlEtQRQ6JqC+GQ6JwcqRKm0OR4BaUHOIjqoAqJyS3WHGilCgSTbFQVYIQFTlF2JZr7LgJNHITwwor8gE4pQnfHPZxtF12d5b5s8/A9/2SVjvz7OzMV4/83uf3zKx3UlVI+uT7s7EHkLQ7jF1qwtilJoxdasLYpSaMXWri+lm+Ocn9wHeA64B/rqrHJ9ze1/mkBauqbLY9077OnuQ64JfAF4HLwGvAQ1X1822+x9ilBdsq9lmW8Z8D3qyqX1XV74AfAodnuD9JCzRL7PuA36y7fnnYJmkJzXLOvtlS4UPL9CQrwMoMjyNpDmaJ/TKwf931TwNvb7xRVR0DjoHn7NKYZlnGvwbcmeSzST4FfBU4OZ+xJM3b1Ef2qvp9koeBF1l76e14VV2Y22SS5mrql96mejCX8dLCLeKlN0kfI8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhOzvGUzSS4B7wF/AH5fVffMYyhJ8zdT7IMvVNVv53A/khbIZbzUxKyxF/CTJKeTrMxjIEmLMesy/vNV9XaS24CXkvx3Vb26/gbDDwF/EEgjS1XN546So8D7VfXENreZz4NJ2lJVZbPtUy/jk9yY5OZrl4EvAeenvT9JizXLMv524MdJrt3Pv1TVf8xlKklzN7dl/I4ezGW8tHBzX8ZL+ngxdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiYmxJzme5EqS8+u23ZLkpSRvDJ/3LHZMSbPayZH9u8D9G7Y9BrxcVXcCLw/XJS2xibFX1avA1Q2bDwMnhssngAfmPJekObt+yu+7vapWAapqNcltW90wyQqwMuXjSJqTaWPfsao6BhwDSFKLfjxJm5v22fh3kuwFGD5fmd9IkhZh2thPAkeGy0eA5+czjqRFSdX2K+skzwL3AbcC7wDfBv4N+BHwGeDXwJerauOTeJvdl8t4acGqKpttnxj7PBm7tHhbxe5v0ElNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTUyMPcnxJFeSnF+37WiSt5KcHT4OLXZMSbPayZH9u8D9m2z/x6o6OHz8+3zHkjRvE2OvqleBiW/HLGm5zXLO/nCSc8Myf8/cJpK0ENPG/jRwB3AQWAWe3OqGSVaSnEpyasrHkjQHqarJN0oOAC9U1V0f5Wub3Hbyg0maSVVls+1THdmT7F139UHg/Fa3lbQcrp90gyTPAvcBtya5DHwbuC/JQaCAS8DXFzijpDnY0TJ+bg/mMl5auLku4yV9/Bi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS01MjD3J/iSvJLmY5EKSR4bttyR5Kckbw+c9ix9X0rQmvrHj8PbMe6vqTJKbgdPAA8DXgKtV9XiSx4A9VfWNCfflGztKCzb1GztW1WpVnRkuvwdcBPYBh4ETw81OsPYDQNKS+kjn7EkOAHcDPwNur6pVWPuBANw27+Ekzc/1O71hkpuA54BHq+rdZNOVwmbftwKsTDeepHmZeM4OkOQG4AXgxap6atj2C+C+qlodzuv/s6r+asL9eM4uLdjU5+xZO4Q/A1y8FvrgJHBkuHwEeH7WISUtzk6ejb8X+CnwOvDBsPmbrJ23/wj4DPBr4MtVdXXCfXlklxZsqyP7jpbx82Ls+iTarqGdPrc1T1Mv4yV9Mhi71ISxS00Yu9SEsUtNGLvUxI5/XVb6JFvUS9DT3u8iXrLzyC41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi414f96Uxu7+cdVZ7WDv/r8ke/TI7vUhLFLTRi71ISxS00Yu9SEsUtN7ORdXPcneSXJxSQXkjwybD+a5K0kZ4ePQ4sfV9K0dvIurnuBvVV1JsnNwGngAeArwPtV9cSOH8w3dtSSWrbX4Gf567JbvbHjxF+qqapVYHW4/F6Si8C+qSeRNIqPdM6e5ABwN2vvzQ7wcJJzSY4n2TPn2STN0Y5jT3IT8BzwaFW9CzwN3AEcZO3I/+QW37eS5FSSU3OYV9KUJp6zAyS5AXgBeLGqntrk6weAF6rqrgn3s1wnRtKgwzn7Tp6ND/AMcHF96MMTd9c8CJyfejpJC7eTZ+PvBX4KvA58MGz+JvAQa0v4Ai4BXx+ezNvuvpbrx6c06HBk39Eyfl6MXcuqQ+z+Bp3UhLFLTRi71ISxS00Yu9SEsUtN+NdlJWZ+qWsh9ztvHtmlJoxdasLYpSaMXWrC2KUmjF1qwpfepBkt08tr2/HILjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITu/1fXH8L/O+667cO25aF82xv2eaB5Ztp7Hn+Yqsv7Oq7uH7owZNTVXXPaANs4DzbW7Z5YPlmWrZ51nMZLzVh7FITY8d+bOTH38h5trds88DyzbRs8/zJqOfsknbP2Ed2SbtklNiT3J/kF0neTPLYGDNsmOdSkteTnE1yaqQZjie5kuT8um23JHkpyRvD5z0jz3M0yVvDfjqb5NAuzrM/yStJLia5kOSRYfso+2ibeUbbR5Ps+jI+yXXAL4EvApeB14CHqurnuzrI/5/pEnBPVY32+miSvwHeB75XVXcN2/4BuFpVjw8/FPdU1TdGnOco8H5VPbEbM2yYZy+wt6rOJLkZOA08AHyNEfbRNvN8hZH20SRjHNk/B7xZVb+qqt8BPwQOjzDHUqmqV4GrGzYfBk4Ml0+w9o9pzHlGU1WrVXVmuPwecBHYx0j7aJt5ltYYse8DfrPu+mXG30kF/CTJ6SQrI8+y3u1VtQpr/7iA20aeB+DhJOeGZf6unVasl+QAcDfwM5ZgH22YB5ZgH21mjNg3e/uMsV8S+HxV/TXwt8DfD0tYfdjTwB3AQWAVeHK3B0hyE/Ac8GhVvbvbj7+DeUbfR1sZI/bLwP511z8NvD3CHH9SVW8Pn68AP2btVGMZvDOcG147R7wy5jBV9U5V/aGqPgD+iV3eT0luYC2sH1TVvw6bR9tHm80z9j7azhixvwbcmeSzST4FfBU4OcIcACS5cXiChSQ3Al8Czm//XbvmJHBkuHwEeH7EWa7FdM2D7OJ+ytobqj0DXKyqp9Z9aZR9tNU8Y+6jiapq1z+AQ6w9I/8/wLfGmGHdLH8J/NfwcWGseYBnWVv2/R9rq5+/A/4ceBl4Y/h8y8jzfB94HTjHWmR7d3Gee1k73TsHnB0+Do21j7aZZ7R9NOnD36CTmvA36KQmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1q4o/a43L1pNprggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKxElEQVR4nO3dT4xd9XmH8edbIBtgYYpAluPUKULdsDCVlU1QRReJqDeGRaKwcqRKk0WRYBeULOIlqoAqKyS3WHGrligSTbFQVYIQFVlF2JZr7LgJNHITwwgr8gJYpQlvFnMcTc3M3OH+mXPt9/lIo7lz5v55deRnzu/cO+ObqkLSje+Pxh5A0s4wdqkJY5eaMHapCWOXmjB2qYmbZ7lxkoeA7wI3Af9QVU9NuL6v80kLVlXZaHumfZ09yU3Az4EvAZeAN4FHq+qnW9zG2KUF2yz2WZbxXwDeqapfVNVvgO8Dh2a4P0kLNEvse4Bfrfv60rBN0hKa5Zx9o6XCJ5bpSVaAlRkeR9IczBL7JWDvuq8/C7x37ZWq6ihwFDxnl8Y0yzL+TeDeJJ9P8hnga8CJ+Ywlad6mPrJX1W+TPAa8wtpLb8eq6vzcJpM0V1O/9DbVg7mMlxZuES+9SbqOGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTczyls0kuQh8CPwO+G1VHZjHUJLmb6bYB39ZVb+ew/1IWiCX8VITs8ZewI+SnEqyMo+BJC3GrMv4L1bVe0nuAl5N8t9V9cb6Kww/BPxBII0sVTWfO0qOAB9V1dNbXGc+DyZpU1WVjbZPvYxPcmuS269eBr4MnJv2/iQt1izL+LuBHya5ej//UlX/MZepJM3d3Jbx23owl/HSws19GS/p+mLsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITE2NPcizJ5STn1m27I8mrSd4ePu9a7JiSZrWdI/v3gIeu2fYk8FpV3Qu8NnwtaYlNjL2q3gCuXLP5EHB8uHwceHjOc0mas5unvN3dVbUKUFWrSe7a7IpJVoCVKR9H0pxMG/u2VdVR4ChAklr040na2LTPxr+fZDfA8Pny/EaStAjTxn4CODxcPgy8NJ9xJC1KqrZeWSd5AXgQuBN4H/gO8G/AD4DPAb8EvlJV1z6Jt9F9uYyXFqyqstH2ibHPk7FLi7dZ7P4GndSEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUxMTYkxxLcjnJuXXbjiR5N8mZ4ePgYseUNKvtHNm/Bzy0wfa/q6r9w8e/z3csSfM2MfaqegOY+HbMkpbbLOfsjyU5Oyzzd81tIkkLMW3szwH3APuBVeCZza6YZCXJySQnp3wsSXOQqpp8pWQf8HJV3fdpvrfBdSc/mKSZVFU22j7VkT3J7nVfPgKc2+y6kpbDzZOukOQF4EHgziSXgO8ADybZDxRwEfjGAmeUNAfbWsbP7cFcxksLN9dlvKTrj7FLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71MTE2JPsTfJ6kgtJzid5fNh+R5JXk7w9fN61+HElTWviGzsOb8+8u6pOJ7kdOAU8DHwduFJVTyV5EthVVd+ccF++saO0YFO/sWNVrVbV6eHyh8AFYA9wCDg+XO04az8AJC2pT3XOnmQfcD/wE+DuqlqFtR8IwF3zHk7S/Ny83SsmuQ14EXiiqj5INlwpbHS7FWBluvEkzcvEc3aAJLcALwOvVNWzw7afAQ9W1epwXv+fVfVnE+7Hc3ZpwaY+Z8/aIfx54MLV0AcngMPD5cPAS7MOKWlxtvNs/APAj4G3gI+Hzd9i7bz9B8DngF8CX6mqKxPuyyO7tGCbHdm3tYyfF2NXN1v1td3nvaZ4zOmW8ZJuDMYuNWHsUhPGLjVh7FITxi41se1fl5W6WtTL07Pc7zQv23lkl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5rwr94kFveXbYuy2bwHDhzY9DYe2aUmjF1qwtilJoxdasLYpSaMXWpiO+/iujfJ60kuJDmf5PFh+5Ek7yY5M3wcXPy4kqa1nXdx3Q3srqrTSW4HTgEPA18FPqqqp7f9YL6xo65Dy/ga/Fb/u+xmb+w48ZdqqmoVWB0uf5jkArBnyhkljeRTnbMn2Qfcz9p7swM8luRskmNJds15NklztO3Yk9wGvAg8UVUfAM8B9wD7WTvyP7PJ7VaSnExycg7zSprSxHN2gCS3AC8Dr1TVsxt8fx/wclXdN+F+lu/kR5rgRjln386z8QGeBy6sD3144u6qR4Bz255U0o7bzrPxDwA/Bt4CPh42fwt4lLUlfAEXgW8MT+ZtdV/L9yNSmuBGObJvaxk/L8au69GNEru/QSc1YexSE8YuNWHsUhPGLjVh7FIT/u+y0gRbvcw1yVYv281yv9PwyC41YexSE8YuNWHsUhPGLjVh7FITvvQmLdBOv7y2FY/sUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjWx03/i+mvgf9d9feewbVk4z9aWbR5YvpnGnudPNvvGjr6L6ycePDlZVQdGG+AazrO1ZZsHlm+mZZtnPZfxUhPGLjUxduxHR378aznP1pZtHli+mZZtnj8Y9Zxd0s4Z+8guaYeMEnuSh5L8LMk7SZ4cY4Zr5rmY5K0kZ5KcHGmGY0kuJzm3btsdSV5N8vbwedfI8xxJ8u6wn84kObiD8+xN8nqSC0nOJ3l82D7KPtpintH20SQ7voxPchPwc+BLwCXgTeDRqvrpjg7y/2e6CByoqtFeH03yF8BHwD9W1X3Dtr8FrlTVU8MPxV1V9c0R5zkCfFRVT+/EDNfMsxvYXVWnk9wOnAIeBr7OCPtoi3m+ykj7aJIxjuxfAN6pql9U1W+A7wOHRphjqVTVG8CVazYfAo4Pl4+z9o9pzHlGU1WrVXV6uPwhcAHYw0j7aIt5ltYYse8BfrXu60uMv5MK+FGSU0lWRp5lvburahXW/nEBd408D8BjSc4Oy/wdO61YL8k+4H7gJyzBPrpmHliCfbSRMWLf6C0yxn5J4ItV9efAXwF/Myxh9UnPAfcA+4FV4JmdHiDJbcCLwBNV9cFOP/425hl9H21mjNgvAXvXff1Z4L0R5viDqnpv+HwZ+CFrpxrL4P3h3PDqOeLlMYepqver6ndV9THw9+zwfkpyC2th/XNV/euwebR9tNE8Y++jrYwR+5vAvUk+n+QzwNeAEyPMAUCSW4cnWEhyK/Bl4NzWt9oxJ4DDw+XDwEsjznI1pqseYQf3U9beNO154EJVPbvuW6Pso83mGXMfTVRVO/4BHGTtGfn/Ab49xgzrZvlT4L+Gj/NjzQO8wNqy7/9YW/38NfDHwGvA28PnO0ae55+At4CzrEW2ewfneYC1072zwJnh4+BY+2iLeUbbR5M+/A06qQl/g05qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJn4P0xdzjoqdPHgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKv0lEQVR4nO3dQYxchX3H8e+vQC7AwRSBLMcpKUK95GAqiwtRRVUlor4YDqnCoXKkSs6hSCD1EJQe4iOqgKgnJKdYcauUKBJJsaKqiYWoaC8RtuUaO24CidzEsMKKfABOKfDvYZ+j7bK7s8zOzBvz/36k0c68fTPvryd/d96bWe+kqpD0yfd7Yw8gaTGMXWrC2KUmjF1qwtilJoxdauLGndw5yYPA3wM3AP9QVU9OWN/3+aQ5q6pstDzTvs+e5Abg58AXgMvAq8AjVfXTLe5j7NKcbRb7Tg7j7wPeqKpfVtVvge8CB3fweJLmaCex7wF+veb25WGZpCW0k3P2jQ4VPnKYnuQwcHgH25E0AzuJ/TKwd83tTwNvrV+pqo4CR8FzdmlMOzmMfxW4J8lnk3wK+DJwYjZjSZq1qZ/Zq+r9JI8CP2L1rbdjVXVhZpNJmqmp33qbamMexktzN4+33iRdR4xdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSZ28pHNJLkEvAt8ALxfVftnMZSk2dtR7IM/rarfzOBxJM2Rh/FSEzuNvYAfJzmd5PAsBpI0Hzs9jL+/qt5KcgdwMsl/V9Ura1cYfgj4g0AaWapqNg+UHAHeq6qntlhnNhuTtKmqykbLpz6MT3JzkluvXQe+CJyf9vEkzddODuPvBH6Q5Nrj/HNV/dtMppI0czM7jN/WxjyMl+Zu5ofxkq4vxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNTEx9iTHklxJcn7NstuSnEzy+vB113zHlLRT23lm/zbw4LplTwAvVdU9wEvDbUlLbGLsVfUKcHXd4oPA8eH6ceChGc8lacZunPJ+d1bVCkBVrSS5Y7MVkxwGDk+5HUkzMm3s21ZVR4GjAElq3tuTtLFpX41/O8lugOHrldmNJGkepo39BHBouH4IeHE240ial1RtfWSd5HngAeB24G3gG8C/AN8DPgP8CvhSVa1/EW+jx/IwXpqzqspGyyfGPkvGLs3fZrH7G3RSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhMTY09yLMmVJOfXLDuS5M0kZ4fLgfmOKWmntvPM/m3gwQ2Wf7Oq9g2Xf53tWJJmbWLsVfUKMPHjmCUtt52csz+a5NxwmL9rZhNJmotpY38WuBvYB6wAT2+2YpLDSU4lOTXltiTNQKpq8krJXcAPq+pzH+d7G6w7eWOSdqSqstHyqZ7Zk+xec/Nh4Pxm60paDjdOWiHJ88ADwO1JLgPfAB5Isg8o4BLw1TnOKGkGtnUYP7ONeRgvzd1MD+MlXX+MXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmJsaeZG+Sl5NcTHIhyWPD8tuSnEzy+vB11/zHlT45qmrTyzxM/GDH4eOZd1fVmSS3AqeBh4CvAFer6skkTwC7quprEx7LD3aUBlu1l2z42YzbfdzpPtixqlaq6sxw/V3gIrAHOAgcH1Y7zuoPAElL6mOdsye5C7gX+AlwZ1WtwOoPBOCOWQ8naXZu3O6KSW4BXgAer6p3tnuYkeQwcHi68STNysRzdoAkNwE/BH5UVc8My34GPFBVK8N5/b9X1R9NeBzP2aXB0p2zZ3WrzwEXr4U+OAEcGq4fAl6cejpJc7edV+M/D/wH8Brw4bD466yet38P+AzwK+BLVXV1wmP5zC4NFv3MPvGcvar+E9hsy3829UTSJ8Q83hef9jH379+/6ff8DTqpCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiW3/pRqpq3n9tddF85ldasLYpSaMXWrC2KUmjF1qwtilJnzrTZpg0l96vV7emvOZXWrC2KUmjF1qwtilJoxdasLYpSa28ymue5O8nORikgtJHhuWH0nyZpKzw+XA/MeVNK3tvM/+PvA3VXUmya3A6SQnh+99s6qemt94kmZlO5/iugKsDNffTXIR2DPvwSTN1sc6Z09yF3Avq5/NDvBoknNJjiXZNePZJM3QtmNPcgvwAvB4Vb0DPAvcDexj9Zn/6U3udzjJqSSnZjCvpCltK/YkN7Ea+neq6vsAVfV2VX1QVR8C3wLu2+i+VXW0qvZX1eafEi9p7rbzanyA54CLVfXMmuW716z2MHB+9uNJmpXtvBp/P/CXwGtJzg7Lvg48kmQfUMAl4KtzmVDSTGSR/z0vyfXxfwGlBdiqvUn/rXbC4254Z3+DTmrC2KUmjF1qwtilJoxdasLYpSb867LSSHby9to0fGaXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5pY9F+X/Q3wP2tu3z4sWxbOs7VlmweWb6ax5/mDzb6x0E9x/cjGk1NVtX+0AdZxnq0t2zywfDMt2zxreRgvNWHsUhNjx3505O2v5zxbW7Z5YPlmWrZ5fmfUc3ZJizP2M7ukBRkl9iQPJvlZkjeSPDHGDOvmuZTktSRnk5waaYZjSa4kOb9m2W1JTiZ5ffi6a+R5jiR5c9hPZ5McWOA8e5O8nORikgtJHhuWj7KPtphntH00ycIP45PcAPwc+AJwGXgVeKSqfrrQQf7/TJeA/VU12vujSf4EeA/4x6r63LDs74CrVfXk8ENxV1V9bcR5jgDvVdVTi5hh3Ty7gd1VdSbJrcBp4CHgK4ywj7aY5y8YaR9NMsYz+33AG1X1y6r6LfBd4OAIcyyVqnoFuLpu8UHg+HD9OKv/mMacZzRVtVJVZ4br7wIXgT2MtI+2mGdpjRH7HuDXa25fZvydVMCPk5xOcnjkWda6s6pWYPUfF3DHyPMAPJrk3HCYv7DTirWS3AXcC/yEJdhH6+aBJdhHGxkj9o0+gX7stwTur6o/Bv4c+OvhEFYf9SxwN7APWAGeXvQASW4BXgAer6p3Fr39bcwz+j7azBixXwb2rrn9aeCtEeb4nap6a/h6BfgBq6cay+Dt4dzw2jnilTGHqaq3q+qDqvoQ+BYL3k9JbmI1rO9U1feHxaPto43mGXsfbWWM2F8F7kny2SSfAr4MnBhhDgCS3Dy8wEKSm4EvAue3vtfCnAAODdcPAS+OOMu1mK55mAXupyQBngMuVtUza741yj7abJ4x99FEVbXwC3CA1VfkfwH87RgzrJnlD4H/Gi4XxpoHeJ7Vw77/ZfXo56+A3wdeAl4fvt428jz/BLwGnGM1st0LnOfzrJ7unQPODpcDY+2jLeYZbR9NuvgbdFIT/gad1ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS038HxrtebCq+kTNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKqUlEQVR4nO3dT4ychXnH8e+vQC7AwRSBLMetU8ShFQdTrKgSUUVVJaK+GA6JwqFypUibQ5BA6qEoPcRHVAFVT0huseJWKVEkkmKhqgmykGgvCINcY8dtIJGbGFa2Ig7AKSV5etjX0XbZ3RlmZ/Yd8nw/0mhn3vnzPnrl777vO7PeTVUh6Tffb409gKTdYexSE8YuNWHsUhPGLjVh7FIT1+/kyUnuB/4OuA74h6p6fMLj/ZxPWrCqymbLM+vn7EmuA34EfB64DLwKPFRVP9zmOcYuLdhWse/kMP6zwFtV9ZOq+gXwbeDIDl5P0gLtJPZ9wM/W3b48LJO0hHZyzr7ZocJHDtOTrAArO1iPpDnYSeyXgf3rbn8aeGfjg6rqOHAcPGeXxrSTw/hXgTuTfCbJp4AvA6fmM5akeZt5z15VHyZ5GPg+ax+9naiqC3ObTNJczfzR20wr8zBeWrhFfPQm6RPE2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYid/spkkl4D3gV8CH1bVoXkMJWn+dhT74E+q6udzeB1JC+RhvNTETmMv4AdJXkuyMo+BJC3GTg/j762qd5LcBryY5L+q6uX1Dxi+CfiNQBpZqmo+L5QcAz6oqie2ecx8ViZpS1WVzZbPfBif5MYkN1+7DnwBOD/r60larJ0cxt8OfC/Jtdf556r6t7lMJWnu5nYYP9XKPIyXFm7uh/GSPlmMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qYmLsSU4kuZrk/LpltyR5Mcmbw9c9ix1T0k5Ns2f/JnD/hmWPAaer6k7g9HBb0hKbGHtVvQy8u2HxEeDkcP0k8MCc55I0Z9fP+Lzbq2oVoKpWk9y21QOTrAArM65H0pzMGvvUquo4cBwgSS16fZI2N+u78VeS7AUYvl6d30iSFmHW2E8BR4frR4Hn5zOOpEVJ1fZH1kmeBe4DbgWuAN8A/gX4DvA7wE+BL1bVxjfxNnstD+OlBauqbLZ8YuzzZOzS4m0Vuz9BJzVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41MTH2JCeSXE1yft2yY0neTnJ2uBxe7JiSdmqaPfs3gfs3Wf63VXVwuPzrfMeSNG8TY6+ql4GJf45Z0nLbyTn7w0nODYf5e+Y2kaSFmDX2p4E7gIPAKvDkVg9MspLkTJIzM65L0hykqiY/KDkAvFBVd32c+zZ57OSVSdqRqspmy2fasyfZu+7mg8D5rR4raTlcP+kBSZ4F7gNuTXIZ+AZwX5KDQAGXgK8ucEZJczDVYfzcVuZhvLRwcz2Ml/TJY+xSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSExN/u6yk3TfpF8Emm/5OyW25Z5eaMHapCWOXmjB2qQljl5owdqmJibEn2Z/kpSQXk1xI8siw/JYkLyZ5c/i6Z/HjSp8sVTXTZdbXveeee7Z8zjR79g+Bv6yq3wf+CPhakj8AHgNOV9WdwOnhtqQlNTH2qlqtqteH6+8DF4F9wBHg5PCwk8ADixpS0s59rHP2JAeAu4FXgNurahXWviEAt817OEnzM/WPyya5CXgOeLSq3pv2x/WSrAArs40naV6m2rMnuYG10L9VVd8dFl9Jsne4fy9wdbPnVtXxqjpUVYfmMbCk2UzzbnyAZ4CLVfXUurtOAUeH60eB5+c/nqR5meYw/l7gz4E3kpwdln0deBz4TpKvAD8FvriYESXNw8TYq+o/gK1O0P90vuNIWhR/gk5qwtilJoxdasLYpSaMXWrC2KUm/O2y0g5N819Sl4F7dqkJY5eaMHapCWOXmjB2qQljl5rwozdph7b7rU3L9LGce3apCWOXmjB2qQljl5owdqkJY5eaMHapCWOXmjB2qQljl5owdqkJY5eaMHapiWn+iuv+JC8luZjkQpJHhuXHkryd5OxwObz4cSXNKpP+C97wt9f3VtXrSW4GXgMeAL4EfFBVT0y9smR5/r+ftMSm6HK752565zR/xXUVWB2uv5/kIrBv0vMkLZePdc6e5ABwN/DKsOjhJOeSnEiyZ86zSZqjqWNPchPwHPBoVb0HPA3cARxkbc//5BbPW0lyJsmZOcwraUYTz9kBktwAvAB8v6qe2uT+A8ALVXXXhNfxnF2awiLO2ad5Nz7AM8DF9aEPb9xd8yBwftJrSRrPNO/Gfw74d+AN4FfD4q8DD7F2CF/AJeCrw5t5272We3ZpCovYs091GD8vxi4t3syH8ZJ+Mxi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9SEsUtNGLvUhLFLTRi71ISxS00Yu9TE9bu8vp8D/7Pu9q3DsmXhPNtbtnlg+WYae57f3eqOXf0rrh9ZeXKmqg6NNsAGzrO9ZZsHlm+mZZtnPQ/jpSaMXWpi7NiPj7z+jZxne8s2DyzfTMs2z6+Nes4uafeMvWeXtEtGiT3J/Un+O8lbSR4bY4YN81xK8kaSs0nOjDTDiSRXk5xft+yWJC8meXP4umfkeY4leXvYTmeTHN7FefYneSnJxSQXkjwyLB9lG20zz2jbaJJdP4xPch3wI+DzwGXgVeChqvrhrg7y/2e6BByqqtE+H03yx8AHwD9W1V3Dsr8B3q2qx4dvinuq6q9GnOcY8EFVPbEbM2yYZy+wt6peT3Iz8BrwAPAXjLCNtpnnS4y0jSYZY8/+WeCtqvpJVf0C+DZwZIQ5lkpVvQy8u2HxEeDkcP0ka/+YxpxnNFW1WlWvD9ffBy4C+xhpG20zz9IaI/Z9wM/W3b7M+BupgB8keS3JysizrHd7Va3C2j8u4LaR5wF4OMm54TB/104r1ktyALgbeIUl2EYb5oEl2EabGSP2bLJs7I8E7q2qPwT+DPjacAirj3oauAM4CKwCT+72AEluAp4DHq2q93Z7/VPMM/o22soYsV8G9q+7/WngnRHm+LWqemf4ehX4HmunGsvgynBueO0c8eqYw1TVlar6ZVX9Cvh7dnk7JbmBtbC+VVXfHRaPto02m2fsbbSdMWJ/FbgzyWeSfAr4MnBqhDkASHLj8AYLSW4EvgCc3/5Zu+YUcHS4fhR4fsRZrsV0zYPs4nZKEuAZ4GJVPbXurlG20VbzjLmNJqqqXb8Ah1l7R/7HwF+PMcO6WX4P+M/hcmGseYBnWTvs+1/Wjn6+Avw2cBp4c/h6y8jz/BPwBnCOtcj27uI8n2PtdO8ccHa4HB5rG20zz2jbaNLFn6CTmvAn6KQmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1q4v8AFWaG56C/2CkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAKpElEQVR4nO3dT4yc9X3H8fenQC7AwRSBLMctKeLQKgdTLFSJqqKqElFfDIdU4RC5UiTnECSQcihKD/ERRUDUE5JTrLgVJYoEKVYVtbEsJJQLwiDX2HEbSOQmhpWtiANwSiDfHvZxtN3sn/HsM/ss/b5f0mhnnn1m56tH+975zczuTqoKSf///d7UA0jaHsYuNWHsUhPGLjVh7FITxi41cf1WrpzkAeAfgOuAf6yqJzbZ39f5pAWrqqy1PfO+zp7kOuAnwOeAS8BrwMNV9eMNrmPs0oKtF/tWlvH3Am9X1c+q6lfAd4GDW/h6khZoK7HvAX6x4vKlYZukHWgrj9nXWir8zjI9yWHg8BZuR9IIthL7JWDvisufBt5dvVNVHQWOgo/ZpSltZRn/GnBXks8k+RTwReDEOGNJGtvc9+xV9VGSR4D/YPmlt2NVdX60ySSNau6X3ua6MZfx0sIt4qU3SZ8gxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE1t5y2aSXAQ+AD4GPqqq/WMMJWl8W4p98JdV9csRvo6kBXIZLzWx1dgL+GGS15McHmMgSYux1WX8fVX1bpLbgJNJ/quqXlm5w/BDwB8E0sRSVeN8oeQI8GFVPbnBPuPcmKR1VVXW2j73Mj7JjUluvnoe+Dxwbt6vJ2mxtrKMvx34fpKrX+dfqurfR5lK0uhGW8bPdGMu46WFG30ZL+mTxdilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSY2jT3JsSRXkpxbse2WJCeTvDV83LXYMSVt1Sz37N8BHli17XHgVFXdBZwaLkvawTaNvapeAd5btfkgcHw4fxx4cOS5JI3s+jmvd3tVLQFU1VKS29bbMclh4PCctyNpJPPGPrOqOgocBUhSi749SWub99n4y0l2Awwfr4w3kqRFmDf2E8Ch4fwh4KVxxpG0KKnaeGWd5HngfuBW4DLwDeBfge8BfwD8HPhCVa1+Em+tr+UyXlqwqspa2zeNfUzGLi3eerH7G3RSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhObxp7kWJIrSc6t2HYkyTtJzgynA4sdU9JWzXLP/h3ggTW2f6uq9g2nH4w7lqSxbRp7Vb0CbPp2zJJ2tq08Zn8kydlhmb9rtIkkLcS8sT8D3AnsA5aAp9bbMcnhJKeTnJ7ztiSNIFW1+U7JHcC/VdVnr+Vza+y7+Y1J2pKqylrb57pnT7J7xcWHgHPr7StpZ7h+sx2SPA/cD9ya5BLwDeD+JPuAAi4CX1ngjJJGMNMyfrQbcxkvLdyoy3hJnzzGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITm8aeZG+Sl5NcSHI+yaPD9luSnEzy1vBx1+LHlQRQVWue7rnnnnWvM8s9+0fA16rqj4E/A76a5E+Ax4FTVXUXcGq4LGmH2jT2qlqqqjeG8x8AF4A9wEHg+LDbceDBRQ0paeuu6TF7kjuAu4FXgduragmWfyAAt409nKTxXD/rjkluAl4AHquq95M13wJ6resdBg7PN56kscx0z57kBpZDf66qXhw2X06ye/j8buDKWtetqqNVtb+q9o8xsKT5zPJsfIBngQtV9fSKT50ADg3nDwEvjT+epLHMsoy/D/gS8GaSM8O2rwNPAN9L8mXg58AXFjOipDFsGntV/QhY7wH6X407jtRHVW3r7fkbdFITxi41YexSE8YuNWHsUhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjVh7FITM/+nGknXbrv/sm0j3rNLTRi71ISxS00Yu9SEsUtNGLvUhC+9SQu00Zup+A8nJS2EsUtNGLvUhLFLTRi71ISxS03M8i6ue5O8nORCkvNJHh22H0nyTpIzw+nA4seVNK9ZXmf/CPhaVb2R5Gbg9SQnh899q6qeXNx4ksYyy7u4LgFLw/kPklwA9ix6MEnjuqbH7EnuAO4GXh02PZLkbJJjSXaNPJukEc0ce5KbgBeAx6rqfeAZ4E5gH8v3/E+tc73DSU4nOT3CvJLmNFPsSW5gOfTnqupFgKq6XFUfV9VvgG8D96513ao6WlX7q2r/WENLunazPBsf4FngQlU9vWL77hW7PQScG388SWOZ5dn4+4AvAW8mOTNs+zrwcJJ9QAEXga8sZEJJo5jl2fgfAWv9nd4Pxh9H6mOjP3/dzDx/Hutv0ElNGLvUhLFLTRi71ISxS00Yu9SE/11W+gSa52U779mlJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSaMXWrC2KUmjF1qwtilJoxdasLYpSa2+7/L/hL4nxWXbx227RTOs7GdNg/svJmmnucP1/tE5nk3yLEkOV1V+ycbYBXn2dhOmwd23kw7bZ6VXMZLTRi71MTUsR+d+PZXc56N7bR5YOfNtNPm+a1JH7NL2j5T37NL2iaTxJ7kgST/neTtJI9PMcOqeS4meTPJmSSnJ5rhWJIrSc6t2HZLkpNJ3ho+7pp4niNJ3hmO05kkB7Zxnr1JXk5yIcn5JI8O2yc5RhvMM9kx2sy2L+OTXAf8BPgccAl4DXi4qn68rYP835kuAvurarLXR5P8BfAh8E9V9dlh2zeB96rqieGH4q6q+rsJ5zkCfFhVT27HDKvm2Q3srqo3ktwMvA48CPwtExyjDeb5GyY6RpuZ4p79XuDtqvpZVf0K+C5wcII5dpSqegV4b9Xmg8Dx4fxxlr+ZppxnMlW1VFVvDOc/AC4Ae5joGG0wz441Rex7gF+suHyJ6Q9SAT9M8nqSwxPPstLtVbUEy99cwG0TzwPwSJKzwzJ/2x5WrJTkDuBu4FV2wDFaNQ/sgGO0liliX+td5Kd+SeC+qvpT4K+Brw5LWP2uZ4A7gX3AEvDUdg+Q5CbgBeCxqnp/u29/hnkmP0brmSL2S8DeFZc/Dbw7wRy/VVXvDh+vAN9n+aHGTnB5eGx49THilSmHqarLVfVxVf0G+DbbfJyS3MByWM9V1YvD5smO0VrzTH2MNjJF7K8BdyX5TJJPAV8ETkwwBwBJbhyeYCHJjcDngXMbX2vbnAAODecPAS9NOMvVmK56iG08TkkCPAtcqKqnV3xqkmO03jxTHqNNVdW2n4ADLD8j/1Pg76eYYcUsfwT853A6P9U8wPMsL/t+zfLq58vA7wOngLeGj7dMPM8/A28CZ1mObPc2zvPnLD/cOwucGU4HpjpGG8wz2THa7ORv0ElN+Bt0UhPGLjVh7FITxi41YexSE8YuNWHsUhPGLjXxvz+2TsBSmod1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "X, Y = generate_examples(size, 1) \n", + "print(\"Right -->\") if Y[0] else print(\"<-- Left\")\n", + "\n", + "for frame in X[0]:\n", + " plt.imshow(frame[:,:,0], cmap=\"gray\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "time_distributed_1 (TimeDist (None, None, 28, 28, 2) 20 \n", + "_________________________________________________________________\n", + "time_distributed_2 (TimeDist (None, None, 14, 14, 2) 0 \n", + "_________________________________________________________________\n", + "time_distributed_3 (TimeDist (None, None, 392) 0 \n", + "_________________________________________________________________\n", + "lstm_1 (LSTM) (None, 50) 88600 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 1) 51 \n", + "=================================================================\n", + "Total params: 88,671\n", + "Trainable params: 88,671\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "# define the model \n", + "model = Sequential() \n", + "model.add(TimeDistributed(Conv2D(2, (3,3), activation='relu'), \n", + " input_shape=(None,size,size,1))) \n", + "model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2)))) \n", + "model.add(TimeDistributed(Flatten())) \n", + "model.add(LSTM(50)) \n", + "model.add(Dense(1, activation='sigmoid')) \n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/1\n", + "1000/1000 [==============================] - 7s 7ms/step - loss: 0.2028 - acc: 0.9690A: 1s - loss: 0.2310 - acc: \n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# fit model \n", + "X, y = generate_examples(size, 1000) \n", + "model.fit(X, y, batch_size=32, epochs=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loss: 0.056935, acc: 100.000000\n" + ] + } + ], + "source": [ + "# evaluate model \n", + "X, y = generate_examples(size, 100) \n", + "loss, acc = model.evaluate(X, y, verbose=0) \n", + "print('loss: %f, acc: %f' % (loss, acc*100))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected: Left, Predicted: Left\n" + ] + } + ], + "source": [ + "# prediction on new data \n", + "X, y = generate_examples(size, 1) \n", + "yhat = model.predict_classes(X, verbose=0) \n", + "expected = \"Right\" if y[0]==1 else \"Left\" \n", + "predicted = \"Right\" if yhat[0]==1 else \"Left\" \n", + "print('Expected: %s, Predicted: %s' % (expected, predicted))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/05-1-video-action-recognition-train-extract-features-with-cnn.ipynb b/05-1-video-action-recognition-train-extract-features-with-cnn.ipynb new file mode 100644 index 0000000..adf82c7 --- /dev/null +++ b/05-1-video-action-recognition-train-extract-features-with-cnn.ipynb @@ -0,0 +1,326 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

طبقه بندی ویدیو با شبکه‌های بازگشتی - استخراج ویژگی

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
مجموعه داده
\n", + "\n", + "\n", + "
\n", + "قبلا 6 کلاس از دیتاست UCF-101 را به عنوان نمونه انتخاب و فریم‌های ویدیوهای متعلق به این 6 کلاس از این مجموعه داده را استخراج کرده ایم و اطلاعات هر ویدیو نظیر اسم - کلاس و تعداد فریم را در یک فایل متنی قرار داده ایم.\n", + "
\n", + " \n", + "این 6 کلاس که برای این آموزش آماده شده است را از اینجا دانلود کنید: \n", + "
\n", + "\n", + "http://dataset.class.vision/rnn/RNN-Video-6action.zip\n", + "\n", + "
\n", + "
\n", + " همچنین\n", + " دیتاست اصلی شامل 101 کلاس مختلف را می‌توانید از لینک زیر دانلود کنید:\n", + "
\n", + "\n", + "UCF-101\n", + "[https://www.crcv.ucf.edu/data/UCF101.php](https://www.crcv.ucf.edu/data/UCF101.php)\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.preprocessing import image\n", + "from keras.applications.inception_v3 import InceptionV3, preprocess_input\n", + "from keras.models import Model, load_model\n", + "from keras.layers import Input\n", + "import numpy as np\n", + "import os.path\n", + "from tqdm import tqdm\n", + "import csv\n", + "import random\n", + "import glob\n", + "import os.path\n", + "import sys\n", + "import operator\n", + "import threading\n", + "from keras.utils import to_categorical\n", + "from keras.preprocessing.image import img_to_array, load_img" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "seq_length= 40\n", + "max_frames = 300\n", + "image_shape=(224, 224, 3)\n", + "base_path = \"D:/dataset/RNN-Video\"\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "with open(os.path.join('D:/dataset/RNN-Video/data_file_5class.csv'), 'r') as fin:\n", + " reader = csv.reader(fin)\n", + " data = list(reader)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['CricketBowling',\n", + " 'CricketShot',\n", + " 'FieldHockeyPenalty',\n", + " 'HandstandPushups',\n", + " 'HandstandWalking',\n", + " 'SoccerPenalty']" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_path = os.path.join(base_path, 'train')\n", + "classes =os.listdir(train_path)\n", + "classes = sorted(classes)\n", + "classes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " در اینجا آن ویدیوهایی که حداقل 40 فریم و حداکثر 300 فریم دارند را لود می‌کنیم.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "data_clean = []\n", + "for item in data:\n", + " if int(item[3]) >= seq_length and int(item[3]) <= max_frames:\n", + " data_clean.append(item)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "439" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(data_clean)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def get_n_sample_from_video(sample, seq_length):\n", + " path = os.path.join(base_path, sample[0], sample[1])\n", + " filename = sample[2]\n", + " images = sorted(glob.glob(os.path.join(path, filename + '*jpg')))\n", + "\n", + " #Given a list and a size, return a rescaled/samples list. For example,\n", + " #if we want a list of size 5 and we have a list of size 25, return a new\n", + " #list of size five which is every 5th element of the origina list.\n", + " # Get the number to skip between iterations.\n", + " skip = len(images) // seq_length\n", + "\n", + " # Build our new output.\n", + " output = [images[i] for i in range(0, len(images), skip)]\n", + "\n", + " # Cut off the last one if needed.\n", + " return output[:seq_length]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['train', 'HandstandWalking', 'v_HandstandWalking_g24_c06', '151']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_clean[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "40" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(get_n_sample_from_video(data_clean[3], 40))" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Get model with pretrained weights.\n", + "base_model = InceptionV3(weights='imagenet', include_top=True)\n", + "\n", + "# We'll extract features at the final pool layer.\n", + "model = Model(inputs=base_model.input,\n", + " outputs=base_model.get_layer('avg_pool').output)\n", + "\n", + "def model_predict(image_path):\n", + " img = image.load_img(image_path, target_size=(299, 299))\n", + " x = image.img_to_array(img)\n", + " x = np.expand_dims(x, axis=0)\n", + " x = preprocess_input(x)\n", + "\n", + " # Get the prediction.\n", + " features = model.predict(x)\n", + " return features[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████████████████████████████████| 439/439 [18:31<00:00, 2.85s/it]\n" + ] + } + ], + "source": [ + "os.makedirs('sequences', exist_ok=True)\n", + "for video in tqdm(data_clean):\n", + "\n", + " # Get the path to the sequence for this video.\n", + " path = os.path.join('sequences', video[2] + '-' + str(seq_length) + \\\n", + " '-features') # numpy will auto-append .npy\n", + "\n", + " # Check if we already have it.\n", + " if os.path.isfile(path + '.npy'):\n", + " continue\n", + "\n", + " # Get the frames for this video.\n", + " frames = get_n_sample_from_video(video, seq_length)\n", + "\n", + " # Now loop through and extract features to build the sequence.\n", + " sequence = []\n", + " for frame in frames:\n", + " features = model_predict(frame)\n", + " sequence.append(features)\n", + "\n", + " # Save the sequence.\n", + " np.save(path, sequence)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/05-2_video-action-recognition-train-rnn.ipynb b/05-2_video-action-recognition-train-rnn.ipynb new file mode 100644 index 0000000..8614f95 --- /dev/null +++ b/05-2_video-action-recognition-train-rnn.ipynb @@ -0,0 +1,477 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

طبقه بندی ویدیو با شبکه‌های بازگشتی

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
لود کتابخانه‌های مورد استفاده
" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.0.0\n", + "2.2.4-tf\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import tensorflow as tf\n", + "import tensorflow.keras as keras\n", + "from keras.layers import Dense, Flatten, Dropout, ZeroPadding3D\n", + "from keras.layers.recurrent import GRU\n", + "from keras.models import Sequential, load_model\n", + "from keras.optimizers import Adam, RMSprop\n", + "\n", + "import os\n", + "import csv\n", + "import numpy as np\n", + "\n", + "print(tf.__version__)\n", + "print(keras.__version__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
تعریف متغیرها
\n", + "\n", + "
\n", + "تعیین کردن مسیر مجموعه داده، تعداد فریم‌ها برای تشخیص یک ویدیو (تعداد step های زمانی)، نهایت تعداد فریمی که انتظار داریم یک ویدیو داشته باشد و با بیشتر از این تعداد فریم کار نمیکنیم
" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "base_path = \"D:/dataset/RNN-Video\"\n", + "seq_length = 40\n", + "max_frames = 300" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
خواندن مجموعه داده
\n", + "\n", + "
\n", + "قبلا 6 کلاس از دیتاست UCF-101 را به عنوان نمونه انتخاب و فریم‌های ویدیوهای متعلق به این 6 کلاس از این مجموعه داده را استخراج کرده ایم و اطلاعات هر ویدیو نظیر اسم - کلاس و تعداد فریم را در یک فایل متنی قرار داده ایم.\n", + "
\n", + " در اینجا آن ویدیوهایی که حداقل 40 فریم و حداکثر 300 فریم دارند را لود می‌کنیم.\n", + "
\n", + " دیتاست اصلی شامل 101 کلاس مختلف را می‌توانید از لینک زیر دانلود کنید:\n", + "
\n", + "\n", + "UCF-101\n", + "[https://www.crcv.ucf.edu/data/UCF101.php](https://www.crcv.ucf.edu/data/UCF101.php)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "with open(os.path.join(base_path, 'data_file_5class.csv'), 'r') as fin:\n", + " reader = csv.reader(fin)\n", + " data = list(reader)\n", + " \n", + "train_path = os.path.join(base_path, 'train')\n", + "classes =os.listdir(train_path)\n", + "classes = sorted(classes)\n", + "\n", + "data_clean = []\n", + "for item in data:\n", + " if int(item[3]) >= seq_length and int(item[3]) <= max_frames:\n", + " data_clean.append(item)\n", + "data = data_clean" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def get_class_one_hot(class_str):\n", + " \"\"\"Given a class as a string, return its number in the classes\n", + " list. This lets us encode and one-hot it for training.\"\"\"\n", + " # Encode it first.\n", + " label_encoded = classes.index(class_str)\n", + "\n", + " # Now one-hot it.\n", + " label_hot = keras.utils.to_categorical(label_encoded, len(classes))\n", + "\n", + " return label_hot\n", + " \n", + "def get_extracted_sequence(sample):\n", + " \"\"\"Get the saved extracted features.\"\"\"\n", + " filename = sample[2]\n", + " path = os.path.join('sequences' , filename + '-' + str(seq_length) + \\\n", + " '-features.npy')\n", + " return np.load(path)\n", + "\n", + "def split_train_test(data):\n", + " \"\"\"Split the data into train and test groups.\"\"\"\n", + " train = []\n", + " test = []\n", + " for item in data:\n", + " if item[0] == 'train':\n", + " train.append(item)\n", + " else:\n", + " test.append(item)\n", + " return train, test\n", + "\n", + "def get_all_sequences_in_memory(data, train_test):\n", + " # Get the right dataset.\n", + " train, test = split_train_test(data)\n", + " data = train if train_test == 'train' else test\n", + "\n", + " print(\"Loading %d samples into memory for %sing.\" % (len(data), train_test))\n", + "\n", + " X, y = [], []\n", + " for row in data:\n", + " sequence = get_extracted_sequence(row)\n", + " X.append(sequence)\n", + " y.append(get_class_one_hot(row[1]))\n", + "\n", + " return np.array(X), np.array(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loading 302 samples into memory for training.\n", + "Loading 137 samples into memory for testing.\n" + ] + } + ], + "source": [ + "# Get data.\n", + "X, y = get_all_sequences_in_memory(data, 'train')\n", + "X_test, y_test = get_all_sequences_in_memory(data, 'test')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "nb_classes = len(classes)\n", + "features_length = X.shape[-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(GRU(120, return_sequences=True,\n", + " input_shape=(seq_length, features_length)))\n", + "model.add(GRU(120, return_sequences=False))\n", + "model.add(Dropout(0.2))\n", + "model.add(Dense(50, activation='relu'))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(nb_classes, activation='softmax'))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "gru_1 (GRU) (None, 40, 120) 780840 \n", + "_________________________________________________________________\n", + "gru_2 (GRU) (None, 120) 86760 \n", + "_________________________________________________________________\n", + "dropout_1 (Dropout) (None, 120) 0 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (None, 50) 6050 \n", + "_________________________________________________________________\n", + "dropout_2 (Dropout) (None, 50) 0 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 6) 306 \n", + "=================================================================\n", + "Total params: 873,956\n", + "Trainable params: 873,956\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "# Now compile the network.\n", + "model.compile(loss='categorical_crossentropy', optimizer='rmsprop',\n", + " metrics=['accuracy'])\n", + "\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train on 302 samples, validate on 137 samples\n", + "Epoch 1/20\n", + "302/302 [==============================] - 4s 14ms/step - loss: 1.8985 - accuracy: 0.2020 - val_loss: 1.7211 - val_accuracy: 0.1679\n", + "Epoch 2/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 1.6718 - accuracy: 0.3146 - val_loss: 1.5909 - val_accuracy: 0.2336\n", + "Epoch 3/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 1.4664 - accuracy: 0.3808 - val_loss: 1.3258 - val_accuracy: 0.4307\n", + "Epoch 4/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 1.1278 - accuracy: 0.5464 - val_loss: 1.1444 - val_accuracy: 0.5401\n", + "Epoch 5/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 1.1876 - accuracy: 0.5132 - val_loss: 1.0716 - val_accuracy: 0.5620\n", + "Epoch 6/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 0.8632 - accuracy: 0.6887 - val_loss: 0.8342 - val_accuracy: 0.7299\n", + "Epoch 7/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.6350 - accuracy: 0.7815 - val_loss: 1.3242 - val_accuracy: 0.5182\n", + "Epoch 8/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 0.5963 - accuracy: 0.7980 - val_loss: 1.4299 - val_accuracy: 0.5255\n", + "Epoch 9/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.6516 - accuracy: 0.8013 - val_loss: 1.0624 - val_accuracy: 0.5912\n", + "Epoch 10/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.3705 - accuracy: 0.9040 - val_loss: 0.9659 - val_accuracy: 0.7007\n", + "Epoch 11/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.4026 - accuracy: 0.8940 - val_loss: 1.0333 - val_accuracy: 0.5839\n", + "Epoch 12/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 0.2528 - accuracy: 0.9272 - val_loss: 1.5315 - val_accuracy: 0.5401\n", + "Epoch 13/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 0.4282 - accuracy: 0.8775 - val_loss: 0.9561 - val_accuracy: 0.6934\n", + "Epoch 14/20\n", + "302/302 [==============================] - 2s 7ms/step - loss: 0.1086 - accuracy: 0.9801 - val_loss: 1.0507 - val_accuracy: 0.7007\n", + "Epoch 15/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.0880 - accuracy: 0.9901 - val_loss: 2.1897 - val_accuracy: 0.4745\n", + "Epoch 16/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.4926 - accuracy: 0.8775 - val_loss: 1.6895 - val_accuracy: 0.6350\n", + "Epoch 17/20\n", + "302/302 [==============================] - 2s 8ms/step - loss: 0.1643 - accuracy: 0.9669 - val_loss: 1.0169 - val_accuracy: 0.6642\n", + "Epoch 18/20\n", + "302/302 [==============================] - 3s 9ms/step - loss: 0.0632 - accuracy: 0.9934 - val_loss: 2.5353 - val_accuracy: 0.4307\n", + "Epoch 19/20\n", + "302/302 [==============================] - 3s 8ms/step - loss: 0.1357 - accuracy: 0.9669 - val_loss: 1.3398 - val_accuracy: 0.6715\n", + "Epoch 20/20\n", + "302/302 [==============================] - 3s 10ms/step - loss: 0.0274 - accuracy: 1.0000 - val_loss: 1.5767 - val_accuracy: 0.7007\n" + ] + } + ], + "source": [ + "history = model.fit(X, y, validation_data=(X_test, y_test),\n", + " batch_size=32, epochs=20)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deZhU1fG/32ITh31TkR13dsYRNzAoyDKOILiBmGhQiQsaNcYYyVf9GdFExd0oqIlGRoGoKAoOCiLuCygiiwgK4igiILINyla/P6oHmqFnpmfm9jr1Pk8/3X3vuedU37796XPr1KkjqorjOI6T+lRJtAGO4zhOMLigO47jpAku6I7jOGmCC7rjOE6a4ILuOI6TJrigO47jpAku6GmMiFQVkc0i0jLIsolERA4VkcBjbUWkt4isCHu/RER6RFO2HG09LiI3lvd4xymOaok2wNmDiGwOe5sB/ArsDL3/g6rmlqU+Vd0J1A66bGVAVY8Ioh4RuRg4X1V7htV9cRB1O05RXNCTCFXdLaihHuDFqjqjuPIiUk1Vd8TDNscpDb8eE4+7XFIIEblNRCaKyLMisgk4X0SOF5EPRORnEVklIg+ISPVQ+WoioiLSOvR+fGj/qyKySUTeF5E2ZS0b2t9fRL4UkQ0i8qCIvCsiFxZjdzQ2/kFElonIehF5IOzYqiJyr4isE5GvgH4lnJ+/iciEItseFpF7Qq8vFpHFoc/zVaj3XFxd+SLSM/Q6Q0SeDtm2EDg6Qrtfh+pdKCIDQts7Ag8BPULurLVh5/aWsOMvDX32dSLyoog0jebclOU8F9ojIjNE5CcR+UFErg9r5/9C52SjiMwRkYMjubdE5J3C7zl0Pt8KtfMT8DcROUxEZoU+y9rQeasXdnyr0GdcE9p/v4jUDNl8VFi5piJSICKNivu8TgRU1R9J+ABWAL2LbLsN2Aacjv0Z7w8cAxyL3W21Bb4ERobKVwMUaB16Px5YC2QB1YGJwPhylD0A2AQMDO27FtgOXFjMZ4nGxpeAekBr4KfCzw6MBBYCzYFGwFt22UZspy2wGagVVvePQFbo/emhMgKcAmwFOoX29QZWhNWVD/QMvb4beBNoALQCFhUpew7QNPSdnBey4cDQvouBN4vYOR64JfS6T8jGLkBN4F/AG9GcmzKe53rAauCPwH5AXaBbaN9fgc+Aw0KfoQvQEDi06LkG3in8nkOfbQdwGVAVux4PB3oBNULXybvA3WGfZ0HofNYKlT8xtG8cMDqsnT8BkxP9O0y1R8IN8EcxX0zxgv5GKcddB/wv9DqSSD8aVnYAsKAcZYcDb4ftE2AVxQh6lDYeF7b/BeC60Ou3MNdT4b7soiJTpO4PgPNCr/sDX5ZQ9hXgitDrkgR9Zfh3AVweXjZCvQuA00KvSxP0p4Dbw/bVxcZNmpd2bsp4nn8LzCmm3FeF9hbZHo2gf12KDWcBH4de9wB+AKpGKHcisByQ0Pt5wOCgf1fp/nCXS+rxbfgbETlSRKaGbqE3ArcCjUs4/oew1wWUPBBaXNmDw+1Q+wXmF1dJlDZG1RbwTQn2AjwDDA29Pg/YPZAsIjki8mHI5fAz1jsu6VwV0rQkG0TkQhH5LOQ2+Bk4Msp6wT7f7vpUdSOwHmgWViaq76yU89wCWFaMDS0wUS8PRa/Hg0Rkkoh8F7LhySI2rFAbgN8LVX0X6+13F5EOQEtgajltqrS4oKceRUP2xmI9wkNVtS5wE9ZjjiWrsB4kACIi7C1ARamIjaswISiktLDKiUBvEWmOuYSeCdm4P/AccAfmDqkPvBalHT8UZ4OItAUewdwOjUL1fhFWb2khlt9jbpzC+upgrp3vorCrKCWd52+BQ4o5rrh9W0I2ZYRtO6hImaKf759YdFbHkA0XFrGhlYhULcaO/wLnY3cTk1T112LKOcXggp761AE2AFtCg0p/iEObrwCZInK6iFTD/LJNYmTjJOBqEWkWGiD7S0mFVXU15hb4D7BEVZeGdu2H+XXXADtFJAfz9UZrw40iUl8sTn9k2L7amKitwf7bLsZ66IWsBpqHD04W4VngIhHpJCL7YX84b6tqsXc8JVDSeZ4CtBSRkSJSQ0Tqiki30L7HgdtE5BAxuohIQ+yP7Ads8L2qiIwg7M+nBBu2ABtEpAXm9inkfWAdcLvYQPP+InJi2P6nMRfNeZi4O2XEBT31+RNwATZIORbrocaUkGieC9yD/UAPAT7FemZB2/gIMBP4HPgY62WXxjOYT/yZMJt/Bq4BJmMDi2dhf0zRcDN2p7ACeJUwsVHV+cADwEehMkcCH4Yd+zqwFFgtIuGuk8Lj8zDXyOTQ8S2BYVHaVZRiz7OqbgBOBc7EBmG/BH4T2n0X8CJ2njdiA5Q1Q660S4AbsQHyQ4t8tkjcDHTD/limAM+H2bADyAGOwnrrK7HvoXD/Cux73qaq75XxszvsGYBwnHITuoX+HjhLVd9OtD1O6iIi/8UGWm9JtC2piE8scsqFiPTDbqF/wcLedmC9VMcpF6HxiIFAx0Tbkqq4y8UpL92Br7Fb8X7AGT6I5ZQXEbkDi4W/XVVXJtqeVMVdLo7jOGmC99Adx3HShIT50Bs3bqytW7dOVPOO4zgpydy5c9eqasQw4YQJeuvWrZkzZ06imnccx0lJRKTY2dLucnEcx0kTXNAdx3HSBBd0x3GcNCGpJhZt376d/Px8fvnll0Sb4pRAzZo1ad68OdWrF5eexHGcRJBUgp6fn0+dOnVo3bo1lsDPSTZUlXXr1pGfn0+bNm1KP8BxnLhRqstFRP4tIj+KyIJi9ktoCaplIjJfRDLLa8wvv/xCo0aNXMyTGBGhUaNGfhflOOUgNxdat4YqVew5t0zLvpdOND70JylhHUdsVZjDQo8RWHa8cuNinvz4d+Q4ZSc3F0aMgG++AVV7HjEiWFEvVdBV9S0s3WhxDAT+q8YHQH0JLXLrOI6TTMS6h1wSo0ZBQcHe2woKbHtQBBHl0oy9l6HKp5jVa0RkRGhF8Tlr1qwJoOlgWbduHV26dKFLly4cdNBBNGvWbPf7bdu2RVXH73//e5YsWVJimYcffpjceF5JjhMQiRTEihKPHnJJrCwm5Vhx28tFNAuPYquNLyhm31Sge9j7mcDRpdV59NFHa1EWLVq0z7aSGD9etVUrVRF7Hj++TIeXyM0336x33XXXPtt37dqlO3fuDK6hFKWs35WT+owfr5qRoWpyaI+MjGB/d7GkVau9bS98tGqVWu1TzGLfGtAi0fnsvd5ic2yxg5gSz3/bZcuW0aFDBy699FIyMzNZtWoVI0aMICsri/bt23PrrbfuLtu9e3fmzZvHjh07qF+/PjfccAOdO3fm+OOP58cffwTgb3/7G/fdd9/u8jfccAPdunXjiCOO4L33bKGWLVu2cOaZZ9K5c2eGDh1KVlYW8+bN28e2m2++mWOOOWa3fRrKnvnll19yyimn0LlzZzIzM1mxYgUAt99+Ox07dqRz586MCvJez0kJKtLDjofLIJbEpYdcAqNHQ0bG3tsyMmx7YBSn9OEPSu6hn4YtyyXAccBH0dRZ0R56rP9tw3voS5cuVRHRjz76aPf+devWqarq9u3btXv37rpw4UJVVT3xxBP1008/1e3btyug06ZNU1XVa665Ru+44w5VVR01apTee++9u8tff/31qqr60ksvad++fVVV9Y477tDLL79cVVXnzZunVapU0U8//XQfOwvt2LVrlw4ZMmR3e5mZmTplyhRVVd26datu2bJFp0yZot27d9eCgoK9ji0P3kNPPSrawxaJ/JsTia3dQZHoHrpqMF4FKtJDF5FnsZVpjhCRfBG5SEQuFZFLQ0WmYQsdLAMeAy4P8P+mWOL9b3vIIYdwzDHH7H7/7LPPkpmZSWZmJosXL2bRokX7HLP//vvTv39/AI4++ujdveSiDB48eJ8y77zzDkOGDAGgc+fOtG/fPuKxM2fOpFu3bnTu3JnZs2ezcOFC1q9fz9q1azn99NMBmwiUkZHBjBkzGD58OPvvvz8ADRs2LPuJcFKWivawW7Ys2/ZkIy495FIYNgxWrIBdu+x5WHlXjy2GaKJchqpqU1WtrqrNVfUJVX1UVR8N7VdVvUJVD1HVjqoalxSK8b64atWqtfv10qVLuf/++3njjTeYP38+/fr1ixiXXaNGjd2vq1atyo4dOyLWvd9+++1TRqNYeKSgoICRI0cyefJk5s+fz/Dhw3fbESm0UFU95LASU9FOUDIIYkVcRsOGwbhx0KoViNjzuHFlE9VkHxRO2Vwuiby4Nm7cSJ06dahbty6rVq1i+vTpgbfRvXt3Jk2aBMDnn38e8Q5g69atVKlShcaNG7Np0yaef94WWG/QoAGNGzfm5ZdfBmzCVkFBAX369OGJJ55g69atAPz0U0nRqE66UdFOUBCCWBGCGDerSA850VEy0ZCygp7IiyszM5N27drRoUMHLrnkEk488cTA27jyyiv57rvv6NSpE2PGjKFDhw7Uq1dvrzKNGjXiggsuoEOHDgwaNIhjjz12977c3FzGjBlDp06d6N69O2vWrCEnJ4d+/fqRlZVFly5duPfeewO320legugExdplUBKJHpRNdPvRkLA1RbOysrToAheLFy/mqKOOSog9ycaOHTvYsWMHNWvWZOnSpfTp04elS5dSrVpypN/x7yo1yc01AVq50nrmo0fHV5QrQpUq1jMuioj9waR7+3vak7mqmhVpX3Kog7MPmzdvplevXuzYsQNVZezYsUkj5k7qMmxY6gh4UVq2NDdHpO2Vof1ocIVIUurXr8/cuXMTbYbjJA2jR5vPOtztEc9B2US3Hw0p60N3HKdykehB2US3Hw3eQ3ccJ2VItMso0e2XhvfQHcdx0gQXdMdxnDTBBT2Mnj177jNJ6L777uPyy0vOZlC7dm0Avv/+e84666xi6y4aplmU++67j4KwEZfs7Gx+/vnnaEx3UoRkn2nopDYu6GEMHTqUCRMm7LVtwoQJDB06NKrjDz74YJ577rlyt19U0KdNm0b9+vXLXZ+TXKTCTEMntXFBD+Oss87ilVde4ddffwVgxYoVfP/993Tv3n13XHhmZiYdO3bkpZde2uf4FStW0KFDB8Cm5Q8ZMoROnTpx7rnn7p5uD3DZZZftTr178803A/DAAw/w/fffc/LJJ3PyyScD0Lp1a9auXQvAPffcQ4cOHejQocPu1LsrVqzgqKOO4pJLLqF9+/b06dNnr3YKefnllzn22GPp2rUrvXv3ZvXq1YDFuv/+97+nY8eOdOrUaXfqgLy8PDIzM+ncuTO9evUK5Nw6qTHT0EltkjbK5eqrIUL67wrRpQuEtDAijRo1olu3buTl5TFw4EAmTJjAueeei4hQs2ZNJk+eTN26dVm7di3HHXccAwYMKDbZ1SOPPEJGRgbz589n/vz5ZGbuWTt79OjRNGzYkJ07d9KrVy/mz5/PVVddxT333MOsWbNo3LjxXnXNnTuX//znP3z44YeoKsceeyy/+c1vaNCgAUuXLuXZZ5/lscce45xzzuH555/n/PPP3+v47t2788EHHyAiPP7449x5552MGTOGv//979SrV4/PP/8cgPXr17NmzRouueQS3nrrLdq0aeP5XgIk0fm4nfTHe+hFCHe7hLtbVJUbb7yRTp060bt3b7777rvdPd1IvPXWW7uFtVOnTnTq1Gn3vkmTJpGZmUnXrl1ZuHBhxMRb4bzzzjsMGjSIWrVqUbt2bQYPHszbb78NQJs2bejSpQtQfIre/Px8+vbtS8eOHbnrrrtYuHAhADNmzOCKK67YXa5BgwZ88MEHnHTSSbRp0wbwFLtBkurpZ53kJ2l76CX1pGPJGWecwbXXXssnn3zC1q1bd/esc3NzWbNmDXPnzqV69eq0bt06YsrccCL13pcvX87dd9/Nxx9/TIMGDbjwwgtLraekfDuFqXfB0u9GcrlceeWVXHvttQwYMIA333yTW265ZXe9RW1M5xS7ic5jkgozDZ3UxnvoRahduzY9e/Zk+PDhew2GbtiwgQMOOIDq1asza9YsvomU1CGMk046afdC0AsWLGD+/PmApd6tVasW9erVY/Xq1bz66qu7j6lTpw6bNm2KWNeLL75IQUEBW7ZsYfLkyfTo0SPqz7RhwwaaNbN1u5966qnd2/v06cNDDz20+/369es5/vjjmT17NsuXLwfSJ8VuMgxIpsJMQye1cUGPwNChQ/nss892rxgEMGzYMObMmUNWVha5ubkceeSRJdZx2WWXsXnzZjp16sSdd95Jt27dAFt9qGvXrrRv357hw4fvlXp3xIgR9O/ff/egaCGZmZlceOGFdOvWjWOPPZaLL76Yrl27Rv15brnlFs4++2x69Oixl3/+b3/7G+vXr6dDhw507tyZWbNm0aRJE8aNG8fgwYPp3Lkz5557btTtJDNBDEgGEXKYyPSzTvrj6XOdcpFq31VFU58W9vCLuku8h+3Em5LS53oP3akUVHRA0kMOnVTABd2pFFR0tR4POXRSgaQT9ES5gJzoScXvqKIDkskScpjqqQNS3f5kJ6kEvWbNmqxbty4lBaOyoKqsW7eOmjVrJtqUMlORAclkWfE+0ZE6FSHV7U8FkmpQdPv27eTn55cal+0klpo1a9K8eXOqV6+eaFPiSqLj2Fu3jrwEWqtW9geV7KS6/clCSYOiSSXojuMUT7IsUlxeUt3+ZMGjXBwnDUgWP355SXX7UwEXdMdJEZLBj18RUt3+VMAF3XFShFRPHZDq9qcC7kN3HMdJIdyH7jiOUwlwQXccx0kTXNAdx3HSBBd0x3GcNMEF3XEcJ01wQXccx0kTXNAdx3HSBBd0x3GcNMEF3XEcJ01wQXccx0kTXNCdlMFXu3GckolK0EWkn4gsEZFlInJDhP0tRWSWiHwqIvNFJDt4U51UpyKC7KvdOE7plJqcS0SqAl8CpwL5wMfAUFVdFFZmHPCpqj4iIu2AaarauqR6PTlX5aJQkAsK9mzLyIg+256vduM4RkWTc3UDlqnq16q6DZgADCxSRoG6odf1gO/La6yTnowatbeYg70fNSq641euLNt2x6mMRCPozYBvw97nh7aFcwtwvojkA9OAKyNVJCIjRGSOiMxZs2ZNOcx1UpWKCrKvduM4pRONoEuEbUX9NEOBJ1W1OZANPC0i+9StquNUNUtVs5o0aVJ2a52EUhEfeEUF2Ve7cZzSiUbQ84EWYe+bs69L5SJgEoCqvg/UBBoHYaCTHFR0ULKiguyr3ThO6UQzKFoNGxTtBXyHDYqep6oLw8q8CkxU1SdF5ChgJtBMS6jcB0VTiyAGJXNzzWe+cqX1zEePdkF2nLJS0qBoVEvQhcIQ7wOqAv9W1dEiciswR1WnhCJbHgNqY+6Y61X1tZLqdEFPLapUsZ55UURg16742+M4lZWSBL1aNBWo6jRssDN8201hrxcBJ1bESCe5adkycg/dByUdJ3nwmaJOVPigpOMkPy7oTlT4oKTjJD9RuVwcB0y8XcAdJ3nxHrrjOE6a4ILuOI6TJrigO47jpAku6I7jOGmCC7rjOE6a4ILuOI6TJrigVzK2b4d33km0FY7jxAIX9ErGvfdCjx4wd26iLXEcJ2hc0CsRu3bB2LH2+vnnE2uL4zjB44JeiZg5E77+GmrXhhdeSLQ1juMEjQt6JWLcOGjUCG69FZYsgcWLE22R4zhB4oJeSfjhB3jxRbjgAjj3XNvmvXTHSS9c0CsJ//kP7Nhhy8YdfDAcdxxMnpxoqxzHCRIX9ErArl3w2GPwm9/AEUfYtsGDLdIl0qIV6cy2bfDaa7BzZ6ItiR+7dtkd2ty58NJL8PTTFr7qxJ/Nm+Ff/4p+2cay4ulzKwGvvw7Ll0P//rY26MqV0LSp7XvxRfjjHxNqXlz5f/8Pbr8dHnwQRo5MtDUVZ/t2WLUK8vPt8d13+77+/vt9BXzXLnO/OfFh+XJ46CF44gnYsAHGjIFrrw2+najWFI0FvqZo/DjzTBP1HTtg69Y920Wsx15ZBkcXL4bOne117dqwdKkNEqcSP/8MV18NCxeaWK9eve9ar/vvD82b73k0a7b364ED4fjj4bnnEvMZKguqMHs23H8/TJliv7ezzrIO1HHH2fvyUOE1RZ3UZdUqu82uVWtvMQe74L74An78EQ44IDH2xQtVuOwyE/Lnn4dTT4Wbb7ZeUyrx4IPw1FPQp4/9ORUV7ObNoX79ksXitNPg2WfN/VSjRvxsryxs3Wrn9/77Yf586zTccINdf82bx7hxVU3I4+ijj1Yn9tx2m6rJWfGPxx5LtJWx56mn7LOOHWvvR45UrVJFdf78xNpVFn75RfXAA1X79atYPVOm2Ll4/fVg7HKM/HzVG29UbdzYzm/HjqqPP65aUBBsO8AcLUZXfVA0jdm50wZDTznF1gCNRLVq6R+++NNPcN11dpt78cW27ZZboF49uOaafV0WycrEieZiueaaitXTqxfUrAkvvxyMXZWdDz6AoUNtfOqOO6B7d5g1Cz77DC66yFxg8cIFPY157TWLYhkxAkaPhoyMvfdnZNit+8yZNlCTrvz1rybqjz4KVUJXfOEEq5kzzb+Z7KhaHp527cxdVBEyMuxP/uWXU+fPLNnYtg1yc+HYY2084tVX4aqr4KuvLBy4Z8/y+8grRHFd91g/3OUSewYOVG3SRPXXX+39+PGqrVqpitjz+PGq775rt4fPPJNIS2PHe+/Z57v22n33bd+u2r69atu25s5IZmbNss8xblww9T3yiNW3aFEw9VUWdu1SHTNGtWlTO3+HH6760EOqmzbFzwZKcLm4oKcp+fmqVauqXn99yeV27lQ96CDVs8+Oj13xZPt21U6dVJs3V924MXKZ11+3X8E//hFf28rKwIHmmw3KH7typX3uO+8Mpr7Kwkcf2Xnr2VP11Vft9xNvShJ0d7mkKf/+t/nQL7mk5HJVqsAZZ8C0aftGwaQ6DzxgUQYPPAB16kQu07u3hfHddptFBCUjy5aZW+jSS4Pzx7ZoYVEyqeRH377dxhGGDLEkc4kgL89cKZMmQb9+e1x4yUKSmeMEQeFgaO/ecOihpZcfPBi2bLFY9XTh22/hppssRO+MM0oue/fd5hO98cb42FZWHnzQBq8vvzzYek8/Hd5918YXkpm1a20yWJs2JuYTJ8LjjyfGlrw8yMqCJk0S035puKCnIXl5Jmh/+EN05Xv2tNjldMrtcvXVNhvywQdLH5w69FAr/+ST8PHHcTEvajZssLutIUP2zO4NipwcO0d5ecHWGxSff25RSS1awKhRcOSRdqfSo4cNQsab9estoqVv3/i3HS0u6GnI2LE2UWjAgOjKV69uvbUpU2w2aarzyisWinnTTdari4ZRo+DAA20WXzJFfjz+uOX/uPrq4Os+5hi7TpLJ7bJzp02EO+UU6NTJIkl++1sT9xkz7DrNyYF58yy1QTyZOdP+APv1i2+7ZcEFPc3Iz4epU2H48LLNAhw0yG6933ordrbFg4ICuPJKC+8rS66MunUthvj9922WXzKwY4fdYZx0EmRmBl9/lSrmksrLS3yyrg0b4J574LDDzEW2bBn84x92PY8bBx067CmbnW3P8b6zyMuzuQvHHhvfdsuCC3qa8cQT1osobTC0KH372oBbqk8yuu02y2T3yCNln9Z+wQVw9NFw/fU2ppBoXnzR5hFUdCJRSeTkWH6Y996LXRsl8eWXliStWTP4058stfOkSTbo+Ze/RM610769uWGmTYufnaowfbqNS1VL5oQpxYW/xPrhYYvBs327hej16VO+4wcNUm3WLDGhWEGwYIFqtWqqF15Y/joK4/L/7/+Cs6u8nHCCxcjv2BG7NjZuVK1eXfW662LXRlF27VLNy1Pt39/OdY0aqr/7neqcOdHXMWKEap06e+ZYxJoFCzRp0mTgYYuVg1dftVvUaAdDizJ4sPklk21gMBpULQqkTh24887y13PCCXDeeXDXXYnNFf/RR9ZrvuoqqFo1du3UqWOD4vHyo//0E3TpYn7oTz6xFAwrV1rCsaOPjr6e7GzYtMmidOJBoXsnmQdEwV0uacXYsXDQQTZwVB5OO81uJ1Mx2uW//zX//513Vjyk7B//sMiY668PxrbycN99Jra//33s2zr9dFtjdunS2Lc1bpzNDXj8cfvDvPlmG4wuK7162WB+vNwu06fbuEyLFvFpr7y4oKcJK1daD334cLvQy0ODBhZd8PzzyRXpURrr1lnyrRNOsM9fUVq0sHSnkyYlZpA4Px/+9z8L2atbN/btnXaaPU+dGtt2du60sY1TTrGkVfvtV/66ate2FbjiIehbtlhe82SObinEBT1NeOIJE+GyDoYWZfBgizBYuDAYu+LBDTdYjPAjjwQ3c++666BlSwtjjPdydQ8/bAPbV14Zn/batrXeZ6zdLq+8Yh2PK64Ipr7sbFi0KHbLuRUye7ZNPHNBd+LCjh12C9u3r6XwrAgDB5q7IVXcLu++a5/9mmssbjkoMjLMjz5vnk3siRdbtpjr7Iwzoo+hD4LTT7e7kVhm3Xz4YVvgIdr5EaVRGL4Y60lG06dbBFiPHrFtJwhc0NOAqVNt3cjyDoaGc9BB5rpIhfDF7dttFZgWLcwXGzRnn20/4lGj4pde+Omn7W4jlqGKkcjJsY7Ba6/Fpv4vvrDUEpdeGlzY3+GH291FrN0ueXk2cFyzZmzbCYKoBF1E+onIEhFZJiI3FFPmHBFZJCILReSZYM10SmLsWIvfzckJpr5Bg6xnunx5MPXFivvvtxmEDzxgPtWgEbE21q6Fv/89+PqLsmuXDYZmZcGJJ8a+vXCOOw4aNjS3SCz4179sXkBFXYLhiFgv/Y034Jdfgqs3nOXLLVY+FdwtQOlx6EBV4CugLVAD+AxoV6TMYcCnQIPQ+wNKq9fj0INh+XLLbx5k3PRXX1nM7ZgxwdUZNN98o5qRoXr66RbXHEsuvtji27/4IrbtTJ1q5338+Ni2Uxznn28peoOOe9+4UbVuXdVhw4KtV1V12jQ7Z9OnB1+36p688bH+7ssCFYxD7wYsU9WvVXUbMAEYWKTMJcDDqro+9CfxY0X/aJzoeOIJe77oouDqbNvWUqsmsx/9j3+052iSb1WU24AmIgwAABndSURBVG4zn/qf/hTbdu67z+60zj47tu0UR06O3Y18+GGw9Y4fDxs32ozQoCl0hcTK7ZKXZ+NShx8em/qDJhpBbwZ8G/Y+P7QtnMOBw0XkXRH5QEQi3qCIyAgRmSMic9asWVM+i53dbN9ugt6/f/FrhpaXwYNtwPGHH4KtNwimTLFp8TfdFPznjsSBB1pbU6fGLn/IggXmY77iirKnLAiKvn1tElOQbhdVGwzNzIxNDpT994eTT46NoG/bZgm5+vVL0HJy5SAaQY/0UYpGKVfD3C49gaHA4yJSf5+DVMepapaqZjVJ1oTCKcQrr9iiDEEMhhZl0CD7Mb70UvB1V4TNmy2cr337siXfqihXXmmJo665JjaJrO6/38QpFt9ltNSvb4PAQQr67NkWAjtyZOxEMTvbJkUFPTHq/fftekv22aHhRCPo+UD4/KjmwPcRyrykqttVdTmwBBN4J4aMHWtJjQrDt4KkQwfLE55MbpfNmy287ttvLea8vBOoykONGrZI8xdf2ABfkKxZY9Etv/td5GRU8eT0022gOai0Bw8/bIOtQ4YEU18kYhW+mJdnETmnnBJsvbEkGkH/GDhMRNqISA1gCFB0nfQXgZMBRKQx5oJJ0CJRlYPlyy3E7OKLY5P9TcTcLjNnWja+RLNxo936vv22+WQTEROcnW023HyzTV8PikcfhV9/3TMukEgKI6WC6KXn51uH4KKLgls6LxJt28IRRwTvdsnLs2ijeMzWDYpSBV1VdwAjgenAYmCSqi4UkVtFpHCKwHRgnYgsAmYBf1bVdbEy2rEl5kSCHQwtyqBBFpsc6ynhpfHzz9Cnjw3WTZhgybMSQWEYY40alkjq5ptNiCvCr79aj79fPzjqqGDsrAiHH26upSAEfdw4C8W87LKK11Ua2dnw5pvBpT3+4QcL3U0ldwvg6XNTkW3bVA88UDUnJ7bt7NypevDBqoMHx7adkli3TjUz01K8vvhi4uwIZ80aC/ED1XbtVN9/v/x1PfVUbMPuysO111pK202byl/Hr7/G5xot5PXX7Ty+/HIw9RV+L598Ekx9QYKnz00vpkyB1atjP4BWpYpNQc/Ls5WA4s2aNRbBsHChRbUMLBosmyAaNzaf99Sp5go64QQboC1r71DV/PLt2sGpp8bG1vKQk2MRHjNmlL+O55+3azSovC2l0aMH1KoVnNtl+nSLburcOZj64oULegoydqxNd+/fP/ZtDR5sYh6rKeHF8cMPFmO8dKkljYrFwG9Fyc62P5tLLzVh7tjRxhyi5a237Lb+6quTKyyue3dbaq0ibpeHHrJB9T59grOrJPbbz1YTmjat4plCd+40Qe/TJ7hkb/Eixcyt3OzaZbHKr79ug6GxXPigkJNOsrS68Yx2+e47S436zTf2A02m3mtR6tY1H/js2TY43bu3fTfRDCTfe69FtZx/fuztLAvVq5tPf+pUu+bKyqef2uIcl18eX0HMzrZrZvHiitXzySeWkjllpvuH4YKe5OzYYbkqrrjCMtX16WNhYLEcDA2nenXLjjdlSnwWEl650sR81SrrJfXsGfs2g+Ckk+Czz2wdzCefNDdKSTH8X31l5/TSS2MbAVJecnLsLmnu3LIf+/DDNrP2wgsDN6tECu9YKxq+OH263TElc0eiOFzQ40hurk0jrlLFnnNzI5fbts381pdcAk2b2uos//kPHH+8HfP11xZ/Hi8GDbIe55tvxrad5ctNGNeutbuQeCeoqij772+rHX34IRxwgI0/nHuu+ZKL8sAD1qO//PL42xkN/frZdVpWt8tPP8Ezz8CwYXZnF09atLD5ExX1o+flWRRTSs59LG60NNaPyhblMn68JZMyD589MjL2JGIqKLAojt/+VrV+fdtfu7bqkCGq//uf6ubNibO9oMBsveyy2LXx5Ze2wHXDhqpz58aunXixbZvqbbdZtEjDhqpPP70nidjPP9t3e/75ibWxNE480SKMysLdd9u1O29ebGwqjeuvt4ioDRvKd/z69apVq6r+7W/B2hUklBDl4oIeJ1q12lvMCx+NG6uee679wMHE/IILVKdMUd26NdFW7+Gss1SbNrVQxqBZtMjqbtw4cUIQKxYtUj3+ePtu+/e3LJFjxtj7sqxynwj+8Q+zMz8/uvI7d6q2bavavXts7SqJN980m194oXzHP/ecHf/OO8HaFSQu6EmASGRBB9UmTVQvucRikbdtS7SlkcnNNVvfey/Yej//XPWAAyxmecGCYOtOFnbsUL3/frvLqV3b/rh69Ei0VaWzYIF952PHRle+MP3vhAmxtasktm2zVL0XX1y+4y++WLVePdXt24O1K0hKEnT3oceJli0jbz/wQBsAHDfOBjzjmZ+kLJx2mtkW5EpG8+bZoGe1ahYl0r59cHUnE1WrwlVXWYjj8cfbGMF11yXaqtJp187GeqL1oz/8sK14NWhQTM0qkerV7XdUnvBFVfOf9+4dm3Qa8cAFPU6MHr3vElYZGTBmTHzCDytKvXo2ODt5csXjfAHmzLGkR7VqWTz2EUdUvM5kp3Vri6D46qvg1tWMJSKWrGvGDNi6teSyX31l0SV/+EPi0v8Wkp1tSzKWNd/O4sWWfyYVwxULcUGPE0OH2ih8YVxuq1bWKx82LLF2lYXBg+2H+/nnFavn/fftz6F+feuZH3JIMPalAiKWTCpVyMkxMX/jjZLLPfKIdUxGjIiPXSVRKMhljXYpzHWfcvlbwkjRG4vU49//tlmPTz4JF1yQaGvKx4AB1gN74QXo1Knkshs3Wm/nu+/sufDx3XcW/njwwTarskWLkutxEstvfmPrtb7yirndIlFQYAutDB5s32uiadrUFtSYNg3++tfoj8vLMzdTKl+TLuhxYM0auP56i7H+3e/KX09urq1Av3Kl+eRHj45vD//AA21a+PPPW4x1uEgXFe1Nm/Y9vkkTi5/PyYF77kmOH79TMvvtZz7pV16xGbGRUhQ884zNU4hX3pZoyM6G22+H9euji4cvKDDXXzJ9hvLggh4H/vxnE7hHHil/zo7cXLudLUyS9c03e25v4ynqgwfbqj1du+7ZVrWq9YqaN7eBzb597XWzZvbcvLmJ9377xc9OJzhycuyubP78fZNVaWiJuY4dE5Ojvjiys20t2Ndes8ldpTF7tqUyTmV3C7igx5zZs+Gpp+zWr1278tczatS+GQ8LCmx7PAV9xAioU8d6PYVifeCBqTGw65SP7GzriLz88r6C/t57Fq306KPJlWCsWzdLkTFtWnSCnpdnM31POin2tsUS0SBCFspBVlaWzpkzJyFtx4tt26BLFxtUWrjQolrKS5UqkaNLRMqXQMlxysJxx9nzBx/svf2880w08/PN155MnHeejdOsWlV6krAjj7TB6lgsNh00IjJXVbMi7fMolxgyZoyFQj30UMXEHIqPYy9uu+MESU4OfPTR3nlpfvgBnnvOknAlm5iD3Vn8+KNlTyyJ5cthyZLUd7eAC3rMWL4c/v53m2RRXHRAWRg9et8/hYwM2+44sSYnx+4Qw3uwjz1mGTiTNcFY3752B1tar3v6dHtO5fjzQlzQY4AqjBxpt3n33x9MncOGWdx6q1Z2kaZiHLuTunTubOMlhbNGt283v3mfPrYOaTLSpIn50qMR9Natk/dzlAUX9BgwebJdRLfeGmxM67BhsGKF+cxXrHAxd+KHiPXSX3vNokFeeslmY44cmWjLSiY721xFa9ZE3r9tm/nZC3vzqY4LesBs2gR//KNNvLnqqkRb4zjBkZMDmzdbvPZDD9ldYjIuDRhOdrbdMRe6VYry/vv2m00Hdwu4oAfOLbfYiP+jj6Zugh/HicQpp1ho3z//aeG4l1+e/OGqmZm22Ehxbpfp0+13esop8bUrVrigB8hnn5nPfMQIy6rnOOnE/vtbJsKZM22S2PDhibaodKpUsaXp8vJs8eei5OXBCSfY2rDpgAt6QOzaZetDNmwId9yRaGscJzbk5Njz0KHQuHFibYmW7GxLAfDhh3tvX73aFrROF3cLuKAHxuOP26SLu+82UXecdGTwYOulX399oi2JnlNPtZ56UbfLa6/ZczoJus8UDYAff7R83p07w6xZ6TFa7jjpRI8esGXL3pOMhg2zXO/RzCRNJnymaIz585/tYqlI8i3HcWJHdra5V1atsve7dlkPvW/f1BLz0kijj5IYZs2C//7XRP2ooxJtjeM4kSgMryxcxOKTT2wpwHRyt4ALeoXYts1Ct9q0sayHjuMkJ506WQrnQj96Xp7dTZ96amLtChqPlK4Ad98NX3wBU6dWPPmW4zixQ8R66ZMmWdqC6dPh6KMtPUA64T30cvL115Z868wzk3+2nOM49jvduNF66e+/n37uFnBBLxeFybeqVYP77ku0NY7jREOvXlC9OvzlLzbJKB3S5RbFBb0cvPACvPqqJd9q3jzR1jiOEw1161r44pIlUK/enkU70gkX9DJSmHyrc2e48spEW+M4TlkodI/27p2euZZc0MvII4/YqvaefMtxUo+cHIs7HzAg0ZbEBpekMvLss3Dssel5u+Y46c4RR8DSpRZqnI54D70MLFliK5wPGZJoSxzHKS9t26bvjG4X9DIwcaJdCGefnWhLHMdx9sUFPUpUzd3Sowc0a5ZoaxzHcfYlKkEXkX4iskRElonIDSWUO0tEVEQiZgJLZT7/3GaFurvFcZxkpVRBF5GqwMNAf6AdMFRE2kUoVwe4Cviw6L50YOJEGx0/88xEW+I4jhOZaHro3YBlqvq1qm4DJgADI5T7O3An8EuA9iUFqjBhgs00O+CARFvjOI4TmWgEvRnwbdj7/NC23YhIV6CFqr5SUkUiMkJE5ojInDVr1pTZ2EQxd67lbjn33ERb4jiOUzzRCHqkAJ/dyxyJSBXgXuBPpVWkquNUNUtVs5qkUJqzCRMsB8SOHdC6tbleWreG3NxEW+Y4jrOHaCYW5QMtwt43B74Pe18H6AC8KRbceRAwRUQGqGrKrzG3a5f5zzt0gGuvhYIC2/7NNzBihL0eNixx9jmO4xQSTQ/9Y+AwEWkjIjWAIcCUwp2qukFVG6tqa1VtDXwApIWYg6XZzM+HlSv3iHkhBQW+sIXjOMlDqYKuqjuAkcB0YDEwSVUXisitIpKmGRH2MGEC1KwJ69ZF3r9yZXztcRzHKQ5R1dJLxYCsrCydMye5O/E7d9okohNPtIHRb77Zt0yrVrBiRdxNcxynkiIic1U14lwfnylaArNnw+rVNplo9Oh9l5nLyLDtjuM4yYBnWyyBiROhVi047bQ9Yj5qlLlZWrY0MfcBUcdxkgUX9GLYvh2ee87yJheK+bBhLuCO4yQv7nIphhkz4KefPHeL4zipgwt6MUycaOsOpuNCso7jpCcu6BH45ReYPBkGDYL99ku0NY7jONHhgh6B6dNh40bP3eI4Tmrhgh6BCROgUSPLrug4jpMquKAXYcsWmDIFzjrLEnI5juOkCi7oRZg61XK0uLvFcZxUwwW9CBMmwEEHwUknJdoSx3GcslGpBD03t+R85hs3wrRpcPbZULVqIix0HMcpP5VmpmhuruUvLymf+Usvwa+/+mQix3FSk0rTQx81qvR85hMmWI6W446Lr22O4zhBUGkEvbi85YXbf/oJXnsNzjnHXDKO4zipRqWRrpYtS97+wgu2Zqi7WxzHSVUqjaCXls984kQ45BDIzIy/bY7jOEFQaQR92DAYN85WGBKx53HjbPvq1fDGG9Y7t3WuHcdxUo9KE+UCxeczf+452LXL3S2O46Q2laaHXhITJ0K7dtChQ6ItcRzHKT+VXtDz8+Htt7137jhO6lPpBf1//7Nnz93iOE6qU+kFfcIE6NoVDj880ZY4juNUjEot6MuXw0cfubvFcZz0oFIL+sSJ9nzOOYm1w3EcJwgqtaBPmGB5W1q3TrQljuM4FafSCvoXX8Bnn/lgqOM46UOlFfSJE21W6NlnJ9oSx3GcYKiUgq5q7paTToJmzRJtjeM4TjBUSkH//HNzubi7xXGcdKJSCvqECbbE3JlnJtoSx3Gc4Kh0gq5q/vNTToEDDki0NY7jOMFR6QT944/h6699MpHjOOlHpRL0/Hw4/3yoUwcGDUq0NY7jOMFSaQR9xQqLalm9GvLyoEGDRFvkOI4TLJVigYuvvjKf+caNMGMGHHNMoi1yHMcJnrQX9CVLoFcv+OUXW2aua9dEW+Q4jhMb0lrQFy2ynrkqzJoFHTsm2iLHcZzYEZUPXUT6icgSEVkmIjdE2H+tiCwSkfkiMlNEWgVvKuTmWiKtKlXsOTe3+LLz50PPnja9/803Xcwdx0l/ShV0EakKPAz0B9oBQ0WkXZFinwJZqtoJeA64M2hDc3NhxAj45hvrcX/zjb2PJOqffAInnww1asDs2XDUUUFb4ziOk3xE00PvBixT1a9VdRswARgYXkBVZ6lqQejtB0DzYM2EUaOgoGDvbQUFtj2cjz4yn3mdOvDWW74SkeM4lYdoBL0Z8G3Y+/zQtuK4CHg10g4RGSEic0Rkzpo1a6K3Eli5svTt774LvXtDw4bWM2/btkxNOI7jpDTRCLpE2KYRC4qcD2QBd0Xar6rjVDVLVbOaNGkSvZVAy5Ylb3/zTejbF5o2tZ55q5h48R3HcZKXaAQ9H2gR9r458H3RQiLSGxgFDFDVX4Mxbw+jR0NGxt7bMjJs+4wZkJ1tIv7mm54S13Gcykk0gv4xcJiItBGRGsAQYEp4ARHpCozFxPzH4M2EYcNg3DgTbRF7HjfO3Cs5OXDooRaa2LRpLFp3HMdJfkoVdFXdAYwEpgOLgUmqulBEbhWRAaFidwG1gf+JyDwRmVJMdRVi2DCbwr9rlz3XqQNnnAHt25uYe/ZEx3EqM1FNLFLVacC0IttuCnvdO2C7SuW552DoUMjMhOnToX79eFvgOI6TXKRkcq5nn7X0t926weuvu5g7juNACgr6+PGWArd7d+uZ162baIscx3GSg5QT9NatYcAAmDYNatdOtDWO4zjJQ8ol5+re3R6O4zjO3qRcD91xHMeJjAu64zhOmuCC7jiOkya4oDuO46QJLuiO4zhpggu64zhOmuCC7jiOkya4oDuO46QJohpxrYrYNyyyBvimnIc3BtYGaE7QuH0Vw+2rOMluo9tXflqpasQVghIm6BVBROaoalai7SgOt69iuH0VJ9ltdPtig7tcHMdx0gQXdMdxnDQhVQV9XKINKAW3r2K4fRUn2W10+2JASvrQHcdxnH1J1R664ziOUwQXdMdxnDQhqQVdRPqJyBIRWSYiN0TYv5+ITAzt/1BEWsfRthYiMktEFovIQhH5Y4QyPUVkg4jMCz1uilRXDG1cISKfh9qeE2G/iMgDofM3X0Qy42jbEWHnZZ6IbBSRq4uUifv5E5F/i8iPIrIgbFtDEXldRJaGnhsUc+wFoTJLReSCONl2l4h8Efr+JotIxBV2S7sWYmzjLSLyXdj3mF3MsSX+3mNo38Qw21aIyLxijo3LOawQqpqUD6Aq8BXQFqgBfAa0K1LmcuDR0OshwMQ42tcUyAy9rgN8GcG+nsArCTyHK4DGJezPBl4FBDgO+DCB3/UP2ISJhJ4/4CQgE1gQtu1O4IbQ6xuAf0Y4riHwdei5Qeh1gzjY1geoFnr9z0i2RXMtxNjGW4DrorgGSvy9x8q+IvvHADcl8hxW5JHMPfRuwDJV/VpVtwETgIFFygwEngq9fg7oJSISD+NUdZWqfhJ6vQlYDDSLR9sBMhD4rxofAPVFpGkC7OgFfKWq5Z05HBiq+hbwU5HN4dfZU8AZEQ7tC7yuqj+p6nrgdaBfrG1T1ddUdUfo7QdA8yDbLCvFnL9oiOb3XmFKsi+kHecAzwbdbrxIZkFvBnwb9j6ffQVzd5nQRb0BaBQX68IIuXq6Ah9G2H28iHwmIq+KSPu4GgYKvCYic0VkRIT90ZzjeDCE4n9EiTx/hRyoqqvA/siBAyKUSYZzORy744pEaddCrBkZcgv9uxiXVTKcvx7AalVdWsz+RJ/DUklmQY/U0y4aYxlNmZgiIrWB54GrVXVjkd2fYG6EzsCDwIvxtA04UVUzgf7AFSJyUpH9yXD+agADgP9F2J3o81cWEnouRWQUsAPILaZIaddCLHkEOAToAqzC3BpFSfi1CAyl5N55Is9hVCSzoOcDLcLeNwe+L66MiFQD6lG+271yISLVMTHPVdUXiu5X1Y2qujn0ehpQXUQax8s+Vf0+9PwjMBm7rQ0nmnMca/oDn6jq6qI7En3+wlhd6IoKPf8YoUzCzmVoADYHGKYhZ29RorgWYoaqrlbVnaq6C3ismLYTei2G9GMwMLG4Mok8h9GSzIL+MXCYiLQJ9eKGAFOKlJkCFEYTnAW8UdwFHTQhf9sTwGJVvaeYMgcV+vRFpBt2vtfFyb5aIlKn8DU2eLagSLEpwO9C0S7HARsKXQtxpNheUSLPXxHCr7MLgJcilJkO9BGRBiGXQp/QtpgiIv2AvwADVLWgmDLRXAuxtDF8XGZQMW1H83uPJb2BL1Q1P9LORJ/DqEn0qGxJDywK40ts9HtUaNut2MULUBO7VV8GfAS0jaNt3bFbwvnAvNAjG7gUuDRUZiSwEBux/wA4IY72tQ21+1nIhsLzF26fAA+Hzu/nQFacv98MTKDrhW1L6PnD/lxWAduxXuNF2LjMTGBp6LlhqGwW8HjYscND1+Iy4Pdxsm0Z5nsuvAYLo74OBqaVdC3E8fw9Hbq+5mMi3bSojaH3+/ze42FfaPuThdddWNmEnMOKPHzqv+M4TpqQzC4Xx3Ecpwy4oDuO46QJLuiO4zhpggu64zhOmuCC7jiOkya4oDuO46QJLuiO4zhpwv8HYBxMyFw0poAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhTZfYH8O8BKruAgIIgLSiD0FKgVCwDCqIioAVUlKWoKMiijtssMuAPFWVGkWEYXEBQ3Kiio6MiwoiOzCCjA5YtBQGhtWAFWSqrrG3P749zU0JI0pvmLkl6Ps/Tp2lyc3N60568973nfV9iZiillIp9VdwOQCmllDU0oSulVJzQhK6UUnFCE7pSSsUJTehKKRUnNKErpVSc0ISuAiKiqkR0hIhaWLmtm4joEiKyvE6XiK4hogKfn7cQ0RVmtq3Aa71MRBMq+vwQ+32KiF6zer/KWdXcDkBZg4iO+PxYC8AJACXGz2OYOTuc/TFzCYA6Vm9bGTBzGyv2Q0SjAAxn5p4++x5lxb5VfNKEHieYuSyhGi3AUcz8ebDtiagaMxc7EZtSyhna5VJJGKfU7xDR20R0GMBwIupKRP8jogNEtIuIZhJRgrF9NSJiIkoyfp5vPL6EiA4T0ddE1DLcbY3H+xLRd0R0kIieI6L/EtGIIHGbiXEMEW0jov1ENNPnuVWJ6K9EVEREeQD6hDg+jxLRAr/7XiCi6cbtUUS0yfh98ozWc7B9FRJRT+N2LSJ604htI4DOAV4339jvRiLqb9zfHsDzAK4wurP2+Rzbx32eP9b43YuI6EMiamrm2JSHiAYa8Rwgoi+IqI3PYxOIaCcRHSKizT6/awYRrTHu301Ez5p9PWURZtavOPsCUADgGr/7ngJwEkAm5IO8JoDLAFwOOVNrBeA7APcZ21cDwACSjJ/nA9gHIB1AAoB3AMyvwLbnAzgMYIDx2MMATgEYEeR3MRPjRwDqAUgC8LP3dwdwH4CNAJoDaAhgufzJB3ydVgCOAKjts+89ANKNnzONbQhALwDHAKQaj10DoMBnX4UAehq3pwH4N4AGABIBfOu37a0AmhrvyTAjhguMx0YB+LdfnPMBPG7c7m3E2BFADQAvAvjCzLEJ8Ps/BeA143ZbI45exns0wTjuCQCSAWwH0MTYtiWAVsbtbwAMNW7XBXC52/8Lle1LW+iVywpm/piZS5n5GDN/w8wrmbmYmfMBzAHQI8Tz32PmHGY+BSAbkkjC3fYGAOuY+SPjsb9Ckn9AJmP8MzMfZOYCSPL0vtatAP7KzIXMXATg6RCvkw9gA+SDBgCuBXCAmXOMxz9m5nwWXwD4F4CAFz793ArgKWbez8zbIa1u39d9l5l3Ge/JW5AP43QT+wWALAAvM/M6Zj4OYDyAHkTU3GebYMcmlCEAFjLzF8Z79DSAcyEfrMWQD49ko9vue+PYAfLB3JqIGjLzYWZeafL3UBbRhF65/OD7AxFdSkSfENFPRHQIwGQAjUI8/yef20cR+kJosG0v9I2DmRnSog3IZIymXgvSsgzlLQBDjdvDIB9E3jhuIKKVRPQzER2AtI5DHSuvpqFiIKIRRLTe6No4AOBSk/sF5Pcr2x8zHwKwH0Azn23Cec+C7bcU8h41Y+YtAH4LeR/2GF14TYxN7wTQDsAWIlpFRP1M/h7KIprQKxf/kr2XIK3SS5j5XACTIF0KdtoF6QIBABAR4cwE5C+SGHcBuMjn5/LKKt8BcI3Rwh0ASfAgopoA3gPwZ0h3SH0AS03G8VOwGIioFYBZAMYBaGjsd7PPfssrsdwJ6cbx7q8upGvnRxNxhbPfKpD37EcAYOb5zNwN0t1SFXJcwMxbmHkIpFvtLwDeJ6IaEcaiwqAJvXKrC+AggF+IqC2AMQ685iIAaUSUSUTVADwAoLFNMb4L4EEiakZEDQE8EmpjZt4NYAWAVwFsYeatxkPVAZwDYC+AEiK6AcDVYcQwgYjqk9Tp3+fzWB1I0t4L+WwbBWmhe+0G0Nx7ETiAtwGMJKJUIqoOSaxfMnPQM54wYu5PRD2N1/495LrHSiJqS0RXGa93zPgqgfwCtxFRI6NFf9D43UojjEWFQRN65fZbAHdA/llfgrRQbWUkzcEApgMoAnAxgLWQunmrY5wF6evOhVywe8/Ec96CXOR8yyfmAwAeAvAB5MLiIMgHkxmPQc4UCgAsAfCGz349AGYCWGVscykA337nzwBsBbCbiHy7TrzP/yek6+MD4/ktIP3qEWHmjZBjPgvyYdMHQH+jP706gKmQ6x4/Qc4IHjWe2g/AJpIqqmkABjPzyUjjUeaRdGEq5Q4iqgo5xR/EzF+6HY9SsUxb6MpxRNSHiOoZp+3/B6mcWOVyWErFPE3oyg3dAeRDTtv7ABjIzMG6XJRSJmmXi1JKxQltoSulVJxwbXKuRo0acVJSklsvr5RSMWn16tX7mDlgqa9rCT0pKQk5OTluvbxSSsUkIgo64lm7XJRSKk5oQldKqTihCV0ppeJEVK1YdOrUKRQWFuL48eNuh6JMqFGjBpo3b46EhGBTjSilnBRVCb2wsBB169ZFUlISZBI+Fa2YGUVFRSgsLETLli3Lf4JSynZR1eVy/PhxNGzYUJN5DCAiNGzYUM+mlIoiUZXQAWgyjyH6XikVXaIuoSullJ3+8Q9g5063o7BHuQmdiC4iomXGiucbieiBANv0JFnBfZ3xNcmecO1VVFSEjh07omPHjmjSpAmaNWtW9vPJk+amdb7zzjuxZcuWkNu88MILyM7ODrmNWd27d8e6dess2ZdS8e7wYeDmm4Hp092OxB5mLooWA/gtM68xlrhaTUSfMfO3ftt9ycw3WB9icNnZwMSJwI4dQIsWwJQpQFYE0/s3bNiwLDk+/vjjqFOnDn73u9+dsU3Z6tpVAn8Wvvrqq+W+zr333lvxIJVSFZZvLGe9YYO7cdil3Ba6sSL5GuP2YQCbEHoNSEdkZwOjRwPbtwPM8n30aLnfatu2bUNKSgrGjh2LtLQ07Nq1C6NHj0Z6ejqSk5MxefLksm29Lebi4mLUr18f48ePR4cOHdC1a1fs2bMHAPDoo49ixowZZduPHz8eXbp0QZs2bfDVV18BAH755RfcfPPN6NChA4YOHYr09PRyW+Lz589H+/btkZKSggkTJgAAiouLcdttt5XdP3PmTADAX//6V7Rr1w4dOnTA8OHDLT9mSkUjb0LfuNHdOOwSVh86ESUB6IQzl8ny6mqsXr6EiJKDPH80EeUQUc7evXvDDtbXxInA0aNn3nf0qNxvh2+//RYjR47E2rVr0axZMzz99NPIycnB+vXr8dlnn+Hbb/1PWICDBw+iR48eWL9+Pbp27Yp58+YF3DczY9WqVXj22WfLPhyee+45NGnSBOvXr8f48eOxdu3akPEVFhbi0UcfxbJly7B27Vr897//xaJFi7B69Wrs27cPubm52LBhA26//XYAwNSpU7Fu3TqsX78ezz//fIRHR6nYkJcn3wsLgQMH3I3FDqYTOhHVAfA+gAeZ+ZDfw2sAJDJzBwDPAfgw0D6YeQ4zpzNzeuPGodYFLt+OHeHdH6mLL74Yl112WdnPb7/9NtLS0pCWloZNmzYFTOg1a9ZE3759AQCdO3dGQUFBwH3fdNNNZ22zYsUKDBkyBADQoUMHJCcH/Iwss3LlSvTq1QuNGjVCQkIChg0bhuXLl+OSSy7Bli1b8MADD+DTTz9FvXr1AADJyckYPnw4srOzdWCQqjS8LXQACPAvG/NMJXRj5e/3AWQz8z/8H2fmQ8x8xLi9GEACETWyNFI/LVqEd3+kateuXXZ769at+Nvf/oYvvvgCHo8Hffr0CViPfc4555Tdrlq1KoqLiwPuu3r16mdtE+7CI8G2b9iwITweD7p3746ZM2dizJgxAIBPP/0UY8eOxapVq5Ceno6SkpKwXk+pWJSfD3jbkvHYj26myoUAvAJgEzMHvDZMRE2M7UBEXYz9FlkZqL8pU4Batc68r1Ytud9uhw4dQt26dXHuuedi165d+PTTTy1/je7du+Pdd98FAOTm5gY8A/CVkZGBZcuWoaioCMXFxViwYAF69OiBvXv3gplxyy234IknnsCaNWtQUlKCwsJC9OrVC88++yz27t2Lo/79V0rFofx8oEcPoHbt+EzoZqpcugG4DUAuEXmvyk0A0AIAmHk2gEEAxhFRMYBjAIawzWvbeatZrKxyMSstLQ3t2rVDSkoKWrVqhW7duln+Gr/5zW9w++23IzU1FWlpaUhJSSnrLgmkefPmmDx5Mnr27AlmRmZmJq6//nqsWbMGI0eOBDODiPDMM8+guLgYw4YNw+HDh1FaWopHHnkEdevWtfx3UCqalJQABQVStpicHJ8XRl1bUzQ9PZ39F7jYtGkT2rZt60o80aa4uBjFxcWoUaMGtm7dit69e2Pr1q2oVi2qpt/R90zFjO3bgaQkYM4c4OuvgU8+AXbvdjuq8BHRamZOD/RYdGUHVebIkSO4+uqrUVxcDGbGSy+9FHXJXKlY4r0g2qqVDDB69VVg797TferxQDNElKpfvz5Wr17tdhhKxQ1vQr/4YsBbn7BxI9Czp2shWU7nclFKVQp5eUC1akDz5kBKitwXb/3omtCVUpVCfj6QmChJ/cILgXr14q/SRRO6UqpSyM+X/nMAIJJWurbQlVIqBuXlSf+5V3KytNBdKvSzhSZ0Hz179jxrkNCMGTNwzz33hHxenTp1AAA7d+7EoEGDgu7bv0zT34wZM84Y4NOvXz8csGDCiccffxzTpk2LeD9KxaoDB4Cffz7dQgekhb5/P/DTT+7FZTVN6D6GDh2KBQsWnHHfggULMHToUFPPv/DCC/Hee+9V+PX9E/rixYtRv379Cu9PKSW+/16++yZ07/RI8dSPrgndx6BBg7Bo0SKcOHECAFBQUICdO3eie/fuZXXhaWlpaN++PT766KOznl9QUIAU4/L5sWPHMGTIEKSmpmLw4ME4duxY2Xbjxo0rm3r3scceAwDMnDkTO3fuxFVXXYWrrroKAJCUlIR9+/YBAKZPn46UlBSkpKSUTb1bUFCAtm3b4u6770ZycjJ69+59xusEsm7dOmRkZCA1NRU33ngj9u/fX/b67dq1Q2pqatmkYP/5z3/KFvjo1KkTDh8+XOFjq5SbfEsWveKx0iVq69AffBCweiGejh0BIxcG1LBhQ3Tp0gX//Oc/MWDAACxYsACDBw8GEaFGjRr44IMPcO6552Lfvn3IyMhA//79g66rOWvWLNSqVQsejwcejwdpaWllj02ZMgXnnXceSkpKcPXVV8Pj8eD+++/H9OnTsWzZMjRqdOa8ZqtXr8arr76KlStXgplx+eWXo0ePHmjQoAG2bt2Kt99+G3PnzsWtt96K999/P+T85rfffjuee+459OjRA5MmTcITTzyBGTNm4Omnn8b333+P6tWrl3XzTJs2DS+88AK6deuGI0eOoEaNGmEcbaWih3fa3JYtT993/vlAo0baQo9rvt0uvt0tzIwJEyYgNTUV11xzDX788UfsDjFuePny5WWJNTU1FampqWWPvfvuu0hLS0OnTp2wcePGcifeWrFiBW688UbUrl0bderUwU033YQvv/wSANCyZUt07NgRQOgpegGZn/3AgQPo0aMHAOCOO+7A8uXLy2LMysrC/Pnzy0akduvWDQ8//DBmzpyJAwcO6EhVFbPy84GGDaVU0Ve8VbpE7X9oqJa0nQYOHIiHH34Ya9aswbFjx8pa1tnZ2di7dy9Wr16NhIQEJCUlBZwy11eg1vv333+PadOm4ZtvvkGDBg0wYsSIcvcTar4d79S7gEy/W16XSzCffPIJli9fjoULF+LJJ5/Exo0bMX78eFx//fVYvHgxMjIy8Pnnn+PSSy+t0P6VcpNvyaKv5GTgjTek0iXIyXZM0Ra6nzp16qBnz5646667zrgYevDgQZx//vlISEjAsmXLsH379pD7ufLKK8sWgt6wYQM8Hg8AmXq3du3aqFevHnbv3o0lS5aUPadu3boB+6mvvPJKfPjhhzh69Ch++eUXfPDBB7jiiivC/t3q1auHBg0alLXu33zzTfTo0QOlpaX44YcfcNVVV2Hq1Kk4cOAAjhw5gry8PLRv3x6PPPII0tPTsXnz5rBfU6lokJ9/Zv+5V0qKzOvyww/Ox2SHqG2hu2no0KG46aabzqh4ycrKQmZmJtLT09GxY8dyW6rjxo3DnXfeidTUVHTs2BFdunQBIKsPderUCcnJyWdNvTt69Gj07dsXTZs2xbJly8ruT0tLw4gRI8r2MWrUKHTq1Clk90owr7/+OsaOHYujR4+iVatWePXVV1FSUoLhw4fj4MGDYGY89NBDqF+/Pv7v//4Py5YtQ9WqVdGuXbuy1ZeUiiXFxTLT4uDBZz/mvTC6YYN9i+M4SafPVRHR90xFu++/l+6Wl18GRo4887H9+4HzzgOmTgV+/3t34gtXqOlztctFKRXXfKfN9deggczrEi+VLprQlVJxLVANuq94Wr0o6hK6W11AKnz6XlVO3313ej7xWJCXByQkAM2aBX48JQX49lugtNTZuOwQVQm9Ro0aKCoq0kQRA5gZRUVFOtiokikqkgT4pz+5HYl5+fmy9FzVqoEfT04Gjh07PT1ALIuqKpfmzZujsLAQe/fudTsUZUKNGjXQvHlzt8NQDlq/Hjh1Cpg9G/jjH6XlG+2C1aB7+Va6BOuWiRVRldATEhLQ0ndsrlIqqhjDKbBrF7BoEXDjje7GY0Z+PnD55cEfb9dOvm/cCAwY4ExMdomqLhelVHTLzZVFlZs3l1Z6tNu/X75CtdDr1pWVjOKh0kUTulLKNI8H6NABuPtuYOnS05NeRatQJYu+vItdxDpN6EopU0pKJOmlpsoAnapVgTlz3I4qNLMJPSUF2LJFrg/EMk3oSilTtm0Djh+XhN6sGdC/PzBvHmAsHxCVvGcQZlroJ0/K7xjLNKErpUzJzZXv7dvL97FjgX37gH/8w72YypOfL33+deuG3i5eFrvQhK6UMsXjAapUOV0Vcs010vKN5ouj5ZUsel16qUyfG+v96JrQlVKmeDxAmzaAdyxZlSrAmDHA8uUy0jIaBZs211+tWrKdttCVUpVCbu7p7havO++UwUUvveROTKGcOgXs2GGuhQ7ER6WLJnSlVLkOH5bWrs9KigCkf3rQIOD114GjR92JLZgdO6Qyx2xCT0kBtm6N7ou85Sk3oRPRRUS0jIg2EdFGInogwDZERDOJaBsReYgoLdC+lFKxydty9U/ogFwcPXgQeOcdZ2Mqj9mSRa/kZPkA2LLFvpjsZqaFXgzgt8zcFkAGgHuJqJ3fNn0BtDa+RgOYZWmUSilX+Ve4+LriCqBt2+i7OFretLn+4qHSpdyEzsy7mHmNcfswgE0A/CeiHADgDRb/A1CfiJpaHq1SyhUez+kh8v6IpJW+ahWwZo3zsQWTlwecc44sYGHGr34lg6ViuR89rD50IkoC0AnASr+HmgHwXWa1EGcnfRDRaCLKIaIcnVFRqdjh8Uh3C1Hgx2+7DahZM7oujubnAy1bSjWOGdWrS1KP6xa6FxHVAfA+gAeZ+ZD/wwGectak5sw8h5nTmTm9cePG4UWqlHIFc+AKF18NGgBDhgDZ2cAh/+zgErM16L5SUipBC52IEiDJPJuZA40LKwRwkc/PzQHsjDw8pZTbCguBAwcCXxD1NXYs8MsvktTdxixdLuHOb56cLB8E0VaxY5aZKhcC8AqATcw8PchmCwHcblS7ZAA4yMy7LIxTKeUS7xzo5SX0yy4DOnUCZs2ShOqmn3+WM4WKtNCZgU2b7InLbmZa6N0A3AagFxGtM776EdFYIhprbLMYQD6AbQDmArjHnnCVUk7zVrh4q0CC8V4czc0F/vc/++MKJdySRa/kZPkeq/3oZqpcVjAzMXMqM3c0vhYz82xmnm1sw8x8LzNfzMztmTnHjmCzs2VtwCpV5Hs0nNopFe88HqluqVev/G2HDpVqGLdLGCua0C+5RCpjYrUfPWZGimZnA6NHA9u3yynR9u3ysyZ1pezlrXAxo25dYPhwGWT088/2xhWK2Wlz/VWrJhN1xW0LPVpMnHj2hYqjR+V+pZQ9TpwANm8OXeHib8wYed7rr9sXV3ny84ELLgBq1w7/ubFc6RIzCX3HjvDuV0pFbvNmGQ5vtoUOyBJ1XbtKt4tbF0crUrLolZwseSVayi/DETMJvUWL8O5XSkXObIWLv7Fjge++A/79b8tDMsXstLmBeC/+RuuUwKHETEKfMkXmLPZVq5bcr5Syh8cjIyhbtw7vebfcIoON3Lg4evIk8MMPkbXQgdjsR4+ZhJ6VJQvSJiZKeVRiovycleV2ZErFr9xcWaGoWrXwnlezJjBihCxPt3u3LaEFtX07UFpa8YTesqXEH4v96DGT0AFJ3gUF8mYVFGgyV8pu4VS4+BszBiguloWknVTRkkUv7zJ72kJXSsWNffuAXbvCq3Dx1aYNcNVVciZdUmJtbKGEO21uILFa6aIJXSkVkHeEaEVb6IBcHC0oAJYutSQkU/LyZN3TJk0qvo/kZPkwc7OWviI0oSulAqpohYuvgQOB88939uJouNPmBhKri11oQldKBeTxyJqhF1xQ8X2ccw4wciSwaJFUnjghkhp0L2+lS6x1u2hCV0oFlJsbWevc6+67ZYDRyy9Hvq/yMEdWg+510UUyjYG20JVSMa+kRFqnViT0li2BPn2AuXOBU6ci318o+/YBhw9H3kInkla6ttCVUjEvLw84dqziFS7+xo6Vi4yLFlmzv2AiLVn05a10cXtu93BoQldKncWKChdf/foBzZvbf3HUyoSenAwUFQF79kS+L6fEXEI/dgx45RVn61qVqmw8ntMDbKxQrZr0pS9denpqWzt4E3rLlpHvKxYrXWIuob/1FjBqFNC9e2wdaKViiccj87fUrGndPkeOBKpWlYFGdsnLA5o2PXvep4qIxUqXmEvod90FzJ8PbN0q6xc+9pjMvWyGrniklDmRDPkPplkzoH9/mQrA7P9suKwoWfRq0gQ477zYajjGXEInkjlcNm0CBg8GJk+WxP7f/4Z+nq54pJQ5R45IYrQ6oQNycXTfPuCDD6zfN2BNyaIXUexNARBzCd2rcWPgzTeBJUuAX36RLph77w0+Kb2ueKSUOd4EZkdCv+Ya6RJ5/33r933iBFBYaF0LHZBul40bY6fSJWYTulefPnLAH3gAmDVLLuJ8/PHZ2+mKR0qZ4x3yb1XJoq8qVYAbbgA+/VTmLbdSQYEkXisTekoKcPAg8OOP1u3TTjGf0AGgTh1gxgzg669lUv3+/aU7xnceZl3xSClzcnNllGRioj37799fBv/85z/W7tfKkkWvWFvsIi4SutfllwOrVwNPPgl8+CHQti3w6qvyqa0rHilljscjrfNIJrcK5eqrpXpm4UJr92vFtLn+Yq3SJa4SOiCTAT36KLB+vbwZd90FXHstkJGhKx4pVR7m0wndLjVrSl/6xx9b2zedlyf7jmQyMX+NGsn+tIXusksvlVO6WbOAVavkD3TnTmDbNl3xSKlgfvwROHDAnguivvr3l0oz74hUK3hLFoms2ycQW5UucZvQATllHDtWVu++9lrgD3+Qbpm1a92OTKnoZMUc6GZcf718D1TAUFFW1qD7Sk6WHFJaav2+rRbXCd2reXPpU3/3XWmBdOkCfPGF21EpFX28Cd077N0uTZsCl11mXUK3atrcQFJSpDR6+3Zr9vfzz/aVQVaKhA7Iadgtt8gnbevWwNCh0gWjlDotN1cqv+rXt/+1+vcHVq4Efvop8n3t2SNJ164WOmBNP/ru3UDnzjLC3Q6VJqF7nXce8N57Mhpu8GD752dWKpbYMeQ/mMxM+f7JJ5Hvy46SRS+rKl2OHQMGDJCk7v3drVbpEjogg4/mzgVWrAAmTHA7GqWiw8mTwObN9la4+EpNlZWBrOh2sTOh16sn3baRtNBLS4Hbb5cCjexs6W6yQ6VM6AAwbBhwzz3AtGn2zSuhVCCffQYcP+52FGfbvBkoLnauhU4k3S5Ll0rrNRJWTpsbSKSVLhMmSM/As88CN95oXVz+yk3oRDSPiPYQUcBfh4h6EtFBIlpnfE2yPkx7TJ8OpKcDI0bYO0ezUl5ffgn07i0jm6ONUxUuvjIzJZlHWqSQlyezOdaoYU1c/pKTZULAiqzD8PLLwDPPSMXdww9bH5svMy301wD0KWebL5m5o/E1OfKwnFG9OvD3v8sczYMGRd5KUKo8s2bJ92ic5dPjkYF5rVs795o9e8rUHZF2u9hVsuiVkiKTf4Xb8PvsM0nk110HPPec9TXy/spN6My8HMDP9obhnqQkmbVx3TrgN78Jva3Op64isWePnHZfeKGcvntbxNHC45HrSwkJzr1m9eqS7CIdNWp3Qq9IpcvGjdJQbNdOSqarVbMnNl9W9aF3JaL1RLSEiJKDbUREo4koh4hy9u7da9FLR+7662Ua3VdekblfAtH51FWkXn1VqqoWLJCzwrfecjuiM+XmOtvd4pWZKSXEa9ZU7PnHjsn4Ejtq0L28S/GZ7UffvVvySq1asjD2uefaF5svKxL6GgCJzNwBwHMAPgy2ITPPYeZ0Zk5v3LixBS9tnSeeAHr1kgul69ef/bjOp64iUVoKvPQS0KMHcMUV0ip9++3oGX24b58kVacqXHz16ydnvRWdrKugQL7b2UKvXVsuuJpJ6EePysXePXvkzMPJGV0jTujMfIiZjxi3FwNIIKJGEUfmMG+LqUEDOU06ePDMx3U+dRWJpUuB77+X/lRAqqx27Ch/pS2neOdUcaOF3rgx0LVrxfvR7SxZ9JWSUn6Xi7c88ZtvJJ+kp9sbk7+IEzoRNSGSrn4i6mLssyjS/brhgguAd96Rf7yRI8/s09P51FUkZs+WxHXTTfLzgAFyOh4t3S5uJnRAul3WrpUVh8Jlx7S5gSQnA1u2hF6Y449/lNWYpk0DBg60N55AzJQtvg3gawBtiKiQiEYS0VgiMtoaGARgAxGtBzATwBDmWFmw6WxXXAE8/bS8Kb6lZTqfujWOHpU+xco0QveHH6T1OXKkVJEAUtkxYIBcLLN65Z6K8HhOT9QBargAABriSURBVBXrhv795XtFWul5edIlYncvbkqK1Olv3Rr48blzgalTgXHjgIcesjeWoJjZla/OnTtztCotZR44kLlaNeYVK07fP38+c2IiM5F8nz/frQhjz4kTzM8/z9y0KTPA/OSTbkfknEmT5G8mP//M+z/+WI7Fxx+7E5evyy5j7tXLvdcvLWW++GLmvn3Df25mJnP79tbH5G/dOnm/Fiw4+7GlS5mrVmXu04f51Cl74wCQw0HyaqUdKRoKkVQkJCbKfC979sj9WVlyAUbnUzevuBh47TWgTRvgvvvktLhHDxlo4btEYLw6dUpabn36nD2K8brrgIYN3e92KSmRvmG3uluA06NGv/hC5lkKh90li15t2sjFW/9+9A0bTpcnvvOOM+WJwWhCD6J+fakZ3rdPEndFRohVZqWl0p2QkgLceackriVLgOXLZaWo48elsijeffwxsGuXnIb7S0iQGUA/+ij8JGal/HzpCnOjwsVXZqYM3vnsM/PPsXPaXH81asigK99Kl59+kvLE2rVlkjGnyhOD0YQeQseOwAsvAJ9/XjmSjxWY5Q+7c2c5u6laVa5HfPONtFKJgF/9Sqo95syR+UPi2ezZMgFVv36BH8/KkmT60UfOxuXLjSH/gXTvLhNhhdOP/tNPUofuRAsdkAuj3ha6tzxx3z6J+aKLnIkhFE3o5Rg5UlqYTz4pLUwV3LJlQLduwA03AIcOAW+8IcnippvOHvI8aZK0ah55xJ1YnbB1q7Q2775bPtgC+fWvpVLKzQFqubnSleAdPOOWhAT54Fu0yPwZsVMli14pKbKM5dGjwG23ATk50mXWubMzr18eTegmPP+8tF6GD9e680BWrpRFf3v1kuMze7a0vG+7LXgia9xYSrwWLpS1X+PRnDny+48aFXybKlWkJn3pUsCtwdMeD3DJJWdXcbkhM1OOw6pV5rZ3OqEnJ0t34uDBwD/+IRP8DRjgzGuboQndhFq1pD/91Cnp84yGMrNo4PHIH3NGhoyunT5dWqVjxpibD+SBB+Q09Xe/i54Rk1Y5flwurA8cKMuthTJsmLRI333Xmdj8ObmoRXn69JEPQbPdLvn5cvaXlGRrWGW8S/MtWiSjyh94wJnXNUsTukmtW8s/6KpVkoAqs+++kyX8OnaU1vWTT8o/1kMPATVrmt9PzZpSx5+TI/ObxJP33gOKigJfDPXXvr0kCjeqXY4ckfcuWhJ6gwbAlVeanwYgL08Wn6he3d64vFq3lgufffsCf/ub/bMnhksTehhuvlmS1nPPyUXS2B0+VXHr10vyWbgQGD9eksGjjwJ161Zsf1lZQKdO0v0SjYs+VNTs2fLPf9VV5rbPygK++kpGKTtp40b5O3a7wsVXZqbEZeZYOFWy6JWQIOsSf/SRu+WJwWhCD9PUqbIgxuOPS9dCcbHbETlr5kz5o/7uO+BPf5I1WiNRpYoMk96xQz4o40FurszRMnas/H5mDB0q399+2764AomWChdf3vU2zXS7OJ3QAVlIw8kphsOhCT1M1aoB8+bJLItz50oFh/8sjPFq/37pFhg+XP6ordKrl9TyTpki3RSxbvZs6QK44w7zz0lMlLK97Gxnz/w8HpmGwKk+aDMuuQRo27b8bpejR6XG34ka9FihCb0CiICnngJefFFqrnv1klrUePfaa9ItYqZfOFxTpwKHD0t/fCw7ckQWTLn1VhlMFY5hw+R03smFL3JzpQvN7JmEUzIz5fqM/6ynvrxdMk630KNZlL2NsWXcOBk0s3691BM73f/ppNJSWT7t17+Wi6FWa9dOyvteeEHqfGPVW2/JB1NFPvRuuUXOAJ26OMocXRUuvvr3l+7MTz8Nvo3TJYuxQBN6hAYOlJGk+/bJnM4VXXUl2n3+uZQk3nuvfa/xxBPSVfHHP9r3GnZilg+91FQp5QxXo0bOLnzx44/SjRaNCT0jQ45HqG4Xp6bNjSWa0C3QrZtcBKteXSaeWrrU7Yis9+KLMhjo5pvte40mTYA//EFK/r76yr7XscuqVbI27bhxFS9ny8qS6XZXrLA2tkDcngM9lKpVZdTo4sXBCw/y8qS6KtyurXimCd0ibdsCX38tp3/XXw/Mn+92RNbZsUMqDkaNsr/e97e/lYE4v/td7JWFzp4tFxgjmYWzf3/nFr7w9tV7B8tEm/795Qwi2Ie7t8Il2mrB3aQJ3UIXXiizCV5xhQx7nzrV2qSUnS3VCFWqyHen5v+YM0d+jzFj7H+t2rXlwujXX8v1iVjx888yOGr48IrX5APy+w8cCPz97/aPSPZ4ZKRugwb2vk5F9e4tC4IE63Zxo2Qx2mlCt1i9ejKJ19ChMvHUAw9YM/VudjYwejSwfbsk1+3b5We7k/rJk1KeecMNUlrnhBEjpNU4fnzsTLPwxhtSAeRdMzQSWVnyARHqgqAVcnOjs7vFq25doGfPwPXopaVShKD952fShG6D6tWly+W3v5XBMkOGRD4KcuLEs+vdjx6V++30/vuywMc999j7Or6qVgWefVb6SGfNcu51K4pZulsyMoAOHSLf37XXygVBOz+sT54ENm2KrhGigfTvL4PYtmw58/5du+R/SlvoZ9KEbhPvCMjp0+UiX+/e0h9YUcFmebR79scXX5RWUO/e9r6Ov+uuk8Q2eXJkx80J//63JByr6vMTEqSOfeFCKYG0w+bNcrExmlvogJwZAme30rVkMTBN6DZ76CHpW125UkYC/vBDxfbTokV491vB45Fqi3HjnB94QiSt9P37ZYqBaDZ7tvRD33KLdfscNkwWbrBr4YtornDxlZgoZz2a0M3RhO6AwYOBf/5T+vxatjw93Wc4p9RTppw9X3WtWnK/XWbNkmW3Royw7zVC6dBBhs/PnClruEajn36SebHvvDO8mSbL8+tf23vh2+ORM4Ff/cqe/VspM1MaFr7TQuTnSyPDqes6sUITukN27pS+Vu8F0u3bpQzQbHljVpZUmyQmygdCYqL8bNdC1YcOyRD2IUPcrfN98knpU58wwb0YQpk3T7ourK4AIpIL6599dnqRcit5PDI6N1onmfKVmSkXQX1XDMvLkwqdc85xL65opAndIRMnnn1h9PhxadlNmWJu2oCsLGmplpbKd7uSOSDJ/JdfnL0YGkjz5sDDD8voyW++cTcWfyUlwEsvAVdfbU9L186FL6K9wsVXeroMOvPtdtGSxcA0oTsk2MXL4mKZT7xVK+ljnz3b/RkHmWVOlcsuky+3PfIIcP750TfY6J//lPfVilLFQFJSJOlaPcioqEiG/Ud7hYtXlSpycXTJktNlrJrQA9OE7pBgFy8TE6W1/ac/yQXAceNkpKR3cMmxY46GCUBmudu0yf3WuVfdujL//PLl4a0Ib7dZs6TlaOeaksOGySAr70VAK8TKBVFfmZlS8bN8uZw57t6tNeiBaEJ3SKiLmomJMiHVhg3A2rXA/ffLvCC33ioJY+RIYNky59bdfPFFqdoYPNiZ1zNj1Cjg0ktlrpdTp9yORq6BLF4scdnZD23HwhfRuKhFea65Ri7Qf/yxVriEogndIWYuahLJ1LTTpkl54+efywIaf/+7zLmemCgJzdvCssPOncAHHwB33WVt1UakEhKAZ56Reu+5c92ORmIgAu6+297XadFCppKwcuGL3Fy50N2kiTX7c0KtWpLUFy6UC6KAJvSAmNmVr86dO7My55dfmBcsYM7MZK5WjRlgfuUVe17riSdk/1u32rP/SJSWMvfowdy4MfOPP7oXx4kTzBdcIO+HE2bPlvdk7Vpr9telC/NVV1mzLye99JIch7vuku9FRW5H5A4AORwkr2oLPQbUqiXdHwsXypDn3r2lTO5f/7L2dU6dkqqN666TZcCiDRHwl78ABw5I6+zee92pT//oI+nDtetiqL9Bg6xb+KKoSLr2Yqm7xcs7ajQ7W+ZMitZJxdykCT3GNGokZWxt2sjc5N9+a92+Fy6ULhc7F7GIVOfOsiL8bbdJt8cllwC3327tcSjPrFky6Oe665x5vYYNgb59I1v4Yvt2mSiuRQuZA6hPH2tjdMKFF0oJ44kTOm1uMOUmdCKaR0R7iGhDkMeJiGYS0TYi8hBRmvVhKl/16slapjVqyNzrVg08efFF+Yfv18+a/dmldWtJ5vn5cgH5/feB5GTgxhvlYrId8vOlDz89XS5Qjx4tA56cMmwYUFgIfPlleM/LzZUPv4svlvd30CBpocdiQgdksi5A+8+DCtYX4/0CcCWANAAbgjzeD8ASAAQgA8DK8vbJ2oduiVWrmGvWZM7IYD56NLJ9ffut9Ev+6U/WxOakvXuZJ01ibtBAfoerr2b+/HPpc4/Etm3Mf/4zc1qa7Bdgvuwy5mnTpB/dSUeOMNeuzTx6dPnblpYyL1/O3K+fxFy7NvODDzJv325/nHZbu1Z+pz/8we1I3IMQfeimLmACSAqR0F8CMNTn5y0Ampa3T03o1nj/fWYi5ltvZS4pqfh+7r+fOSGBefdu62Jz2qFDzM8+y9ykifxld+nC/MEH4R2X775jnjKFuWPH00n88ssliX//vW2hmzJ8uHxoBfswKSlh/vBD5q5dJe5GjZgnT46vi4elpcyPPca8YYPbkbjH7oS+CEB3n5//BSA9yLajAeQAyGnRooVDv378mzpV3skJEyr2/CNHmM89l3nYMGvjcsuxY1IZ0rKlHJd27ZjffJP51KnA22/ZwvzUU8wdOpxO4hkZzH/5S3S1ahcvltg++ujM+0+cYJ43j7ltW3k8KYn5+eelOkrFH7sT+icBEnrn8vapLXTrlJbKqTgg/9jh8paD/fe/1sfmplOnmLOzmVNSTie6F1+UhL9pk7Re27c/ncS7dmWePp15xw63Iw/s5Ekp2bz1Vvn50CH50GnWTOLv0IH5rbeCf3Cp+KBdLpXAyZPM114rder/+pf555WWMqemSjKItM85WpWUSKs2I0P+4mvVOp3Eu3VjnjGD+Ycf3I7SnHvvZa5Rg/mPf2SuX19+h549mZcsid/3T50pVEK3omxxIYDbjWqXDAAHmXmXBftVYUhIkBGl3nLGzZvNPe/rr2Uo+D33xG8ZWJUqUh3x1VdSoTJkCPC3v0nVyIoVUs7XvLnbUZqTlSWzdD79tIweXrlSfqc+feL3/VPmkST8EBsQvQ2gJ4BGAHYDeAxAAgAw82wiIgDPA+gD4CiAO5k5p7wXTk9P55yccjdTYSooAC6/XFaPX7kSaNw49PbDh8v8GD/+CNSp40iIKgLMsqRhaqp8eKvKh4hWM3N6wMfKS+h20YRun1WrgB49gE6dgC++kHr1QPbskUUCxoyRVYGUUtEvVELXkaJxqEsXWQnp669l+bhgowtfeUXml46WaXKVUpHRhB6nbr5ZRja+8w4wadLZj5eUyGIavXrJtLRKqdinCT2O/f73Ml/3lCnAa6/JfdnZMg9JtWqy2k5KipsRKqWsVM3tAJR9iGT+joICmXtk61ZgxgyZnMlr7lzporFzfVKllDO0hR7nvOWMrVtLqZtvMgdkibuJE92JTSllLU3olUD9+jI7Y7CLo8EWsFZKxRZN6JVEUlLwJceCLWCtlIotmtArkWnTgHPOOfM+70LVSqnYpwm9EsnKAubNkxZ5sIWqlVKxS6tcKpmsLE3gSsUrbaErpVSc0ISulFJxQhO6UkrFCU3oSikVJzShK6VUnNCErpRScUITulJKxQlN6EopFSc0oSulVJzQhK5iineBjipV5Ht2ttsRKRU9NKGrsLiZULOzZaGO7dsBZvk+erQmdaW8NKEr09xOqBMnnr1Ax9GjukCHUl6a0JVpbifUYAtx6AIdSglN6Mo0KxJqJF02wRbi0AU6lBKa0JVpkSbUSLtspkyRBTl86QIdSp2mCV2ZFmlCjbTLJitLFuRITNQFOpQKhJjZlRdOT0/nnJwcV15bVVx2tiTgHTukZT5livmEWqWKtMz9EQVfwFopdSYiWs3M6YEe0xWLVFgiWfGoRQvpZgl0v1IqctrlohyjfeBK2UsTunKM9oErZS/tclGO0kWqlbKPqRY6EfUhoi1EtI2Ixgd4fAQR7SWidcbXKOtDVUrFOp2Lx17lttCJqCqAFwBcC6AQwDdEtJCZv/Xb9B1mvs+GGJVSccA7DsFbuuodhwDoWZtVzLTQuwDYxsz5zHwSwAIAA+wNSykVb9yeOqIyMJPQmwH4wefnQuM+fzcTkYeI3iOiiwLtiIhGE1EOEeXs3bu3AuEqpWKVzsVjPzMJnQLc5z885GMAScycCuBzAK8H2hEzz2HmdGZOb9y4cXiRKqVims7FYz8zCb0QgG+LuzmAnb4bMHMRM58wfpwLoLM14SmlfMXyRUUdh2A/Mwn9GwCtiaglEZ0DYAiAhb4bEFFTnx/7A9hkXYhKKcD9+egjpeMQ7FduQmfmYgD3AfgUkqjfZeaNRDSZiPobm91PRBuJaD2A+wGMsCtgpdzkZgs5Hi4qZmUBBQUyd09BgSZzq+nkXEqZ5F92B0iXgVOtTJ3cTAGhJ+fSof9KmeR2C1kvKqryaEJXlUokXSZul93pRUVVHk3oqtKI9KKi2y1kvaioyqN96KrSSEoKPB97YqJcoCuP233oSgHah64UgMi7TLSFrKKdTp+rKg0rVkzS6X9VNNMWuqo09KKiinea0FWloV0mKt5pl4uqVLTLRMUzbaErpVSc0ISulINiebZEFf20y0Uph+gSbMpu2kJXyiFuzwWj4p8mdKUc4vZcMCr+aUJXyiFuzwWj4p8mdKUcogOblN00oSvlEB3YpOymCV0pB+kSbJHRss/QtGxRKRUTtOyzfNpCV0rFhGgo+4z2MwRtoSulYoLbZZ+xcIagLXSlVExwu+wzGs4QyqMJXalKJNq7DEJxu+zT7TMEMzShK1VJRLpItncfbn0guF326fYZghm6SLRSlYQukh2ZaPn9dZFopVTEXQax0IdcnkjOMNw+QzBDW+hKVRKRttCrVJGuGn9EMlAq2kVLCztS2kJXSkV8UTEW+pBDiYczjPJoQleqkoi0y8DtKpNIRUOVit0XlXVgkVKVSCSLZHufN3GiJMEWLSSZx0p3RYsWgbucnDrDcGJgkqkWOhH1IaItRLSNiMYHeLw6Eb1jPL6SiJKsCU8pFU1ieXIxt88wnOjyKTehE1FVAC8A6AugHYChRNTOb7ORAPYz8yUA/grgGetCVEqpyLldpeJEl4+ZFnoXANuYOZ+ZTwJYAGCA3zYDALxu3H4PwNVERNaFqZRSkXPzDMOJi8pmEnozAD/4/Fxo3BdwG2YuBnAQQEP/HRHRaCLKIaKcvXv3VixipZSKQU50+ZhJ6IFa2v7VqGa2ATPPYeZ0Zk5v3LixmfiUUiouONHlY6bKpRDART4/NwewM8g2hURUDUA9AD9bEqFSSsWJSKqMzDDTQv8GQGsiaklE5wAYAmCh3zYLAdxh3B4E4At2awiqUkpVUuW20Jm5mIjuA/ApgKoA5jHzRiKaDCCHmRcCeAXAm0S0DdIyH2Jn0Eoppc5mamARMy8GsNjvvkk+t48DuMXa0JRSSoVDh/4rpVSc0ISulFJxwrXpc4loL4AAMyuY0gjAPgvDsVq0xwdEf4waX2Q0vshEc3yJzByw7tu1hB4JIsoJNh9wNIj2+IDoj1Hji4zGF5lojy8Y7XJRSqk4oQldKaXiRKwm9DluB1COaI8PiP4YNb7IaHyRifb4AorJPnSllFJni9UWulJKKT+a0JVSKk5EdUKP5qXviOgiIlpGRJuIaCMRPRBgm55EdJCI1hlfkwLty8YYC4go13jtnACPExHNNI6fh4jSHIytjc9xWUdEh4joQb9tHD9+RDSPiPYQ0Qaf+84jos+IaKvxvUGQ595hbLOViO4ItI1N8T1LRJuN9/ADIqof5Lkh/x5sjO9xIvrR533sF+S5If/fbYzvHZ/YCohoXZDn2n78IsbMUfkFmQgsD0ArAOcAWA+gnd829wCYbdweAuAdB+NrCiDNuF0XwHcB4usJYJGLx7AAQKMQj/cDsAQyn30GgJUuvtc/QQZMuHr8AFwJIA3ABp/7pgIYb9weD+CZAM87D0C+8b2BcbuBQ/H1BlDNuP1MoPjM/D3YGN/jAH5n4m8g5P+7XfH5Pf4XAJPcOn6RfkVzCz2ql75j5l3MvMa4fRjAJpy9klO0GwDgDRb/A1CfiJq6EMfVAPKYuaIjhy3DzMtx9lz+vn9nrwMYGOCp1wH4jJl/Zub9AD4D0MeJ+Jh5KctKYQDwP8iaBa4IcvzMMPP/HrFQ8Rm541YAb1v9uk6J5oRu2dJ3djO6ejoBWBng4a5EtJ6IlhBRsqOByapRS4loNRGNDvC4mWPshCEI/k/k5vHzuoCZdwHyQQ7g/ADbRMuxvAty1hVIeX8PdrrP6BKaF6TLKhqO3xUAdjPz1iCPu3n8TInmhG7Z0nd2IqI6AN4H8CAzH/J7eA2kG6EDgOcAfOhkbAC6MXMagL4A7iWiK/0ej4bjdw6A/gD+HuBht49fOKLhWE4EUAwgO8gm5f092GUWgIsBdASwC9Kt4c/14wdgKEK3zt06fqZFc0IPZ+k7kAtL3xFRAiSZZzPzP/wfZ+ZDzHzEuL0YQAIRNXIqPmbeaXzfA+ADyGmtLzPH2G59Aaxh5t3+D7h9/Hzs9nZFGd/3BNjG1WNpXIS9AUAWGx2+/kz8PdiCmXczcwkzlwKYG+R13T5+1QDcBOCdYNu4dfzCEc0JPaqXvjP6214BsImZpwfZpom3T5+IukCOd5FD8dUmorre25ALZxv8NlsI4Haj2iUDwEFv14KDgraK3Dx+fnz/zu4A8FGAbT4F0JuIGhhdCr2N+2xHRH0APAKgPzMfDbKNmb8Hu+LzvS5zY5DXNfP/bqdrAGxm5sJAD7p5/MLi9lXZUF+QKozvIFe/Jxr3TYb84QJADcip+jYAqwC0cjC27pBTQg+AdcZXPwBjAYw1trkPwEbIFfv/Afi1g/G1Ml53vRGD9/j5xkcAXjCOby6AdIff31qQBF3P5z5Xjx/kw2UXgFOQVuNIyHWZfwHYanw/z9g2HcDLPs+9y/hb3AbgTgfj2wbpf/b+HXorvy4EsDjU34ND8b1p/H15IEm6qX98xs9n/b87EZ9x/2vevzufbR0/fpF+6dB/pZSKE9Hc5aKUUioMmtCVUipOaEJXSqk4oQldKaXihCZ0pZSKE5rQlVIqTmhCV0qpOPH/ZtYwMVXUbN8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "acc = history.history['accuracy']\n", + "val_acc = history.history['val_accuracy']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "Y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = np.argmax(Y_pred, axis=1)\n", + "y_test = np.argmax(y_test, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Confusion Matrix\n", + "[[ 6 12 1 0 6 0]\n", + " [ 1 12 1 0 9 0]\n", + " [ 0 0 22 0 0 1]\n", + " [ 0 0 0 16 3 0]\n", + " [ 0 3 1 1 25 0]\n", + " [ 0 0 2 0 0 15]]\n", + "Classification Report\n", + " precision recall f1-score support\n", + "\n", + " CricketBowling 0.86 0.24 0.38 25\n", + " CricketShot 0.44 0.52 0.48 23\n", + "FieldHockeyPenalty 0.81 0.96 0.88 23\n", + " HandstandPushups 0.94 0.84 0.89 19\n", + " HandstandWalking 0.58 0.83 0.68 30\n", + " SoccerPenalty 0.94 0.88 0.91 17\n", + "\n", + " accuracy 0.70 137\n", + " macro avg 0.76 0.71 0.70 137\n", + " weighted avg 0.74 0.70 0.68 137\n", + "\n" + ] + } + ], + "source": [ + "from sklearn.metrics import classification_report, confusion_matrix\n", + "\n", + "print('Confusion Matrix')\n", + "print(confusion_matrix(y_test, y_pred))\n", + "print('Classification Report')\n", + "print(classification_report(y_test, y_pred, target_names=classes))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
منابع
\n", + "\n", + "
\n", + "برای این فایل آموزشی از مخزن زیر کمک گرفته شده است\n", + "
\n", + " \n", + "https://github.com/harvitronix/five-video-classification-methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/06_analogy-using-embeddings.ipynb b/06_analogy-using-embeddings.ipynb new file mode 100644 index 0000000..4f56365 --- /dev/null +++ b/06_analogy-using-embeddings.ipynb @@ -0,0 +1,341 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

قیاس کلمات (Word analogies)

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "کدها با تغییرات برگرفته از کورس Sequence Models پروفسور Andrew NG است.\n", + "
\n", + "\n", + "[https://www.coursera.org/learn/nlp-sequence-models](https://www.coursera.org/learn/nlp-sequence-models)\n", + "\n", + "
\n", + "بردار از قبل آموزش داده شده را می‌توانید از اینجا دانلود کنید:
\n", + "\n", + "https://nlp.stanford.edu/projects/glove/\n", + "\n", + "http://nlp.stanford.edu/data/glove.6B.zip\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "glove_dir = 'D:/dataset/glove.6B'\n", + "\n", + "embeddings_index = {}\n", + "f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'), encoding=\"utf8\")\n", + "for line in f:\n", + " values = line.split()\n", + " word = values[0]\n", + " coefs = np.asarray(values[1:], dtype='float32')\n", + " embeddings_index[word] = coefs\n", + "f.close()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1 - Cosine similarity\n", + "\n", + "To measure how similar two words are, we need a way to measure the degree of similarity between two embedding vectors for the two words. Given two vectors $u$ and $v$, cosine similarity is defined as follows: \n", + "\n", + "$$\\text{CosineSimilarity(u, v)} = \\frac {u . v} {||u||_2 ||v||_2} = cos(\\theta) \\tag{1}$$\n", + "\n", + "where $u.v$ is the dot product (or inner product) of two vectors, $||u||_2$ is the norm (or length) of the vector $u$, and $\\theta$ is the angle between $u$ and $v$. This similarity depends on the angle between $u$ and $v$. If $u$ and $v$ are very similar, their cosine similarity will be close to 1; if they are dissimilar, the cosine similarity will take a smaller value. \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.metrics.pairwise import cosine_similarity\n", + "\n", + "def similarity(u, v):\n", + " return np.squeeze(cosine_similarity(u.reshape(1, -1), v.reshape(1, -1)))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cosine_similarity(father, mother) = 0.86566603\n", + "cosine_similarity(ball, crocodile) = 0.15206575\n", + "cosine_similarity(france - paris, tehran - iran) = -0.6854124\n" + ] + } + ], + "source": [ + "father = embeddings_index[\"father\"]\n", + "mother = embeddings_index[\"mother\"]\n", + "ball = embeddings_index[\"ball\"]\n", + "crocodile = embeddings_index[\"crocodile\"]\n", + "france = embeddings_index[\"france\"]\n", + "tehran = embeddings_index[\"tehran\"]\n", + "paris = embeddings_index[\"paris\"]\n", + "iran = embeddings_index[\"iran\"]\n", + "print(\"cosine_similarity(father, mother) = \", similarity(father, mother))\n", + "print(\"cosine_similarity(ball, crocodile) = \",similarity(ball, crocodile))\n", + "print(\"cosine_similarity(france - paris, tehran - iran) = \",similarity(france - paris, tehran - iran))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2 - Word analogy task\n", + "\n", + "In the word analogy task, we complete the sentence \"*a* is to *b* as *c* is to **____**\". An example is '*man* is to *woman* as *king* is to *queen*' . In detail, we are trying to find a word *d*, such that the associated word vectors $e_a, e_b, e_c, e_d$ are related in the following manner: $e_b - e_a \\approx e_d - e_c$. We will measure the similarity between $e_b - e_a$ and $e_d - e_c$ using cosine similarity. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.64706 , -0.068067, 0.15468 , -0.17408 , -0.29134 , 0.76999 ,\n", + " -0.3192 , -0.25663 , -0.25082 , -0.036737, -0.25509 , 0.29636 ,\n", + " 0.5776 , 0.49641 , 0.19167 , -0.83888 , 0.58482 , -0.38717 ,\n", + " -0.71591 , 0.9519 , -0.37966 , -0.1131 , 0.47154 , 0.20921 ,\n", + " 0.38197 , 0.067582, -0.92879 , -1.1237 , 0.84831 , 0.68744 ,\n", + " -0.15472 , 0.92714 , 0.53371 , -0.037392, -0.856 , 0.19056 ,\n", + " -0.014594, 0.15186 , 0.53514 , -0.20306 , -0.35164 , 0.33152 ,\n", + " 1.1306 , -0.72787 , -0.19724 , 0.031659, -0.24041 , -0.057617,\n", + " 0.60473 , -0.49233 , -0.24405 , -0.3184 , 0.96156 , 1.0895 ,\n", + " 0.21534 , -2.0542 , -1.0615 , 0.052439, 0.57958 , 0.2748 ,\n", + " 0.91587 , 0.85195 , 0.36113 , -0.31901 , 0.7784 , -0.36865 ,\n", + " 0.64387 , 0.33104 , -0.27181 , 0.58524 , -0.15143 , 0.11121 ,\n", + " 0.2126 , -0.60345 , 0.16148 , 0.32952 , -0.1354 , -0.30629 ,\n", + " -0.89143 , 0.091912, 0.49753 , 0.55932 , 0.19329 , 0.044859,\n", + " -1.0416 , -0.41566 , -0.54174 , -0.7244 , -0.57492 , -1.1188 ,\n", + " 0.087097, -0.2992 , 0.87227 , 0.86996 , -0.89641 , -0.28259 ,\n", + " -0.47295 , -0.74062 , -0.39 , -0.78099 ], dtype=float32)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "embeddings_index[\"father\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def complete_analogy(word_a, word_b, word_c, embeddings_index):\n", + " \n", + " # convert words to lower case\n", + " word_a, word_b, word_c = word_a.lower(), word_b.lower(), word_c.lower()\n", + " \n", + " # Get the word embeddings v_a, v_b and v_c \n", + " e_a, e_b, e_c = embeddings_index[word_a], embeddings_index[word_b], embeddings_index[word_c]\n", + " \n", + " words = embeddings_index.keys()\n", + " max_cosine_sim = -100 # Initialize max_cosine_sim to a large negative number\n", + " best_word = None # Initialize best_word with None, it will help keep track of the word to output\n", + "\n", + " # loop over the whole word vector set\n", + " for w in words: \n", + " # to avoid best_word being one of the input words, pass on them.\n", + " if w in [word_a, word_b, word_c] :\n", + " continue\n", + " \n", + " # Compute cosine similarity between the vector (e_b - e_a) and the vector ((w's vector representation) - e_c) (≈1 line)\n", + " cosine_sim = similarity(e_b - e_a, embeddings_index[w] - e_c)\n", + " \n", + " # If the cosine_sim is more than the max_cosine_sim seen so far,\n", + " # then: set the new max_cosine_sim to the current cosine_sim and the best_word to the current word (≈3 lines)\n", + " if cosine_sim > max_cosine_sim:\n", + " max_cosine_sim = cosine_sim\n", + " best_word = w\n", + " \n", + " return best_word" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the cell below to test your code, this may take 1-2 minutes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'iranian'" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complete_analogy('china', 'chinese', 'iran', embeddings_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'tehran'" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complete_analogy('india', 'delhi', 'iran', embeddings_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'girl'" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complete_analogy('man', 'woman', 'boy', embeddings_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'bigger'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complete_analogy('small', 'smaller', 'big', embeddings_index)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'inuktitut'" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "complete_analogy('iran', 'farsi', 'canada', embeddings_index)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "coursera": { + "course_slug": "nlp-sequence-models", + "graded_item_id": "8hb5s", + "launcher_item_id": "5NrJ6" + }, + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/07_text-classification-Emojify.ipynb b/07_text-classification-Emojify.ipynb new file mode 100644 index 0000000..92bd697 --- /dev/null +++ b/07_text-classification-Emojify.ipynb @@ -0,0 +1,1263 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

طبقه‌بندی متن - Emojify!

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "کدها با تغییرات برگرفته از کورس Sequence Models پروفسور Andrew NG است.\n", + "
\n", + "\n", + "[https://www.coursera.org/learn/nlp-sequence-models](https://www.coursera.org/learn/nlp-sequence-models)\n", + "\n", + "\n", + "\n", + "
در این نوت بوک میخواهید برای جملات دلخواه یک emoji مرتبط به صورت خودکار بگذاریم!\n", + "در واقع یک طبقه بندی ساده 5 کلاسه است که هر جمله را به یک ایموجی نسبت می‌دهد.\n", + "
\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##
لود کتابخانه‌های مورد استفاده
\n", + "
\n", + "برای اجرای این نوت‌بوک باید کتابخانه ی emoji را نصب کنید.\n", + "بدین منظور به اینترنت متصل شود و در ترمینال دستورات زیر را بنویسید:\n", + "
\n", + "

pip install emoji

\n", + "\n", + "
\n", + "میتوانید به جای pip از کلمه ی conda استفاده کنید. (اگر از آناکوندا استفاده میکنید.)\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import keras\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1 - Baseline model: Emojifier-V1\n", + "\n", + "### 1.1 - Dataset EMOJISET\n", + "\n", + "Let's start by building a simple baseline classifier. \n", + "\n", + "You have a tiny dataset (X, Y) where:\n", + "- X contains 127 sentences (strings)\n", + "- Y contains a integer label between 0 and 4 corresponding to an emoji for each sentence\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تابع کمکی برای خواند مجموعه داده\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import csv\n", + "def read_csv(filename):\n", + " phrase = []\n", + " emoji = []\n", + "\n", + " with open (filename) as csvDataFile:\n", + " csvReader = csv.reader(csvDataFile)\n", + "\n", + " for row in csvReader:\n", + " phrase.append(row[0])\n", + " emoji.append(row[1])\n", + "\n", + " X = np.asarray(phrase)\n", + " Y = np.asarray(emoji, dtype=int)\n", + "\n", + " return X, Y" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
مجموعه داده‌ی Emoji\n", + "
\n", + "\n", + "
مجموعه داده را میتوانید از مسیر زیر دانلود کنید.
\n", + "
\n", + "\n", + "[http://dataset.class.vision/NLP/emoji.zip](http://dataset.class.vision/NLP/emoji.zip)\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, Y_train = read_csv('D:/dataset/NLP/emoji/train_emoji.csv')\n", + "X_test, Y_test = read_csv('D:/dataset/NLP/emoji/tesss.csv')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
طول بزرگترین جمله
" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "10" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "maxLen = len(max(X_train, key=len).split())\n", + "maxLen" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تابع کمکی تبدیل label ها به Emoji\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import emoji \n", + "\n", + "emoji_dictionary = {\"0\": \"\\u2764\\uFE0F\", # :heart: prints a black instead of red heart depending on the font\n", + " \"1\": \":baseball:\",\n", + " \"2\": \":smile:\",\n", + " \"3\": \":disappointed:\",\n", + " \"4\": \":fork_and_knife:\"}\n", + "\n", + "def label_to_emoji(label):\n", + "\n", + " return emoji.emojize(emoji_dictionary[str(label)], use_aliases=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "I love you mum ❤️\n" + ] + } + ], + "source": [ + "index = 5\n", + "print(X_train[index], label_to_emoji(Y_train[index]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.2 - Overview of the Emojifier-V1\n", + "\n", + "\n", + "
\n", + "\n", + "
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تبدیل Labelها به بردار One-Hot\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "Y_oh_train = keras.utils.to_categorical(Y_train, 5)\n", + "Y_oh_test = keras.utils.to_categorical(Y_test, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 is converted into one hot [1. 0. 0. 0. 0.]\n" + ] + } + ], + "source": [ + "index = 50\n", + "print(Y_train[index], \"is converted into one hot\", Y_oh_train[index])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.3 - Implementing Emojifier-V1\n", + "\n", + "As shown in Figure (2), the first step is to convert an input sentence into the word vector representation, which then get averaged together. Similar to the previous exercise, we will use pretrained 50-dimensional GloVe embeddings. Run the following cell to load the `word_to_vec_map`, which contains all the vector representations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تابع کمکی برای خواندن embedding از پیش آموزش داده شده.\n", + "
\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def read_glove_vecs(glove_file):\n", + " with open(glove_file, encoding=\"utf8\") as f:\n", + " words = set()\n", + " word_to_vec_map = {}\n", + " for line in f:\n", + " line = line.strip().split()\n", + " curr_word = line[0]\n", + " words.add(curr_word)\n", + " word_to_vec_map[curr_word] = np.array(line[1:], dtype=np.float64)\n", + " \n", + " i = 1\n", + " words_to_index = {}\n", + " index_to_words = {}\n", + " for w in sorted(words):\n", + " words_to_index[w] = i\n", + " index_to_words[i] = w\n", + " i = i + 1\n", + " return words_to_index, index_to_words, word_to_vec_map" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "word_to_index, index_to_word, word_to_vec_map = read_glove_vecs('D:/dataset/glove.6B/glove.6B.50d.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You've loaded:\n", + "- `word_to_index`: dictionary mapping from words to their indices in the vocabulary (400,001 words, with the valid indices ranging from 0 to 400,000)\n", + "- `index_to_word`: dictionary mapping from indices to their corresponding words in the vocabulary\n", + "- `word_to_vec_map`: dictionary mapping words to their GloVe vector " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "the index of ali in the vocabulary is 51314\n", + "the 113317th word in the vocabulary is cucumber\n" + ] + } + ], + "source": [ + "word = \"ali\"\n", + "index = 113317\n", + "print(\"the index of\", word, \"in the vocabulary is\", word_to_index[word])\n", + "print(\"the\", str(index) + \"th word in the vocabulary is\", index_to_word[index])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.71587 , 0.7874 , 0.71305 , -0.089955, 1.366 , -1.3149 ,\n", + " 0.7309 , 0.79725 , 0.47211 , 0.53347 , 0.37542 , -0.10256 ,\n", + " -1.0003 , -0.31226 , 0.26217 , 0.92426 , 0.43014 , -0.015593,\n", + " 0.4149 , 0.88286 , 0.10869 , 0.95213 , 1.1807 , 0.06445 ,\n", + " -0.05814 , -1.797 , -0.18432 , -0.41754 , -0.73625 , 1.1607 ,\n", + " 1.5932 , -0.70268 , -0.61621 , 0.47118 , 0.95046 , 0.35206 ,\n", + " 0.6072 , 0.59339 , -0.47091 , 1.4916 , 0.27146 , 1.8252 ,\n", + " -1.2073 , -0.80058 , 0.52558 , -0.33346 , -1.4102 , -0.21514 ,\n", + " 0.12945 , -0.69603 ])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "word_to_vec_map[\"ali\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تبدیل جمله به میانگین Embeddingهای کلمات آن\n", + "
\n", + "
\n", + "هر جمله را به کلمات تشکیل دهنده آن و سپس هر کلمه را به embedding و در نهایت این بردارهای embedding را میانگین خواهیم گرفت.\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def sentence_to_avg(sentence, word_to_vec_map):\n", + " \n", + " # Split sentence into list of lower case words\n", + " words = sentence.lower().split()\n", + "\n", + " # Initialize the average word vector, should have the same shape as your word vectors.\n", + " avg = np.zeros((50,))\n", + " \n", + " # average the word vectors. You can loop over the words in the list \"words\".\n", + " for w in words:\n", + " avg += word_to_vec_map[w]\n", + " avg = avg / len(words)\n", + " \n", + " \n", + " return avg" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "avg = [-0.008005 0.56370833 -0.50427333 0.258865 0.55131103 0.03104983\n", + " -0.21013718 0.16893933 -0.09590267 0.141784 -0.15708967 0.18525867\n", + " 0.6495785 0.38371117 0.21102167 0.11301667 0.02613967 0.26037767\n", + " 0.05820667 -0.01578167 -0.12078833 -0.02471267 0.4128455 0.5152061\n", + " 0.38756167 -0.898661 -0.535145 0.33501167 0.68806933 -0.2156265\n", + " 1.797155 0.10476933 -0.36775333 0.750785 0.10282583 0.348925\n", + " -0.27262833 0.66768 -0.10706167 -0.283635 0.59580117 0.28747333\n", + " -0.3366635 0.23393817 0.34349183 0.178405 0.1166155 -0.076433\n", + " 0.1445417 0.09808667]\n" + ] + } + ], + "source": [ + "avg = sentence_to_avg(\"Morrocan couscous is my favorite dish\", word_to_vec_map)\n", + "print(\"avg = \", avg)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "##
مدل\n", + "
\n", + "You now have all the pieces to finish implementing the `model()` function. After using `sentence_to_avg()` you need to pass the average through forward propagation, compute the cost, and then backpropagate to update the softmax's parameters. \n", + "\n", + "Assuming here that $Yoh$ (\"Y one hot\") is the one-hot encoding of the output labels, the equations you need to implement in the forward pass and to compute the cross-entropy cost are:\n", + "$$ z^{(i)} = W . avg^{(i)} + b$$\n", + "$$ a^{(i)} = softmax(z^{(i)})$$\n", + "$$ \\mathcal{L}^{(i)} = - \\sum_{k = 0}^{n_y - 1} Yoh^{(i)}_k * log(a^{(i)}_k)$$\n", + "\n", + "It is possible to come up with a more efficient vectorized implementation. But since we are using a for-loop to convert the sentences one at a time into the avg^{(i)} representation anyway, let's not bother this time. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "def softmax(x):\n", + " \"\"\"Compute softmax values for each sets of scores in x.\"\"\"\n", + " e_x = np.exp(x - np.max(x))\n", + " return e_x / e_x.sum()\n", + "\n", + "def predict(X, Y, W, b, word_to_vec_map):\n", + " \"\"\"\n", + " Given X (sentences) and Y (emoji indices), predict emojis and compute the accuracy of your model over the given set.\n", + " \n", + " Arguments:\n", + " X -- input data containing sentences, numpy array of shape (m, None)\n", + " Y -- labels, containing index of the label emoji, numpy array of shape (m, 1)\n", + " \n", + " Returns:\n", + " pred -- numpy array of shape (m, 1) with your predictions\n", + " \"\"\"\n", + " m = X.shape[0]\n", + " pred = np.zeros((m, 1))\n", + " \n", + " for j in range(m): # Loop over training examples\n", + " \n", + " # Split jth test example (sentence) into list of lower case words\n", + " words = X[j].lower().split()\n", + " \n", + " # Average words' vectors\n", + " avg = np.zeros((50,))\n", + " for w in words:\n", + " avg += word_to_vec_map[w]\n", + " avg = avg/len(words)\n", + "\n", + " # Forward propagation\n", + " Z = np.dot(W, avg) + b\n", + " A = softmax(Z)\n", + " pred[j] = np.argmax(A)\n", + " \n", + " print(\"Accuracy: \" + str(np.mean((pred[:] == Y.reshape(Y.shape[0],1)[:]))))\n", + " \n", + " return pred\n", + "\n", + "def model(X, Y, word_to_vec_map, learning_rate = 0.01, num_iterations = 401):\n", + " \"\"\"\n", + " Model to train word vector representations in numpy.\n", + " \n", + " Arguments:\n", + " X -- input data, numpy array of sentences as strings, of shape (m, 1)\n", + " Y -- labels, numpy array of integers between 0 and 7, numpy-array of shape (m, 1)\n", + " word_to_vec_map -- dictionary mapping every word in a vocabulary into its 50-dimensional vector representation\n", + " learning_rate -- learning_rate for the stochastic gradient descent algorithm\n", + " num_iterations -- number of iterations\n", + " \n", + " Returns:\n", + " pred -- vector of predictions, numpy-array of shape (m, 1)\n", + " W -- weight matrix of the softmax layer, of shape (n_y, n_h)\n", + " b -- bias of the softmax layer, of shape (n_y,)\n", + " \"\"\"\n", + " \n", + " np.random.seed(1)\n", + "\n", + " # Define number of training examples\n", + " m = Y.shape[0] # number of training examples\n", + " n_y = 5 # number of classes \n", + " n_h = 50 # dimensions of the GloVe vectors \n", + " \n", + " # Initialize parameters using Xavier initialization\n", + " W = np.random.randn(n_y, n_h) / np.sqrt(n_h)\n", + " b = np.zeros((n_y,))\n", + " \n", + " # Convert Y to Y_onehot with n_y classes\n", + " Y_oh = keras.utils.to_categorical(Y, n_y) \n", + " \n", + " # Optimization loop\n", + " for t in range(num_iterations): # Loop over the number of iterations\n", + " for i in range(m): # Loop over the training examples\n", + " \n", + " # Average the word vectors of the words from the i'th training example\n", + " avg = sentence_to_avg(X[i], word_to_vec_map)\n", + "\n", + " # Forward propagate the avg through the softmax layer\n", + " z = np.dot(W, avg) + b\n", + " a = softmax(z)\n", + "\n", + " # Compute cost using the i'th training label's one hot representation and \"A\" (the output of the softmax)\n", + " cost = -np.sum(Y_oh[i] * np.log(a))\n", + " \n", + " # Compute gradients \n", + " dz = a - Y_oh[i]\n", + " dW = np.dot(dz.reshape(n_y,1), avg.reshape(1, n_h))\n", + " db = dz\n", + "\n", + " # Update parameters with Stochastic Gradient Descent\n", + " W = W - learning_rate * dW\n", + " b = b - learning_rate * db\n", + " \n", + " if t % 100 == 0:\n", + " print(\"Epoch: \" + str(t) + \" --- cost = \" + str(cost))\n", + " pred = predict(X, Y, W, b, word_to_vec_map)\n", + "\n", + " return pred, W, b" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch: 0 --- cost = 1.9520498812810072\n", + "Accuracy: 0.3484848484848485\n", + "Epoch: 100 --- cost = 0.07971818726014807\n", + "Accuracy: 0.9318181818181818\n", + "Epoch: 200 --- cost = 0.04456369243681402\n", + "Accuracy: 0.9545454545454546\n", + "Epoch: 300 --- cost = 0.03432267378786059\n", + "Accuracy: 0.9696969696969697\n", + "Epoch: 400 --- cost = 0.02906976783312465\n", + "Accuracy: 0.9772727272727273\n" + ] + } + ], + "source": [ + "pred, W, b = model(X_train, Y_train, word_to_vec_map)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### 1.4 - Examining test set performance \n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training set:\n", + "Accuracy: 0.9772727272727273\n", + "Test set:\n", + "Accuracy: 0.8571428571428571\n" + ] + } + ], + "source": [ + "print(\"Training set:\")\n", + "pred_train = predict(X_train, Y_train, W, b, word_to_vec_map)\n", + "print('Test set:')\n", + "pred_test = predict(X_test, Y_test, W, b, word_to_vec_map)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Random guessing would have had 20% accuracy given that there are 5 classes. This is pretty good performance after training on only 127 examples. \n", + "\n", + "In the training set, the algorithm saw the sentence \"*I love you*\" with the label ❤️. You can check however that the word \"adore\" does not appear in the training set. Nonetheless, lets see what happens if you write \"*I adore you*.\"\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "def print_predictions(X, pred):\n", + " print()\n", + " for i in range(X.shape[0]):\n", + " print(X[i], label_to_emoji(int(pred[i])))" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.8333333333333334\n", + "\n", + "i adore you ❤️\n", + "i love you ❤️\n", + "funny lol 😄\n", + "lets play with a ball ⚾\n", + "food is ready 🍴\n", + "not feeling happy 😄\n" + ] + } + ], + "source": [ + "X_my_sentences = np.array([\"i adore you\", \"i love you\", \"funny lol\", \"lets play with a ball\", \"food is ready\", \"not feeling happy\"])\n", + "Y_my_labels = np.array([[0], [0], [2], [1], [4],[3]])\n", + "\n", + "pred = predict(X_my_sentences, Y_my_labels , W, b, word_to_vec_map)\n", + "print_predictions(X_my_sentences, pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Amazing! Because *adore* has a similar embedding as *love*, the algorithm has generalized correctly even to a word it has never seen before. Words such as *heart*, *dear*, *beloved* or *adore* have embedding vectors similar to *love*, and so might work too---feel free to modify the inputs above and try out a variety of input sentences. How well does it work?\n", + "\n", + "Note though that it doesn't get \"not feeling happy\" correct. This algorithm ignores word ordering, so is not good at understanding phrases like \"not happy.\" \n", + "\n", + "Printing the confusion matrix can also help understand which classes are more difficult for your model. A confusion matrix shows how often an example whose label is one class (\"actual\" class) is mislabeled by the algorithm with a different class (\"predicted\" class). \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2 - Emojifier-V2: Using LSTMs in Keras: \n", + "\n", + "Let's build an LSTM model that takes as input word sequences. This model will be able to take word ordering into account. Emojifier-V2 will continue to use pre-trained word embeddings to represent words, but will feed them into an LSTM, whose job it is to predict the most appropriate emoji. \n", + "\n", + "Run the following cell to load the Keras packages." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "np.random.seed(0)\n", + "from keras.models import Model\n", + "from keras.layers import Dense, Input, Dropout, LSTM, Activation\n", + "from keras.layers.embeddings import Embedding\n", + "from keras.preprocessing import sequence\n", + "from keras.initializers import glorot_uniform\n", + "np.random.seed(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.1 - Overview of the model\n", + "\n", + "Here is the Emojifier-v2 you will implement:\n", + "\n", + "
\n", + "
**Figure 3**: Emojifier-V2. A 2-layer LSTM sequence classifier.
\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2.3 - The Embedding layer\n", + "\n", + "In Keras, the embedding matrix is represented as a \"layer\", and maps positive integers (indices corresponding to words) into dense vectors of fixed size (the embedding vectors). It can be trained or initialized with a pretrained embedding. In this part, you will learn how to create an [Embedding()](https://keras.io/layers/embeddings/) layer in Keras, initialize it with the GloVe 50-dimensional vectors loaded earlier in the notebook. Because our training set is quite small, we will not update the word embeddings but will instead leave their values fixed. But in the code below, we'll show you how Keras allows you to either train or leave fixed this layer. \n", + "\n", + "The `Embedding()` layer takes an integer matrix of size (batch size, max input length) as input. This corresponds to sentences converted into lists of indices (integers), as shown in the figure below.\n", + "\n", + "\n", + "
**Figure 4**: Embedding layer. This example shows the propagation of two examples through the embedding layer. Both have been zero-padded to a length of `max_len=5`. The final dimension of the representation is `(2,max_len,50)` because the word embeddings we are using are 50 dimensional.
\n", + "\n", + "The largest integer (i.e. word index) in the input should be no larger than the vocabulary size. The layer outputs an array of shape (batch size, max input length, dimension of word vectors).\n", + "\n", + "The first step is to convert all your training sentences into lists of indices, and then zero-pad all these lists so that their length is the length of the longest sentence. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تبدیل جمله به indexها \n", + "
\n", + "
\n", + "این تابع طول تمام جمله ها را نیز یکسان میکند.\n", + "
\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def sentences_to_indices(X, word_to_index, max_len):\n", + " m = X.shape[0] # number of training examples\n", + " \n", + " # Initialize X_indices as a numpy matrix of zeros and the correct shape (≈ 1 line)\n", + " X_indices = np.zeros((m, max_len))\n", + " \n", + " for i in range(m): # loop over training examples\n", + " \n", + " # Convert the ith training sentence in lower case and split is into words. You should get a list of words.\n", + " sentence_words =X[i].lower().split()\n", + "\n", + " \n", + " # Loop over the words of sentence_words\n", + " for j, w in enumerate(sentence_words):\n", + " # Set the (i,j)th entry of X_indices to the index of the correct word.\n", + " X_indices[i, j] = word_to_index[w]\n", + "\n", + " return X_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the following cell to check what `sentences_to_indices()` does, and check your results." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X1 = ['funny lol' 'lets play baseball' 'food is ready for you']\n", + "X1_indices = [[155345. 225122. 0. 0. 0.]\n", + " [220930. 286375. 69714. 0. 0.]\n", + " [151204. 192973. 302254. 151349. 394475.]]\n" + ] + } + ], + "source": [ + "X1 = np.array([\"funny lol\", \"lets play baseball\", \"food is ready for you\"])\n", + "X1_indices = sentences_to_indices(X1,word_to_index, max_len = 5)\n", + "print(\"X1 =\", X1)\n", + "print(\"X1_indices =\", X1_indices)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
تابعی برای ایجاد لایه Embedding و لود وزن های از پیش آموزش داده شده \n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's build the `Embedding()` layer in Keras, using pre-trained word vectors. After this layer is built, you will pass the output of `sentences_to_indices()` to it as an input, and the `Embedding()` layer will return the word embeddings for a sentence. \n", + "\n", + "\n", + "1. Initialize the embedding matrix as a numpy array of zeroes with the correct shape.\n", + "2. Fill in the embedding matrix with all the word embeddings extracted from `word_to_vec_map`.\n", + "3. Define Keras embedding layer. Use [Embedding()](https://keras.io/layers/embeddings/). Be sure to make this layer non-trainable, by setting `trainable = False` when calling `Embedding()`. If you were to set `trainable = True`, then it will allow the optimization algorithm to modify the values of the word embeddings. \n", + "4. Set the embedding weights to be equal to the embedding matrix " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.layers import Embedding\n", + "def pretrained_embedding_layer(word_to_vec_map, word_to_index):\n", + " \n", + " vocab_len = len(word_to_index) + 1 # adding 1 to fit Keras embedding (requirement)\n", + " emb_dim = word_to_vec_map[\"cucumber\"].shape[0] # define dimensionality of your GloVe word vectors (= 50)\n", + " \n", + " # Initialize the embedding matrix as a numpy array of zeros of shape (vocab_len, dimensions of word vectors = emb_dim)\n", + " emb_matrix = np.zeros((vocab_len, emb_dim))\n", + " \n", + " # Set each row \"index\" of the embedding matrix to be the word vector representation of the \"index\"th word of the vocabulary\n", + " for word, index in word_to_index.items():\n", + " emb_matrix[index, :] = word_to_vec_map[word]\n", + "\n", + " # Define Keras embedding layer with the correct output/input sizes, make it trainable. Use Embedding(...). Make sure to set trainable=False. \n", + " embedding_layer = Embedding(vocab_len, emb_dim, trainable = False)\n", + "\n", + " # Build the embedding layer, it is required before setting the weights of the embedding layer. Do not modify the \"None\".\n", + " embedding_layer.build((None,))\n", + " \n", + " # Set the weights of the embedding layer to the embedding matrix. Your layer is now pretrained.\n", + " embedding_layer.set_weights([emb_matrix])\n", + " \n", + " return embedding_layer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2.3 Building the Emojifier-V2\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.layers import Input\n", + "from keras.layers import LSTM\n", + "from keras.layers import Dense, Dropout\n", + "from keras.models import Model\n", + "\n", + "def Emojify_V2(input_shape, word_to_vec_map, word_to_index):\n", + "\n", + " # Define sentence_indices as the input of the graph, it should be of shape input_shape and dtype 'int32' (as it contains indices).\n", + " sentence_indices = Input(input_shape, dtype = np.int32)\n", + " \n", + " # Create the embedding layer pretrained with GloVe Vectors (≈1 line)\n", + " embedding_layer = pretrained_embedding_layer(word_to_vec_map, word_to_index)\n", + " \n", + " # Propagate sentence_indices through your embedding layer, you get back the embeddings\n", + " embeddings = embedding_layer(sentence_indices)\n", + " \n", + " # Propagate the embeddings through an LSTM layer with 128-dimensional hidden state\n", + " # Be careful, the returned output should be a batch of sequences.\n", + " X = LSTM(128, return_sequences=True)(embeddings)\n", + " # Add dropout with a probability of 0.5\n", + " X = Dropout(0.5)(X)\n", + " # Propagate X trough another LSTM layer with 128-dimensional hidden state\n", + " # Be careful, the returned output should be a single hidden state, not a batch of sequences.\n", + " X = LSTM(128)(X)\n", + " # Add dropout with a probability of 0.5\n", + " X = Dropout(0.5)(X)\n", + " # Propagate X through a Dense layer with softmax activation to get back a batch of 5-dimensional vectors.\n", + " X = Dense(5, activation = 'softmax')(X)\n", + " \n", + " # Create Model instance which converts sentence_indices into X.\n", + " model = Model(sentence_indices, X)\n", + " \n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "input_2 (InputLayer) (None, 10) 0 \n", + "_________________________________________________________________\n", + "embedding_2 (Embedding) (None, 10, 50) 20000050 \n", + "_________________________________________________________________\n", + "lstm_3 (LSTM) (None, 10, 128) 91648 \n", + "_________________________________________________________________\n", + "dropout_3 (Dropout) (None, 10, 128) 0 \n", + "_________________________________________________________________\n", + "lstm_4 (LSTM) (None, 128) 131584 \n", + "_________________________________________________________________\n", + "dropout_4 (Dropout) (None, 128) 0 \n", + "_________________________________________________________________\n", + "dense_2 (Dense) (None, 5) 645 \n", + "=================================================================\n", + "Total params: 20,223,927\n", + "Trainable params: 223,877\n", + "Non-trainable params: 20,000,050\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = Emojify_V2((maxLen,), word_to_vec_map, word_to_index)\n", + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As usual, after creating your model in Keras, you need to compile it and define what loss, optimizer and metrics your are want to use. Compile your model using `categorical_crossentropy` loss, `adam` optimizer and `['accuracy']` metrics:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It's time to train your model. Your Emojifier-V2 `model` takes as input an array of shape (`m`, `max_len`) and outputs probability vectors of shape (`m`, `number of classes`). We thus have to convert X_train (array of sentences as strings) to X_train_indices (array of sentences as list of word indices), and Y_train (labels as indices) to Y_train_oh (labels as one-hot vectors)." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "X_train_indices = sentences_to_indices(X_train, word_to_index, maxLen)\n", + "Y_train_oh = keras.utils.to_categorical(Y_train, 5)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "132/132 [==============================] - 2s 14ms/step - loss: 1.5785 - accuracy: 0.2803\n", + "Epoch 2/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.5018 - accuracy: 0.3333\n", + "Epoch 3/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.4604 - accuracy: 0.3485\n", + "Epoch 4/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.3685 - accuracy: 0.4470\n", + "Epoch 5/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.2991 - accuracy: 0.4697\n", + "Epoch 6/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.1840 - accuracy: 0.5455\n", + "Epoch 7/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 1.0434 - accuracy: 0.6061\n", + "Epoch 8/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.8732 - accuracy: 0.7197\n", + "Epoch 9/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.8077 - accuracy: 0.7273\n", + "Epoch 10/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.6823 - accuracy: 0.7500\n", + "Epoch 11/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.6593 - accuracy: 0.7424\n", + "Epoch 12/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.5245 - accuracy: 0.7879\n", + "Epoch 13/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.5793 - accuracy: 0.8106\n", + "Epoch 14/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.4114 - accuracy: 0.8712\n", + "Epoch 15/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.4243 - accuracy: 0.8333\n", + "Epoch 16/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.3319 - accuracy: 0.8788\n", + "Epoch 17/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.3110 - accuracy: 0.8864\n", + "Epoch 18/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.3255 - accuracy: 0.8864\n", + "Epoch 19/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.3134 - accuracy: 0.9167\n", + "Epoch 20/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.2598 - accuracy: 0.9015\n", + "Epoch 21/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.2034 - accuracy: 0.9318\n", + "Epoch 22/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.3006 - accuracy: 0.8939\n", + "Epoch 23/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1704 - accuracy: 0.9394\n", + "Epoch 24/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1986 - accuracy: 0.9470\n", + "Epoch 25/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1613 - accuracy: 0.9621\n", + "Epoch 26/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1410 - accuracy: 0.9545\n", + "Epoch 27/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1857 - accuracy: 0.9167\n", + "Epoch 28/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.2262 - accuracy: 0.9394\n", + "Epoch 29/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1146 - accuracy: 0.9470\n", + "Epoch 30/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1039 - accuracy: 0.9697\n", + "Epoch 31/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1061 - accuracy: 0.9621\n", + "Epoch 32/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.2473 - accuracy: 0.9167\n", + "Epoch 33/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1782 - accuracy: 0.9318\n", + "Epoch 34/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1944 - accuracy: 0.9394\n", + "Epoch 35/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1595 - accuracy: 0.9318\n", + "Epoch 36/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1048 - accuracy: 0.9545\n", + "Epoch 37/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1591 - accuracy: 0.9545\n", + "Epoch 38/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0960 - accuracy: 0.9621\n", + "Epoch 39/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0617 - accuracy: 0.9924\n", + "Epoch 40/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0381 - accuracy: 1.0000\n", + "Epoch 41/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0345 - accuracy: 1.0000\n", + "Epoch 42/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0371 - accuracy: 1.0000\n", + "Epoch 43/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.1414 - accuracy: 0.9621\n", + "Epoch 44/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0375 - accuracy: 0.9924\n", + "Epoch 45/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0719 - accuracy: 0.9848\n", + "Epoch 46/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0595 - accuracy: 0.9848\n", + "Epoch 47/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0240 - accuracy: 0.9848\n", + "Epoch 48/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0170 - accuracy: 1.0000\n", + "Epoch 49/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0152 - accuracy: 1.0000\n", + "Epoch 50/50\n", + "132/132 [==============================] - 0s 2ms/step - loss: 0.0097 - accuracy: 1.0000\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.fit(X_train_indices, Y_train_oh, epochs = 50, batch_size = 32, shuffle=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Your model should perform close to **100% accuracy** on the training set. The exact accuracy you get may be a little different. Run the following cell to evaluate your model on the test set. " + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "56/56 [==============================] - 0s 4ms/step\n", + "\n", + "Test accuracy = 0.8035714030265808\n" + ] + } + ], + "source": [ + "X_test_indices = sentences_to_indices(X_test, word_to_index, max_len = maxLen)\n", + "Y_test_oh = keras.utils.to_categorical(Y_test, 5)\n", + "loss, acc = model.evaluate(X_test_indices, Y_test_oh)\n", + "print()\n", + "print(\"Test accuracy = \", acc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You should get a test accuracy between 80% and 95%. Run the cell below to see the mislabelled examples. " + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected emoji:😄 prediction: she got me a nice present\t❤️\n", + "Expected emoji:😞 prediction: work is hard\t😄\n", + "Expected emoji:😞 prediction: This girl is messing with me\t❤️\n", + "Expected emoji:😞 prediction: work is horrible\t😄\n", + "Expected emoji:🍴 prediction: any suggestions for dinner\t😄\n", + "Expected emoji:😄 prediction: you brighten my day\t❤️\n", + "Expected emoji:😞 prediction: she is a bully\t❤️\n", + "Expected emoji:😞 prediction: My life is so boring\t❤️\n", + "Expected emoji:😄 prediction: What you did was awesome\t😞\n", + "Expected emoji:😞 prediction: go away\t⚾\n", + "Expected emoji:❤️ prediction: family is all I have\t😞\n" + ] + } + ], + "source": [ + "# This code allows you to see the mislabelled examples\n", + "C = 5\n", + "y_test_oh = np.eye(C)[Y_test.reshape(-1)]\n", + "X_test_indices = sentences_to_indices(X_test, word_to_index, maxLen)\n", + "pred = model.predict(X_test_indices)\n", + "for i in range(len(X_test)):\n", + " x = X_test_indices\n", + " num = np.argmax(pred[i])\n", + " if(num != Y_test[i]):\n", + " print('Expected emoji:'+ label_to_emoji(Y_test[i]) + ' prediction: '+ X_test[i] + label_to_emoji(num).strip())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now you can try it on your own example. Write your own sentence below. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "not feeling happy 😞\n" + ] + } + ], + "source": [ + "# Change the sentence below to see your prediction. Make sure all the words are in the Glove embeddings. \n", + "x_test = np.array(['not feeling happy'])\n", + "X_test_indices = sentences_to_indices(x_test, word_to_index, maxLen)\n", + "print(x_test[0] +' '+ label_to_emoji(np.argmax(model.predict(X_test_indices))))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Previously, Emojify-V1 model did not correctly label \"not feeling happy,\" but our implementation of Emojiy-V2 got it right. (Keras' outputs are slightly random each time, so you may not have obtained the same result.) The current model still isn't very robust at understanding negation (like \"not happy\") because the training set is small and so doesn't have a lot of examples of negation. But if the training set were larger, the LSTM model would be much better than the Emojify-V1 model at understanding such complex sentences. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "coursera": { + "course_slug": "nlp-sequence-models", + "graded_item_id": "RNnEs", + "launcher_item_id": "acNYU" + }, + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/08_shahnameh-text-generation-language-model.ipynb b/08_shahnameh-text-generation-language-model.ipynb new file mode 100644 index 0000000..0bea7c5 --- /dev/null +++ b/08_shahnameh-text-generation-language-model.ipynb @@ -0,0 +1,1327 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

مدل زبانی در سطح کاراکتر و تولید متنی شبیه شاهنامه

" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "ovpZyIhNIgoq" + }, + "source": [ + "# Text generation with an RNN" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "WGyKZj3bzf9p" + }, + "source": [ + "### Import TensorFlow and other libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "yG_n40gFzf9s" + }, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "\n", + "import numpy as np\n", + "import os\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###
مجموعه داده\n", + "
\n", + "\n", + "
مجموعه داده زیر را از سایت گنجور برای این تمرین استخراج کرده ایم. لطفا فایل txt را دانلود کرده و در کنار نوت بوک قرار دهید.
\n", + "\n", + "\n", + "\n", + "http://dataset.class.vision/NLP/shahnameh.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "pD_55cOxLkAb" + }, + "outputs": [], + "source": [ + "path_to_file = \"shahnameh.txt\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "UHjdCjDuSvX_" + }, + "source": [ + "### Read the data\n", + "\n", + "First, look in the text:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "aavnuByVymwK" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Length of text: 2653849 characters\n" + ] + } + ], + "source": [ + "# Read, then decode for py2 compat.\n", + "text = open(path_to_file, 'rb').read().decode(encoding='utf-8')\n", + "# length of text is the number of characters in it\n", + "print ('Length of text: {} characters'.format(len(text)))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Duhg9NrUymwO" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|به نام خداوند جان و خرد\n", + "|کزین برتر اندیشه برنگذرد\n", + "|خداوند نام و خداوند جای\n", + "|خداوند روزی ده رهنمای\n", + "|خداوند کیوان و گردان سپهر\n", + "|فروزنده ماه و ناهید و مهر\n", + "|ز نام و نشان و گمان برترست\n", + "|نگارندهٔ بر شده پیکرست\n", + "|به بینندگان آفریننده را\n", + "|نبینی مرنجان دو بین\n" + ] + } + ], + "source": [ + "# Take a look at the first 250 characters in text\n", + "print(text[:250])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "IlCgQBRVymwR" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "48 unique characters\n" + ] + } + ], + "source": [ + "# The unique characters in the file\n", + "vocab = sorted(set(text))\n", + "print ('{} unique characters'.format(len(vocab)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "rNnrKn_lL-IJ" + }, + "source": [ + "## Process the text" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "LFjSVAlWzf-N" + }, + "source": [ + "### Vectorize the text\n", + "\n", + "Before training, we need to map strings to a numerical representation. Create two lookup tables: one mapping characters to numbers, and another for numbers to characters." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "IalZLbvOzf-F" + }, + "outputs": [], + "source": [ + "# Creating a mapping from unique characters to indices\n", + "char2idx = {u:i for i, u in enumerate(vocab)}\n", + "idx2char = np.array(vocab)\n", + "\n", + "text_as_int = np.array([char2idx[c] for c in text])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "tZfqhkYCymwX" + }, + "source": [ + "Now we have an integer representation for each character. Notice that we mapped the character as indexes from 0 to `len(unique)`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "FYyNlCNXymwY" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " '\\n': 0,\n", + " ' ' : 1,\n", + " '(' : 2,\n", + " ')' : 3,\n", + " '|' : 4,\n", + " '«' : 5,\n", + " '»' : 6,\n", + " '،' : 7,\n", + " '؟' : 8,\n", + " 'ء' : 9,\n", + " 'آ' : 10,\n", + " 'أ' : 11,\n", + " 'ؤ' : 12,\n", + " 'ئ' : 13,\n", + " 'ا' : 14,\n", + " 'ب' : 15,\n", + " 'ت' : 16,\n", + " 'ث' : 17,\n", + " 'ج' : 18,\n", + " 'ح' : 19,\n", + " ...\n", + "}\n" + ] + } + ], + "source": [ + "print('{')\n", + "for char,_ in zip(char2idx, range(20)):\n", + " print(' {:4s}: {:3d},'.format(repr(char), char2idx[char]))\n", + "print(' ...\\n}')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "l1VKcQHcymwb" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "'|به نام خداون' ---- characters mapped to int ---- > [ 4 15 38 1 37 14 36 1 20 21 14 39 37]\n" + ] + } + ], + "source": [ + "# Show how the first 13 characters from the text are mapped to integers\n", + "print ('{} ---- characters mapped to int ---- > {}'.format(repr(text[:13]), text_as_int[:13]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "bbmsf23Bymwe" + }, + "source": [ + "### The prediction task" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "wssHQ1oGymwe" + }, + "source": [ + "Given a character, or a sequence of characters, what is the most probable next character? This is the task we're training the model to perform. The input to the model will be a sequence of characters, and we train the model to predict the output—the following character at each time step.\n", + "\n", + "Since RNNs maintain an internal state that depends on the previously seen elements, given all the characters computed until this moment, what is the next character?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "hgsVvVxnymwf" + }, + "source": [ + "### Create training examples and targets\n", + "\n", + "Next divide the text into example sequences. Each input sequence will contain `seq_length` characters from the text.\n", + "\n", + "For each input sequence, the corresponding targets contain the same length of text, except shifted one character to the right.\n", + "\n", + "So break the text into chunks of `seq_length+1`. For example, say `seq_length` is 4 and our text is \"Hello\". The input sequence would be \"Hell\", and the target sequence \"ello\".\n", + "\n", + "To do this first use the `tf.data.Dataset.from_tensor_slices` function to convert the text vector into a stream of character indices." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "0UHJDA39zf-O" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "|\n", + "ب\n", + "ه\n", + " \n", + "ن\n" + ] + } + ], + "source": [ + "# The maximum length sentence we want for a single input in characters\n", + "seq_length = 100\n", + "\n", + "# Create training examples / targets\n", + "char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)\n", + "\n", + "for i in char_dataset.take(5):\n", + " print(idx2char[i.numpy()])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "-ZSYAcQV8OGP" + }, + "source": [ + "The `batch` method lets us easily convert these individual characters to sequences of the desired size." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "l4hkDU3i7ozi" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "'|به نام خداوند جان و خرد\\n|کزین برتر اندیشه برنگذرد\\n|خداوند نام و خداوند جای\\n|خداوند روزی ده رهنمای\\n|خ'\n", + "***************\n", + "'داوند کیوان و گردان سپهر\\n|فروزنده ماه و ناهید و مهر\\n|ز نام و نشان و گمان برترست\\n|نگارندهٔ بر شده پیکر'\n", + "***************\n", + "'ست\\n|به بینندگان آفریننده را\\n|نبینی مرنجان دو بیننده را\\n|نیابد بدو نیز اندیشه راه\\n|که او برتر از نام و'\n", + "***************\n", + "' از جایگاه\\n|سخن هر چه زین گوهران بگذرد\\n|نیابد بدو راه جان و خرد\\n|خرد گر سخن برگزیند همی\\n|همان را گزین'\n", + "***************\n", + "'د که بیند همی\\n|ستودن نداند کس او را چو هست\\n|میان بندگی را ببایدت بست\\n|خرد را و جان را همی سنجد اوی\\n|د'\n", + "***************\n" + ] + } + ], + "source": [ + "sequences = char_dataset.batch(seq_length+1, drop_remainder=True)\n", + "\n", + "for item in sequences.take(5):\n", + " print(repr(''.join(idx2char[item.numpy()])))\n", + " print(\"***\"*5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "UbLcIPBj_mWZ" + }, + "source": [ + "For each sequence, duplicate and shift it to form the input and target text by using the `map` method to apply a simple function to each batch:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "9NGu-FkO_kYU" + }, + "outputs": [], + "source": [ + "def split_input_target(chunk):\n", + " input_text = chunk[:-1]\n", + " target_text = chunk[1:]\n", + " return input_text, target_text\n", + "\n", + "dataset = sequences.map(split_input_target)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "hiCopyGZymwi" + }, + "source": [ + "Print the first examples input and target values:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "GNbw-iR0ymwj" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input data: '|به نام خداوند جان و خرد\\n|کزین برتر اندیشه برنگذرد\\n|خداوند نام و خداوند جای\\n|خداوند روزی ده رهنمای\\n|'\n", + "Target data: 'به نام خداوند جان و خرد\\n|کزین برتر اندیشه برنگذرد\\n|خداوند نام و خداوند جای\\n|خداوند روزی ده رهنمای\\n|خ'\n" + ] + } + ], + "source": [ + "for input_example, target_example in dataset.take(1):\n", + " print ('Input data: ', repr(''.join(idx2char[input_example.numpy()])))\n", + " print ('Target data:', repr(''.join(idx2char[target_example.numpy()])))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "_33OHL3b84i0" + }, + "source": [ + "Each index of these vectors are processed as one time step. For the input at time step 0, the model receives the index for \"F\" and trys to predict the index for \"i\" as the next character. At the next timestep, it does the same thing but the `RNN` considers the previous step context in addition to the current input character." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "0eBu9WZG84i0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Step 0\n", + " input: 4 ('|')\n", + " expected output: 15 ('ب')\n", + "Step 1\n", + " input: 15 ('ب')\n", + " expected output: 38 ('ه')\n", + "Step 2\n", + " input: 38 ('ه')\n", + " expected output: 1 (' ')\n", + "Step 3\n", + " input: 1 (' ')\n", + " expected output: 37 ('ن')\n", + "Step 4\n", + " input: 37 ('ن')\n", + " expected output: 14 ('ا')\n" + ] + } + ], + "source": [ + "for i, (input_idx, target_idx) in enumerate(zip(input_example[:5], target_example[:5])):\n", + " print(\"Step {:4d}\".format(i))\n", + " print(\" input: {} ({:s})\".format(input_idx, repr(idx2char[input_idx])))\n", + " print(\" expected output: {} ({:s})\".format(target_idx, repr(idx2char[target_idx])))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "MJdfPmdqzf-R" + }, + "source": [ + "### Create training batches\n", + "\n", + "We used `tf.data` to split the text into manageable sequences. But before feeding this data into the model, we need to shuffle the data and pack it into batches." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "p2pGotuNzf-S" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Batch size\n", + "BATCH_SIZE = 64\n", + "\n", + "\n", + "dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)\n", + "\n", + "dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "r6oUuElIMgVx" + }, + "source": [ + "## Build The Model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "m8gPwEjRzf-Z" + }, + "source": [ + "Use `tf.keras.Sequential` to define the model. For this simple example three layers are used to define our model:\n", + "\n", + "* `tf.keras.layers.Embedding`: The input layer. A trainable lookup table that will map the numbers of each character to a vector with `embedding_dim` dimensions;\n", + "* `tf.keras.layers.GRU`: A type of RNN with size `units=rnn_units` (You can also use a LSTM layer here.)\n", + "* `tf.keras.layers.Dense`: The output layer, with `vocab_size` outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zHT8cLh7EAsg" + }, + "outputs": [], + "source": [ + "# Length of the vocabulary in chars\n", + "vocab_size = len(vocab)\n", + "\n", + "# The embedding dimension\n", + "embedding_dim = 25\n", + "\n", + "# Number of RNN units\n", + "rnn_units = 1024" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "MtCrdfzEI2N0" + }, + "outputs": [], + "source": [ + "def build_model(vocab_size, embedding_dim, rnn_units, batch_size):\n", + " model = tf.keras.Sequential([\n", + " tf.keras.layers.Embedding(vocab_size, embedding_dim,\n", + " batch_input_shape=[batch_size, None]),\n", + " tf.keras.layers.GRU(rnn_units,\n", + " return_sequences=True,\n", + " stateful=True,\n", + " recurrent_initializer='glorot_uniform'),\n", + " tf.keras.layers.Dense(vocab_size)\n", + " ])\n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "wwsrpOik5zhv" + }, + "outputs": [], + "source": [ + "model = build_model(\n", + " vocab_size = len(vocab),\n", + " embedding_dim=embedding_dim,\n", + " rnn_units=rnn_units,\n", + " batch_size=BATCH_SIZE)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "RkA5upJIJ7W7" + }, + "source": [ + "For each character the model looks up the embedding, runs the GRU one timestep with the embedding as input, and applies the dense layer to generate logits predicting the log-likelihood of the next character:\n", + "\n", + "![A drawing of the data passing through the model](images/text_generation_training.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "-ubPo0_9Prjb" + }, + "source": [ + "## Try the model\n", + "\n", + "Now run the model to see that it behaves as expected.\n", + "\n", + "First check the shape of the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "C-_70kKAPrPU" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(64, 100, 48) # (batch_size, sequence_length, vocab_size)\n" + ] + } + ], + "source": [ + "for input_example_batch, target_example_batch in dataset.take(1):\n", + " example_batch_predictions = model.predict(input_example_batch)\n", + " print(example_batch_predictions.shape, \"# (batch_size, sequence_length, vocab_size)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Q6NzLBi4VM4o" + }, + "source": [ + "In the above example the sequence length of the input is `100` but the model can be run on inputs of any length:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "vPGmAAXmVLGC" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding (Embedding) (64, None, 25) 1200 \n", + "_________________________________________________________________\n", + "gru (GRU) (64, None, 1024) 3228672 \n", + "_________________________________________________________________\n", + "dense (Dense) (64, None, 48) 49200 \n", + "=================================================================\n", + "Total params: 3,279,072\n", + "Trainable params: 3,279,072\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "uwv0gEkURfx1" + }, + "source": [ + "To get actual predictions from the model we need to sample from the output distribution, to get actual character indices. This distribution is defined by the logits over the character vocabulary.\n", + "\n", + "Note: It is important to _sample_ from this distribution as taking the _argmax_ of the distribution can easily get the model stuck in a loop.\n", + "\n", + "Try it for the first example in the batch:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "4V4MfFg0RQJg" + }, + "outputs": [], + "source": [ + "sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)\n", + "sampled_indices = tf.squeeze(sampled_indices,axis=-1).numpy()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "QM1Vbxs_URw5" + }, + "source": [ + "This gives us, at each timestep, a prediction of the next character index:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "YqFMUQc_UFgM" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([38, 47, 10, 11, 21, 29, 37, 41, 13, 35, 41, 23, 12, 21, 41, 15, 47,\n", + " 29, 3, 10, 42, 33, 12, 13, 18, 4, 35, 27, 41, 16, 8, 45, 15, 43,\n", + " 8, 40, 28, 35, 29, 3, 5, 8, 17, 32, 10, 44, 25, 24, 45, 24, 26,\n", + " 40, 19, 8, 6, 45, 25, 3, 31, 13, 28, 12, 6, 46, 22, 45, 12, 33,\n", + " 42, 33, 0, 15, 32, 36, 45, 22, 33, 44, 43, 33, 36, 36, 9, 47, 4,\n", + " 18, 0, 31, 33, 33, 0, 45, 37, 15, 44, 22, 30, 10, 29, 28],\n", + " dtype=int64)" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sampled_indices" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "LfLtsP3mUhCG" + }, + "source": [ + "Decode these to see the text predicted by this untrained model:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "xWcFwPwLSo05" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input: \n", + " '|به نام خداوند جان و خرد\\n|کزین برتر اندیشه برنگذرد\\n|خداوند نام و خداوند جای\\n|خداوند روزی ده رهنمای\\n|'\n", + "\n", + "Next Char Predictions: \n", + " 'ه\\u200cآأدطنپئلپرؤدپب\\u200cط)آچفؤئج|لصپت؟گبژ؟ٔضلط)«؟ثغآکسزگزشٔح؟»گس)عئضؤ»یذگؤفچف\\nبغمگذفکژفممء\\u200c|ج\\nعفف\\nگنبکذظآطض'\n" + ] + } + ], + "source": [ + "print(\"Input: \\n\", repr(\"\".join(idx2char[input_example_batch[0]])))\n", + "print()\n", + "print(\"Next Char Predictions: \\n\", repr(\"\".join(idx2char[sampled_indices ])))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "LJL0Q0YPY6Ee" + }, + "source": [ + "## Train the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "YCbHQHiaa4Ic" + }, + "source": [ + "At this point the problem can be treated as a standard classification problem. Given the previous RNN state, and the input this time step, predict the class of the next character." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "trpqTWyvk0nr" + }, + "source": [ + "### Attach an optimizer, and a loss function" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "UAjbjY03eiQ4" + }, + "source": [ + "The standard `tf.keras.losses.sparse_categorical_crossentropy` loss function works in this case because it is applied across the last dimension of the predictions.\n", + "\n", + "Because our model returns logits, we need to set the `from_logits` flag.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "4HrXTACTdzY-" + }, + "outputs": [], + "source": [ + "def loss(labels, logits):\n", + " return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "jeOXriLcymww" + }, + "source": [ + "Configure the training procedure using the `tf.keras.Model.compile` method. We'll use `tf.keras.optimizers.Adam` with default arguments and the loss function." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "DDl1_Een6rL0" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam', loss=loss)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "ieSJdchZggUj" + }, + "source": [ + "### Configure checkpoints" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "C6XBUUavgF56" + }, + "source": [ + "Use a `tf.keras.callbacks.ModelCheckpoint` to ensure that checkpoints are saved during training:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "W6fWTriUZP-n" + }, + "outputs": [], + "source": [ + "# Directory where the checkpoints will be saved\n", + "checkpoint_dir = './training_checkpoints'\n", + "# Name of the checkpoint files\n", + "checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt_{epoch}\")\n", + "\n", + "checkpoint_callback=tf.keras.callbacks.ModelCheckpoint(\n", + " filepath=checkpoint_prefix,\n", + " save_weights_only=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "3Ky3F_BhgkTW" + }, + "source": [ + "### Execute the training" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "IxdOA-rgyGvs" + }, + "source": [ + "To keep training time reasonable, use 10 epochs to train the model. In Colab, set the runtime to GPU for faster training." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "7yGBE2zxMMHs" + }, + "outputs": [], + "source": [ + "EPOCHS=10" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "UK-hmKjYVoll" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/10\n", + "410/410 [==============================] - 129s 314ms/step - loss: 2.4480\n", + "Epoch 2/10\n", + "410/410 [==============================] - 149s 363ms/step - loss: 1.8074\n", + "Epoch 3/10\n", + "410/410 [==============================] - 152s 371ms/step - loss: 1.5528\n", + "Epoch 4/10\n", + "410/410 [==============================] - 154s 375ms/step - loss: 1.4235\n", + "Epoch 5/10\n", + "410/410 [==============================] - 154s 377ms/step - loss: 1.3444\n", + "Epoch 6/10\n", + "410/410 [==============================] - 157s 382ms/step - loss: 1.2861\n", + "Epoch 7/10\n", + "410/410 [==============================] - 157s 383ms/step - loss: 1.2370\n", + "Epoch 8/10\n", + "410/410 [==============================] - 136s 331ms/step - loss: 1.1920\n", + "Epoch 9/10\n", + "410/410 [==============================] - 147s 359ms/step - loss: 1.1487\n", + "Epoch 10/10\n", + "410/410 [==============================] - 152s 370ms/step - loss: 1.1066\n" + ] + } + ], + "source": [ + "history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "kKkD5M6eoSiN" + }, + "source": [ + "## Generate text" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "JIPcXllKjkdr" + }, + "source": [ + "### Restore the latest checkpoint" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "LyeYRiuVjodY" + }, + "source": [ + "To keep this prediction step simple, use a batch size of 1.\n", + "\n", + "Because of the way the RNN state is passed from timestep to timestep, the model only accepts a fixed batch size once built.\n", + "\n", + "To run the model with a different `batch_size`, we need to rebuild the model and restore the weights from the checkpoint.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zk2WJ2-XjkGz" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'./training_checkpoints\\\\ckpt_10'" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tf.train.latest_checkpoint(checkpoint_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "LycQ-ot_jjyu" + }, + "outputs": [], + "source": [ + "model = build_model(vocab_size, embedding_dim, rnn_units, batch_size=1)\n", + "\n", + "model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))\n", + "\n", + "model.build(tf.TensorShape([1, None]))" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "71xa6jnYVrAN" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "embedding_1 (Embedding) (1, None, 25) 1200 \n", + "_________________________________________________________________\n", + "gru_1 (GRU) (1, None, 1024) 3228672 \n", + "_________________________________________________________________\n", + "dense_1 (Dense) (1, None, 48) 49200 \n", + "=================================================================\n", + "Total params: 3,279,072\n", + "Trainable params: 3,279,072\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "DjGz1tDkzf-u" + }, + "source": [ + "### The prediction loop\n", + "\n", + "The following code block generates the text:\n", + "\n", + "* It Starts by choosing a start string, initializing the RNN state and setting the number of characters to generate.\n", + "\n", + "* Get the prediction distribution of the next character using the start string and the RNN state.\n", + "\n", + "* Then, use a categorical distribution to calculate the index of the predicted character. Use this predicted character as our next input to the model.\n", + "\n", + "* The RNN state returned by the model is fed back into the model so that it now has more context, instead than only one word. After predicting the next word, the modified RNN states are again fed back into the model, which is how it learns as it gets more context from the previously predicted words.\n", + "\n", + "\n", + "![To generate text the model's output is fed back to the input](images/text_generation_sampling.png)\n", + "\n", + "Looking at the generated text, you'll see the model knows when to capitalize, make paragraphs and imitates a Shakespeare-like writing vocabulary. With the small number of training epochs, it has not yet learned to form coherent sentences." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "WvuwZBX5Ogfd" + }, + "outputs": [], + "source": [ + "def generate_text(model, start_string):\n", + " # Evaluation step (generating text using the learned model)\n", + "\n", + " # Number of characters to generate\n", + " num_generate = 1000\n", + "\n", + " # Converting our start string to numbers (vectorizing)\n", + " input_eval = [char2idx[s] for s in start_string]\n", + " input_eval = tf.expand_dims(input_eval, 0)\n", + "\n", + " # Empty string to store our results\n", + " text_generated = []\n", + "\n", + "\n", + " # Here batch size == 1\n", + " model.reset_states()\n", + " for i in range(num_generate):\n", + " predictions = model(input_eval)\n", + " # remove the batch dimension\n", + " predictions = tf.squeeze(predictions, 0)\n", + "\n", + " # using a categorical distribution to predict the word returned by the model\n", + " predictions = predictions \n", + " predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()\n", + "\n", + " # We pass the predicted word as the next input to the model\n", + " # along with the previous hidden state\n", + " input_eval = tf.expand_dims([predicted_id], 0)\n", + "\n", + " text_generated.append(idx2char[predicted_id])\n", + "\n", + " return (start_string + ''.join(text_generated))" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "ktovv0RFhrkn" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "به نام خدایست نستوه تو\n", + "|به گیتی نماید نگارد ز بتاختی\n", + "|وزان پس چنین تا برآرم بماه\n", + "|صد آن تختها برکشمد از تو بر تن خویش یابی به خون\n", + "|ز شادی شگفتی که بیکار گشت\n", + "|دوماه\n", + "|کجا آن همه ریز کردم همی\n", + "|ز تخم بد و باژ و پر بوی مهر\n", + "|شنیده تخت باژی چو کوه بزرگ\n", + "|بدست سخن گوی برخاستند\n", + "|به زندان بیاوردش از جنگ جفت\n", + "|یکی دیگر آنگه که تن بگذرد\n", + "|من آن تخت راخسر بر تنگ هنگام موسن شود\n", + "|سربخت این را که پوشیده‌ام\n", + "|سراسان کنم داد و دانندگان\n", + "|گلاب و عنان برگرفتند راه\n", + "|نماند به رستم که لشکر براند\n", + "|چه افگند دینار و گرمان به دست\n", + "|چو ارجات داری خرامید یاد\n", + "|که نزد کزت بر تو بر خاک روی\n", + "|شهنشاه بینندهٔ رخش بروخون\n", + "|تو گفتی همی درکشید این سخن\n", + "|سواری بر اب گوهرنگار\n", + "|صزو تن به پا اندر آویختست\n", + "|نه زین باره و گردیه را بدست\n", + "|به خون خسره آیید گفتار من\n", + "|نگردد به بازد اسیدش تخل به درد\n", + "|سوی حلبهاد آن سه زر\n", + "|سپاس از دبیرو ستم\n", + "|همی دشمنندان او تخت را نو نمرد\n", + "|هرآنکس که او دشمن ایمن ببین\n", + "|بدو گفت بهرام چون بر روان\n", + "|یبا پیرسر گفت زن پر ز خون\n", + "|نگه کرده و از بلت خسرو شوردار\n", + "|بدآنید تاوان به ایران تویی\n", + "|\n", + "|ار و دوبست و زه برکشد\n", + "|فروشد نه بیما نیر خ\n" + ] + } + ], + "source": [ + "print(generate_text(model, start_string=u\"به نام خدا\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "AM2Uma_-yVIq" + }, + "source": [ + "The easiest thing you can do to improve the results it to train it for longer (try `EPOCHS=30`).\n", + "\n", + "You can also experiment with a different start string, or try adding another RNN layer to improve the model's accuracy, or adjusting the temperature parameter to generate more or less random predictions." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "source:\n", + " \n", + "https://www.tensorflow.org/tutorials/text/text_generation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "text_generation.ipynb", + "private_outputs": true, + "provenance": [], + "toc_visible": true, + "version": "0.3.2" + }, + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/09_add-numbers-with-seq2seq.ipynb b/09_add-numbers-with-seq2seq.ipynb new file mode 100644 index 0000000..fddc56e --- /dev/null +++ b/09_add-numbers-with-seq2seq.ipynb @@ -0,0 +1,512 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

Seq2Seq برای جمع اعداد!

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from random import seed\n", + "from random import randint\n", + "from numpy import array\n", + "from math import ceil\n", + "from math import log10\n", + "from math import sqrt\n", + "from numpy import argmax\n", + "from keras.models import Sequential\n", + "from keras.layers import Dense\n", + "from keras.layers import LSTM\n", + "from keras.layers import TimeDistributed\n", + "from keras.layers import RepeatVector" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# generate lists of random integers and their sum\n", + "def random_sum_pairs(n_examples, n_numbers, largest):\n", + " X, y = list(), list()\n", + " for i in range(n_examples):\n", + " in_pattern = [randint(1,largest) for _ in range(n_numbers)]\n", + " out_pattern = sum(in_pattern)\n", + " X.append(in_pattern)\n", + " y.append(out_pattern)\n", + " return X, y" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100\n", + "[12, 3, 4]\n", + "19\n" + ] + } + ], + "source": [ + "x,y = random_sum_pairs(100,3,15)\n", + "print(len(x))\n", + "print(x[0])\n", + "print(y[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# convert data to strings\n", + "def to_string(X, y, n_numbers, largest):\n", + " max_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1\n", + " Xstr = list()\n", + " for pattern in X:\n", + " strp = '+'.join([str(n) for n in pattern])\n", + " strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp\n", + " Xstr.append(strp)\n", + " max_length = ceil(log10(n_numbers * (largest+1)))\n", + " ystr = list()\n", + " for pattern in y:\n", + " strp = str(pattern)\n", + " strp = ''.join([' ' for _ in range(max_length-len(strp))]) + strp\n", + " ystr.append(strp)\n", + " return Xstr, ystr" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# integer encode strings\n", + "def integer_encode(X, y, alphabet):\n", + " char_to_int = dict((c, i) for i, c in enumerate(alphabet))\n", + " Xenc = list()\n", + " for pattern in X:\n", + " integer_encoded = [char_to_int[char] for char in pattern]\n", + " Xenc.append(integer_encoded)\n", + " yenc = list()\n", + " for pattern in y:\n", + " integer_encoded = [char_to_int[char] for char in pattern]\n", + " yenc.append(integer_encoded)\n", + " return Xenc, yenc" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + " # one hot encode\n", + "def one_hot_encode(X, y, max_int):\n", + " Xenc = list()\n", + " for seq in X:\n", + " pattern = list()\n", + " for index in seq:\n", + " vector = [0 for _ in range(max_int)]\n", + " vector[index] = 1\n", + " pattern.append(vector)\n", + " Xenc.append(pattern)\n", + " yenc = list()\n", + " for seq in y:\n", + " pattern = list()\n", + " for index in seq:\n", + " vector = [0 for _ in range(max_int)]\n", + " vector[index] = 1\n", + " pattern.append(vector)\n", + " yenc.append(pattern)\n", + " return Xenc, yenc" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# generate an encoded dataset\n", + "def generate_data(n_samples, n_numbers, largest, alphabet):\n", + " # generate pairs\n", + " X, y = random_sum_pairs(n_samples, n_numbers, largest)\n", + " # convert to strings\n", + " X, y = to_string(X, y, n_numbers, largest)\n", + " # integer encode\n", + " X, y = integer_encode(X, y, alphabet)\n", + " # one hot encode\n", + " X, y = one_hot_encode(X, y, len(alphabet))\n", + " # return as numpy arrays\n", + " X, y = array(X), array(y)\n", + " return X, y" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# invert encoding\n", + "def invert(seq, alphabet):\n", + " int_to_char = dict((i, c) for i, c in enumerate(alphabet))\n", + " strings = list()\n", + " for pattern in seq:\n", + " string = int_to_char[argmax(pattern)]\n", + " strings.append(string)\n", + " return ''.join(strings)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# define dataset\n", + "seed(1)\n", + "n_samples = 1000\n", + "n_numbers = 2\n", + "largest = 10\n", + "alphabet = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', ' ']\n", + "n_chars = len(alphabet)\n", + "n_in_seq_length = n_numbers * ceil(log10(largest+1)) + n_numbers - 1\n", + "n_out_seq_length = ceil(log10(n_numbers * (largest+1)))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "X, y = generate_data(n_samples, n_numbers, largest, alphabet)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "shape of X (1000, 5, 12)\n", + "shape of y (1000, 2, 12)\n", + "X[0]:\n", + "[[0 0 0 0 0 0 0 0 0 0 0 1]\n", + " [0 0 0 1 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 1 0]\n", + " [0 1 0 0 0 0 0 0 0 0 0 0]\n", + " [1 0 0 0 0 0 0 0 0 0 0 0]]\n", + "y[0]\n", + "[[0 1 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 1 0 0 0 0 0 0 0 0]]\n", + "invert X[0] 3+10\n", + "invert y[0] 13\n" + ] + } + ], + "source": [ + "print(\"shape of X\", X.shape)\n", + "print(\"shape of y\", y.shape)\n", + "print(\"X[0]:\")\n", + "print(X[0])\n", + "print(\"y[0]\")\n", + "print(y[0])\n", + "\n", + "print(\"invert X[0]\", invert(X[0], alphabet) )\n", + "print(\"invert y[0]\", invert(y[0], alphabet) )" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# define LSTM configuration\n", + "n_batch = 10\n", + "n_epoch = 30" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "lstm_1 (LSTM) (None, 100) 45200 \n", + "_________________________________________________________________\n", + "repeat_vector_1 (RepeatVecto (None, 2, 100) 0 \n", + "_________________________________________________________________\n", + "lstm_2 (LSTM) (None, 2, 50) 30200 \n", + "_________________________________________________________________\n", + "time_distributed_1 (TimeDist (None, 2, 12) 612 \n", + "=================================================================\n", + "Total params: 76,012\n", + "Trainable params: 76,012\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n", + "None\n" + ] + } + ], + "source": [ + "# create LSTM\n", + "model = Sequential()\n", + "model.add(LSTM(100, input_shape=(n_in_seq_length, n_chars)))\n", + "model.add(RepeatVector(n_out_seq_length))\n", + "model.add(LSTM(50, return_sequences=True))\n", + "model.add(TimeDistributed(Dense(n_chars, activation='softmax')))\n", + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\n", + "print(model.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 4s 4ms/step - loss: 1.9967 - accuracy: 0.3445\n", + "1\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.5194 - accuracy: 0.3680\n", + "2\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.3945 - accuracy: 0.4670\n", + "3\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 1.3099 - accuracy: 0.5075\n", + "4\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.1971 - accuracy: 0.5595\n", + "5\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 1.0768 - accuracy: 0.6285\n", + "6\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.9106 - accuracy: 0.6870\n", + "7\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.7884 - accuracy: 0.7330\n", + "8\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.6850 - accuracy: 0.8075\n", + "9\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5964 - accuracy: 0.8660\n", + "10\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.5245 - accuracy: 0.8975\n", + "11\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.4445 - accuracy: 0.9350\n", + "12\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3942 - accuracy: 0.9580\n", + "13\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.3604 - accuracy: 0.9520\n", + "14\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.3117 - accuracy: 0.9580\n", + "15\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2776 - accuracy: 0.9790\n", + "16\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.2440 - accuracy: 0.9800\n", + "17\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2322 - accuracy: 0.9855\n", + "18\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1978 - accuracy: 0.9885\n", + "19\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1971 - accuracy: 0.9875\n", + "20\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.2231 - accuracy: 0.9595\n", + "21\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1460 - accuracy: 0.9875\n", + "22\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 4s 4ms/step - loss: 0.1305 - accuracy: 0.9955\n", + "23\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.1155 - accuracy: 0.9945\n", + "24\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 2s 2ms/step - loss: 0.1039 - accuracy: 0.9950\n", + "25\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0897 - accuracy: 0.9960\n", + "26\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0833 - accuracy: 0.9975\n", + "27\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0742 - accuracy: 0.9960\n", + "28\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0678 - accuracy: 0.9975: 0s - l\n", + "29\n", + "Epoch 1/1\n", + "1000/1000 [==============================] - 3s 3ms/step - loss: 0.0590 - accuracy: 0.9985\n" + ] + } + ], + "source": [ + "# train LSTM\n", + "for i in range(n_epoch):\n", + " X, y = generate_data(n_samples, n_numbers, largest, alphabet)\n", + " print(i)\n", + " model.fit(X, y, epochs=1, batch_size=n_batch)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected=14, Predicted=14\n", + "Expected=15, Predicted=15\n", + "Expected=12, Predicted=12\n", + "Expected=12, Predicted=12\n", + "Expected=13, Predicted=13\n", + "Expected=15, Predicted=15\n", + "Expected= 8, Predicted= 8\n", + "Expected= 4, Predicted= 4\n", + "Expected=19, Predicted=19\n", + "Expected=13, Predicted=13\n", + "Expected=15, Predicted=15\n", + "Expected= 8, Predicted= 8\n", + "Expected=13, Predicted=13\n", + "Expected= 4, Predicted= 4\n", + "Expected=16, Predicted=16\n", + "Expected=13, Predicted=13\n", + "Expected=16, Predicted=16\n", + "Expected= 8, Predicted= 8\n", + "Expected=14, Predicted=14\n", + "Expected=16, Predicted=16\n" + ] + } + ], + "source": [ + "# evaluate on some new patterns\n", + "X, y = generate_data(n_samples, n_numbers, largest, alphabet)\n", + "result = model.predict(X, batch_size=n_batch, verbose=0)\n", + "# calculate error\n", + "expected = [invert(x, alphabet) for x in y]\n", + "predicted = [invert(x, alphabet) for x in result]\n", + "# show some examples\n", + "for i in range(20):\n", + " print('Expected=%s, Predicted=%s' % (expected[i], predicted[i]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extensions\n", + "\n", + "This section lists some natural extensions to this tutorial that you may wish to explore.\n", + "\n", + " ***Integer Encoding***. Explore whether the problem can learn the problem better using an integer encoding alone. The ordinal relationship between most of the inputs may prove very useful.\n", + " \n", + " ***Variable Numbers***. Change the example to support a variable number of terms on each input sequence. This should be straightforward as long as you perform sufficient padding.\n", + " \n", + " ***Variable Mathematical Operations***. Change the example to vary the mathematical operation to allow the network to generalize even further.\n", + " Brackets. Allow the use of brackets along with other mathematical operations." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Source:\n", + " https://machinelearningmastery.com/learn-add-numbers-seq2seq-recurrent-neural-networks/" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/10_Neural-machine-translation-with-attention-for-date-convert.ipynb b/10_Neural-machine-translation-with-attention-for-date-convert.ipynb new file mode 100644 index 0000000..c03d748 --- /dev/null +++ b/10_Neural-machine-translation-with-attention-for-date-convert.ipynb @@ -0,0 +1,962 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

ترجمه ماشینی با توجه برای تبدیل تاریخ

" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Neural Machine Translation\n", + "\n", + "\n", + " (\"25th of June, 2009\") ---> (\"2009-06-25\")" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply\n", + "from keras.layers import RepeatVector, Dense, Activation, Lambda\n", + "from keras.optimizers import Adam\n", + "from keras.utils import to_categorical\n", + "from keras.models import load_model, Model\n", + "import keras.backend as K\n", + "import numpy as np\n", + "\n", + "from faker import Faker\n", + "import random\n", + "from tqdm import tqdm\n", + "from babel.dates import format_date\n", + "from nmt_utils import *\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1 - Translating human readable dates into machine readable dates\n", + "\n", + "The model you will build here could be used to translate from one language to another, such as translating from English to Hindi. However, language translation requires massive datasets and usually takes days of training on GPUs. To give you a place to experiment with these models even without using massive datasets, we will instead use a simpler \"date translation\" task. \n", + "\n", + "The network will input a date written in a variety of possible formats (*e.g. \"the 29th of August 1958\", \"03/30/1968\", \"24 JUNE 1987\"*) and translate them into standardized, machine readable dates (*e.g. \"1958-08-29\", \"1968-03-30\", \"1987-06-24\"*). We will have the network learn to output dates in the common machine-readable format YYYY-MM-DD. \n", + "\n", + "\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1.1 - Dataset\n", + "\n", + "We will train the model on a dataset of 10000 human readable dates and their equivalent, standardized, machine readable dates. Let's run the following cells to load the dataset and print some examples. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████| 10000/10000 [00:00<00:00, 13839.02it/s]\n" + ] + } + ], + "source": [ + "m = 10000\n", + "dataset, src_vocab, dest_vocab, inv_dest_vocab = load_dataset(m)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[('9 may 1998', '1998-05-09'),\n", + " ('10.11.19', '2019-11-10'),\n", + " ('9/10/70', '1970-09-10'),\n", + " ('saturday april 28 1990', '1990-04-28'),\n", + " ('thursday january 26 1995', '1995-01-26'),\n", + " ('monday march 7 1983', '1983-03-07'),\n", + " ('sunday may 22 1988', '1988-05-22'),\n", + " ('08 jul 2008', '2008-07-08'),\n", + " ('8 sep 1999', '1999-09-08'),\n", + " ('thursday january 1 1981', '1981-01-01')]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You've loaded:\n", + "- `dataset`: a list of tuples of (human readable date, machine readable date)\n", + "- `src_vocab`: a python dictionary mapping all characters used in the human readable dates to an integer-valued index \n", + "- `dest_vocab`: a python dictionary mapping all characters used in machine readable dates to an integer-valued index. These indices are not necessarily consistent with `src_vocab`. \n", + "- `inv_dest_vocab`: the inverse dictionary of `dest_vocab`, mapping from indices back to characters. \n", + "\n", + "Let's preprocess the data and map the raw text data into the index values. We will also use Tx=30 (which we assume is the maximum length of the human readable date; if we get a longer input, we would have to truncate it) and Ty=10 (since \"YYYY-MM-DD\" is 10 characters long). " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X.shape: (10000, 30)\n", + "Y.shape: (10000, 10)\n", + "Xoh.shape: (10000, 30, 37)\n", + "Yoh.shape: (10000, 10, 11)\n" + ] + } + ], + "source": [ + "Tx = 30\n", + "Ty = 10\n", + "X, Y, Xoh, Yoh = preprocess_data(dataset, src_vocab, dest_vocab, Tx, Ty)\n", + "\n", + "print(\"X.shape:\", X.shape)\n", + "print(\"Y.shape:\", Y.shape)\n", + "print(\"Xoh.shape:\", Xoh.shape)\n", + "print(\"Yoh.shape:\", Yoh.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([12, 0, 24, 13, 34, 0, 4, 12, 12, 11, 36, 36, 36, 36, 36, 36, 36,\n", + " 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "X[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2, 10, 10, 9, 0, 1, 6, 0, 1, 10])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You now have:\n", + "- `X`: a processed version of the human readable dates in the training set, where each character is replaced by an index mapped to the character via `src_vocab`. Each date is further padded to $T_x$ values with a special character (< pad >). `X.shape = (m, Tx)`\n", + "- `Y`: a processed version of the machine readable dates in the training set, where each character is replaced by the index it is mapped to in `dest_vocab`. You should have `Y.shape = (m, Ty)`. \n", + "- `Xoh`: one-hot version of `X`, the \"1\" entry's index is mapped to the character thanks to `src_vocab`. `Xoh.shape = (m, Tx, len(src_vocab))`\n", + "- `Yoh`: one-hot version of `Y`, the \"1\" entry's index is mapped to the character thanks to `dest_vocab`. `Yoh.shape = (m, Tx, len(dest_vocab))`. Here, `len(dest_vocab) = 11` since there are 11 characters ('-' as well as 0-9). \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets also look at some examples of preprocessed training examples. Feel free to play with `index` in the cell below to navigate the dataset and see how source/target dates are preprocessed. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Source date: 9 may 1998\n", + "Target date: 1998-05-09\n", + "\n", + "Source after preprocessing (indices): [12 0 24 13 34 0 4 12 12 11 36 36 36 36 36 36 36 36 36 36 36 36 36 36\n", + " 36 36 36 36 36 36]\n", + "Target after preprocessing (indices): [ 2 10 10 9 0 1 6 0 1 10]\n", + "\n", + "Source after preprocessing (one-hot): [[0. 0. 0. ... 0. 0. 0.]\n", + " [1. 0. 0. ... 0. 0. 0.]\n", + " [0. 0. 0. ... 0. 0. 0.]\n", + " ...\n", + " [0. 0. 0. ... 0. 0. 1.]\n", + " [0. 0. 0. ... 0. 0. 1.]\n", + " [0. 0. 0. ... 0. 0. 1.]]\n", + "Target after preprocessing (one-hot): [[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]\n", + " [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]\n", + " [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", + " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]\n" + ] + } + ], + "source": [ + "index = 0\n", + "print(\"Source date:\", dataset[index][0])\n", + "print(\"Target date:\", dataset[index][1])\n", + "print()\n", + "print(\"Source after preprocessing (indices):\", X[index])\n", + "print(\"Target after preprocessing (indices):\", Y[index])\n", + "print()\n", + "print(\"Source after preprocessing (one-hot):\", Xoh[index])\n", + "print(\"Target after preprocessing (one-hot):\", Yoh[index])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2 - Neural machine translation with attention\n", + "\n", + "If you had to translate a book's paragraph from French to English, you would not read the whole paragraph, then close the book and translate. Even during the translation process, you would read/re-read and focus on the parts of the French paragraph corresponding to the parts of the English you are writing down. \n", + "\n", + "The attention mechanism tells a Neural Machine Translation model where it should pay attention to at any step. \n", + "\n", + "\n", + "### 2.1 - Attention mechanism\n", + "\n", + "Here is a figure to remind you how the model works. The diagram on the left shows the attention model. The diagram on the right shows what one \"Attention\" step does to calculate the attention variables $\\alpha^{\\langle t, t' \\rangle}$, which are used to compute the context variable $context^{\\langle t \\rangle}$ for each timestep in the output ($t=1, \\ldots, T_y$). \n", + "\n", + "\n", + " \n", + " \n", + "
\n", + "
\n", + "
\n", + "
\n", + "
\n", + "
**Figure 1**: Neural machine translation with attention
\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "Here are some properties of the model that you may notice: \n", + "\n", + "- There are two separate LSTMs in this model (see diagram on the left). Because the one at the bottom of the picture is a Bi-directional LSTM and comes *before* the attention mechanism, we will call it *pre-attention* Bi-LSTM. The LSTM at the top of the diagram comes *after* the attention mechanism, so we will call it the *post-attention* LSTM. The pre-attention Bi-LSTM goes through $T_x$ time steps; the post-attention LSTM goes through $T_y$ time steps. \n", + "\n", + "- The post-attention LSTM passes $s^{\\langle t \\rangle}, c^{\\langle t \\rangle}$ from one time step to the next. In the slides, we were using only a basic RNN for the post-activation sequence model, so the state captured by the RNN output activations $s^{\\langle t\\rangle}$. But since we are using an LSTM here, the LSTM has both the output activation $s^{\\langle t\\rangle}$ and the hidden cell state $c^{\\langle t\\rangle}$. However, unlike text generation examples , in this model the post-activation LSTM at time $t$ does will not take the specific generated $y^{\\langle t-1 \\rangle}$ as input; it only takes $s^{\\langle t\\rangle}$ and $c^{\\langle t\\rangle}$ as input. We have designed the model this way, because (unlike language generation where adjacent characters are highly correlated) there isn't as strong a dependency between the previous character and the next character in a YYYY-MM-DD date. \n", + "\n", + "- We use $a^{\\langle t \\rangle} = [\\overrightarrow{a}^{\\langle t \\rangle}; \\overleftarrow{a}^{\\langle t \\rangle}]$ to represent the concatenation of the activations of both the forward-direction and backward-directions of the pre-attention Bi-LSTM. \n", + "\n", + "- The diagram on the right uses a `RepeatVector` node to copy $s^{\\langle t-1 \\rangle}$'s value $T_x$ times, and then `Concatenation` to concatenate $s^{\\langle t-1 \\rangle}$ and $a^{\\langle t \\rangle}$ to compute $e^{\\langle t, t'}$, which is then passed through a softmax to compute $\\alpha^{\\langle t, t' \\rangle}$. We'll explain how to use `RepeatVector` and `Concatenation` in Keras below. \n", + "\n", + "Lets implement this model. You will start by implementing two functions: `one_step_attention()` and `model()`.\n", + "\n", + "**1) `one_step_attention()`**: At step $t$, given all the hidden states of the Bi-LSTM ($[a^{<1>},a^{<2>}, ..., a^{}]$) and the previous hidden state of the second LSTM ($s^{}$), `one_step_attention()` will compute the attention weights ($[\\alpha^{},\\alpha^{}, ..., \\alpha^{}]$) and output the context vector (see Figure 1 (right) for details):\n", + "$$context^{} = \\sum_{t' = 0}^{T_x} \\alpha^{}a^{}\\tag{1}$$ \n", + "\n", + " \n", + "**2) `model()`**: Implements the entire model. It first runs the input through a Bi-LSTM to get back $[a^{<1>},a^{<2>}, ..., a^{}]$. Then, it calls `one_step_attention()` $T_y$ times (`for` loop). At each iteration of this loop, it gives the computed context vector $c^{}$ to the second LSTM, and runs the output of the LSTM through a dense layer with softmax activation to generate a prediction $\\hat{y}^{}$. \n", + "\n", + "\n", + "The function `model()` will call the layers in `one_step_attention()` $T_y$ using a for-loop, and it is important that all $T_y$ copies have the same weights. I.e., it should not re-initiaiize the weights every time. In other words, all $T_y$ steps should have shared weights. Here's how you can implement layers with shareable weights in Keras:\n", + "1. Define the layer objects (as global variables for examples).\n", + "2. Call these objects when propagating the input.\n", + "\n", + "Please check the Keras documentation to make sure you understand what these layers are: [RepeatVector()](https://keras.io/layers/core/#repeatvector), [Concatenate()](https://keras.io/layers/merge/#concatenate), [Dense()](https://keras.io/layers/core/#dense), [Activation()](https://keras.io/layers/core/#activation), [Dot()](https://keras.io/layers/merge/#dot)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Defined shared layers as global variables\n", + "repeator = RepeatVector(Tx)\n", + "concatenator = Concatenate(axis=-1)\n", + "densor1 = Dense(10, activation = \"tanh\")\n", + "densor2 = Dense(1, activation = \"relu\")\n", + "activator = Activation(softmax, name='attention_weights') # We are using a custom softmax(axis = 1) loaded in this notebook\n", + "dotor = Dot(axes = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "#one_step_attention\n", + "\n", + "def one_step_attention(a, s_prev):\n", + " # repeat s_prev to be of shape (m, Tx, n_s) so that you can concatenate it with all hidden states \"a\" \n", + " s_prev = repeator(s_prev)\n", + " # concatenate a and s_prev on the last axis\n", + " concat = concatenator([a, s_prev])\n", + " # propagate concat through a small fully-connected neural network to compute the \"intermediate energies\" variable e.\n", + " e = densor1(concat)\n", + " # propagate e through a small fully-connected neural network to compute the \"energies\" variable energies. \n", + " energies = densor2(e)\n", + " # Use \"activator\" on \"energies\" to compute the attention weights \"alphas\" (≈ 1 line)\n", + " alphas = activator(energies)\n", + " # Use dotor together with \"alphas\" and \"a\" to compute the context vector to be given to the next (post-attention) LSTM-cell (≈ 1 line)\n", + " context = dotor([alphas, a])\n", + " \n", + " return context" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "n_a = 32\n", + "n_s = 64\n", + "\n", + "post_activation_LSTM_cell = LSTM(n_s, return_state = True)\n", + "output_layer = Dense(len(dest_vocab), activation=softmax)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now you can use these layers $T_y$ times in a `for` loop to generate the outputs, and their parameters will not be reinitialized. You will have to carry out the following steps: \n", + "\n", + "1. Propagate the input into a [Bidirectional](https://keras.io/layers/wrappers/#bidirectional) [LSTM](https://keras.io/layers/recurrent/#lstm)\n", + "2. Iterate for $t = 0, \\dots, T_y-1$: \n", + " 1. Call `one_step_attention()` on $[\\alpha^{},\\alpha^{}, ..., \\alpha^{}]$ and $s^{}$ to get the context vector $context^{}$.\n", + " 2. Give $context^{}$ to the post-attention LSTM cell. Remember pass in the previous hidden-state $s^{\\langle t-1\\rangle}$ and cell-states $c^{\\langle t-1\\rangle}$ of this LSTM using `initial_state= [previous hidden state, previous cell state]`. Get back the new hidden state $s^{}$ and the new cell state $c^{}$.\n", + " 3. Apply a softmax layer to $s^{}$, get the output. \n", + " 4. Save the output by adding it to the list of outputs.\n", + "\n", + "3. Create your Keras model instance, it should have three inputs (\"inputs\", $s^{<0>}$ and $c^{<0>}$) and output the list of \"outputs\"." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# GRADED FUNCTION: model\n", + "\n", + "def model(Tx, Ty, n_a, n_s, src_vocab_size, dest_vocab_size):\n", + " \"\"\"\n", + " Arguments:\n", + " Tx -- length of the input sequence\n", + " Ty -- length of the output sequence\n", + " n_a -- hidden state size of the Bi-LSTM\n", + " n_s -- hidden state size of the post-attention LSTM\n", + " src_vocab_size -- size of the python dictionary \"src_vocab\"\n", + " dest_vocab_size -- size of the python dictionary \"dest_vocab\"\n", + "\n", + " Returns:\n", + " model -- Keras model instance\n", + " \"\"\"\n", + " \n", + " # Define the inputs of your model with a shape (Tx,)\n", + " # Define s0 and c0, initial hidden state for the decoder LSTM of shape (n_s,)\n", + " X = Input(shape=(Tx, src_vocab_size))\n", + " s0 = Input(shape=(n_s,), name='s0')\n", + " c0 = Input(shape=(n_s,), name='c0')\n", + " s = s0\n", + " c = c0\n", + " \n", + " # Initialize empty list of outputs\n", + " outputs = []\n", + " \n", + " \n", + " # pre-attention Bi-LSTM.\n", + " a = Bidirectional(LSTM(n_a, return_sequences=True))(X)\n", + " \n", + " # Iterate for Ty steps\n", + " for t in range(Ty):\n", + " \n", + " #Perform one step of the attention mechanism to get back the context vector at step t \n", + " context = one_step_attention(a, s)\n", + " \n", + " #post-attention LSTM cell \n", + " s, _, c = post_activation_LSTM_cell(context, initial_state = [s, c])\n", + " \n", + " # Dense layer to the hidden state output of the post-attention LSTM\n", + " out = Dense(len(dest_vocab), activation=softmax)(s)\n", + " \n", + " outputs.append(out)\n", + " \n", + " model = Model(inputs=[X, s0, c0], outputs=outputs)\n", + " return model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Run the following cell to create your model." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "model = model(Tx, Ty, n_a, n_s, len(src_vocab), len(dest_vocab))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's get a summary of the model to check if it matches the expected output." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"model_1\"\n", + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "input_1 (InputLayer) (None, 30, 37) 0 \n", + "__________________________________________________________________________________________________\n", + "s0 (InputLayer) (None, 64) 0 \n", + "__________________________________________________________________________________________________\n", + "bidirectional_1 (Bidirectional) (None, 30, 64) 17920 input_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "repeat_vector_1 (RepeatVector) (None, 30, 64) 0 s0[0][0] \n", + " lstm_1[0][0] \n", + " lstm_1[1][0] \n", + " lstm_1[2][0] \n", + " lstm_1[3][0] \n", + " lstm_1[4][0] \n", + " lstm_1[5][0] \n", + " lstm_1[6][0] \n", + " lstm_1[7][0] \n", + " lstm_1[8][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 30, 128) 0 bidirectional_1[0][0] \n", + " repeat_vector_1[0][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[1][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[2][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[3][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[4][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[5][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[6][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[7][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[8][0] \n", + " bidirectional_1[0][0] \n", + " repeat_vector_1[9][0] \n", + "__________________________________________________________________________________________________\n", + "dense_1 (Dense) (None, 30, 10) 1290 concatenate_1[0][0] \n", + " concatenate_1[1][0] \n", + " concatenate_1[2][0] \n", + " concatenate_1[3][0] \n", + " concatenate_1[4][0] \n", + " concatenate_1[5][0] \n", + " concatenate_1[6][0] \n", + " concatenate_1[7][0] \n", + " concatenate_1[8][0] \n", + " concatenate_1[9][0] \n", + "__________________________________________________________________________________________________\n", + "dense_2 (Dense) (None, 30, 1) 11 dense_1[0][0] \n", + " dense_1[1][0] \n", + " dense_1[2][0] \n", + " dense_1[3][0] \n", + " dense_1[4][0] \n", + " dense_1[5][0] \n", + " dense_1[6][0] \n", + " dense_1[7][0] \n", + " dense_1[8][0] \n", + " dense_1[9][0] \n", + "__________________________________________________________________________________________________\n", + "attention_weights (Activation) (None, 30, 1) 0 dense_2[0][0] \n", + " dense_2[1][0] \n", + " dense_2[2][0] \n", + " dense_2[3][0] \n", + " dense_2[4][0] \n", + " dense_2[5][0] \n", + " dense_2[6][0] \n", + " dense_2[7][0] \n", + " dense_2[8][0] \n", + " dense_2[9][0] \n", + "__________________________________________________________________________________________________\n", + "dot_1 (Dot) (None, 1, 64) 0 attention_weights[0][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[1][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[2][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[3][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[4][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[5][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[6][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[7][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[8][0] \n", + " bidirectional_1[0][0] \n", + " attention_weights[9][0] \n", + " bidirectional_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "c0 (InputLayer) (None, 64) 0 \n", + "__________________________________________________________________________________________________\n", + "lstm_1 (LSTM) [(None, 64), (None, 33024 dot_1[0][0] \n", + " s0[0][0] \n", + " c0[0][0] \n", + " dot_1[1][0] \n", + " lstm_1[0][0] \n", + " lstm_1[0][2] \n", + " dot_1[2][0] \n", + " lstm_1[1][0] \n", + " lstm_1[1][2] \n", + " dot_1[3][0] \n", + " lstm_1[2][0] \n", + " lstm_1[2][2] \n", + " dot_1[4][0] \n", + " lstm_1[3][0] \n", + " lstm_1[3][2] \n", + " dot_1[5][0] \n", + " lstm_1[4][0] \n", + " lstm_1[4][2] \n", + " dot_1[6][0] \n", + " lstm_1[5][0] \n", + " lstm_1[5][2] \n", + " dot_1[7][0] \n", + " lstm_1[6][0] \n", + " lstm_1[6][2] \n", + " dot_1[8][0] \n", + " lstm_1[7][0] \n", + " lstm_1[7][2] \n", + " dot_1[9][0] \n", + " lstm_1[8][0] \n", + " lstm_1[8][2] \n", + "__________________________________________________________________________________________________\n", + "dense_4 (Dense) (None, 11) 715 lstm_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense_5 (Dense) (None, 11) 715 lstm_1[1][0] \n", + "__________________________________________________________________________________________________\n", + "dense_6 (Dense) (None, 11) 715 lstm_1[2][0] \n", + "__________________________________________________________________________________________________\n", + "dense_7 (Dense) (None, 11) 715 lstm_1[3][0] \n", + "__________________________________________________________________________________________________\n", + "dense_8 (Dense) (None, 11) 715 lstm_1[4][0] \n", + "__________________________________________________________________________________________________\n", + "dense_9 (Dense) (None, 11) 715 lstm_1[5][0] \n", + "__________________________________________________________________________________________________\n", + "dense_10 (Dense) (None, 11) 715 lstm_1[6][0] \n", + "__________________________________________________________________________________________________\n", + "dense_11 (Dense) (None, 11) 715 lstm_1[7][0] \n", + "__________________________________________________________________________________________________\n", + "dense_12 (Dense) (None, 11) 715 lstm_1[8][0] \n", + "__________________________________________________________________________________________________\n", + "dense_13 (Dense) (None, 11) 715 lstm_1[9][0] \n", + "==================================================================================================\n", + "Total params: 59,395\n", + "Trainable params: 59,395\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ] + } + ], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "opt = Adam(lr=0.005, beta_1=0.9, beta_2=0.999, decay=0.01)\n", + "model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])\n", + "### END CODE HERE ###" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The last step is to define all your inputs and outputs to fit the model:\n", + "- You already have X of shape $(m = 10000, T_x = 30)$ containing the training examples.\n", + "- You need to create `s0` and `c0` to initialize your `post_activation_LSTM_cell` with 0s.\n", + "- Given the `model()` you coded, you need the \"outputs\" to be a list of 11 elements of shape (m, T_y). So that: `outputs[i][0], ..., outputs[i][Ty]` represent the true labels (characters) corresponding to the $i^{th}$ training example (`X[i]`). More generally, `outputs[i][j]` is the true label of the $j^{th}$ character in the $i^{th}$ training example." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X.shape: (10000, 30)\n", + "Y.shape: (10000, 10)\n", + "Xoh.shape: (10000, 30, 37)\n", + "Yoh.shape: (10000, 10, 11)\n" + ] + } + ], + "source": [ + "print(\"X.shape:\", X.shape)\n", + "print(\"Y.shape:\", Y.shape)\n", + "print(\"Xoh.shape:\", Xoh.shape)\n", + "print(\"Yoh.shape:\", Yoh.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "s0 = np.zeros((m, n_s))\n", + "c0 = np.zeros((m, n_s))\n", + "outputs = list(Yoh.swapaxes(0,1))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(10000, 64)\n", + "(10000, 64)\n", + "(10, 10000, 11)\n" + ] + } + ], + "source": [ + "print(s0.shape)\n", + "print(c0.shape)\n", + "print(np.shape(outputs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now fit the model and run it for one epoch." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/30\n", + "10000/10000 [==============================] - 69s 7ms/step - loss: 12.4757 - dense_4_loss: 0.8144 - dense_5_loss: 0.8247 - dense_6_loss: 1.6834 - dense_7_loss: 2.3235 - dense_8_loss: 0.1300 - dense_9_loss: 0.6678 - dense_10_loss: 2.2892 - dense_11_loss: 0.0953 - dense_12_loss: 1.3104 - dense_13_loss: 2.3370 - dense_4_accuracy: 0.5912 - dense_5_accuracy: 0.5823 - dense_6_accuracy: 0.1990 - dense_7_accuracy: 0.0984 - dense_8_accuracy: 0.9961 - dense_9_accuracy: 0.7391 - dense_10_accuracy: 0.1662 - dense_11_accuracy: 0.9900 - dense_12_accuracy: 0.3190 - dense_13_accuracy: 0.1011\n", + "Epoch 2/30\n", + " 4200/10000 [===========>..................] - ETA: 33s - loss: 11.5541 - dense_4_loss: 0.6167 - dense_5_loss: 0.6409 - dense_6_loss: 1.5992 - dense_7_loss: 2.3100 - dense_8_loss: 3.3439e-04 - dense_9_loss: 0.5649 - dense_10_loss: 2.2639 - dense_11_loss: 2.9461e-04 - dense_12_loss: 1.2471 - dense_13_loss: 2.3109 - dense_4_accuracy: 0.6169 - dense_5_accuracy: 0.6169 - dense_6_accuracy: 0.2210 - dense_7_accuracy: 0.1067 - dense_8_accuracy: 1.0000 - dense_9_accuracy: 0.7481 - dense_10_accuracy: 0.1676 - dense_11_accuracy: 1.0000 - dense_12_accuracy: 0.3226 - dense_13_accuracy: 0.1045" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mXoh\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0ms0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mc0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0moutputs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mepochs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m30\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m100\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\keras\\engine\\training.py\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)\u001b[0m\n\u001b[0;32m 1237\u001b[0m \u001b[0msteps_per_epoch\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0msteps_per_epoch\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1238\u001b[0m \u001b[0mvalidation_steps\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvalidation_steps\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1239\u001b[1;33m validation_freq=validation_freq)\n\u001b[0m\u001b[0;32m 1240\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1241\u001b[0m def evaluate(self,\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\keras\\engine\\training_arrays.py\u001b[0m in \u001b[0;36mfit_loop\u001b[1;34m(model, fit_function, fit_inputs, out_labels, batch_size, epochs, verbose, callbacks, val_function, val_inputs, shuffle, initial_epoch, steps_per_epoch, validation_steps, validation_freq)\u001b[0m\n\u001b[0;32m 194\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mins_batch\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 195\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 196\u001b[1;33m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfit_function\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mins_batch\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 197\u001b[0m \u001b[0mouts\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mto_list\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mouts\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 198\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0ml\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mo\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mout_labels\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mouts\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\keras\\backend.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, inputs)\u001b[0m\n\u001b[0;32m 3738\u001b[0m \u001b[0mvalue\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmath_ops\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtensor\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3739\u001b[0m \u001b[0mconverted_inputs\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3740\u001b[1;33m \u001b[0moutputs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_graph_fn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mconverted_inputs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3741\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3742\u001b[0m \u001b[1;31m# EagerTensor.numpy() will often make a copy to ensure memory safety.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\eager\\function.py\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1079\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mFor\u001b[0m \u001b[0minvalid\u001b[0m \u001b[0mpositional\u001b[0m\u001b[1;33m/\u001b[0m\u001b[0mkeyword\u001b[0m \u001b[0margument\u001b[0m \u001b[0mcombinations\u001b[0m\u001b[1;33m.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1080\u001b[0m \"\"\"\n\u001b[1;32m-> 1081\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call_impl\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1082\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1083\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_call_impl\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcancellation_manager\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_call_impl\u001b[1;34m(self, args, kwargs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1119\u001b[0m raise TypeError(\"Keyword arguments {} unknown. Expected {}.\".format(\n\u001b[0;32m 1120\u001b[0m list(kwargs.keys()), list(self._arg_keywords)))\n\u001b[1;32m-> 1121\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_call_flat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcaptured_inputs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcancellation_manager\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1122\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1123\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_filtered_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\eager\\function.py\u001b[0m in \u001b[0;36m_call_flat\u001b[1;34m(self, args, captured_inputs, cancellation_manager)\u001b[0m\n\u001b[0;32m 1222\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mexecuting_eagerly\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1223\u001b[0m flat_outputs = forward_function.call(\n\u001b[1;32m-> 1224\u001b[1;33m ctx, args, cancellation_manager=cancellation_manager)\n\u001b[0m\u001b[0;32m 1225\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1226\u001b[0m \u001b[0mgradient_name\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_delayed_rewrite_functions\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mregister\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\eager\\function.py\u001b[0m in \u001b[0;36mcall\u001b[1;34m(self, ctx, args, cancellation_manager)\u001b[0m\n\u001b[0;32m 509\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 510\u001b[0m \u001b[0mattrs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"executor_type\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mexecutor_type\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"config_proto\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 511\u001b[1;33m ctx=ctx)\n\u001b[0m\u001b[0;32m 512\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 513\u001b[0m outputs = execute.execute_with_cancellation(\n", + "\u001b[1;32m~\\Miniconda3\\envs\\tf2\\lib\\site-packages\\tensorflow_core\\python\\eager\\execute.py\u001b[0m in \u001b[0;36mquick_execute\u001b[1;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[0m\n\u001b[0;32m 59\u001b[0m tensors = pywrap_tensorflow.TFE_Py_Execute(ctx._handle, device_name,\n\u001b[0;32m 60\u001b[0m \u001b[0mop_name\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mattrs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 61\u001b[1;33m num_outputs)\n\u001b[0m\u001b[0;32m 62\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mcore\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_NotOkStatusException\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 63\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "model.fit([Xoh, s0, c0], outputs, epochs=30, batch_size=100)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While training you can see the loss as well as the accuracy on each of the 10 positions of the output. The table below gives you an example of what the accuracies could be if the batch had 2 examples: \n", + "\n", + "
\n", + "
Thus, `dense_2_acc_8: 0.89` means that you are predicting the 7th character of the output correctly 89% of the time in the current batch of data.
\n", + "\n", + "\n", + "We have run this model for longer, and saved the weights. Run the next cell to load our weights. (By training a model for several minutes, you should be able to obtain a model of similar accuracy, but loading our model will save you time.) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
\n", + "You can Download our weights:\n", + " \n", + "http://deepnn.ir/class.vision/andrewng/machine-translation-with-attention/models.zip" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.load_weights('models/model.h5')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can now see the results on new examples." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "EXAMPLES = ['3 May 1979', '5 April 09', '21th of August 2016', 'Tue 10 Jul 2007', 'Saturday May 9 2018', 'March 3 2001', 'March 3rd 2001', '1 March 2001']\n", + "for example in EXAMPLES:\n", + " \n", + " source = string_to_int(example, Tx, src_vocab)\n", + " source = np.array(list(map(lambda x: to_categorical(x, num_classes=len(src_vocab)), source))).swapaxes(0,1)\n", + " prediction = model.predict([source, s0, c0])\n", + " prediction = np.argmax(prediction, axis = -1)\n", + " output = [inv_dest_vocab[int(i)] for i in prediction]\n", + " \n", + " print(\"source:\", example)\n", + " print(\"output:\", ''.join(output))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also change these examples to test with your own examples. The next part will give you a better sense on what the attention mechanism is doing--i.e., what part of the input the network is paying attention to when generating a particular output character. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3 - Visualizing Attention (Optional / Ungraded)\n", + "\n", + "Since the problem has a fixed output length of 10, it is also possible to carry out this task using 10 different softmax units to generate the 10 characters of the output. But one advantage of the attention model is that each part of the output (say the month) knows it needs to depend only on a small part of the input (the characters in the input giving the month). We can visualize what part of the output is looking at what part of the input.\n", + "\n", + "Consider the task of translating \"Saturday 9 May 2018\" to \"2018-05-09\". If we visualize the computed $\\alpha^{\\langle t, t' \\rangle}$ we get this: \n", + "\n", + "
\n", + "
**Figure 8**: Full Attention Map
\n", + "\n", + "Notice how the output ignores the \"Saturday\" portion of the input. None of the output timesteps are paying much attention to that portion of the input. We see also that 9 has been translated as 09 and May has been correctly translated into 05, with the output paying attention to the parts of the input it needs to to make the translation. The year mostly requires it to pay attention to the input's \"18\" in order to generate \"2018.\" \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3.1 - Getting the activations from the network\n", + "\n", + "Lets now visualize the attention values in your network. We'll propagate an example through the network, then visualize the values of $\\alpha^{\\langle t, t' \\rangle}$. \n", + "\n", + "To figure out where the attention values are located, let's start by printing a summary of the model ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Navigate through the output of `model.summary()` above. You can see that the layer named `attention_weights` outputs the `alphas` of shape (m, 30, 1) before `dot_2` computes the context vector for every time step $t = 0, \\ldots, T_y-1$. Lets get the activations from this layer.\n", + "\n", + "The function `attention_map()` pulls out the attention values from your model and plots them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "attention_map = plot_attention_map(model, src_vocab, inv_dest_vocab, \"Tuesday 09 Oct 1993\", num = 7, n_s = 64)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the generated plot you can observe the values of the attention weights for each character of the predicted output. Examine this plot and check that where the network is paying attention makes sense to you.\n", + "\n", + "In the date translation application, you will observe that most of the time attention helps predict the year, and hasn't much impact on predicting the day/month." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Congratulations!\n", + "\n", + "\n", + "You have come to the end of this assignment \n", + "\n", + " **Here's what you should remember from this notebook**:\n", + "\n", + "- Machine translation models can be used to map from one sequence to another. They are useful not just for translating human languages (like French->English) but also for tasks like date format translation. \n", + "- An attention mechanism allows a network to focus on the most relevant parts of the input when producing a specific part of the output. \n", + "- A network using an attention mechanism can translate from inputs of length $T_x$ to outputs of length $T_y$, where $T_x$ and $T_y$ can be different. \n", + "- You can visualize attention weights $\\alpha^{\\langle t,t' \\rangle}$ to see what the network is paying attention to while generating each output." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Congratulations on finishing this assignment! You are now able to implement an attention model and use it to learn complex mappings from one sequence to another. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "coursera": { + "course_slug": "nlp-sequence-models", + "graded_item_id": "n16CQ", + "launcher_item_id": "npjGi" + }, + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/11_nmt-with-attention.ipynb b/11_nmt-with-attention.ipynb new file mode 100644 index 0000000..b6b774c --- /dev/null +++ b/11_nmt-with-attention.ipynb @@ -0,0 +1,1261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

ترجمه ماشینی با توجه و teacher forcing

" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "J0Qjg6vuaHNt" + }, + "source": [ + "# Neural machine translation with attention" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "CiwtNgENbx2g" + }, + "source": [ + "This notebook trains a sequence to sequence (seq2seq) model for Spanish to English translation. This is an advanced example that assumes some knowledge of sequence to sequence models.\n", + "\n", + "After training the model in this notebook, you will be able to input a Spanish sentence, such as *\"¿todavia estan en casa?\"*, and return the English translation: *\"are you still at home?\"*\n", + "\n", + "The translation quality is reasonable for a toy example, but the generated attention plot is perhaps more interesting. This shows which parts of the input sentence has the model's attention while translating:\n", + "\n", + "\"spanish-english\n", + "\n", + "Note: This example takes approximately 10 mintues to run on a single P100 GPU." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "tnxXKDjq3jEL" + }, + "outputs": [], + "source": [ + "from __future__ import absolute_import, division, print_function, unicode_literals\n", + "\n", + "try:\n", + " # %tensorflow_version only exists in Colab.\n", + " %tensorflow_version 2.x\n", + "except Exception:\n", + " pass\n", + "import tensorflow as tf\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "import unicodedata\n", + "import re\n", + "import numpy as np\n", + "import os\n", + "import io\n", + "import time" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "wfodePkj3jEa" + }, + "source": [ + "## Download and prepare the dataset\n", + "\n", + "We'll use a language dataset provided by http://www.manythings.org/anki/. This dataset contains language translation pairs in the format:\n", + "\n", + "```\n", + "May I borrow this book?\t¿Puedo tomar prestado este libro?\n", + "```\n", + "\n", + "There are a variety of languages available, but we'll use the English-Spanish dataset. For convenience, we've hosted a copy of this dataset on Google Cloud, but you can also download your own copy. After downloading the dataset, here are the steps we'll take to prepare the data:\n", + "\n", + "1. Add a *start* and *end* token to each sentence.\n", + "2. Clean the sentences by removing special characters.\n", + "3. Create a word index and reverse word index (dictionaries mapping from word → id and id → word).\n", + "4. Pad each sentence to a maximum length." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "kRVATYOgJs1b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip\n", + "2646016/2638744 [==============================] - 0s 0us/step\n" + ] + } + ], + "source": [ + "# Download the file\n", + "path_to_zip = tf.keras.utils.get_file(\n", + " 'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',\n", + " extract=True)\n", + "\n", + "path_to_file = os.path.dirname(path_to_zip)+\"/spa-eng/spa.txt\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "rd0jw-eC3jEh" + }, + "outputs": [], + "source": [ + "# Converts the unicode file to ascii\n", + "def unicode_to_ascii(s):\n", + " return ''.join(c for c in unicodedata.normalize('NFD', s)\n", + " if unicodedata.category(c) != 'Mn')\n", + "\n", + "\n", + "def preprocess_sentence(w):\n", + " w = unicode_to_ascii(w.lower().strip())\n", + "\n", + " # creating a space between a word and the punctuation following it\n", + " # eg: \"he is a boy.\" => \"he is a boy .\"\n", + " # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation\n", + " w = re.sub(r\"([?.!,¿])\", r\" \\1 \", w)\n", + " w = re.sub(r'[\" \"]+', \" \", w)\n", + "\n", + " # replacing everything with space except (a-z, A-Z, \".\", \"?\", \"!\", \",\")\n", + " w = re.sub(r\"[^a-zA-Z?.!,¿]+\", \" \", w)\n", + "\n", + " w = w.rstrip().strip()\n", + "\n", + " # adding a start and an end token to the sentence\n", + " # so that the model know when to start and stop predicting.\n", + " w = ' ' + w + ' '\n", + " return w" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "opI2GzOt479E" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " may i borrow this book ? \n", + "b' \\xc2\\xbf puedo tomar prestado este libro ? '\n" + ] + } + ], + "source": [ + "en_sentence = u\"May I borrow this book?\"\n", + "sp_sentence = u\"¿Puedo tomar prestado este libro?\"\n", + "print(preprocess_sentence(en_sentence))\n", + "print(preprocess_sentence(sp_sentence).encode('utf-8'))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "OHn4Dct23jEm" + }, + "outputs": [], + "source": [ + "# 1. Remove the accents\n", + "# 2. Clean the sentences\n", + "# 3. Return word pairs in the format: [ENGLISH, SPANISH]\n", + "def create_dataset(path, num_examples):\n", + " lines = io.open(path, encoding='UTF-8').read().strip().split('\\n')\n", + "\n", + " word_pairs = [[preprocess_sentence(w) for w in l.split('\\t')] for l in lines[:num_examples]]\n", + "\n", + " return zip(*word_pairs)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "cTbSbBz55QtF" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " if you want to sound like a native speaker , you must be willing to practice saying the same sentence over and over in the same way that banjo players practice the same phrase over and over until they can play it correctly and at the desired tempo . \n", + " si quieres sonar como un hablante nativo , debes estar dispuesto a practicar diciendo la misma frase una y otra vez de la misma manera en que un musico de banjo practica el mismo fraseo una y otra vez hasta que lo puedan tocar correctamente y en el tiempo esperado . \n" + ] + } + ], + "source": [ + "en, sp = create_dataset(path_to_file, None)\n", + "print(en[-1])\n", + "print(sp[-1])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "OmMZQpdO60dt" + }, + "outputs": [], + "source": [ + "def max_length(tensor):\n", + " return max(len(t) for t in tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "bIOn8RCNDJXG" + }, + "outputs": [], + "source": [ + "def tokenize(lang):\n", + " lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(\n", + " filters='')\n", + " lang_tokenizer.fit_on_texts(lang)\n", + "\n", + " tensor = lang_tokenizer.texts_to_sequences(lang)\n", + "\n", + " tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor,\n", + " padding='post')\n", + "\n", + " return tensor, lang_tokenizer" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "eAY9k49G3jE_" + }, + "outputs": [], + "source": [ + "def load_dataset(path, num_examples=None):\n", + " # creating cleaned input, output pairs\n", + " targ_lang, inp_lang = create_dataset(path, num_examples)\n", + "\n", + " input_tensor, inp_lang_tokenizer = tokenize(inp_lang)\n", + " target_tensor, targ_lang_tokenizer = tokenize(targ_lang)\n", + "\n", + " return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "GOi42V79Ydlr" + }, + "source": [ + "### Limit the size of the dataset to experiment faster (optional)\n", + "\n", + "Training on the complete dataset of >100,000 sentences will take a long time. To train faster, we can limit the size of the dataset to 30,000 sentences (of course, translation quality degrades with less data):" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "cnxC7q-j3jFD" + }, + "outputs": [], + "source": [ + "# Try experimenting with the size of that dataset\n", + "num_examples = 30000\n", + "input_tensor, target_tensor, inp_lang, targ_lang = load_dataset(path_to_file, num_examples)\n", + "\n", + "# Calculate max_length of the target tensors\n", + "max_length_targ, max_length_inp = max_length(target_tensor), max_length(input_tensor)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "4QILQkOs3jFG" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "24000 24000 6000 6000\n" + ] + } + ], + "source": [ + "# Creating training and validation sets using an 80-20 split\n", + "input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)\n", + "\n", + "# Show length\n", + "print(len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "lJPmLZGMeD5q" + }, + "outputs": [], + "source": [ + "def convert(lang, tensor):\n", + " for t in tensor:\n", + " if t!=0:\n", + " print (\"%d ----> %s\" % (t, lang.index_word[t]))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "VXukARTDd7MT" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input Language; index to word mapping\n", + "1 ----> \n", + "265 ----> compre\n", + "15 ----> un\n", + "6648 ----> nopal\n", + "3 ----> .\n", + "2 ----> \n", + "\n", + "Target Language; index to word mapping\n", + "1 ----> \n", + "4 ----> i\n", + "222 ----> bought\n", + "9 ----> a\n", + "2787 ----> cactus\n", + "3 ----> .\n", + "2 ----> \n" + ] + } + ], + "source": [ + "print (\"Input Language; index to word mapping\")\n", + "convert(inp_lang, input_tensor_train[0])\n", + "print ()\n", + "print (\"Target Language; index to word mapping\")\n", + "convert(targ_lang, target_tensor_train[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "rgCLkfv5uO3d" + }, + "source": [ + "### Create a tf.data dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "TqHsArVZ3jFS" + }, + "outputs": [], + "source": [ + "BUFFER_SIZE = len(input_tensor_train)\n", + "BATCH_SIZE = 64\n", + "steps_per_epoch = len(input_tensor_train)//BATCH_SIZE\n", + "embedding_dim = 256\n", + "units = 1024\n", + "vocab_inp_size = len(inp_lang.word_index)+1\n", + "vocab_tar_size = len(targ_lang.word_index)+1\n", + "\n", + "dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)\n", + "dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "qc6-NK1GtWQt" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(TensorShape([64, 16]), TensorShape([64, 11]))" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "example_input_batch, example_target_batch = next(iter(dataset))\n", + "example_input_batch.shape, example_target_batch.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "TNfHIF71ulLu" + }, + "source": [ + "## Write the encoder and decoder model\n", + "\n", + "Implement an encoder-decoder model with attention which you can read about in the TensorFlow [Neural Machine Translation (seq2seq) tutorial](https://github.com/tensorflow/nmt). This example uses a more recent set of APIs. This notebook implements the [attention equations](https://github.com/tensorflow/nmt#background-on-the-attention-mechanism) from the seq2seq tutorial. The following diagram shows that each input words is assigned a weight by the attention mechanism which is then used by the decoder to predict the next word in the sentence. The below picture and formulas are an example of attention mechanism from [Luong's paper](https://arxiv.org/abs/1508.04025v5). \n", + "\n", + "\"attention\n", + "\n", + "The input is put through an encoder model which gives us the encoder output of shape *(batch_size, max_length, hidden_size)* and the encoder hidden state of shape *(batch_size, hidden_size)*.\n", + "\n", + "Here are the equations that are implemented:\n", + "\n", + "\"attention\n", + "\"attention\n", + "\n", + "This tutorial uses [Bahdanau attention](https://arxiv.org/pdf/1409.0473.pdf) for the encoder. Let's decide on notation before writing the simplified form:\n", + "\n", + "* FC = Fully connected (dense) layer\n", + "* EO = Encoder output\n", + "* H = hidden state\n", + "* X = input to the decoder\n", + "\n", + "And the pseudo-code:\n", + "\n", + "* `score = FC(tanh(FC(EO) + FC(H)))`\n", + "* `attention weights = softmax(score, axis = 1)`. Softmax by default is applied on the last axis but here we want to apply it on the *1st axis*, since the shape of score is *(batch_size, max_length, hidden_size)*. `Max_length` is the length of our input. Since we are trying to assign a weight to each input, softmax should be applied on that axis.\n", + "* `context vector = sum(attention weights * EO, axis = 1)`. Same reason as above for choosing axis as 1.\n", + "* `embedding output` = The input to the decoder X is passed through an embedding layer.\n", + "* `merged vector = concat(embedding output, context vector)`\n", + "* This merged vector is then given to the GRU\n", + "\n", + "The shapes of all the vectors at each step have been specified in the comments in the code:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "nZ2rI24i3jFg" + }, + "outputs": [], + "source": [ + "class Encoder(tf.keras.Model):\n", + " def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):\n", + " super(Encoder, self).__init__()\n", + " self.batch_sz = batch_sz\n", + " self.enc_units = enc_units\n", + " self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)\n", + " self.gru = tf.keras.layers.GRU(self.enc_units,\n", + " return_sequences=True,\n", + " return_state=True,\n", + " recurrent_initializer='glorot_uniform')\n", + "\n", + " def call(self, x, hidden):\n", + " x = self.embedding(x)\n", + " output, state = self.gru(x, initial_state = hidden)\n", + " return output, state\n", + "\n", + " def initialize_hidden_state(self):\n", + " return tf.zeros((self.batch_sz, self.enc_units))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "60gSVh05Jl6l" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Encoder output shape: (batch size, sequence length, units) (64, 16, 1024)\n", + "Encoder Hidden state shape: (batch size, units) (64, 1024)\n" + ] + } + ], + "source": [ + "encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)\n", + "\n", + "# sample input\n", + "sample_hidden = encoder.initialize_hidden_state()\n", + "sample_output, sample_hidden = encoder(example_input_batch, sample_hidden)\n", + "print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))\n", + "print ('Encoder Hidden state shape: (batch size, units) {}'.format(sample_hidden.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "umohpBN2OM94" + }, + "outputs": [], + "source": [ + "class BahdanauAttention(tf.keras.layers.Layer):\n", + " def __init__(self, units):\n", + " super(BahdanauAttention, self).__init__()\n", + " self.W1 = tf.keras.layers.Dense(units)\n", + " self.W2 = tf.keras.layers.Dense(units)\n", + " self.V = tf.keras.layers.Dense(1)\n", + "\n", + " def call(self, query, values):\n", + " # hidden shape == (batch_size, hidden size)\n", + " # hidden_with_time_axis shape == (batch_size, 1, hidden size)\n", + " # we are doing this to perform addition to calculate the score\n", + " hidden_with_time_axis = tf.expand_dims(query, 1)\n", + "\n", + " # score shape == (batch_size, max_length, 1)\n", + " # we get 1 at the last axis because we are applying score to self.V\n", + " # the shape of the tensor before applying self.V is (batch_size, max_length, units)\n", + " score = self.V(tf.nn.tanh(\n", + " self.W1(values) + self.W2(hidden_with_time_axis)))\n", + "\n", + " # attention_weights shape == (batch_size, max_length, 1)\n", + " attention_weights = tf.nn.softmax(score, axis=1)\n", + "\n", + " # context_vector shape after sum == (batch_size, hidden_size)\n", + " context_vector = attention_weights * values\n", + " context_vector = tf.reduce_sum(context_vector, axis=1)\n", + "\n", + " return context_vector, attention_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "k534zTHiDjQU" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attention result shape: (batch size, units) (64, 1024)\n", + "Attention weights shape: (batch_size, sequence_length, 1) (64, 16, 1)\n" + ] + } + ], + "source": [ + "attention_layer = BahdanauAttention(10)\n", + "attention_result, attention_weights = attention_layer(sample_hidden, sample_output)\n", + "\n", + "print(\"Attention result shape: (batch size, units) {}\".format(attention_result.shape))\n", + "print(\"Attention weights shape: (batch_size, sequence_length, 1) {}\".format(attention_weights.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "yJ_B3mhW3jFk" + }, + "outputs": [], + "source": [ + "class Decoder(tf.keras.Model):\n", + " def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz):\n", + " super(Decoder, self).__init__()\n", + " self.batch_sz = batch_sz\n", + " self.dec_units = dec_units\n", + " self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)\n", + " self.gru = tf.keras.layers.GRU(self.dec_units,\n", + " return_sequences=True,\n", + " return_state=True,\n", + " recurrent_initializer='glorot_uniform')\n", + " self.fc = tf.keras.layers.Dense(vocab_size)\n", + "\n", + " # used for attention\n", + " self.attention = BahdanauAttention(self.dec_units)\n", + "\n", + " def call(self, x, hidden, enc_output):\n", + " # enc_output shape == (batch_size, max_length, hidden_size)\n", + " context_vector, attention_weights = self.attention(hidden, enc_output)\n", + "\n", + " # x shape after passing through embedding == (batch_size, 1, embedding_dim)\n", + " x = self.embedding(x)\n", + "\n", + " # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)\n", + " x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)\n", + "\n", + " # passing the concatenated vector to the GRU\n", + " output, state = self.gru(x)\n", + "\n", + " # output shape == (batch_size * 1, hidden_size)\n", + " output = tf.reshape(output, (-1, output.shape[2]))\n", + "\n", + " # output shape == (batch_size, vocab)\n", + " x = self.fc(output)\n", + "\n", + " return x, state, attention_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "P5UY8wko3jFp" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Decoder output shape: (batch_size, vocab size) (64, 4935)\n" + ] + } + ], + "source": [ + "decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE)\n", + "\n", + "sample_decoder_output, _, _ = decoder(tf.random.uniform((BATCH_SIZE, 1)),\n", + " sample_hidden, sample_output)\n", + "\n", + "print ('Decoder output shape: (batch_size, vocab size) {}'.format(sample_decoder_output.shape))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "_ch_71VbIRfK" + }, + "source": [ + "## Define the optimizer and the loss function" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "WmTHr5iV3jFr" + }, + "outputs": [], + "source": [ + "optimizer = tf.keras.optimizers.Adam()\n", + "loss_object = tf.keras.losses.SparseCategoricalCrossentropy(\n", + " from_logits=True, reduction='none')\n", + "\n", + "def loss_function(real, pred):\n", + " mask = tf.math.logical_not(tf.math.equal(real, 0))\n", + " loss_ = loss_object(real, pred)\n", + "\n", + " mask = tf.cast(mask, dtype=loss_.dtype)\n", + " loss_ *= mask\n", + "\n", + " return tf.reduce_mean(loss_)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "DMVWzzsfNl4e" + }, + "source": [ + "## Checkpoints (Object-based saving)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Zj8bXQTgNwrF" + }, + "outputs": [], + "source": [ + "checkpoint_dir = './training_checkpoints'\n", + "checkpoint_prefix = os.path.join(checkpoint_dir, \"ckpt\")\n", + "checkpoint = tf.train.Checkpoint(optimizer=optimizer,\n", + " encoder=encoder,\n", + " decoder=decoder)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "hpObfY22IddU" + }, + "source": [ + "## Training\n", + "\n", + "1. Pass the *input* through the *encoder* which return *encoder output* and the *encoder hidden state*.\n", + "2. The encoder output, encoder hidden state and the decoder input (which is the *start token*) is passed to the decoder.\n", + "3. The decoder returns the *predictions* and the *decoder hidden state*.\n", + "4. The decoder hidden state is then passed back into the model and the predictions are used to calculate the loss.\n", + "5. Use *teacher forcing* to decide the next input to the decoder.\n", + "6. *Teacher forcing* is the technique where the *target word* is passed as the *next input* to the decoder.\n", + "7. The final step is to calculate the gradients and apply it to the optimizer and backpropagate." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "sC9ArXSsVfqn" + }, + "outputs": [], + "source": [ + "@tf.function\n", + "def train_step(inp, targ, enc_hidden):\n", + " loss = 0\n", + "\n", + " with tf.GradientTape() as tape:\n", + " enc_output, enc_hidden = encoder(inp, enc_hidden)\n", + "\n", + " dec_hidden = enc_hidden\n", + "\n", + " dec_input = tf.expand_dims([targ_lang.word_index['']] * BATCH_SIZE, 1)\n", + "\n", + " # Teacher forcing - feeding the target as the next input\n", + " for t in range(1, targ.shape[1]):\n", + " # passing enc_output to the decoder\n", + " predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output)\n", + "\n", + " loss += loss_function(targ[:, t], predictions)\n", + "\n", + " # using teacher forcing\n", + " dec_input = tf.expand_dims(targ[:, t], 1)\n", + "\n", + " batch_loss = (loss / int(targ.shape[1]))\n", + "\n", + " variables = encoder.trainable_variables + decoder.trainable_variables\n", + "\n", + " gradients = tape.gradient(loss, variables)\n", + "\n", + " optimizer.apply_gradients(zip(gradients, variables))\n", + "\n", + " return batch_loss" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "ddefjBMa3jF0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 0 Loss 4.7473\n", + "Epoch 1 Batch 100 Loss 2.1733\n", + "Epoch 1 Batch 200 Loss 1.8787\n", + "Epoch 1 Batch 300 Loss 1.7222\n", + "Epoch 1 Loss 2.0324\n", + "Time taken for 1 epoch 33.9479820728302 sec\n", + "\n", + "Epoch 2 Batch 0 Loss 1.5579\n", + "Epoch 2 Batch 100 Loss 1.4370\n", + "Epoch 2 Batch 200 Loss 1.4042\n", + "Epoch 2 Batch 300 Loss 1.2848\n", + "Epoch 2 Loss 1.3962\n", + "Time taken for 1 epoch 17.57913875579834 sec\n", + "\n", + "Epoch 3 Batch 0 Loss 1.0146\n", + "Epoch 3 Batch 100 Loss 0.9916\n", + "Epoch 3 Batch 200 Loss 1.0946\n", + "Epoch 3 Batch 300 Loss 0.9436\n", + "Epoch 3 Loss 0.9849\n", + "Time taken for 1 epoch 17.110281229019165 sec\n", + "\n", + "Epoch 4 Batch 0 Loss 0.6478\n", + "Epoch 4 Batch 100 Loss 0.6424\n", + "Epoch 4 Batch 200 Loss 0.7041\n", + "Epoch 4 Batch 300 Loss 0.6307\n", + "Epoch 4 Loss 0.6634\n", + "Time taken for 1 epoch 17.549187421798706 sec\n", + "\n", + "Epoch 5 Batch 0 Loss 0.4491\n", + "Epoch 5 Batch 100 Loss 0.3657\n", + "Epoch 5 Batch 200 Loss 0.4612\n", + "Epoch 5 Batch 300 Loss 0.4688\n", + "Epoch 5 Loss 0.4508\n", + "Time taken for 1 epoch 17.02736186981201 sec\n", + "\n", + "Epoch 6 Batch 0 Loss 0.3293\n", + "Epoch 6 Batch 100 Loss 0.3074\n", + "Epoch 6 Batch 200 Loss 0.3077\n", + "Epoch 6 Batch 300 Loss 0.2849\n", + "Epoch 6 Loss 0.3147\n", + "Time taken for 1 epoch 17.503292560577393 sec\n", + "\n", + "Epoch 7 Batch 0 Loss 0.1896\n", + "Epoch 7 Batch 100 Loss 0.2028\n", + "Epoch 7 Batch 200 Loss 0.2070\n", + "Epoch 7 Batch 300 Loss 0.1809\n", + "Epoch 7 Loss 0.2236\n", + "Time taken for 1 epoch 17.121249437332153 sec\n", + "\n", + "Epoch 8 Batch 0 Loss 0.1307\n", + "Epoch 8 Batch 100 Loss 0.2151\n", + "Epoch 8 Batch 200 Loss 0.1595\n", + "Epoch 8 Batch 300 Loss 0.1825\n", + "Epoch 8 Loss 0.1683\n", + "Time taken for 1 epoch 17.56266689300537 sec\n", + "\n", + "Epoch 9 Batch 0 Loss 0.1091\n", + "Epoch 9 Batch 100 Loss 0.1238\n", + "Epoch 9 Batch 200 Loss 0.1262\n", + "Epoch 9 Batch 300 Loss 0.1245\n", + "Epoch 9 Loss 0.1290\n", + "Time taken for 1 epoch 17.148908615112305 sec\n", + "\n", + "Epoch 10 Batch 0 Loss 0.0939\n", + "Epoch 10 Batch 100 Loss 0.1082\n", + "Epoch 10 Batch 200 Loss 0.1149\n", + "Epoch 10 Batch 300 Loss 0.0957\n", + "Epoch 10 Loss 0.1038\n", + "Time taken for 1 epoch 17.501878261566162 sec\n", + "\n" + ] + } + ], + "source": [ + "EPOCHS = 10\n", + "\n", + "for epoch in range(EPOCHS):\n", + " start = time.time()\n", + "\n", + " enc_hidden = encoder.initialize_hidden_state()\n", + " total_loss = 0\n", + "\n", + " for (batch, (inp, targ)) in enumerate(dataset.take(steps_per_epoch)):\n", + " batch_loss = train_step(inp, targ, enc_hidden)\n", + " total_loss += batch_loss\n", + "\n", + " if batch % 100 == 0:\n", + " print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,\n", + " batch,\n", + " batch_loss.numpy()))\n", + " # saving (checkpoint) the model every 2 epochs\n", + " if (epoch + 1) % 2 == 0:\n", + " checkpoint.save(file_prefix = checkpoint_prefix)\n", + "\n", + " print('Epoch {} Loss {:.4f}'.format(epoch + 1,\n", + " total_loss / steps_per_epoch))\n", + " print('Time taken for 1 epoch {} sec\\n'.format(time.time() - start))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "mU3Ce8M6I3rz" + }, + "source": [ + "## Translate\n", + "\n", + "* The evaluate function is similar to the training loop, except we don't use *teacher forcing* here. The input to the decoder at each time step is its previous predictions along with the hidden state and the encoder output.\n", + "* Stop predicting when the model predicts the *end token*.\n", + "* And store the *attention weights for every time step*.\n", + "\n", + "Note: The encoder output is calculated only once for one input." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "EbQpyYs13jF_" + }, + "outputs": [], + "source": [ + "def evaluate(sentence):\n", + " attention_plot = np.zeros((max_length_targ, max_length_inp))\n", + "\n", + " sentence = preprocess_sentence(sentence)\n", + "\n", + " inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]\n", + " inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],\n", + " maxlen=max_length_inp,\n", + " padding='post')\n", + " inputs = tf.convert_to_tensor(inputs)\n", + "\n", + " result = ''\n", + "\n", + " hidden = [tf.zeros((1, units))]\n", + " enc_out, enc_hidden = encoder(inputs, hidden)\n", + "\n", + " dec_hidden = enc_hidden\n", + " dec_input = tf.expand_dims([targ_lang.word_index['']], 0)\n", + "\n", + " for t in range(max_length_targ):\n", + " predictions, dec_hidden, attention_weights = decoder(dec_input,\n", + " dec_hidden,\n", + " enc_out)\n", + "\n", + " # storing the attention weights to plot later on\n", + " attention_weights = tf.reshape(attention_weights, (-1, ))\n", + " attention_plot[t] = attention_weights.numpy()\n", + "\n", + " predicted_id = tf.argmax(predictions[0]).numpy()\n", + "\n", + " result += targ_lang.index_word[predicted_id] + ' '\n", + "\n", + " if targ_lang.index_word[predicted_id] == '':\n", + " return result, sentence, attention_plot\n", + "\n", + " # the predicted ID is fed back into the model\n", + " dec_input = tf.expand_dims([predicted_id], 0)\n", + "\n", + " return result, sentence, attention_plot" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "s5hQWlbN3jGF" + }, + "outputs": [], + "source": [ + "# function for plotting the attention weights\n", + "def plot_attention(attention, sentence, predicted_sentence):\n", + " fig = plt.figure(figsize=(10,10))\n", + " ax = fig.add_subplot(1, 1, 1)\n", + " ax.matshow(attention, cmap='viridis')\n", + "\n", + " fontdict = {'fontsize': 14}\n", + "\n", + " ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90)\n", + " ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict)\n", + "\n", + " ax.xaxis.set_major_locator(ticker.MultipleLocator(1))\n", + " ax.yaxis.set_major_locator(ticker.MultipleLocator(1))\n", + "\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "sl9zUHzg3jGI" + }, + "outputs": [], + "source": [ + "def translate(sentence):\n", + " result, sentence, attention_plot = evaluate(sentence)\n", + "\n", + " print('Input: %s' % (sentence))\n", + " print('Predicted translation: {}'.format(result))\n", + "\n", + " attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))]\n", + " plot_attention(attention_plot, sentence.split(' '), result.split(' '))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "n250XbnjOaqP" + }, + "source": [ + "## Restore the latest checkpoint and test" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "UJpT9D5_OgP6" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# restoring the latest checkpoint in checkpoint_dir\n", + "checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "WrAM0FDomq3E" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input: hace mucho frio aqui . \n", + "Predicted translation: it s very cold here . \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAJwCAYAAAC08grWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZilB1nn7++TdBIIqxAERBGQJSwikhZkUYKoGQHXnxuLgswQFxBQ3JBRIvMDZBNQdCSIIBCUZWDYlEUWQRZjQEVkjYEAsgQUISFkIXnmj/c0VBfVIcFOPae77vu6+rqq3nPq1FNvOn0+9a7V3QEAmHDI9AAAwM4lRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUJkDVTVDarqtVX1zdOzAMB2EiLr4V5Jjk1yn+E5AGBblZvezaqqSvLBJK9O8v1Jvq67LxgdCgC2iS0i845NcoUkD0jyhSR3Hp0GALaREJl3ryQv6O6zk/zF6nMA2BHsmhlUVZdL8rEkd+nuN1bVLZK8Jck1u/s/Z6cDgEufLSKz/r8kn+ruNyZJd/9jkvcn+cnRqQA44FXV5arqp6vqStOzXBQhMuunkjx707JnJ7n39o8CwEHmx5M8Pct7zdqya2ZIVX1Dkg8kuXF3v3/D8q/PchbNTbr7fUPjsQaq6uZJfiXJTZJ0kncleWx3v3N0MOCAUFWvS3L1JGd39+7pefZFiMAaqqofSPLCJG9M8rerxbdf/fmR7n7p1GzA+quq6yR5X5JbJXlrklt297smZ9oXITKoqq6d5MO9xX+Eqrp2d39oYCzWQFW9I8mLuvthm5Y/PMkPdve3zEwGHAiq6reSHNvdd6qqFyZ5f3f/+vRcW3GMyKwPJLna5oVVddXVY+xcN0zyrC2WPyvJjbZ5FuDA89P50r8hJyW5x+oCmmtHiMyqLPv+N7t8knO2eRbWyxlJjtli+TFJPrHNswAHkKq6bZJrJnnBatFLkxyZ5LvHhroIu6YH2Imq6vdXH3aSR1XV2RsePjTLPr1/3PbBWCdPTfKUqrp+kjevlt0uy8Grjx2bCjgQ3CvJi7v7rCTp7vOq6nlZzsh89eRgW3GMyIDVkcxJcocsFzA7b8PD52U5a+ZxG8+mYWdZbUJ9UJIHJ/m61eKPZomQ39/quCKAqjoiyceT3K27X7Fh+e2TvDLJ1fcEyroQIkNWbzTPS3Kf7j5zeh7WV1VdIUn8PQG+kqo6Kss9y57d3RdueuyeSf66uz8+Mtw+CJEhVXVoluNAvmVdT6kCgEubY0SGdPcFVXV6ksOnZ2H9VNVVkjwiyZ2SfG02HVje3VecmAtgfxMis/5Xkt+tqnt296emh2GtPC3JtyY5McuxITZdAvtUVR/Ixfx3oruvdymPc4nYNTOoqv45yXWTHJbkI0k+t/Hx7r75xFzMq6rPJvme7v676VmA9VdVD97w6eWT/HKSk7OcEJEkt8lyRubju/vh2zzeRbJFZNYLvvJT2KHOSLJWR7YD66u7H7/n46p6RpJHd/cjNz6nqh6S5KbbPNpXZIsIrKGq+oksd86817qdagest9UW1Vt296mbll8/ydvX7RgzW0RYG1X1C0nul2V31c26+7Sq+o0kp3X382anu/StdtVt/M3guknOWB3UfP7G59ptB1yEzyU5Nsmpm5Yfm+TszU+eJkQGVdXhSR6a5G5Jrp3lWJEv6u5DJ+aaUFUPSvJrSR6d5Hc3PPRvSe6f5ZorBzu76oD94QlJ/rCqdme5826SfHuWK66eMDXUvtg1M6iqHp3kJ5I8KstfnP+Z5DpJfjLJb3X3U+am215V9Z4kD+7ul1fVmVmur3JaVd00yRu6+6rDI8Koqrplkn/s7gtXH+9Td799m8ZiTVXVjyd5YJIbrxa9O8mT1nHrshAZtDrd6ue7+xWrN99bdPe/VtXPJ7lTd//o8Ijbpqo+n+To7j59U4jcMMs/vkcOj7itquoOSdLdf7PF8u7uN4wMxpiqujDJNbr7jNXHneXGmZv1TtqayoHPrplZV0+y56qqZyW58urjV2TZRbGTnJbklklO37T8zvnSOtpJnpBkq1Psrphl0+pWd+bl4HbdJJ/c8DF8RVV15Xz5BRH/Y2icLQmRWR/KckOzD2U5qOi4JG/Lcr735wfnmvC4JE+uqiOz/JZ3m6r6qSzHjdxndLIZN0ryT1ssf+fqMXaY7j59q49hs6r6xiR/nOXg1I1X764sW9LWaouZEJn1oiyX8H5rkicl+fOqum+Sa2WH3eq9u59eVbuSPDLJkUmeleWKog/o7ueODjfj80mumeQDm5ZfK3vfrZkdyDEifAVPz7KF/b/nALgys2NE1khV3TrJ7ZK8r7tfNj3PlNXdIw/p7jOmZ5lSVSdlOZPqB7r706tlV0ny4iQf6e67Tc7HrH0cI/LFf8wdI7KzVdVZSb69u985PcvFIUQGVdV3Jnlzd39h0/JdSW67kw5IXJ0dc2h3v2PT8psn+cJOu0NxVV0zyRuy3PBuzzq5eZYrrt6huz86NRvzVpveNzosy72JHprkId39V9s/FetidU2ie3f326ZnuTiEyKCquiDJNTf/5l9VV01yxk76raaq3pTkD7v7OZuW/2SS+3f37Wcmm7M6XuYeSW6xWvQPSZ7T3Wt3QaLtUFXfleQmWX7zf1d3v254pLVTVd+b5GHdfbvpWZiz+n/lN5L8wuarq64jITJotXn16t39yU3Lb5jklHW7DO+laXXK7rducUnib8pySeIrzUzGtKq6VpbjqY7Jsr87WQ7yPiXJD9s69CVVdYMsp7tfbnoW5qz+PT0iy0Gp5ybZa6v7ur23OFh1QFW9ZPVhJ3l2VZ274eFDk9wsyZu3fbBZFyTZKja+JltfK+GgVlU/clGPd/cLt2uWNfD7Wf5+XL+7P5AkVXW9JM9ePbZjrrezx+p4ob0WZTm4+YQk7932gVg3958e4JKwRWRAVT199eG9sly6fOOpuucl+WCSp3b3p7Z5tDFV9eIsbzY/1t0XrJbtSvL8JId1910n59tuq61lW+lkZx2MuLqB17GbzwRZXb76NTtxa9mGg1X3Wpzkw0l+orvf+uVfBevJFpEB3f0zSVJVH0zyuO7+3OxEa+HXkvxtklOr6m9Xy26f5PJJvnNsqiHdvdcFiFZR9q1ZTut+6MhQs7b6jWkn/xZ1x02fX5jlYmenbj74nZ2pqq6e5KeSfFOWW4Z8qqpul+Sje7YsrgtbRAZV1SFJ0t0Xrj6/RpK7ZjkQb6ftmtlzpsj9s/fBmX/kGIAvqarbJvnf3f0t07Nsl6p6UZKrJblbd394tezaSU5K8snuvsjdWLDTVNUxSV6T5TpEN81y+4zTquqEJDfs7rtPzreZEBlUVX+V5BXd/aSqunyS9yS5XJatAP+9u585OiBrp6pukuTk7r789Czbpaq+IclLshw7tfFg1X/Ocp2Vj0zNNmV16v/FspMuA8Ciql6X5WahD9t0767bJPmL7t58+vcou2Zm7c6ySyJJfiTJZ7PcQ+IeSX4lyY4Lkar6uiwX8tp4WeId94/pFlfO3HMw4q9n2VK0Y3T3h1fr47uTHL1a/O7u/uvBsaa9Pl/aNbXnYO7Nn+9ZtmOOJ+KLjslyVdXNPpblHmdrRYjMunyS/1x9/L1JXtTd51fVa5P84dxY228VIM/JcjzInitGbtxct9P+MT0lW99d9a3Zgffe6WXT7atXf1h24T4uySOSvGW17DZJfjPLLzcOVt3ZPp/ljMPNjs5yUcS1IkRmfSjJ7arqpVluePdjq+VXSbLTLlr1xCxnzdwkyd8n+W9Zyv3hSX5pcK4pm++uemGW4yHOmRhmu1XVL2c5Puic1cf71N2/t01jrZP/leSB3b0xzE6rqjOSPKa7v3VoLtbDi5M8rKr2vKd0VV0ny13d/8/UUPviGJFBVfWzSZ6c5Kwkpye5ZXdfWFUPSPJD3f1dowNuo6r6RJK7dPcpq9M1d3f3+6rqLlmO+P724RG33eqo99tlucz75tt4/9HIUNukqj6Q5e/Av68+3pfu7utt11zroqo+n+Xfi3dvWn6TJG/r7svOTMY6qKorJvnLLLeFuFySj2f5xe7NSb5v3c7UFCLDVkc3XzvJq7v7rNWyuyT5z+5+0+hw22gVHzfv7g+uTmu+Z3f/bVVdN8m/dPeRsxNur6q6Z5I/ybJr5tPZezdVd/fXjQzGWqiqU5KcmuRnuvvzq2WXzXLX1et39+7J+VgPq0u93zLLLzJvX9fjquyaGVJVV8ryxvvGJJtvTPSfSXbUTd6ynDF0dJaLuf1jkp+rqg8nuV+Sfxuca8ojkjwmycN38nUhquqwLNeX+enudsXQL/n5JC9L8m9VteemiN+cZffmXcamYtzG95bufm2S12547HZZLg/x6bEBt2CLyJCqukKWI5iP27jlo6q+JcnJSa61w66seo8sV1B9xuoMiVckOSrLfRLu1d3PGx1wm1XVp5Mc092nTc8ybXXcw+27+33Ts6yTqrpckrsnufFq0buz3BRxrTa7s70OxPcWITKoqk5KclZ3/+yGZY/LcsGZH5ibbN7qzrNHJ/nQuv1Psx2q6slJ3tvdfzA9y7SqemySdPevTs+yTlZX271Vtj7dfced+s+XHGjvLUJkUFUdl+TPk1yju89bXWn1I1lue7+TbmqWJKmqn0hyp2x9cOba/c9zaaqqw5P83yz3HvrnJOdvfLy7Hz4x14Sq+qMs19b5QJbdmHv9xt/dD5iYa1JVHZ3kpVnOrqosu2R2Zfl7cu663V2V7XWgvbc4RmTWq7Oc733XJC/M8iZ8eJZ/YHaU1W+9D0ryuixXz9zphfyzWU5h/lSS62fTwapZTms+aK2uHPrm1fExN06y54Z3m8+Q2al/T56YJcpukeWMiFtkuXv1/07yPwfnYj0cUO8ttogMq6pHJ7lRd/9QVT0zyZndfb/pubbb6vTd+3X3C6ZnWQer4yIe1d1PmJ5lQlVdkOSa3X1GVZ2W5Nu6+9+n51oXVfXvSe7Q3e+sqs8kuVV3v7eq7pDkD7r75sMjMuxAem+xRWTeM5O8bXUTrx/OUq470SFZzpZhcWiW+6vsVJ/OstvhjCTXyaZddaTypYsefjLJtZK8N8vm9+tPDcVaOWDeW2wRWQOrawJ8PslR3X3jr/T8g1FVPSLJ+d19wvQs62B1YNlnd9KxIBtV1VOS3CvL0f/XzvIGe8FWz92hFzR7Q5IndPeLquo5Sa6a5JFJ7pvl1E1bRDhg3ltsEVkPz8yyz/eh04Nsp6r6/Q2fHpLkHlX1PUnekS8/OHOnHZB4ZJL/sTrobCeuj5/LskXoBkl+L8uFus4cnWi9PCLLFTOT5ZiQl2c5vupTSX58aqh1U1XvTnKD7t6p73UHxHvLTv2Ps26eneUGRU+fHmSbffOmz/fsmjl60/KduNnuxvnSXXZ33PpY3eTu5ckXr3/w+O4WIivd/coNH5+W5MZVdZUkn26buTf6wyxbi3aqA+K9xa4ZAGCMA8AAgDFCBAAYI0TWRFUdPz3DOrE+9mZ97M362Jv1sTfrY2/rvj6EyPpY678oA6yPvVkfe7M+9mZ97M362Ntarw8hAgCM2fFnzRxeR/Rlvng6/pzzc24OyxHTY6wN62Nv1sferI+9WR97W5f1UYesx+/65/U5ObwuMz1GPnvhv3+qu6+2efmOv47IZXK53LrW9sq3ABygDjly/pfcdfKqs/7s9K2Wr0euAQA7khABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgjBABAMYIEQBgzEERIlX1jKp62fQcAMAls2t6gP3kgUkqSarq9Une2d33H50IAPiKDooQ6e7PTM8AAFxyB0WIVNUzkhyV5FNJ7pDkDlV1v9XD1+3uDw6NBgBchIMiRDZ4YJIbJnlPkt9cLfvk3DgAwEU5qEKkuz9TVeclObu7P76v51XV8UmOT5LL5MjtGg8A2OSgOGvmkuruE7t7d3fvPixHTI8DADvWjgwRAGA9HIwhcl6SQ6eHAAC+soMxRD6Y5FZVdZ2qOqqqDsafEQAOCgfjm/TjsmwVeVeWM2auPTsOALAvB8VZM9197w0fvy/JbeamAQAuroNxiwgAcIAQIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAGCECAIwRIgDAmF3TA0yrXbty6FFfOz3G2rj9q0+fHmGtvOiJ3zU9wlq52ovfOz3CWunPnzM9wlq58Jxzp0dYKxeeffb0CAcEW0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYc9CFSFV9Z1W9tarOqqrPVNXJVXWz6bkAgC+3a3qA/amqdiV5cZKnJblHksOS3DLJBZNzAQBbO6hCJMkVk1w5yUu7+19Xy96z+UlVdXyS45PkModcfvumAwD2clDtmunu/0jyjCSvrKqXV9UvV9W1t3jeid29u7t3H37IZbd9TgBgcVCFSJJ0988kuXWSNyT5gSTvrarjZqcCALZy0IVIknT3P3X3o7v72CSvT3Kv2YkAgK0cVCFSVdetqt+tqttW1TdW1R2T3DzJu6ZnAwC+3MF2sOrZSW6Y5PlJjkryiSQnJXn05FAAwNYOqhDp7k8k+ZHpOQCAi+eg2jUDABxYhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMEaIAABjhAgAMGbX9ADjLrgg/ZnPTk+xNt503HWnR1grT3vLE6ZHWCsP+MQvTo+wVo5886nTI6yXc86dnmC9dE9PcECwRQQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGHPAh0hVHT49AwDw1dnWEKmq46vqE1V16Kblz6mql6w+/v6qeltVnVNVH6iqR2yMjar6YFWdUFV/WlX/meSkqnptVT1502tesarOrqof2ZYfDgC4xLZ7i8jzk1wpyffsWVBVl0/yg0meXVXHJTkpyZOT3DTJfZL8aJJHbnqdX07yniS7k/xmkqcmuXtVHbHhOXdLclaSl14qPwkA8F+2rSHS3Z9O8pdJ7rFh8Q8l+UKSlyR5aJLHdvfTu/tfu/t1SX49yc9VVW34mr/p7sd096nd/f4kL0xyYZIf3vCc+yR5Znefv3mO1ZaZU6rqlPNy7n79GQGAi2/iGJFnJ/mhqjpy9fk9kvyf7j4nyTFJHlpVZ+35k+Q5SS6X5BobXuOUjS/Y3ecmeVaW+EhV3TTJrZI8basBuvvE7t7d3bsPzxFbPQUA2Aa7Br7ny7NsAfnBqnpNku9OctzqsUOS/E6WXTibfXLDx5/b4vE/SfKOqrp2liB5S3e/e79NDQDsd9seIt19blU9P8uWkKOSfDzJ61cPvz3J0d196lfxuv9SVX+X5L5J7pllNw8AsMYmtogky+6Z1yS5bpI/7+4LV8sfnuRlVXV6kudl2XJysyS36u5fuxiv+9Qkf5zk/CTP3e9TAwD71dR1RN6Y5N+S3CRLlCRJuvuVSe6S5I5JTl79+Y0kH7qYr/vcJOcleV53n7k/BwYA9r+RLSLd3Umus4/HXpXkVRfxtVt+3cqVk1w2+zhIFQBYL1O7ZvarqjosyVWzXG/kH7r7TcMjAQAXwwF/ifeV2yX5WJLbZjlYFQA4ABwUW0S6+/VJ6is9DwBYLwfLFhEA4AAkRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABiza3qAad2dC889d3qMtXHhxz4+PcJaecDP/+L0CGvl9U976vQIa+Uut7rL9Ahrpc48c3qEtdIXTk9wYLBFBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYc0CGSFWdUFXv/ArPeXJVvX6bRgIAvgoHZIgAAAcHIQIAjBkLkVo8uKreX1XnVtVHqupRq8e+uar+uqo+X1X/UVXPqKorXcRrHVpVj6uqT6/+PDHJodv2wwAAX5XJLSKPTPJbSR6V5KZJfizJh6vqcklemeSsJLdK8sNJbpvkTy/itR6c5L5JfjbJbbJEyD0utckBgP1i18Q3rarLJ/mlJA/q7j2BcWqSt1TVfZNcLslPdfeZq+cfn+R1VXX97j51i5d8UJLHdPfzVs9/YJLjLuL7H5/k+CS5TI7cTz8VAHBJTW0RuUmSI5K8ZovHbpzkHXsiZOXNSS5cfd1eVrtsrpnkLXuWdfeFSf5uX9+8u0/s7t3dvfuwHPHV/QQAwH/ZgXawak8PAADsP1Mh8u4k5ya50z4e++aqusKGZbfNMuu7Nz+5uz+T5GNJvn3PsqqqLMeXAABrbOQYke4+s6qelORRVXVukjckuWqSY5L8WZLfSfLMqvrtJF+T5ClJXriP40OS5ElJHlJV70vyz0l+Icvumo9duj8JAPBfMRIiKw9J8uksZ858fZJPJHlmd59dVccleWKSk5Ock+TFSR54Ea/1+CTXSPInq8+fleSkLMebAABraixEVgeU/u7qz+bH/jlb77bZ8/gJSU7Y8PkXspyF80v7e04A4NJzoB2sCgAcRIQIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBGiAAAY4QIADBm1/QAa6F7egLW1BF/9ffTI6yV77vRd0yPsFa+402nTo+wVp7/lDtNj7BWrvm890+PsF7O2HqxLSIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwBghAgCMESIAwJhtC5Gqen1VPXm7vh8AsP5sEQEAxhzQIVJVh03PAAB89bY7RA6pqkdW1aeq6oyqelxVHZIkVXV4VT26qj5SVWdX1d9X1XF7vrCqjq2qrqo7V9XJVXVekuNWj31/Vb2tqs6pqg9U1SOq6vBt/tkAgEto1zZ/v3skeVKS2ya5RZLnJHlbkj9P8vQk35Tk7kk+kuTOSV5aVd/W3f+04TUeneTBSU5NcuYqVk5K8sAkb0hy7SR/nOSIJL+y1RBVdXyS45PkMjly//6EAMDFtt0h8q7u/u3Vx++rqvsmuVNVnZzkbkmu090fWj3+5Kr67iQ/m+QXNrzGCd39qj2fVNVDkzy2u5++WvSvVfXrSZ5dVb/a3b15iO4+McmJSXLFusqXPQ4AbI/tDpF3bPr8o0m+Nsktk1SSd1XVxsePSPLaTV9zyqbPj0lyq1V87HFIkssmuUaSj/0XZwYALiXbHSLnb/q8s0TDIauPv22L53x+0+ef2/T5IUl+J8nzt/h+n/zqxgQAtsN2h8i+/EOWLSLX6O7XXcKvfXuSo7v71P0/FgBwaVqLEOnu91XVSUmeUVUPzhIXV0lybJLTuvuFF/HlD0/ysqo6Pcnzknwhyc2S3Kq7f+3SnRwA+K9Yp+uI/EyWM2cek+Q9SV6W5DuTnH5RX9Tdr0xylyR3THLy6s9vJPnQRX0dADBv27aIdPexWyy794aPz09ywurPVl//+iy7b7Z67FVJXrXVYwDA+lqnLSIAwA4jRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMUIEABgjRACAMbumBwAOHBeeddb0CGvljbc5anqEtXLZu144PcJaOentL54eYa0c9fVbL7dFBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYs2t6gAlVdXyS45PkMjlyeBoA2Ll25BaR7j6xu3d39+7DcsT0OACwY+3IEAEA1oMQAQDGCBEAYMxBGyJVdf+qes/0HADAvh20IZLkqCQ3mh4CANi3gzZEuvuE7q7pOQCAfTtoQwQAWH9CBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgPd8HpYAAAaNSURBVDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYs2t6AOAA0j09wVqpw/wTutGh5/v7sdHbz7vC9AgHBFtEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxB0yIVNWvVNUHp+cAAPafAyZEAICDz34Jkaq6YlVdeX+81iX4nlerqsts5/cEAPavrzpEqurQqjquqp6T5ONJvmW1/EpVdWJVnVFVZ1bV31TV7g1fd++qOquq7lRV76yqz1XV66rqupte/9eq6uOr5z4zyeU3jXDnJB9ffa/bfbU/BwAw5xKHSFXdtKoek+TDSZ6b5HNJ/luSN1RVJXl5kmsluWuSb03yhiSvraprbniZI5I8JMl9ktwmyZWT/PGG7/HjSf7/JA9Lcssk703yy5tGOSnJ3ZNcIcmrq+rUqvrtzUGzj5/h+Ko6papOOT/nXtJVAADsJxcrRKrqqlX1gKp6W5J/SHJ0kgcmuUZ337e739DdneSOSW6R5Ee7++TuPrW7fyvJaUl+asNL7kpyv9Vz3pHkcUmOXYVMkjwoyZ9191O6+33d/YgkJ2+cqbu/0N1/2d13S3KNJI9cff/3V9Xrq+o+VbV5K8qerz2xu3d39+7DcsTFWQUAwKXg4m4R+cUkT0pyTpIbdvcPdPfzu/ucTc87JsmRST652qVyVlWdleRmSb5pw/PO7e73bvj8o0kOT/I1q89vnOQtm1578+df1N2f7e4/7e47Jvm2JFdP8rQkP3oxfz4AYMCui/m8E5Ocn+Snk7yzql6U5FlJXtPdF2x43iFJPpHkO7Z4jc9u+PgLmx7rDV9/iVXVEVl2Bd0zy7Ej/5Jlq8qLv5rXAwC2x8V64+/uj3b3I7r7Rkm+O8lZSf4iyUeq6vFVdYvVU9+eZWvEhavdMhv/nHEJ5np3km/ftGyvz2tx+6p6SpaDZf8gyalJjunuW3b3k7r705fgewIA2+wSb4Ho7rd2988nuWaWXTY3TPL3VfUdSf46yZuSvLiqvq+qrltVt6mq31k9fnE9Kcm9quq+VXWDqnpIkltves49k7wqyRWT3C3JN3T3r3b3Oy/pzwQAzLi4u2a+THefm+QFSV5QVV+b5ILu7qq6c5YzXp6a5Guz7Kp5U5JnXoLXfm5VXS/JI7Icc/KSJL+X5N4bnvaaLAfLfvbLXwEAOBDUcrLLznXFukrfuu40PQZwADr0yleaHmGtnPldR0+PsFZOeOyfTI+wVr73eu99W3fv3rzcJd4BgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYI0QAgDFCBAAYU909PcOoK9ZV+tZ1p+kxAOCg9tf9grd19+7Ny20RAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDGCBEAYIwQAQDG7JoeYEJVHZ/k+CS5TI4cngYAdq4duUWku0/s7t3dvfuwHDE9DgDsWDsyRACA9SBEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAxQgQAGCNEAIAx1d3TM4yqqk8mOX16jiRHJfnU9BBrxPrYm/WxN+tjb9bH3qyPva3L+vjG7r7a5oU7PkTWRVWd0t27p+dYF9bH3qyPvVkfe7M+9mZ97G3d14ddMwDAGCECAIwRIuvjxOkB1oz1sTfrY2/Wx96sj71ZH3tb6/XhGBEAYIwtIgDAGCECAIwRIgDAGCECAIwRIgDAmP8HZdVT7b0MF04AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "translate(u'hace mucho frio aqui.')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zSx2iM36EZQZ" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input: esta es mi vida . \n", + "Predicted translation: this is my life . \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJwCAYAAAAjo60MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3debTtB1nf/8+TuZBEZA6WySKijL94ZZAWo7ikUGX95Ee1SjCAP+KiWmmp2rK6qJSKCkYtilUCyhSqINUiIigKFMrYkCIyyCCzIcyQhEDGp3/sfeVwcm+45+Tmfp998nqtddbd57v3Ofc533Xv3e/7Hau7AwDA8o5aegAAAFaEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMJsoKr6pqp6VVXddelZAIAjR5jNdEaS05I8auE5AIAjqNzEfJaqqiQfSvLKJN+f5FbdfeWiQwEAR4QtZvOcluSkJD+V5IokD1p0GgDgiBFm85yR5MXdfUmS319/DgBcD9iVOUhV3TDJx5P8s+5+XVXdI8kbk5zS3Z9fdjoA4Lpmi9ks/1+ST3f365Kku9+W5H1J/sWiUwHABqmqG1bVj1bV1y09y04Js1kenuScbcvOSfKIIz8KAGysH0zy7KzeVzeKXZlDVNWtk3wwybd09/u2LP+HWZ2l+a3d/d6FxgOAjVFVr05yiySXdPe+pefZCWEGAOwZVXW7JO9Ncs8kb0pyane/a8mZdsKuzEGq6jbr65gd8LkjPQ8AbKCHJ3nd+jjtP82GXd1AmM3ywSQ3276wqm6yfg4AuGY/muT568cvSPKwg230mEiYzVJJDrRv+cQkXz7CswDARqmq70hySpIXrxe9NMkNknzPYkPt0DFLD0BSVb++fthJfrGqLtny9NFZ7Sd/2xEfDAA2yxlJXtLdFydJd19WVS/K6uoGr1xysEMlzGa46/rXSvItSS7b8txlSc5LctaRHgoANkVVHZ/VZTJ+eNtT5yT5s6o6cX+wTeaszCHW+79flORR3X3R0vMAwCapqptmdX/pc7r7qm3PnZ7kL7r7gkWG2wFhNkRVHZ3VcWR336TTegGAw8fB/0N095VJPpzkuKVnAQCWYYvZIFV1Rlb7xk/v7k8vPQ8ATFdVH8yBr2hwNd39jdfxONeag/9n+ekkt0/yd1X1sSRf3Ppkd99tkakAYK6nb3l8YpLHJXlLkjeul90nq6sb/MoRnmtXhNksL/7aLwEA9uvuvw+uqnpOkqd09y9sfU1VPT7JnY/waLtiVyYAsCdU1YVZ3Rvz/duW3yHJed198jKTHToH/wMAe8UXk5x2gOWnJbnkAMvHsStzkKo6Lsl/yOoEgNskOXbr89199BJzAcCG+LUkv1lV+5K8ab3s3lndEeCJSw21E8Jslv+c5IeS/GJWf7h+JsntkvyLJE9YbiwAmK+7n1pVH0ry2KzuApAk705yRne/aLHBdsAxZoOsT/l9THe/oqouSnKP7v7bqnpMkvt390MXHnGkqnpkvrKV8auuA7cJp0bDXldVX5/kgTnw39EnLTIUDGWL2Sy3SLL/qv8XJ7nR+vErkjxlkYmGq6qfSfL4JM9Icr8k/zXJHdaP3V8UFlZV907ysiSXJrlZkr9Lcsr68w8lEWZcJ6rqRtl2LH13f3ahcQ6Zg/9n+UiSW60fvz/JA9aP75PkS4tMNN+jk5zZ3Y9PcnmSp3f3g7O6Xs1tF50MSJJfTvKCJN+Q1W3nvjurLWfnxn84Ocyq6rZV9fKq+lKSzyT51Prj0+tfx7PFbJY/SnL/rA5YfFqS36uqR2f1D9ovLznYYP8wqwsJJqt43X8q9O+tlz96iaGAv3e3JD/W3V1VVyY5vrs/UFX/Lsl/yyra4HB5dlZ7m34syfk5xDsCTCLMBllv9dn/+MVV9dEk903y3u7+k+UmG+2CJDfNamvjh7Pauvi2rHZnbtxfSNiDLtvy+BNZbcl+d1aHa9zqgF8Bu3fPJPfu7ncsPchuCbNBqup+Sd7Q3VckSXe/Ocmbq+qYqrpfd7922QlHelWSByc5L8nvJPm1qvrBJKcm2YgzcGCPOy/Jtyd5b5LXJPn5qrpFktOTvH3BudibPpjk+KWHuDaclTnIejP/Kd39yW3Lb5Lkk65jdnVVdVSSo/bHbFX9UNZbGZM8o7svX3I+uL5bX0/qpO5+dVXdLMnz8pW/o4/s7r9edED2lKr67iT/Psm/3H71/00hzAapqquS3KK7P7Vt+R2TnLsJt5I40qrqNkk+2tv+IFdVJbl1d39kmckAONLWl5o6PsnRWZ35e8XW5zfhfdSuzAGq6o/XDzvJOVV16Zanj05ylyRvOOKDbYYPZnXq/Se3Lb/x+jlbGQGuP35y6QGuLWE2w2fWv1aSz+WrL41xWZL/leSZR3qoDVE58EH+J2Z1aj5whK0vln1Iu2NcBJrDqbufu/QM15YwG6C7H5kk69tInNXdX1x2ovmq6tfXDzvJL1bV1pvTHp3VmTlvO+KDAUny9C2PT0zyuKwuX/PG9bL7ZPV39FeO8FxcD6xPLnl4kn+U5And/emqum+S87v7g8tO97U5xmyQ9YHs6e6r1p/fMsn3JXlXd9uVuUVVvXr98Duz+sd+6yn5l2V1RfGzuvt9R3g0YIuqek5Wl/z5hW3LH5/kzt19+iKDsSdV1bcl+cusDmW5c5I7ra+b98Qkd+zuH1lyvkMhzAapqpcneUV3P62qTkzyN0lumNX/OH+su5+36IADVdWzkzy2uy9cehbg6qrqwiSnbj9DrqrukOS8TTgYm82x/k/7a7v759YnAtx9HWb3SfL73T3+jjB2Zc6yL8nPrh8/JMmFSW6f5GFJfjqr08zZYv9u4P2q6h9kdSr++7r7w8tMtXmst4OrqockeWl3X75+fFDd/YdHaKxN8sUkp2V1m7mtTktyyfYXw7X0bVld9X+7j2d1P+rxhNksJyb5/Prx9yb5o/WbwauS/OZyY8213k3ylu7+r1V1XFbHsdw5yWVV9QPd/fJFBxzKetuRFye5ZVZn/r74Gl7XcRbwgfxakt9cX8/sTetl905yRpInLjUUe9aXknz9AZbfKVc/e38kNzGf5SNJ7ltVN8zqBuavXC+/cfzP8mAekK/8Y//gJCdl9Sb6xPhH/5pYb4eou4/af9Hn9eODfYiyA+jup2Z1IPZdk/zq+uOuSc7objcx53B7SZKfq6r9V//vqrpdkqck+e9LDbUTjjEbpKp+PKuzmS7O6r6Pp3b3VVX1U0n+3+7+7kUHHKiqvpzkDt39sap6VpIvdPe/Xf9F/OvuPmnRAYey3nZvfcbXfZPcPF/9n9vu7t9aZiogSarq5CR/muRuWR2jfUFWuzDfkOSBm3DVA7syB+nuZ1TVuUluk+SV+8/OTPK3SZ6w3GSjXZDkLlX18ay2Ap25Xn5iErdjOjjrbReq6vQkz8pXrjm49X+2nUSYwYLWJ4L94/WtmU7N6j9P53X3Xyw72aETZkNU1dcluVt3vy7JW7c9/fkk7zryU22E303ywiTnJ7kyq9Okk+ReWZ3VyoFZb7vz5CRPTfKk/fdn5erWZ2J+4/r6URflGi4266xMDpet76Pd/aokr9ry3H2zuvTU5xYb8BAJszmuSvLyqnpAd79+/8KquntWf7i+YbHJBuvuJ1XVO5LcNsmLunv/9cyuyOqYAg7Aetu1k5M8R5R9Tf8qyUXrxxt/ixw2xp54H3Xw/xDdfVFWBy3+6LanHp7kz7r700d+qo3xpSTfk+SVVXXr9bLjsjpWj4Oz3nbuBUn+2dJDTNfdz+3u/ff8/YGs/kz93nr5V30sOCZ7zF55HxVmszwvyT9fX75g/50AfiTJc5YcarKqeliSFyV5b1bXfDt2/dRR+co14djGetu1xyV5YFX9j6r6z1X1H7d+LD3cUJckeW6ST1TVs6rqO5ceiD1t499Hhdksr8xqK8b3rT+/f1ZbMF662ETz/WySR3f3v8lqN9x+b0pyj2VG2gjW2+78eJJ/muQ7stoS9M+3fDx0wbnGWt8C5xZZ7d68VVZbaD9cVb9UVXdZdjr2oI1/HxVmg6zPwjwnX9kM+/AkL+xuZ8kd3DflKzdG3urirI4H4sCst915QpJ/29037+67dPddt3zcbenhpuruL3b3Od39oKyO8/nlrN4437bsZOw1e+F91MH/8zwvyVur6jZZ/Y/8/gvPM935Se6Y1XXftrpfVpcZ4cCst905OskfLz3EpqqqE5J8d1aXaLljko8uOxF71Ea/j9piNkx3vzPJO7I6yPhj3f2WhUea7uwkv74+FTpJbl1VZ2R1SQPXlDo46213np3VvWs5RLXyvVX13CSfyOrP1/lJ7t/dt192OvaiTX8ftcVspucl+S9J/sPSg0zX3U9dX7vmlUlOSPLqJJcmOau73V/0IKy3XbtBkv+/qh6Q5O3ZdjHe7v6pRaaa7eNZ7R5/eZJHJHnZlsuzsAtV9e4k39Td3sMPbmPfR92SaaCqunFWB8o+o7svWHqeTVBVN0jyrVltBX5Xd7vkwyGw3namql59DU+326ZdXVU9OskfdPfnl55lr6iqn0xyk+7+T0vPMtUmv48KMwCAIRxjBgAwhDADABhCmA1WVWcuPcMmst52zjrbHettd6y3nbPOdmcT15swm23j/kANYb3tnHW2O9bb7lhvO2ed7c7GrTdhBgAwxPX+rMzj6vg+ITdceowDujyX5tgcv/QYG8d62znrbHest92x3nZu8jqrqqVHOKjLcmmOG7reLuzPfrq7b7Z9+fX+4nQn5Ia5V23U3RoAYIyjTjhh6RE20p9/6Zztt8RLYlcmAMAYwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIUaGWVWdVlVdVTe9Nq8BANgkI8Ksql5TVU/f4Ze9IckpST5zHYwEAHDEHbP0ALvV3ZcluWDpOQAADpfFt5hV1XOSfGeSn1jvmuwkt1s/ffeqenNVXVJV51bVqVu+7qt2ZVbV11XV86vqk1X15ar6QFX96yP98wAA7NbiYZbksUnemOTZWe2aPCXJR9fP/WKSf5/k1Kx2Wb6gquog3+fnk9w1yfcl+eYkj0ryd9fd2AAAh9fiuzK7+wtVdVmSS7r7giSpqjutn35Cd796vexJSf5Xkm9I8rEDfKvbJjmvu9+y/vzDB/s9q+rMJGcmyQm5wWH5OQAArq0JW8yuydu3PD5//evND/La30ryQ1X1V1V1VlV958G+aXef3d37unvfsTn+cM0KAHCtTA+zy7c87vWvB5y5u1+e1Vazs5LcNMnLqurZ1+14AACHz5QwuyzJ0df2m3T3p7v7+d39iCQ/luSMqrJJDADYCIsfY7b2oST3rKrbJbk4uwjG9TFo5yV5Z1Y/10OSfKC7Lz1sUwIAXIembDE7K6utZu9K8qkkt9nF97g0yZOT/FWS1yc5Kcn3H64BAQCua9XdX/tVe9jJdeO+V91/6TEAYCMddcIJS4+wkf78S+e8tbv3bV8+ZYsZAMD1njADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQxyw9wNLq6KNy9IknLz3GxvnCA75l6RE2zkmP+djSI2yketBnlh5hI1112eVLj8D1xFVf/vLSI+wptpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAyx0WFWVc+pqj9Zeg4AgMPhmKUHuJYem6SWHgIA4HDY6DDr7i8sPQMAwOGyZ3ZlVtX9qupNVXVxVX2hqt5SVXdZekYAgEO10VvM9quqY5K8JMnvJHlYkmOTnJrkyiXnAgDYiT0RZklOTnKjJC/t7r9dL/ubg724qs5McmaSnFA3vO6nAwA4BBu9K3O/7v5skuck+bOqellVPa6qbnMNrz+7u/d1977jjjrhiM0JAHBN9kSYJUl3PzLJvZK8NsmDk7ynqh6w7FQAAIduz4RZknT3X3X3U7r7tCSvSXLGshMBABy6PRFmVXX7qvqlqvqOqrptVX1XkrsledfSswEAHKq9cvD/JUnumOQPktw0ySeSvCDJU5YcCgBgJzY6zLr7EVs+fchScwAAHA57YlcmAMBeIMwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADDEMUsPsLS+6qpcdcklS4+xcU787+cuPcLG+eKV+5YeYSP93W/fcukRNtKdnnrR0iNsnLrIe8FuXPHRjy09wp5iixkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMMS7Mquo1VfVbVfUrVfXZqvpUVT22qo6vqt+sqs9X1Ueq6uHr17+qqp6+7XucXFWXVNVDlvkpAAB2blyYrT0syUVJ7pXkl5L8lyT/I8l7k+xL8twkz6qqU5I8M8mPVNXxW77+h5NcnOSlR3JoAIBrY2qYvbO7n9jd70vyq0k+neTy7n5ad78/yZOSVJL7JvnDJFcl+YEtX/+oJM/r7ssP9M2r6syqOreqzr28L71OfxAAgEM1Nczevv9Bd3eSTyb56y3LLk/yuSQ37+5Lkzw/qxhLVd05yT2T/M7Bvnl3n93d+7p737FftaENAGA5xyw9wEFs39LVB1m2PyyfleTtVXWbrALtjd397ut2RACAw2vqFrMd6e53JnlzkkcnOT3J7y47EQDAzk3dYrYbz0zy21ltWXvhwrMAAOzYnthitvbCJJcleVF3X7T0MAAAOzVui1l3n3aAZXc5wLJbblt0oyT/INdw0D8AwGTjwmynqurYJDdJ8gtJ/k93v37hkQAAdmUv7Mq8b5KPJ/mOrA7+BwDYSBu/xay7X5PVxWYBADbaXthiBgCwJwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgiGOWHmBxnfQVVyw9BdcDN/jDNy89wka601+cvPQIG+lvfuMOS4+wcY770E2XHmEj3fbnPrb0CHuKLWYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIUaGWVU9p6r+ZPvj9edHVdUzquozVdVVddpigwIAHEbHLD3AIXhsktry+YOSPDLJaUk+kOSzC8wEAHDYjQ+z7v7CtkV3SPLx7n7DEvMAAFxXRu7K3Gr7bs0kv5bkNuvdmB9aL6+q+tmq+tuq+lJV/XVVnb7c1AAAOzd+i9k2j03y4SSPSvLtSa5cL//5JA9N8hNJ3pPkPkmeWVWf6+6XLTEoAMBObVSYdfcXquqiJFd29wVJUlU3TPK4JN/b3a9bv/SDVXXPrELtamFWVWcmOTNJTsgNjsjsAABfy0aF2UF8a5ITkryiqnrL8mOTfOhAX9DdZyc5O0lOrhv3gV4DAHCk7YUw23+c3Pcn+ci25y4/wrMAAOzaXgizdyW5NMltu/tVSw8DALBbGx9m3X1RVZ2V5KyqqiSvTXJiknsnuWq92xIAYLyND7O1JyT5RJKfTvJbSS5M8rYkT11yKACAnRgZZt39iAM9Xn9+VpKzti3rJL+x/gAA2EjjLzALAHB9IcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADDEMUsPAHBNrrzwwqVH2Eh3PPOdS4+wcc5+318uPcJGesxvP3TpETbT+QdebIsZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGOGbpAZZQVWcmOTNJTsgNFp4GAGDlernFrLvP7u593b3v2By/9DgAAEmup2EGADCRMAMAGGLPhllV/WRV/c3ScwAAHKo9G2ZJbprkm5ceAgDgUO3ZMOvuJ3Z3LT0HAMCh2rNhBgCwaYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGOGbpAQA4/PrSS5ceYeP8+J0fuPQIG+nl73nF0iNspKNPOfByW8wAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQ2xMmFXVT1fVh5aeAwDgurIxYQYAsNcdljCrqpOr6kaH43vt4Pe8WVWdcCR/TwCA69Kuw6yqjq6qB1TVf0tyQZK7r5d/XVWdXVWfrKqLqup/VtW+LV/3iKq6uKruX1XvqKovVtWrq+r2277/z1bVBevXPi/JidtGeFCSC9a/1313+3MAAEyx4zCrqjtX1VOTfDTJC5N8Mck/TfLaqqokL0vyDUm+L8n/k+S1SV5VVads+TbHJ3l8kkcluU+SGyX57S2/xw8m+fkkP5fk1CTvSfK4baO8IMmPJDkpySur6v1V9R+3Bx4AwKY4pDCrqptU1U9V1VuT/J8kd0ry2CS37O5Hd/dru7uTfFeSeyR5aHe/pbvf391PSPKBJA/f8i2PSfIT69e8PclZSU5bh12S/Oskz+3uZ3T3e7v7yUnesnWm7r6iu/+0u384yS2T/ML6939fVb2mqh5VVdu3su3/ec6sqnOr6tzLc+mhrAIAgOvcoW4x+1dJnpbky0nu2N0P7u4/6O4vb3vdtyW5QZJPrXdBXlxVFye5S5J/tOV1l3b3e7Z8fn6S45J8/frzb0nyxm3fe/vnf6+7L+zu3+3u70ry7UlukeR3kjz0IK8/u7v3dfe+Y3P8NfzYAABHzjGH+Lqzk1ye5EeTvKOq/ijJ85P8ZXdfueV1RyX5RJJ/coDvceGWx1dse663fP2OVdXxWe06PT2rY8/emdVWt5fs5vsBACzhkEKou8/v7id39zcn+Z4kFyf5/SQfq6pfqap7rF96XlZbq65a78bc+vHJHcz17iT33rbsqz6vlX9cVc/I6uSD30jy/iTf1t2ndvfTuvtzO/g9AQAWteMtVN39pu5+TJJTstrFecck/7uq/kmSv0jy+iQvqaoHVtXtq+o+VfWf1s8fqqclOaOqHl1V31RVj09yr22vOT3Jnyc5OckPJ7l1d/9Md79jpz8TAMAEh7or82q6+9IkL07y4qq6eZIru7ur6kFZnVH5zCQ3z2rX5uuTPG8H3/uFVfWNSZ6c1TFrf5zkV5M8YsvL/jKrkw8uvPp3AADYPLU6mfL66+S6cd+r7r/0GAAs7KiTTlp6hI308ve8bukRNtLRp7z/rd29b/tyt2QCABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYAhhBgAwhDADABhCmAEADCHMAACGEGYAAEMIMwCAIYQZAMAQwgwAYIhjlh4AACa46qKLlh5hIz3gVvdYeoQN9f4DLhpkbZsAAAI2SURBVLXFDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQwgzAIAhhBkAwBDCDABgCGEGADCEMAMAGEKYAQAMIcwAAIYQZgAAQxyz9ABLqKozk5yZJCfkBgtPAwCwcr3cYtbdZ3f3vu7ed2yOX3ocAIAk19MwAwCYSJgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGEGQDAEMIMAGAIYQYAMIQwAwAYQpgBAAwhzAAAhhBmAABDCDMAgCGqu5eeYVFV9akkH156joO4aZJPLz3EBrLeds462x3rbXest52zznZn8nq7bXffbPvC632YTVZV53b3vqXn2DTW285ZZ7tjve2O9bZz1tnubOJ6sysTAGAIYQYAMIQwm+3spQfYUNbbzllnu2O97Y71tnPW2e5s3HpzjBkAwBC2mAEADCHMAACGEGYAAEMIMwCAIYQZAMAQ/xe8A7XOybUj0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "translate(u'esta es mi vida.')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "A3LLCx3ZE0Ls" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input: ¿ todavia estan en casa ? \n", + "Predicted translation: are you still at home ? \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAJwCAYAAAAjo60MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5imdX3v8c8XdgGB2BWxtxi7RjfW2EIUTIznWI7GChohttiiSTyJJTHqUdFYE8WGvccWY8HYjR7FFhVFURGVIKIIohSB7/njfvYwM+7qLuzu/Zud1+u65trnuZ+Z2e/c1zLPm7tWdwcAgPntMvcAAABMhBkAwCCEGQDAIIQZAMAghBkAwCCEGQDAIIQZAMAghBkAwCCEGQDAIIQZAMAghNkAquq3q+pDVXW9uWcBAOYjzMZwYJLbJnngzHMAADMqNzGfV1VVkmOTHJHkT5JctrvPmXUohlFVl0my29Jl3X3cTOMAsJ3ZYja/2yb5rSSPSHJ2kj+adRpmV1UXqapXVdXpSX6Q5DsrPgDYSQmz+R2Y5K3d/Yskb1w8Z207NMkNkvzPJGckuXeSxyX5fpJ7zjgXANuZXZkzqqq9kvx3kj/u7o9X1Q2TfCrJvt3903mnYy5V9f0k91r8mzg1yY26+5iquleSB3b37WceEYDtxBazed0tyUnd/fEk6e4vJvlmkj+ddSrmdtEk3108PiXJJRaPP5XkFrNMBLDKVdVeVXX/qrrI3LP8OsJsXvdL8toVy16b5KAdPwoD+VaSqy4efy3Jny5OErlrkp/MNhXA6naPJK/M9N47LLsyZ1JVV8h0IPe1uvubS5ZfPtNZmtfu7m/MNB4zqqpHJzmnu59fVX+Q5N+SrM/0P1KP7O4XzjogwCpUVR9Osk+SX3T3hrnn2RxhBoOrqism2ZDkm9395bnnAVhtqurKSb6R5CZJPp3p2N2j5pxpc+zKnFFVXXGxi2qTr+3oeRhTdx/X3f8qygDOt/sl+fjiWO5/z8BXQLDFbEZVdU6mMzBPXLH8EklO7O5d55mMHa2qHpPkn7v7jMXjzeru5+ygsQB2ClX1zSRP7e7Dq+puSZ6X5Ao9YAQJsxlV1blJ9unuH61YfqUkR3X3XvNMxo5WVd9JsqG7f7x4vDnd3Vf9Na8DsERV3SLJB5JcprtPq6rdkpyQ5J7dfcS80/2qdXMPsBZV1fMXDzvJ06vqF0te3jXTPvAv7vDBmE13X2VTjwG4wA5M8s7uPi1JuvusqnpzpisgCDOSJNdb/FlJrpXkrCWvnZXk85mu/s4aVFU3XBwHAcAFUFW7Z7pMxr1WvPTaJO+vqr03Btso7MqcyeKg/zdnupL7z+aeh3EsdnEfleQ1SV7f3d+beSSAVamqLpnpHtSv7e5zV7x23yQf7O4TZhluM4TZTKpq10z3QbzBqKfsMo+qukaS+2T6P7yrJvlEpkh7a3efMudsc6mqPZI8Msl+SS6dFWeUd/f155gLYFsTZjOqqmOS3N1uKzanqm6aKdLukeTCSd7T3f9r3ql2vKp6RZK7JHlLkuMzHZ/5/3X3388xF8C2JsxmVFUHZtoqct/uPmnueRjXItBenOT6a/EyKlX1kyT36O4Pzj0LML7F2e1bFDijnenu4P95PTbJVZL8oKq+n+TnS1+0e2Ztq6qrZNpadp8kV0/ysSQPmnWo+fwiiWPtgC219NZ1eyd5TJLPJPnUYtnNM10B4dk7eK7fyBazGVXVk37d63bPrE1V9bBMMXbTJF/JdPbQ67v7B7MONqOqekSS6yR58IgXhATGVVWHJ/lGdz9txfLHJ7lOd993lsE2Q5jBYKrquCRvyHQWkdswJamqdye5VZJTMp2x+sulr3f3neeYCxhfVZ2a6d6Yx6xYfvUkn+/uC88z2abZlQnjuZKtQr/ipCRvn3sIYFX6eZLbJjlmxfLbZjpMYijCbEaL20L8baYTAK6YZP3S19fiQd5M91xKkqq6bKZ/F7uteP1jc8w1p+5+wNwzMC6/S/kN/inJi6pqQ5JPL5bdLNMdAZ4811CbI8zm9ZQk90zy9Ez/cB6X5MpJ/jTJE+YbizktguwNmXbddaY7RCzdguZNBpbzu5TN6u5nVtWxma6FeI/F4q8lObC73zzbYJvhGLMZLU7nfUh3v6+qfpbkht39rap6SJL9uvvuM4/IDBb3cLtEkocl+WySA5Lsk+Qfkjx6xJvu7ghV9YCct0Vk5VbEoU53Z8fyu5SdyS6/+VPYjvbJdCBzkpyW5KKLx+9LcodZJmIEt0ny19399Uxbyn7U3f+a5K8zbRlYc6rqcZlOa/9cpi0h78h0xurFk7xivskYhN+lbJGqumhVXXzpx9wzrSTM5nVckssuHh+TZP/F45snOX2WiRjBhTId7J4kP8l0C6JkeuNZq9e2OzjJId39+ExnZL5wcSbms5NcadbJGIHfpWxWVV2pqt5bVacn+XGSHy0+Tlr8ORTHmM3r7Znu/ffpJM9L8oaqOjjJ5ZI8a87BmNXXk1wzybFJvpjkwVX1vUy7Ntfqtcwun+nikMn0Rrvx9PY3LJYfPMdQDMPvUn6dV2baivpn2cQt3UbjGLOBLG67c8tMF8L7t7nnYR5VdZ8k67v78Kq6UabdMZdIcmamg1XfMuuAM6iqb2e6r+znq+qzSV7R3f9SVQckeV13X2LmERlIVd0syS3idylJquq0JDfr7q/MPcuWEGYzqqpbJ/nP7j57xfJ1SW6xFi+LwK+qqj0zbUE7bq3eU7WqXpbk+9395Kp6cKYz7z6d5EZJ3tzdtpgBm1RVX05yUHd/bu5ZtoQwm1FVnZNk3+4+ccXySyQ50bV3YFJVuyTZZeP/xFTVPbPYupzkJd39y1/39ezcquoeSX7a3R9YPH9ikkOSfDXTG/J/zzkf86qqP0jyN0keuvLq/yMSZjOqqnOT7NPdP1qx/BpJjhztNhFsP1W1xWcWdvcDt+csI6qqKyb53so7IlRVJblCdx83z2SMoKqOSvKo7v7AYvf/fyZ5YqZLzZzQ3feedUBmtbiEyu6ZrgF5ZpJle6lGe6918P8Mqupdi4ed5LVVdeaSl3dNct1Mv1hYOy614vmtk5ybZOO9Mq+b6Szqtbp7+ztJ9k1y4orlF1+8Zuvy2nalJEcvHt8lyTsWFxX9QJL3zzcWg3j43ANsDWE2jx8v/qwkJ2f56dxnJflEkpfu6KGYT3f/ycbHVfX4TP8mHtDdP18s2yvJy3NeqK01K+9+sNHeSc7YwbMwnjOS/Nbi8X4579p2pyxZzhrV3a+ae4atYVfmjKrqSUkO3fjmC0lSVf+d6WrlR61Yfp0k/9Hdl5lnsh2vqp6/ePiwTKe8L73h8K5JbpLkrO6+5Y6ejXFU1TsyXf/vE5luwXTl7j6+qvZP8vzu/p1ZB2R2VbVPkvsluVqSJ3T3SVV1yyTHd/d35p1uOReYnddTsmRrWVVdpqoeVFW3mHEm5rd3zrtY5lL7JtlzB88yt+stPirJtZY8v16Sqyf5fJKD5hqOYTw8096Guyd5cHcfv1h+x9iVueZV1Y0z7eq+T6ZrmW08puz2SZ4611ybY4vZjKrqvUne193Pq6q9M11YdK9Mb8x/1t2vnnVAZlFVh2faHfO4TJeESJKbJXlGkg9390HzTDafqnplkkd296lzzzKKxWVUbpjpzhDL/id7cQsvIElVfTjJx7r7SYsTAW7Q3d+uqpsneWN3D3X3EGE2o6r6UZI/6O4vV9X9M53Oe4NMVf+Y7l6rt99Z06rqQpluNfTAJOsXi8/OdIzZY7v7F5v72rVisY5umeSb3f3duefZ0arqDzPd9WBTF9Ztl9qB81TVqZlubP/tFWF25SRf7+49Zh1wBbsy57V3kp8uHt8hydsX12P6UKb94KxB3X16dz8005vu7y4+Lt7dD12rUVZVh1fVQxePd8t0G6YPJDm6qu4463DzeF6S9yS5fHfvsuJjzUVZVe1WVX9fVd+oqjOq6pylH3PPx+xOT3KxTSy/Zn71TO/ZCbN5HZfklosz7vZPcsRi+cWz/CBn1qZzMl0y45zFx1q2f87brXvnTGfaXSbJkxcfa82VkzxlybFUa91TkhyYaUvzuZkOA3hRpjPgHzrjXIzhnUmeVFW7L573YmvZM5K8ba6hNkeYzes5SV6T5PuZbk698RpVt87avSzCmldV66rqWZkupfKlTP8WTq6qZ1bV+l//1Tuti+W8/7M9IMnbFnfMeGOSa8821Xw+mcSZhue5R6aD/l+S6X9i3tndj0jypEwHeLO2PTbTBo8fZTqB6hNJjsl0OZW/m3GuTXIdsxl190uq6sgkV0xyRHefu3jpW5lO+WZtemaSeyV5cKZfIElyqyRPz/Q/U4+daa45nZDkuotLieyf6XY7yXQ4wFq8HdOLkxxaVZfNFO7L1kF3f36WqeazT5KNl5c5LclFF4/fl2mrCGvY4qSh31/cmulGmX6Pfr67PzjvZJsmzGZSVRdJcv3u/niSlTdW/WnO+yXD2nPvJA/s7n9fsuxbi5NFXpa1GWavSPKmJMdn2iLyH4vlN810NvNa89bFn4dt4rXO2rsTwnGZLjFzXKYtIftn+r168yy/gDdrzNL32u7+UKZjuDe+dsskR3X3ybMNuAnCbD7nJnlvVe3f3Z/cuLCqbpDpH87lZpuMuV0k01bTlb6V87YErCnd/Q9V9ZVMt955c3eftXjp7KzNLSJXmXuAwbw90yVmPp3pxIg3VNXBmX6PPmvOwZjdqnuvdYzZTLr7Z5kOSLz/ipful+T93X3Sjp+KQXwpySM2sfyRSb64g2cZyelJ/jDJEVV1hcWy3TLtulpTFpcIuXamA9zfm+TcxbLbZ7rw7prS3Y/v7qcuHr81ye8neUGSu3b33846HLNaje+1wmxer07yvxan/6eqdsm0G+vwOYdidn+V5MCqOrqqXrX4ODrJfTOdbbbmVNV9krw5yTcybS3aeBLELpnW15qyZH18M8vXx65Zm+vjqVX14I3Pu/v/dvdzkly+qp4y42iMYVW91wqzeR2RaSvAnRbP98u0BeDds000sMV/TGvBsUmukek4or0XH2/JdBbecfONNau/SnJwdz860+7LjT6d6er3a431sdz9knxhE8s/l1/dUrJTq6o7VdWjqmrN3FN3C6yq99q18kY3pMVZmK/Neb847pfkTYuLzLLCkrNWd3bfSXJ2d/9td99t8fF3Sc5cvLYW/XaST21i+Wk57753a4n1sdylM10KYaUfZzpjc02oqr/JdLzd45J8qaquN/NIQ1ht77XCbH6vTnJAVV0xyV2SvGrmeWZTVR+uqldW1cUWj99VVQfOPdcMKtOZdSvtneSMHTzLKI7PtBVxpVtn0ydK7Oysj+WOy3RJmZVunek6kWvFQzPdZ/lymU6COKKq7lBVV1xcH3HfxXvNWrRq3mudlTmz7v7q4myz1yX5fnd/Zu6ZZvSVTNer+uXi8W8leVFV3XhxscidWlU9f/Gwkzy9qpbe/WHXJDfJ2j34/7Akz6+qBy2eX6GqbpXpmm9Pnm2q+Vgfy70kyT8tjiHaeDmE/TJd+28tnbV78SwuVN7dT1sc/vHexWu/l+l95hpZe5dTWVXvtcJsDK9O8twka/rsoe7+iyVP/yJJquoFSd63uH3GW7v71TOMtqNs3O1QSa6V5Kwlr52V5PNJDt3RQ42gu5+5uB7REUn2SPLhTLt2D+3uF8063Aysj+W6+9lVdckkz8907FAy/TfzvO5+5nyT7XDfyHS27rFJ0t3/WFUvT7Jvkq9l2pW352zTzW9VvNdW96b2mLAjVdXFM4XIS7r7hLnnGU1VXSPJS5PcuLv3nnue7a2qXpnkkYurVbNEVe2Z6Y1nl0wXhlxzl8pYyvpYbnHf4Y236PraWlsfVfXwJLfr7rvNPcuIVst7rTADABiEg/8BAAYhzAAABiHMBlFVh8w9w0isj+Wsj+Wsj+Wsj+Wsj+Wsj+VGXx/CbBxD/0OZgfWxnPWxnPWxnPWxnPWxnPWx3NDrQ5gBAAxizZ+VuVvt3ntkr7nHyC9zZtZn97nHGIb1sZz1sZz1sZz1sZz1sdwo66N2Wz/3CEmSs845PbvteqG5x8ipZ514UndfauXyNX+B2T2yV25a+809BsDqVzX3BGMpO6WWWneZfeceYSjvO+65393Ucv9qAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAax6sOsqtbPPQMAwLYwXJhV1QFV9fGqOrmqflJV76+qay1eu3JVdVXdq6o+VFWnJ/nzxWu3qKqPVtUvquoHVfUvVXXhWX8YAICtMFyYJdkryXOT3CTJbZOckuTdVbXbks95epJ/TnLtJO+oqusl+UCSdyW5QZK7JrlhklfsuLEBAC6YdXMPsFJ3v23p86p6QJJTM4Xa9xeLX9Ddb13yOU9L8qbufvaSZQ9J8oWqunR3n7jiex6S5JAk2SN7bpefAwBgaw23xayqrlZVr6+qb1XVqUl+mGnOKy75tCNXfNmNk9y3qk7b+JHkk4vXrrby7+juw7p7Q3dvWJ/dt8ePAQCw1YbbYpbk3zJtGfvzJD9IcnaSo5Is3ZX58xVfs0uSlyX5p018vx9shxkBALa5ocKsqi6R5JpJHtrdH14su1F+85yfT3Kd7j5mO48IALDdjLYr8+QkJyU5uKquXlW3SfLiTFvNfp1nJLlJVb24qn538bV3qqqXbO+BAQC2laHCrLvPTXLPJNdP8pUkL0ryhCRn/oav+68kt05y5SQfTfKlTGdu/nA7jgsAsE0NtSszSbr7Q0muu2Lx3kse12a+7sgkB2yvuQAAtrehtpgBAKxlwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDr5h5gbrVuXXa9+KXmHmMY55566twjDOVnd77h3CMM5cfX3XXuEYZytX/51twjjGX9+rknGEr/7GdzjzCUPv30uUdYFWwxAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABjE7GFWVfevqh9X1e4rlr+uqt61ePznVXVMVZ21+PPgFZ/bVXX3FcuOrarHbv+fAABg25g9zJK8JdMc/2Pjgqq6SJK7JHl5Vd0lyQuTPDfJdZM8L8k/V9WfzDArAMB2s27uAbr79Kp6XZIHJnnzYvG9k5ya5D1JPprkNd39wsVr36iqGyf56yTvPj9/Z1UdkuSQJNljl70vwPQAANvOCFvMkuSlSW5fVZdfPH9gkld199lJrpXkkys+/xNJrn1+/7LuPqy7N3T3ht12udD5/TYAANvUEGHW3V9K8vkkB1XVdZNsSPKK3/RlKx7XitfXb7sJAQC2vyHCbOGlSQ5K8qAkn+zuoxfLv5bklis+9/eTHLXk+Y+S7LvxSVXts/Q5AMBqMPsxZku8IclzkjwkyYOXLH9WkrdU1eeSfCDJAUnuk+SuSz7nQ0keVlX/meScJE9LcsaOGBoAYFsZZotZd/8s08H/Z+a8kwDS3e9I8hdJHp1pK9kjkzy0u5ce+P+XSb6d5CNJ3prkZUlO3CGDAwBsIyNtMUum3Y9v6u6fL13Y3S9O8uLNfVF3H5/kjisWv23bjwcAsP0MEWZVdbEkt0pyhyQ3mHkcAIBZDBFmSb6Q5OJJ/nd3f2XuYQAA5jBEmHX3leeeAQBgbsMc/A8AsNYJMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQaybe4C59dln55wf/2TuMYaxy27r5x5hKKdeede5RxjKVf715LlHGMrRf3nVuUcYyoW/PfcEY9nn1f819whDOfeUU+ceYVWwxQwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEKs2zKrqI1X1wi19DgAwunVzD/CbVNVBSV7Y3XuveOmuSX654ycCANg+hg+zzenun8w9AwDAtjTMrsyqunVVfbqqTquqU6rqM1X18CSvTLJXVfXi48mLz7erEgDYqQyxxayq1iV5Z5KXJ7lPkvVJbpTkq0keleRpSa62+PTT5pgRAGB7GyLMklw4yUWTvLu7v7VY9vUkqarfTdLdfcK2+suq6pAkhyTJHtlzW31bAIALZIhdmYvjxQ5P8v6qek9VPaaqrrgd/77DuntDd29Yn923118DALBVhgizJOnuByS5aZKPJblzkqOrav95pwIA2HGGCbMk6e4vdfczuvu2ST6S5MAkZyXZdc65AAB2hCHCrKquUlX/p6puUVVXqqrbJbl+kqOSHJtkj6q6fVVdsqocFAYA7JRGOfj/F0mukeQtSS6Z5IdJXpfkGd39y6p6cZI3JLlEkr9P8uSZ5gQA2G6GCLPu/mGmK/lv7vWHJHnIimW33ZrnAACjG2JXJgAAwgwAYBjCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDr5h5gdpXULjX3FMOo3Xabe4ShXPbQT809wlDO7Z57hKEc9Joz5h5hKK/4+G3mHmEol9l117lHGIvfH1vEFjMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBB7HRhVlVXrqquqg1zzwIAsDV2ujADAFitVmWYVdUBVfXxqjq5qn5SVe+vqmstXv7O4s/PLracfWSmMQEAtsqqDLMkeyV5bpKbJLltklOSvLuqdlssS5IDkuyb5K5zDAgAsLXWzT3A+dHdb1v6vKoekOTUTFH2/cXiH3f3CZv6+qo6JMkhSbJH9tyOkwIAbLlVucWsqq5WVa+vqm9V1alJfpjpZ7nilnx9dx/W3Ru6e8P62n27zgoAsKVW5RazJP+WacvYnyf5QZKzkxyVZLc5hwIAuCBWXZhV1SWSXDPJQ7v7w4tlN8p5P8tZiz93nWE8AIDzbdWFWZKTk5yU5OCq+l6SyyV5VqatZklyYpLTk+xfVccmOaO7T5ljUACArbHqjjHr7nOT3DPJ9ZN8JcmLkjwhyZmL189O8ogkD0pyfJJ3zjMpAMDWWY1bzNLdH0py3RWL917y+suSvGyHDgUAcAGtui1mAAA7K2EGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADCIdXMPMLtO+uyz555iGHWxi8w9wlhOPXXuCRjYp+5wpblHGMpt3nHU3CMM5aNPu/bcIwzltx9x5NwjjOWcTS+2xQwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgENs0zKrqI1X1wm35PQEA1gpbzAAABiHMAAAGsT3CbJeqelpVnVRVJ1bVoVW1S5JU1cWq6lVVdXJVnV5VH6yq62z8wqo6qKpOq6o7VtXXq+oXVfWuqrpIVd29qr5ZVadU1Wuq6kJLvq6q6q+q6luL7/vlqrrvdvjZAAC2m+0RZvdJcnaSWyR5eJJHJbnn4rXDk9w0yf9IcpMkv0jyvqWRlWT3JH+5+D77JdmQ5G1JDkxytyT/M8mdkjx0ydf8Y5I/S/KwJNdO8vQkL6mqP97UgFV1SFUdWVVH/jJnXsAfFwBg21i3Hb7nUd39xMXjb1TVwUn2q6ojk9w5yW26+2NJUlX3S3Jcpgh72ZKZHtbdRy8+5/VJHp1kn+4+abHsnUlul+TZVbVXksckuUN3f3zxPb5TVTfJFGrvWTlgdx+W5LAkuXBdvLfpTw8AcD5tjzD7rxXPj09y6STXSnJukk9tfKG7T6mqL2fayrXRmRujbOGHSU7YGGVLlm38mmsn2SPTlrelkbU+ybEX4OcAANihtkeY/XLF885v3mW6NKjO3sRrv+57bvzzTzJtfft1swAADGt7hNnmfC1TRN08ycZdmRdOcr0kr7wA3/eoJGcmuVJ3f+iCDgkAMJcdFmbd/c3FsWEvqapDkvw0yVOTnJrk9Rfg+/6sqg5NcmhVVWHhxG8AAAnkSURBVKbo2zvJzZKcuzieDABgeDv6OmYPSPKZJO9a/LlnkgO6+/QL+H2fkOTJSR6b5KtJjsh0Bud3LuD3BQDYYbbpFrPuvu0mlh205PHJmS57sbmvPzzTJTWWLjs0yaErlv3Niued5AWLDwCAVcmV/wEABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGsW7uARjLT255ublHGMqFv/u9uUdgYH3GGXOPMJSPfeo6c48wlF0ufebcI7AK2WIGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwCGEGADAIYQYAMAhhBgAwiJ0qzKrq4VX1har6eVV9r6oeP/dMAABbat3cA2xj+yV5YpKvJrl1kpdV1Ve7+13zjgUA8JvtVGHW3XdZ8vTbVfW0JFefax4AgK2xU4XZUlX1v5OsT/LGTbx2SJJDkmSP7LmDJwMA2LSd6hizjarq75I8Ksntu/v4la9392HdvaG7N6zP7jt+QACATdjptphV1WWT/EOSP+7uL849DwDAltoZt5jtm6SSfG3uQQAAtsbOGGZfS/J7SX5lFyYAwMh2xjC7bpLXJrnU3IMAAGyNnTHM9kzyO5nOyAQAWDV2uoP/u/sjmY4xAwBYVXbGLWYAAKuSMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGIQwAwAYhDADABiEMAMAGMS6uQdgLBf55s/nHmEoPfcADO3c0/z3stTvvOzkuUcYyr8f8aa5RxjKH1/uTnOPMJbjNr3YFjMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQQgzAIBBCDMAgEEIMwCAQayaMKuqx1bVsXPPAQCwvayaMAMA2NltkzCrqgtX1UW3xffair/zUlW1x478OwEAtqfzHWZVtWtV7V9Vr09yQpIbLJZfpKoOq6oTq+pnVfXRqtqw5OsOqqrTqmq/qvpKVf28qj5cVVdZ8f3/qqpOWHzuq5PsvWKEP0pywuLvuuX5/TkAAEax1WFWVdepqmcm+V6SNyX5eZIDknysqirJe5JcLsmdkvxuko8l+VBV7bvk2+ye5PFJHpjk5kkumuTFS/6OeyT5xyRPSnKjJEcnecyKUV6X5N5JfivJEVV1TFU9cWXgbeZnOKSqjqyqI3+ZM7d2FQAAbBdbFGZVdYmqekRVfS7JF5JcM8kjk1ymuw/u7o91dye5XZIbJrl7d3+mu4/p7ick+XaS+y35luuSPGzxOf+V5NAkt12EXZI8Ksmruvsl3f2N7n5qks8snam7z+7uf+/ueyW5TJKnLf7+b1bVR6rqgVW1civbxq89rLs3dPeG9dl9S1YBAMB2t6VbzP4iyfOSnJHkGt195+5+S3efseLzbpxkzyQ/WuyCPK2qTkty3SRXW/J5Z3b30UueH59ktyQXWzy/VpJPrfjeK5//f919ane/ortvl+T3kuyT5OVJ7r6FPx8AwOzWbeHnHZbkl0nun+QrVfX2JK9J8h/dfc6Sz9slyQ+T3GoT3+PUJY/PXvFaL/n6rVZVu2fadXrfTMeefTXTVrd3np/vBwAwhy0Koe4+vruf2t2/k+QPk5yW5I1Jvl9Vz66qGy4+9fOZtladu9iNufTjxK2Y62tJbrZi2bLnNfn9qnpJppMPXpDkmCQ37u4bdffzuvvkrfg7AQBmtdVbqLr70939kCT7ZtrFeY0kn62qWyX5YJJPJnlnVd2xqq5SVTevqr9fvL6lnpfkwKo6uKp+u6oen+SmKz7nvkk+kOTCSe6V5Ard/bju/srW/kwAACPY0l2Zv6K7z0zy1iRvrapLJzmnu7uq/ijTGZUvTXLpTLs2P5nk1Vvxvd9UVVdN8tRMx6y9K8lzkhy05NP+I9PJB6f+6ncAAFh9zneYLbV0N2V3/yzTGZuP3MznHp7k8BXLPpKkVix7epKnr/jyJy95/fjzPzEAwHjckgkAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEOvmHoCx9Ge/PPcIsGr02WfPPcJQzvnq0XOPMJT9L3vDuUcYzPfnHmBVsMUMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEMIMAGAQwgwAYBDCDABgEOvmHmAOVXVIkkOSZI/sOfM0AACTNbnFrLsP6+4N3b1hfXafexwAgCRrNMwAAEYkzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABiHMAAAGIcwAAAYhzAAABlHdPfcMs6qqHyX57txzJLlkkpPmHmIg1sdy1sdy1sdy1sdy1sdy1sdyo6yPK3X3pVYuXPNhNoqqOrK7N8w9xyisj+Wsj+Wsj+Wsj+Wsj+Wsj+VGXx92ZQIADEKYAQAMQpiN47C5BxiM9bGc9bGc9bGc9bGc9bGc9bHc0OvDMWYAAIOwxQwAYBDCDABgEMIMAGAQwgwAYBDCDABgEP8PH8riNNUMTXgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "translate(u'¿todavia estan en casa?')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "DUQVLVqUE1YW" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input: trata de averiguarlo . \n", + "Predicted translation: try to figure it out . \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAKICAYAAADeoZu0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZSddX348feHJCRlEXcM/oosClJcQCPCDwWUqnXrseqx0rogrdEqLR6qtWj7ExdEBWxpkQpVodQNa+1BxVI3cKtKA24UFEFjqxAWRSAsSUw+vz+eZ+TOZZJMQvL5PjPzfp0zJ3eeuXPnM/fAfc/z3GeJzESSJNXYpvUAkiTNJYZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRC81sPIEnTFRGLgIcCCVydmXc2HknaZK7xShq8iJgfEScBNwHfAb4H3BQR74qIBW2nkzaNa7ySZoJ3AUcArwS+2i97InAi3QrEaxvNJW2y8FzNkoYuIlYAR2XmZ8aWPxN4X2YubjOZtOnc1CxpJtgJuHqK5VcD9y6eRbpHDK+kmeA7wJ9NsfwY4NvFs0j3iJuaJQ1eRBwCfAb4GfCNfvGBwC7A0zPzq+v7XmloDK+kGSEidgFeDTy8X3QFcHpmXtNuKmnTGV5Jkgp5OJGkQYqIx0z3vpl56dacRdqSXOOVNEgRsY7uDFWxkbtmZs4rGEnaIlzjlTRUu7ceQNoaXOOVNGj9KSFPAN6TmT9pPY90TxleSYMXESuBR2Tm8tazSPeUJ9CQNBP8B/Dk1kNIW4Lv8UqaCb4AvD0iHgVcAtw2+sXM/ESTqaTN4KZmSYPX7+G8Pu7VrBnF8EqSVMj3eCVJKuR7vJJmhIi4D/B0YFdg29GvZeZbmgwlbQY3NUsavIg4EDgfWAU8gO4qRYv7z5dn5qMajidtEjc1S5oJTgI+BDwYuJPu0KJdgWXAOxvOJW0y13glDV5E3Aw8LjOvjIhfAgdl5hUR8Tjgw5n5sMYjStPmGq+kmWD1yO3rgIf0t1cCu9SPI20+d66SNBNcCjwOuBK4CHhbROwMvAj4bsO5pE3mpmZJgxcRS4AdM/PCiHgAcA5wMF2IX5aZ32s6oLQJDO8ARMTDgDOAY3wBkaTZzfd4h+GlwGHAUY3nkCRtZa7xNhYRASwHPgc8G9glM9c2HUoamIj4HrDeFyuP49VM4s5V7R0G7Aj8Gd1ZeZ4BfKrlQNIAfXzs8wXAfnTv876nfhxp87nG21hEnA2szsylEXEK8JDMfH7jsaQZISJeR/f/zNGtZ5Gmy/A2FBHbA9cCz8zMr0TEfsDXgcWZ+cu200nDFxF7Assy8z6tZ5Gmy52r2noecGNmfgUgM78N/BB4YdOppJnjEOD21kNoGCJi+4h4SUTs1HqWDfE93rZeDHxwbNkHgSOB95ZPIw1URHxyfBHdRRL2B95cP5EG6gXA+4BjgNMaz7JebmpuJCJ+E/gxsE9m/nBk+f+h28v5tzLzykbjSYMSEWeNLVoH3AB8MTM/22AkDVBEXAjsDNyemUtaz7M+hleSNONFxG50ZzI7APgG8JjMvLzlTOvje7wNRcSu/XG8U36teh5JmsFeDHyl31fmM3QnJhok13gbioi1dHswXz+2/H7A9Zk5r81k0rBExI+Z+gQaSXd93quA92fm+HvBmiMi4ofACZl5dkQ8DzgV+M0cYORc420rmPrFZAe6FxNJnbOA+9Lt9f/B/uOH/bJPAmuBT0TE7zebUM1ExP+l29lu4kQrnwK2A3672VAb4F7NDUTE3/U3EzgxIkYPh5hH9x7Ft8sHk4ZrD+AdmfmO0YUR8Rd0OyI+NyLeAPwlcG6LAdXUS4HzMnMlQGaujoiP0R0h8rmWg03FTc0N9HveARxKd8KM0Yt8r6bbq/nk0b2dpbksIm6h21nmqrHlDwUuzcx7RcTewCWZuUOTIdVERCwEVgBHZOYFI8ufAPwHsPNEkIfCNd4GMvNJ/U5VHwOOysxbW88kDdztwBPp3ssd9UTuOoHGPOCOyqE0CDvSHbc76bCyzPxqRLyC7q27QYXXNd5GImIe3fu4jx7qLu/SUETEccD/Az4A/Fe/+HF0mxLfmpnviIhjgadn5lPaTClNj+FtKCKuAp7f7/4uaQMi4oV0V/F6eL/o+8CpmXlu//XfADIz3TFRg2Z4G4qIlwJHAC/KzBtbzyNJM8UGDjG7m8zcYyuPs0l8j7et1wK7Az+LiJ8Ct41+0Yt7S9J6jZ6LeQfgWOBiuh1WAQ6iO0LklOK5NsrwtjV+cW9JvX5P5j0y88aIuJUNrN1k5r3qJtMQZOavg9pf1/ydmfn20fv0+wbsWzzaRrmpWYMQEU+i2+y+K7Dt6Ncy88lNhlJT/VsxH83MVf3t9crMfyoaSwM0ncPN2kw2Ndd41VxEHEl3GcR/Aw4DzgP2otsMP37ZRM0REzGNiPl0VyL6Zmb+vO1UGqjb6F47xg83O4wBXq/Z8DYUEdsCb+SuNb0Fo1+fQ+dqfi1wdGa+r9+keFxm/igiTmNgx9+pXmb+KiI+Qbc3s+HVVP4GeE9ELKG7MhHAgXRntDq+1VDr47ma23or3X8Yp9BdX/R1wHvoXlxe1XCuansAn+9vr6LbUQK6nSeObDGQBuc7wENbD6Fhysx30V2d6JHAu/uPRwIvzcx3tpxtKq7xtvUC4JWZeUFEnEx3rtGrI+IK4CnAGW3HK/NzurPPAPwMeATwXeB+wG+0GkqDcjxwSkS8CbiEux8B8IsWQ2k4MvNjdGcDHDzD29bOwMRZq1YC9+5vXwAM7q+0regrwFOB79H9j/N3EfEU4HAGeIJzNXF+/+8nmLx388QVvubK2zLaiIi4N2Nbc4f2h5nhbet/gF36f68Cnkb31/xBzK1zzh4NLOpvnwj8CjiYLsJvazWUBuVJrQfQcEXEQ+h20DyMyUdFDPIPMw8naigiTgRWZuYJEfF84CPAT4EHAydl5hubDihJM0BEfJFui+HJwDWMHfOdmV9qMdf6GN4BiYjH063pXZmZn249T5WIWAsszszrx5bfD7h+Du3drQ2IiEcCrwD2pLuq17UR8RzgJ5n5rbbTqaWIWAkcmJmXtZ5lOtyruaGIOKQ/RhGAzPxmZr4buCAiDmk4WrVYz/KFTL5WseaoiHgq3VWJHgw8mbt2utsTeFOruTQYP6Z7vZgRfI+3rQuBxcD1Y8t36r82q9f0+su4QbdZ6JX9X60T5tFda/X75YNpiN4KHJuZp/fHek+4CPjzNiNpQI4BToyIV42fvWqIDG9bE2/8j7sfY4dLzFJ/2v8bwB8Da0e+thpYDryyeCYN0yOAz0yx/BfAfYtn0fCcR7fG+4OIWEW3g+avecpIERGf7G8m8MH+P5QJ8+heZP6zfLBimbk7QERcCDw3M29qPJKG6xd0m5mXjy1/DN0OiZrbjm49wKYwvG1MnPYugJuYfOjQauCrwD9WD9VKZnqoiDbmw8BJEfECuj9Y50fEoXR7sZ7VdDI1N9MukuFezQ31Z+E5OTPnwmblDYqIvYDnM/XViY5qMpQGIyIWAGcDL6T7g3Vd/++HgSMzc+36v1tzQUTsTHfayD2Bv+4vJ3kwcE1m/rjtdJMZ3oYiYhuAzFzXf/4g4FnA5Zk56zc1T4iIZwL/CnwLeCzd3qt70r1n85XM/N2G42lAImJPYH+6IzK+lZk/bDySBiAiHgt8gW7v5n2Bh/cXWjke2Csz/6DlfOM8nKit8+l3MIqIHYBlwEnAlyLiJS0HK/YW4M2ZeRDdRRJeDOxGd+GEi9qN1VZEPDIiTouIf4+Ixf2y50TE/q1nq9b/3gsy8+rM/HhmfszoasTJwKmZuT/da8iE/6A7N8KgGN62lgBf7G8/F7gFeCDwcrpL5c0VewPn9rfXANtl5p10QX5Ns6ka8rjVu/kwsCIi3ttvPpRGPRaY6n3ea+nOiT8ohretHYBf9refCvxbZq6hi/Gezaaqdyt3nav5Wu66/Nt84D5NJmpv4rjV32PySUQuAg5oMlFbO9P9Mbon3RahH0XE2yLi4Y3n0jDcwdSvFQ/n7udJaM7wtvU/wMERsT3dBRImrsRzX+D2ZlPV+ybwhP72+dx1+bezgK83m6otj1sdkZm3ZuZZmfkUuh3wTgN+B/jviPivttNpAM4D3hQRE2evyojYje4qb//aaqj1MbxtvRv4Z7rjEH8GfLlffgjdJfLmimOBb/S3jwc+CzyP7opNf9xoptYmjlsdN+ePW83Ma+jCeyLddZsf03YiDcBr6f4gvQHYju6QzKuAm4G/ajjXlNyrubF+b7xdgc9l5sp+2TOBX2bm15oOV6A/V/VTgW9m5s83dv+5IiLeSXfKzBfQXbN5Cd3pRc8GzsrMt7Sbrp2IeBLwh3R/mEF3fd4PZuaF7abSUETEk+n+ENsGuDQzP994pCkZ3kYiYifgUZn5lSm+djDdIUVz4kxOEXEn3e7/y1vPMhTrOW51G+BDzMHjViPiJLrn4oHABcAHgU9m5qoNfqNmvZn4Wmp4G4mIHel2JHra6JptRDwauBh4cGbe2Gq+ShHxTeCNQ/3rtKWI2IO7/oKfs8etRsTX6GJ7bmb+ovU8Go6Z+FpqeBuKiA8BKzPzFSPLTqY74HvOnDQiIp4OvIPuMJlLGLtAxFx5oY2ID0z3vnPxbF792xIHMPXZzc5pMpQGYaa9lhrehiLiacBHgAdl5ur+TFY/BY7OzE+0na5ORKwb+XT0P8gAMjNn9eURJ0TEp8YWHUK3iXliR7tH0K35fnmILyZbU0TsDXwK2IPuv4u1dIebrQFWDe3qM6o1015LvUhCW5+jO/7sWXQ7iRxO95f8+AvwbPcy4H+ZfFlA6CKza/04bWTmsyduR8RxdP9tvGziXN79YWfvZ27t8T7hVOBSutNFrgD2o7tu9T8wwL1WVW5GvZa6xttYv/fq3pn5nIg4B7g1M1/deq5KEbEWWJyZ148tvx9w/VxZ4x0VEdcCh2fm5WPL9wW+kJkPajNZGxHxc+DQzLwsIm4GDsjMH/RXKPr7zHxU4xHV2Ex6LXWNt71zgEsiYlfg9+j+UptrgsmbmCfsANxZPMtQ7ADsQnco0ajFdMcpzjXBXSeVuYHuGOcf0G1OfOj6vklzyox5LTW8jWXmf0fEZXSHifw0My9uPVOViPi7/mYCJ0bE6Nm65tHtSPPt8sGG4V+BsyLiddx1cpED6c7EM7j3rApcBjwa+BHdnqqv77eUvJzuRAma42bSa6nhHYZzgL8F3th6kGKP7P8NYB8mn5N4Nd17eidXDzUQfwKcQncs74J+2a/o3uOdSxfQmHACsH1/+6/oTi16IXAj3UlGBETEFcDDMnOuvrbPiNdS3+MdgIi4L93lAc/IzBWt56kWEWcBx2TmLa1nGZp+h6qJC2ZcPbGjlX79/81N6YvYr0XE0cD9MvPNrWdpYaa8lhpeSZIKeZEESZIKGV5JkgoZ3oGIiKWtZxgSn4/JfD4m8/mYzOdjsqE/H4Z3OAb9H0oDPh+T+XxM5vMxmc/HZIN+PgyvJEmF5vxezdvGwlz068MD21nDKhawsPUYg+HzMZnPx2Q+H5P5fEw2lOfjVm66MTMfML58rh5k/WuL2J7Hx2DPLCZJM0dE6wkG5fPr/uUnUy13U7MkSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUGHd6IuCgiTms9hyRJW8qgwzsdEbGg9QySJE3XYMMbEWcDhwKvjojsP47s/31GRFwcEauBV0TEuohYMvb9L4+IGyNi2xbzS5I0lfmtB9iAY4C9gO8Db+iX7dv/+07gz4GrgFuBZwNHActGvv8o4J8zc3XJtJIkTcNg13gz82ZgNXB7Zq7IzBXA2v7Lx2fmZzPzR5l5A/CPwBERsQggIvYBDgTeP9VjR8TSiFgWEcvWsGrr/zKSJPUGG96NWDb2+Xl0kX5u//lRwMWZedlU35yZZ2bmksxcsoCFW3FMSZImm6nhvW30k8xcA5wDHBUR84EXs561XUmSWhrye7zQrcXOm+Z93wdcDrwK2BH46NYaSpKkzTX08C4HDoiI3YCVbGANPTN/EBFfBU4CPpqZt1QMKEnSphj6puaT6dZ6LwduAHbdyP3fD2yLm5klSQM16DXezLwSOGhs8dkb+JbFwA8z88tbbShJku6BQYd3uiJiB+AhdMf+ntB4HEmS1mvom5qn6zTgUuBrwBmNZ5Ekab1mxRpvZh4JHNl4DEmSNmq2rPFKkjQjGF5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgoZXkmSChleSZIKGV5JkgrNbz1AaxHBNosWtR5jMO44/JGtRxiUbdZk6xEGZfkz5/xLxiR7H/fd1iMMyro77mg9wozgGq8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFZlx4I+KiiDit9RySJG2OGRdeSZJmshkV3og4GzgUeHVEZP+xW0QcEhHfjIg7I+K6iPibiNi28biSJN3NjAovcAzwdeAsYHH/sQb4d+BbwP7AHwFHACc2mlGSpPWaUeHNzJuB1cDtmbkiM1cArwKuAV6VmVdk5qeBvwSOjojtpnqciFgaEcsiYtlqVpXNL0nSjArveuwDfCMz140s+yqwLfDQqb4hM8/MzCWZuWRbFlbMKEkSMDvCuyHZegBJkkbNxPCuBuaNfH4FcGBEjP4uT+jvd3XlYJIkbcxMDO9y4IB+b+b7A6cDuwCnR8Q+EfFM4B3AaZl5e8M5JUm6m5kY3pPp1mYvB24AFgBPp9uj+dvAB4CPAG9oNaAkSeszv/UAmyozrwQOGlu8HHh8/TSSJG2ambjGK0nSjGV4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqZHglSSpkeCVJKmR4JUkqNL/1AK1lJutWrWo9xmAs+ux3Wo8wKNvssWvrEQZl0fUPbD3CoCx/3X6tRxiUh7zjktYjDMudUy92jVeSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQlskvBGxTUScERE/j4iMiOUR8ekt8diSJM0m87fQ4zwDeBlwGPAj4A4gttBjS5I0a2yp8D4UuDYz/3MLPd60RMS2mbm68mdKknRP3ONNzRFxNvA3wK4jm5nPHt3UHBHbR8Q5EbEyIq6LiOMi4tP9907cZ3lEvHbssS+KiNPG7nN8RHwgIn4JfKhf/uCI+GhE3NR/nB8RD7unv5skSVvalniP9xjgLcBPgcXA46a4zynAocDvAU8GHg08cTN/3rHA94ElwBsiYjvgQuDO/mccBFwLfL7/miRJg3GPNzVn5s0RcSuwNjNXAETc9fZuROwAHAW8JDM/1y/7I7pQb44vZea7Rh7/KLr3k1+WmdkvewVwPfAs4GPjDxARS4GlAIuwzZKkOlvqPd4N2RNYAFw8sSAzb4uIyzbz8ZaNff5YYHfg1tHgA9v1P/tuMvNM4EyAe8V9czPnkCRpk1WEd7rWcfc9oRdMcb/bxj7fBvg28MIp7vuLLTCXJElbTMUJNK4G1jDy3m//3usjxu53A917xBP3WQQ8fBqPfyndXtU3ZuZVYx+GV5I0KFs9vJm5EvgA8M6IODwifgt4X/+zRzfzfhH4w4g4LCL27b9nOmvkHwKuA86LiEMjYveIOCQiTnHPZknS0FRtan4tsD3wSWAl3eFHO9PtiTzhRGA34Lz+PicAu2zsgTPz9og4BHgH8C/ATsA1dHs637TFfgNJkraALRLezDwZOHnk8yPHvr4SeHH/QUQsBF4DfGbkPrcAR4w99Oljj7Pben7+dXRnzpIkadBK1ngjYn9gH7o9m3cEXt//e27Fz5ckaSgq92o+Ftgb+BXdXsiHZObmHssrSdKMVBLezPwW3ZmmJEma07weryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmF5rceYBAyW08wHLmu9QSDkj/5aesRBmX3j/yq9QiDctgnv9d6hEG56IyHth5hWK6derFrvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVmhXhjYizI+LTreeQJGlj5rceYAs5BgiAiLgIuCwzj246kSRJU5gV4c3Mm1vPIEnSdMyK8EbE2cD9gRuBQ4FDI+LV/Zd3z8zljUaTJGmSWRHeEccAewHfB97QL7uh3TiSJE02q8KbmTdHxGrg9sxcsb77RcRSYCnAIrarGk+SpNmxV/OmyswzM3NJZi5ZwMLW40iS5pA5GV5JklqZjeFdDcxrPYQkSVOZjeFdDhwQEbtFxP0jYjb+jpKkGWo2RulkurXey+n2aN617TiSJN1lVuzVnJlHjty+Ejio3TSSJK3fbFzjlSRpsAyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmFDK8kSYUMryRJhQyvJEmF5rceQMOS67L1CIOSq9e0HmFYrruh9QSDstO8O1qPMCjr7n+f1iMMy7VTL3aNV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRCsy68EXFYRGRE3L/1LJIkjZt14ZUkacgGF96IWBgRfxsR10XEnRHxjYh4Qv+1u63NRsRu/bIlEbEbcGH/pRv65WeX/xKSJK3H4MILvAv4feAoYH/ge8AFEbF4Gt/7v8Dz+tv7AouBY7bGkJIkbY5BhTcitgf+BHh9Zp6fmVcArwSuA169se/PzLXAL/pPr8/MFZl58xQ/Z2lELIuIZWtYtQV/A0mSNmxQ4QX2BBYAX5tY0Mf068BvbakfkplnZuaSzFyygIVb6mElSdqooYV3QxJY19+OkeULGswiSdJmGVp4rwZWAwdPLIiIecBBwOXADf3i0fd79xt7jNX9v/O20oySJG22QYU3M28D/gF4Z0Q8IyL26T/fGTgduIpuB6rjI2KviHgq8FdjD/MTurXjZ0bEAyJih7rfQJKkDRtUeHuvB84FzgK+DTwK+J3MvDYz1wAvBPYAvgO8GXjD6Ddn5s+ANwEn0O2UdVrd6JIkbdj81gOMy8xVwGv6j6m+/p/cffNyjN3nrcBbt8qAkiTdA0Nc45UkadYyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVmt96AA3MurWtJ9CArbvjztYjDMrppz+n9QiDss3bf956hGF59tSLXeOVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSp0PzWA7QQEUuBpQCL2K7xNJKkuWROrvFm5pmZuSQzlyxgYetxJElzyJwMryRJrRheSZIKzdrwRsTREfH91nNIkjRq1oYXuD+wd+shJEkaNWvDm5nHZ2a0nkOSpFGzNrySJA2R4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSpkOGVJKmQ4ZUkqZDhlSSp0PzWA0iaQdatbT3BoDzovctajzAoFxx3cesRBmXeepa7xitJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK2shocIAAAXvSURBVElSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUqEZE96IeG1ELG89hyRJ98SMCa8kSbPBFglvRNwrIu69JR5rE37mAyJiUeXPlCTpntrs8EbEvIh4WkR8GFgBPLpfvlNEnBkR10fErRHxpYhYMvJ9R0bEyog4PCIui4jbIuLCiNh97PH/IiJW9Pc9B9hhbIRnACv6n3Xw5v4ekiRV2uTwRsS+EfEu4H+Bc4HbgN8BvhwRAZwPPBh4FrA/8GXgixGxeORhFgLHAUcBBwH3Bt478jNeALwNeBPwGOAHwLFjo3wI+ANgR+BzEXFVRPy/8YBLkjQk0wpvRNwvIv4sIi4BvgU8HDgGeFBmvjwzv5yZCTwJ2A94fmZenJlXZeZfAz8CXjzykPOBV/f3+S5wMnBYH26A1wD/lJlnZOaVmXkCcPHoTJn5q8z8TGYeATwIeHv/838YERdFxFERMb6WPPH7LI2IZRGxbA2rpvMUSJK0RUx3jfdPgVOBO4G9MvN3M/NfMvPOsfs9FtgOuKHfRLwyIlYCjwD2HLnfqsz8wcjn1wDbAvfpP98H+PrYY49//muZeUtmfiAznwQ8DtgZeD/w/PXc/8zMXJKZSxawcAO/tiRJW9b8ad7vTGAN8BLgsoj4N+CfgS9k5tqR+20DXAc8cYrHuGXk9q/GvpYj37/JImIh3abtF9G99/vfdGvN523O40mStLVMK3SZeU1mnpCZewO/DawEPgr8NCJOiYj9+rteSre2ua7fzDz6cf0mzHUFcODYskmfR+cJEXEG3c5dfw9cBTw2Mx+Tmadm5k2b8DMlSdrqNnkNMzO/kZl/Aiym2wS9F/BfEfFE4PPA14DzIuLpEbF7RBwUEW/uvz5dpwIvjYiXR8TDIuI44PFj93kR8FngXsARwG9m5usy87JN/Z0kSaoy3U3Nd5OZq4CPAx+PiAcCazMzI+IZdHsk/yPwQLpNz18DztmExz43IvYATqB7z/iTwLuBI0fu9gW6nbtuufsjSJI0TNHtjDx33Svum4+Pw1uPIWkGigXbth5hUC74ycUbv9McMm/xVZdk5pLx5Z4yUpKkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpEKGV5KkQoZXkqRChleSpELzWw8gSTNVrlndeoRBedou+7UeYWCumnKpa7ySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVMrySJBUyvJIkFTK8kiQVmt96gBYiYimwFGAR2zWeRpI0l8zJNd7MPDMzl2TmkgUsbD2OJGkOmZPhlSSpFcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVIhwytJUiHDK0lSIcMrSVKhyMzWMzQVETcAP2k9B3B/4MbWQwyIz8dkPh+T+XxM5vMx2VCej4dk5gPGF8758A5FRCzLzCWt5xgKn4/JfD4m8/mYzOdjsqE/H25qliSpkOGVJKmQ4R2OM1sPMDA+H5P5fEzm8zGZz8dkg34+fI9XkqRCrvFKklTI8EqSVMjwSpJUyPBKklTI8EqSVOj/A34Q8L701Dr7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# wrong translation\n", + "translate(u'trata de averiguarlo.')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "RTe5P5ioMJwN" + }, + "source": [ + "## Next steps\n", + "\n", + "* [Download a different dataset](http://www.manythings.org/anki/) to experiment with translations, for example, English to German, or English to French.\n", + "* Experiment with training on a larger dataset, or using more epochs\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "nmt_with_attention.ipynb", + "private_outputs": true, + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/12_image-captioning-with-attention.ipynb b/12_image-captioning-with-attention.ipynb new file mode 100644 index 0000000..1d182a9 --- /dev/null +++ b/12_image-captioning-with-attention.ipynb @@ -0,0 +1,2547 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
به نام خدا
\n", + "\"class.vision\"\n", + "

Image captioning با Attention

" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "QASbY_HGo4Lq" + }, + "source": [ + "Given an image like the example below, our goal is to generate a caption such as \"a surfer riding on a wave\".\n", + "\n", + "![Man Surfing](https://tensorflow.org/images/surf.jpg)\n", + "\n", + "*[Image Source](https://commons.wikimedia.org/wiki/Surfing#/media/File:Surfing_in_Hawaii.jpg); License: Public Domain*\n", + "\n", + "To accomplish this, you'll use an attention-based model, which enables us to see what parts of the image the model focuses on as it generates a caption.\n", + "\n", + "![Prediction](https://tensorflow.org/images/imcap_prediction.png)\n", + "\n", + "The model architecture is similar to [Show, Attend and Tell: Neural Image Caption Generation with Visual Attention](https://arxiv.org/abs/1502.03044).\n", + "\n", + "This notebook is an end-to-end example. When you run the notebook, it downloads the [MS-COCO](http://cocodataset.org/#home) dataset, preprocesses and caches a subset of images using Inception V3, trains an encoder-decoder model, and generates captions on new images using the trained model.\n", + "\n", + "In this example, you will train a model on a relatively small amount of data—the first 30,000 captions for about 20,000 images (because there are multiple captions per image in the dataset)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "U8l4RJ0XRPEm", + "outputId": "439e705a-8c6a-4659-92c4-8dc17d4277de" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "TensorFlow 2.x selected.\n" + ] + } + ], + "source": [ + "try:\n", + " # %tensorflow_version only exists in Colab.\n", + " %tensorflow_version 2.x\n", + "except Exception:\n", + " pass\n", + "import tensorflow as tf\n", + "\n", + "# You'll generate plots of attention in order to see which parts of an image\n", + "# our model focuses on during captioning\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Scikit-learn includes many helpful utilities\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.utils import shuffle\n", + "\n", + "import re\n", + "import numpy as np\n", + "import os\n", + "import time\n", + "import json\n", + "from glob import glob\n", + "from PIL import Image\n", + "import pickle" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "b6qbGw8MRPE5" + }, + "source": [ + "## Download and prepare the MS-COCO dataset\n", + "\n", + "You will use the [MS-COCO dataset](http://cocodataset.org/#home) to train our model. The dataset contains over 82,000 images, each of which has at least 5 different caption annotations. The code below downloads and extracts the dataset automatically.\n", + "\n", + "**Caution: large download ahead**. You'll use the training set, which is a 13GB file." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 110 + }, + "colab_type": "code", + "id": "krQuPYTtRPE7", + "outputId": "31141487-9f77-492c-c308-ba1af4d381f3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from http://images.cocodataset.org/annotations/annotations_trainval2014.zip\n", + "252878848/252872794 [==============================] - 16s 0us/step\n", + "Downloading data from http://images.cocodataset.org/zips/train2014.zip\n", + "13510574080/13510573713 [==============================] - 798s 0us/step\n" + ] + } + ], + "source": [ + "annotation_zip = tf.keras.utils.get_file('captions.zip',\n", + " cache_subdir=os.path.abspath('.'),\n", + " origin = 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip',\n", + " extract = True)\n", + "annotation_file = os.path.dirname(annotation_zip)+'/annotations/captions_train2014.json'\n", + "\n", + "name_of_zip = 'train2014.zip'\n", + "if not os.path.exists(os.path.abspath('.') + '/' + name_of_zip):\n", + " image_zip = tf.keras.utils.get_file(name_of_zip,\n", + " cache_subdir=os.path.abspath('.'),\n", + " origin = 'http://images.cocodataset.org/zips/train2014.zip',\n", + " extract = True)\n", + " PATH = os.path.dirname(image_zip)+'/train2014/'\n", + "else:\n", + " PATH = os.path.abspath('.')+'/train2014/'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "aANEzb5WwSzg" + }, + "source": [ + "## Optional: limit the size of the training set \n", + "To speed up training for this tutorial, you'll use a subset of 30,000 captions and their corresponding images to train our model. Choosing to use more data would result in improved captioning quality." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "4G3b8x8_RPFD" + }, + "outputs": [], + "source": [ + "# Read the json file\n", + "with open(annotation_file, 'r') as f:\n", + " annotations = json.load(f)\n", + "\n", + "# Store captions and image names in vectors\n", + "all_captions = []\n", + "all_img_name_vector = []\n", + "\n", + "for annot in annotations['annotations']:\n", + " caption = ' ' + annot['caption'] + ' '\n", + " image_id = annot['image_id']\n", + " full_coco_image_path = PATH + 'COCO_train2014_' + '%012d.jpg' % (image_id)\n", + "\n", + " all_img_name_vector.append(full_coco_image_path)\n", + " all_captions.append(caption)\n", + "\n", + "# Shuffle captions and image_names together\n", + "# Set a random state\n", + "train_captions, img_name_vector = shuffle(all_captions,\n", + " all_img_name_vector,\n", + " random_state=1)\n", + "\n", + "# Select the first 30000 captions from the shuffled set\n", + "num_examples = 30000\n", + "train_captions = train_captions[:num_examples]\n", + "img_name_vector = img_name_vector[:num_examples]" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "mPBMgK34RPFL", + "outputId": "0d6b448b-54b6-46f1-98b7-36d2b848ab8a" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(30000, 414113)" + ] + }, + "execution_count": 6, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "len(train_captions), len(all_captions)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "0tgovMnoXecB" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "8cSW4u-ORPFQ" + }, + "source": [ + "## Preprocess the images using InceptionV3\n", + "Next, you will use InceptionV3 (which is pretrained on Imagenet) to classify each image. You will extract features from the last convolutional layer.\n", + "\n", + "First, you will convert the images into InceptionV3's expected format by:\n", + "* Resizing the image to 299px by 299px\n", + "* [Preprocess the images](https://cloud.google.com/tpu/docs/inception-v3-advanced#preprocessing_stage) using the [preprocess_input](https://www.tensorflow.org/api_docs/python/tf/keras/applications/inception_v3/preprocess_input) method to normalize the image so that it contains pixels in the range of -1 to 1, which matches the format of the images used to train InceptionV3." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "zXR0217aRPFR" + }, + "outputs": [], + "source": [ + "def load_image(image_path):\n", + " img = tf.io.read_file(image_path)\n", + " img = tf.image.decode_jpeg(img, channels=3)\n", + " img = tf.image.resize(img, (299, 299))\n", + " img = tf.keras.applications.inception_v3.preprocess_input(img)\n", + " return img, image_path" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "MDvIu4sXRPFV" + }, + "source": [ + "## Initialize InceptionV3 and load the pretrained Imagenet weights\n", + "\n", + "Now you'll create a tf.keras model where the output layer is the last convolutional layer in the InceptionV3 architecture. The shape of the output of this layer is ```8x8x2048```. You use the last convolutional layer because you are using attention in this example. You don't perform this initialization during training because it could become a bottleneck.\n", + "\n", + "* You forward each image through the network and store the resulting vector in a dictionary (image_name --> feature_vector).\n", + "* After all the images are passed through the network, you pickle the dictionary and save it to disk.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 74 + }, + "colab_type": "code", + "id": "RD3vW4SsRPFW", + "outputId": "367548a7-1e2b-4b48-f53b-8ececde36371" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://github.com/fchollet/deep-learning-models/releases/download/v0.5/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5\n", + "87916544/87910968 [==============================] - 7s 0us/step\n" + ] + } + ], + "source": [ + "image_model = tf.keras.applications.InceptionV3(include_top=False,\n", + " weights='imagenet')\n", + "new_input = image_model.input\n", + "hidden_layer = image_model.layers[-1].output\n", + "\n", + "image_features_extract_model = tf.keras.Model(new_input, hidden_layer)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "rERqlR3WRPGO" + }, + "source": [ + "## Caching the features extracted from InceptionV3\n", + "\n", + "You will pre-process each image with InceptionV3 and cache the output to disk. Caching the output in RAM would be faster but also memory intensive, requiring 8 \\* 8 \\* 2048 floats per image. At the time of writing, this exceeds the memory limitations of Colab (currently 12GB of memory).\n", + "\n", + "Performance could be improved with a more sophisticated caching strategy (for example, by sharding the images to reduce random access disk I/O), but that would require more code.\n", + "\n", + "The caching will take about 10 minutes to run in Colab with a GPU. If you'd like to see a progress bar, you can: \n", + "\n", + "1. install [tqdm](https://github.com/tqdm/tqdm):\n", + "\n", + " `!pip install tqdm`\n", + "\n", + "2. Import tqdm:\n", + "\n", + " `from tqdm import tqdm`\n", + "\n", + "3. Change the following line:\n", + "\n", + " `for img, path in image_dataset:`\n", + "\n", + " to:\n", + "\n", + " `for img, path in tqdm(image_dataset):`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "7eeZz6PkXmns" + }, + "outputs": [], + "source": [ + "# Get unique images\n", + "encode_train = sorted(set(img_name_vector))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "jCnsi813XovD" + }, + "outputs": [], + "source": [ + "# Feel free to change batch_size according to your system configuration\n", + "image_dataset = tf.data.Dataset.from_tensor_slices(encode_train)\n", + "image_dataset = image_dataset.map(\n", + " load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE).batch(16)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Dx_fvbVgRPGQ" + }, + "outputs": [], + "source": [ + "for img, path in image_dataset:\n", + " batch_features = image_features_extract_model(img)\n", + " batch_features = tf.reshape(batch_features,\n", + " (batch_features.shape[0], -1, batch_features.shape[3]))\n", + "\n", + " for bf, p in zip(batch_features, path):\n", + " path_of_feature = p.numpy().decode(\"utf-8\")\n", + " np.save(path_of_feature, bf.numpy())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "nyqH3zFwRPFi" + }, + "source": [ + "## Preprocess and tokenize the captions\n", + "\n", + "* First, you'll tokenize the captions (for example, by splitting on spaces). This gives us a vocabulary of all of the unique words in the data (for example, \"surfing\", \"football\", and so on).\n", + "* Next, you'll limit the vocabulary size to the top 5,000 words (to save memory). You'll replace all other words with the token \"UNK\" (unknown).\n", + "* You then create word-to-index and index-to-word mappings.\n", + "* Finally, you pad all sequences to be the same length as the longest one." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "oJGE34aiRPFo" + }, + "outputs": [], + "source": [ + "# Choose the top 5000 words from the vocabulary\n", + "top_k = 5000\n", + "tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=top_k,\n", + " oov_token=\"\",\n", + " filters='!\"#$%&()*+.,-/:;=?@[\\]^_`{|}~ ')\n", + "tokenizer.fit_on_texts(train_captions)\n", + "train_seqs = tokenizer.texts_to_sequences(train_captions)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "Ew9IG00hXzes", + "outputId": "c5ee0977-eb91-4d23-d2dd-6dc0bda72819" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 2, 351, 687, 2, 280, 5, 2, 84, 339, 4]" + ] + }, + "execution_count": 13, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "train_seqs[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "colab_type": "code", + "id": "IJqSMKk_X1Ji", + "outputId": "3976cbbd-0938-47ad-9231-d7240a2709e9" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'': 1,\n", + " 'a': 2,\n", + " '': 3,\n", + " '': 4,\n", + " 'on': 5,\n", + " 'of': 6,\n", + " 'the': 7,\n", + " 'in': 8,\n", + " 'with': 9,\n", + " 'and': 10,\n", + " 'is': 11,\n", + " 'man': 12,\n", + " 'to': 13,\n", + " 'sitting': 14,\n", + " 'an': 15,\n", + " 'two': 16,\n", + " 'people': 17,\n", + " 'at': 18,\n", + " 'standing': 19,\n", + " 'are': 20,\n", + " 'white': 21,\n", + " 'next': 22,\n", + " 'woman': 23,\n", + " 'street': 24,\n", + " 'table': 25,\n", + " 'that': 26,\n", + " 'holding': 27,\n", + " 'some': 28,\n", + " 'large': 29,\n", + " 'it': 30,\n", + " 'person': 31,\n", + " 'down': 32,\n", + " 'top': 33,\n", + " 'up': 34,\n", + " 'group': 35,\n", + " 'field': 36,\n", + " 'small': 37,\n", + " 'his': 38,\n", + " 'plate': 39,\n", + " 'black': 40,\n", + " 'tennis': 41,\n", + " 'near': 42,\n", + " 'front': 43,\n", + " 'room': 44,\n", + " 'dog': 45,\n", + " 'young': 46,\n", + " 'riding': 47,\n", + " 'train': 48,\n", + " 'by': 49,\n", + " 'red': 50,\n", + " 'baseball': 51,\n", + " 'water': 52,\n", + " 'cat': 53,\n", + " 'playing': 54,\n", + " 'has': 55,\n", + " 'walking': 56,\n", + " 'sign': 57,\n", + " 'bathroom': 58,\n", + " 'while': 59,\n", + " 'blue': 60,\n", + " 'kitchen': 61,\n", + " 'bus': 62,\n", + " 'food': 63,\n", + " 'there': 64,\n", + " 'green': 65,\n", + " 'bed': 66,\n", + " 'parked': 67,\n", + " 'grass': 68,\n", + " 'pizza': 69,\n", + " 'looking': 70,\n", + " 'snow': 71,\n", + " 'other': 72,\n", + " 'ball': 73,\n", + " 'beach': 74,\n", + " 'side': 75,\n", + " 'for': 76,\n", + " 'boy': 77,\n", + " 'building': 78,\n", + " 'couple': 79,\n", + " 'city': 80,\n", + " 'men': 81,\n", + " 'game': 82,\n", + " 'three': 83,\n", + " 'skateboard': 84,\n", + " 'her': 85,\n", + " 'flying': 86,\n", + " 'wearing': 87,\n", + " 'player': 88,\n", + " 'over': 89,\n", + " 'toilet': 90,\n", + " 'road': 91,\n", + " 'laying': 92,\n", + " 'several': 93,\n", + " 'out': 94,\n", + " 'girl': 95,\n", + " 'sits': 96,\n", + " 'picture': 97,\n", + " 'clock': 98,\n", + " 'their': 99,\n", + " 'one': 100,\n", + " 'bench': 101,\n", + " 'cake': 102,\n", + " 'from': 103,\n", + " 'wooden': 104,\n", + " 'bear': 105,\n", + " 'frisbee': 106,\n", + " 'yellow': 107,\n", + " 'area': 108,\n", + " 'around': 109,\n", + " 'board': 110,\n", + " 'laptop': 111,\n", + " 'through': 112,\n", + " 'horse': 113,\n", + " 'giraffe': 114,\n", + " 'phone': 115,\n", + " 'as': 116,\n", + " 'brown': 117,\n", + " 'truck': 118,\n", + " 'computer': 119,\n", + " 'sink': 120,\n", + " 'outside': 121,\n", + " 'umbrella': 122,\n", + " 'many': 123,\n", + " 'desk': 124,\n", + " 'living': 125,\n", + " 'motorcycle': 126,\n", + " 'eating': 127,\n", + " 'window': 128,\n", + " 'each': 129,\n", + " 'close': 130,\n", + " 'trees': 131,\n", + " 'car': 132,\n", + " 'open': 133,\n", + " 'elephant': 134,\n", + " 'this': 135,\n", + " 'wall': 136,\n", + " 'air': 137,\n", + " 'tree': 138,\n", + " 'very': 139,\n", + " 'behind': 140,\n", + " 'covered': 141,\n", + " 'filled': 142,\n", + " 'park': 143,\n", + " 'kite': 144,\n", + " 'old': 145,\n", + " 'bat': 146,\n", + " 'stop': 147,\n", + " 'into': 148,\n", + " 'little': 149,\n", + " 'under': 150,\n", + " 'boat': 151,\n", + " 'child': 152,\n", + " 'court': 153,\n", + " 'bowl': 154,\n", + " 'chair': 155,\n", + " 'its': 156,\n", + " 'big': 157,\n", + " 'together': 158,\n", + " 'skis': 159,\n", + " 'background': 160,\n", + " 'fire': 161,\n", + " 'stands': 162,\n", + " 'inside': 163,\n", + " 'counter': 164,\n", + " 'shirt': 165,\n", + " 'photo': 166,\n", + " 'sky': 167,\n", + " 'surfboard': 168,\n", + " 'airplane': 169,\n", + " 'parking': 170,\n", + " 'couch': 171,\n", + " 'sidewalk': 172,\n", + " 'cell': 173,\n", + " 'sandwich': 174,\n", + " 'zebra': 175,\n", + " 'light': 176,\n", + " 'different': 177,\n", + " 'back': 178,\n", + " 'sheep': 179,\n", + " 'glass': 180,\n", + " 'ocean': 181,\n", + " 'mirror': 182,\n", + " 'view': 183,\n", + " 'traffic': 184,\n", + " 'bird': 185,\n", + " 'women': 186,\n", + " 'bunch': 187,\n", + " 'lot': 188,\n", + " 'hydrant': 189,\n", + " 'cars': 190,\n", + " 'racket': 191,\n", + " 'orange': 192,\n", + " 'vegetables': 193,\n", + " 'horses': 194,\n", + " 'plane': 195,\n", + " 'fence': 196,\n", + " 'baby': 197,\n", + " 'stand': 198,\n", + " 'hand': 199,\n", + " 'tie': 200,\n", + " 'teddy': 201,\n", + " 'another': 202,\n", + " 'giraffes': 203,\n", + " 'bananas': 204,\n", + " 'tall': 205,\n", + " 'vase': 206,\n", + " 'image': 207,\n", + " 'day': 208,\n", + " 'elephants': 209,\n", + " 'floor': 210,\n", + " 'full': 211,\n", + " 'flowers': 212,\n", + " 'grassy': 213,\n", + " 'off': 214,\n", + " 'wave': 215,\n", + " 'being': 216,\n", + " 'zebras': 217,\n", + " 'ground': 218,\n", + " 'along': 219,\n", + " 'hill': 220,\n", + " 'ready': 221,\n", + " 'middle': 222,\n", + " 'taking': 223,\n", + " 'hanging': 224,\n", + " 'luggage': 225,\n", + " 'tracks': 226,\n", + " 'dirt': 227,\n", + " 'tower': 228,\n", + " 'piece': 229,\n", + " 'driving': 230,\n", + " 'long': 231,\n", + " 'broccoli': 232,\n", + " 'bike': 233,\n", + " 'wii': 234,\n", + " 'skiing': 235,\n", + " 'during': 236,\n", + " 'display': 237,\n", + " 'beside': 238,\n", + " 'buildings': 239,\n", + " 'sit': 240,\n", + " 'them': 241,\n", + " 'slope': 242,\n", + " 'station': 243,\n", + " 'doing': 244,\n", + " 'across': 245,\n", + " 'grazing': 246,\n", + " 'cutting': 247,\n", + " 'cow': 248,\n", + " 'suit': 249,\n", + " 'above': 250,\n", + " 'hat': 251,\n", + " 'head': 252,\n", + " 'cows': 253,\n", + " 'fruit': 254,\n", + " 'four': 255,\n", + " 'empty': 256,\n", + " 'wine': 257,\n", + " 'corner': 258,\n", + " 'glasses': 259,\n", + " 'children': 260,\n", + " 'refrigerator': 261,\n", + " 'pink': 262,\n", + " 'stuffed': 263,\n", + " 'signs': 264,\n", + " 'hot': 265,\n", + " 'posing': 266,\n", + " 'holds': 267,\n", + " 'airport': 268,\n", + " 'pair': 269,\n", + " 'double': 270,\n", + " 'going': 271,\n", + " 'ski': 272,\n", + " 'getting': 273,\n", + " 'oven': 274,\n", + " 'herd': 275,\n", + " 'hit': 276,\n", + " 'mountain': 277,\n", + " 'video': 278,\n", + " 'skate': 279,\n", + " 'trick': 280,\n", + " 'snowy': 281,\n", + " 'surf': 282,\n", + " 'swinging': 283,\n", + " 'door': 284,\n", + " 'looks': 285,\n", + " 'crowd': 286,\n", + " 'camera': 287,\n", + " 'keyboard': 288,\n", + " 'kites': 289,\n", + " 'talking': 290,\n", + " 'television': 291,\n", + " 'box': 292,\n", + " 'chairs': 293,\n", + " 'smiling': 294,\n", + " 'cheese': 295,\n", + " 'topped': 296,\n", + " 'watching': 297,\n", + " 'lady': 298,\n", + " 'soccer': 299,\n", + " 'jumping': 300,\n", + " 'carrying': 301,\n", + " 'busy': 302,\n", + " 'various': 303,\n", + " 'colorful': 304,\n", + " 'against': 305,\n", + " 'pole': 306,\n", + " 'stove': 307,\n", + " 'traveling': 308,\n", + " 'umbrellas': 309,\n", + " 'cup': 310,\n", + " 'all': 311,\n", + " 'plates': 312,\n", + " 'boats': 313,\n", + " 'guy': 314,\n", + " 'track': 315,\n", + " 'lying': 316,\n", + " 'banana': 317,\n", + " 'wood': 318,\n", + " 'home': 319,\n", + " 'paper': 320,\n", + " 'body': 321,\n", + " 'using': 322,\n", + " 'skier': 323,\n", + " 'coffee': 324,\n", + " 'house': 325,\n", + " 'tv': 326,\n", + " 'lights': 327,\n", + " 'set': 328,\n", + " 'metal': 329,\n", + " 'waiting': 330,\n", + " 'who': 331,\n", + " 'cut': 332,\n", + " 'dogs': 333,\n", + " 'meat': 334,\n", + " 'birds': 335,\n", + " 'slice': 336,\n", + " 'shower': 337,\n", + " 'players': 338,\n", + " 'ramp': 339,\n", + " 'animals': 340,\n", + " 'night': 341,\n", + " 'male': 342,\n", + " 'passenger': 343,\n", + " 'face': 344,\n", + " 'decker': 345,\n", + " 'book': 346,\n", + " 'line': 347,\n", + " 'something': 348,\n", + " 'river': 349,\n", + " 'walk': 350,\n", + " 'skateboarder': 351,\n", + " 'hands': 352,\n", + " 'like': 353,\n", + " 'remote': 354,\n", + " 'about': 355,\n", + " 'be': 356,\n", + " 'runway': 357,\n", + " 'tray': 358,\n", + " 'colored': 359,\n", + " 'running': 360,\n", + " 'motorcycles': 361,\n", + " 'bedroom': 362,\n", + " 'someone': 363,\n", + " 'lots': 364,\n", + " 'surfer': 365,\n", + " 'bottle': 366,\n", + " 'look': 367,\n", + " 'screen': 368,\n", + " 'bicycle': 369,\n", + " 'preparing': 370,\n", + " 'tub': 371,\n", + " 'restaurant': 372,\n", + " 'bag': 373,\n", + " 'dressed': 374,\n", + " 'bears': 375,\n", + " 'high': 376,\n", + " 'intersection': 377,\n", + " 'jet': 378,\n", + " 'row': 379,\n", + " 'brick': 380,\n", + " 'items': 381,\n", + " 'store': 382,\n", + " \"it's\": 383,\n", + " 'pile': 384,\n", + " 'him': 385,\n", + " 'racquet': 386,\n", + " 'meal': 387,\n", + " 'made': 388,\n", + " 'jacket': 389,\n", + " 'snowboard': 390,\n", + " 'number': 391,\n", + " 'half': 392,\n", + " 'suitcase': 393,\n", + " 'scissors': 394,\n", + " 'play': 395,\n", + " 'surrounded': 396,\n", + " 'bridge': 397,\n", + " 'have': 398,\n", + " 'carrots': 399,\n", + " 'animal': 400,\n", + " 'rides': 401,\n", + " 'hair': 402,\n", + " 'he': 403,\n", + " 'surfing': 404,\n", + " 'pulling': 405,\n", + " 'way': 406,\n", + " 'mouth': 407,\n", + " 'waves': 408,\n", + " 'shown': 409,\n", + " 'batter': 410,\n", + " 'gray': 411,\n", + " 'salad': 412,\n", + " 'adult': 413,\n", + " 'kid': 414,\n", + " 'sleeping': 415,\n", + " 'decorated': 416,\n", + " 'showing': 417,\n", + " 'apple': 418,\n", + " 'leaning': 419,\n", + " 'female': 420,\n", + " 'grey': 421,\n", + " 'lined': 422,\n", + " 'dark': 423,\n", + " 'few': 424,\n", + " 'fries': 425,\n", + " 'walks': 426,\n", + " 'sand': 427,\n", + " 'enclosure': 428,\n", + " 'donuts': 429,\n", + " 'kids': 430,\n", + " 'displayed': 431,\n", + " 'silver': 432,\n", + " 'knife': 433,\n", + " 'throwing': 434,\n", + " 'past': 435,\n", + " 'chocolate': 436,\n", + " 'forest': 437,\n", + " 'older': 438,\n", + " 'bread': 439,\n", + " 'microwave': 440,\n", + " 'no': 441,\n", + " 'mouse': 442,\n", + " 'fork': 443,\n", + " 'lake': 444,\n", + " 'onto': 445,\n", + " 'between': 446,\n", + " 'meter': 447,\n", + " 'zoo': 448,\n", + " 'been': 449,\n", + " 'toy': 450,\n", + " 'attached': 451,\n", + " 'buses': 452,\n", + " 'skiers': 453,\n", + " 'watch': 454,\n", + " 'bath': 455,\n", + " 'making': 456,\n", + " 'resting': 457,\n", + " 'swing': 458,\n", + " 'monitor': 459,\n", + " 'oranges': 460,\n", + " 'apples': 461,\n", + " 'seen': 462,\n", + " 'purple': 463,\n", + " 'furniture': 464,\n", + " 'fruits': 465,\n", + " 'drinking': 466,\n", + " 'crossing': 467,\n", + " 'bikes': 468,\n", + " 'leaves': 469,\n", + " 'cabinets': 470,\n", + " 'dining': 471,\n", + " 'towards': 472,\n", + " 'cross': 473,\n", + " 'outdoor': 474,\n", + " 'photograph': 475,\n", + " 'blanket': 476,\n", + " 'cloudy': 477,\n", + " 'seat': 478,\n", + " 'working': 479,\n", + " 'dish': 480,\n", + " 'sunny': 481,\n", + " 'birthday': 482,\n", + " 'cats': 483,\n", + " 'surfboards': 484,\n", + " 'drink': 485,\n", + " 'public': 486,\n", + " 'shelf': 487,\n", + " 'cart': 488,\n", + " 'pictures': 489,\n", + " 'rocks': 490,\n", + " '\\n': 491,\n", + " 'teeth': 492,\n", + " 'tables': 493,\n", + " 'boys': 494,\n", + " 'painted': 495,\n", + " 'girls': 496,\n", + " 'hitting': 497,\n", + " 'clean': 498,\n", + " 'lit': 499,\n", + " 'time': 500,\n", + " 'edge': 501,\n", + " 'rain': 502,\n", + " 'scene': 503,\n", + " 'donut': 504,\n", + " 'lush': 505,\n", + " 'placed': 506,\n", + " 'or': 507,\n", + " 'moving': 508,\n", + " 'reading': 509,\n", + " 'passing': 510,\n", + " 'helmet': 511,\n", + " 'wet': 512,\n", + " 'coming': 513,\n", + " 'rail': 514,\n", + " 'flower': 515,\n", + " 'motor': 516,\n", + " 'clear': 517,\n", + " 'shows': 518,\n", + " 'setting': 519,\n", + " 'laptops': 520,\n", + " 'yard': 521,\n", + " 'dress': 522,\n", + " 'base': 523,\n", + " 'graffiti': 524,\n", + " 'boards': 525,\n", + " 'pieces': 526,\n", + " 'pitch': 527,\n", + " 'country': 528,\n", + " 'pan': 529,\n", + " 'police': 530,\n", + " 'brushing': 531,\n", + " 'nice': 532,\n", + " 'bright': 533,\n", + " 'stone': 534,\n", + " 'beautiful': 535,\n", + " 'skateboarding': 536,\n", + " 'office': 537,\n", + " 'books': 538,\n", + " 'windows': 539,\n", + " 'market': 540,\n", + " 'plastic': 541,\n", + " 'walls': 542,\n", + " 'trying': 543,\n", + " 'hotel': 544,\n", + " 'ride': 545,\n", + " 'sun': 546,\n", + " 'enjoying': 547,\n", + " 'shot': 548,\n", + " 'statue': 549,\n", + " 'benches': 550,\n", + " 'gathered': 551,\n", + " 'snowboarder': 552,\n", + " 'catch': 553,\n", + " 'slices': 554,\n", + " 'lap': 555,\n", + " 'cellphone': 556,\n", + " 'types': 557,\n", + " 'cooking': 558,\n", + " 'can': 559,\n", + " 'sandy': 560,\n", + " 'sandwiches': 561,\n", + " 'vehicle': 562,\n", + " 'watches': 563,\n", + " 'underneath': 564,\n", + " 'uniform': 565,\n", + " 'engine': 566,\n", + " 'tarmac': 567,\n", + " 'appliances': 568,\n", + " 'they': 569,\n", + " 'dinner': 570,\n", + " 'case': 571,\n", + " 'crowded': 572,\n", + " 'nintendo': 573,\n", + " 'platform': 574,\n", + " 'bathtub': 575,\n", + " 'stopped': 576,\n", + " 'basket': 577,\n", + " 'modern': 578,\n", + " 'family': 579,\n", + " 'place': 580,\n", + " 'shore': 581,\n", + " 'path': 582,\n", + " 'guys': 583,\n", + " 'well': 584,\n", + " 'controller': 585,\n", + " 'toppings': 586,\n", + " 'huge': 587,\n", + " 'plant': 588,\n", + " 'eat': 589,\n", + " 'vintage': 590,\n", + " 'tricks': 591,\n", + " 'flat': 592,\n", + " 'pizzas': 593,\n", + " 'vases': 594,\n", + " 'fresh': 595,\n", + " 'mountains': 596,\n", + " 'pillows': 597,\n", + " 'left': 598,\n", + " 'containing': 599,\n", + " 'rock': 600,\n", + " 'right': 601,\n", + " 'woods': 602,\n", + " 'eaten': 603,\n", + " 'others': 604,\n", + " 'branch': 605,\n", + " 'doughnut': 606,\n", + " 'poles': 607,\n", + " 'chicken': 608,\n", + " 'mounted': 609,\n", + " 'bowls': 610,\n", + " 'having': 611,\n", + " 'cute': 612,\n", + " 'computers': 613,\n", + " 'cream': 614,\n", + " 'passengers': 615,\n", + " 'end': 616,\n", + " 'center': 617,\n", + " 'arm': 618,\n", + " 'school': 619,\n", + " 'shoes': 620,\n", + " 'polar': 621,\n", + " 'drinks': 622,\n", + " 'beer': 623,\n", + " 'lamp': 624,\n", + " 'clothes': 625,\n", + " 'curb': 626,\n", + " 'town': 627,\n", + " 'candles': 628,\n", + " 'atop': 629,\n", + " 'pretty': 630,\n", + " 'pitcher': 631,\n", + " 'jump': 632,\n", + " 'rice': 633,\n", + " 'pot': 634,\n", + " 'five': 635,\n", + " 'concrete': 636,\n", + " 'doughnuts': 637,\n", + " 'fly': 638,\n", + " 'fridge': 639,\n", + " 'team': 640,\n", + " 'catcher': 641,\n", + " 'sinks': 642,\n", + " 'gear': 643,\n", + " 'take': 644,\n", + " 'container': 645,\n", + " 'phones': 646,\n", + " 'brush': 647,\n", + " 'just': 648,\n", + " 'floating': 649,\n", + " 'surface': 650,\n", + " 'bags': 651,\n", + " 'dirty': 652,\n", + " 'cement': 653,\n", + " 'she': 654,\n", + " 'mother': 655,\n", + " 'professional': 656,\n", + " 'turn': 657,\n", + " 'work': 658,\n", + " 'square': 659,\n", + " 'away': 660,\n", + " 'perched': 661,\n", + " 'distance': 662,\n", + " 'shaped': 663,\n", + " 'trucks': 664,\n", + " 'ice': 665,\n", + " 'plays': 666,\n", + " 'stacked': 667,\n", + " 'trains': 668,\n", + " 'equipment': 669,\n", + " 'striped': 670,\n", + " 'suitcases': 671,\n", + " 'feeding': 672,\n", + " 'boxes': 673,\n", + " 'multiple': 674,\n", + " 'sauce': 675,\n", + " 'breakfast': 676,\n", + " 'controllers': 677,\n", + " 'church': 678,\n", + " 'trunk': 679,\n", + " 'dry': 680,\n", + " 'french': 681,\n", + " 'foods': 682,\n", + " 'bar': 683,\n", + " 'broken': 684,\n", + " 'still': 685,\n", + " 'run': 686,\n", + " 'performing': 687,\n", + " 'variety': 688,\n", + " 'takes': 689,\n", + " 'tiled': 690,\n", + " 'soup': 691,\n", + " 'show': 692,\n", + " 'vehicles': 693,\n", + " 'pen': 694,\n", + " 'catching': 695,\n", + " 'match': 696,\n", + " 'bicycles': 697,\n", + " 'nearby': 698,\n", + " 'toothbrush': 699,\n", + " 'control': 700,\n", + " 'highway': 701,\n", + " 'lays': 702,\n", + " 'both': 703,\n", + " 'below': 704,\n", + " 'taken': 705,\n", + " 'towel': 706,\n", + " 'shop': 707,\n", + " 'foot': 708,\n", + " 'pose': 709,\n", + " 'sliced': 710,\n", + " 'toward': 711,\n", + " 'surfers': 712,\n", + " 'games': 713,\n", + " 'doors': 714,\n", + " 'tomatoes': 715,\n", + " 'post': 716,\n", + " 'christmas': 717,\n", + " 'planes': 718,\n", + " 'neck': 719,\n", + " 'poses': 720,\n", + " 'cattle': 721,\n", + " 'fenced': 722,\n", + " 'steel': 723,\n", + " 'legs': 724,\n", + " 'beds': 725,\n", + " 'flies': 726,\n", + " 'single': 727,\n", + " 'bushes': 728,\n", + " 'seated': 729,\n", + " 'mid': 730,\n", + " 'railroad': 731,\n", + " 'rack': 732,\n", + " 'asian': 733,\n", + " 'bottom': 734,\n", + " 'coat': 735,\n", + " 'commercial': 736,\n", + " 'event': 737,\n", + " 'jumps': 738,\n", + " 'after': 739,\n", + " 'pool': 740,\n", + " 'hay': 741,\n", + " 'sunglasses': 742,\n", + " 'throw': 743,\n", + " 'sofa': 744,\n", + " 'trail': 745,\n", + " 'eyes': 746,\n", + " 'shelves': 747,\n", + " 'eggs': 748,\n", + " 'dishes': 749,\n", + " 'wild': 750,\n", + " 'carriage': 751,\n", + " 'pulled': 752,\n", + " 'potatoes': 753,\n", + " 'style': 754,\n", + " 'bottles': 755,\n", + " 'lawn': 756,\n", + " 'painting': 757,\n", + " 'skateboards': 758,\n", + " 'shorts': 759,\n", + " 'garden': 760,\n", + " 'couches': 761,\n", + " 'where': 762,\n", + " 'wedding': 763,\n", + " 'pointing': 764,\n", + " 'things': 765,\n", + " 'docked': 766,\n", + " 'plants': 767,\n", + " 'including': 768,\n", + " 'swimming': 769,\n", + " 'military': 770,\n", + " 'pasture': 771,\n", + " 'feet': 772,\n", + " 'vegetable': 773,\n", + " 'dock': 774,\n", + " 'smiles': 775,\n", + " 'beneath': 776,\n", + " 'outdoors': 777,\n", + " 'cups': 778,\n", + " 'bun': 779,\n", + " 'clocks': 780,\n", + " 'spoon': 781,\n", + " 'reaching': 782,\n", + " 'among': 783,\n", + " 'trailer': 784,\n", + " 'adults': 785,\n", + " 'onions': 786,\n", + " 'cloth': 787,\n", + " 'drawn': 788,\n", + " 'sticking': 789,\n", + " 'serving': 790,\n", + " 'backpack': 791,\n", + " 'served': 792,\n", + " 'meters': 793,\n", + " 'blender': 794,\n", + " 'flag': 795,\n", + " 'round': 796,\n", + " 'assorted': 797,\n", + " 'foreground': 798,\n", + " 'tile': 799,\n", + " 'umpire': 800,\n", + " 'toast': 801,\n", + " 'snowboarding': 802,\n", + " 'same': 803,\n", + " 'tiny': 804,\n", + " 'van': 805,\n", + " 'closeup': 806,\n", + " 'arms': 807,\n", + " 'which': 808,\n", + " 'cabinet': 809,\n", + " 'cluttered': 810,\n", + " 'wire': 811,\n", + " 'overhead': 812,\n", + " 'stairs': 813,\n", + " 'business': 814,\n", + " 'stainless': 815,\n", + " 'fashioned': 816,\n", + " 'serve': 817,\n", + " 'ceiling': 818,\n", + " 'fireplace': 819,\n", + " 'decorative': 820,\n", + " 'go': 821,\n", + " 'rackets': 822,\n", + " 'putting': 823,\n", + " 'reflection': 824,\n", + " 'bush': 825,\n", + " 'drives': 826,\n", + " 'closed': 827,\n", + " 'stall': 828,\n", + " 'cage': 829,\n", + " 'toddler': 830,\n", + " 'prepared': 831,\n", + " 'arranged': 832,\n", + " 'loaded': 833,\n", + " 'houses': 834,\n", + " 'vanity': 835,\n", + " 'boarding': 836,\n", + " 'toys': 837,\n", + " 'net': 838,\n", + " 'cooked': 839,\n", + " 'wooded': 840,\n", + " 'low': 841,\n", + " 'see': 842,\n", + " 'space': 843,\n", + " 'airplanes': 844,\n", + " 'not': 845,\n", + " 'leash': 846,\n", + " 'tan': 847,\n", + " 'ledge': 848,\n", + " 'remotes': 849,\n", + " 'alone': 850,\n", + " 'rainy': 851,\n", + " 'staring': 852,\n", + " 'chips': 853,\n", + " 'suits': 854,\n", + " 'floors': 855,\n", + " 'boarder': 856,\n", + " 'restroom': 857,\n", + " 'transit': 858,\n", + " 'narrow': 859,\n", + " 'kitten': 860,\n", + " 'says': 861,\n", + " 'swings': 862,\n", + " 'assortment': 863,\n", + " 'facing': 864,\n", + " 'giving': 865,\n", + " 'cakes': 866,\n", + " 'pastries': 867,\n", + " 'bunches': 868,\n", + " 'trash': 869,\n", + " 'himself': 870,\n", + " 'beans': 871,\n", + " 'prepares': 872,\n", + " 'antique': 873,\n", + " 'get': 874,\n", + " 'pedestrians': 875,\n", + " 'garage': 876,\n", + " 'device': 877,\n", + " 'electronic': 878,\n", + " 'pond': 879,\n", + " 'partially': 880,\n", + " 'object': 881,\n", + " 'party': 882,\n", + " 'eats': 883,\n", + " 'carrot': 884,\n", + " 'lunch': 885,\n", + " 'skies': 886,\n", + " 'curtain': 887,\n", + " 'tooth': 888,\n", + " 'reads': 889,\n", + " 'monitors': 890,\n", + " 'tops': 891,\n", + " 'gate': 892,\n", + " 'electric': 893,\n", + " 'hillside': 894,\n", + " 'giant': 895,\n", + " 'does': 896,\n", + " 'construction': 897,\n", + " 'picnic': 898,\n", + " 'roof': 899,\n", + " 'lone': 900,\n", + " 'ear': 901,\n", + " 'lies': 902,\n", + " 'subway': 903,\n", + " 'hard': 904,\n", + " 'toilets': 905,\n", + " 'hold': 906,\n", + " 'rug': 907,\n", + " 'steps': 908,\n", + " 'machine': 909,\n", + " 'make': 910,\n", + " 'tour': 911,\n", + " 'landing': 912,\n", + " 'bow': 913,\n", + " 'alongside': 914,\n", + " 'jetliner': 915,\n", + " 'hats': 916,\n", + " 'lid': 917,\n", + " 'hole': 918,\n", + " 'pants': 919,\n", + " 'before': 920,\n", + " 'glove': 921,\n", + " 'harbor': 922,\n", + " 'pastry': 923,\n", + " 'rural': 924,\n", + " 'sunset': 925,\n", + " 'flags': 926,\n", + " 'what': 927,\n", + " 'pepperoni': 928,\n", + " 'contains': 929,\n", + " 'pots': 930,\n", + " 'tent': 931,\n", + " 'six': 932,\n", + " 'race': 933,\n", + " 'mug': 934,\n", + " 'apartment': 935,\n", + " 'new': 936,\n", + " 'upside': 937,\n", + " 'produce': 938,\n", + " 'walkway': 939,\n", + " 'railing': 940,\n", + " 'only': 941,\n", + " 'veggies': 942,\n", + " 'grill': 943,\n", + " 'gets': 944,\n", + " 'brightly': 945,\n", + " 'pavement': 946,\n", + " 'short': 947,\n", + " 'urban': 948,\n", + " 'carpet': 949,\n", + " 'was': 950,\n", + " 'barn': 951,\n", + " 'part': 952,\n", + " 'island': 953,\n", + " 'sports': 954,\n", + " 'fish': 955,\n", + " 'noodles': 956,\n", + " 'desktop': 957,\n", + " 'papers': 958,\n", + " 'dessert': 959,\n", + " 'sliding': 960,\n", + " 'sea': 961,\n", + " 'uses': 962,\n", + " 'leans': 963,\n", + " 'smaller': 964,\n", + " 'photos': 965,\n", + " 'jets': 966,\n", + " 'rider': 967,\n", + " 'friends': 968,\n", + " 'bacon': 969,\n", + " 'fighter': 970,\n", + " 'elderly': 971,\n", + " 'features': 972,\n", + " 'graze': 973,\n", + " 'pillow': 974,\n", + " 'branches': 975,\n", + " 'uniforms': 976,\n", + " 'rest': 977,\n", + " 'dead': 978,\n", + " 'museum': 979,\n", + " 'colors': 980,\n", + " 'rows': 981,\n", + " 'shopping': 982,\n", + " 'goes': 983,\n", + " 'peppers': 984,\n", + " 'makes': 985,\n", + " 'doll': 986,\n", + " 'waters': 987,\n", + " 'here': 988,\n", + " 'containers': 989,\n", + " 'clothing': 990,\n", + " 'airliner': 991,\n", + " 'spectators': 992,\n", + " 'type': 993,\n", + " 'wide': 994,\n", + " 'mitt': 995,\n", + " 'snowboards': 996,\n", + " 'ahead': 997,\n", + " 't': 998,\n", + " 'greens': 999,\n", + " 'missing': 1000,\n", + " ...}" + ] + }, + "execution_count": 15, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "tokenizer.word_index" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "8Q44tNQVRPFt" + }, + "outputs": [], + "source": [ + "tokenizer.word_index[''] = 0\n", + "tokenizer.index_word[0] = ''" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "AidglIZVRPF4" + }, + "outputs": [], + "source": [ + "# Pad each vector to the max_length of the captions\n", + "# If you do not provide a max_length value, pad_sequences calculates it automatically\n", + "cap_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs, padding='post')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 90 + }, + "colab_type": "code", + "id": "rgrUovJPafov", + "outputId": "e27bf7e4-7a05-459d-aa14-ca8f742a77fd" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3, 2, 351, 687, 2, 280, 5, 2, 84, 339, 4, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)" + ] + }, + "execution_count": 18, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "cap_vector[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "gL0wkttkRPGA", + "outputId": "f64108a0-11d9-4d77-edbf-12581f5746ac" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(49,)" + ] + }, + "execution_count": 19, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "cap_vector[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "b_ou5mG2svPC", + "outputId": "b9e88477-3c01-420c-97b9-2b8cdedc6b14" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "49" + ] + }, + "execution_count": 46, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "max_length = len(cap_vector[0])\n", + "max_length" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "M3CD75nDpvTI" + }, + "source": [ + "## Split the data into training and testing" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "iS7DDMszRPGF" + }, + "outputs": [], + "source": [ + "# Create training and validation sets using an 80-20 split\n", + "img_name_train, img_name_val, cap_train, cap_val = train_test_split(img_name_vector,\n", + " cap_vector,\n", + " test_size=0.2,\n", + " random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "colab_type": "code", + "id": "XmViPkRFRPGH", + "outputId": "ae6d2505-1578-455f-faed-dc7249624916" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(24000, 24000, 6000, 6000)" + ] + }, + "execution_count": 21, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "len(img_name_train), len(cap_train), len(img_name_val), len(cap_val)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "uEWM9xrYcg45" + }, + "source": [ + "## Create a tf.data dataset for training\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "horagNvhhZiy" + }, + "source": [ + " Our images and captions are ready! Next, let's create a tf.data dataset to use for training our model." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Q3TnZ1ToRPGV" + }, + "outputs": [], + "source": [ + "# Feel free to change these parameters according to your system's configuration\n", + "\n", + "BATCH_SIZE = 64\n", + "BUFFER_SIZE = 1000\n", + "embedding_dim = 256\n", + "units = 512\n", + "vocab_size = len(tokenizer.word_index) + 1\n", + "num_steps = len(img_name_train) // BATCH_SIZE\n", + "# Shape of the vector extracted from InceptionV3 is (64, 2048)\n", + "# These two variables represent that vector shape\n", + "features_shape = 2048\n", + "attention_features_shape = 64" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "SmZS2N0bXG3T" + }, + "outputs": [], + "source": [ + "# Load the numpy files\n", + "def map_func(img_name, cap):\n", + " img_tensor = np.load(img_name.decode('utf-8')+'.npy')\n", + " return img_tensor, cap" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "FDF_Nm3tRPGZ" + }, + "outputs": [], + "source": [ + "dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))\n", + "\n", + "# Use map to load the numpy files in parallel\n", + "dataset = dataset.map(lambda item1, item2: tf.numpy_function(\n", + " map_func, [item1, item2], [tf.float32, tf.int32]),\n", + " num_parallel_calls=tf.data.experimental.AUTOTUNE)\n", + "\n", + "# Shuffle and batch\n", + "dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)\n", + "dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "nrvoDphgRPGd" + }, + "source": [ + "## Model\n", + "\n", + "Fun fact: the decoder below is identical to the one in the example for [Neural Machine Translation with Attention](../sequences/nmt_with_attention.ipynb).\n", + "\n", + "The model architecture is inspired by the [Show, Attend and Tell](https://arxiv.org/pdf/1502.03044.pdf) paper.\n", + "\n", + "* In this example, you extract the features from the lower convolutional layer of InceptionV3 giving us a vector of shape (8, 8, 2048).\n", + "* You squash that to a shape of (64, 2048).\n", + "* This vector is then passed through the CNN Encoder (which consists of a single Fully connected layer).\n", + "* The RNN (here GRU) attends over the image to predict the next word." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "ja2LFTMSdeV3" + }, + "outputs": [], + "source": [ + "class BahdanauAttention(tf.keras.Model):\n", + " def __init__(self, units):\n", + " super(BahdanauAttention, self).__init__()\n", + " self.W1 = tf.keras.layers.Dense(units)\n", + " self.W2 = tf.keras.layers.Dense(units)\n", + " self.V = tf.keras.layers.Dense(1)\n", + "\n", + " def call(self, features, hidden):\n", + " # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)\n", + "\n", + " # hidden shape == (batch_size, hidden_size)\n", + " # hidden_with_time_axis shape == (batch_size, 1, hidden_size)\n", + " hidden_with_time_axis = tf.expand_dims(hidden, 1)\n", + "\n", + " # score shape == (batch_size, 64, hidden_size)\n", + " score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))\n", + "\n", + " # attention_weights shape == (batch_size, 64, 1)\n", + " # you get 1 at the last axis because you are applying score to self.V\n", + " attention_weights = tf.nn.softmax(self.V(score), axis=1)\n", + "\n", + " # context_vector shape after sum == (batch_size, hidden_size)\n", + " context_vector = attention_weights * features\n", + " context_vector = tf.reduce_sum(context_vector, axis=1)\n", + "\n", + " return context_vector, attention_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "AZ7R1RxHRPGf" + }, + "outputs": [], + "source": [ + "class CNN_Encoder(tf.keras.Model):\n", + " # Since you have already extracted the features and dumped it using pickle\n", + " # This encoder passes those features through a Fully connected layer\n", + " def __init__(self, embedding_dim):\n", + " super(CNN_Encoder, self).__init__()\n", + " # shape after fc == (batch_size, 64, embedding_dim)\n", + " self.fc = tf.keras.layers.Dense(embedding_dim)\n", + "\n", + " def call(self, x):\n", + " x = self.fc(x)\n", + " x = tf.nn.relu(x)\n", + " return x" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "V9UbGQmERPGi" + }, + "outputs": [], + "source": [ + "class RNN_Decoder(tf.keras.Model):\n", + " def __init__(self, embedding_dim, units, vocab_size):\n", + " super(RNN_Decoder, self).__init__()\n", + " self.units = units\n", + "\n", + " self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)\n", + " self.gru = tf.keras.layers.GRU(self.units,\n", + " return_sequences=True,\n", + " return_state=True,\n", + " recurrent_initializer='glorot_uniform')\n", + " self.fc1 = tf.keras.layers.Dense(self.units)\n", + " self.fc2 = tf.keras.layers.Dense(vocab_size)\n", + "\n", + " self.attention = BahdanauAttention(self.units)\n", + "\n", + " def call(self, x, features, hidden):\n", + " # defining attention as a separate model\n", + " context_vector, attention_weights = self.attention(features, hidden)\n", + "\n", + " # x shape after passing through embedding == (batch_size, 1, embedding_dim)\n", + " x = self.embedding(x)\n", + "\n", + " # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size)\n", + " x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)\n", + "\n", + " # passing the concatenated vector to the GRU\n", + " output, state = self.gru(x)\n", + "\n", + " # shape == (batch_size, max_length, hidden_size)\n", + " x = self.fc1(output)\n", + "\n", + " # x shape == (batch_size * max_length, hidden_size)\n", + " x = tf.reshape(x, (-1, x.shape[2]))\n", + "\n", + " # output shape == (batch_size * max_length, vocab)\n", + " x = self.fc2(x)\n", + "\n", + " return x, state, attention_weights\n", + "\n", + " def reset_state(self, batch_size):\n", + " return tf.zeros((batch_size, self.units))" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Qs_Sr03wRPGk" + }, + "outputs": [], + "source": [ + "encoder = CNN_Encoder(embedding_dim)\n", + "decoder = RNN_Decoder(embedding_dim, units, vocab_size)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "-bYN7xA0RPGl" + }, + "outputs": [], + "source": [ + "optimizer = tf.keras.optimizers.Adam()\n", + "loss_object = tf.keras.losses.SparseCategoricalCrossentropy(\n", + " from_logits=True, reduction='none')\n", + "\n", + "def loss_function(real, pred):\n", + " mask = tf.math.logical_not(tf.math.equal(real, 0))\n", + " loss_ = loss_object(real, pred)\n", + "\n", + " mask = tf.cast(mask, dtype=loss_.dtype)\n", + " loss_ *= mask\n", + "\n", + " return tf.reduce_mean(loss_)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "6A3Ni64joyab" + }, + "source": [ + "## Checkpoint" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "PpJAqPMWo0uE" + }, + "outputs": [], + "source": [ + "checkpoint_path = \"./checkpoints/train\"\n", + "ckpt = tf.train.Checkpoint(encoder=encoder,\n", + " decoder=decoder,\n", + " optimizer = optimizer)\n", + "ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "fUkbqhc_uObw" + }, + "outputs": [], + "source": [ + "start_epoch = 0\n", + "if ckpt_manager.latest_checkpoint:\n", + " start_epoch = int(ckpt_manager.latest_checkpoint.split('-')[-1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "PHod7t72RPGn" + }, + "source": [ + "## Training\n", + "\n", + "* You extract the features stored in the respective `.npy` files and then pass those features through the encoder.\n", + "* The encoder output, hidden state(initialized to 0) and the decoder input (which is the start token) is passed to the decoder.\n", + "* The decoder returns the predictions and the decoder hidden state.\n", + "* The decoder hidden state is then passed back into the model and the predictions are used to calculate the loss.\n", + "* Use teacher forcing to decide the next input to the decoder.\n", + "* Teacher forcing is the technique where the target word is passed as the next input to the decoder.\n", + "* The final step is to calculate the gradients and apply it to the optimizer and backpropagate.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "Vt4WZ5mhJE-E" + }, + "outputs": [], + "source": [ + "# adding this in a separate cell because if you run the training cell\n", + "# many times, the loss_plot array will be reset\n", + "loss_plot = []" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "sqgyz2ANKlpU" + }, + "outputs": [], + "source": [ + "@tf.function\n", + "def train_step(img_tensor, target):\n", + " loss = 0\n", + "\n", + " # initializing the hidden state for each batch\n", + " # because the captions are not related from image to image\n", + " hidden = decoder.reset_state(batch_size=target.shape[0])\n", + "\n", + " dec_input = tf.expand_dims([tokenizer.word_index['']] * BATCH_SIZE, 1)\n", + "\n", + " with tf.GradientTape() as tape:\n", + " features = encoder(img_tensor)\n", + "\n", + " for i in range(1, target.shape[1]):\n", + " # passing the features through the decoder\n", + " predictions, hidden, _ = decoder(dec_input, features, hidden)\n", + "\n", + " loss += loss_function(target[:, i], predictions)\n", + "\n", + " # using teacher forcing\n", + " dec_input = tf.expand_dims(target[:, i], 1)\n", + "\n", + " total_loss = (loss / int(target.shape[1]))\n", + "\n", + " trainable_variables = encoder.trainable_variables + decoder.trainable_variables\n", + "\n", + " gradients = tape.gradient(loss, trainable_variables)\n", + "\n", + " optimizer.apply_gradients(zip(gradients, trainable_variables))\n", + "\n", + " return loss, total_loss" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "colab_type": "code", + "id": "UlA4VIQpRPGo", + "outputId": "0ac3ffb8-e779-4acb-face-7e12c07b595e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 Batch 0 Loss 2.1246\n", + "Epoch 1 Batch 100 Loss 1.1032\n", + "Epoch 1 Batch 200 Loss 1.0499\n", + "Epoch 1 Batch 300 Loss 0.8981\n", + "Epoch 1 Loss 1.070587\n", + "Time taken for 1 epoch 270.34504652023315 sec\n", + "\n", + "Epoch 2 Batch 0 Loss 0.8817\n", + "Epoch 2 Batch 100 Loss 0.8609\n", + "Epoch 2 Batch 200 Loss 0.7947\n", + "Epoch 2 Batch 300 Loss 0.7851\n", + "Epoch 2 Loss 0.811160\n", + "Time taken for 1 epoch 190.96626925468445 sec\n", + "\n", + "Epoch 3 Batch 0 Loss 0.8129\n", + "Epoch 3 Batch 100 Loss 0.7853\n", + "Epoch 3 Batch 200 Loss 0.7472\n", + "Epoch 3 Batch 300 Loss 0.7198\n", + "Epoch 3 Loss 0.734508\n", + "Time taken for 1 epoch 190.8415138721466 sec\n", + "\n", + "Epoch 4 Batch 0 Loss 0.7001\n", + "Epoch 4 Batch 100 Loss 0.7225\n", + "Epoch 4 Batch 200 Loss 0.7098\n", + "Epoch 4 Batch 300 Loss 0.6257\n", + "Epoch 4 Loss 0.687250\n", + "Time taken for 1 epoch 191.47930145263672 sec\n", + "\n", + "Epoch 5 Batch 0 Loss 0.6473\n", + "Epoch 5 Batch 100 Loss 0.6327\n", + "Epoch 5 Batch 200 Loss 0.5996\n", + "Epoch 5 Batch 300 Loss 0.6112\n", + "Epoch 5 Loss 0.650152\n", + "Time taken for 1 epoch 190.8552222251892 sec\n", + "\n", + "Epoch 6 Batch 0 Loss 0.5793\n", + "Epoch 6 Batch 100 Loss 0.6307\n", + "Epoch 6 Batch 200 Loss 0.6182\n", + "Epoch 6 Batch 300 Loss 0.5988\n", + "Epoch 6 Loss 0.617516\n", + "Time taken for 1 epoch 192.37568831443787 sec\n", + "\n", + "Epoch 7 Batch 0 Loss 0.5763\n", + "Epoch 7 Batch 100 Loss 0.6345\n", + "Epoch 7 Batch 200 Loss 0.5238\n", + "Epoch 7 Batch 300 Loss 0.5899\n", + "Epoch 7 Loss 0.585758\n", + "Time taken for 1 epoch 192.6030147075653 sec\n", + "\n", + "Epoch 8 Batch 0 Loss 0.5470\n", + "Epoch 8 Batch 100 Loss 0.5651\n", + "Epoch 8 Batch 200 Loss 0.5313\n", + "Epoch 8 Batch 300 Loss 0.5556\n", + "Epoch 8 Loss 0.555490\n", + "Time taken for 1 epoch 192.06621170043945 sec\n", + "\n", + "Epoch 9 Batch 0 Loss 0.5597\n", + "Epoch 9 Batch 100 Loss 0.5729\n", + "Epoch 9 Batch 200 Loss 0.5341\n", + "Epoch 9 Batch 300 Loss 0.4686\n", + "Epoch 9 Loss 0.525573\n", + "Time taken for 1 epoch 191.97880053520203 sec\n", + "\n", + "Epoch 10 Batch 0 Loss 0.4906\n", + "Epoch 10 Batch 100 Loss 0.5130\n", + "Epoch 10 Batch 200 Loss 0.5455\n", + "Epoch 10 Batch 300 Loss 0.5523\n", + "Epoch 10 Loss 0.496922\n", + "Time taken for 1 epoch 191.48513460159302 sec\n", + "\n", + "Epoch 11 Batch 0 Loss 0.4865\n", + "Epoch 11 Batch 100 Loss 0.5072\n", + "Epoch 11 Batch 200 Loss 0.4397\n", + "Epoch 11 Batch 300 Loss 0.4556\n", + "Epoch 11 Loss 0.468137\n", + "Time taken for 1 epoch 192.71875095367432 sec\n", + "\n", + "Epoch 12 Batch 0 Loss 0.4325\n", + "Epoch 12 Batch 100 Loss 0.4741\n", + "Epoch 12 Batch 200 Loss 0.4829\n", + "Epoch 12 Batch 300 Loss 0.4358\n", + "Epoch 12 Loss 0.438129\n", + "Time taken for 1 epoch 192.7211410999298 sec\n", + "\n", + "Epoch 13 Batch 0 Loss 0.4016\n", + "Epoch 13 Batch 100 Loss 0.3922\n", + "Epoch 13 Batch 200 Loss 0.4228\n", + "Epoch 13 Batch 300 Loss 0.3893\n", + "Epoch 13 Loss 0.412847\n", + "Time taken for 1 epoch 191.58248686790466 sec\n", + "\n", + "Epoch 14 Batch 0 Loss 0.4192\n", + "Epoch 14 Batch 100 Loss 0.4215\n", + "Epoch 14 Batch 200 Loss 0.4293\n", + "Epoch 14 Batch 300 Loss 0.3627\n", + "Epoch 14 Loss 0.383972\n", + "Time taken for 1 epoch 191.44387125968933 sec\n", + "\n", + "Epoch 15 Batch 0 Loss 0.4097\n", + "Epoch 15 Batch 100 Loss 0.3638\n", + "Epoch 15 Batch 200 Loss 0.3954\n", + "Epoch 15 Batch 300 Loss 0.3521\n", + "Epoch 15 Loss 0.358080\n", + "Time taken for 1 epoch 193.56486749649048 sec\n", + "\n", + "Epoch 16 Batch 0 Loss 0.3533\n", + "Epoch 16 Batch 100 Loss 0.3488\n", + "Epoch 16 Batch 200 Loss 0.3027\n", + "Epoch 16 Batch 300 Loss 0.3252\n", + "Epoch 16 Loss 0.334462\n", + "Time taken for 1 epoch 193.00335264205933 sec\n", + "\n", + "Epoch 17 Batch 0 Loss 0.3459\n", + "Epoch 17 Batch 100 Loss 0.3329\n", + "Epoch 17 Batch 200 Loss 0.3272\n", + "Epoch 17 Batch 300 Loss 0.3146\n", + "Epoch 17 Loss 0.312897\n", + "Time taken for 1 epoch 192.3078145980835 sec\n", + "\n", + "Epoch 18 Batch 0 Loss 0.3234\n", + "Epoch 18 Batch 100 Loss 0.2916\n", + "Epoch 18 Batch 200 Loss 0.2891\n", + "Epoch 18 Batch 300 Loss 0.3107\n", + "Epoch 18 Loss 0.292573\n", + "Time taken for 1 epoch 191.19015502929688 sec\n", + "\n", + "Epoch 19 Batch 0 Loss 0.2829\n", + "Epoch 19 Batch 100 Loss 0.2543\n", + "Epoch 19 Batch 200 Loss 0.2699\n", + "Epoch 19 Batch 300 Loss 0.3004\n", + "Epoch 19 Loss 0.273824\n", + "Time taken for 1 epoch 194.6978690624237 sec\n", + "\n", + "Epoch 20 Batch 0 Loss 0.3066\n", + "Epoch 20 Batch 100 Loss 0.2608\n", + "Epoch 20 Batch 200 Loss 0.2470\n", + "Epoch 20 Batch 300 Loss 0.2530\n", + "Epoch 20 Loss 0.257028\n", + "Time taken for 1 epoch 193.284277677536 sec\n", + "\n" + ] + } + ], + "source": [ + "EPOCHS = 20\n", + "\n", + "for epoch in range(start_epoch, EPOCHS):\n", + " start = time.time()\n", + " total_loss = 0\n", + "\n", + " for (batch, (img_tensor, target)) in enumerate(dataset):\n", + " batch_loss, t_loss = train_step(img_tensor, target)\n", + " total_loss += t_loss\n", + "\n", + " if batch % 100 == 0:\n", + " print ('Epoch {} Batch {} Loss {:.4f}'.format(\n", + " epoch + 1, batch, batch_loss.numpy() / int(target.shape[1])))\n", + " # storing the epoch end loss value to plot later\n", + " loss_plot.append(total_loss / num_steps)\n", + "\n", + " if epoch % 5 == 0:\n", + " ckpt_manager.save()\n", + "\n", + " print ('Epoch {} Loss {:.6f}'.format(epoch + 1,\n", + " total_loss/num_steps))\n", + " print ('Time taken for 1 epoch {} sec\\n'.format(time.time() - start))" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 295 + }, + "colab_type": "code", + "id": "1Wm83G-ZBPcC", + "outputId": "3c81ed33-9e30-448f-9a98-84f6ca672aa8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3wd9Znv8c+jarnJliw3FatgigsY\nIxdhYxxajBcwoTsEMBAcEkhuNksSdrO7yeVubupmAwlJaDaBEAiBQJyE0DHFuMkGgwtucpPc5N4t\nWXruH2dMdIUkC1ujkXS+79frvHzOzO/MPBofna9mfjPzM3dHRETiV0LUBYiISLQUBCIicU5BICIS\n5xQEIiJxTkEgIhLnFAQiInFOQSASETMbb2blUdchoiCQuGBma83sggjWO8XMasxsn5ntMbP3zeyS\n41jOo2b2X2HUKKIgEAnfbHfvCvQAHgGeNrOeEdck8jEFgcQ9M7vNzFaZ2Q4zm2Fm/YPpZmb/Y2Zb\ng7/mPzSzIcG8iWa21Mz2mlmFmd11rPW4ey0wDUgDihqo4zQzm2lmu8xsiZldFkyfClwPfCvYs/hL\nC/74IgoCiW9mdh7wA+AaoB+wDngqmH0RMA44GUgP2mwP5j0CfMnduwFDgNebsa4k4IvAPmBlvXnJ\nwF+Al4HewFeBJ8zsFHd/EHgC+LG7d3X3S4/7BxZpgIJA4t31wDR3X+juh4F/BUrMLB+oBroBpwLm\n7svcfVPwvmpgkJl1d/ed7r6wiXWMNrNdwGZgMvA5d99dvw3QFfihu1e5++vAX4P2IqFSEEi8609s\nLwAAd99H7K/+7ODL+JfA/cBWM3vQzLoHTa8EJgLrzOxNMytpYh1z3L2Hu/dy99Hu/mojdWwIDh8d\ntQ7IPv4fTaR5FAQS7zYCA46+MLMuQCZQAeDu97n7WcAgYoeIvhlMn+/uk4gdxnkeeLoF6sg1s7q/\nk3lH6wB0m2AJjYJA4kmymXWq80gCngRuNrNhZpYK/F9grruvNbMRZjYqOH6/HzgE1JpZipldb2bp\n7l4N7AFqG11r88wFDhDrEE42s/HApfyjv2ILUHiC6xBpkIJA4skLwME6j+8Fh2n+A3gW2ETsbJ7r\ngvbdgYeAncQO02wHfhLMuwFYa2Z7gNuJ9TUcN3evIvbFfzGwDfgVcKO7fxQ0eYRYn8QuM3v+RNYl\nUp9pYBoRkfimPQIRkTinIBARiXMKAhGROKcgEBGJc0lhLdjMpgGXAFvdfUgD808FpgPDge+4+0+b\ns9xevXp5fn5+S5YqItLhLViwYJu7ZzU0L7QgAB4ldlXmY43M3wF8Dbj80yw0Pz+f0tLSE6tMRCTO\nmNm6xuaFdmjI3d8i9mXf2Pyt7j6f2D1bREQkIu2ij8DMpppZqZmVVlZWRl2OiEiH0i6CwN0fdPdi\ndy/OymrwEJeIiByndhEEIiISHgWBiEicC/P00SeB8UAvMysHvgskA7j7b8ysL1BK7MZetWb2dWCQ\nu+8JqyYREfmk0ILA3ZscWcndNwM5Ya1fRESaJ24ODa3Yspf/+utSDlXXRF2KiEibEjdBUL7zAA+/\ns4aF63ZGXYqISJsSN0EwIj+DxARjdtn2qEsREWlT4iYIunVKZkh2OrNXKwhEROqKmyAAKCnMZFH5\nLg5UHYm6FBGRNiO+gqAok+oap3St+glERI6KqyAoHtCTJPUTiIj8f+IqCLqkJnFGbg/1E4iI1BFX\nQQCxfoIPK3az77D6CUREIB6DoCiTmlpn/ppGh0oQEYkrcRcEZw3oSUpigvoJREQCcRcEnZITGZbX\ng3dXb4u6FBGRNiHuggDg7KJMlmzcw+4DGiVTRCQug6CkMBN3mLtGh4dEROIyCIbl9SA1Sf0EIiIQ\nYhCY2TQz22pmixuZb2Z2n5mtMrMPzGx4WLXUl5qUSHF+T11PICJCuHsEjwITmph/MTAweEwFfh1i\nLZ9QUpjJR5v3smN/VWuuVkSkzQktCNz9LaCpk/UnAY95zBygh5n1C6ue+kqKMgGYq8NDIhLnouwj\nyAY21HldHkz7BDObamalZlZaWVnZIis/PacHnVMS1U8gInGvXXQWu/uD7l7s7sVZWVktsszkxASK\n8zPUTyAicS/KIKgAcuu8zgmmtZqSwkxWbt1H5d7DrblaEZE2JcogmAHcGJw9NBrY7e6bWrOAo/0E\nc3R4SETiWJinjz4JzAZOMbNyM7vVzG43s9uDJi8AZcAq4CHgK2HV0pgh/bvTNTVJ/QQiEteSwlqw\nu08+xnwH7ghr/c2RlJjAyIIM5qifQETiWLvoLA5TSWEmZdv2s2XPoahLERGJhIIg6CfQ2UMiEq/i\nPghO69ed7p2SFAQiErfiPggSE4xRhZnqMBaRuBX3QQCxfoL1Ow5QvvNA1KWIiLQ6BQFw9knqJxCR\n+KUgAE7u3Y2MLik6PCQicUlBACQkGKMLY9cTxC5vEBGJHwqCQElhJht3H2L9DvUTiEh8URAEdD2B\niMQrBUGgKKsrWd1S1U8gInFHQRAwM0YXZjJb/QQiEmcUBHWUFGayde9hyrbtj7oUEZFWoyCoQ/0E\nIhKPFAR15Gd2pm/3TuonEJG4oiCow8woKcpkbpn6CUQkfoQaBGY2wcyWm9kqM7u7gfkDzOw1M/vA\nzGaaWU6Y9TRHSWEm2/ZVsXLrvqhLERFpFWEOVZkI3A9cDAwCJpvZoHrNfgo85u6nA/cAPwirnuZS\nP4GIxJsw9whGAqvcvczdq4CngEn12gwCXg+ev9HA/FaXm9GZ7B5pCgIRiRthBkE2sKHO6/JgWl2L\ngCuC558DuplZZv0FmdlUMys1s9LKyspQiq2rpCiTOWu2U1urfgIR6fii7iy+CzjXzN4DzgUqgJr6\njdz9QXcvdvfirKys0IsqKcxk14FqPtq8N/R1iYhELcwgqABy67zOCaZ9zN03uvsV7n4m8J1g2q4Q\na2qWj/sJdBqpiMSBMINgPjDQzArMLAW4DphRt4GZ9TKzozX8KzAtxHqarX+PNPIzOzN79baoSxER\nCV1oQeDuR4A7gZeAZcDT7r7EzO4xs8uCZuOB5Wa2AugDfD+sej6tkqJM5q7ZQY36CUSkg0sKc+Hu\n/gLwQr1p/1nn+TPAM2HWcLxGF2by5LwNLNm4m9NzekRdjohIaKLuLG6zSgp1PYGIxAcFQSN6d+9E\nUVYXdRiLSIenIGhCSVEm89fsoLqmNupSRERCoyBoQklhL/ZX1fBhxe6oSxERCY2CoAmjCzMA9ROI\nSMemIGhCZtdUTunTjTnqJxCRDkxBcAwlRZmUrt1J1RH1E4hIx6QgOIbRhZkcrK5hUXnkd74QEQmF\nguAYRhdmYKZ+AhHpuBQEx9Cjcwqn9e2uIBCRDktB0AwlRZksWL+TQ9WfuEO2iEi7pyBohpLCTKqO\n1PLeevUTiEjHoyBohpGFGSSYxicQkY5JQdAM3TslMyQ7nTnqJxCRDkhB0EwlRZm8t2EnB6qORF2K\niEiLCjUIzGyCmS03s1VmdncD8/PM7A0ze8/MPjCziWHWcyLOP7UP1TXOd/+8BHcNViMiHUdoQWBm\nicD9wMXAIGCymQ2q1+zfiY1cdiaxoSx/FVY9J2pkQQZfO38gf1xQzq9mro66HBGRFhPmHsFIYJW7\nl7l7FfAUMKleGwe6B8/TgY0h1nPC/vmCgUwa1p+fvLScGYvadKkiIs0W5lCV2cCGOq/LgVH12nwP\neNnMvgp0AS5oaEFmNhWYCpCXl9fihTaXmfHjq05n065D3PXHRfRP70RxfkZk9YiItISoO4snA4+6\new4wEXjczD5Rk7s/6O7F7l6clZXV6kXWlZqUyAM3nEV2jzRue6yUtdv2R1qPiMiJCjMIKoDcOq9z\ngml13Qo8DeDus4FOQK8Qa2oRPbukMH3KCABufnQ+O/dXRVyRiMjxCzMI5gMDzazAzFKIdQbPqNdm\nPXA+gJmdRiwIKkOsqcXk9+rCgzcWU7HzIF/63QIOH9HtJ0SkfQotCNz9CHAn8BKwjNjZQUvM7B4z\nuyxo9i/AbWa2CHgSmOLt6NzMEfkZ/OTq05m3Zgd3P/uhTisVkXYpzM5i3P0F4IV60/6zzvOlwJgw\nawjbpGHZrN9+gP9+ZQUDMjvz9QtOjrokEZFPJdQgiBd3nncS63Yc4OevrmRAZmc+d2ZO1CWJiDSb\ngqAFmBn/93NDqdh5kG898wH90tMYXZgZdVkiIs0S9emjHUZKUgK/+cJZ5GV05kuPL2B15b6oSxIR\naRYFQQtK75zM9CkjSUowbp4+n+37DkddkojIMSkIWlheZmceuqmYLXsOMfXxBRrVTETaPAVBCIbn\n9eR/rh3GgnU7ueuPi6it1WmlItJ2KQhCMnFoP+6++FT++sEmfvbKiqjLERFplM4aCtGXxhWybvt+\nfvnGKvIyOnPNiNxjv0lEpJUpCEJkZtwzaQjlOw/yb899SHbPNMac1OZvpSQicUaHhkKWnJjA/dcP\npzCrC7f/bgEzl2+NuiQRkf+PgqAVdO+UzPSbR9IvvRNTps/nnr8s1U3qRKTNUBC0kuweacy4cyw3\nlQxg2qw1XH7/u6zcsjfqskREFAStqVNyIv970hAeCa4zuOQX7/C7Oet011IRiZSCIALnn9aHF79+\nDqMKM/n35xcz9fEF7NDgNiISEQVBRHp368SjU0bwH5cM4s3llUz4+Vu8s3Jb1GWJSBwKNQjMbIKZ\nLTezVWZ2dwPz/8fM3g8eK8xsV5j1tDUJCcatYwt47o6z6Z6WzBcemcsPXlhG1ZHaqEsTkTgSWhCY\nWSJwP3AxMAiYbGaD6rZx939292HuPgz4BfCnsOppywb3T+cvd47l+lF5PPBWGVf8epbuXioirSbM\nPYKRwCp3L3P3KuApYFIT7ScTG64yLqWlJPL9zw3lgRvOonznQS657x2emrdeHckiErowgyAb2FDn\ndXkw7RPMbABQALzeyPypZlZqZqWVle1ibPvj9tnBfXnp6+MYPqAHd//pQ77yxEJ2HVBHsoiEp1lB\nYGZFZpYaPB9vZl8zsx4tWMd1wDPu3uBVVu7+oLsXu3txVlZWC662berTvROP3zKKf734VF5dtoWL\n732b2au3R12WiHRQzd0jeBaoMbOTgAeBXOD3x3hPRdDuqJxgWkOuI44PCzUkIcH40rlF/OnLY0hL\nTuTzD8/hRy9+pPENRKTFNTcIat39CPA54Bfu/k2g3zHeMx8YaGYFZpZC7Mt+Rv1GZnYq0BOY3fyy\n48fQnHT++rWxXFucy69nrub8/36TvyzaqL4DEWkxzQ2CajObDNwE/DWYltzUG4LguBN4CVgGPO3u\nS8zsHjO7rE7T64CnXN9sjeqcksQPrzydJ744iu5pyXz1yfe48tfvsnD9zqhLE5EOwJrz/Ruc9nk7\nMNvdnzSzAuAad/9R2AXWV1xc7KWlpa292jajptZ5dkE5P3l5OZV7D3PZGf351oRTyOnZOerSRKQN\nM7MF7l7c4LxP+4e4mfUEct39g5Yo7tOK9yA4av/hIzzw5moefLuMWocvji3gy+OL6NapyR01EYlT\nTQVBc88ammlm3c0sA1gIPGRmP2vJIuXT6ZKaxDcuOoXX/2U8/zS0H7+auZrP/HQmv5+7niM1ujJZ\nRJqvuX0E6e6+B7gCeMzdRwEXhFeWNFf/Hmn8z7XD+PMdYyjo1YV/e+5D/um+d3hrRce+3kJEWk5z\ngyDJzPoB1/CPzmJpQ87I7cHTXyrh19cP52B1DTdOm8eU6fM05oGIHFNzg+AeYmf/rHb3+WZWCKwM\nryw5HmbGxUP78co3xvGdiaexYN1OJtz7Nv/+/Ids33c46vJEpI361J3FUVNncfPt2F/Fva+u4Hdz\n19M5OZE7zjuJm0rySUtJjLo0EWllLdFZnGNmz5nZ1uDxrJnltGyZ0tIyuqTwvycN4aWvj2NkQQY/\n/PtHnPPjN3jorTIOVB2JujwRaSOae2hoOrGrgvsHj78E06QdOKl3Vx6ZMoKnv1TCKX278v0XlnHO\nj97ggTdXs/+wAkEk3jX3grL3gzEDmpzWGnRo6MSVrt3Bva+t5O2V28joksIXzyngxpJ8uqYmRV2a\niITkhA8NAdvN7Atmlhg8vgDodpjtVHF+Bo/fOopnv3w2Q7PT+fGLyxn7o9f55esr2XuoOuryRKSV\nNXePYACxEcRKAAfeBb7q7huafGMItEfQ8t7fsIv7XlvJ6x9tJT0tmVvHFjBlTD7ddZWySIfRoreY\nqLPQr7v7z0+osuOgIAjPB+W7uO+1Vby6bAvdOiVxy5gCbhlTQHpnBYJIexdWEKx397wTquw4KAjC\nt7hiN/e9tpKXl26hW2oSU8bkc+vYAnp0Tom6NBE5TmEFwQZ3zz12y5alIGg9Szfu4Revr+TvizfT\nNTWJm84ewK1jC8nookAQaW+0RyAn5KPNe/jF66t44cNNdEpK5PpRedw2rpA+3TtFXZqINNNxB4GZ\n7SXWOfyJWUCauzd5vqGZTQDuBRKBh939hw20uQb4XrCeRe7++aaWqSCIzqqte/nVG6v586KNJJpx\ndXEOt59bRG6GxkIQaetC2SNoxkoTgRXAhUA5saErJ7v70jptBgJPA+e5+04z6+3uW5taroIgeuu3\nH+DXb67mmQUbqHW4fFg2X/lMEUVZXaMuTUQa0RLXERyPkcAqdy9z9yrgKWBSvTa3Afe7+06AY4WA\ntA15mZ35wRVDeetbn+HGkgH87cONXPCzN7njiYUs3bgn6vJE5FMKMwiygbrXGZQH0+o6GTjZzGaZ\n2ZzgUJK0E/3S0/jupYN559vn8eVzi3hzRSUT73ubWx+dr/GURdqRMIOgOZKAgcB4YDKxkc961G9k\nZlPNrNTMSisrNeBKW9OrayrfmnAqs759Ht+48GQWrN/JFb96l+sfnsO7q7fR3u5wKxJvwgyCCqDu\n6aU5wbS6yoEZ7l7t7muI9SkMrL8gd3/Q3YvdvTgrKyu0guXEpHdO5mvnD2TWt8/jOxNPY8WWfXz+\noblc9ZvZvPHRVgWCSBsVZhDMBwaaWYGZpQDXEbuDaV3PE9sbwMx6ETtUVBZiTdIKuqQmcdu4Qt7+\n1mf4P5MGs3n3IW5+dD6X/OIdZizaqDGVRdqY0ILA3Y8AdxIb2WwZ8LS7LzGze8zssqDZS8RuaLcU\neAP4prvrZnYdRKfkRG4oyeeNu8bz46tO52BVDV978j3G/3Qmv313rcZEEGkjNEKZtJraWueVZVt4\n4M3VLFy/ix6dk7mxJJ+bSgaQ2TU16vJEOrRIriMIi4KgYyhdu4PfvFnGq8u2kJqUwNXFOXxxbCH5\nvbpEXZpIh6QgkDZr1da9PPTWGp57r4IjtbVMGNKXqeOKGJb7iZPHROQEKAikzdu65xDT313L7+as\nY++hI4wqyOD2c4sYf0oWZhZ1eSLtnoJA2o19h4/w1Lz1PPLOGjbtPsTJfboydVwRl53Rn5SkqC97\nEWm/FATS7lTX1PKXRRt54M0ylm/ZS9/unbh5TD6TR+Vp5DSR46AgkHbL3XlzRSUPvFnG7LLtdEtN\nYvKoPKacnU//HmlRlyfSbigIpEP4oHwXD729hhc+3IQBl57Rny+eU8Dg/ulRlybS5ikIpEPZsOMA\n02et5an56zlQVcPYk3oxdVwh5wzspY5lkUYoCKRD2n2gmt/PW8/0WWvYuvcwp/btxm3nFHKpOpZF\nPkFBIB3a4SM1zHh/Iw+9XcaKLfvo0z2Vm8cUMHlkHulp6lgWAQWBxImjHcsPvV3GrFXb6ZqaxHUj\ncrl5bAHZ6liWOKcgkLizuGI3D79dxl8+2ATAJaf347ZzChmSrY5liU8KAolbFbsOMv2dNTw5bz37\nq2oYVZDBzWMKuHBQHxIT1LEs8UNBIHFv98Fq/jB/Pb99dx0Vuw6S0zONKWfnc3VxrvoRJC4oCEQC\nR2pqeWXpFqbPWsu8tTvonJLIVWflMOXsfAqzukZdnkhoFAQiDVhcsZtps9bw10WbqKqp5TOnZHHz\nmAJdjyAdUmRBYGYTgHuBROBhd/9hvflTgJ/wj7GMf+nuDze1TAWBtLTKvYd5Yu46fjdnPdv2Heak\n3l25eUw+V5yZQ1pKYtTlibSISILAzBKJDUZ/IbFB6ucDk919aZ02U4Bid7+zuctVEEhYDh+p4a+L\nNjH93TUsrthDeloy143M5caSfJ1+Ku1eU0GQFOJ6RwKr3L0sKOIpYBKwtMl3iUQkNSmRK8/K4Yrh\n2ZSu28m0d9bw0FtlPPz2Gj47uA+3jCngrAE9ddhIOpwwgyAb2FDndTkwqoF2V5rZOGJ7D//s7hvq\nNzCzqcBUgLy8vBBKFfkHM2NEfgYj8jMo33mAx2ev48l563nhw82cnpPOLWMKmDi0n25jIR1GmIeG\nrgImuPsXg9c3AKPqHgYys0xgn7sfNrMvAde6+3lNLVeHhiQKB6qO8OzCCqbPWkNZ5X56d0vlhtED\n+PyoPDK7pkZdnsgxRdVHUAJ8z90/G7z+VwB3/0Ej7ROBHe7e5KWfCgKJUm2t89bKSqbNWstbKypJ\nSUrg8mH9uXlMAaf16x51eSKNiqqPYD4w0MwKiJ0VdB3w+XqF9XP3TcHLy4BlIdYjcsISEozxp/Rm\n/Cm9WbV1L9NnreXZheU8XVrO2UWZ3DKmgPNO7U2CrlqWdiTs00cnAj8ndvroNHf/vpndA5S6+wwz\n+wGxADgC7AC+7O4fNbVM7RFIW7PrQBVPztvAY7PXsmn3IfIzOzPl7HyuKs6la2qYf2uJNJ8uKBNp\nBdU1tby0ZDPT3lnDwvW76JaaxDUjcplydj65GZ2jLk/inIJApJW9t34n02et5YUPN1HrzgWn9eGW\nsQWMKsjQ6acSCQWBSEQ27z7E43PW8vu569l5oJqh2encNq6QiUP6kpSo00+l9SgIRCJ2qLqGPy2s\n4OG3yyjbtp/sHmncOraAa0fk0kX9CNIKFAQibURtrfPqsi089HYZ89fuJD0tmS+MzuOmknx6d+8U\ndXnSgSkIRNqghet38tBbZby4ZDPJCQlcfmZ/po4r5KTe3aIuTTogBYFIG7Z2234eeWcNf1ywgUPV\ntZx/am9uG1eojmVpUQoCkXZgx/4qHp+9jsdmr2X7/irOyIl1LE8YrI5lOXEKApF25FB1Dc8uLOfh\nt9ewZtt+cjPSuHVMAdeMyKVzijqW5fgoCETaoZqgY/nBt8pYsG4nPTonc+XwHK4pzuWUvupHkE9H\nQSDSzi1Yt4Np76zl5aWbqa5xzshJ5+riXC49oz/paclRlyftgIJApIPYsb+K59+r4OnSDXy0eS+p\nSQlMHNqPq4tzGF2QqZvdSaMUBCIdjLuzuGIPT5du4Pn3K9h76Ai5GWlcfVYuV56Vo6E15RMUBCId\n2KHqGl5aspmnSzcwa9V2zGDsSb24pjiXiwb3ITUpMeoSpQ1QEIjEiQ07DvDMgnKeWVBOxa6D9Oic\nzOXDsrm6OIfB/Zsc80k6OAWBSJyprXVmrd7G06XlvLRkM1VHahncvzs3jB7A5Wdm0ylZewnxJrIg\nMLMJwL3EBqZ52N1/2Ei7K4FngBHu3uS3vIJA5NPZdaCKGYs28uS8DSzbtIeenZO5ftQAbigZQB/d\n3yhuRDVmcSKwArgQKCc2dOVkd19ar1034G9ACnCngkAkHO7O3DU7mPbOGl5ZtoWkBOOS0/tzy5gC\nhubosFFHF9WYxSOBVe5eFhTxFDAJWFqv3f8BfgR8M8RaROKemTG6MJPRhZms276fR99dy9PzN/Dc\nexWMyO/JLWMKuHBQH93OIg6F+T+eDWyo87o8mPYxMxsO5Lr735pakJlNNbNSMyutrKxs+UpF4syA\nzC5899LBzP638/mPSwaxec8hvvzEQs79yUweequM3Qeroy5RWlFk0W9mCcDPgH85Vlt3f9Ddi929\nOCsrK/ziROJE907J3Dq2gJl3fYYHbjiLnJ5pfP+FZZT84DW+++fFrNm2P+oSpRWEeWioAsit8zon\nmHZUN2AIMDO41W5fYIaZXXasfgIRaVmJCcZnB/fls4P7srhiN9NmreH389bz2Jx1nH9qb24ZU0BJ\nUaZui91BhdlZnESss/h8YgEwH/i8uy9ppP1M4C51Fou0DVv3HuJ3c9bzxJx1bN9fxal9u3H96AFM\nGtaf7p10f6P2pqnO4tAODbn7EeBO4CVgGfC0uy8xs3vM7LKw1isiLaN3t05848KTmXX3efz4qtMx\nM/7j+cWM+v5r3PXHRZSu3UF7uw5JGqYLykSkWdydD8p389T8Dcx4v4L9VTWc1Lsr143I5YrhOWR0\nSYm6RGmCriwWkRa1//AR/vbBJp6cv5731u8iOdG4aHBfJo/I4+wi3QW1LVIQiEholm/ey1Pz1/Pc\nexXsOlBNbkYa1xbnctVZufRN15XLbYWCQERCd/QuqH+Yv4F3V28nweC8U3tz7Yg8PnNKli5Ui5iC\nQERa1dpt+/lD6Qb+WFrOtn2H6d0tlauLc7hyeA6FWV2jLi8uKQhEJBLVNbW8/tFW/jB/AzOXb6XW\n4YzcHlw+rD+XntGfXl1Toy4xbigIRCRym3cfYsaiCp5/byNLN+0hMcE4Z2AvLh+WzUWD+9A5Jczr\nW0VBICJtyvLNe3n+/Qr+/F4FG3cfonNKIp8d3JdJw/oz9qRe6k8IgYJARNqk2lpn/todPP9+BX/7\nYBN7Dh2hV9cULj2jP5cPy+b0nHTd1qKFKAhEpM07fKSGNz6q5Pn3Knj9o61U1dRS2KsLl5+ZzeXD\nssnL7Bx1ie2agkBE2pXdB6p5YfEmnn+vgrlrdgAwPK8Hl57RnwlD+tIvPS3iCtsfBYGItFsVuw7y\n5/cr+PN7G1m+ZS8AZ+b1YOKQfkwY0pfcDO0pNIeCQEQ6hFVb9/Hi4k38ffFmlmzcA8DQ7HQuHtqX\ni4f0o6BXl4grbLsUBCLS4azbvp+/L97M3xdvZtGGXQCc2rcbE4f2Y+LQvpzUu1vEFbYtCgIR6dDK\ndx7gxcWbeXHxZkrX7QRgYO+uXDykLxcP7cepfbvF/dlHCgIRiRubdx/ipSWb+fviTcxbs4Nah4Je\nXZgwJDYC2+nZ6XF5d9TIgsDMJgD3AonAw+7+w3rzbwfuAGqAfcBUd1/a1DIVBCLSXJV7D/Py0tie\nwrurt1NT6/Tpnsr5p/Xhwqmo+h0AAApgSURBVEF9OLsok9SkxKjLbBWRBIGZJRIbqvJCoJzYUJWT\n637Rm1l3d98TPL8M+Iq7T2hquQoCETkeO/dX8cbyrbyydAtvrqjkQFUNXVISOfeULC4c1IfzTulD\neueOOwRnU0EQ5s09RgKr3L0sKOIpYBLwcRAcDYFAF6B9HacSkXajZ5cUrhiewxXDczhUXcPs1dt5\neekWXl22hRc+3ExigjEyP4MLB8X2FuLptNQw9wiuAia4+xeD1zcAo9z9znrt7gC+AaQA57n7ygaW\nNRWYCpCXl3fWunXrQqlZROJPba2zqHwXryzdwitLt7By6z4gdgbSRYP6cOGgvgzJ7t7uO5ujOjTU\nrCCo0/7zwGfd/aamlqtDQyISprXb9n8cCqXrYp3N/dI7ccFpfTjvtN6MLsgkLaX99StEdWioAsit\n8zonmNaYp4Bfh1iPiMgx5ffqwm3jCrltXCHb9x3m9Y9i/QrPLCjn8TnrSE1KYFRhJuNPzmL8KVkU\n9OrS/vcWQtwjSCLWWXw+sQCYD3ze3ZfUaTPw6KEgM7sU+G5jiXWU9ghEJAqHqmuYt2YHM5dXMnPF\nVsoq9wOQl9GZc4NQKCnKbLPjKkR5+uhE4OfETh+d5u7fN7N7gFJ3n2Fm9wIXANXATuDOukHREAWB\niLQFG3YcYObyrcxcXsm7q7dzsLqGlMQERhVmfBwMRVld28zegi4oExEJ0eEjNcxfszMWDCsqWRV0\nOGf3SGP8KVmce3IWY07qRZfU6PYWFAQiIq2ofOcB3lxRGdtbWLWN/VU1JCcaZ+b1pKQwk5KiTM7M\n69GqF7MpCEREIlJ1pJbSdTt4MziEtHjjbtwhNSmB4vx/BMPpOT1IDnGIzqjOGhIRiXspSQmcXdSL\ns4t6AbD7YDXz1uzg3dXbmL16Oz99eQUAnVMSGZGfQUlRJiWFmQzJTiexle6JpD0CEZEI7dhfxdyy\n7cwu2867q7d/3L/QLTWJUYUZjA72GE7r2/2EbpanPQIRkTYqo0sKFw/tx8VD+wGwde8h5pTtYPbq\n7cxevY1Xl20FoEfnZO4YfxK3jSts8RoUBCIibUjvbp247Iz+XHZGfwA27T4YhMJ2+qR3CmWdCgIR\nkTasX3raxzfLC0t4XdQiItIuKAhEROKcgkBEJM4pCERE4pyCQEQkzikIRETinIJARCTOKQhEROJc\nu7vXkJlVAsc7en0vYFsLltPS2np90PZrVH0nRvWdmLZc3wB3z2poRrsLghNhZqXHGgozSm29Pmj7\nNaq+E6P6Tkxbr68xOjQkIhLnFAQiInEu3oLgwagLOIa2Xh+0/RpV34lRfSemrdfXoLjqIxARkU+K\ntz0CERGpR0EgIhLnOmQQmNkEM1tuZqvM7O4G5qea2R+C+XPNLL8Va8s1szfMbKmZLTGz/9VAm/Fm\nttvM3g8e/9la9QXrX2tmHwbr/sQA0RZzX7D9PjCz4a1Y2yl1tsv7ZrbHzL5er02rbz8zm2ZmW81s\ncZ1pGWb2ipmtDP7t2ch7bwrarDSzm1qxvp+Y2UfB/+FzZtajkfc2+XkIsb7vmVlFnf/HiY28t8nf\n9xDr+0Od2taa2fuNvDf07XfC3L1DPYBEYDVQCKQAi4BB9dp8BfhN8Pw64A+tWF8/YHjwvBuwooH6\nxgN/jXAbrgV6NTF/IvB3wIDRwNwI/683E7tQJtLtB4wDhgOL60z7MXB38Pxu4EcNvC8DKAv+7Rk8\n79lK9V0EJAXPf9RQfc35PIRY3/eAu5rxGWjy9z2s+urN/2/gP6Pafif66Ih7BCOBVe5e5u5VwFPA\npHptJgG/DZ4/A5xvZtYaxbn7JndfGDzfCywDsltj3S1oEvCYx8wBephZvwjqOB9Y7e7He6V5i3H3\nt4Ad9SbX/Zz9Fri8gbd+FnjF3Xe4+07gFWBCa9Tn7i+7+5Hg5RwgvLEQj6GR7dcczfl9P2FN1Rd8\nd1wDPNnS620tHTEIsoENdV6X88kv2o/bBL8Iu4HMVqmujuCQ1JnA3AZml5jZIjP7u5kNbtXCwIGX\nzWyBmU1tYH5ztnFruI7Gf/mi3H5H9XH3TcHzzUCfBtq0lW15C7G9vIYc6/MQpjuDQ1fTGjm01ha2\n3znAFndf2cj8KLdfs3TEIGgXzKwr8CzwdXffU2/2QmKHO84AfgE838rljXX34cDFwB1mNq6V139M\nZpYCXAb8sYHZUW+/T/DYMYI2ea62mX0HOAI80UiTqD4PvwaKgGHAJmKHX9qiyTS9N9Dmf586YhBU\nALl1XucE0xpsY2ZJQDqwvVWqi60zmVgIPOHuf6o/3933uPu+4PkLQLKZ9Wqt+ty9Ivh3K/Acsd3v\nupqzjcN2MbDQ3bfUnxH19qtjy9FDZsG/WxtoE+m2NLMpwCXA9UFYfUIzPg+hcPct7l7j7rXAQ42s\nN+rtlwRcAfyhsTZRbb9PoyMGwXxgoJkVBH81XgfMqNdmBnD07IyrgNcb+yVoacHxxEeAZe7+s0ba\n9D3aZ2FmI4n9P7VKUJlZFzPrdvQ5sQ7FxfWazQBuDM4eGg3srnMIpLU0+ldYlNuvnrqfs5uAPzfQ\n5iXgIjPrGRz6uCiYFjozmwB8C7jM3Q800qY5n4ew6qvb7/S5RtbbnN/3MF0AfOTu5Q3NjHL7fSpR\n91aH8SB2VssKYmcTfCeYdg+xDzxAJ2KHFFYB84DCVqxtLLFDBB8A7wePicDtwO1BmzuBJcTOgJgD\nnN2K9RUG610U1HB0+9Wtz4D7g+37IVDcyv+/XYh9safXmRbp9iMWSpuAamLHqW8l1u/0GrASeBXI\nCNoWAw/Xee8twWdxFXBzK9a3itjx9aOfw6Nn0vUHXmjq89BK9T0efL4+IPbl3q9+fcHrT/y+t0Z9\nwfRHj37u6rRt9e13og/dYkJEJM51xENDIiLyKSgIRETinIJARCTOKQhEROKcgkBEJM4pCEQCZlZT\n786mLXYnSzPLr3vnSpG2JCnqAkTakIPuPizqIkRam/YIRI4huJ/8j4N7ys8zs5OC6flm9npwU7TX\nzCwvmN4nuL//ouBxdrCoRDN7yGLjULxsZmlB+69ZbHyKD8zsqYh+TIljCgKRf0ird2jo2jrzdrv7\nUOCXwM+Dab8AfuvupxO7Ydt9wfT7gDc9dtO74cSuKAUYCNzv7oOBXcCVwfS7gTOD5dwe1g8n0hhd\nWSwSMLN97t61gelrgfPcvSy4YeBmd880s23EbntQHUzf5O69zKwSyHH3w3WWkU9s3IGBwetvA8nu\n/l9m9iKwj9hdUp/34IZ5Iq1FewQizeONPP80Dtd5XsM/+uj+idi9m4YD84M7Woq0GgWBSPNcW+ff\n2cHzd4nd7RLgeuDt4PlrwJcBzCzRzNIbW6iZJQC57v4G8G1it0T/xF6JSJj0l4fIP6TVG4D8RXc/\negppTzP7gNhf9ZODaV8FppvZN4FK4OZg+v8CHjSzW4n95f9lYneubEgi8LsgLAy4z913tdhPJNIM\n6iMQOYagj6DY3bdFXYtIGHRoSEQkzmmPQEQkzmmPQEQkzikIRETinIJARCTOKQhEROKcgkBEJM79\nP3BMMoUbgv09AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(loss_plot)\n", + "plt.xlabel('Epochs')\n", + "plt.ylabel('Loss')\n", + "plt.title('Loss Plot')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "xGvOcLQKghXN" + }, + "source": [ + "## Caption!\n", + "\n", + "* The evaluate function is similar to the training loop, except you don't use teacher forcing here. The input to the decoder at each time step is its previous predictions along with the hidden state and the encoder output.\n", + "* Stop predicting when the model predicts the end token.\n", + "* And store the attention weights for every time step." + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "RCWpDtyNRPGs" + }, + "outputs": [], + "source": [ + "def evaluate(image):\n", + " attention_plot = np.zeros((max_length, attention_features_shape))\n", + "\n", + " hidden = decoder.reset_state(batch_size=1)\n", + "\n", + " temp_input = tf.expand_dims(load_image(image)[0], 0)\n", + " img_tensor_val = image_features_extract_model(temp_input)\n", + " img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1, img_tensor_val.shape[3]))\n", + "\n", + " features = encoder(img_tensor_val)\n", + "\n", + " dec_input = tf.expand_dims([tokenizer.word_index['']], 0)\n", + " result = []\n", + "\n", + " for i in range(max_length):\n", + " predictions, hidden, attention_weights = decoder(dec_input, features, hidden)\n", + "\n", + " attention_plot[i] = tf.reshape(attention_weights, (-1, )).numpy()\n", + "\n", + " predicted_id = tf.argmax(predictions[0]).numpy()\n", + " result.append(tokenizer.index_word[predicted_id])\n", + "\n", + " if tokenizer.index_word[predicted_id] == '':\n", + " return result, attention_plot\n", + "\n", + " dec_input = tf.expand_dims([predicted_id], 0)\n", + "\n", + " attention_plot = attention_plot[:len(result), :]\n", + " return result, attention_plot" + ] + }, + { + "cell_type": "code", + "execution_count": 0, + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "fD_y7PD6RPGt" + }, + "outputs": [], + "source": [ + "def plot_attention(image, result, attention_plot):\n", + " temp_image = np.array(Image.open(image))\n", + "\n", + " fig = plt.figure(figsize=(10, 10))\n", + "\n", + " len_result = len(result)\n", + " for l in range(len_result):\n", + " temp_att = np.resize(attention_plot[l], (8, 8))\n", + " ax = fig.add_subplot(len_result//2, len_result//2, l+1)\n", + " ax.set_title(result[l])\n", + " img = ax.imshow(temp_image)\n", + " ax.imshow(temp_att, cmap='gray', alpha=0.6, extent=img.get_extent())\n", + "\n", + " plt.tight_layout()\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 841 + }, + "colab_type": "code", + "id": "7x8RiPHe_4qI", + "outputId": "542c727c-ec0c-480e-c698-859cbbcb7579" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Real Caption: a cow grazing in a small field with three cows in the back \n", + "Prediction Caption: a group of cows are laying on a few grass \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAGcCAYAAADEXFYKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZAk2X3f93kv76y7urr67p5z7wV2\niQXAAycdBMmQIEqiZEm2gqIoiXaEaUfYDNqSwzalMHU65JMhK0iRtETQJEwTFEnYIkCESRCQoCV2\nASyOvTCzszPTd9d9ZOX5nv/Impme2ZnFYrW705zNT0RHVHVnVWV1fuL7+2Xme5lCa01BQUFBQUFB\nQUFBQY682ytQUFBQUFBQUFBQcJIoGuSCgoKCgoKCgoKCYxQNckFBQUFBQUFBQcExiga5oKCgoKCg\noKCg4BhFg1xQUFBQUFBQUFBwjKJBLigoKCgoKCgoKDhG0SAXFBQU3AMIITwhxO8IIYZCiF+/2+tT\nUFBQ8McZ826vQEFBQUHBG8KfA5aABa11erdXpqCgoOCPM8UR5IKCu4AQotg5LXij2QJeLJrjgoKC\nN5u3Qw0rGuQ3GCHE3xRCXBRCjIUQzwoh/szdXqeCtw4hxHcIIb483/6/LoT4uBDiZ4QQHxJCbAsh\n/ishxD7wS/Pl/4YQ4oIQoieE+G0hxOr896eEEPp4CAkh/kAI8dfnj39UCPGvhRA/Oz+l/rwQ4t+7\nK1+64C1FCPHg3IWBEOIbQog/JYT4O8B/B/wFIcRECPHX7vZ6Frx1CCE2hBCfEEIcCSG681yQQoj/\nRghxWQhxKIT4F0KI2nz5fy6E+Mn547V51vwn8+dn53kkhRAtIcQn5671hBCfE0IUfcM9zJ16mGM1\n538SQnSBvz3//Y8JIZ4TQvSFEJ8SQmzdzfV/IylEf+O5CLwfqAF/B/iYEGLl7q5SwVuBEMIGfhP4\nP4Am8KvA8R2k5fnvt4AfF0J8L/D3gX8fWAEuA7/2bXzke8l9awE/DXxCCNH8d/sWBScZIYQF/A7w\naaAN/KfArwD/J/D3gI9rrcta61+4e2tZ8FYihDCAT5LnxylgjTxHfnT+82HgDFAGfnb+ss8CH5o/\n/iDwEvCBY88/p7VWwE8C28Ai+fCd/xrQb963KTgBvFoP815yV5aAvyuE+CFyJ/4suSOfI6979wRF\ng/wGo7X+da31rtZaaa0/DnwTeM/dXq+Ct4TvJB/X/79qrROt9SeAPzr2dwX8tNY60lrPgP8Q+EWt\n9Ze01hHwt4DvEkKceo2fdwj8z/PP+jjwAvAn3qDvUnAy+U7yRucfaK1jrfX/R94c/aW7u1oFd5H3\nAKvAT2mtp1rrUGv9efJ8+R+11i9prSfk+fIX52elPgu8b340+APAPwK+Z/5+H5z/HSAh33nfmufM\n57TWRYN8D/MtephdrfX/prVO5zXsPwb+vtb6ufnQrr8HPHavHEUuGuQ3GCHEjwghvjI/JTUAHiE/\nwldw77MK7NxSQK4ee3yktQ5vWf7ytSfzItYlPwL0Wrj1sy7P37Pg3mUVuDo/uneNy7x2ZwruPTaA\ny7cZe35Tvswfm8CS1voiMAUeIz9a+ElgVwhxPzc3yP8DcAH4tBDiJSHE33zzvkbBSeBb9DBXb1l8\nC/hfji3bAwT3SB4VDfIbyHyv6eeBnyCfSV4Hvk4uTMG9zx6wJoQ4vr03jj2+9cjLLnnAACCEKAEL\nwA558QLwjy2/fMvrb/2szfl7Fty77AIbt4wD3SR3puDtyVVg8zaTpm7KF3JPUuBg/vyz5Fc+sbXW\nO/PnfwVoAF8B0FqPtdY/qbU+A/wp4L8o5jrcu7yGHubWGnYV+I+01vVjP57W+t+8dWv95lE0yG8s\nJXKBjgCEEH+VfO+r4O3BF4AM+AkhhDkfn/Vqw2t+FfirQojHhBAO+empJ7XWL2utj8ibnr8shDCE\nED8GnL3l9W3gPxNCWEKIPw88CPy/b/SXKjhRPAkEwH853+4fAj7Ktzd2veDe4o/Id87/gRCiJIRw\nhRDfQ54v/7kQ4rQQosyNMerXjjR/lrwR+sP58z+YP/+81joDEEL8SSHEufmO+JA8346fvSi4t/h2\ne5h/CvwtIcTD8+Vr81p0T1A0yG8gWutngX9M3igdAI8C//qurlTBW4bWOiafrPDXgAHwl8lPXUZ3\nWP4zwH8L/AZ5gTsL/MVji/wN4KfIh108DNy6V/4kcB7oAH8X+HNa6+4b9HUKTiBzxz4K/CD5dv8n\nwI9orZ+/qytWcNeYN7MfBc4BV8gn1f0F4BeBXyZvgC8BIfmkzmt8Fqhwo0H+PPkZqz88tsx54DPA\nhLyu/ROt9e+/Wd+l4O7y7fYwWuvfBP4h8GtCiBH50eYffAtW9S1BFOPtCwrePIQQTwL/VGv9S2/w\n+/4o8Ne11u97I9+3oKCgoKCgoDiCXFDwhiKE+KAQYnk+xOKvAO8Afvdur1dBQUFBQUHBa+dNaZCF\nED8ghHhB5DdAKGa9Frwm7hFv7geeIR9i8ZPkwx727u4q3dvcI94UvMUU3hS8Hgpv3j684UMs5hct\nfxH4PvKxUF8E/tJ8bEtBwW0pvCl4PRTeFLweCm8KXg+FN28v3owjyO8BLswvTh6Tz67+oTfhcwru\nLQpvCl4PhTcFr4fCm4LXQ+HN24g3o0Fe4+aLSW9zj1w0uuBNpfCm4PVQeFPweii8KXg9FN68jbj1\nwuJvGUKIHwd+fP74XZZjkaYJEgMkaK1BCAzTIIkTLNNAGAKtFJlSGIZBkiaY0kRIA0MIskyRqRTb\nsYijhCxRCCGQUqA15KNJNBqNmF/3WgiBkAJhgFYaEEghsWyDNMnIUkW56qIyRZYptBb5e4h8eYkk\njhOUUji2RaYUaaYQGpACrRVSSLTWCCFRSpHf2kFgmpI0yUAw/7sAQb5uAhACIQQ6yy87KaREK4Vm\nvp4yfx+BQKNQSiPzX87fD0xp5OtNvh7X3tNyDFSakmWQZfr6a3Lydc3/Z/lnK6XQSt/1G54U3rya\nN5AvlK/bdW+EQGs9/9+AlPky+c8xb3T+LV/VG1uisuy23mg0UgiU5to/rfCm8KbwpvCGt5M3hTN/\nvJwBUJnqaK0Xb92Wb0aDvMPNdw9b5zZ3edJa/xzwcwCGZWh/2WTQj6nWfYSWOL6LMjOksBhsD0Bp\nau0y0rYY9yfYUuK2SoS9Kb7lkyUJ2tEERwG1jTqHl3pIUyGlwDJBKYlGYJr5Vc7TFITKUKnAck2c\nqontgUWVWTxgab3FpBMzGE85d36BdnuJK5f3SSOFa9p0h1OyJEZkikRHDPtTHjh/iit7BwhpkKUZ\nwhKE45TSgsvqKY8Lz3QxhYlWIY2VBkdXRzRXGox7E9I0w7JNLNtCS7ANk0xn2JbJdBpi2Q6JSrBt\nmzhOSKMY07TRaYrhWUjLRCIJxyMc36bq1km9mMGVKRtnGowOA+I4w/MtxvERdatGakg8wyLKQjBt\nxp0hiZCUbAfXs+l3Jmid4Vg2w+HwTVCl8OaN8MYwDWzbQkuNZVqom7yxibP0hjdxhGU66CzFcC0M\ny0IKwWw0wvUdqm6N1I/pX5myfrrJ6HBKkig8z2SUHFE3W6SGwDdtwjT3ZtIdEgtB2XZwXYdeZwKk\nOKbNcDQqvCm8KbwpvHnbeFM488fLmSiNCSbB8VuyX+fNGGLxReD8/O49NvmND377VV8hNa4pOXP/\nKWrtNpaR7+kMe32kkpimgd8oU6tW6F7tIGJwfZfgYIo0LSazgEkwI8kUtudxeOEIQ0KlWqZU9jlz\n7hSmNEAIkliBAtexUFmGBKIwJAwTfLeB1yrht3ycmYXlCxYXHI66h3T7IzQ2lbqNV3XIoogoijh7\n/izldpNyxcezHKSU+J7LbDojCcAyJDqEK9+YEKsUtMKSHr3tKa7lMTic4Po+5VoFEGgFUkuyTBHH\nKaNBgE4EKlXYhoMtbUg0pmEipULYFq5n45kSz7FxSjYVu4LSMdFkzMp9S8Q9RZymKJVw38PryLhC\nIk3CaUyUKcqujyUEmSFp1suEScjh4QBhaExpksn5HuCbS+HN6/RGCIFSIJGom7wBlWps08ExbESq\nsaSJkAphWXiejWsK3GPeZDohHE9YPb9E3MuIs5QsSzj/8DoyqpIYBmEQE2UZZc/HlpAagmatzCyO\nODjsIwyFIU0yQ8+PFhTeFN4U3hTevA29KZw58c6YpnXnzfdG2zO/jeVPAJ8CngP+L631N171RQoG\nPUV/d8C0M0ALE9sp4Zo+hhFjlwxMV3BwOMLFJBrHxGim4wAlJOW6hfIk2lB04h5WwyOOUoLxlOVW\ni85+nzRLMIQk0wlZmuE7FlqleGUb2zGxTYMgnLFz+Srj/oTDYIqNQRClkMDhUR+VjRn1ZkgD7n9o\nnQcfOMulKxfxrIj11TZoRbPVoHs0xrFLtO+rk6YRAs1sNkOGkjhUrK2ukClFGM8wTUkwDZhNA5TO\nT6WkWUYSKyQSx3XAECRxSpokTKYTXN9BqRSdGbhOmUcePkc4TdGGQpoWSZyAThGpzdF2h2k8wjQM\nUpXy5ScvADAeTkmzBIGBWTJIdcJis0qcpDi2QKAolXyEKRE6w3PtN1qVwps30Bs1P/2VRNkNb6Qk\niVOyuTeO76B0BpmB55R55OHz170xLIs4iUEnyMzicCf3xpJm7s0fXQA0k8GULE0QmJi+Qapyb5K5\nN1IoSqVS7o0qvCm8KbwpvHkbe1M4c+KdefTB03fcfCfiTnqGaWi35FBvVhlMpoAiDGfUFmpkUUY8\nSTBsSX25TjRI0SIhmUbEKsFt+BhCU69X6e6OcW2bNMsIxgGlSoVep8fq8gL96RSt83E+QggWWg7x\nVDMOIwzDItUJJc8jNSOWW6cY9rpkMoRMUKl6REmEYXhUXAcMsJAoLVncrDMaxUw7Ae1KiStXOxyM\n+nhtH0+7dK/s45QcwjhCRRIpBUkSYZhWvleFxpCSVGX5KYhMY/o2WRRhui5hHEKsMaSB6ZgkUYpA\n4Ndc4jjBNi3iVPHgo2tceH6bRlMy7mkc1yJFIYSJaQtm/ZTUmHJ2fZMrl7u4nmA6TdBCYsqIzVML\nBFlCMA2JRyFhaOdjojJFtVzn6pWrZFl218cEHqfwJvfGskx0pjF8CxXGmN7tvQEo1bzcG8siSRQP\nPLrGhRe2aTQMxn2N65ikaIQwMY57s7GRe+MKpkGCRmLKmM3TC8yymGASEo1CotBGa02aKqrlGttX\ntwtvCm8Kbwpv3pbeFM6cfGe6nQ7TafC01vqJW7ffybiTnoDF1QbD3gBLSqrVCmXTx0zgoXOn0VJT\nrzcZHowIZwGO4xEJjTRNTGmhUpP+KGQ2G9EfjRgNRyxtraLlDL9u4Tg26SxGCkGaJiRpwv5unzBJ\nyFJIVYIQGqTAxGU07mPXJZ5TRliaSW/IeNAnjgN29q7QPxwxUSkbayt86d+8wDe/coWSMLF8g/py\nhYVKBWsKk+6EerNKvdpAZwaGLdFoTMvi2iB1QwiSVGEIExCYto1KMlyvjIpTRKjnA9BBaIHreRim\nQTANsQ2TaBZRqmqe/dpLoARal7Esn2kwQShFFqWE0wS3bGEZJXZHfaQUNJdsxuMxYRywtL7ECxeu\n0O8m2KJMElc4+8ADLDRL2MJC6RghT0zm3KDw5pg3FjpRuH4ZFaWIcD6B4pg3pjkf82WYREGEX4Pn\nvnYJMgm6hGX5TIIJ6Iw0SgmDGK9iYpk+u8Pcm4Vlh/F4TBQHLG0s8eKFy/S7KbaokMYVzjz4AM2m\njy3MwpvCm8Kbwpu3tzeFMyfeGafk3HHz3bWrWBxHCslsHFBu+AwGM0wpsWyblVaDSXdItbnAeDDE\naXmoOGHQH1NpOcjUZdwf4dgQDSTCLGH6YE5tdi9fpV6v017wyIyYjfUmh8MZjXKDySSgZpYIdIgh\nDaTM0FKiVUo4TTFMSdRNqfs+nu1TqpZYcGOujEKmE5dkpkgDxZeffob771vimaeeZ2XlUQIxhCCl\n1z/CtHwUGYoyg/6AJE2wLZskSZCGREqJEAZZllKtlZiOAgzDvj4jM04iEALLtkjiFMMwyUjxPB/b\ns3Edi/5kgFcBmZlsbbYZJSHRNCPREamyCdMRm6cfpFHXRJlm1MtI+iP2sx7rq+/Adl2SWHF0GLGx\nusVLl/aJygkqA7c2whlbLC8aLLdXOdzv3m1NXkHhzR28kSKf+BCnWDL3xr3FG78ikJnJ5tYi4yQk\nnHuTKZswGbN55kEadUWcaoa9jGQwYj/ts75yGttxieOMzlHI+sopXnp5j7CUoJTGrc69aRmsLK1y\n9Du9u63JKyi8Kbx5PRTeFN58uxTOnHxnLnz5gN5h//bb7y325bZICWkyYzLLqPo+VrlKackiwyBM\nFSunfayaR9CdUPbLaCMG4WOXNG7LY2F1Gb/sYKYKF5vK2gJIk8xIUDJh2umzdzRASIcojMmShNjM\nqDQWaDfKqFSQxRm2W8Iu2aAF4XhKZM0YTqdUKiYH3QRpm0hSJrMp2lCAyXPP7/Kud72LnStXufTS\nNrN0xoPnTmH6JmmUkYYhURbj2BYq0ywsNBDzS5IoNAiD2TgAS5JmKVqDX/ZJowTDMNBKYVoGSitc\n02d41GU6nTAajqlUXPyyRlox+7s99HhIfdHBXyzT3DS5/5EHSJOQ7d0+X33qBdq1DDzYOLPGyy9f\nYeflbSxpEwch4STm7MObTHoBMpN89XOXCWaw/eyAl57ZwX+Vvay7ReHN3Js0Q93GG8syUGS4ps/o\nqMtkOmY0HFEpz70xI/Z3eqjxkEbLobRYprllcf8j95PGITs7fZ556gWWahm4sHlmlUsvX2b78lUs\nwyGeRoSTiHMPbTHpTefeXGE2g+1nh1x8ZrfwpvCm8Kbw5m3rTeHMyXfm8feeu/P2e+tUuTNJkrK6\ntIKFolwq02q6RNGYrcVFhNBcvdhFxylr7TbBJKZUqTLpH1CpNZChor9/SHWzSWYq4jSh099jbWOB\nUq3KbJJgWRaOazEbB2Qqo9EoE0wTLBKOxgEYBhYp4STAwkQKE9P1GOxP8Cs2nfEUSgKlJU7NRJgW\n4+GEza02ZslEhCFLp1s0yi1ct4ZpmqRBSrlUptEo4ZdslFYIUxJHAcKwsBwTyzQRZGgJljQwpYEA\nxsMRlj2fbGAIHN/FtEymwZTy4gL1ZoPask+pbNJqr7K6tsTaloPlZtRLLu9+xyZ6FpOlEZWqQcmx\neOTR+/jSU1dZXnWpVQXVaon1UwskUYy/ZNIdj9h5eQ9hRvhVG9etMOoM8usfxinBNLyrjtyOwpu5\nN4aBRDAe3M4b67o3jWaT6nIp92ZplbW1Zda2XGwn9+aJR7fQQUSWRVSrBiU39+bpp66ysupRrUlq\ntRIbWy2SMMZbMuiOR2xf3kOaEaWKjeeWGR4NcRyTLE4IJoU3hTeFN4U3b09vCmdOvjNf/rd3nmN5\nIhpkISVJOsXUNuPZkIPODrVGg0x0GRGwslin3mwxGwaUpUlwOGKlvUb36ID6cotgMOPwxT0s2ybT\nAkeXiA0IxlOsikcvCnBKHravCeIxg/6I5mKNLNZYholQAsf18V2XRGUoFNX6AhunHyCKFONwhMBH\niATXreGV4f4HzzAappxfXeOrly7S2e8CikHvgGimUQIiFSCFxBQujuXgVxy0YdJoVpCGRAlFc7OF\nNA2UykBpkiTBNC2kJcEQuNUKSoNhGkjHJApmTMcT4klMOIPxOCGIY2zT59z5+3FLFs9+/SXOnFlF\nqgwTm/byIuWq5L0ffgTbbSK0RSTAsOr4TZe422U6HqJ0wmPveoxRb4yUGbZloTWoTHMC5nK+gsKb\n3ButNHGSYFoW4rg3St/wZnrMmxBG17yxfM7edz9OyeK5r1/kzJlVDJVhYNNeWqQy98ZyGwhlzr2p\n4S84xN0ewXiEUgnvfOJxhr0xwsiwbROtRO7N3ZbkNhTeFN68HgpvCm++XQpnTr4zWXrn7XcixiCb\npsmwO2aUhThZCV+YlCsusfAo1STDowC/btNcbzLrjmmtLpHogHajwu5Ol1RoSlUbLVL0MMWsOUzG\nAa4j2d3dw1NgljUbbo1y8xTT4YiDbkij5hKPhlRLdfrDPuVyBZ1qlIpRqUGSaVQEawvr2GUDJ6mg\nk5hmvUEyyyhZBrtH+6ysrdJabNCbZDzwSJOdy4f83D/7h1y5NKJV9VldWuHp57+JSQq2jWeVUBaE\nQUC5WSHoTNFJxq/9+scplX2CKEYR47k+g+44nwEqIEoi2it1VACxkTKdzgimRwjpYFmCg7096gsN\nKp6BZTgMdUCaDOgdJDiJiVmZsNhqMjMkjcoCprbojzo8/N3vofLiDvHMIpNjyrUKpXIFU5g4liDL\nMg57tx+jczc56d74skQqYlTioZKYSrPO0V4HJjHPHhzh+xUMC4bjmOX1BbZfPmDzVIUrl0YkacK5\nzdXcmyBC2A5KaeyyTxgEKEE+ISLJsDybRqlBEEXoa970Jrk3gNIZCyvV3BuZMh5MOd0o47k2nuUy\nm0yoLzRYXdJUG3U6socUGaPZeO5NzGKrydCyGe/vodOE/qhD+/xpIr1NFFocdF9iFkfI2MLExLUN\nkjSFE1eyCm+ueVOpV/HLpeveuK7PsDfG9T0UQBKyuNI4ljcBDz58Hs918C2XLJ1QW2iwsbxMpVmn\nO+gjBcziBCepY1aM3JtRxBe/9KXCmxPozakzNa5cGpFmGfedWuPp5y9AOAPbBg1utUQYzMCQ2I6D\nTjLe8fg78zoVxigR47keg+7kVeuU52r8ed5k6YT6wjKL9QbVZp3OsIcEZnGKk3iYFTn3JubZF54n\nSRX9XoeVB86RytybzuAycZZiZQoTE8+VpGnKCZuid086s3WqwpWXRyRpyrmtVZ5+/gJmECAcG600\nTsUnDGZoIbAsG51m/Pwv/Dz+Lb3NsDfGNK25M+ErnPnbP/1TGNLGFpLDvQPqC3WqvoVleQz1jCwb\nMjjKexujMqW9sEBkmZQ893pvc9+7H8f75jbRzCLKejglD8cvYWHi2Lkzji15+crtt9+JOIIs0VRb\nVf70n/wwS+sJrcUqRIrBoM/yYhOvYdNeWKAXjBhFU1IV0KhLDo+m9PZ71JdMomGIb/g4vgPRDCNL\nmE4D6gtVHn//w7iOwl9yKFUNNrcaPPzIJlE4ZW2zjNYB7ZUVDNNEK42SmmFvwLAzpew7YGrSQBNG\nE3xPEiYx1XYdb9Gi0lzAL5uMjIDEGJMJRcCMbndIxfVYW17j+QuXkSZ81+NPYKSKhJQoCDAMizjU\nJElEJqCy6DMezygv2QhlUCnne2OWbZFmMe/54IOUmyZD9nnfh9/Jyqk67Y0KC+0FhKOpt2t0B306\n45DnLl+mc3BIKGHQ6TMOU6zUoj8cMQ37NKouUSDYPN2GTDEdjTGMKZOhRJgSLQX94QDLNQij6G4r\ncltOvDeWJg0Uszj3ZhZHVBbreIs25WYTr2wyknNvyJjdxhvDFHzXdzyBTLPbeBOTzr2ZTGZUlhyE\nMinPvTEti1TFvOdDD1FeMBiJPd73ve9g+VSd9kaZ5jFveoM+nfGM5y+/TOfwkFDAoNNjEiVY2TVv\nejSrLtFUsHlqCaEypuMxpgzm3ggQksFwiOlKwrjw5kR70/aZTAIqSw4o83re5N5EvOdDD1JuGozI\nvVk5Vae9fixvFq95E/L85cu5N7fkTW+eN4U3J9gbx2N9ZY3nL1y5pU5lRMHsNnXKy+vUso3IDCrl\nal6nrFerU98ib+SxvElff96ctGPI96QzvRFlx2d9ZY0XLlzGMOG7vuMJjDQjJiOazp2JNEkakaEp\nt30m13ubedZIiWWbpFnEe+fOjNjnfd+bO7O4XmZhKXem0a7SGw7oTPKs6R5zZhwm2KlFbzS84Uxw\nzJnRGNOYO2PkzvSHQyzXIIqjfLz0HbffCUBIzcPvWOHJLzxHOmqztbzCaDCjPxyw+9KYIEzZ3tkl\nCyKMqo1hCAzhs7pY56H3rrK+vEx1uUql1cCs2VSWFvGrFaJZhpQG43HG6cUtdCIYRiNGkxlXdi6x\ncrpGvxdx9tw50iQkk/kdWRrVCvV2A2lokkAxGWf55UBMg9E0wBSSw4MjplmGa5tUfZ8oSzFLNlZJ\n8+CDm5zf2uCBR9rsHB4wUX0Umu34Ir1ghGPn90X3qgZLa5Ktx1cY9wZkMsOpWHiOQ7tlkc5STp2t\nEwUj3vXuM9gOlEsN1ldXmIUT6hVByV9kNOuzvrlItVrCNCXlls/66gILK0skQcyp+07TXKniNqtE\nQYotXS69tEejBl//2i5Cap74znfiuh7jXkCpWsF3TVrtGqZjUKv4+aXmThgn3ZvpaO6NccObo4Mj\npirNvSl5RCr3xrydN7qPQrEdXaQXjHFsAJl7sy7ZenyZSX9IKjLsioXr2CwuWmRhxtaZGnEw5F1P\nnMa2NZVSk/WVVcJwQr3KdW82Nhep1koYc2/WVhdYWF6+7k1juYrbOObNxX0aNZF7I+CJ73wMx3UZ\n96aUqxU8L/fGcgxq5VI+aeOEUXhzzJuyjevYtBctslnK1pk6cTDkiSfOYNtQKTdYW12ZeyMolY7l\nTW2eNwvzvFk+ljfLed7EQYotCm9OtDePttk5uFGnrl6rU868TlUMltbEsTqlsK/VqcVjdWr2revU\na8qb5uvPGymMu63JTdyLzpzbWufBR645M7jR20zHuE5+N0OvYtC+5kx/SDavUbkzJuksZWve2zwx\nd+Za1sxmedaU/Taj2YD1jbkzhqC84B1zJuLUfWfmztSIghRLeNed+cbXdhHyVmequTNLNUxHUi2X\ncM3SHbffiRhiAZovf+WrPPbY43SChG7ngHqthOFUmPQnGGFKfzJjbaPG4WEEtkcWmnSHA6rLZVJP\noQeKSE0ol6pMgh6NxRrQ4PypBnt7I7YzcEwQWnLQHfDow+/kpUvP02w3eeHFC5i+R6RgdbHGsD8l\ntQXVsk2QRNiuYhZlLKw06PW7SA1RqLFNF9+z8Rp11KRDhkakoB3IXEUwHdM8K+BwkWAcorXg7P0t\nhAuzy5IojhkHEefOncb74FmeO/g8s6FDa8Mhi2CpssDRrEs7dlClDFNmhFGHxtIKUTihvbTOxct/\nSGdfoZNDKp7Eb/okekaiLUHE5ncAACAASURBVExX4psOi402O90e9cYiGSmmbVLxStScEqtqikgV\nZt1g7YE6pY7JQ+cf4sUXv8ljj70XlWW8tPdN3Ktv7h2KXh8n3Bslc29WG/R7N7yxTBffc/Cbtdwb\nnXujHMB4FW88TfiyyL2Zxpw7dwrvA2fAUcyGDosbDmkMS+UmnbDHLHbJynNvwiMayytEswlLS+v0\nR1fo7CtIDin7c2+YkSgLyxX4Vu7Nbq9PvdFGkWLYJhtxRM0ps6qnkGWYvmT9gTrlrsVD5x7ihW++\nyOOPfSdZpri0+yK96eRuS3IbCm+8D5zBrZmvyJvOrJt7U8owZEYYdmgu5d60j3lz27zxJL7l0Gq0\n2T2WN4ZtsnF6ufDmJHpjzb05BxwuMh2HcGudSq7VqUW8D55lsT33Zt0hi79FnZp78+LFb9zIG+82\neWMez5sbderb9aYzGt5lR27l3nNGmJrhdJA7c9BiOolyZx6YO/OyIExiJkHE2bOLuB845sxryJo4\nnNBur9MfX6azr9HJARXPmDsTkigxzxqXVmOR3W6fWv1G1ixKk5pbZmVzCmmGWTNYv79BuZU78+I3\nX+SxY86srC3x5NNfue3WOxF30vMqtsaSvPPcIpcORjxw/xLfuHSJ+9fPMk1ndEcxrpS4nks8VqQi\noTeK8A0QbozXcKmXF3DsEuk04uWDPWxH0a4sMRkd0Gi02D/cw3FsVlsrzHRAlgmMTBLMxvRmQ3z/\nFP3DI2rlEpN4BhJEGpOkUF9ocnarzeHBjCCb4lgehtSYIiOTGa7pMBz2aa8sUSlb6Ezxoz/2YzQW\n6kyCEa3yMjv9fVzLZhZHWLbBUqPJaDomVgJTZ8RJzL/8jd+k2xFUFiLIMiqNOv2jPmbZRiWaKAjR\ndkrZa0GsGV6t4huaar2KQNDJXmYY9InVFK0VYRBjSIhCi42NFlqZjGcdSDTn7nsIPQ047I7Y2Fzl\n4PCINE2waz6uUSJOp1QqNbqdfcZByFOfeo7B0fhEDfE66d5oKTi7tcThQUCgAhzTveGNoXBNm+Fg\nQHulTaVsg1JMguBbexOMibO5N2lM1a/QOYJqK0Jnikq9Rr/TxyrZqJTr3pTcFiJRDK/UePc7H6LW\nqII+7k2AJiMMkrk3JhvrN3sjTBemAQfdIRsbqxwedkjSBKfm45glknRCuVKjd7TPaBbx0h/tM+nP\nCm9OoDft5uIxbzIq9foxbzRhEMJ1bzSDKzV+4MPve015s77Rgrk3OtHsH/YKb06gN0EYHvNmiZ3+\nwc3e1BuMggmxEhjzOvXed737NnWqh1l27linNtrNO+fN9Fje3FKnRtPoNXnTPdpnPIv45r/dYdI7\nOd7ci85MZzMazWPODA5wTJswCbFsk6V6g2EwITnmzMd+6Z/T6Yg8a9IbvY1Vvk3WxJrB1Ro/+4//\nPtV67kxXXWYY9HJndF6j5LHehuxa1ii2Tp9H3+LMtd7mmjPXeptREFEue/yrX/zCCb6THpqt+xdY\nPl3lscfOMpvFlG0XYYFG48kE11JYhs1Kq8JsmmE4CV7ZwfMNHGUjEwi6Xb78pa9hZSkqdbm6e4V6\nq0RijmmvLbPeXiZJI/qdLtFsimmDshXr7SUsOWVto4yQgnazBqlkbX0NwxI4TpWruz2iLMK0TKIk\nJIhiRtMASzqYtsPS8gaNSoVLF3aJogTbctnd7eAaDokRUHJNPN/EVJqSZxOjCGczLMNES0XZreBI\nm4Vlia0NbOGTRimp1nimhyktIpXRrixiS4M4TdjefpEnv/IM+cwExVO/dwHHttBJyqA3wJI+0nSp\n1izSOGH78hXSWUK33+PySxeZzEIWmzVSnbCx2GZpbQWRJlzdvUgYhXT6B9jSxlIGlnFCTjbcxB8H\nb7rEWYRpGrk3cTL3xs69WVmnWalw6eIOURhj26/0xr/Vm+AWb4TFwrKBrU1sPLIoI9XgWh6mMIlU\nSrvSwpEGcZKwvfMiT37lq/nIK6F46vcuXvdm2BtiCQ9pOlSrNtlN3vS5cvFC7k2jTqYT1hcXWVpb\nhixme+cCYRTR7R1iGw62kpiFNyfcm3ne4JNFKanSc28s4izPG0eaxEnCzs4d8iae5424kTfXvElm\nCb1er/DmpHpjuezszL2RN+qUoRQlN/dmNpthGQZIReWOdYpvUafukDfdIZb0kJZDtWbfUqdee944\nc28sedK8uUed2e3gmvaNrCmZGCqfiHmjt7nhjH3NGXVzb+OaedZEWUa7PM+aNGFn+wWe/MpX83+h\nUHzx0xdwLHueNUNM4WOYLrWqRRbHXL1ymWQW0+33uTx3pt2ok5GwsbhI+7ozFwmjiE7vEFvmzrQq\nrTtuvRNhkxQGrqX4+ouHpGEFzxhSrlaRQmFYGRmCVqPJU0+9xObaAgtNuHyYMY0DrLokDidcvtph\nvVmiVrcJwxSHjNXVBZI4xqrbZJOA3fGQzdNrpAbs7OxR9qvYwmE0zXjHg+d45rmvobSNxEAaGbs7\nh9T8GmkyAsOk4jsoMSWZRriVGqZpMCNjFswwzIjesM/a8joZCiVsstTg8HCE6ijqdY+V1jLBNMJ3\nSwyDMShJFM1olhZoNFbANIlngjQ1aNfLjIYDWl6T0XiIbZVYa60RjqdYjk3Z9/nwR1f5Z//oE4RR\nzFNPf5Xu4IAvfWrKcDRCoWluZdz3jhYls0RTPkBm1UlDzWJ7n60z58nSKeXUoT+bIqWiWmpw0N2h\nbPjIOCJGgBHg2pJMqbutySs46d4MpkMwTSqegxIBaRDilGuYvmSmM2bTuTeDwXVvBMbcmzGqM6Re\nd1lprTB9FW9Goz3iMCVNXZbqZYbDAYtek+F4gGOVWGutE46nmI6k7Jf48EfX+ML/8wJRlPDFLz1D\nd7DPlz41OeZNOvfGpykfILXqpCEstvfQi2uobEI5sRnMpgipqJbn3pglRBQRC9ByimvL/PKFJ4zC\nm9ybOO4Th4I0mefNaEDLz/PGuZ43wdwbnw99dJUXvrBzU948/akpo9EIhbpj3thL+8SpLLw5id4I\nC5UZHByO0FJRq3usLCzn3njHvQlplhaof7t1ysvr1G/+wmdfc94cr1OWXX7N3ji2ROmTVafuRWe0\nMFGZ5OBwjBZDao1rzoSUbudMfQVM6+asuebMZIhjzp2ZTDHtG1nT/dEdwjjhqaefoTfc5+lPTRmO\nhiihWdicZ43l0xQPkpq7ZCHY7T021s+RZRNKqc0gyJ2plRscdncomz5i3ttomfc2QXjn4VwnokEG\ncLMy7SWfF65us9CuE4UJjmsQxSYNX5IaKe/6nlVk6LHYajBJL9FatjjcDTEcG1tphGHRXlqjO9hn\ncctgoVxi2AvJYnCkTeQKdi4doryExY1WflmYOMVUFl956musrbXoOgMqusRe3MEyTKpVjyQWaEOw\nueUQRiXs5SZ24pNlGVKmSGHgWfl90W1hszfuMBvGOGXBytIW27uHGLbLhauHSFtz1N3GL63iNV1c\nt4pOTcpUmUUpjmWwtLiIlB4VQ2KZiukoJA0Vpgzxqz5xoBj1e5QdH8v1+NwXniYY9jl/9ixPPPFu\nhDT4lV/+VbovTfn8lSlrm2d5z+OaamMR0zQQvstnfusLiEDgl3ze/5H72N3v0qgmLG+soU3o7h6R\ndYeYrRINt45hfPNuK3JbTrI34SxCS8HWlsMsKuEsN7ESH6UypEgRc29cx8aSNnujLgfDHZyKYKW9\necOb7QOkdbM3nltFzb05iK/iWgb1Viv3RhrYZsZ0NCONFIYI8a55M+pRdn0s1+cPv/A0wbA39+Y9\nSClv8mZ98yzvvskbh4/98icggJJf4n3ffx97+10as4Tl9XUwNd3dDllviLlQou7VMGTnbityWwpv\nquzERziWZLmV5402DCwzy/PmmjcVn3g298bxsed5M71t3kz4/OUJa1vnXpE3v/y/f7Lw5gR6czTc\nwykzr1MHmNe8uVan/Gt1qoJOLSqvpU6JY3XqW+TNx141b1x+41/80mv2punVMOTh3VbkFdxrzhwO\nd4/1NjecETYcdrYplVZxmy7eMWfCOMUxJUuta84cy5pQYcgQr1LKs2bQzbPG8244c+YsT7z7PQgh\n+ZWP/SrdSxM+f2XC2uY53vMd6rozsuTymd/+AiIA3y/x/u/Pe5swTFlaXwdr7kx3iLVQou7VcXzv\njtvuZDTIWlMrOVw5OqTetBkPIxYWKqRCYXgO03BMd3eP5kKdimOz2ztAGjG1WovxKKBScyAxEbbJ\nwcEl7n/8PqbDgCCLMW2XSZawUGpw1N3FwqLkVkmCgM44wDIk5ZLFUmuFC9vPs7m4xoQJdcehO+sR\nzyq0W2fYWNokiRWOjhEYaEvieYI0zpBSkWlI0gRtSFzLY6NxFmEZiMBg1akgxilVDGzTodrw6UVX\nmaZT9vb36R0NqT9R4aiTYlgzUDbCHTEZTbBdsITFzJhg06LX67Cxdh+VUo3ZrItSCWmWoYD9Tg8w\nUErxw3/6h/n9P/w0R50jbDTD3h4L7VXCKOLTH/8sZ05tEdszZNXkpasdFht1lLQ47PZpNus0WjV8\n1yO1NJNZiEpP3hGdE+9NY5n15U2SRGHPvcGSWKYgSzKE0CitidMEZUhc22WjcRZpG3DNm8ncG8uh\nWr/hze4xbw47CYY1QysL6Y6YDCdYLpjCYianVEWLbveYN0EHpWLSLJ170wckSin+7K3e9PdYWMy9\n+b2Pf5ayUSe2A0TN4NKVI1pzb456PRrNOvVWFd/zSEzFOAzJspN1RAcovDnujZlcz5vp3Btr7k1F\nHM+b6jxvjNeUN4PeLq322jxv/qDw5gR7c8c6Vffpxcfr1Ij6ExXijvfKOuWAJed1au7N+vW86d4x\nb75VnbqTN4e9Hs3benPC6tTbwBnGKVUktulSbeXOTJI8a/pHQ+rvuk3WjI5ljTGhwiK93hEba/dT\n8fOsybKELJ1nTbePRqL1LTVKKAa9PVqLa4RxnjVrq6sk9gxRM3npSodWo4YS5vWsaSxU8d1rzsyI\nh3e+U8iJaJCVVmRGhl/1SIKIhx46xWgW5offXZNqu0JlWgatmKqYxWqVsyWbyXRIreYgLUGqBNWW\nycrmYxztd5EmDPenlMsOVmagTYOS61AquSQypdZo4LlVpuMA6ToIrVle2ELUoBotsHL+Yc7oDKUU\nrYUWqQBpCKRhoxEorYgzjW1KhBREcUqaGqSzGVkWkaQJaIVKQySKTBo8//I2/f09NArTsBECsiTF\nMW0+efFJ+i/0WF+tcN/5R0hSsKoGYdInkSEvd79BYsS0FlocdXepOj5+fRWhBQ8/dD9aKZ796jPs\nHB6xvtTELVt830c+gtYG//K3focPfuC7GU8iPvO7n2Zr6xQ/9NGPolGgJZMg5PCgg6iFuKWQve09\nkjijUvdIg5RWtQUn8LJLJ90b0zDIACklUtpwkzcGQiiiJCVJDdIw98YQ5tybCEMoUmny/KWrDPb3\nUWSYpoME0jTFNXJvyq7F+kqV+88/Spxq7IrJLOmRGhEvd79BbEQsthbodHeouD6l+iqSEY88fD9K\nKZ575mZvPvKRj6Dm3nzgmjef+jSbW6d45yMPg87QWjKdhRzsd5C1ENeP2Lu6R5qo3JvpNW9OzHyZ\n6xTe5N60ahXWVyvHvDGYJX0SGXG59w0S+UpvhD64KW+2D4/YeEXe/Pb1vPm93/0UW1uneeLx7yi8\nOYHeWIb9yjp1aZv+wZ3r1Lsfe8dt6lSPREY31anOtTrVWEXoF65789xXX0PezOvUB9/3vtt6493J\nm5MyrWrOveiMIS2EVmRpiDF35hvXnckwDeeGM4bN71x8kj//kd48ax4hTsGuXsuakMvdb5AYEYsL\nrTxrnGs1Ch5++H60ynj2mWfYOeiwvtzELVl85CPfj1IGv/Vbv80H3v/dTKYxv/e7n2Jz6zQf/YHv\nR9/kTBdZm70ya4KUVqVFKO58oYoT0SBLIehNA8rlMrFIuLy/z3Q0wnIMRoEgSRKEMmg0SkglmU4D\n4kSCK7FsG52mjCc9Ykx6e3s0vBJa5acHM51hl2EahDz2rofIMonfLrPglXj5wiH1pQXG/QnrWzXE\nbBlLeAjDwBSCJFNkacKXv/wVbMsEabFQcRhMpmgtkALGKiPJUhzDwHEsVBISJxn//c/8DJ7rIFRG\nlqV84YtfQ8+l0VqBEFiGgRACKU0MKTCk5vDI5qmnnwUhiJOU9fVlzpxaIUtM7HLCJMswDZuoVCHs\na374T3yIT3zyM6RIDNtDRSFRnGCZNmiJaUkME5IkQ2cpi+1lhkHGwcEBUgpAoLWmWnHQymT7aEBC\nBDI/9XPxuSMuzqaMByfrHvfw1nkTqylhf4a/VMKxNHsvd6gtN5n0JtRPWVSMTazEQ5gSU0p0Bkop\nhGFgSwmWTbPsMJxO0UogpSBVGXGaUvEtbMciCiKixMa0bXwvny2s0twbQ2rqzQZKaYQUmIbMvRG5\nN+FswmAc8+l/9alXeLOuz1OyDVQmWanYGKUmGsn3vb/EJz75W9e92egc4ZpgmTYqUxiWkc+C7g2Y\nBSGuW2L7YMCP/AfvuMkbIQSajKvdbVLdBSRuw+alr3dg5iPVs3dbk1dw0r155NFHb8mb4HrepLfk\nTTgLiZKMaTDDd+fezPNmY2WZtcUWSmmQYEkDIW940znaZxZLPvv7f/AKb87aj1Aq596YrRveNB/2\n+b8/9oukGJi2S8n3CYaLWJaNShWGZXJ1+wrfvHCRWRARzCK++uxF/swPfvi6N/W6Zn11GU3Gdneb\neqULWuI1bC5+vUP30CKZ3W1LXslb5Y1hK6bhDL9dpuY5vHxwo045/z979/Uk2XXg+f17zDV505Tr\n6q5qC0M4giDhhmZg6TnkTuxwZt/2RaEXRSik0KMU+gsUIT1I+gf2SRHaWI3Z0O7szHAcQRIg4QGS\nAAE02qANurtcVmXmNcfq4WZVVwPdMIVVo8DFfUGgIxCFqPz073fy3GNOpOT1cRI6iP60p0KY9kr8\nUDczWb7LTc7WaEyhFaj22t1nn3uZINrrNkIQGCyJVMhE4YUglYLfvv4qJ9/O+Md//hVCgLGeo0cP\nTXsq0O02hCDRKsN0CyJbPPylW/nz/+vf7ORNt9ul3Fq8Jm/OXzjLyZOnqMq6dfP6Kf73/+1/Rbzv\ny1Lg3Pp5bFwF1I4bURW88PT//CnIuPFzs8ygLFsTR3GwR6+jOXNxfceMPlEwX9/emimuNWOtQyUB\nVNIu25hMCEGTSXC+HSh30u2OgsZKamMoEg1aEnzguedeIYj2/OMYFDY4EqlQqSYISS4F/+1/99+Q\npRnB+xuYkTtmtrPmT3/43rFNRdMYEp0Sg0AnAjkd2wRnWVxcYnPi8NOfAZFuJ+O2Ww8DnnNrF5iZ\nA5B05jLe/s0qw4tjttbNDT+/fTFARgjSVNOUJanqkaSCUHQ5ceQI765eIhiJiRERgeCwIZLlCaiE\nbjGDjZbbv3ALWkbm+wFpNLMzB5nIEmnbA6GVgoWjyyiZ0UkSut0+d961wIXVU9x69A4mVwKdbo4X\nkEjwCEKMiBjIEkmWqfYaVWtRSlMbi5bQSzUaSdLpcGl1A2cNAYmSgaap0FKxMNOjLkuSRBFDRCUJ\nSoCUgqqqyLKMIi8g0l7fuWuDyunT73DPHUdIOxnjsqY/vwBRIGIgSkXMF/jTH/8JL/zyWe7/+h+i\nVPvKUwjQiQACW1tbvPyLnzI3N8/B+Tm+/JV7aLeit4McmA7ohGJpcBT0CZ566im+/fjjvLAyAVEx\nM9P7NGR88HOT3Ohi242mWwy48+4Fzu+4iXSKHC8hkQIf22/gMgYyLcgzjRRQW4uSmso7khjopRqV\nStI859LaEGsbAopcBuq63QE8P9ujqkrSpP1MlZ66EYK6rsiynKzTwRn9sd2EPbppy+r9bpbf4+bF\nleeJn7vZm5s95I2Wgbqp0KrNm6oqSbQkvCdv6roiTTOKToFWH9+NyBf4sx//Cc+/1w2gU0nrZpOX\nf/4U83PzHJz7YDfvz5vn/4vPm958jpYZeZLQ6/bJ7lrg/Orpa3oqCNBS4IVovzhHT5rom+KGCFXT\nEEIgxrZJTp8+N3WTM57U9OcPAAIRPVEq2HNPXfvEGEFIlgZHEfo4P/3pU3z7icd58cp23tz40odP\n5blJZjozS3sykyVXO6qyFik1xlt0vGom7Uw7yrQd9dkws2sCJ0ZAsTQ40pp5qjXzwpXnQdT86I8e\n5bXXnr7ux7cv3kdorXDe0JnpsTXZwHjHoYPLVL5mZW3IwSPzzHQzympMlubMzi7Q1JZOp4ezgiTt\nMdcfMKvbKy+7PY1NINEF/ZkUvCfKiAzQSQuStKBqapyyLB34MtUwUnS7RNo3e9Y6vHdEZ2hMjQ0e\nYyxpmlDVlqoxxBBoTMOorjHRMa5aPEK0tw8551FKoxVUjeXRR/8ArROkEigRyPOUGANpmhJCYDQe\nU9Y1xhqc88R20od+NyXv9JBCU6QKITMiGa4eI4xBIEClPPzI11DTo5GklBAFjfe8/Opv+dN/9Wek\nRcbaaMi582eu+d37EHAuEIl470gSBd7wrUcfARH50bcf5o+++fWbTeIjPTfNjd9206UyNU4alg98\nmWqz3QgQiQjAWtuus3OWxlTY4GmsJUk1VWMojYXgqY1hq6qx0TKu26KStKFhnUNrjZJQN4ZHH3l4\n+u/tG4ZOnhFjIElSvPeMRpN96+aH3/w67LOrX+Gz4ebj5o11Dq00WkJltt28P2+SZJo3o73lDQii\nbt1ovcsNksY5Xn7lN1M3KavjDc5dOHPN7/7zvPloPZWnBWnapWxqrLIsHbiPavNqTyHaPS/etT1l\n9thTe3FT1Q3GWqxt125KAf0iJe/0EULTyRSojDB1wyfKm3b22PupmxjxzpFoCc7w7cceBeBH39mf\nbj4LZtqOSqgbQ2UshNBeKlTXGK52lBCxHR99RsyEELHOE+LVrIne8K3HHgG2s+ZrwI33O+yLGeQY\nI/MHF6it5eDhZRINXtVsjNY5fuI4ly6vM+jNcGBxicpaVlY2OLZ8jLTIubyyQiwNxfwc1WjCoblj\nTKqSGCLYQGcwA3pColJE7ukWPc68e5Kjy7fixg12o0KqpF2HQ0QgkBK8NThnEUT6eTvjXNYG7wOC\niAsOKSTOR9Y2JySJYXm+x/rQMRxvsTA7QAiFkoLN8ZhuV/PEIw/z1NPPE0NgMikhCtI8wVlPjBGl\nFB2doqQg+IALAWcC3kdEtESdEoIBIfn5z55hZqbPvQ8+iE66ROdYu/wO88tfaGcbheT//nf/kdBM\nSDuaS+tX0EnCj370w3a5BeBD+3NDBGEjeZYRQiRRKf/40+cJMRAkfPexBz5tItd9bpab9TiZunlr\n6sZgNkqk0ngxnYufzux6a/DOIoB+ntDrDpg0rRsJOO+QUuJDZG1YkSS2dbPp2BiNOHzwCExfgW+O\nx/S6mscf+QN+9ovnCDEwnkwAQZYl7ee4Rzd3f+Ure3JjrPtYbmLcf2tJPwtuPkreHJ7vsbaTN/1p\n3sgdN0888jA/e7r9PLbzJss/mZtb77qrdeNv4MaUpB3N5Y0rKJ3wox+2bqT6eG7243Oz3FR+faen\njm331LBCyoQACNqZMQl41/YUe+6p/0xubOuGYEGlRG8QQvKzp55hZnbAlx56aG9542x7xOjUDUQ6\nWUoIEa1T/umnLxCixwvB9x7ff25ulpmxWflkZhqD8wERpx0l2o5aH5boaUetbTqGoxELszOfCTNt\n1rSTEJ20NZPolH/85+eJhB0zPtx4nnhfDJBDiGAdQRm8iMiQ0wmSXHQJpiTTglRC3ptnRkqssTg8\nq5fPkwuFtDC+soHXlqqMaOmwJmKDg2gRUeCbhsT2OXfmJGkvoR7W1OuCGCVpKlEElFQYZ5BS4pxB\nKlAiwXjoxAghImX7Wso5EEIgJBw50CPtLHDu4kWcdygEg25B1QTGdY2UmoOzc2xNKr73zUd46unn\n2BxtIZD0iw5l3dA0hrqusUqRao0LkRADdx5ZQMkUHzyJyiE6gvcURc7WqOSf/+6fuOOOJZYWl7A+\n8Hd/8x/59nd/AAo6ylPpgDEVSifcd/8fMmo8KnpiDDRNTVPXLC8ttx+EEIgIEc+TTz6MJFCWDY1v\nl5vst+dmuUltj3Nn3pq6aVo3QZKm6qobu+2mmX6TTrABAhFCQEqJkrF1gwAJRxa7pJ0DnLt4sf1W\nLgSDXkHZBCbbbubm2ByXfPebj/DUM8+xuTVCIOgVBVVdU99kN9ZZmrqmaT6am/1wU+d7n/3uxngo\nPihvFnuk+bV5M9MrKOvdbmbZHFetm6efY3N01U1Z13vOm3/adnNwCesjf/e3f823v/N90NDRgdp7\njKmQKuXL939jx4109vO8+ag9FfucO3udnkoUkoBSGjt1451BSYFUe+ypXkG1FzdSkSQK78ETuOvw\nVTda5QgcwXqKbofNT5Q3DlPXNE3F0qFlhGA6jQUQePKJhxBEyrLel3lz08y4vZmxfvqOb8dM21FS\ntLfsHV7skXYOcH6no/hMmGnqGlNXLC3tMhOB6Pnmkw9fa8bbG35++2KALAQ47Sm3KnyM0FVI0WFp\n+QhbW1usrqySScuoXEEnkrwocK6hn3XAS2J0lNU63TBDkmn6SZ/SliQIjJekImVrNCaTCYN+j7WN\nNTQHCN6hE0Wm21fcxnukjFhj2ssxnCfLU5yPjMdjfBBIIajqpoUfPTPdjDQfUI42EERijBSdjNF4\ni7zTp8g0UmQgJKap6WaC++6+jZ/96lWkFjz6ja9w6dImL736Og5P0zQYY1BS8o2v3c/ywUUmkxEx\nBjY2LlHoyPzhW/E+0FjLxmTMi785w4P3SZJ8wPz8LFprame44+4v8s6ZU4yGW1Qm4GNK44BqC60V\n49EGJ47fDkRM4/Ch4he/eoPaTFACvvX41xFJOwu+/+YBb6KbNGHQ70/dLOKdJUkVmRZX3airbpwL\nZHmKdTAejXCx9VXVv8qafQAAIABJREFUNd5HYgjM9jKSXW6IgU6esTUa0Sl6dFKNzDOikBhT000F\nX77rdp569lWkEjz6h1/h0rtDXnr1d0gpb5ob01SMxx/DzT6Es9/dOB8ZfUjeVO/Jmx03sc2bKNRV\nN3dvu2GXm9ff7+ar97N86EPclGNe/O0ZHhSSpDNgfm4WnWhqa7jzrnt45+wpRptbVDbgYopxEKst\nJN3P8+YjupkddKHXY224RhIPTF8Pa7Jk6sY5pARjDXki8d6TZwV2Lz01GtHp9OhMeyoir+/mG1/h\n0qXWjY/tsg1jxY6bpYOLTCZbxBinbsLUTXvV8HBS7ilvbFMx2nETMMYTdrmRRL71xDeQiUZKcZ0N\nfZ/uc7PM9Lv5nsxUNjAajfBRIBFUVU0IERcDs3lGmvepRutAJMZAJ8/3vZk8fe/YxuNjydO/epO6\nmSBFa0Yk7drrD1povC8GyFIpZCjQrsYS0a6m2TKY0YTJqGT+6DI4y4z3lFrgvSdLMko3odvrYsfQ\nyRcIxpPHlI16iyTVWD8hNA2J6LK+uQFA1ptl0GQ0G5YYI1nervcclxW9Xp+ybEBEahNRWlFbh3MG\nEQReRKyJuADRNcwOeigRGW2uUloo6wlz/S5z/QLrHCpJMLYmRJiUE2yIeO+Zmy3oFxKhFGVZsrQ8\ny+Eri7y7sopSEjc9c/jELbewtTXB+Mjpk2+i0dx1x3G885RlxcZoTNVYYmmwzvPTf3qG2249ztZ4\nRGMDv/31y4gYmJvv0lSOshrj8fjaMrz0Nj42zC8dobl8Ed1b5C/+/V9y6OBhxuMtpAQ3fZ3hnNt3\n38zh5rlZWlwg617rJpdtkY8mFb3+bjftt/XaOhJhMFHgRMAa8B6CN8wNekgio+EqpYtX3fQ6dIoM\nqVOMaQgByskY6yM+eOZmOwwKgVCacjJhaXmWI1cOUNaTPbgxe3Jz5uSb73Pz5//+L1k6eJjxeHN6\nQsfnbj6Jmw/Nm+F23pTM9Qvm+wWNNVM3bd68102/EEipdrlZ5MrqlWvd3PoR3NQG/NTNP7ZuRqMx\ntfX85tevIPDMznVpSktZjQl4XGNZufRBbj7Pm91uZgZdst4sMyajXt/uqfb0gVFZtm4mEyBQ24hW\nbU9F+Ng9VVYVKkmv7ampm9ndbsqrbt5dXUNJifUeYrzqxsHpt1s3d95xDOcCZVmzMRpTG7envDn9\n1hsEDAtLR6gvX0T3D/AXf/UXHDp0mNFoC6kEPgSUEngb992bh5tlptdd3pMZ5307C03AWnAeojPM\nzfSQIjIarlHatqPm+wVzvaL9e7qPzWyefJOAYX7paJs1/QP8xV+1Y5vReNuMRymBc4HwAbcE74tN\nej540hTuuP1uikGHKDTFbEHS7TA4NEe0ligFOs3pj7uwntBcgplykXI4wQrPgQN9FuZmMRoSBOsb\nVyjXKibDEWkSueXoUWKaE2wkVJIYPFKADzDcmoBQ1LWhMQZnG0KM080rAtMYNsdjqtrxzDPP8dzT\nzxK9ZaGX0usvsraxwUJPISPM9nsonZFmHWTaQcqMn/zDL5jUjsYYQoSqrrj7ni9w1913sjmeMBxu\n8ZX7bufJb9xNEiPKOb775B+yuj4EAVon3HbbbZw4vkBeFMisR1k1SCQitosZr1zaQIlIWZU4H7j4\nzkm0VDzx5JOI6GmqGhk9480xLsKZc+cZDBYokpwzFy9w+jcv8v3vfQspIt5WzM7McvrsGTbWVtga\nre+74IGb54a0g3etm+CnbqJguDVBSEldG0yz7YZpwQts07A5GlPVnl8+8xzPPf0rojMs9BL6gwOs\n77iJzPa7yCQjTQtUmu+4GTdX3ZRNzd33fIE7776DzXHJ5nCLL993O09+465P1c0PdtzUUzenWV9b\nYXO09rmbPbi5Yd70t/NmuMtND6kz0rQzdZO3brbzJrRu7rnnC9x5z53Xd2M/uhvJbjdQViXWey6e\nO4mWkieeeBIRA6Zu3Yw2x7jwYW6qHTef582unip39VQUbIzGCKGoa0tjmtbNzkYk9txTu91Mdrmp\nPsgNAW0d3/vmI6yutW6UTrjt1tZNp+iish5lVX+ivDl7/gL9wTxFmnH24gVO/+YlfvD9qRvX5s2p\nM1fzJn7AYOfTePa7GVs3bI3GVI3nl09PO8ob5nsJvf6BHTNqO2uSz4iZ/raZ823WfP9bSLnbzBnW\nV9usqc2Nj3nbFwNkJTXWBCajktlilk4iCd5RdPtomRBlJFGKJgbG+YjkkEQfESSLEt3t4XxEyJSh\nm6A7YKNifvF2Zg/M0+su4IzgytoaiQvEEPENiBjp9Ps0VYVUiizVKNkuZFdSgfd4W2PqEkdszyZG\nEb0n4pkpUkgLiIY33rrAUz9/CWdLkunZf840SCH5yU9+hveexjR426CSlJnBDGmisbZBCIlUgqos\nyZKc73zza3zne9+hsY48SVEikshIr9tlZuEwsjOPlAoTaDctiAAR3rm8ilCSXq9D3VQ0zvIv//Rf\ncvadCwipCc7wz3//N/S6BfWkZOb4LBc31/hPf/uX5LMLiH6X8xfOcPsXjvDg1x7k6NFFOimcPfsW\nedKem7nfnpvlRrv2l+1rkIRdbiRZmqBlez7xjhvXTN3A8y++BlERnCPgmemmkHYhWN44eZ6f/ewl\nrK1I0oQoJM42CKH4u588RZjuQPfWoHXGzGBAohOcMe26Qi2nbjqfvpvbp26OLJKngnfOvkUnST93\nsyc3N8ibpDvNm/Nt3rjqat5Ys+Pmat4YdJK+3416j5vvfww3vN9N01Q0tnXzztSNt7vdVB/Zzed5\nM+2pGHG7e6osUVKRpglKBKQQaKkgfPyesrt7yrYbo651s91TN3bz7W9+jW9//zs0xpGnrZtURnq9\nqZt8bupGfMK8meHicJ3/9Ld/RTa7gOx3OXf+LF+4/SgPffUBjh05QCcVvHPmJJ00pa73l5v9b2ZX\nR3nXmunuypqT5/nZz9uO0mlC5DNg5thMmzV/85dkswcQvR7nzrdZ89BXH+DotpmzJ8mTlDde+90N\nP799MUAWITLfG0CsqdY3kNYx0ykYrp+n3+sSXUPjR2RJpDPIcHFCsIYybpIqgZSRUbmOiA1bl6/Q\nKXJcs4EPFu9LajeiNyhYHZ1H4gnekeU5L77yGkW3Q5qmZEoSbE1dT6jLEmtrmqZ9/fns8y9DdDzz\n85+3/79C8MwvX6QZr7I1WsUZh/WSVEnQXUS0SCl57TevE/AIITh58kx7K005wdsKAWRpO4BojKU2\nDeOqJOBZH62DFPhgiMGQaEmapETfHogNkUBob0DykVRHZjLFl774Req6ZjCY49bb7+L1373Bfffd\nQ5Z2SFLN4cOHqKoJTT1B6pw81cwcPUhJydlzF3nn1EWG1RZz80ssH72d4ye+yP0PPs6kiaRZ+qka\nud5z090ER5p3pm7yqRvRuqkm1OWkdVM3QHvoPsHxy91unnmJerTC5ngVZzwmKFIlWjfBTd28RqQ9\n7/HkW2cQwtNUE7ypkUCWtgMIYwy1NZ+em7jLTT11c+x2TlzjJvk0iVz32fdubpg3K9fmjRTvyZvX\niHik3M4bT1OVeFNP82Z6QcQncON9JNl2c+8XqeuG/mCeW2+/m9d/9wZfuu8e8jQnyTSHjxyiqic0\n9XgPbv4LzpvxeWS82lMvvfI6RW/aU7p1U9UTqrLEmo/fU9l1eupaNwHzAW5GVUkgsDFaBzV14w1J\nIkl168Y7x7ab+EnyRuV0UrXTU2feucg7py+wUW8yt7B81c1Dj+1LN58FMzHYa80881KbNeNVfHNt\nR/FZMKNzOqlmdvfY5vR0bLOwxOFdZkoTOHbLsRt+fvtiDXLEs7KxTlFAf65gqxqhckHqe1xZPcdg\nMEciEhpToaJAhMji3CGcszglODC/xKZZRwWNM4Z+JyXTGWnWJSCpQkOvU3D+zGXeqC9SXbZkWZdX\nfv0mvU6KbSpSCaauWBuuo5MM7wxpliJVirCxHegicd4hiASVsDUq2/VdMmF1c5O7xBLBNnjvkFJx\n8s03iDEQA1y4cJ577ziCFBEpI8HW6KQgSEFdVhRFhyRJqOqaGDzGGyg9eaLJUgsIqmqdrhBEJYg+\ngGwPpku1JihJYwxEwaV3zqDzDksHFwjeUFYl8/Pz5EVBMZjlyrvnmb9llvUrl8hDl8l4zPzCEhfH\nJylV4K0LbxJETZbOMlxfp9/vUpny02byvmcvbrRI8ROHU5bZ3iKbZg0lEpyGYCZEV5FlBUElVMHQ\n6SgO6sNMKo9OBEmSIKOg2+9jm6o9y1YICA45dZNlKZFIaBw+tuc+tm4gEZqNzRGz/R4xCi6vb3DH\nLQewdYm3Dd55Xnj+WWrnCQGuXLnEsUNfZcvVdPKEjbU1RFJgTMN4tEW36DDodz62G6k0nUwj0gTn\nPUpqVi6cQ+cdjiwfRNDODCwuLpIXBf25BdauvMtwvMH6lXfJVZfaGBLT4cKZtxkXltdPnybIhiyd\nYbi2Tr/fYzgafqpGrvfsxU0iM1xp8dIx2zvIlllDybR1Y0uir8nTAq9T6tCQFIo7Fu5hUnnEAUua\nFcy9u87ho0eneRPJspRAuJo3aYrQKa//6jfEqZsY20s4upnm5Vf7zPZ7nD17jrXRFqm8gyhSvC2Z\nm53n+Wd/Re09wcOlSxc5svg1Nm1FnmvWV9Z33Iy2NimKDlmWtZlBwAVHVQU6qUblHiE9TTOkqxQi\nUYgIUmuSLKOXJySdlAhkacbG5YvovMOJY4fRWmC9Z/nQEnnRZW7hEJtrK8wtzrB25V1y32NcjZib\nP8jF0dtMhOfNc28Q5K686f3+5E2/M4NzFq8ESweOsWXWyXSO04ZUBqKOZFkPj6QODd1OQbOp2ByV\nGGsRUlJNynZJTlMRbNtT5Wjrmp4qJ+BKs+PGRIMAZKZZXR8y2+/hfeTKcI3bjs/TlGO8rVBSc/Kt\nN9tBSYCLFy/wpTuPIkVAyUh0055SgqaqUUWHNElp6oYYPdZbytKTp5ossyAl9WSDQrQ3bkUfkErt\nuaf+4ad/37pRXRpj0NO8WfryCVRQBFmTprMM19YZ9LtcvHTx00XynmcvZrp5vzUjBQfnj7Jl1ujI\nHk4atHAkKpClxVUzRYd0SzEum3bgHBJM3aCTBNtUiADWGJpy0pqpWzNNXSN9exSdlJIQfXvSg9CM\nJtV0GU7C2tYW94glcO252vvdzMHjC21HuS7jrQm93iwX1tbYcBVbb/+aIBqybLujuowmN+6ofTGD\nrGXG4dkjbE0cWMV85yDD9S1EhGpSI+qI9zW28WRqBq37RGtooiVVDcE4umg6RNIkx0ZIZMZWNaGf\n9hClQzUKYuDC2cvkeYbKOljvkCFSVSWTyRZ1U7VT/HWNEKI9UDt4pAwQIEQPxOlmGs+4LNnaGjMq\nxyghme9lRCFoJht4X9PrJtS1wTqD1hKlJUIKqrJhbmaGphzRLXJ63T6J0nSKHjMzA7TS2LphOFxl\nUk1YX7vCmbffYDQcMRqtQmgHZda256Y6PJOyQSeaJEno9gbkSXtOobORO79wD8F7DiwehOAJUrK2\nMqRQBY31pDpnMl7HC1iYWWS0scFozeAaQxSGjY019uGSwD25YeomUYZgHEVM6EDrJmy7KemnfUTl\nkNe4SVFZB7PtpiyZTEY0TYUQiqauQQiccxA8UrS3BsXQvipSSlPZ9pzI0WjCqByjhWSunxMFNJMN\ngq/pb7uxBq0ESiuElJTVVTdFJ6fX66P1zXWzvjKk0F0a68l0zni0QZAwP3OA0XCD0WqDbyxRWDY2\nVvflZqs9502wJKohWEuBnrrp4AKkMmOrnrRuSo9q9FU3WYrOig9346d585HdZDtuvK/p967NG72T\nN4a52evkTafLzEy/ddM0DDfXmFQT1lav78aYdtDlo2NSNSSJmrrpkyUSJSTeBu664x5CCBw4uAhx\nd950MdZN82YDL2B+drF1s9bgGkPAsDFca8963WfPnty47bxpCNZRoMmJrZsIicynPdVve8rovffU\nHvLGT/OmqS3WWbRqe4r35k2R0+v2SJSiKLrMzPav5s3mKuXuvNkYMR6vTo8Ou+pmTz21ejVv0mvy\nZpGt4Tpbaw1+2lPrG2v7Lm9uetZ8bqbNGt2lcdOOmmbN1bFNg9vpqDVMs8+PeQsEtsarpEqiE01p\nN8gKhfCaw7MHUbmkaQJ5rhhurhKsQXY6DOYGjMY1qQYlLEmZMSw3OXrwAC5XdEXCyuQyk2ZCb6ZH\naR1nT11h+YFjrA3HCOf53RtvcGBxfmfwGwUI2e5y9D4wrgXWtgdnCyGIIba7HoOj2yk4e/4cjXEs\nznV5+oU30fJtHnviIaxp+NKX7qJ77jJvnjyLqS2NseS9DsZ7Ep0wPzffvuqQ7ZEsSgSkKpCM8a5C\nyMjW5joKR55mOFuRqy4RS4wBpRTeGogpC3MzjEdbLB87TJoqrDUkMqM/M8u//bf/D4kW/OaVVymr\nZ7n1xAl8HXBZBnXNI9/8LjFY3n7nAn5Uc88tX+TsmctcOrmO1gIlc6YTE/vq2Ysb1zQMZgeMxlXr\nBktS7XZD66Zs3XRnejRN4OzpKyzPtm6k87z+xhssLs7tuEG212sG7wk+MJm6EUK0Z/3ESPCBGC3d\nouDsuXM0jWNxrsczL7yBkm/z+BMPYkzDvffeTXdwmTfePktTW5rGMNMvaCqHVglzcwuYpoFYkeqb\n68YNC1yWIeqaR775ONFbTr5zHj9quOeWezl75hKX3mrdSJUT3f46dgn25sYbQ3+2z3hSk2jRuikz\nhtUmRxYXcHmkS8LK5BKlmdCV07w5fYWlB46ycR038RO7eRMlT/H4Ew9iTcO9995FMbjCmyfPYGpL\nbSyzvQ6Nr0jUtXmTJholE4QqkExwtkSIyOZwHYUnz6Zu5FU3WmskHkhZmJlhPBqxfHSZNNXtOnql\np27+HK0Fv3n510yq57j1lhOEa/Lm8WnenMdtNdO82e0mI/rfDzdWSPpzfcbjmkSDEo6kTNko1zl6\nsHVTiKmbad7cqKcWP0JP7SVvrumpxtAYy8y0p7TWO26irHd6SsgCGcc4VyIEu9ykWFeRyS4hmvb6\nYaXapTp76akNc23eBMvJszfKm4ywz/JmL2Ya2FvWfG6mNRNTXJ7uZE3w5urY5tZ7OXt62wwoldM0\nN96kty8GyM45DJLoYL2asDi7zPnNC8xgKD24qqY7UyAmEnxFKgvmDh+jLjc4MLNAdGCFI+t3WJhA\nLR2pzanLmqyw9BYOoBxsbtQI187GnXvnNCFGDk4BOW+JIZIlCSaCThJQglee/y2w/aqzPWdRSsmg\n32NcDZHpAK3aGY8mRCpr+A9//TTfeuw+FI4TRw+xtDTPUz99CaRkazRGK4E3Fd55ik6GlpDlGSrt\nYKoJUrf3mK+uDGmahjTRzA4Uh2ZnkCIl2AotBLWxDAYFaScjSTKqcsIXjh3jpRd/y9l3LhCio9/N\nmelomuAxLpJqzcXz55HdlONHl/n61x7jwuVVIhGtE2Ie8B6OH1/i6LElrIdXXn6JGPfX7mDYm5v+\n4UOtm8EBogcjHNngem7MjpsrGzXCXuvm0NSN9RZu4EZAuwRjOqkhpWTQ7TGuNpFpH63XIAYaD942\n/Ie/fppvP34/SlhOHD3IoaU5nnrqZZCSzdGYREJtasKOm0h6k90MDs5x7OhhvvbVx7hwaYUIJEky\nvQI2cvzYMkePLWNd5NVXXt53u8phb27y5dbNwmCaNzIh7xcslJFGeFKbMy4b0q6lN7+I9rHNG6uQ\nUnHunTM7bvyN3EjBKy9M8+Z6bsobu/nxv3hsmjcHWVqa28mbzdGEREFlarxz1+SNSDuYskQqaJqa\n1ZUhdVOT6YTZgeLg3Ex7E5etUEJQN5bBoEvWyUjStHVz/Dgvvfgbzr5zsXVTTN14j/GRLNFcPHce\n1dudN60brVNiJ+I8HDu2zJFjy7hp3nzQ0Uuf1rMXN7PLi62b9/ZUyS43detmYfFDe8pv91R61Y2Y\n5o1Cfuy8+dbjX0HiOHHkEIcOzfGzad7s9FRTX9NT6XSGsilLpBY0dc3K6gZN05BpzcxAc2hugBQJ\n0VZoCU3t9pw3WT/n2LHDrZtdecN78sa5yCuvvEyM/lM18t5nL2YGhxaukzWdD8+az81w8fx5OvP9\nNmu++hjnL60A8dqOes/Yxn3ARSH7YomFlAKVRDp5htCWsh6j0UiVstnUdAddNjZGbDIh5CmdXk5d\nDtE6YTIeM3EjiIF6YlA6B5kw058jUQFvFOvrI0x0vPbs6XYw7Bx1XROCQ6ftfeFSCJI0JQSPVBIE\nxNBupNw+ezzG9nUEQnDLLccJLiIUFHkGIuJdQEuFSiSJVmRZihKWQVHw6KMPEZzF+cj6xpBEKWL0\njMsRQQSapsKaho3hBhfOn+XKu+uMJxXGOg7MDyjHpj0yCofC4ZoJIQac8SQq4cQtBynHE/7+b/6e\nC+fP00klg0yhnSVLBd/4yn3ccewg33ns62gJ0kSazYr10SZKSkJo18gqBEmiyPMOz/ziGfI0cs8d\nd+/LV557c7Ox42bsthAxUE8alLrqRquAN3rHzW+fPd2e5+ocdVVPL5hJp9deTt3467tp6WynD5y4\n5TjBBtCC7nRDiXMBLTVKKxKtyNMUKRyDbsGjjzyEdxbvI+vDIVopQvSMyy0Cgaaub64bG2k2S9bH\nm0gl8cG2r+YEpImik+c884un6aSRe75w17575Ql7c1OVQ5ROKad5I0KkLhuU6hBVwqA/h9Zt3mxs\nbNFEv8uN3XGjkrRdxydEmz3bbmjd8EFu3Ae7afNm6mYnbwJrG0MSJYkxXJM3xtRsbG5w8cI7V90Y\n37qZbLvxKOzUjcdf182FHTfKGbLkWjeJupo3a6MtpFQ7eSMRpHrbzTPkSeSeO+6a/jL21/NJ3Gz3\nlIiBujRolROVbt1s99TGFoYP6KkYkPJq3iglEQLCJ8ibdDtvpGXQ7U7dmJ2e0vranjJNhWkahpvr\nXDz/DpcvrTMZ1xjjWNjOGxvbDVzC4eoS/wnzxgwr1kabSKV28ka+J2/anrpr3/XUf76sMR+YNZ+b\neW9HXR3b+ODajgKSRNHZNbb54h1345vmhp/fvphBDjEgEsmw3OLgYA6Vavo+ozQNB2bmiUrS6/bo\nJz1GYUQUCUVvlhglShustZjoyWrJuh9jlSFNFU5pdJ4xM8iJQGM8MXrqquKrf/AgpqmpmxKtFEIl\n+ODJOgXBeaxrUDrl+ImjnD1zDoggBFJE7r/vDvpdjXeC1eEqDz90O6+80s4Q1c5RJIoXnv01X3/i\nDwCBVJ5BT1OVBiVhbulg+xpBp3g8ly5vsrgwS09KRuMGW1VI0e7qnJvtceHcRbrdjEk5IpoxUUv+\n5Mff44WXTrK6toIQkUwnLByYZ319EwLY0qBTyKXkyW89Stqd4+Dx41hn+eEf/YCyrDAhMNlc48Tx\n27iyWgIBlUhq0/CrZ35JnipWVleY6c7Q7XU/XSTXefbmZu6qG7PtRrHuR1hlSVOFVxqdpcz0O0TA\n7Hbz1QcxTUVtqqkbjQ+BrCgI1mG92XFz7p3zbe4IgSRy/3130is03gvqzTUeeuh2Xn3lLIFIYy2d\nRPPCs6/y9Se/ShQSKT2DnqKqDErAkaWD+ABaJYQoeffyFosHZtBSMhrdHDdSyNbNcJ0Tx29lZa0i\nioDSu9wkiitrK8wUvz9uuv05YpAE3WCsxeBJq9aNU4Y0kTtuBv0cEDTGtV/cq7p1U1c0TYVSCqk0\n3l/rRuqUEyeOcub02T24+TVff/IP2v9GbueNbfNmeTtvEjzyat50FKNR/X435y9SdDPKyYhoRkQt\n+PGPv8cLL73FhXcvgohkOm3drG0Sp5uAdAK5FDzx7cfIijkOnpi6+cEPKKsSEwLl5hrHj9/KympJ\nJJAlktrU/OqXz7R5s7bCoDtDt9f7tJm879mTm16fEBVKNzs9te3GKkOaKLzW6CxjZsfN+3uqaUq0\nbHsq7Oopt6unLpy/+PHd/GqXG+UIPd0OxiTMLS0SAlM3ikuXNzmwMEtfTfOm3nZjmZ3tcfHcRYpe\nzqQcE+2I2Ah+/Ketm9W11T3lzeKBxdbNcJ3jJ6Zurps3q8x0B/T2Wd7sLWu6xKA+ZtZ8bmbbTPDh\nmrHNTkfdYGzzjUe+wd/+9V9f9/PbFwNkKRUzvoPLDNJERqZEoSmSnJXNyxS9AfPFLBNX4arIWExQ\nQ02a5cQITbQUvQ4jO0H4DN+UVLXDOsHWcA1bWV5/aaU9XDwE8jynGm+0s8VSEQAxvcWpXY8SsTag\nhePg4hynT51BAFprggtcOH+JL96xRBMCeSIZbgyJ0eC9RylFlrbf/iQCISM66ZG4inxuAdts0unk\nSJXApGLl3Uv0uwOSPKOc1Jx6+02WDh5kuDkGIUi0Ynamy6CTccstt1CWm/jGkM/OkSiBSgSIiJaC\nctxeQWkJIOCP//RfEaoxSudUZUntIlprtqoJjTE01lKVDc6MWF6Yoa7HWOcITvKle+8hzTrtKQwx\n7stX5XtxE8t4rZtOh5GZIFSOb6qpG9iq1rG14fWXVpFC4ILfceODR+1yI2/g5uzpswgh0Kq9f/78\n+Xe5945ljJ+6GW4SaaaziO0MYDWZtG5EIEl6OFeRz85jmy06eQehEoScuun1SbOpm1M3x43WCcYZ\nyrLBmzFLCwOaeoxxnug99/6+uqkiaTr9oh0cRdFhZMZIn+OakqrxWAtb1RqmtvzuxVVm8xlcbN2U\n07xRUhGhfWslr+/m1MlTH9tNWZqpm91507op8hyhEpDvzZuKt0+9xfLBRYabI0CgtWJ20GVQZJy4\n9RbKySa+sWQzc2gl0Un7M5SkdSMEVgSCgD/+s6kblVNWJbULJDphq57QGEtjp26a8U7eGOcITnHv\nvV8kzfLpbM/vjxsb3K68cRS9nJEdX+2pxmOsYLNaw9aW11/88J6SQmJM68bscnPu7LmP72anpwI6\n6ZG6ms7sAtYI03g1AAAgAElEQVRs0um0ebO7p9IsYzKpefvtN1k+dJDhcEQUsr3WeKbHoGjzZjLZ\nJK8N2excu9F4j3lT2GvdXDdv8s7OLOF+W5qzFzONNx87az43c9UMCBprqEqDNyOW5gc7Y5vo3z+2\naarJDT+/fTFAjiGwRaDoLMDWBrlMKa0hyQS5KEhNTiMMZd0QQiDNFI2IBF8xX8zixwYdeugcLp4+\nx23Hj7OyvkKg4diR2ygnJa81G8R2HTo+euqqJMtznHPkedbu0m4sWgmcaw/wDwGEcEgZiEG3a3Vk\nYGV1A+46jHGGbp5QWbj91kO8/NqF9ga+xpBmYExFJ83wsr3WMAZLrztA6S4uGGRsT09orOUnf/9T\n5mZnOHr4KKau6Hc7+HHDcHOThx/4ErkG7zx5UdDptFdZ592CdJyRZtn0MHCIAo7ecowjR0/w7sXL\n7QZDtUWhJM5bVLcgSTSNsagkIUkdr711hjTNWF6cR8uI8440zdpviFGA1PvujnvYo5so3u+m07q5\n9fgxVtdX8TQcP3Ibk8mE2AyJ0kMU+OipqpI8z7HO0ckyhATTuPaq011umLoJ225EYHV1SLzrCI0L\ndDNNZSO337rEy7+90K6PagxpJjBNSSfNCLKdKSE6+t0BMinwUzdJmlFby0/+4SkOLMzfNDdRCKRO\nSBPPb986TZZmLB9cQMuAc7vdSJDq98aNQRB8zUJ3Bj82JLFL0oF3T53j1hPHWFlbJYiG44dvY1JO\neN1sEAvAi528ua4bKfD+o7spMk19PTdzHUxTTd14lBbEaOl1+6iku+Nmd970ioJjh49g6pp+t8CP\nazaHQx5+4D5yDcF58m5BJ+9gvW3d6NZNNj3o/71ujHUotUVn6kYXBYnW1MaidEKael576zRplk/z\nJuC8JUsz2L6rT+qr69r20bMnN7LtqYVp3iSxR9KBi6fOc9vxY9OeMjt587q5Tk91btBT/v099bHz\nJhc0TUknyfGivbI5RkuvGKCSAhfsLjeGn/zD88zPznLsyFGauqLXLXCTmuEuN9478m6HTl7gvCMv\nuqTj0Z7zRu3OmyxjeXGaN96Rpu0MautGIeT+crMnM0J//Kz53MyOGevDdGzj+e322ObgQju2uU5H\n6ezGy3I+dA2yEOKYEOKfhBCvCSF+K4T4H6Z/Pi+E+IkQ4q3pP+emfy6EEP+nEOKkEOJVIcSDH/oz\npGI82WC88S5SpAhhyToply+sEKylO1MwHk9YOHAAEsVgbg4dHRcvnufd4RWa4KnMhJULK4xHjlOn\nL+BiZHnpOG+fPs2pNy+3eoLkoYfuJ0s7aN1eYJCm7euHEDzeGZq6RkiBEBrvHcFH7rvvi21eByBK\nPJEY26tii6JHu4xCcvcXjqNF5Lvff4xH/+iPCSFQNe16IKkUzluEHhBUBiEgEw1Csrk15v4HHyRL\nO3hvQIBzllQLEqWwxpAkGVmvIE0TnGnaNakbGyAFWkq01DSNZVRX3HLidma7GbPdlEEvR0nJWmVZ\nHdW8uzJkXHlQKUpplFJorYneURlP1bhpOQkiEecDznrGkxt/y/pMu2kmrFy4wnjkOH36InaXm9Nv\nXNlx8+CDXyFL86mbdnNV6ybgnGmPz7nGTeC+L9/bbg4OAAIfAwRJUxuKbo+IbN3ccRxF4Lvfe5TH\n/uhfEGKcumkPZbfegu4TZE4MsXWDZHNzzFceeOD/dzcr13EjlSLRmhA8VeMpa0+c7obeceN+j9yE\nqZuN1k3ZTLhy4QrjseP0qQs4Wjcnz5zi1BtX2teWN3DjQ3tihXMG07THLn1UN90buvljQtyVN1Lh\n3DRvZEa8Xt5kOd5bEGCdJdWSRGuMbUjSbTcaa81VN6p1o6SiadwuNymz3YSZboaSkvXKTPNmg3Ht\nQSVIlaBkmzdhJ2/81IwgEnChdTMZj/eVmb26UVM3F4e73ezqKWB56RgnT5+a9hTv76l4g54S7+mp\nPeTNo9t5Y97TU8mAoPKrbpAMN8fc/8CDpGnrRiBwzpCqdh25NVM33YIsTXB2e13qJ+spOe2pRGuC\n35U3bC+gjVM3gfH4o+fNfs+aix+YNcfelzWfm5makdtjG7kztqkbR/W+jvI463n6F7+88ef3YZto\nhBDLwHKM8UUhRB94AfgT4L8C1mOM/4sQ4n8C5mKM/6MQ4ofAfw/8EPga8H/EGL/2QT/jS1++O/67\n//ffMNftMdy6zOLgEEEFwsQw8pa14SqLR5aQQqBkiiwk//W//tc0owhI1psx5bgm7/QpyxqtFb2u\nJEkTQqj43XOrOBMp8oyvf+NhBIJJNcI7R5qmSClxzraL2AWoNMO5iHM1WdrF2Anjcc2pk+eIMRKi\np19o7rz7NjpK8O6VdWaLnMFsn7ox3Lq8gJw9ymT1IuOq5MDiARpjGI9rZmdn2gsGbMlo0nDu4rsI\nJcmSlLKsOXRgQKoFl86dY31cMxgU3Hb8MP3+HKQDZDAQA8P1yzz361N0ii554ok+4csPfBnrFYkM\nZFkH76GsxhgXKBvf3r8eIkFEOnnRHkJfjonBEZ0n0L5GDjA9MFzinOOl519kPN7EuY9+hs7NcNOf\n6cQH/vAO5ooem1uXWRws4VUglIaxN/8fe3fyY9mVJ/b9e4Y7vSnei8h5qIEssljF6qqm1RbU7ZVh\nWIIBA/bGWtkWjBa08cK9tPUXWBvDC9sQZMiWDHihBjxIMBpqLbTywkZ1VXV3VZlkcco5MqY33vHc\nM3hxb0yZkZnMZJHNYvEARAZeZGYw4n3y9/vde8/5/ThcHnH5xtV+xGaMHCq0cy92k0R4d+pmmKX8\n/h/8mxCgrPNP7SZOBHle89GH97vpdcF3br77Gpm+2M2//R/+x5SHD9lUJZcvXe7dVExnU6SMcObY\nzWOEEsRRzF//63+Dqzu9mwf3OdrUbG31bkZTiLeQoXOzmO/xZz//mP/yv/r7L+fGBbwMOOsQQlGW\nOcG3BNdNPYqSrGtb5gEpcdbx0x//FGNKnPv0Pbu+rG7+23/wDzCbQEAyNznl5ryb8Uii4/Nu/uH/\n8N/z+7//e4CgrHKsa4njBCW7XtneOqQEFSU452ltQxoPuHHzylNuRgPNd3s3j/aPmA2yc25GN978\n1PFGqm5S3rVrN87EmwfM85qtyYBvf+M6kz7eiJN4s8+Pf/4x//M/+SeksSdYzQ/f+SHWKbTy3UWa\nh7IsMNZ1bpzHO48XAdvaz83NF2HmVd0MpKLZ+N5N0bkZjKjKGq01o+EZN392gG0CxWbN7//B70E4\ndZPECfIJNzpKsGfcbO9s9Xnq3gV5SrK7f8R0mDLZOnVz5Tu/+2I3ecP93S5PxVHMd998i2uXJsRa\nstvnqWe6Wezz47/8mH/3b/5NstjjX9LNH/0Xf/Qb7Wa8lYV/4w/e6Gub/efUNvS1jcLmBU3emVk0\nxYU5Sve1zfs/PsA2IEV4JTOB9qVrG7X9jS5HlSWXL1+mPslRnRlnStZ9jpJ9jgL50ma+/drrZLE7\nZyZSnjjO8B6KZ5i588mdlzKjVKAoip+EEH7vyffvhXeQQwi7IYSf9h9vgHeBm8B/APzT/rf90x4W\n/ev/S+jW/wNMe4jPWZLaDVg1lrrx3N0/oKgNVidMLk1441uvMx6MWOULrKiplzktEaQKaBinYwIR\niweHRELhatgUFYdHNdUmwxqHRGDaBtN4jK0ggPMO6xxCKnQUEScpUscI0U1ME4D3DU3j2JqMmW4p\nhFC89cZtlquK+3fvc7C/wIfjPYWatnWsNyu8WfF49z6bvlG3NQZnHU1t2GyWLDaGRdniQ9f9Ii9y\nTFOxWq0R1nP52hUub29x/eplnO/GL0rpQQa8LzCtIdjubu94MGIyGiLQKFsSbI13NUW5ofXdpByt\nJVqCTjRpkpKmGUrGBLqtARYFXhKco9qUWNMNHPDO8js/fJs0TV9E5a/GjR2yaixV47mzv09RN1gd\nM97Z4s1vvsZkOGKVL7GioVpszrmZpGPo3cRC45qn3SgErTWYxtPa+sVu9NNuZlsKhOatN26zWFbc\nv/e0G3Psplmyu3ufTVlRFGta02Cdo64bNpsV87xz4wg4Fyh6N8v1Glzn5spO58b6gMMjpQNx1k37\n8m7Szk2SZkgZgei2BjgkwUtwjnJT4toWaw3OWX7nR9//yrixRIRjN8kYxHk36/xpN6ZtaEygtXV3\nk8d5nOsuMI7dKBUhpEDrGEnAO3Ohm+U5N+KMG3sabx5/unhjj+ONqVitN328uczl7QnXrl7C9W7E\nU/Gmm3o1GQyZjEYINNKWhLYmuIay2ND6cM5NlGiy9PN188WYeTU3Lbp3Y5gkIxARyweHRGhcHdgU\nFUdHFXWeYRvfxZu2oWnOu7EXuOFJN8ayNRkxm+ouT715nKcecLg/79y4cJKnNhfmqQb7nDxVFDmt\nqVmuN128uX7GTTjrBnwoz7kZ/1a6kdRuyKpxZ2qb5qnaZtmb6WobTUg1YC6obY7N1NSbzowUn8HM\nq9Q2xzmqKsl7M871ZtZL5rlhWbZ4PNYF8lc2I07NiC5H+d5M8Ws089b33nrmu/dSe5CFEN8C3gH+\nX+BqCGG3/9Rj4Gr/8U3g/pk/9qB/bZdnLOc9zt5lPHsdY7bwdcODow0DVeEXDisaJuNtHj9Y0pSe\nndk224NtlvMj/GjA+sGKSaTZ+eYNnBfUtkRFWxSmpjVdv1GkR+uUn/zkx/y1v/YjpJSk2RAlJVII\njPGkacwgTVjlBUkS05oY77t9PKZpeOPbr7NpGkxtePv732C9WNM0DRZNHiqa3V188Exe+y5NvgCp\nUEISqYjGWFrXUjWGuq5pWksQkiQZkG+W3XQzodisC4ZpN9r12rXLtKbtHkvGMbZaIaTENxW1BSk0\nKoq5fesSv3zvMcGWOF8zGGwhpUSKQF3VfbHfT7uxjjhJ+df/6k9Rqnvc8Dvv/C60LUnWHfjauTRl\nEEU8ODwkWE8cf7at6p+rG3eHyeB1WrOFaRoezjdkqsYvLFYYtkYz9h4saUrHzvZ5N6uHnZvtEzcV\nKtqiNDVt27kJyqN19rQb8Qw3cUzbdm4Gg6fd/ODtT+FGdJOCtI5ompbW2jNuHAhJkmQUvRvn6UZq\npgrOuNFSEcUxbb3uRonWFY0FKaJXdvOv/uRf9G4kP3znR3jbEmcJZVmzszNjEEc8ODgE64jiqLti\n/wq4mZ24GbJ6uGSiNdvfutGd9n7CjQgQpCfSSe/mhygpUdkAKSVCSKyxpElMlg5Y5yVxEtO2Cd5b\nknPxpsZULT94+zbrxebUja9o2mM3N07dPDfeqHPxxjnYrHOGiezjzRVaY54Rb7rCSuuYWzcv8f/1\nbryvyQbT/vuCpqq6PqtIlOru0kQ65V/+6Z98IW4+LzOv7GbYuxkPWD1YMdGK7W/exDmobYWOtyia\nupscFgJBevSTbgYDlJAIKbHNsZsh67w45yZNOjff+dZr5Ofy1Ia6abBE5KGk2W3OxZvwRJ6yL8hT\ntnczSiQEwbXrnRstjt2skUri65K6DajP4OZf/+mf/ka7ceFsbTPB14YHRzkDVZ+rbfYeLDF9bTMb\n7rCcHxFGA44erJjorraxvjcTnZohBIL4DGZetbY5jjVa0zSW1rZUdW/GOgKSJB5Q5EuMaVEy/mxm\n2i5HfR5m6vbXMElPCDEC/jfgj0IIa3HmEEUIIQghXkqmEOLvAX8P4NqNq+TVkPfuPkKhaK0jCEkl\nDVhL8JDXK1Q8obITHu41vHf3Ibb2VHWJFIJBOqBpKh59fMi1G9v4YEmF5uMP73fFgffdpJgAd+7c\n5fqNKxjruyuO4QjwRFoTRZrhcITUMc5LjvYfECcpjWkIaOp8Q17UiOBAKmzbUFnDdDhFSkcymHB0\nNOfy9atMtx37h0vatiHW3TjIxXKJjiKqqqRuGiIdMRqNmc+PcG1L0JKiaJHCsb29Q5pmWGtp8hyh\nFMI7vMi4dGnC++/fheAZRRk/eudtvCnROsJa1/X/C2CtI1KSpq5RwtPUjp/85Gdc3t7CWceD3cdc\nnU1Y5xWL+ZIkSwkoHu4fUhUbJuMBott8/TJv7xfiJko0eTnk3bu7KCTWeoIUVKI5dVOtkMmE2o55\n+Niwbjo3dV0ihGSYZtRNzaOPD7h2cxuPIBWajz7o3bhuBOeFbpJnuAmCo/2HpOnwpd1koxHTbd+5\nMcduHIvFkiiKqMqSpmnQ/YjfxdG8GwkeKfLCoIRn58RNS1MUoFQ/hjNj59IE/97LuKlQIpxxM8VZ\nx8PHj7ky6yYSzucr0iwFFI/2DqjKDZPRACkcrzqj/Mvm5jjenLjJMur6GW5Ed6cuhAAB7ty5x/Ub\nV2itI0tSklGKwKMjRRRpBsMRKorxQXC4/wBv3ambTc6mrJHHbkxDZRuml2ZIdermm69/u3ezeHG8\nGY+ZHx1hTUuI+ngjHds7O6RpintuvHGM4owfvvN2N0AkirHWElTnprUOrSRNU6PwNLX/wtz8us38\nOtxU/iG2CdRViRCic9NUnZsbO3gsqVB89OGpGwgE/7SbYdK5iSJFHGkGoxFKn7pxzmHa03izKWoE\nDsTZeDNDSksymHB4NOfyjevMth17T+Sp+XJJpC/OU9YYiCR50SKlZ3tnmzTNcG2LyXNQGrzDyWM3\n917SzRcbbz73WPOs2qa9oLZ53LC3fIhtPFVVIqRgmGZ9bdOZMcGSSsVHHz7ozXS9jl/FzEjql85R\nV25ceyJHRSex5jRH1WgdMxyNMUdfbjPBf8YCWQgR9YD+1xDC/96/vCeEuB5C2O0fM+z3rz8Ebp/5\n47f6186tEMI/Av4RwHfffisgLJLuasDUNRYYjWKskDSmJFYZzljasGaQZtQbgxFtt3FfwLrKqQ5L\n6nXJnXXJ9TeuoaII6bum9ADOdftwDg9XPHy0x61bO1y5dgulNIlWTAYDatMgpaJpDOvVEXu7j5lM\nJ0SxYv/xAaNBigBq0w1eIIoo64qd2QjnW0yAIARH+wfEgwlaCcpNd9W2Xq15fLgAIRmMxggRcXnn\nKtZ6Zj6w3mwICHSckmgIeOq67X9eghAMaRrhnaS2NY21pI1huVphIsd03BW3m8r2PZ4rplsz9nfv\noZMBhXFIrTB1xcJatNZsjbe4c+djvBfcf/CIN958E2tbNvmGNJaY2qAj+aqB53N1k46yIIRFEiPo\n/qFYYDSMcb2bSA1wjaX1Z910o70DnZvyqDpxc+ONa8j4s7qZs7f7GKXkp3PjWgzHbg5JBhO0FlR5\nQRxHrNdrHh8sEEKSjSZIqbm0cxVnHTMXiNKEgCCKswvcSHwwZL2bpq0x1mKf56aumE4vdlNVNTrS\nTMYT7t75BB/g3oNd3njjDVrXss5zsljS1gYdqZc28xvhRsC6POum4sYbV0/d9HPZu1ZLgqPDFY8e\nPubm7UtcuXaTidQkqWIyzKhNg5KSpm5YL+fs7z7m2tWrRLFi7/EBoyxBPummqdjZHuKcxQD+VeLN\nNBAlCQFO4004deMRhKaPN15St128aRvDcrmi7d14NHnd0tRrmqZia2vG/u59dJJRtA6pNKauKMvq\nc3XzeZj5dbhpNgYjLVGkujzVu2lWJXdWFTfevNrlKXfqxjmPlHRuHu1x89YOV67dZEtq0kQxHmbU\nxqCEOudmOt0iijSLo0NGg6SLN41D4SDSVHXFzmzY5ylxmqeyCdEL3JzEG99N7/RBoJOUVHdbseq6\n7t1IgqlIkwjvxad0U7O1NeWgd1O2HqH6PLVc/ca5OWsmG2XPrm2kpGlKYv1EbZO7rraJ9ImZ6qii\nXlfcWT3g+ptXUVGMcgoXLEK8uhl32b5CbXNIMhijVdfq8ekcNUbIUzPTadeC7rwZT12b3owgmJY0\n0edjjTljZpLiw+dk5jlDiT5NFwsB/GPg3RDCf3PmU/8C+Dv9x38H+OdnXv9P+xOffwNYnXlccfHy\nnqoRKBcQXpNmKVpJTGMxVYMIElcatIoZRhnlaoPFkXpFva5wlcf7QLGs8R6Cg91fHaCsQqvuTk7X\nHzF0jzdtd8r73t1DlFQIIYnjCK0FQkpa21Js1lhT4wlUdUFZFAghWG0KGtMgENROsjMborTkwf4B\nv/jVPe7e2+P99z/mL//iIz567z1WiwVVU/GL9+/w7ge7OOcZjCaMx9vMtrcJaPL1inQ8I80GxJGi\nqEq2ZlNaH7CtQwiNDWCcoqhamrbl8f4RzgW8deweLhilEUrGlJUnLypaD84LDg4PGI238D6QZBlS\nSb77xmvEWmNsS+sNn3yyy/u/+piiqJkfHGBtC97R1BVpLLvz5S/ZX/KLclOazo0MijRLiaTCNI6m\nbrqOI1WDVjGjaEC5yjs3QVKvamztceG8m0e/OkC3z3EjzroRvx43Hxy7+Yi//IuP+PC9d1nP55RN\nyS9+dbdz4wOD8YTJeMZstk0Ims1qRTLefsqNOXGjsAFapyjKrp/o44OjLlg9z024wI3s3CSRxrQt\n1hk+vtO5KYuKxeEBtm3BW+q6IkkU4L86bsQZN9WTbsJ5N/3euP476rZdSM39uweovmViEmu0kqdu\n8g1tW+PgxI0UgnVe0pgGnnJz2Lm5u8evejevEm+SSFNU3SHQc/HGn4k3puXx/hznAsE6Hh8uGKYx\nUsaUtWOTd27sSbyZ4EMgSQdIJT53N1+ImVd240m9olrXuCfd+MDu+wcoq9EKCPRuTuONEOrEDbKP\nN0oiZHc24qybuiqoihwh6OONQQionWBnNkRGkod9nrp37zG/Os5T77/LarGgPHHz6Ck3oMnXa5Lx\njDQdkESKoqzYmk5pve8OYaI6N1ZSVi3GtOwdzHHev8ANHBweMhxv4QPEaYZUgrfe/M13Ey6qbaTE\n1C+ubaq+tnGB3kwXW3Z/dYiyCqVD91T8iRz1MmZerbb5kA/fe4/1YkFVl/zy/bu8+6tdnAunZmZd\nrNkcx5qnzIQLzNgLzCxf0szrL22mfE7nk09zB/nfAv4T4OdCiD/vX/v7wH8N/LEQ4g+Bu8Df7j/3\nJ3SnPD8ESuA/e9EX8MFD41m2m26yFKKbtgJ42Y041DpilI5YbJYMBimTJCMvu35/lTeE4Lrewsi+\nBYPj4SePcG0Lx8MUw2mhJ6UgiSPqqoDZDlprWtcdvgo+4L0lL0qElDjniaIIZwNKKTaromtt4j3v\nfbQmTlKq2pJkGT44NgakDxysGqqqYbF2HC03DEcDhII0HaCU7q68q5Kt6Q5llTOazNgsDqmbkqOj\nOUl/oM56C0isCzStxXtB6xXjyZi2LcmLQDrcoSwLNmWNQ2Db7upMRgm1hxaBDAGlB6AalusVKure\n/qLN+59N4O79h2STGXlREUeBvaMjxqOu48VLri/GTe1ZtUviQYYXnRuLwMuucbjWmlE6ZLlekg2T\nM24SKt8SvMW65pybB0+4ORt0peza57y6G4n14ZlujPccrhrKqmGx9r2bDCEDSTJAaY0PgebETfGU\nmzjRZHGKdd3hPOsCjT/rZvJsN+YZbqLOzWK1QkcRQUBb5l3QDoG79x+RTmYUZUWsYf/okPFoiHz5\nvqRfTjfxRW664RwXuTkba0Q/gVPFMXVZwHQHpTWtszjn+4MwvRshcM4RRRHWdsNENkWJUBLXu4ku\ncDOSrxJvvnni5vBoTpJEZElyEm+co483YL1kPBlj2pJNEciG25RleSbetL2blNoHbJDI4JF6APpz\nd/O5m3l1Nyl5VZFkCbVv8d6duqEbr/vgk4c4YwB5zg2Akpy6me2gtLrQjRQC6zz6gjzlvOf9j9ZE\naUp5xs3aQOo9ByvTxxvH0WLDcPyEGx+oy5Kt6TZlVTB8Kt50bpx3gMd5aKwlOLp4M548w4084yah\n9oE2nOap8PnHmy+2tskGnRnpcOLZtU0WpeRVSXoca4LrJm0G0Q29w/Hwk4f9z66LNeHME96XMfMq\ntY0Op7FmvnbMlzmDUYZQ3UWx0sexpjiJNVtbzzMjLjTTmt7MaJuy+PzMpINnH+x8YYEcQvi/Oa4U\nnl7/zgW/PwD/+Yv+3rPLe0+SSmI5YlMWxGmK9A4fYLY1psoNxaagLHJuTqcc1TmLfEEWDaisBe+I\ndcq1b19j/4PHICQBcK3tmvCL818L+rvqQjAcDvDeIyR43/855wnd+TVaYyGStNZSNw152RCA4BxJ\nFKGjiGtXp+wfzAGNtZbWesbDlIOjkjhSqNgy2xmhIk0kFSFYvHfgBVk6ACGIlKbKc4ZbU5q9knXV\nMHCWzWrNYDhESIHUGi01VkBdlcgoYZoG1lXN7t4+H370EevDOW988wqj6RSiGKSgqht++uOfdZP+\ndNefUOiou4uBQynNbLrFfLFAAj//i5+yvb3N/DDn1pUp1dK++FHD0w4+fzchkKQK5IhNlRMnKfiu\nP+b2ZNS5WZdUecGN6RZHdc6yEKQ6o7IOvO3dXGf/g93nujkOQCGIbi/hp3DjrD/vJjzPTUvbBowX\nrI5K4lihXMtsZ4iMNJHq9iJ3XRAEaTJASEGsFFWeM3jCTf4CN9vj5JXcdHusA/jOzc5250YI+MWf\n/5TZ9jZHRc7tqzPKxQrxTAIXry+vm+UFbq6x/+EuoLpS53nxpptUz3A4IASHlFG//QW8cwQBku4O\nrrUeYy1Nbciri90cHMwhaFrXYttAcmX4wngjvCA9E2/qC+PNqncjz7upS2SUnrh5tL/Phx+edyOi\nmCChqg0//fHPsL0bIT5fN1+EGXg1N4veTX3sRmWnboTqhi+Y7iKk6z918v/Y/9p9W8PhoOsvK7tt\nU92P0p+4aVv3dLzhjJs44tqVGQcHRwQ01lna1jObyt6NRMeW2aVh70af5ikEaZqBkKduplOaxwWr\nynRu1isGwxFSCGTUuTm+q63OxJuzbt781hWG0ykiSrq93H28sd6jlPpKuOnM9LVN9URtM7m4tqlN\nRRYdx5q+tnntGgd9beN9wBqL98/OUfDpzETRc8w8o7aZjDKWJznKMt3pzShFCA7vHII+1khBfC7W\nPGFmMI37POEAACAASURBVELKi83MJgnrsubR3j4ffvgx68Mj3vzWVYbTrV+rmcl0+sz370sxSU8I\nSVFu0Drl6vYl8qpApzGx9tR5gXOW0ViTZSl53ZLFnsEgw1jDZDiicRDphMXiCKKI0NqTOzFCdFdY\nZzfen30t9IMenNUoGWF9dyTNtZbNpsQYi7eCfFMgpcZa0AqyayNComke53x874DpOAMp0RpiL6kb\nw3AQEUe675OrsU3NYLJFXVZURcNwNO4aeiuFFpIsiqnWG4Zb23jfsMxLxmmKay1RmjBMUvK6xnlB\nsSlQcUzwga1hxs9+/pd888YtvnPzNk2xxhQGLz1WdUH47e9/t2vzIwTrxZy2KfFeoISAAEkES+cx\ngJKapi5JhCG0nkfrDUW/x+zLtIQQFOWaSKdc2b5MURboNCFoR5WXOG8ZTbrWL0VtyeLAIEsxtmVr\nNKS2gUinLJaHz3VzbOf4NbjYjeOsm5amasnXBVJ1bpQKDK6Nezebp93EkqZpGQ6jkyEcSmrapmGw\nlVJXFWVRMxyNCUEQS4mWkjSKqU/c1Be7qWpc6NzIi9zcuE1TvthNoj0hdDPPCIEkEgjnMcIjle62\n5YgW3zr2ViVl9dV2I3SEtxbBs90A/WsSvKe1LdZFXfHpBS4IrLGs886NqSzFunzaTdy5+aR3E6RE\ne/DRp483AYhlF2/Ou+njTXbGTZp0brwgX5eoODrn5lsn8WZDWxic8ljZufn+99/qin8hWS+OiKT7\nLXWTYWzLZDSktl2eWvZujtt0Ps9N93WP3Ric06gTN5xz09Qt+aboPn+Sp8aERPV5ap/peABKEDlB\nHIneje6HcFiUSLFNw2CSPjNPpVFMvVo/5ca3LTJJGCTdXfMuT5XI6DlucoNTASu7Au77b79F8AIn\nBOvFEZdmg99oN1KIi2sb1dc2/unaBjnqzAyHNA60TlierW2kOHPh3RXFr2pGCflKtc1oEHV7pL1D\nH+eoyYS6KqmOcxSnsSaKIur1BWbssZnTWHNixj1p5tanMrP36OXMfPBg79nv3+cm4yWWFII4TUEE\nSr/BhZY2NAzQCOGYDAfdFY2AYRZIk5Tt6YhBJtGxx+Y1TbNmEA27PrRSPFXYHK/jQOScw7oGbx3r\n1RIpJUqCMTX5ZokPIGQgHSbY4FEqog4N6Y0hoxszEBGZj5lcnpJdHlFryNcVQkp0HNjayhiPErI0\nQuvux+xsYLlc4X33OKNpaoJvaU1Nma9wdQkO6tUG5zVpFLOpcprWdKdU8SRa8/jRLlGk+kf7gv15\nt7f2/r1P2JQlVgoa13L/0T02qyUHj/fJq5zV6ojNekmWJiRJhneO4XBEkqXsL9Z87wdvM9meIqTG\nCk+rMx5vSqQIyC/h6FdJ5yaIQOnW2GAwoSZDI4RlPMhItEYJGGSBNEmYTUcMMoGOPDZvOjd69Fw3\nx4nL+66PrfMXuynOuUk7NzqiCjXpjSHjG9tn3MxO3GxWp24mWynjUcogi9FaEoLA28BqscR7j9Ya\n09QEZ7BtQ7FZ4esSXKBerXE+uthN1LnRkeomCD3ppno5N6PRkCTL2F+s+P4PfsBke9btXZUeE6Xs\nbUqk9F8tN4On3egXuDn+tXu0XuOdZbNaooRECUFravLNont0Kni+mxAxvjIju9THm96NSl4i3rjz\n8SY4aFYbXIjIooRNeeqG4El01McbSesd1vduguPeSbyB2lnuP7xHfuJm87WbJGE2O3YTsEWNMWsy\nPULr7inNi9w4Z3Fn3HTxRvR56gk3vstTVZ+nxjdmCKnJwtk8FchXFajjPHU23nSH3F6Yp5rezbp3\nE3duamOQUkLo7kDu7e6itXqOG9G7udu72SMvNyxXh18ZN+K4tqGvbfyZ2kY+XdskSXreTF5jztQ2\nx2ae/BqvbOYVa5vRKCHLoj5HgbOe1bGZkxzV0pqG4lOZ8a9oZr8zs351M0kcP/P9+1LcQZ4v5vzx\nP/tjEOCwZHGMNRYZBZI4wXrfbQCPYpIYWuOw1rC1tUVdFPzwR99hnm9oCsfiUQk4fD/xCyB4yw/f\n+R5XLl/HmIq9vaO++bXi8pUdPJJLl64Qa0XQWdeH1DTgXddrsPUYZ3EjSZIOsL5rwVZucpq6RAmN\njhWxSvDB4a3lrde+gw4C4wMidIe4RPBoHTEYpqRZhtYxIniyKEYrBT6w2XRN/ou6ZvvajIGCuq64\nfvMGhMB8seK73/shTsR88PF9Hn/859wYRuzbCN9axpcH2MZQt4HETYhUTF4bIq0Y6IzZdMbB4QHz\n9QqVaT45eEimUnZuXuVnv/w5wVji8QAfIK+LLmnW5uSxzZdpBbpDC0JBbVoGaUzbOgpXkY7S7h+Z\nC6igiRJF21i2tsZcvrZDnZe88ztvscjX1IVHNimtqXo3XYFx7Objj+6eugkeGRTzxSEeyWQ0JNaK\nxXzDarPEmIbVcoUxLd7YUzd1hfWOnZ0d9tZ53z5NoRNFLBOKVYWzln/4P/5jdJAY37UIE1J2LcFU\nxGDUDXiJdIzAk0YxkVL88//j/2S9WeOedFNVXL916maT1zhiPvjkPldG3aO3ZdW5uWQWvZuao2pD\naSyLVU40iFDAbDrj/sNH+CBR44SHq0MylXLjtW/wyw/fJxhLMh4gCJimJosSqtqC+FJcg59br+Lm\n/fffJc5i6rzk1vVrzPMVdem5d3+f1pT4fr8wdHv8fvjOW0QxGFOeizfvvf8uHkldFsRasT/fsNos\nMKbhcP8QY1p++bOfn7pJshM3xQVuQvBdW7b15qXdZEn2ym4WfbzZaeanbsoNRdM+5ebe3oPfWjdv\nvvEaURpTFyW3rl1jXqxpCs+H01M3x/HGe8uP3vke77/3AcbUZ9xIrly5jEdy+fJVIq0gGpAOUkzT\nQPAYY5jvHZ66WQqWvZvDw6PzboYJ69bgrOXen/0MjcS4AMd5CkekIrJRSpb2eQpPGiVESnL3kzsv\n7eaf/U//HVJykqd+8Oa3Tt0sNwxU9pSbg8OD33g3IYSuVaiCqjk1k4uSZJhgvO3M+O69cY2FYNne\n3u5y1DvfPTGz3mtQKjxl5ofvvMW/97f+/adqm9e/fQOP5Fu3v/HMWPMv/68/oXUWPcpOaptr2zsU\nmxxTlwzSATqWxJdTgnc4a1kdHPaxxve1jTuJNXVVk2aCSMcU+YYsjtGyuymT5xtcaygODtm+PmOg\nI/L1mvFkTFFUzJdLrHUENHfvPKDYv3POTNUWn4uZJMqgai58/74UBXIIAdM2xHFChKRuLTI4ItFt\nECcYIqWZzTKWq4aqrcjzHF1EBBV4dLBHUdYEGxNJienv+B0nLFRGrJLuMcZ6SaQFxgTWm5Jf/vwD\n3vrBmxSLFWxP8c7irIUQqGuDbVuCEN0m9EFE4x3CWpaHc5qmZjodU1UNtgUZPMY06IEg3hrTuBat\nJLGXmHVFmqUopSlNQ2FbxknSzR9HoKWgqSps29AaQwToaIBSBhrw1uGCp2kMAc9okFDXDeMs5mjj\niCKNixQf7u4RXEuUjWgjiWsb9ECzKddEcYZZHIHSKB0RvGe8NWAzL2jnh4wmAxrniYSgqWviaEBt\nG2QkoHm5bgRfyApgbEMcpcS9G+E9sezcBFoiqZjNUpYrQ9Ua8rwgKg1eBXZP3ERn3MhTNzoj1ukZ\nNxJjfOfmFx/w1tunbtwFblwIDIYZItM03p+4qeuG6XTUuTEgtceYGj0QRNMxjbUoJUm8oOndaKUp\nm4aibZkkKUmssYjuvapK3Dk32Rk39rybYdy5uTx8NTeo33o3jw7PxhuBCd2h3+O7gUKlJOrV3Rjv\nvnbzFXKji4vcSEzgXJ6SKu3zVEa+Xp3PU7/4gO/+4E3yxYrR9hRnOzeBQFM32NbSvJKbCca2KC1J\nnKDZ1KRphlbqGW7ir928zHoFM+E5ZpoLzHymWBN8byaiCRfUNuVpbdOaBjUQxNMxjX26ttHytLaZ\nJAlxHGGNQCeCuqpwtsEYQyQ6M1IZqM+aaQkhMBr1ZnayL8SM4+LiGL4kBbIARFA4Z2lst49TS3Ch\n4Zs7O6yblnVec+fuLqZqmWxvExNTWkPqBVYKdNDs3tvgfUDLiCC7djnH6/6DhwzHA4qqwrpAHMVM\nr2XEWrK3OEIjEVkKEuJ4QF1vMKbrMZhmKSLrtjT41gMCHQRCp7iqAQOpzHBNhUTh84Yir/GhG3Ed\nDYdEw4S6bRFNQ5ilhKZlbh3TNsaEijLWFJvusIQS4IVn9eAh5XTIVpaQJhGPHj1CS4EeTAjeotDc\nnxvy2lCy4RvfvMV8OUcETVssGQ0zjPAED8NsC+tcd2pVCpJUIwOUxuCCx69yoijpHsfEEUmckQ0H\nbFaeJM1o8oO/Kh7PWQHpddcP1gactd3Pjs7Nqjas86ZzU1sm2zMSEXVunMQKUEFd4KZbArh//wHr\n9bJ344mjiOm19FO7kZnGOEfo3SgvSXWCqxuEgUxlWFMhgybkNZVt8cHhhCAeDIlGKY1paZoGpine\ntBzZgmmb0ISKMu72ap11s3zw6IybmEcPz7pxKDSPnnKzQAT1YjfZb6ubmNI2pL534zW7d9edG6W7\nCV49HQnc+9rN1262Z8/MU66PN14GxBN56sSNPZ+n9hdHXTfdLEVIiOMMX+UY417ZTVl1bqSQxIMB\n0TChaVuapoZpSjCWuS3YahMaKsoowlv/tZtPvX69ZqIXmXmFWCMGitZbfNudr1FBkOoU29c2mTqt\nbULeUPa1jUMQn9Q2FlGf1jZHT9Q21rgTM643E02HbKXpE2bG3dkb1BdmplxunvnufTmeRwhJ23qq\nTQMNJHGGsZ7V/or3P37I4d4eAyVxyyWRTNnMCw4WOZFMydct+bJB+AhbOYI7ba3kfUAKiRCBW7dv\nUNcGKSRtawgyEHxLUDGVMdy8dQMQEAJCgtIJQgUGo66/HkrjW0caRUQyBiVI4kAQMc4bVGaYzgZ8\n48YYXMPt2YTLgxkjGSOlpDQtQiYMLm3RbmqWRzlN3lKLiBbY5CXrqqKoDbVpux7QrSNWER7NfF0x\nHg+Y7lxhtVxy6cpl6qY7RDgej5nqBDMvCIUlI6J1DuMUbmOIFcy2ZkRIynWFszGrRc3hPEe5iKFO\n8a2iKVuUEyQyoqlKmqIkEpp68+w+gX+VS8hTN8FAEmUY51nuL3n/4wcc7u0xVAK3XBHJpHMzz4lE\nSr4xbFYNIjztJvh+L5sI3L598wVubvKkG3niRoJS+LbbXxWpGBQkMQRirG+Ract0OuAbN0bgDbe3\nJ1wezhjKBKEUlTEgYwaXpphNw/Iwx+Qtjeju6Fzkpn3SzeTTuGl7N/5rNxe62fTxpnMjg+7ceI+g\n258awrEbvnbztZszbpLOzUmestDHGynouhH0/ReO85Q4diMCwfVuGsONm70bAkIKVJQg5Gd1s81I\nxr2b9ik3TW47N+FrNy+7vhAzt15U2xzHmq5N6blYI49rG08aRWgZI2RX2yBiXDitbW73tc2t2YRL\ng+NYI6lMi+jNnK1tGhFh6WubsjxvxjhipQknZrLOzGrF5cuXqesv0MxzquAvRYHsvQfp0WmMigJV\nXhIHjVQpkdcMogH1ugI9Q4sMQtcMe1mU1MZjasH+YkOwBqm6RBWOR0t7j3ddX8+maVBKk8ZJNy9c\nK1xbMxhlrNcL9vd2qZsKJbt+lGnaTSPyeExdEyQ0wSBEAO3ZP5ozuzRiPE7wUnK4qXj340fINGK1\nXCFHmnRnSN02SAE6hss3d/CNYWc2ZZSmKCe4nA6ZtxVtLFnlBaVzHFWGg6Lig4/vsS4N+WpJW7as\njubcunmFpqr4u3/4HzEdDYkjgUgko3HE1Z0pozRhliYkSpANRsRoqvWSQGBne5tIgW1rIgJlsaau\nDaNRBkBVVeTrnESltE2LNV3PwScPBnwZlveeID1RFqE1VEVJ7DVSZmjXuanWNURTIjLw3djVRVFS\nGY+pnnBD74bjvWPdKfPnu5mfulGdmyRNEIgTN6jQuSFA5DmYd24m4wQvBYd5zXsf7yKSiOVyhRhF\npNsDGlMj6N3c2ME3DZe2pwzTFOVl76Z8ppvVK7mJv3ZzoRvNIj92I9lbbMB1B0x86AcUhOMDeS/p\nRn7t5qvqRkjN4qI8JUXnxnV56sRNn6e00qRJQu0sIVJYU5ONUzabs3mqO5yVZufz1NNujl7gRpNs\nD2hMn6eiUzc721OGadK5yZ6fp7528/T6Qsx8yljTmBL5ZI4SHlP1tY03SBEIUVfbTJ+obd77+BEy\nOa5tItKdzow4qW22z9U20gkupaPOTKJY5TmFc8yrhv2y5MOP7rOqDPlySVtaVkdzbt68QlNX/OHf\n/dtfmJlYR898/74UBTIElIjwraQsLR5HaVsm0zHomPmyprQBi8BVFdJqEpHQ5g1eKpwIKASN8LRt\ne65xthCCKIoo8gIhoW1NNzbXWKazKXKQUpuGumkYTwa4tibSEiE1UdRNvVJaoZIYbwzDZMDW9oSq\naLg026GsFhS1JQSFjjXpIGI4ukWTRBzsH7JcrpEC6rrFmIa9+/tcvrWD0A3xUBJNLD9/eIfp9gQl\nBdEkxk8Em7pGj1KEAxUJVKSxOmE0GqCVQlmHzXMa2eK3Al57DvISEcc43Q1ZMUWByTeYsuH1W9e4\nvTXmR6/f4uqWYGeUdj0rlWYy3kIE2J6MkMBgkGKt4fKlIU44JqMhfMkCD3S9ZbXUeKMoyxaHp7KW\nyXSM0DHzVUNpPTYIXFUjrSIR6akbGVBB0Ejf7TX35xuuR1FEfuKmfUk3oLREJjGuaU/d5IZL023K\nakletxAUOlYkw4jh6CYmjjjYP2C53CAkNLXFGMPegz2u3NoBZUhGimjS8pcP7zDb3nqmG62fdCO/\ndsOruUllQpsbglQ46VFBUouu1d+Zp50ARFq/nJvoazdfVTeJSLC5wUuNF328EYHWtt1f2C8hBPo4\nTwkwfZ5qjWM620INE5rGdG7GnRvdxxutj/PUs9zsPNtN0rlZ9W7qqj11c3sHoZpTNw/uMHtOnvra\nzdPrizCT5+XzY43pYo01F+QopVBpjG8Mw7QzU3+q2uaA5XLdx5rezLnaRhFPLD9/+AnTM7EmjDsz\n0SgDD0oLVKyxOmY0GhApibL2CzUj4meXwV+OPchCElqBdzXpYERdLNEqxtiaJB5QU1HWBbFM0cOE\nsqoIqSDVQzbrDaSKWEfs3JywOSj7HniCQMAHT1s7GlMxHKVIpVBKM54p6qak2lQMhwlx1E0M6k5d\nSqzpTgcLAl6kKAKD0ZQkTcmLDd/+xiWsl6w2K1QSY60ljjXxZIvGLGi5xGQ8wntNVa+5enWHTV1S\nm5ZsuINpFmQJlI1jcnmH4KGoCq5tb5Gvay5tDTCmxumWNskZxDdZbVZUheXmrevcfXxACA3XplO8\ngm9+Y0ZTmO7hm1BkNy6xWOc454mzEbt7+6SxYr1eokTK7751m2E2ZP/wkEs3r3O4P+foaNPt0SEQ\nMoVtA5lSFOWcKPpSUDm3pJB4I3CuIR0MqYslUiW0tiJOBghqqqYkFilu1AWokAoyPWKzXkOqibVm\n58YWm8MSbECE/o5g8NjGYZqq/8cmn+0mdG6iJ9wEEfdutno3ee9GsMo7N621JIkmHk9ozAKDYTIa\nEYKmrNdcubpNXlc0piUbXurdpBS1Z3JlGx/Cs92kF7nZJYT6M7i58lvpxqeCTA/ZrDYkmSKKTt2E\n4BFB9vEmYJsWYz6Lm+hrN18RNyd5arWBTBFHXZ5a93lKhG4rl/eetrXdXT4pUOfcVFSbkuHg1E16\n4qYGXt1NGwxb4zHeP+nGkg13aMyCNMkoGs/W125eer2KmeFLmjGmfH6s0c+JNVJ3heN4SpymbPIN\n3+prm/VmhUwibGuJk7O1jWEyPhtrdk5jzei4tgkUjWdyZYfgOzNXt7co1jU7W0NaU+N1iz0xs6Qq\nHDdvXufO40OC/yy1zcuZuf2Nb7HYX174/n05NHmIFKSjMaZpSNMxtm3Ji5KQQaw1g1mGbQQ2WFSS\nUdUG4VqSJCaJU8piQ5akTK9PWd1f40M3+jcQkFJgTIN1Xcucw8M52bUB9aZAqYyi7NqebG11XzeJ\nI7w3SKXx3lPbAu0jjG2pyg1BBe7WNZemY0yriGRLaz2Rc1gDlpZYBExdIxLN5NKU+cGcJEloyoZK\n5cRRirMW4SWyLWlqwVhntCFCRi2t89DCYDih3VfcjR7yve+8wYfvvs/jhweYyvCwrBHecvvSJT56\ntMGYQF1XaB1RHe0xHm9RFjVNOWcQFKZyRCLm9vUJ9x9UbDZzbGtZ7B8QC8G1y1tsTw3j4YDlakNw\nDn99SgiWn/zywV+1kqdWCIFICbLxCNMYkjNuhpkgijRZluEagfUWlaTUTQOuJU57N2VOFqfMrm2x\nfLDBB0vwvu8VKWha8xnclGgf0VpDXeYE5bnXVOxMxxijiZShdZ7IerwLtKIllr2bNGLr0pT5wYIk\niWkKQ61ykjjFWYcIAmlKGi9f2s2DskZIx+3Ll/jo4cu5qRv/2+mmbhCuJU4jkjilKI7dTFk+WOOD\nPdnSJYSkMZ/BjfnazVfFzUme6uNNUWwYxCmz4zzF2TwlMcacjBg/OFwwuHrWjencTMa0tiWNI7xv\nUUrj3avHm6auEEnE1qUt5gcL0iSmKZrOzXGeChJhShr/8nnqt9nN52nGB39q5jPmKGNbqmJD0IF7\nu6e1TSxbjG272qYJtMKeqW2irrbZX5CkMXVpqPWxmbOxpjNjQ4SIW6zzhBYGgwntnuJu/JDvvf4d\nPnjvfXaPzRQVQtgvxEzznCr4S7HFQkhBPAj4psL6hjSRaBkYjVIi6cF4Wu/ZLOc46fFYUinwSpCk\nEU1dEiWa2pWYtun6VYbj/8D1e0mPE5hTAm8CKsoQviVLNJtNjncW6z3eg7We4APWOnzwXUsQpWit\nQwjNKBszP1qSz9esFiU4y7fffp1kEJPKETLEXLmyDTaw2V8RxREg2N6ZgYcbly7jvUZ5mM1mxMmA\nZDigtZa2aEl8QhM0edGyvy443C/55FfvcfnqdarGsKlrduc5Sis+vnPAJE7AlsRKYK3h+tVtyrIg\nG0RkWiOTwHiasT9fcvfhnPu7D6lMTVE1HB4u+fijBxzuHeBdy3q+IJKKLE1QPrBZl7jW/lUzeWpJ\nIUgGHtdUWFeTphKtYDhKiZRDNL2bVecmCEsiBV4KkuTYjaL2JU3bdHvXz2zPcc52c0ifcKM/pZsQ\nHI2tEUpjnAWpGaZj5odLivma1bwC63jt7deIBzGpGKF8wtUr24jeTRx1bmbbM4KD65cuE7xCO9ie\nbZPE2ad0c42q7tw8PnbzydduPq2btHeTJhFNXRElisaXNG194qabbiVw/ms3X7s5dkMXb9JuOmnc\nxxtjGvyFearrt+y9xyvwrUfpDOFa0rR34y3O+27ksO0Oilr3am7k/8/enQdLluWFff/+zjl3y+0t\n9WrrfXq6e3Z2IRA2YEmEBbYgbOMwGAlsE8YbNsY4ENgRlh22ZMthGRmjBbADIQtbiADZeIyNxG5k\nmAHEsAxDTy8zXV1bv3prZt79LP7jZnW/Xmroqe6ql9V1PhEv+uVS7518+e2bJ++9eW/IOH/uzBt3\n4+HizrmhGx/Y2t6K3XyW7mQzINhVM7e7rBkmyau5jfuj5jYZuZqgQ8r5c9tgPcvdY9LUAML2Gyxr\ntra2SNMR2Whoxq6a6YJmWfXsLkr2dks+9czTnD13kabtWDYN1w7vXjP71w9u/fzdrVA+kyIxzJct\nGM9klpGOPJs7U3zr6BthPJkQKk+uDElYHcKjalBBcD0kaYLSBiFFGYMoNWz2FEFU4ImnHsE7SJKU\nq9cPSMeKtu2gd/S+HyacVcOnL13l8pUbHC5KmqoaPvggga5sCNbjLeRFwvKwpi4rMjPm4Uce4ZFH\nnwSB5z/5SYJRWOvBCcfHJVmekBYJIThs13GwWLKsKz51bY+madG64PpuiW085bxkfjDHm4R5X5Om\nCufscHrEvqPVBZdeeI4sS3CrT7QeHFXMJinO92xsjtDAoztnONo7JjUZSgwbWUHVtRx0PUr1HDUN\nDz7+EJ+6eokzFyaIaM6e3yTLDAdlgzeGo7rhE7u7XNnfZ2fnHLc+Zf3pyVPD8aqb8SwjLQJbZyb4\nztHVwmg6htqRiSYJBvFQl+3L3aRZitIJKiTol7tZnZZcAk++rhtN13aE3mF9T9P2n7Gb9uVuAkWe\nsDxoaMqazEx46JFHeOTRJxAFz33yk2D08M7aMXSTJSRFMhxOp+s5XCxZNhWfvrpH3XQoU3Btd0nf\nhjfZzfNk+Vvpxt7X3VSrbqy9ubxJkFU3Smng5mmCPU8++TDeSewmdjN0w8nXqQQhQRmDkjd4nbJC\nmqRcvXZIOta0bQ/W0YeOprn5OnWFF6/scjivqKt61Y2/rW6wwvHRkixLSIsUHxy26zlcDq9Tn766\nR912KF1w7aUydvNZulPNwHDG1idXzdzusqar6qGZ/hZzm0eeRGRo5ubcJjjh6Lgkz1OSPMEHj+v6\nV81t6qZFfaa5TaJxrl8109PqnBdfeH6Y29i73Ey49Zn05OSHkk7LaJSGB999lr4NOGkhNfjWoXRC\nV3aMJjldsHgrdLbFtZbxaIPOtSTKYPuOXhxIoGssqjR0XUMIjqeeepS6aeitxVvFoqkJ2jKZTGm7\nhvFmTl+30Gp2xhNGs5z5ssH2PShYNi3LxQK0Ip8ZuqXH9T3jjRmiHNprtM5ItGNZHfDUu97NjZcO\nOTg8JskzkrTA4lnMa/IsZTFfYjBkRYLWCUY00+mE3YNDtPeIgqIYjmFa9z15mlKVFV3d8YHPfS/H\n117kwoWLfPLpZ9k8c4YQGrKk4MZxzWiaQGdYNBWpGT6M4Zoa1/d0SpGOJ5THc8ZFzo3FEY88fJ7F\nXoVOCwgddbNEwojxrOBofoPtMw9Q1ntsbJ7hyjMv0Xf9Wi197lY3feuZ1zWY4dTcXd8y3siHT4w3\nnkSjXAAAIABJREFUN7spmC8bXN+DCizalqaqYzexm9hN7CZ2c592E5tZ/2ba45brV/Z+K4TwRa99\n/tZiH2TrPWXdoQyMsoTeD+9usJ5HL+xw4+iAxOTM+wqTaGznqesGSTyLqiFJDAqhaS2utqCGw3aI\nDO/AvR/2DzxaHKNTQdAoA75x2LpHe0Pd1SRbM/CeIjMctzVd05ONc5bV8E7w/GzGoSoJdsQsTVjU\nFh+gr2tqE9gudrh0+SVMgOl4g7rzHB1XbBQjtAe7bNgaz0CExfIIawMbGxvs7t7g+HjB+QvnEGCx\nqKmqigsXLrC3d0CSaJJJjgoebRLqpuLhRx/k8PCAySijax2q72j6lK63jDYyDq4dY/IU5wIBUF1g\nOjNcuLDJbGvCE27MZGMLc17R657nn7kEBD7//Q/RWU/Y2USU5hP1ErtfIWvwRuq17lY3h/NVN8G8\n3E1f92if0PQVaTqD4Chyw7yraauObJLTtHXsJnYTu4ndxG7u025iM+vfjH7tYYhOWIs1yFmehNmD\nU7Ikp61qTJpge884y7E+0HQ1JjU0fU+aJNTLEhU0KlVIAOccAQgCH3r3B/knv/Hbw37IPnD27Aba\nCM4JvTi8Czg3HDMQZdCrA667quHdD53FB6F2gd3dY5IURGmazpNPDGOtIU3p+oay8bg24FyDskIr\nPUYnjLOEi2e2uLFfgla4rubMbMqL+wcoFEYlZHmG9562a+nqHpMljPJiuNwNh0xRSjGbTmnbZnjM\nbcdkOuHc2U0W+3tsTGaYTEgMXLp0A5PkHFYt4PDOM5tOODo+Ip9McWlH2hh6FIvlMRtp4JEHzjDK\nJ9TLJaJga2cHjaYXT+Y9XQiUdcPxcUXfW567ckDfu7V5Zw53r5vGt3gXsLZDG42IQQ9nh8BVLU88\ndBYXoLGB3d05Jh0OEG+9it3EbmI3sZvYzX3aTWxm/Zs5Liuu71VvuAZ5LfZBDiGQwLDqP4DHgXV0\nTU3bNIjy9L5BeSH0gdyM2dg+A04Iq33yE0lRNnC8v0uSaEDhvcekhqpsqPuW4AKE4ex6SmkSJXjv\ngOEA3CZ0bE4S5kc1k3GB1gniDanWlGVD0yqOyprEp8wPjtCqJSsKrHJMNmbo4Gm95RNXryCjlC98\n3zkaVXPl2lUunt/mQ088TKISyqYFFAThycffRaYVvq1JggNrSdMUxXBcw8WypK4tIorF4ghrG7bP\nTjlaHBJsw3xZEcRwYWeLh7am5Npgipyu6Ziey9meJTx6YYfpjubBxya8++I53vXow4zSDBVge2uL\nzBQ0xyXXr1xBdY627VnOFyjryJXiwbPbJEqfWh+3cre68XZYICklaNEYJTjvhgOte4/xHVvjhPlx\nzXhSYLRBfBK7id3EbmI3sZv7uJvYzPo3c3a2ccvnby12sQiARVA+gB4OrZVmhkXZkWSKxKS4xtK2\nLePRiKotkXz48JwpcpwX+qZCp0LvHCQGFTrOnd+hrhqarmM826Bvm+F85lohSqN1gnfgrGdjtsl4\nNGFZdzhfE2xO27UkpqDsG0IQrjU3yLOCw+Uho+mUqu1IbY8ThQmaEmFqUkw+pa47/vHvXyJRW/hR\nx9HccumFZ5ntbHMm3eD6SzdI04RnXniBuq6YjcckxpDlOcFbNs9tU/eWJNmBRGFw7C0b8IG2anjg\nwnnmiz2USjkqj0ms5uLmFufPb3I4r2ltR12X1MxZXj/koQcfYr5Ykm2M0IUimJzCZ5TzY+q2ZzzN\nGI8nKBF0kpJbuLa3h3iwGPxpR/IG7lY3TVVivSdVGpLhwPzegesDm7NNRuMJy7rF+obQZ7Rdi0lG\nNLGb2E3sJnYTu7lvu4nNrH8z3WeIZj3WIBPQRtP0PeiAwWCDw6TDk6wwdF2HNqDThCRLEQLpJCdL\nE7SHdJSRZAnHy4qmrshyzbJe0vnhtNRt0+GCJTUpXgveWsrlEp2mBAHpPc9fusH25gxRhroaDti+\nsEvaukaUkGcj2rolS3O6vgGEtuvw1rIoS1RgOL5g2dDWNU1pacuK1GSID5zZPkdZ1ewt9kgSQecw\nmU7Jc4PWBoem7nt6PFXTUpdLxiNN3y7xAo8/9igheLzJURrG4220Nsw2C4SEG4d7KNVx6I+x0pPl\nBXqpmYw34NixnNds65RzGyNc2YL33Cjn9Hg6Zyh94NP7B/zOM1f5g8uHfPrGnCvzlqcvv0Rv3Wln\n8jp3t5sMZ8A7y3KxxKQZXgDref6FXc5sbSBiqOoKUYpl7CZ2E7uJ3cRu7utuYjPr38y1g+NbPn9r\nsQZZEPCexCQ435MYA1YRVECZlLqpyUc542JE3VQQPLYdNlsYJXjlSRKNloSyqkmKBF0UYB227xnP\nJjgcYkYQoCgKjNP0bUdVLcArTGGonOJ4WaMQjDEsy5Z8OiIbpzR9iyghEYVSggoJwTtUkoAEtDG4\nvkdUSppBs2ypygqtNVVTszGZDps6xJBpg3U1SW9RukIkpbU94zyhdI7xeETVtuRZwXzRs7lxjoPD\nXfq6Zmt7hlhHbRT7+/tsz6ZsbG2wOc4I04xPVwuK8ZT9F1+iFI1qPNlxRyOB0faUPlg+/uljpr3n\n2O3z+CNPMj8qOVhWzKsSMY7GB8Bz5swZyqqmSBK6tj/tTF7nbnWjZAQhUOQFxmv6pqOq58OxHgtD\n7TVHq24SbVhWDdl0xMgUsZvYTewmdhO7uU+7ic2sfzPuM7ypWosP6aWZDmcf2aZclmiVYDuLzlO0\nUdjeYrSh61u882xvnyV0HcfVkiRJaLuOJDFkJqPFoQK4xmLFkaqUvmnJpzk+BIykeCyBHo9DhxzR\nlr7teGS6SdN5yrbHe8d4lLN7VKGMoJSmrRvEKBIMQQJCwDrPaDqmKksgYHRC0zbkWc7x8YLptCAv\nRlTHDVWzZJIXoA15bkApXOsRI/R2OPB7tSg5d/4cVbWkazvGxQRre6y1KK35E1/8JC9cPsBoITfD\nqbSt98yPSqpeQTBY6ZmMFMu6YlH1nH9wgyTJaI86lt0evjEYFB/4vCd48dIuI9EYERSKeddxWC0p\n0intskfPDM28IsszDvcP6dbo8Dlw97rBK0JweDqCOJQvEN0P3cy2aFpH1fU4d7IbRZqmsZvYTewm\ndhO7uU+7ic2sfzNGa65eub6+H9Izejjft0oLEp0ynoxRSvAeTKrp+x5nPXlaUB7NWVQVBkPrO4xo\nlDI4Bb5vca5DJUKap8MH8JSglEDQOOnBQwiKzBiKXMizlEQr+j6wbCznL57HIsyrnumoWB3o3BOU\nYBKh6hpUqlGpIckSyvkCYwxJnmCDx4wMR/MjxnnB5tlt9hYHSC5k4zGOQB9aWms5WiwIEujahs57\nlFHMtie0rkOZBJOZ4exuJoBSeBzV8T7ve3QHo1M8AdEKrQyz2Yyu6ymbOeV8yfy4pa+FNBgKt0G/\n1zLJFdIWKJfS94GP/ebz7O8uef7aPp1dcn1xwOXru3iEGwcH2KzH9RZhOG3uGryPep271g0WfICg\nyLShyDnRjadsLOcvXMChmNc903HsJnYTu4ndxG7u925iM+vfjP0MZ19ciwnycBIPIUNhldDVPVhB\nCQQLqU5JTUrXWax4TJ6CDvRNB+IJOILvCM7jkeHc5J1FZxrMcBrPrm+x3mJ9jwpCpnOaZSA1wvnx\nNp1ziMClF67jg2DF0/QtPjjyPEVnCi+atDCEYOlDT5JpiukINAQRsmmCTgyTrQnFlmLZH3DxkR3O\nPjAmNZ5knKMkpVrUhNaiFSQmI1Ua21uavsf1nhCgbhqaugHnsa4nSXKybLQ62saSvd05kzzHaMVk\nOsKpgHMeAaqyxjqHU/DClRfZnR+wN+8Ym4wiMTgZPl3bNTXjJKNVBQTFeDrDt548T5A+AI6gA67v\nXz4j0jq5W904b7HBooKQ6oKmHLq5MNmmcx4UXHrhGj6AE0/bt/hgYzexm9hN7CZ2cx93E5tZ/2YW\ni/qWz99aTJAD0HQtbddC15NMMkQcWoSmqgkEJBkOxZaODL4PdK1lPBkRRGGUwXthNBqBBy2K4NwQ\nS2Lw3qMEtB/esc0PF+zvHpNnns0sZbFc0vYNlW1xqqPpS0yaoLOUIs+pewt4MqMxmSYtMkLoWbZL\ntB5+R8BhrKYw+XA+e5/TLS0HN65z9ZkDbK9pqppEa4wxTDYmmDxlsZyjlSDBs7E5BeVBQ5qmw/ER\nrR1Oy2hLut5z6dJVXnppgUo0z376CkfHS7RofO9IkhSdpOjE4H0g1Qnj8ZgkHROc47hZMm86JCja\nvmeyuYVOUy5fPsAnOd4FdGJITYYHFocLEpVgihRZm41Wr7hb3aQqxXtPuag5PlgyGSl2xiOqusH5\nni44SD19GA6Nk45GTCeTte7mxv4h3nq6avhARhDBE2jbDvGQZhkiKV3TsLc45GBZ4joXu4ndxG5i\nN7GbNyk2cw80o9f8RCFploStBzbpFg3JuKBta5QISWLwhOHTngG88bjeokxGJprWtfSux4hBpym2\n6RAl4AWdKPCByXTM0XyBMRqjFU1jyXOD7yy2smSZoekcW+c2OTpYoHKNtT3BQpIavPWo1GBE0bU1\nOk8YFzlFYbhxNAdgrDKOlsdMRiPKtiXPC7RWTE1CS0XoE7oy0FgHdIhP6W2PSgTX2+GJyzKqriY0\nDmU0IXiSJEEQ0jzh3Re22d8/pqkb6g7Onx1zdFyjU8MTDz/A89fmHB4cgAjOOZRWtG2HMQZCIE1T\nvHMEHBdmMyrrCCiWVcXGziZd1+O6HosntJazZ7fZvXFIkibUdUu1LHFufQ7ADrGbt9KNV/DkQxd5\n7vqcw4NDBLCrbrpu1Y0funE3u9mY0aNiN7Gb2E3sJnbzJsRm1r8Zj6eal+t7qmkAFzxmnOLFkRc5\nAF3ZYQqNEocNHi0JxTjHOYfzHq3N8A7Mg/cOkylAoQIkWUo9bygXNUWesajnpD4nzwxKAKNQKQSj\nyPOU5aKFTBEUKBQ+BUQICuh6egKj0ZjeW0ZZyt7imNykdK6n9g2b53YoywUqXR22JdEc2pYkSShS\ng3GW3jlcrdmYTmhsh5iADeC6nsQkZMGRGE0w0PQt2mu6vmWkcvaPD2m6YUzTaQ5oFk3HzChGuXA8\nPxgOp+I849GE3rckeopIwFlPkaa44BHRHFYN2hgS7RmlCV1d49seA4gYPvSh9/KxTzzNmfGIRdMy\nNkKzFtsaXi92c3vdFJkeujk+QKthi8N4VLyumzxN8cGDaA7LhrwoYjexm9hN7CZ28ybFZta7GZdq\nqvkbP3drkZP3HgmB3nlC73DO07Ud6SQDpQmiyNKUvra44LGr0xV2bUdQGuvBhp48L5hMExyWQEc6\nFjyeZlmDEyajHJTG2kDXWSTPmE1Gw7uRQqFEcNZh8ShAAC0GpRSiUzqE1jXcODzCYOjaDvGCkQTX\nthhSdFAYk6IR2q7H1oGy7Lm+d4jrhWBgrzwkOE/wkJEiCZR+QaIVje1QmWY6HdNhwXnAUreBZeiY\nbG5xUFbMFzVFDiqZMNk8R9eBMdC7hs5VtGWNwnNulHFumvDeR8+yMcnp+5beWfreUtYt1nuaZYfS\nCcFotmZjfv/jz9DVNeOZ5YnHthibBC1rkcqrxG7eWjfjrfN0/dBNZxv6VTdaVt3Mhm5mkxwbu4nd\nxG5iN7Gbz0psZv2b2TDFLZ+/tdjFIklNmD6wgXiPc56+bhhPZ/SuJ3hHUIIgZDqh6VqUUQhCYhLq\nuibPc6xz4CxaK3SmCB40wnLZkKU5m1ubHMxvINaQaE3V12RpjgQQUehcU1cNojS260iSlCQxNHWD\nCgqVKlzn0bmhK0sk1UgvaDMc09A1DWmegU4IYfgfIy9yFvMjxtmEuutJlcHrQN935GaED5aMnOn2\nhMsvXSJNc7TW9HWPJJCPMxKv6dqOxWKJThXbm9scHy8oXEIowNWWtgedQhIc29MJH/zCp6h3D0nT\nTZ65fondy4dsjHJmO5tcurzL9vYZrt+4zmQ0Yntjxo3dXYrJFHzAJAbn4Hh5xKwYsX1mRl8teebF\nfcqmW5tNVxC7eSvdNIuGtlt1g2V78tpuXmT3ysHQzZlVN2fOsH+4H7uJ3cRuYjexmzchNrP+zSRa\n8ZtPX33DXSzWZIKsw+ziJoRAIprOdcPhTdqezjuKIiMABLC9JS8ylFH44PBWEXzH2Z0zvLS3j8dh\njKFvO9IsRymPEYV3HieCd57RaMxisWSUjWjKFusadJrhek9SQN+uPgkbIDUJqtBgZfhkqVIUeULn\nHF3bszGb4ENAOkfjhsOF9NZjEJw4tNZoDyY1LKvh05LFuKCvhwOaz/IxnXd4CSS5Ynlco7WG1KOV\noisDWa6ZHxySjQucD0ySHBCC6vHVcI50QoISxc7GmDMjRR9qlFE89dhT/OYfPM2FzW0KremwtFXH\nuQs7HB8ds7mxyY3rN1CpwyQj+q5DaUNiUgiBpmvp2o4/fHGPw3m5NgseiN28lW7a43b44IY3iCjO\nbkzYHiksFaJv3c2DD1+M3cRuYjexm9jNmxCbWf9mHnjgHD/1c7+5vsdBFqVRAkop+s4SXMC1liRL\nGGc5NgRs3QMBpQXrPG3TU9ctTVuCCDdeOhhWvXuFOEOwYBKDckLfWEKA4MFow+H+AWKFqqpIx4Yg\nhhAC1vUQDMZolFHkSYEZFSz2K7ZmI1AGjdCvdhBPteLG7i71omR//wh8YFQUGBVwnSPIcBgRjcY7\nKNIMpRRt1eIJaGWYVyVleYxvWpZHJdkoYWNrwpnJDov5ggcu7BBUQj4Zo8VglCLJUzrXcWZjhhcw\nKmW2NWV2tsAUiv3jis/5nD+OYcLv/u4zPHz2HM4IbYBj2zGajLn04nWe+dRVlvOe6wcH9J1FOY+I\nx3fNanOGJVGK6WwTv15HzwFiN2+1Gy0p0+0ps7MjTCEcHJd86ENDN7/3e8/wyIlu5rZjNJnEbmI3\nsZvYTezmTYrNrH8zZXXrlcRr8yG9prekYfh0YlakFEXBsq7JEoP2oIoU7y3eecR7rLeIUSgxOOvB\nejKVopxggyWfTAiNo+0sIQSKICgJdH3PJB1h1RBUU7VopdAe8jQFN5wvncQzP14wDgWTUU5iNFoc\neOHcxQe5euUq4oXJaAZGkynP9s5Zrl6+Qj7JyUcJplAsjxd0vkd7YTqbUe0fMJ4W9H3PdDZib3cP\nRYbkhm5/AdrR1A3bWzOUV+xdP2B8LqdRCUmbkYwz5gdzRuMpkkyYbgZyLczrJfnYIE7w2vAPf/Uj\npAGqumNpDunLjratSTbG7IUFU5UQNBw1+5y7cI5qseDajcvMtraoFjVV5/DKMF+UJKmmarvTTuQN\nxW5ut5uOYtVNOjLgwWnDP/rVj5AEqJqOpT6kKzvariGZjbgRlmxnRewmdhO7id3Ebt6k2Mx6N5Ok\no1s+d2uxi4VOdBjvTBjlOb3t0Hq1kzigxNA0NUWR43oHBtIko2taTG5oFy2q0GidkoiiC3Y4C0vn\nsYASj3ih6xvyyRixQjlfcmZni+NmjklylGiq+ZLUpHgJSPCEBDKV46zFJIqjgz22d3bwXuOVwzXD\nJzdNkaNcYP/oiDPjGdZYjDcYY7Bi6dpuiLMHlSrmyyV5ltL0JZNiRqahIKdPAk3jyIqEtm+xWPq6\nJTUTpmdzrOs5vlZhTIJ30FQl+ShhtjWjWtYUE02mcqpyQVCKaTZhf69kc3OCUYFl1ZAaNZx9B03r\nSvAJiMK6jqP9Qx64sMOycygXKMYTdvf3kQA+BJrW0vfrcwpPiN28lW5GkxHVsiJfdVOXC/xru9GB\nZdmQJgpk6MarLnYTu4ndxG5iN29CbGb9m5lMZ1y/vru+u1goUUgQmraBIMMmgHFCMclp65Y8z+i9\nHd5ZBYX1DnJNV3fD4Usk0Hctzgh4TaozrIDzAecVXdOTT6a0pcX7QDIyHFflcHtraeoaHFRNBd7T\n2w5cQCmh71qqqmZzcxtbdYTg0KufXRQFYjuauuLs1ibVsgILiVJ0xqK0YTyb4YCgA1550jTB64rz\n2zukypCkgbIryZOUsqnpQ0fTWrxL2DyzjclS6sqiXYq3lgRFnnjOb0zY3NrEO08xzkh0xrLrcabA\n+IzDgyXKDOdUv3GwwAeDSkbsH5UcLEu6XtF5YVHWiEpQaU5lQfvAqMjpmpYizUjyjM2NTdbhjdRr\nxW5uvxvnHPk4I9UZZddjTYHx+dBNMnSzd7MbM+LguORgWcVuYjexm9hN7OZNis2sfzNd197y+VuL\nNcgisgCePu1xvAk7wN5pD+JNuBPjfDSEcPZt/plvSezmbRe7WS+xmzUSu3nbveO7EZEbQMn9+3zc\nCXetm3XZB/npN1q9vW5E5DfjONdK7OZtdK+M820Qu3kb3SvjfBvEbt5G98o434oQwtl75XHGcb7e\nWuxiEUVRFEVRFEXrIk6QoyiKoiiKouiEdZkg/9BpD+BNiuNcL/fK44zjXC/3yuOM41wv98rjjONc\nL/fK44zjfI21+JBeFEVRFEVRFK2LdVmDHEVRFEVRFEVr4dQnyCLyZ0TkaRF5VkS+55TH8rCI/KKI\n/IGIfFxEvmN1/baI/CMReWb1363V9SIi378a+++KyBfcxbFqEfltEfnw6vK7ROQjq7H8uIikq+uz\n1eVnV7c/drfGeCetSzf3UjOr33/fdrMuzazGEru5R8Ru3tJ4Yzexm9sZ71p0c6oTZBHRwF8Hvhp4\nP/CNIvL+UxySBb4rhPB+4EuAf281nu8Bfj6E8CTw86vLMIz7ydXXtwF/8y6O9TuAT5y4/FeA7wsh\nPAEcAt+6uv5bgcPV9d+3ut89bc26uZeagfu0mzVrBmI394TYzVsWu4nd3I716CaEcGpfwJcCP3vi\n8vcC33uaY3rN+P4P4KsYDg5/cXXdRYbjYQL8IPCNJ+7/8v3u8LgeYoj5TwIfBoThwNnmtX9X4GeB\nL119b1b3k9P+275Tu1nXZu73bta5mdjN+n7FbmI3sZv7t5vT3sXiQeDFE5cvr647datV9Z8PfAQ4\nH0K4trrpOnB+9f1pjf+vAd8N+NXlM8BRCMG+wTheHuPq9uPV/e9la9nNmjcD93c3a9kMxG7WXOzm\n9sVuXhG7efPWppvTniCvJRGZAD8J/IchhPnJ28LwVuXUDv0hIv88sBtC+K3TGkP0euvcDMRu1lXs\nJrodsZvodsRuPjunfarpK8DDJy4/tLru1IhIwhDQj4UQfmp19UsicjGEcE1ELgK7q+tPY/xfBnyt\niHwNkAMz4H8ANkXErN5FnRzHzTFeFhEDbAD7d3iMd9padXMPNAOxm7VqBmI394jYze2J3cRubsda\ndXPaa5B/A3hy9QnFFPgG4KdPazAiIsD/DHwihPDfn7jpp4FvWX3/LQz779y8/ptXn/j8EuD4xOaK\nOyKE8L0hhIdCCI8x/L1+IYTwTcAvAl9/izHeHPvXr+5/rx/8em26uReagdgNa9QMxG7uIbGb2xC7\nid3cjrXr5u3amfl2v4CvAT4JPAf8p6c8ln+KYRPD7wIfW319DcM+LT8PPAP8HLC9ur8wfFL1OeD3\ngC+6y+P9SuDDq+8fBz4KPAv8BJCtrs9Xl59d3f74aT/n76Ru7rVm7udu1qWZ2M299RW7id3Ebu7P\nbuKZ9KIoiqIoiqLohNPexSKKoiiKoiiK1kqcIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVR\nFJ0QJ8hRFEVRFEVRdEKcIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0QJ8hRFEVRFEVR\ndEKcIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0QJ8hRFEVRFEVRdEKcIEdRFEVRFEXR\nCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0QJ8hRFEVRFEVRdEKcIEdRFEVRFEXRCXGCHEVRFEVRFEUn\nxAlyFEVRFEVRFJ0QJ8hRFEVRFEVRdEKcIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0Q\nJ8hRFEVRFEVRdEKcIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0QJ8hRFEVRFEVRdEKc\nIEdRFEVRFEXRCXGCHEVRFEVRFEUnxAlyFEVRFEVRFJ0QJ8ivISKfFpE//RZ/xsdF5CvfpiFFURRF\n0ZsmIu8RkY+JyEJE/oPTHk8U3YvMaQ/gnSiE8IHTHkMURVF03/pu4BdDCJ932gOJontVXIMcRVEU\nRe8sjwIfP+1BRPc2EbmvV6LGCfItiMgXi8iviciRiFwTkR8QkXR1218Xkb/6mvv/tIh85+r7l3fT\nEJH/XET+voj8ndXmro+LyBed+HdfICK/vbrtJ0Tkx0Xkv7qbjzW6+0TkfSLyS6u+Pi4iX7u6/m+v\n+vq/Vk18RETefdrjjdaPiHyPiDy36uQPRORfOO0xRadPRH4B+GeAHxCR5Wp3i/9ORC6JyEsi8rdE\npFjd95dF5F9aff9lIhJE5J9bXf5TIvKx03sk0Z1yq3mHiHyliFwWkb8gIteBHxGRLRH5sIjcEJHD\n1fcPnfhZ/5qIPL/6WZ8SkW9aXf/Eqq9jEdkTkR8/tQd8m+IE+dYc8J3ADvClwJ8C/t3VbT8KfKOI\nKAAR2QH+NPC/3uJnfS3w94BN4KeBH1j9uxT4B8DfBraB/w2IL3LvcCKSAP8n8A+Bc8C/D/yYiLxn\ndZdvAP4LYAt4FvhLpzHOaO09B/zTwAZDL39XRC6e7pCi0xZC+JPA/wt8ewhhAvzbwFPA5wFPAA8C\n/9nq7r8MfOXq+68Ange+/MTlX747o47uljcx77iwuv5R4NsY5ok/srr8CFDzyhxmDHw/8NUhhCnw\nJ4Cbb6r+S4bXuC3gIeB/vIMP646IE+RbCCH8Vgjh10MINoTwaeAHGRYYhBA+ChwzTJphmND8Ugjh\npVv8uF8NIfxMCMEB/wvwuavrv4RhP/DvDyH0IYSfAj56Zx5RtEa+BJgA/00IoQsh/ALwYeAunHaJ\nAAAgAElEQVQbV7f/gxDCR0MIFvgxhhe2KHqVEMJPhBCuhhB8COHHgWeALz7tcUXrQ0SEYZLznSGE\ngxDCAvjLDK9ZMEyAv2L1/ZcD//WJy3GC/M70R807PPAXQwhtCKEOIeyHEH4yhFCt+vlLvNLIzft/\nUESKEMK1EMLNXXt6hkn1AyGEJoTwq3f+ob294gT5FkTkqdWmhOsiMmdYqOycuMuPAn9u9f2fY5j4\n3sr1E99XQL7at+cB4EoIIZy4/cW3PvpozT0AvBhC8Ceue4FhzQ68vpfJ3RpYdO8QkW9eHangSESO\ngA/y6mVUFJ0FRsBvnejk/1ldD/BrwFMicp7hjfjfAR5ebRX9YuBXTmHM0Z31R807boQQmpsXRGQk\nIj8oIi+s5kK/AmyKiA4hlMC/wrCV4tpq18D3rv7pdwMCfHS1G+G/cUcf1R0QJ8i39jeBPwSeDCHM\ngP+E4cm+6e8CXycinwu8D/jfb+N3XAMeXL3Lv+nh2xxvdO+4yvAidPL/v0eAK6c0nugeIyKPAj8M\nfDtwJoSwCfw+r15GRdEewybxD4QQNldfG6tdLwghVMBvAd8B/H4IoQP+P+A/Ap4LIeyd1sCjO+aP\nmneE19z/u4D3AH98NRe6uQuOAIQQfjaE8FXARYY50w+vrr8eQvg3QwgPAP8W8DdE5Im3/dHcQXGC\nfGtTYA4sV++I/p2TN4YQLgO/wbDm+CdDCPVt/I5fY9jX+dtFxIjI1xE3kd4PPsKwZvi7RSSR4ZjZ\nf5ZhP/UoejPGDC9kNwBE5F9nWIMcRS9bbaX6YeD7ROQcgIg8KCL/7Im7/TLDG62bu1P80msuR+8s\nn+28Y8rwJutIRLaBv3jzBhE5LyJft9oXuQWWDLtcICL/8okP8x0yLK8895A4Qb61/xj4V4EFwwLm\njT6B+aPAh/jMu1fc0urd+r8IfCtwxLCrxocZQoveoVbP+58FvpphDc/fAL45hPCHpzqw6J4RQvgD\n4K8yvNi9xLAc+senOqhoXf0Fhg/7/vpqE/nPMawRvOmXGSZBv3KLy9E7yG3MO/4aUDC8Vv06wy46\nNymGrQ1XgQOGfZNvrkz8Y8BHRGTJcHCC7wghPP+2Ppg7TF69G0r02RCRL2fY1eLR8Db9IUXkI8Df\nCiH8yNvx86IoiqIoim4lzjveWFyDfJtWh+r6DuB/eiuTYxH5ChG5sNrU8S3A5/Dqd2hRFEVRFEVv\nizjveHPuyARZRP6MiDwtIs+KyPfcid9xmkTkfQybJi4ybH54K94D/M7q530X8PUhhGtv8Wfek97p\n3UR3Ruwmuh2xm+h2vEO6ifOON+Ft38VCRDTwSeCrgJsfZPvG1T5zUfSGYjfR7YjdRLcjdhPdjtjN\n/eVOrEH+YuDZEMLzq53B/x7wdXfg90TvLLGb6HbEbqLbEbuJbkfs5j5yJybID/Lqg05f5pUTIETR\nrcRuotsRu4luR+wmuh2xm/uIOa1fLCLfxnAKTETkC5MswdoehQYFIQQQQRtN3/UkRiNaCN7jvEdr\nTW97jDKI0mgRnPM4b0mzhK7tcb1HRFBKCAGGvUkCgYCsjqcvIogSREPwARCUKJJUY3uHs57JLMc7\nj3OeEGT4GTLcX6Houh7vPVma4LzHOo8EQAkheJQoQgiIKLz3DIfnFoxR2N6BsLpdQBjGJoAIIkJw\nw6EDRSmC9wRW41SglAaGfx98QGm1epzDY9eicc4Nl5VCUCCCScA7h3PgXHj5Z9z8CykRfODmHw3v\nPcGHUz8JQezmM3UDw52Gsb3cjcjQRwggoJQgohCEgMf7gFLDe+UQAqLAiB7GjUcptWpSMInEbt4p\n3Sj18llFRMnNPxTBewiglMK/8kAQJahVX7fuxuCci928g7uZTF45sefNbkQE74fljZIT3chwm7X2\n1ssbAaNOLG9EvfzaN9uY4J19w24grJZtr1xXliVt055qN7GZ1zczGo0+49xGKYX3Nw+TLIiCpmmB\n4feEMDRz83HebMZaD7hVTwqU8MQTj+GcwzuwLiB85mUNwKee/9ReCOEsr3EnJshXePVZWR7iDc4Q\nFkL4IeCHAHSiw+iC4eiwY7Y5QoIiG+V441CScHT5CHxg49wElSYsDpekSpHvjGkOSkbJCNf3hCxQ\n3ajYeHiT3U8doIxHKSEx4L0iIBgzPAXWgniHt0KSG7KZIS0gYUbdHXH+oR2Wex1Hi5InnjzDuXPn\nufTCdWzryU3K/nGJ6zvEefrQcnxY8t4nH+PStZcQpXHWIYnQLCzjMzkPPFbw7O/sY8QQfMPWxS1u\nvDhn++IWi4Ml1jqS1JCkCUFBqg0uONLEUJYNSZrR+540Tem6Htt2GJOSGYMuElRiUAjNYk42ypjl\nm9ii5ehSxfnHt5jvlvSdpxglLLpdMjvBamFkUhrbgElZ7h/TiTBJM/I842BvCVgyk3I8n9+BVGI3\nb0c32mjSNCGoQGIS/Ku6SemcfaWbriUxGYlW6DxBJwlKhHo+Jx9lzPIN7Kjj8FLJhXdtD930nqIw\nzPsbjPw0dvMO6SbNkhPLmwSHJTWGqmowyeuXN4nJ0MKJ5Y1aLW/S1fKm4+hSyYXHt5jvVnSdWy1v\nblDEbt4x3XzBH/sCktQM3ZgEHyxJYqjKm93cXN502K4j0RkvXbv6mm6OT7xO3bqbL/u8r8AZRaGT\noZskZbn36m4O95eEYMlMxs/83z9z6t3EZl7fzOd8/ud81s18/Pd+B5Wn6HSY27zyGrWJHbUcXSo5\n//j26+Y2/+1f+ctYPTTTumFZs9g7phfFOM3Ii5TDvSUhOLIkpbMdf/6b/vwLb/Rk34ldLH4DeFJE\n3iUiKfANDAeJvjUVyI3i8fc8xsa5cyR6eKdzfHCI8gpjNKOtCRuzKfsv7iEd5KOc6qUSZRKWdcWy\nqumdJy0Kdp+9gVYwnU0YT0Y8/sRjGKVBhL7z4CHPErxzKKBtGpqmZ5RvUeyMGe2MyOqEZCScPZNx\nY3+X/cM5gZTpZkoxy3BtS9u2vPvJdzM5t81kOqJIMpRSjIqcuqzpK0i0IjRw6eNLOm8heBJVcHC5\nJE8KjnaX5KMRk40pIAQPKiic83SdZX5UEXrBW0+qM1KVQh8w2qCUR1JDnqfkRsizlHScMU2n+NDR\nLpZcfOoc3YGjsw7ne576wEOobkavNU3V0TrHpBiRKrBa2N6YUHctL+0eItqjlcHpsFozeUfFbm6z\nm2HtDSgU/lXdgLeB1GRkOkVsIFEGUR5JEorilW6ycco0neJCT7NY8sCT54dunMW5nic/8BCqjd28\nk7oBRfCgby5v2qEb3wnehWF5o1NktbwR5ZE0IS9SCqMoTnTjQ0e7XHDxqfN0B57OWvzLy5tp7OYd\n1c3wOqVReLvq5rDG90JwgVSnQzeWYS2oXr1OnejmVa9TJ7pprT3xOjV0U5dDN9NiRCrgtGJ7Y/py\nNyiPVglOD2tV16qb2MxtN0P6mteoyaoZOprFctXMG8xtlKEpO1rnmeQjEpGhmc0JTd+wu3uE6IBR\nBqcCxtx6PfHbPkEOIViG01T+LPAJ4O+HED7+Gf+Rh6MDz+HVI8q9I4IY0mxMbkZo3ZGONSYXXtqd\nk2NoFx0dgXJR4UUx2UzwhSJoz153QLJV0LWWalFyYWeHveuHWNejReFCj7OOUZYQvKWYpKSZITWa\nqqm58sKLLA6X7FYlKZqqtdDD7o1DvFswP6hRGt7z/od433vfzacuPUeRtDz0wDkInu2dLfZvLMjS\nMeee2sTaFiFQ1zWqUXSN58EHLuK8p+lqjFFUZUVdVvgwbEqxztF3HoUiyzPQQt9ZbN+zLJfkowzv\nLcFp8mzKBz/wBG3pQHu0Sei6DkKPuJTdy/tU7YJEa5y3/JOPPAMElkclzvYIBjPSWN9zdntG31uy\nVFDiGY/HiFGIdxR5+nanErt5G7vxq81ffete6UYp+s7iVt1kowwfHDhNkU344AeeoCktQXt0ktD1\nQzfKJexe2aPs5iTKYL3ltz/6bOzmHdZNCJxY3gzd5HkOWrBtj+t7yuVyWOPlHcEr8td0o0xC3/UQ\nLGJTblweujFaD9185FmA2M07qhsZNrdbR9c5FJq8yBCl6G92Uy7IigzvHTg1vE69/8Ty5jXd7K66\neePXqW7oZqyxoWdne0pvLXn22m48+bp1E5u57WaKdDW3WbpVM2Z4jfKr16jL+5TtgkS9upnFcYl1\nPYJ+uZmz2zO61bJG8IzHo6GZ4PjQ+x6/5dO3FmfS00aHfJyxuT3jaFkCnqap2TizgWsd3bJHp4rN\nC5u0R5YgPX3Z0vmefGuElsDm5oz9qwvyNMU6R7WoGE+nHOwd8MCFMxyWJSEM+/mICGd2MroysGha\ntE6woWdcFFjTcmHnMY4P9nGqASdMZwVt36J1wTTPQEOCwgfF2Uc2mc87yr2Kc9Mxl17c46X5IcW5\nEUXI2b90nWyc0XQtvlUoJfR9izbJsOaPgFYK692wmdwFzCjFtS0mz2m6BrqAVhqTGfp22JdrtJHT\ndT2zyZTOet77oQd57g8vs7WtmB8E8txghw0v6ExoDi1WlTz+8CO8+MI+gYay6gkojOp45F1nqF1H\ntWxo5w1tkxJCwFrPbLLB5Rcv45w79X0CT4rdDN0kiSG4gB4l+KbDFG/cDcB4o6DreibjMX0/dPPs\n05fZ2tIsDgN5tupGDDoV6kOL1SXvfuhhLl3aR6k+dvMO6SbLU7CB/5+9O22SLLsP8/6cc8/db+5Z\ne3VVbzM9KzDDGRAAAYIAGZRswTYp0S/lVzK/hu2PYIcdirBlOxzhcJgKR1CiIJo0SYkCaAIEgRlg\nFgCzdE9v1bVnZuV293uOX2R2d/U2RA/k7lKjzvteou+vn/Ovu1q3e+N7pFkKBVhSohxFkZcIIwgb\nHlleEPoBeal58dU1Ls97M+4bXM+mRCOEQt3jZoMb13sImZ+6eUbcfPnXvgyVxvIddDbrTZKliMIg\npYVyLcqsBCMImx5ZXjLsDz6Tmze+8CrTaY4RElvmbJztEFcF8TQhG97rphE1+IM/+Of0+/0T4+bU\nzMzMG2++8dhmLn/0EUWpeeHVda58sEWzJR/co1xB0p+bObPBzeuH/M//yz9lOi0wQqJkxsbZDklV\nMJ2m5KOUNHVm93tXmnrUpHd4yD/+x//FW8aYN+8/fifjS3oCFlZbDPtH2FJSr9eIVIAq4KWL5zDS\n0Gy2Ge6NSJMY1/XJhEEqhZI2ulQMRilJMmIwGjEajljaXMXIhKBp47oOZZIjhaAsC4qyYHd7QFoU\nVCWUukAIA1Kg8BiNBzhNie9GCNsw6Q8ZHw3I85hbOzcY7I+Y6JIzayu8/d0P+fjHNwiFwg4smss1\nOrUa9hQmvQnNdp1mvYWpLCxHYjAo2+b2g1SWEBSlxhIKECjHQRcVnh+h8xKRmvlDCyCMwPN9LGUR\nT1McS5ElGUHd8LN3PwEtMCbEsQMm8QShNVVekk0LvMjGViE7wwFSCjrLLuPxmCyPWTqzxEeXrzPo\nlTiiRpnXOP/iC7TbAY5QaJPffYjnJK1TN8fc2JhC4wUROisR6fwBimNulJrfl2wpsjgjaMDP3rsK\nlQQTYs/dYCrKrCSNc/yawlYB26NTN8+cGzPrjbndm6xEZobbj+4JJJ4XYNkW02mKo2a9CeuGn753\nuzcRth0wvd2brCS93RsrPHXzDLoRBpQ9c+MGEVVWILPbtzcYpJF4foCyLaaTu/vUw92MP93NksNk\nPCbLYhbXl/jw8nUGvQKHmZsLL75Apx3gSIU2xclzc2rmM5vJ45ygzmy2qQRwd48SRlNms9nGr9k4\nKmBn2EdKSWfJYTwek85b8+HlG/R7BY6IKPIaF154gU47xBE22uS4gfvIw/fU3mJxfEkhScYxUSvg\n6ChBSYntOKx0W0x6Q+rtDuOjIW7XR+cFR4Mxta6LLD3GgxGuA9mRRKgQFYCaOmxfv0mz2WSx41NZ\nOWfW2+wPE1pRi8kkpqFCYpNiSQspK4yUGF2STkssJcl6Jc0gwHcCwnpIx8u5MUqZTjyKRFPGmh+9\n9Q6Xnl/inR9+wMrKq8RiCHFJf3CAsgM0FZqIo8ERRVng2A5FUSAtOXvCW1hUVUm9ETIdxViWc+cp\n3rzIQAhsx6bISyxLUVHi+wGO7+C5NoPJEc3QQVaKzc1FRkVKNq0oTEqlXZJyxOa5F2k2NXkJw0FJ\nORixWw54ZeV5HNcjzysOD1LWV87yybUd0rBAa4NXH+GObZa7FitLqxx8q/+0mTywTt08wo0Us4fz\n8hJbztx497lp1GxkpdjYXGBcpKTTisJkVNohLcZsnH+RVlOTlYZRv6I4mrlZX3nh1M0z48ZFoxFC\nzi5dCoGyb/dm9iCN7/s4wsZzZm5qNWvWm43jvckotUNajtg49yKtpiGr5m4GI3ar/qmbZ8iNVApj\n5m7yeW/sWW8sR1GZEs/zcXwbz3HoTwf4NR7hxr3jptk05KVhNDjmZnUVx/MosoqDg4wzq2e5cvW2\nG3DrY5yxzcqCYnlxBfWH1tNmcs86NfMYZvyHm9nYXJzvUSWlyWazTTFi8/zt2cYwPLZHra2u4Xge\nea452M84s7rJJ1d3yaICXYHXmLdmwWJ5cZUrP9p99PF7glYeuaSEskiYJBX1IMCO6oRLNhUWaalZ\nORdgN3zi3oQoiDBWDiLACQ1e16ezukwQuahS4+FQW+uAVFRWgZYF08MBOwdHCOmSpTlVUZCrilqr\nw2IrQpeCKq9wvBAndMAI0vGUzE4YTqfUaoq9XoF0FJKSSTLFWBpQ/OyDbd544w1u3bjJ1U+2SMqE\nFy+eRQWKMqso05SsynEdG10ZOp0WYv4aG40BYZGMY7AlZVViDARRQJkVWJaF0RplW2ij8VTA8KDH\ndDphNBxTq3kENYO0M3a3e5jxkGbXIVio0d5QXHr5Bcoi5datI9556wOWGhp8wZnza1y9dp2t6zex\nLZd8mpFOMi6+tMmkP0VWknf/6gZJAls/HXLlnW2C8NE/ZT2tdepm7qas0A9xY9sWmgpPBYwOekym\nY0bDEbXII4gMUmXs3uqjx0NaXZdwIaK9aXPplUuUecqtWwPe/eGHLDUq8GDj/Oqpm2fITTXvTRgF\nlFmOpY65MRWe8me9mRzrTWSQds7udn/eG5dgIaK9oXj+lVlvtrZnbhYbFfic9uZZc1OWaANhLaDK\ncyxLobXGduS8Nz7Dwz6TyYThcEQ98udusoe7ub1PbQ94560P7nFz7dp1tq5tzd2kpOOZm+kdN9dJ\nEsHWT4745J1t/BPm5tTMY5g5uM/MPbPNEa2uO5ttNhWXXnnhzh71zp09SrBxfvWuGemQxynpJOfC\nyxtM+vEdM3ECWz894pN3bvH6Fy8++vg9OSqPXkVRsrq0go0mCiO6bY8sG7O5sIAQhptXepi8ZG1x\nkXiSE9bqTAZ71BotZKoZ7O5T32hTKU1eFhwOdlg70yFs1EkmBbZt43o2yTim0hWtVkQ8LbApOBjH\nYFnYlKSTGBuFFArl+RztTghqDofjKYQCbSRuQyGUzXg4YWNzERUqRJqydK5LK+rieQ2UUpRxSRRG\ntFohQeigjUYoSZ7FCMvGdhW2UggqjARbWihpIYDxcITtzB82sARu4KFsxTSeEi10aLZbNJYDwkjR\nXVxlbXWZtQ0P2y1pRh5vfm4Dk+RUVUatbhF6ildevcTbP7jJ8opHoyFoNELObHYp0hx/yaI3HrF1\nfQepMsKag+9FDA+GuK6iygviSfpUjTxsnbqZu7EsJILx0cPc2HfctNpt6svhzM3SKmtry6xtejhu\nRTP0ePPVTUycUVUZ9bpF6Nm88urzvPXDm6ys+tQb8tTNM+TGmvdmdKw3wpI4gYdyFJPjvVkJ7/Rm\ndW2JtQ0X26toRh5fmPdGl/PeuDM3b//wJsurHo36aW+eNTcSGB2NUPbcjRIzN7ZiEsfUum2a7fa9\nblaX527Ke91Ud928+uqlmZuVmZt6PeTM2Q5FmhMsKw7HY7au7yBURli38f2I4cERjqso84JkerLc\nnJp5DDMLD5pZW11mfcPDvrNH3Z5tUmqN23vUJd7+4RYrqx6NhqReD1k/26HIcoIlRW884ta1mZmg\n7uB5NUaHR7N3O+clP/r+o78SfiIGZCElRTlFGYdxMmTv8BaNVotK9BgRs7LQpNnukgxjIqmI90es\nLK7RO9ijudwlPkrY/2gH23GojMA1IbkF8XiKXfPpZzFu6OMEhjgfczQY0V5oUOUG21IILXC9gMDz\nKHSFRlNvdjhz7gWyTDNORwgChCjwvAZ+BJdePM9oWPLc6hrvXr3C4W4P0Bz198gSgxaQ6RgpJEp4\nuLZLUHMxlqLVriEtiRaa9kYXqazZk5vaUBQFStlIW4Il8Oo1tAFLWUhXkcUJ0/GEfJKTJjAeF8R5\njm0HXHz+BdzQ4WfvXeH8+VUsXaKMw+LyIrW65Iu/+QqO1wZjkwmw7AZBxyXv9YnHI7Qu+PybrzPs\njxFWheMojJ698unpP8r54Dp1Y83fLmDIiwJl24jjbrS562Z6zE0Ko7kbxw648Pwl3NDmZ+/P3Ehd\nYeGwuLQwc/ONV7C9FkKrUzfPkBs0s97Yzqw3UuDWo3t6kz+sN9nMzcXnLuGFNj99/5M7bhQOi8sL\nRHM3jtdGnPbmmXOTFyW27SBtCyxw6zW0BqUsrDv71Jh8kpMc26dmbl7Avd+Nuc+Nf8yNauB3XPLD\nHvFkiNYFr735OqP+GCFnbjBzNycMzqmZxzAzvWvmwdnmEm4036POrWIdM3PvbHN7j2oStD3yXo/p\neIg2Ba+98Rqj/hgpKxzbxhjQlaEqHo3mRNyDrJRi2BszqlLcKiQQiqjmkQufsCEZHsQETYf2epuk\nN6a7ukRhYhZbNbZv9SiFIaw7GFFihiWq4TIZx3iuZHt7B1+DigxnvAZR+yzT4Yi9Xkqr4ZGPhtTD\nJoPhgCiqYUqD1jm6tCgqg86gZtcxVglFhChzGt02vb0+xAUfHO4TRjVsVzIYV6xuLLB1fY/Pv77B\njasjwijguYvLvP3BZRQl1CJ8FVDrNkjjhKhdw9azm9eTPKUdtYnTHC1yfNfnqD+ZvaVACIw2tFdq\n6Bhyq2QwihFWhe+5VLZhPLxKs9PCliVVYRglUyRTtvsFbqFQNYuFbpusyLn0wksoYzMYH3LuH77I\njY+2yBObznLFheefI4wilFC4jqAqK45Gbz1tJg+sk+6mE3axfYkp2pgyJ1j1GQ8myLLgk5u3aLXb\nhDWPwVhz9uIaW9f3+J3f/XVuXBvRqYWsLi/z1geXUaZEuA6+CtAOJHFCrVUjPpxiyor3fvo+zbBB\nnN124911Y6DUJe3l5syNKBn2x0ilKUsXYwu2rt+g2WnhKo3RkmmWIEnYO7rXTaErhKXQRjDo91h/\n+RLmoy2y1GYw3qLCUCFQwiUK5ezrWSfsmRk4+W7qTgNUhShryCqnudChv3+ESHI+7O0T1Wo4nsVg\nolnbXGTr+h6vfG6Nm9dG+EHAhfPn77oJA3wVELZrMzeNGlahMGXFJJnQaraIswxNju8FHPVHMzdA\nVqTUV1roGJKyJB5OQJb4czeT69dnbqwKUwkmWYzMYnYH97rJq5LKQJ5XDMaHLF+6QCG2yBKb/f5V\nsrJAlRUKhevOesMJHJGflJuLjUWiduuOm1orZJwd0K03GRwN6EQ+ZQK2M/tQhFQFNi7/6z/9n3Ai\ni7ywMEWO5QiUthDjnL14n8CrcX69Q3+iadVdtq7v8T/+b//9nd786t/Vm/qsNz96722CMCTOMswd\nN5N73CzM3eRWSTxNWFqK8D2XwPa4/PGEZqdFHk+oqiaHwwESSPJ73QxHGe9/9OFsnxodUu8scHPe\nm7/5wZ9z66OYsBahUHjOrDfD4dHTZnLPelJmvvHKG3fM7PYS2g2f7Z2DO61ZWVrgKI1RjsRVPn7d\noXbosbm+jhNa5OVxMxLRLNiL9/mNr3+dc+sdBsfMFO6EG9dGFGXJxc3VmZk4RrgORhvcWkAaJxgx\nu8/YlBU/+fD9z2ZGuwjb4tbNLZqdFr4DAou4yJBFxv7oXjOVMfyT3//9h5rpLuuHmnHsR58nPhFn\nkCWGerfO7/4n32BpvaC7UIdMc3Q0YHmhjd9yWOx06McjRtmUUse0mpL9gyn93T7NJUU2TAmsYPZE\nYpZgVQXTaUyzU+f1X38Zz9UESy5h3WJjs8XLr2yQpVPWNiKMiVlcWcFSCqMNWhqG/SOGh1OiwAVl\nKBNDmo/xPUmS59QXWviLNlG7gx8pxlZMYY2pqEhI6fWG1Fyf9ZU1Prx8A6ngy6+/iVVqCiqyOMGy\nbPLUUBQZlYDags94nBAtO4jKIorqSEti2zZllfOrv/EiUVsxZJevfuPzrJxtsnimRmexg3ANzcUG\nvaMBh+OUn12/zuHePqmEo8MB47TELm0GwxHTdECr7pHFgo2zS4iqYjoaY1lTJiOJUAIjBUfDI2zP\nIs0yTuI5nWfSTX9I5Pqsrazx4eXrWAq+/CtvIMuKnJJsGqOkTZ5piiKjxMzcTBKipdtuZj/FK9um\n1HM3HcVQ7PKVX9BNu+6RTedudMV0PEbJmMlw5gYhORoOUZ4kzbOnTeSh6z8YN9mEwJckRU59sYm3\naFM77kaOqcTMTf+2m+XHcRMwmSTUllyEVg+6+fpLRB2Lkdjhq7/5OZb/ffVGV0zG9/VGCI6Gw1lv\nTt0cc7NJlk5Z34gweu7GmrkxYuZmdDi56yZ+0I1/201NMbrdG3G8N8EjelPN3Fg2eWaeipv/0Hvz\nJM0EdYszmy1emZtZ27y/NWCkYdgfzFvjHWvN+K6ZhRbe/XuUPL5HjYjcYD7b3DbzJtYdM/PZJjMU\nZUZ1ws3oT5ltTsSALKTh5c+t8P3v/YxytMjm8gqjo4TB8IjtT8bEacnWrW2qOMOqO1iWwBIBqwtN\nXvriKuvLy9SX69S6LVTDoba0QFCvkSUVUlqMxxXnFjYxhWCYjRhNEm7cusrKuQaDfsnA4sUAACAA\nSURBVMaFixcpi5RKzr4a1qrXaC62kJahiDWTcUllMlxlMZpOUUKwv3/AtKrwHYtG6JNVFSqysSPD\niy9scHHzDC+8usitvT0meoDGcDO/Qj8e4bqz76L7NYulNcHm6yuM+0dUQuPUbHzXZXHBpkpLzl5o\nkiUj3vjCeRwXorDF+uoKSTqhUROEwQKjZMD6xgL1eohSkqgbsL7aobOyRBHnnH3+HO2VOl67ThaX\nONLj6ic7tBrw/nu3QBre/NLn8TyfcS8mrNcIfEVnsYHtWDRqAVKcrKeD4RlyE9qo2242zvDiK0ts\n7+0x1kdoNFv5FfrTMZ4LCIlXlyyuSTZfX2EyGFKKCqdm43kOCws2VVqxeb5Bnox44wvncBxzx02a\njmnUfwE3V3ZpNQTvv7eNEPDml17D9TzG/SlRvYbvK7qLDWzXohGFs1cUnrB18t1UVCbHVZLRJEYh\n2N87IK4qvPt7E3LMzSLb+8fcZHM3Dve5Wf50N/GQN96cuamFbdZXVknTCc06v6AbeP+9bRCGL3xx\n1ptJ/3hv6rPeRMEvvZvRHTefsHKuSb+f3+empFmv0VxoISwoH+ZGzNxMb7sJ7vbmATf39OaTeW8M\nCIlfs1ic71NPx83P3xtxwtw8MTP5cTN3W3P+wsNa037oHjWcTGet2Z+15sHZZm5mc50XX7k92xyh\nMcf2qNlXMI+bGZ9wM74dPvL4nYhbLMDwox+/y2uvvc5hXNA73KPZCLHcGpPBBCstGUwS1s402N/P\nwPGpUkVveER9OaL0NeZIk+kJUVhnEvdpLTSAFs+dbbGzM2KrAleBMJK93hGvvvx5Prn6Ae3FNh9+\ndBkV+GQaVhcaDAdTSkdQjxziIsPBJkkruqst+oMeFiVpUmBbHoHn4rebVJNDNBpK0C5oTzOcjmlf\nBPYXmI5TMIILl7oID5LrkqzIGccZFy4u4H/tAsP8iHTo0l13qXJYitocpH0WcpcqLFFSkmaHtJaW\nyZIJS0vr3Nz+hMNdjSn2qfmSoB1QmITC2ChPEiiXhdYit3p9mq0FKkqUo9jYXKHhRqzqGFFqVNNi\n/YUmUU/x4sWX+eijj3jt9S+iy4qrOx/jvfv/7xeKPts62W48x/n53BiNuOPGMIyPaF8A9rtMJxkY\nycUX5m6uCbIiZxLnXLiwgPe1C7z9kz7J0GNh3bnHTZK7VGGFkhVpdkBraeWOm539G5/JTViLZm7M\nFKoKFci5G5uXLr7Ehx9/xOuvfYmq0lzd/oj9o8HTRvKQdbLdOFKQphWduRsJMzfKI7ynNwZRgpm7\nOZoOaV8As98lHmfAfW7ynMk058LFc3hfu8AgPiQZuiysu5RzN4dpnyT3qKK5m/SA1vJtN2fYPfhs\nblzfm7uJEdXx3ti8ePGlY73RXN35iN54/JSNPGw9GTf10L3HzdWrH9Jeat3nps5o7qYWOSRFhuPp\ne90YSNO5G9/FbzXRk0Oq+9w82Btxj5u0yJjE2Z3eXL754RNzY7vOY/WmP508bST3rSdjprHSQGjJ\n/v2t+fgyduAda82E0pF3W+OZh+9RD7Tm+GxjGE6PZrPN3l0zF+4xk99jplL5iTWzsrbEh1euPfTo\nnYgv6fk1x2BLPn9xgat7I164tMRPrl7l0voFpmVCb5TjSYnne+RjTSkK+qOMwALh5fgtj2bUwXVC\nymnGtb0dHFezWFtiMtqj1eqyu7+D6zqsdldITExVCaxKEidj+smQIDjLYP+ARhQyyROQIMqcogRh\nW1zcWGJvLyHWs++MS6GxZUUlNa5yGA6PWFxeolazZ1+MsW1anSaTeEQ3WuLWYA/PdkjyDNuxWGq2\nGMYTCi2wTDV7D2mp6R0Kap0UU2nqrSb9gz525KALyOIU45SEfheRa4Y3Gzy/uUa9WUcgOKyuMYwH\n5HqKMZo0zrEkZKnNmTNdjFaMk0MoDL/21a9j4oT93pAzZ1bZ2z+Y3Y/TCPCsgKKcEtUb9A52Gccp\nf/4H3+Vg++R8oQhOvhs39B/bzZmNzbmbId1omVuDPVzbIS1SbEc91M3lDz7i8BDqnWzmptmgfzj4\nVDcvXdj8TG66S2swjdm74+aQsixwGwGuCinKCVFt7ibJ+PCvbzLux6duHsONdBQXN5fY30uIqymu\n7WNJjRKaSla4ymU0HLC4skQtsjGVBiFpdppM73Fjkxa3e9NmGE/INSijyYucKis4PIB6d+am1mww\nOBxghw66PObG6yIKzfBGg5efO/uZ3DTbi5/Sm7mb271JUi7/zQ6TQfJL6aZer911owVWOXMzSGdu\n+vuHNKOASZZipJm7Efy3/8N/99hu/qv/+r95YJ/6u3qzv737xNzUWwv39GZ//5DiIb3pH+wySjI+\n+dvdE+XmSZl5+eWXHrs1eQnthc5sj9qfmfFsHyk1trh3j1paXiKa71F/+e1v02ofM3O0h6s+3Uzo\n+ifWTBj6/M2/+NkJ/pIehs1LHZbP1XnttQskSU7keAgbDAZfFni2xrYcVro1kmmF5Rb4kYsfWLja\nQRYQ93r86O33sKsSXXrc3L5BsxtSqDGLa8usLy5TlBmDwx5ZMkU5oB3N+uIStpyydiZCSMFiuwGl\nZG19DcsWeE6dmzt9cp2hbIusSEnyguEkRkkX5XgsL6/Trkdcu7xNlhU4tsetW4d4lkshY0JP4QcK\nS2sCzyFHkyYJtmWB1NS8Gq606SxLHKNwRUCZlZQGfBWgpE2mKxZrXVxpkZclW1sf8f0fv8Psw1ea\nH/75ZVzHxhQlR/0jbBkglUe9YVPmBVvXb1AmBb1BnxufXGESpyy0GpSm4MzCIktry4gy5+b2FdIs\n47C/jyMdHG2h5Am52HDPegbdOB63tg/xlEthzdwEocLS5l430gJx3I2FYxQOPmVezd34KHG/m+IX\nc3PlMpMkZaHVpDIFZxYWWFpbhipn69Zl0iyj19/HtVwcLVHWqZvP5Ga7T1bddRNnBaNpjC1dlOOy\ntHyGVi3i6jE329uHuHM3gacIQhurMgSee8eNIxUITeRFuOJeN1U2c+PZPkooMl3edVMUbN3699Ob\n6nhvqpyb25dJ83lvrHlvTt0wOOyRx3fdrC0so8SUtfUQhGChXYfqthv+Tjf2HTe1e9zMeuN8em+s\nY715km7u6836I3rjnNjePBkzaw9tTfWprVHH96hjZpKsYHinNR7Ly2do3T/b/Lxm5Mk3s1DvPvLo\nnYgBWQoLz9a8/9E+H350xHgwJKrXkUJj2RUVgm6rzcc/vcZBr0+nDXlaMR3FZKVkPJ7w04+ukkxG\nNJoOaVpCXrG62qHIC5Rvo8uY7d4BYTei1V1kMJygtcARLqNpxasvXCDLJ2iTI9FIq2L71j6NoEFR\njKkwBIGL61SYPMVxHKJ6QGJKhtOYQTLhkxt7rC2vo42DFg66stjbH3H9+j5FWdKJ2ijXIfRDpskU\ntCTLUmpOh8XFC6Bs8kwRFx5R1CKfaBb8NpPxGGks1rprpOMKURoiP+Ab/+mr9HdvkWY5f/W9t+gd\n7fH2/3OFt/70Jh9/94hrH+/h2IbICenIF1m0n8NNN1lYXGDjwnMEbY/IdkmSmDRLqVshWS8jskJE\nnlIkGVkxxHU02lRPm8kD61l0UwkHXUn29sdcv7ZPUZW0ozbKsY+5EWR5Ss3tsLhwHpRNkVnEhUet\n1j7mZoJE3ucm/AXdPE/Q8ohs50E3KkRkGXmakeZHMzf61M3juinLu26c225ch7AeEJuS4TS5x43B\noRI2upLsz92Ut924NqEXMk0moAVpnlJz2ywtzHuTW0wLj1qtRT6duZmOx0gs1rrrpOMKKkMU/KJu\n7vYmPu7m8LablCLNyPJ5b7R+2kweWE/MTX/mpt1dpD+corXEES7jaTl3M73rRlbs3NqnETQ/3Q0l\nR/Hczc3dY24e7E3ngd7M96ljvXlybn7+3ngnsDdPysxO74DggdZ489acf/QeVT5kj3Jne1R8Z48a\n323Nw/aoO7PNQ8w4HRafeGsez0ycPvp2rhPz45ZXRSwuBXx4c4vOYpMsLXA9iyxXtAJJaZW88ZVV\nZOqz0G0xKa/SXbbZ306xXAdHG4Rls7i0Ru9ol4VNi04UMuynVDm40iHzBLeu7qP9goUz3dlrqPIS\npW1+/MP3WFvr0nOPqJmQnfwQ21LU6z55XoCUbGw4pHmIs9zGzgO0rpCinP0ncBSe6+AIh51Rj2Q4\nwY1gZWmTre09lONxeWsP6RgOelsEwSpe28P3apjSpkadJCtxbYul7hJS+tQtia0qpqOUMtUokRLU\nA/JYMxr1ibwA2/P5q++9RTwc8NyFC7z55hcQ0uL/+N//T3qfTPl/b0xZ27jAr74+u/SglIUIPP7N\nH30PYkEQBvz637/E9k6PVlKwfGYNo6C3fUjVP0J1IlpeA0uevIf04GS7YSQ+xU2BFOoBN+kwx40E\ny4ub3NreQ9keV7b2EA7sH24RhKvUWx6+X0OXNjUax9x0kTI45iahTDWWSPHnbsa/oJs/+VffhhjC\nIOSrf/95dnbnbtbXQRkOtw+p+kNUJ6TtN7Dkoz/j+TTXSXZT9kqMda8bpwioqnlvpIVvK9zbbsY9\nxkdHOJFgZXGDW9v7x9wY9nu33VT4Xg1dqVlv8hLPtmh2u0jpU5MWzm032b1uftHefOtf/QXE4o6b\n7dtuzhx3c6w31sHTJvLQ9STc4Mq5m5KFMx2qskAUJVbl8M5b77G6ujBzQzRzoxSNhocn3cd2c6c3\nS5vcujXrzeX7ezPfp+705gm6+aN/+eef2pvesd40/QaWPHzaRB5YT8KM8hy2r+6jvUe1ZmYmur81\npQTr8Wab22bun21umwnDB2eb7RNsxgmCRx67kzEgG0MjdLlxsE+z7TAeZnQ6NUqhsXyXaTqmt71D\nu9Ok5jps9/eQVk6j0WU8iqk1XCgUwlHs7V3l0uvPMx3GxFWOcjwmVUEnbHHQ28bGJvTqFHHM4TjG\ntiRRaLPUXeHy1gdsLKwxYULTdeklffKkxmJzmfXlTYqiwtE5UloYR2JbgqqoEMKgjSEvSoxl4Toe\n3XAJYVuI2GLVrcG4pI7EUR71ZkA/v8mknLKzu0v/YETzzRoHhwWWnYB2EN6QyWiK4xpsaZNYExzR\npd8/ZH31eWphgyQ+ROuCsqrQwO5hH7DQWvN7v/t7/OV3/oyDwwMcDMP+Dp3FVdIs48/++bf50q9+\ngdxJkHXFJzcOWGg1MdJmvzeg3W7S6tYJPI/SNkySlKo6eWd0Tr6blcd2s946j7QVJJJVrwaTghoW\njnJpdAN6+RbTYsr2zi6DwyGtNyL2DwuUnYC2Ed7ojhslHBI5oS669HuHrK89Tz1sEP8CbtrNJrkT\nIxoWV28c0G010dJmv9+/4yb0fQqlGacpujpZZ3SAE+9mYd6bstBzNxJjSzxPUhUlQhgqYyjKEiMt\nPNunWescc1O/x029O+vNtIjZ3t1lcDCk9WaN/XlvjLaR3ojJcILjgRI2iZxSF116vUPOrP3ivalH\nTXInQdSt+3pz103ge5TKMElTdPnL62a830PdcTPl4I4b55ib9Zkbz6Uf98niOgutFdaXNh7LzZ3e\nxA/rTUgvv/nQ3jwpN1Hw8N4c9Pu02k2a3TrBsd6cuH3qCZnJJtl9rZliWxZRYLPYXeXKI1qzvHDh\nsfeoM60Lj55t5q2ZFNM7rWm+8WRb87hm3KNHt+ZEDMjaaCqrIqj7FHHGSy+dZZSkjCZDXE9RX6xR\nm0ZgNFOds1CvcyF0mEyHNBou0haUWlDvKlY2XuNgt4dUMNydEkUudmVhlEXouYShRyFLGq0Wvldn\nOo6RnoswhuXOJqIB9azDynMvc95UaK1xbJsKkJZEShcQaDRFBbayEMKQFSVFZTFJY6oqx3UDhNFU\nZYqFppIWP7m6xWBvB4NGWQ5CQFWUuMrhX1/5PjpLWFut8fxzr1CUYNcs0rJPITOu9X5CYeV0O10O\n+9vUXZ+gtYYwN3n5pUsYrfnpu+9wa/+A9aU2XmTz23/v72GMxb/8o2/xG1/7NcaTjL/40z9jc/Ms\nv/Of/Q7GVGAkkzhlf+8Q0UjxwpSdrR3KQhM1PMq4pFvvMr8Z6EStk+4mCsPHdJNRFOXcjcZCU0rF\nB1e3ONrdwYgKZbkIoCxLPMvhW1e+z9GHA9ZWajz/3KvkJTg1i7ToU1jH3HS7HPa2qXk+YWsVYXY+\nk5vf/I2vgakwRjJNUvZ2D5GNFD/I2Lk5c1Nr+pTTmRtzAr8UctLduI5LJUBaAsdyMAi00RTaYCsL\nKQxpUVKUFlWRUFUZlmU/xM1NjnZ3H+7mk+9TxBPWV+pceu5V8tLg1BRJ0aecu8mtjIVuh8PeLWpe\nQNhcRZjdz+Tma1/5tQd6I+/rTa3hUUxLFuoLcMJe1wVPzk3g3nXTnLuJxwnSdxAYlrtnEQ0zc3Px\nJaq5m6WF1cd287DefHh1i8Gn9GZws//E3Hz1y196aG+8R/TmpH2Z6Im3xrqvNb6LPN6atMPKxZc5\nz8zM4sLCY882eVl8ymwzN3N7tpmb8ZU4sWZSccK/pCeFoD+NiaKIXBRc391lOhphuxajWFAUBUJb\ntFohUkum05i8kOBJbMfBlCXjSZ8cRX9nh5YfYnSKXwuoTIUTwTROcUNJXpUEnYiOH3Lt4326a4tM\n+hOisyG15AK28BGhhRKCotJUZcFoPMG1AWnTiTyOpjHCgG0JSl1RlCWuJXFdRWpKMmx6vT6B54DW\n6Krkez94Dy0MuizR2sD8G+VCCqZCYUmBsgx7BxO+9UffQgjIi4r19SXOn11hsdgkVBKdSjqOixW0\nMVrye9/8On/4r/+CEonl+OgsJcsLbOWAkShbYikoigpTlSwsLjOMK957912kFIDAGIMQApNUbPX2\nKeiBkYxKlyvvH0ASMDg8aa/PeXJuChPTH6YEixGeA7vXezSWO0z6E1pnHepqE7v0Ec7MDZUAUzAZ\nx7i2mrtxOZrGGDP7e6dFRVHddiNIs5KigrfefvvndiOPuekdpfzJH//JA25WqwuEnkSXkqXQxQrb\nGCS/983aZ3KTpekdN46SbJxZwlCx1YOwVoKR+K2Zm8ObRyTj8mkzeWA9KTclCYNhRrAY4ruCvRt9\nGkttJoMJ7U2Xhn0WVfpIR6KEINcSdEGW5ri2vqc30oASs96kd9xYpLogM4rB0fCOm+yhbqZ33KQi\nn7lR0B9m/On//acPuFnTF2e9qSTL0XE39c/kpirLuRtD6DucP7c2d7NFoyXucTPcmZBMnhE3pUS4\nFo7josuCyaRPjs1gZ4emH4GeXVrWRuPWBHGcMUkHjKaSYDHCty12bu7TWO7Q3zkiONvALZexpz7C\nstBlSTnfp/7Lf/L7j+xNqY/3xiGNU7KyIsuLx+/NE3RjtEZKiRCCKPCoXThzx02rI+9xM9qLSScn\n68rDZzFz/uJLCLfAkgpdFoj8GudeWGI61JxZXsPoFMtyqYxG+BWqrPO97/5bdCkJlkI6fsS1j/dp\nLLeZfDBh/WwTkSxj7/oIOULJCUWlKcuCyx9deWwzVaUJbAVKoivND37wDlrM3n9stEWhS2xpYTkK\nLSSeFFiWObFmRr38kcfvRAzICIHjKLI4xrEibEegg5DNtTV2DnfRuSQ3BmEAXVJog+vZYNmEQYPC\nFFy4eBYlDe2aRuaKZmORqYyRRQPlSiwLlFfDki6+rQjDOs+/0OHW4SecO3OR6b7BDz0qAbaECoE2\nBmE0ni1xHQspISkLLEuR5AW21ESOwkLi+B67h0eURY5GoqQmzRKUZdFpRCRJjK0kWhss28YSIKUg\nTRMcxyXwAzCQZBlaa4yZnbO9evUmLz63huN7TKYptfbsbK4wFUZa4HX4R//wd3nrb/6W1770a1jW\n7DKEEKBsAWhGoxE//utv02q1WWy3+NznX2T2u8+GY2D+ayyW6+ugNvnOd77Db33ta7x1MAWR0GhE\nT43HI9cTcmOHK49w8xzTff0pbtSpm19mN9EKSrr4ShGGNZ6/1Gard5Vz68/d6Y0WBksKSiExupi7\nsU7dPCtuXBthKYKgSWFyzl88h7L0zE2haDYXmYgYWYbYjsSyDOq0N8+Om89kBoRlE4QNCl1w4eI5\nlGVw7zPjliG2K7EkdNePmQlmZrYOP7nbmsCjkmBLQWVmVxak0TiO/Utv5pv/4Nf5Z//s/YcevhNx\nHUspi7LK8RsRo+mAvCpZWlwhqVIOekcsrrVphC5xMsF1PJrNDlla4PsRZSGwnYhWrU5TzT7NHEaK\nwgZbBdQaDlQVRhqkBt8JsJ2QJEsprZzl7udIjiAIQwyzKzRFMftSkSlzsjwh1yVZUWA7NklakGQ5\n6IoszxknKYUpmSQzPGJ+ur4oS5SlUBKSPOerX3kTpWykJbCExvMcjNHYtoPWmvF4QpJm5EVBUczO\nnkgBtcDB82sIofBdCywXjUuZTiDPEQiwHN78yhex5q+4kVKCEWRVxY/f/Qn/6D//PZzApTc+4ubW\ntXv+7SutKUuNwVBVJbZtQZXzm1/9CgjDN3/rTf7jb3zpSXL4udfTd2M+xU166uaX3U01d+OGxHlG\naRWsdF4lGRr8MMRgZm7Kgqoq0WVBftqbZ8pNnpX4fkRVChy3Rqtep2nVEeq2G4Nt+9TqNujT3jxr\nbj6bmVlrqkLguBHNep3Gw8zcaY2+2xonJMlTSpmz0v0cyRCCYN4aoCgKynlrTmeb22Yefd/6iTiD\nbIyhvdghLQoWV1ewFVRWymDcZ2Nzg929PvWoQXdhmaQoODgYcGblDE7gsXdwgIlzgnaLZDxlqXWG\naRJjtIFC49cboKbYlkMhx4RBxLWdy6yvnKOcZBSDGGnN7zHGIBBICVWRU5YFAqh7DmFQY5rlVJVG\nYCh1iRSSUht6R1NsJ2elHdE/KhlMxnSbTYSwsKRkOJkQhYrf+Mqb/NV3f4g2muk0BiNwPXt2icAY\nLMvCVw6WFOhKU2pNWWiqyoAuwHIwVY4Qkr/6zvdoNOu88sYbKDvElCW9vRu0Vy6itcYSkj/4v/4Y\nnU1xfMVufx9l23zzm/9g9ucBlZ79udqAKAye66K1wbYc/u23Z39PLeG3f/31pyzk4etJuTli5yFu\nkr/DjTl188vuRuwSBiFXty9zZvUc1SQnHyQIy0aLmRkhZpczqyKnKgs4dfNMudlYXcfxfXYPDtDT\njKDVnLvZYJrGGK1nbmoNhD3Flg6D0948M24+i5nXX/0VnMBnd/8APc1nZiZTltr3t6aOUDMz+NXc\nzMdzMzn5IEZaikrMz6ne15rT2WZmRutHnyc+EQOy1gaKEm3lVMIgtYevJZ4I0XmMqwSOBC9q05CS\nIi8oqTjc28ITFrKAyf6AShUksUHJkiI3FLoEUyCMoMoyHBVx89plnEiRHqWkfYHREseRWGgsaZGX\ns6d/yzKb/0Rkk1caHwPaIKXEkpqyBCEEQsLaQojjd7m5vU1ZligE9SggSTXTNEVKxWKryXCS8Nvf\n+Arf+e4PGI7HCARREBCnKVmWk6YphbSwbYuqggrNpdUOlnSodIWyPAQluqgIQp/hOObf/dlf8txz\nyywvLFNUmj/70z/mt377PwILfKsiUZo8T7CUzauv/RrjrMIyFcZosiwlS1NWlldmB0IIhAFDxde/\n/iYSTRxnZNXsMt5JW0/KjV08xI15lJscaTF3w6mbX2I3ztyNG9mkRxlJDzASx7GQGJSU5MWx3kiB\nks6pm2fITUHF4d5NXGEhS5gezNykiUHJgjIzFKZCUCKMoDztzTPl5jOb2d3CFfKYmZI0Zm4GClMi\nzNxMfrs1H+PMW3N3trHumikeNtucmjG6eOTxOxEDshBQqop4lFAZA6GFFD7LK2uMRiMODw5xZcE4\nPkDZEi8IKMuMmutDJTGmJE76hLqB7Spqdo24iLER5JXEEQ6j8YRuJ6Jei+gNeigWqMoS27FwlUQC\neVUhpaHIczxHUpUa13NIxgmTyYRKi9kDVmlKVYExmmboYnt14vEAgcGgCTyX8XiM70f4rkIKF4Mk\nz1NCR/C5Fy7wnb99F2nBV7/8eXZ3j/jRuz+jMposz8gLgSUlX/7V11heXGA6HWGMYTDYJVCa9uo5\nqmr2Ccejaczb71/jV16V2F6ddruJUoq0zHnuhZe4ce0TxkcjklxTGYesBJIRSllMxgM2Ny4Ahjwr\nqXTCX3//Q9J8iiXgN7/2JYRtYUlxAt9h8eTceK5zjxtdlSj709xUuJ5DWZlTN0/ZyMPWk3Ljuzb1\nWo3DweGsN1WJbStcNft3KcoSaUGR57hzN57rUZy6eWbcVHlOzfMxpQRTMcr6BLqB7SgiVSOxk7kb\nMXMzmeI6p715Vtx8FjNFGlPzvAfNuIqaiojvNzOe4spZa+7ONsV8thF3zVh3zZTz2ebUzOzB4Uet\nEzEgS8tC6gBVphQYVJmSjXLy8ZTpOKa9vgJlQaOqiJWgqipc2yUup4RRSDEB3+ug8wrPOAzSEbaj\nKKopOsuwRUh/OKDbaeKGTeqZSzYoMMbgWQpLwiROiKIacZyBMKS5xlKKtCgpyxyhBZXQ5DkzQFVG\nsx4hhWEyPCQuDHE6pVULadV8Km2wbIe8SNEGpvGUojJUuqLZ9KkFAikt4njK8kqTtf0Fdg57WFJS\nzISyee4so9GUvISrVz5CoXj+uTOUpSaOUwbjCWleYuKcoqz49l9+j/PnNhhNxmSF5ifv/RhhNK12\nSJaUxMmEiooqLTjavUJlMtrLa2R726hogT/8o3/B0uIqk8kIKaGcX84oy/LODe8naT0pN6uLCw+4\ncb1HuTFYyiItSqA6dfPL7GZp5qYxd6O1xvVmUR5PY6JanTieAIYsr7CsmRtjOHXzjLhxbIeknBLW\nIvJJhed1MEWFh8sgG+M4iryaUqUptojoD/usLJz25llx89nNxIS18F4zxqF/vxkZ0R8OMPDgbCNv\ntyYhqt0321iz2UYI/UtvRn/Ku7NPxEN6la5wHHjuwgsEdR8jFEEzwA596kstQm8ecAAAIABJREFU\nTFFgpEA5HrVJCH2bbBca8QLx0ZRCVHS7NTqtJrkCG0F/sE/cS5gejXFsw9n1dYzjoUuDTuT8SzFQ\naTgaTUFI0jQny3LKIkMb5v/hBHmWMZxMiNOKv/neD/jB976PrnI6kU2t1qXXH9COFNIYmrUQS3k4\nro/leEjp8ef/5q/5/9i7s1i7svy+79817PHM9/KSLI7VVV3VQ3X1GFtS1JY1RY6MJIqFIE8JbMdA\nXmIgDvIQQYETW8mDgQARkpcgBpLICQLYQQYkCBxrsJxYQ0vq7upuqafqGjldDnc60x7W2mvIwz5k\nsaqLqi5WF5uqPgsgLnEuyUve/eFvrbP2f/9X1TqMtYQAjWn52Mc+zLMfe5bFumYxX/LJ55/mJ3/s\nIyQEdOf4uZ/6cQ6P5iBA6YSnPvQUly/tUpQDVDakblokEhH7AqM7t05QIlI3Nc4H9q++jJaKv/iT\nP4mIHtO0yOhZL9a4CK9fu854vEuZ5Ly+f4PXvv4Cf+nnfhopIr5rmE6mvHbldU6ODliujh+7W1fw\nuLhRvRt7103EOb91s3UDaY53kVBLgncoASEK5ssKsXFjjaFzhhDAOU/YuvlAubG3BJPq9MaN49Te\niJ3pBKshBY5O7tAcNlSLNWkSePL8xW3efIDcPLyZ+7Jmb8TO7K4Z8WYzOmyypuizppEEvzFzN2uk\n3GTNdm3zdmbazjzw+j0WC2QlNZ0NVKuaaTmlSPoJpRyM0DIhykiiFCYG1vmK5IxEnxckexI9GOJ8\nRMiUuavQBXRRsbP3NNNTOwwHuzgruHN0ROICMUR8CzJGitEI0zRIJcnSBCUjQor+WGXv8Z3BtjUO\n+NKXvwlREb0jEpiWGaQDiB0vvnyD3/ndr9B1DUmaEITEdX3B+W/85j/He4+xBt8ZVJIyGY9JdIKz\ntq/1UZKmrsmSgp/5qR/hZ/7Sz2KsI09TlIikMjIcDpjsnkPmM6RU2CAIERABIly9fYhQkuGwoDUN\nxnX8wi/+Aleu3kBITXCW//e3/gnDQUlb1UwuTdlfHPH//Pr/QT7dRYwGXL/xOk9/+Dyf/ZHPcuHC\nHkUKV668RJ4ktE37g2byXeORuzFvdaPIUt27Efe7abdutm7QLkAIeBORMZKPR7R1jZSSLEtQMiCE\nREsJ4W7eVFs3HyA36rxAb9x4D1ImLHyFysFGzc6pp5nu7TAa7OCt5PbR4TZvPkBuHtZMcvqumdib\ncTWqABvVd5s5PNxkzWZtQ/iutY1+69rGbdc2d818+xvffuD1eywWyCJEdoZjiC3N8Qmyc0yKkvnx\ndUbDAdEZjF+RJZFinOFiRegsdVyQKoGUkVV9jIiG5e07FGWOMyf40OF9TetWDMclB6vrSDwhONI8\n54WvfZNyUJCmGZmShK6lbSvauqbrWkxrgMgffemrEBx/8Hu/e+/v/IUvvIBZHbBYHeKs62sPlQA9\nQMQOKSXf/Pq3iHikFLz88usIEbBNjbctAsjS/j+0sZa2s6yamkDgZHUMSuCDJXpLkkhSnRJ933Af\nIoFAjIHgI6mOTDLFJz7+cdq2ZTye8aGnP8K3vv0izz//MbK0IEk1586doWkqTFshdU6eaiYXTlNT\nc+XaPldf3WfeLJntnOWJC09z6fLH+fRnf4LKRNIs/UHxeOB4VG4O77rxjuxNbtIHuxFbN1s3NxCE\nfhepKPjK177FYHjXjSDaluaemwZjDAK2bj5AbqI11Mw3bgKr+gSiZXXnDkWR4e0J3nc439D6bd58\n0Nw8nBlL9aasOYFoWN2+Q1G+g5ngSPNiYya/lzWha2mbirautmubt5i59KGLD7x+j0UNcsRzcHJM\nWcJoVrJsVqhckPohdw6vMR7PSESCsQ0qCkSIaFLcusOrjsngFEt7jBIJTkW8qQhdTZYN8CqhDYY8\nl0g74PB4QVN3OD9gNV/igqdp1lgJtm1YzI/RSYZ3ljRLsV2H8n2JupSKEEP/IIDUrOqW6WiI1ilH\nqyWJfAJ8RwwBJTUvv/Sd/mIH2N+/wSeevYAUASUj0bXopCQogWlaVFmQJimmNcTo6XxHXXvyVJNl\nHUhJW51Qir5DfPQBqRQRQao1QUmMtRAFt66+js4Lzp7eJXhL3dTs7OyQlyXleMqdm9eZXZ5yfOcm\neRiwXq3Z2T3DjdUr1DLwnesvEqQhSyfMj44ZjYY0tv5BM/mu8ajc7MgzVK1HyICQkugCeVnQmQbn\nAzEEvDWIJMMaQ5qleOe2bn7o3Zymah1CeIQQhM6TFb2bzgVCCP2EkmR0be/GuW3ePL5uAofzOYMS\nJjsDFu0KXUjyMOLg+Abj0fSeG43EI1CkuFWHV5ZxuXGDxsmANxXeVhs3OW0wZNu8+UC5ERJqaxkM\nJePRHot2xWQyQhYJVXvCqb09tNQY01JogZUJL3/7FZzr8EowyIe9maBx1jIsrmHumkHSBsOgKDk1\nOUvV9g/iKaXA973WO9PgQ4AYCc4ik4zO9mZC8FszoyGr6uSB1++x2EHWMuPc9DzLykGn2ClOMz9e\nIiI0VYtoI963dMaTqQlaj/rm6LEjUYbQOUo0OZE0KXAREpmzbCpG6QhRO5TVEAM3rtwmzzNUVtB5\nhwyRpqmpqiWtafot/rZFCIF3jhg8UvSnv8TQb/krpWm6vt/falWxqtdoIZmNcqIAU53gfctokGDa\njs51aCVRWoKU1I1hNplg6hVlmTMcDEmUoiwHTKYjtNJ0rWG+OKRuKo6P7vD6Ky+yOlmxXh9uWrII\nrLUIwOGpaoNONEmSMBiOyZO+T6HrIs9++GME7zm1dxqCJ0jJ8cGcUg8wnSfTOevVCUHCzmSP1fyE\n1aHBm44oOk5ODh+7hx9g62br5uHG1s3WzcMMrVLOTc+xrDqiU+zkvRuAZt28yU2qx2g93Lr5IXej\nVcq52TmW6/vNLCBCWzXQBoJr6YzbmvkBmenMY97mLRBYrg9JlUQnmro7ISsVwmvOTU+jcokxgTxX\nzBeHhM7iWsNoNmK9bkk0KOFI6pST5pgLe7u4PFKKhIPqFrWpGEyGNK3nyqt3eOIzFzmarxHO8+0X\nX2Rvb4cQPRCJAoQU+NCfOb5uBV3nEEL0PVtiJPhAjB2DsuTKtWsY49ibDfnCl19EyVf4ib/4Waw1\nfOITH2Fw7TbfefkK1liM7ZgMC6z3aK3Zme1gjCHKliTRKBEQskTGNc7VCAGL+TEKT56ldK4hkwNC\ntP2xjkoRXAcxZXc2Yb1a8sTFc6SpoussicwYTab8o3/0v5Jowde/9sfUzR/xocuXcW3AZRmibfnx\nn/oJou94+ep1/MrwsSef48rrt7j10jFaC6TKie5xa6CzdbN183Bj62br5mFGiL2bREkSram6E7JS\nv+GmkJg2UBSK+bx30zXt1s0PsZsYA8vVEYl+w0xaaqTXPDHZmDEbM4sjojWs5sdbM4/QTGvsA6/f\nY7FAds5hkUQHx03F3vQJri9uMMFSe3BNy2BSIioJviGVJaNzp2nrE3Ynu0QHnXBko4LdGozwpF3O\num5JBx3D3T2Ug8VJi3AKISXXrr5GiJHTG0Ded8QQydIEG0EnCUIJvvalb9C39d+cl05/3OF4MGTd\nLJDpCK2PIAaMB98Z/u9//Pv89E98Conj8vkznDkz43f++VdBSparNVoJvGnxzlMWGVpCunnnZ+oa\nqQWmbTk4PMEYQ6Y1k7HmzGyMFAmxa9ASTOsYj0vSIiNJMpq64sMXL/KVF77Blas3CNExGuRMCo0J\nHusiqdbsX7+OLBMuXjjHj/z5v8CNWwdEIEkSiBHvIpcuPsGFi0/gXORrX/tq/w7zMRtbN1s3DzO2\nbrZuHmY45+iQRCc4air2Zue4Pr/BlI46RNxRy2AygFqAa0llyfDc3tbND7GbbmOGjZnTs3Nce4uZ\n4caMcC2JLJmdG2zNPEIzzj14gfxYlFhIKVBJpMgzhO6o2zUajVQpC9MyGA84OVmxoCLkKcUwp6nn\nKJ1SrddUboWIgba2aJUTlWY8mqFVwFvFyckSi+Obf/QaIXqcc7RtSwgOnaaEGJBSkKQpwXuUkggB\nIfQPUorNUY33GkpLuPzkJUIXQAsGmwcDnAtoqVFakWpFnqZI2TEeDPj85z9HcBbnI8cnc7RWxOhZ\n1yuCCFjTYI1hvjhm//pVbt86plq3WOvY3RlTry2+i31hvHC4tsbHgLOeRCVcfvI09brit/7Jb3Hj\n+nWKVDLOFNp1ZKngxz71PM9cPM3P/oUfRUuQXcQsao7XC6SS+NBB7M9ITxNFked84fd+nzyNfOzD\nH3nsbl3B1s3WzcONrZutm4cZUgpkGinytHfTrNAopEpZtobBZMB8vmS5cVOOtm5+2N0oKVBpIN+Y\nqZoVWtxvZsjJfMmSus+arZlHbsbZx3wHOcSASCTzesnp8QyVakY+o7aGU5MdopIMB0NGyZBVWBFF\nwmA4JUSF0oau67DRkzaKY7+iU5Y0UXit0VnGeJQDAmM9MXrapuHP/7nPYk2LMTVaKoRKCMGTFSXB\neZwzKJ1y6fIFblzf7/0IgSTy6eefZVhqvBe0iyM+97mn+eOvXSEQMV1HkWi+/Id/wo/+5J/rf49y\nhKGmrS1KwuzsHiH0PQA9ilu3F5zanTJSktXK0LUNUni865hOh+xf26cc5lT1mtitiEbwV37x5/jy\nV17i8OgQISKZTtg9tcPx8QICdLVFp5BLyU/+9OdJBzNOX7pE5zr+8s//y9RVjQ2Ben7MpUsf4uCo\nIYqA0pLWGv7wC39AnijuHB0wGUwYDAc/aCbfNbZutm4eZmzdbN08zAgxIrRkXq04M5kik4Sxz6is\nYXcyI0rJoBwySoes/YrA1s0PuxsfIyRvMRPeYmYwYpQMWPtt1vwgzPzYv/ij/H+//dtve/0eiwWy\nlIqJL3CZRdrIytYoNGWSc7C4TTkcs1NOqVyDayJrUREIpFlOjGCioxzmrLo10md4U9MYj+0Ei+aI\nru341gsHm4brgTzPadYnfRN2qQiACAEpJNZaIGK7gBaO03szrl25hhACrfpzxK9fv8lzzzyB9YE8\nkcznCyKmb9CtFFmWUq/XSARCBnQyJHUtxXSXzi4oigKhEqgaDm7eYjQYk2YZVdXyyivf4Ykzp5nP\nV0Qh+6NpJ0PGZcaTTz5JVS3IW0s2naGVQCUCRERLQb3uj7vtCCDgX/3Ff4PQrFE6p6lrWhfRWrNs\nKkzXYTpLXRu8XXN2d4xp11jnid7z3HMfI80LfHBwt4j/MRtbN1s3DzO2brZuHmZIKZn4EpdZhI2s\nTNW7Sd/spnYNXRNxosJHv3XzQ+xGScnUlbj8rpkajbovaybslpM3mVlV662ZR2jGNA/ufPJYLJBj\nCCwJlMUuLE/IZUrdWZJMkIuS1OYYYalbQwiBNFPYCME37JZT/NqSxCFJAfuvXuepSxc5OD4gYLl0\n/imqquJb9oQo+mNcffS0TU1W5DjnyPMMIQTWdGglNgcBiP42hHBIGQhB97U6InB4OCd+5DzGBQaZ\npukiT3/oLF/9xg1ijHhjSXOBMTVFkuNFQClBjB3DcoxKSlzokBHSJMd0lt/8p19iZzrl4vkLmLZh\nOChxVct8Pudf+Mzz5Bq8d+SDgiIvcd6RlwPS9Yo0y0jTBCUgCrjw5EXOX7jMzf3bdJ1DqiWlkjjf\noQYlSaJprUXphDTxfOOl18jSjCdO76JlwHlHmvbvTCUSIVVfyP+Yja2brZuHGVs3WzcPM2KILIWn\nLHdhcUKhUir7ZjdWWqrWEH0gyTQ2xK2bH2I34a6Z4j4znaVM5cZMhrnfTK6xcmvmUZrR2YPLct6x\nBlkIcVEI8c+EEN8UQnxDCPHvb17fEUL8phDipc3H2eZ1IYT4r4UQLwsh/lgI8dl3/BpSsa5OWJ/c\nRIoUITqyIuX2jQNC1zGYlKzXFbunTkGiGM9mqODY37/O/vwOJnhqU3HnxgHrlePV127ggCfOXuTl\n117l1e/c7m8jBMnnPvdpsrRA6wQipGl/+yEEj3cWs2mDIoTGe0fwkec/+Vz/kGcAEPgYIEhMaykH\nQyISqSQffeYSisC/9HOf5/M//68QYqSxfT2QVArnO0QyJqicGAIy0YBkvljz6c98ljTN8b5DIHDO\nkipBqhWdNSRpRjYoydIE192t9zkBKdBSbnopdqzahicvP810kDEdpIyHOUpKjpqOw1XLzYM568aD\nSpFKo5Qi0ZoQPI3x1K0ncrcwKeJCwLnAuqq+hzjYutm62brZunm0bh6FGQCpJOv1Cevj3g1s3Oxv\n3ExLVuuK3d1TkGgmWzc/9G6kkqzumpEpAkeep9zev0Nwb2NmujXzqM184fe+8MDr973sIDvgP4wx\nviCEGAFfFkL8JvDXgH8aY/x7QohfAn4J+I+Anwee2fz4EeC/2Xx84Dh75gx/+5f/LrNyyGJ5m73x\nWbwKhNqy9pbD+RF7584iBWiZIgeKX/pb/wF75R6xFhzYOfXqFnk5RGlNFySZDdy8dYjWsP/aASFE\ntJIMhgNCCAgl6TqLEBlSCrqu688Glwqp+qbZBEiSnIjlIx/9EK+8dI1I36j9i1/5Bs9+9ClcF6nr\nNRkFO9MRn3ruEpg5Oh9gvGDVNJwqhzhrMTZS+AYVU0IING1HVa9Jc03nLOV4xO6pMakW6GuB43XL\nZFwyHmaURQnpGBEsKgaq4zsY05BmGRLLn3zzO/z0z34e5xVaBdIkwwewXYWWkVQJRJYRfMC6hl/7\nH/4BQkqaek0Mjuj702uSNO/L9SMgJM47vvLFF7h+7fXvgcqjdaOV4tzpS8wGQ+bL21wYX8KrwJM7\np1n5jqP5EU8+exkpBDuzGXIgWRzd2boxDUmaIaPhT77xIj/1M5/HBUUiPanO8CFiugotIokUiDTt\n3XQNv/Zrf/bdECNa5ExHb86b8tx51t5y7epr7J07izFVfwqWBiXi1s17cPMrv/KfvSs3r77yncfL\nDOCdxxsYD8bcXt5hb3wGQeDMbJeV73j5xW+xd/4sy+URRZLSuGbr5j26KYoSofvd0EwJgvcs1wuS\nrCAiEAGQghgFL3zpS8h3t4P8vrvpbMfypGZWDnnt6LVN1hiGWcG6tXztK19m79wZbt68hpYpR8uj\nrZn3aCbPc4TK6LqORGZEH1is5hszEUIEKQkBXvjiF8nTlKp7+17I77iDHGO8GWN8YfPzFfAt4Dzw\nC8A/2PyyfwD865uf/wLwP8Z+/AEwFUI88ad/FUnrBiyMozWR1+8cULUGpzNGuxOeffIpxoMBi/Uc\nJwzNyYoOTcwVYBnnQxAJ8+uHJGh8G1lVDUdHDe2qwJm+BqdzFmsCnWv72xE+4LxHSI1OEtIsR+oE\nIQSJThFEQjAY45iMh8ymCiE0H3n2IvNFw7Wr1zg4OCEEgQ8BKRS28yxXc4JdcOvmNVabRt3OWrzz\nmNayWs05WVlO6o4QI94F1tUaaxsWyxXCB/bO7rG3M+bsmVP4EPEEhAwgIyFUWGeJrj+FZlwOGA+H\nCDTS1cSuJXpDXa3oQiTGiNYSLSHJNEWek+cFSqZEBN5HPJIY+lNs6lWNsxbnLME5nv/Uc+R5/k5U\nfjBufLlxEzZuLE5njE+NeebJpxiXw42blvZkvXVzz41gVA4YDYcIoVFdTXCG4FuqekXnIRDRSe9G\nZwn5B8RNRHxveVP1edNu8+axdvNosgb6vBmwMJ7WBK7c56bPm6cZlUPmm3mqnW/z5r26yfIcKRMQ\nAu8DHkWMErynXlW4ztI5i/eOT3zycXTzxtqmMYHX79zZmEn7rLn8FOPBcLu2+b6aKe4z80bW9GZq\nfNfhNmae/9TH+ejHPvrAq/euapCFEE8CnwH+EDgTY7y5+dQt4Mzm5+eBa/f9tuub127ygOFDwPvX\nGZdP09kxwRhuHK8pVEs8cXTCMhnucPv6HFMHdnd2mA12mB8fEUclR9cXjLVi5/J5fIC2a9DphMq0\nfWF6jEQR0Drly1/+Ip/73CdRUqLKEiUkUgis7VuxlPmAxboiS1O6LiN4R5blGGN45kNPsWoNtu34\nxHMXWR6vMK2hE5qqajD2FpHA+EPnaNcnIBVKSBKVYKyj8x2NsbRti+kcUUiyrGS9mtN1HVJqVss1\ng0wiIpw9e5rOWpRU6DTFNQuElATT0HYRKTVap1w4f4pvfvsW0dWE0FKUU6Ts27mYpun7HiJRSuKd\nJ9E5v/0bv45SfYPw5z/zaaLrSIuMum7ZPTWlTBKuHx4RnSdNk/6d10OO99WNu8Jo9jTWTgit4cbR\nikK1hBOHE5bxaMat6yeY2rM727q5383F83t848WbRFfjY0OR9W6koH8HnyQIBEpJovekyQfDTQgR\n768wLp+i68a9m7fmzWiH29fmmJ3AqZ0dZoPR1s2fATfvlxkAH+/PmzGhtVw/WlOqlnDiccIwHvXz\nlK1DnzfD6dbNe3Dzz37j15FSghB88jOfBteR5hl13bC7O6NME24cHBK973vdPuR4NGubCdYYbhy/\neY6aDGebtY3frG1mWzPvJWt+/W7WSD75mU8R7s+ajZnrB4fgPEma0D5g9xjeRR9kIcQQ+N+AvxVj\nXN7/udg3H3xXiSaE+HeFEF8SQnxpuVhS1QO+feUmR4ua47WlMYHjxnKyMqzmkf3DOTIb07oRN24Z\nvv36Da4fNLzy0iHr1mFJWJuGV168im8D1jpyobj68g2EEATfH6UYArz2+lW6zlBVNZ1zaJ2QZppE\n9z8GgyFpUZCXY6q6IXiPtYaqs7TrNYvFgvnxiiAlXdfS1hVZmqGVYDgac3h8RDEcMt2Z0baGrjOk\nui/0OZnP6bynaWrmJ0d0tmE4HBFjxNmOLkSqqqNuW9I0YzSeIKXCrNeEEAjOEUTBqVNniNFD9AzT\ngk9+5jkiHpWkOOdwPuAjdM5D8BjT7yybpuULv/+77O1MmAwGrBZLzszGlEXJarFGa01EcePOIc1q\nSaojUnh4yP6S76cb21rWzYBvX9nneFFxUhlqEzlqDSdrw2oR2T9YoNIJjRtz4/bWzT03BAZpzqc+\n/RxEh9Yp3vduXATnPDE4bFsTuhbbNPz+7/3OB8JNZzuquuzzZv6AvDl4I2+ub/Pm++Bm+r67+X6b\neasbZ919eVNzXBkaEzlqezfLOZu8Gfd5s3Xznt2cmk2ZDgesl0tOz0YMioLVYkWSaBCK/TsH1Osl\nycbNw/RBfj+zxnWOdT3gW1ducrSoOFlbGhM5bgzzTdbcOFhssmbMjVt2a+b7kjXDjZkxg03WJFoD\niv3bBzT3mwnv8ahpIUSyAfQ/xxj/983Lt4UQT8QYb25uM9zZvH4DuHjfb7+wee1NI8b494G/D/DU\ns09HpEOGFIHEmpaOyGiQ4YTE2JpElXjj6MKKssgxK4uVjiRRBAHLek191GCWDa8vrnPu2TOoJEF5\njY8OIcB7j5RwdLhgf/82Fy7scvrsBZTSZEoxGpS01iCFwhjLcn7MnZu38HsdOlHcvnXIsMiQRBrr\n+m9eoqlNy87OgOA7LBCF5OjOAWk5RitBvapIs5TlYsmtwxMQknI4QoiEvd0zOBeYhchqXREBneVk\nuj+msm0NAAFBNB15rglB0nYtxjkSY5nPF3SJZzrKCWjWbYdplxjTMJnMOLh5DZ0VVJ1HKo1tG07m\nS7TWTEYTXn/9VUIUXLu2zzPPPotzHav1iiKV2Naik4c7T+b9djPeGUchHJLejTEtDhgOUryQtLYm\nVQXeOrq4pMyLrZv73CwWS2zimY4KQlS9G7PEtC2T6ZSD/WvovKCyAakUnflguClH5XfljSMyvJc3\nDYkq3pw3862b9+Zm8b66eT/MvNVNMSwiwiHp78jZdpM3wxQnJcbUpHqbN99XN96R6ITxaMKVK68R\nAly7fpMPP/NM72a1Jk8lXWPRiUK8y/dA73fW5MPiT52j3ry26c3YrZn3Zqbr0IlmPBpz5fXXCBGu\nXr/JM888Q+c7lus1RSrp2t7M5gnFtx3vuEAWQgjgvwO+FWP8L+/71P8F/FXg720+/p/3vf43hRD/\nkL6AfXHf7Yq3HyFQG8lQRoTU5EUGpsMaR9dZiBLfGJIkJ08y1vMVTgTyoFivG3Sa4mWknreE0B+b\nePPFAy5/9BJK9ccLhhg3ZQcK5xxSKK5eOeTsucsIIUgTjVaiL2o3lmq1xnUtgUjTVmirEMByXeO7\niABaJzl7esjaWG7cPuToeEGWFeTa0RmYzQpcBL0z4Tuv73P7sGY8ThlNp4xGM5I0IaJZLw8YTmZ0\nPhKcpaobzlx6gi54nPMkSYYL4L3ENw4pBLcPlngfic5z6/CESx/aQcqUdd2xWjcIqXFBcHB4wGA0\noTGGLC/xoeMjzzxFqjWt6wjB89prN2lNX7t0fHBAmuUQPG1r2JmM8CES3mV/yUfixkdqIxiqAKKv\nPzK2wxqPsxYRJb6x6CSnSFLWi/XWzcZNcI6bhydcenKGlClV1buRKsFFweHBIYPxhKa1pEVB8B0f\neebpD4SbGOJ35U27yRvXWYhimzc/aDf+e3fzSLKGvj1gYwRDFUFo8iKnNRbbOlzX9XlTW3SakScZ\n1WJFTNTWzXtwc+3aTdrOEmLYuGmIUXByeECWFf3hGG3H7mSMCwH/LvLmka1trNhkjSIvcozZzFH3\nrW36OSpjvVhBujXzXsxcvXqDpuuIwfPq6zcxpiFGODk8IM0KCI62dexMxvgQqNcP7nzyvewg/zjw\nbwN/IoT46ua1X97g+V+EEH8DuAL8m5vP/WPgLwMvAzXw19/pC4QYwHgWdkVaFkQh+yMHEQQZSbRG\n64RBPmS+mlMMMsZpzrppyIqMNvTB23mLjGJTvxa4/toNfNcBghjfPFlL2bdBaZsKZrsorXDB43zY\n/FrHuqoRQvR1u7nG+x7iqq4RSuJ95NsvL0nynNp0ZGVJiJ6VBREiBwtD0xhOlp6j+YrBsEQoyPMS\npTQxRtqmZjLdpW7WDMczVicHtKbm8OiYLEsosgwXHCDxHkznCAG6IBll6DF3AAAgAElEQVSNR9i2\nYlVFisEOdV2zqls8Erepq5FJThsiXZTIGFG6BG2YLxeopL/8Vbfe/JsjV67doBjPWFcNaRK5fXjE\naFgi5bvuL/n+uyGACcy7Vf+9RyCFxwFB9kdjap0wzAecrOaU5dbNXTddU7FaQzG8z819zeRFmmE8\ndAhkiKikJKoPiJt3yBv9NnmTWb118z66qaqGNIE7h0cMhwOkeldu3nczb7jZ5E1REoRASo8Xb82b\n4SZvchKhtm7ek5s5SidEAd2b3OxTjHeoqppUw+2jQ0bDQV+v/Bi5CTFAG1h0c9Ky6M0I/5as0Qzz\nAfNlnzWp2GbNezFzsligk42Zek3YNCq4cm2ffDyjqhtSDXc2ZvLywQ92vuMCOcb4u2w6x73N+Jm3\n+fUR+Pfe6c+9f4QYyHIFYsiqWZNmBTL0Pet2xiOataVaVtTVmnPTCUftmpNqTq4LWuchOFJVcPZD\nZzl4+RYI2Te1tq5/13Xf3/5ujVKMAiEEw0FJCAEpIURJpH8CNAoQRLrOo7XCOo9pDevGEiObgnCN\nTjVnz0w5ODiGqOl8h+v627UHRzVpolCpY7Y7RCWaRCpidITgEUGQ5yUIQaI07XrFYDLF3K5ZNobS\nO1aLBeWg/48vtUZLjRPQtjUyydlJHMumZf/OHV5++RWWh8c8e/k0g9kUkaREKWhawwtf/AouBJRS\nCCEROiEE+rplpZlNJxyfnCCBr3/tBWY7Oxwfrrlwekozd4gHEnj78UjchN5NKoes64o073eiAoLZ\neES7tqxXFU1Vbd28xc0s6VjWDfu37/DyK6+yOjzmmcunGUwnCJ0RlaBpNm68R2mNQHwg3MQ35U3V\nP+EdAhGYPSBvqqrZunkPbv61X/grb3KzM51w9BY3R4drLj6Em0dhBvqjprNcksqNmzxHBk+I97lZ\n9W7OT6cctWvWnd+6eS95o1J8BIJDac1sOuX4+Bgh4E++9gKz2YzjquLCmSnNyeJ7f6iKR7W2iX3W\nyLtrm36O6tc2w03W1DTrN+aoyoWtmfdgRuq0P+I79Fmzu9PPUULA17+6yZpqzcUzM+qTBePp9IHX\n77E4SU8ISVUtSZKc0zt7VHWFzjNS7WnWFT44huO+PVllHEUSKYsC6zrGwwGtg0RnzOeHoDXROYSU\neO/7IvYQNg2yxebriQ0mQfRh0/JDo6TEBYEHXOdYrWus7ZBCUK1qpNI4B0pGyrMjYqYxt1a8dvUO\n01FJlBIdICSS1hgGZUKaaIL3KKFxpqUcT2jrhqYyDIYjIpBKhRYSkaS0yxWDyQ4hGObrmlGRE5xD\nZhllnrFuWnwQrJc1Kk2IMTIZFHzlT/6YJ89d4MPnL2KqFd3a4lXAyY4YIx//+EcJEYKQLE+O2JuV\nhCBQQkCELIG5D1hASo1pazJhiV1gf7mibtofoJC3H0JIqnqJ1r2bdbNG5xmZ9rTrChccw5GmLHLW\nbUeRbt3cdUOITAblPTfPnLuIqZZ0a0tQEScVkcjHP/4RYhR4BMuT4w+IG3Ff3pza5E36p+ZN3Lp5\nz25iEH2f2o0b+TZuggvcXjyebqQQVPUKrXPO7Jxi3WzcqEB7181IU9zLm0Cit27ei5vO1MQIEtm7\n0Rs3ImzcNGTSEjrPzUVN9Zi5EUJQ1UsS/ea1TdSeZl2/OWtaR5FGfLI1817M2La6z0wkSwTirhnV\nm8lFR+g8txc1L12//cDr91gskKUQpEVOcJHaL3HRE2JkQsFa1pR5QZARJSDNI4GM2WzIqpqjZcQt\nWmJhKfSQlXZ0m9sN96O5C0dK2T8xGQJCdgTvWC7m7E6HKAnWtlSref8QtYR8kOM6h9QJjW/Iz43I\nZYYjUsSE9PQM2xpa7+lOGsaTDKUjk6JACLE5A70vd/AuMp8vGI2maK0wpkUrSef6s8M1ED2YxQo5\nHFAkGat6jSgKxkUOMZAlCa++do0kUZjgSaJgfrzGKc3Vq6+hLz2NlOA7x61b+4zGM+raQK7ojAWZ\nUOQZWVZQrSvGkynOO+4cH/OxT3yC1/avU80rnAigC26tapSI976Xj9OQQpDmOcFH6rDEx/4p5jEF\na2EZlyVB9G4GBcStm3tudJAbN4qrV18nufQ0UoqNm5sMJ1Pq2kIu6UyHEJoyTz8QbsR35U0gxLDJ\nm+Zt8yYr0q2b75ObznvuHB+9vZvlY+4m37gJK3y4L2+kZVyUeBHRAtIiEsgZ5du8eS9uWiJ1tWY8\nGdF5z8Emb169eYNqXuFloBM5t1cNUoaHKel6X4fkvjnqvrVNP0fVjMri3hyVFJFIRlpszbwXMyKG\nN8y4Pms+ftfMyRonA6ic26saKQNZmlI35m2v32OxQN7f3+dX/s6vgAQfHWWa0nUepQNZmvVHAvpI\nmWRkGXTG4YHhcEi7rvnEcx/iuFrSVoHD6ytUEAQX7tUjheB4/tMfJXiBtS13bh9tbj1IYvQEYn/7\nT0KMctM6xd7b7Tg12aHzjnI4JstLXPA8sbNLtVpj25oizdGpJD2XE4PHO8feZIqOAhsiIgqElIgY\n0DqhHOTkRUGiU4iBIk3RUvE3/vq/w3K1xFtL1bbsnJ1RKmibhicunIMQOZ4vWK1bPCkvvXaNf/jf\n/yqz2ZDbThOsZ/f8DGcNpjOMdaRUOSZCWqYMBiU70xkHBwf8W3/tr6IKzWpVUaic2dlTXHn1KtE6\n0lGJIGJNS5FkNK2lM/4Hi+RthrGGq1euvis3KPXu3TiBtQ2377lRhI0b7yNKRGLoA8t7i0RAgFyl\ndN6RTQZkKqcLnp2Nm840KKnRecJ4PL3nJtUaHSXWRzJdIqVEJ55EpRTDnCLP0TpFEMiTjEQp/u5/\n+ndYrVa4zlA3LbO7btqGJ86fgxg5Ptm4ESkvvXqN/+m//S/YOzXmtksIneP05V2csbTOMM0kpSrw\nYk1SJqgxzKY7HBzc+UC4CSHQ1i1IaFa9G9N4jjpDlmasXf02btwjczNIiz5vJmOytM+bUzunqFZr\nQluTJil6IElnu/fcqBDuudFZhpCSvEhJVEpevJ2bEf/Vr/4qy+UK31mqpmXniRmFgrapOXfhHAQ4\nPpmzqlo8GS+9epX//D/+m+yMEm57jbUeNRQ46zF4Qqlx3rM2DYlKUBJm0xGHBwf88n/yt//Mu+kf\neEohBY9jPM3prMclgfFgggsB4SNJkpKl0FlPa+rHOm/KLO/dhECSiY2bgFYJ5bA/4CW55yZFK8XH\nnv3o95Q3Fy89fS9vqoOXmU0H3PaaYB0756ebeSphpAOlLDChz5tBWTCb7nB4cMB6XqOGKdfnBxQq\n5+yTF/j6S99+kxuzcVO3nnfRufaRjLws+OTznwTRmynTlM46VBJJN3OU95HyPjNf+/rXH5mZBIX1\nDjXMUVHTdJbd3V2q5RrTNiihSPKEwfkhMQa8cyyXq42ZCBFE4xD0ZpqkIc8h0SnVekmepCRKkWUF\nZrVEEakOD8nPztgrprRNQ1mWECOr1aL3RsqN167xscszJuP83hw1fWK0maMUpZiRq4KmCyRZv+l3\nd46qTIMaZdxYHFKonHNPXeIbL79ItI7su7LGkSUFPM4L5Bgj1hnSJCdF0nYOEQKpzGlaR6QjkYrZ\nLGe+sDSdpWs7kqrfat8/vE1Vt0SXkkqBDW+8sxJCIFROpnJEKlkvFyRKYEJkuar5xtdf5iOfeJb1\nyYLhbIp3Du8ckYhpLa5z2DJQDgpEkWCiRzjH/PAYY1qm0xFNbXAdyBjorEGVgnQ6wrgOrSRpkNhl\nQ17kaKWpraFyHeMsI00TnBXoTNA2Nb4zdNaSADopkMqCgeAcPgaMsUQCw0FK2xpGRcbRqq8Z8gPN\nK7duE70lKYZ0icR3Fl1oVvWCJC2xJ0cIrfsHH0JgNClZHVd0x4cMxyXGBxIhMG1LmpS0ziATAebd\ndSN4JCPyrt2EOrxrNySC9XJOoiXWho2bl/joc89SnSxgZ4r3vRtipG0trusIafru3YzGGL9x4yV2\n1ZAXBUopattSO8sozclSjUP216qpcV1LZ/p36jopUffc+I2brndTZr2bMuVo6UlSjU8Ur9y8TfDd\nPTfBGXSpWdVLkqzAHh8i1NbNo3AjCvXu3WTv3k3bNHhnsNaQCFBJgZIWIXo3LgaM7Uu0hsOU1lhG\nRcrRMpCmGj9QvHLrFvGeG4XvDLrQrOvlm/PG82feTYwR2xnS9D430ZOInLZ1xNiRKMVsVjBfGJqu\noV7Vj3XeJNMRxjmUkmRBYO6fp4yh6jrG2V03Av2wefM9ulnVS9IP0jx1z0xGiqTpHPJNZiyJ0m8y\ns15Vj8wMUm7MaEwI98y0rWE6HdI0BmdB6oC1LfohzNydo966tlHvtLZ5RHOU5+0Xx/CYLJABZNB4\n77Au9jsiAgKGS7u7LFvLcm14/cpNbOsY78zIhKB2ljwInAAVNLeuLvEBtEqIBMSmJaIArl67wWw2\nom763aE0SZmeLUi15PbJUd/ZssgREtK0wDdrrPUIAXmRI0pFFxyh6+t7VBTkOsc1BiwUqsCbBoki\nrg3VqiVEj0SQDAYkg4y26xDGEGc50XQcOc+0S7GxoU41B0dHpIns/+0iML++TzodMC4y8ixl/8Y+\nWgp0OSYEj0Kxf2xZtYYax+XLFzmeHyOCpqsWDMoCKwNEwaCY4rwnuECiBFmukRFqa/ExEBZrkiRD\nSolKE7K0oBiUrBaBLC8w64MfJI8HjPhAN5d3d1m8rZvwrt1MZ0OqpsH5QJokTM/m99xoJKLIQUKa\nlrTtCmvdw7uhIeCRSJJygN64wbQwLYi249jVTFyKjS11ornzFjeL6zeopwMmRUaeJezv3+yP4izH\nxOBQaPaPLOvWUrPi0uULHM9PEFHhqjmDQYEVgRjYuHF4H0jk1s1j68Y2BEKfN29yY2CaP9BNlgiU\nAE9gcX2/d5Pnb8mb0X15093Lm0uXLnKyOEYEtcmbHCuACOUmb7zzpB+YvAERezfGRULnUBJ8tFze\n3WFpujfcNHfduMfaTa37ecoLQVoOSIZ9q0yzcRNsx5GrmHYZJjbUacJwOHr3eXPcsWoMtXirm3k/\nT23cDD6AbkRUGzN96aOW4GOfNb2ZdmOmY7yzQybSR2amKHJkobHeE7sACFSQ5DrDtwaxMeNsg4ya\nuG5pXPeuzUQfv2tt84aZN69tYvCPdI6q56sHXrvH4n6EEJKuCzQrQ7SQJQXWB+Z35nzn1esc3r7N\nQAn8fEEiM1bHFQfHKxKZsV5aVguLjBpXe6IPCPr61BD7AnYEXLx4jtbYzdeyICLRd0TZ74ycO3+e\nnltESIFOMoSMFIO8r2tSmtAF8iRByxQhBVkaQaT4aFGFZToruXhuBN5wcTZmr5wxlClSSWrbIWRG\neWpCt2qZH60x645WJDhgta5Z1jVVa2ntpge09aSq7yd4vGwYjUumu6dZzOfs7e3Rtn2h/Wg0YqZy\n7HFFXHcUQtN5TxckYWVJFczGMzSSetXgXcripOXweI3yCQOdEzqFqTuUF2QywTQ1pqpJhKZdPbhP\n4A9yCPlgNy9+P920tj/vvrNEGYmhI6qUxlrOX9i4iSAkKJ0hVaQcFg/nZmfMXrnDUKYIJWlsBzKj\nPDXFrlvmh70bg6aLsF7XLJuGqrWbHtAO2/Vuwl03o6J3s5hz6vQeramx1jEajZjqDHtcE6uOggQb\nAp1X+I2bncmUREjqZYP32dbNY+1m9jZuJg90s7qbN8ZhraOzjlTp+/KmYLJ7msViwd7eqTfyZjhi\nqnLsyd28Sfq88Qq/tiQKdsYzEiTNqv3g5I2QuC7QrFow/UaKdYHFnTkvvnbjPjfzP1tuBjMGMkMo\nRWMtyLTPm9V9bkS/G7h66Lzp56nvdhMe4OaDMU8JIe5lDQaye2YW95mRGzP5ozejJChF6Poa4ESl\noCBLIZLiQofMO6bTkkvnhhDsO5gxzA//f/burEeyM7/z+/fZzhJ7Rq61kOxuko3W0h5pZEieWwMG\nbMC3M8BcS/CNL8aAAWPmJfhqDAOGYb8DX9iAgbkZjMcLbAEWLFljaaRuNrvZZBVryyUyYznbs/ri\nBIvFarLFzm5WBcn4AQVWRCaynsjz4f9sz/k/G+wXmHl+bPOymReObZ6bcZ/dR/FV7aN+yVHwThwg\nxxhJMmJKg9bQVDVZ1EhZooNmYAY0qxbMDEMJMYDQXG9qGhuxjeD8ekMKFil7PJ8sv/hJ3z+EoO06\nlNIUeU4bPMkovGspxwXr9TXnz/pG5EoKUowUZd5jFBHbtCQJXbRIkUgmcn61YHY0YjzOiVJyuW74\n8QePkblhebNEjgzF4XC7gg3oDI7vHRI7y+HBjFFRoILgqBixcA0uVyw3G6oQuGo6zuua93/2gGVt\n2SxvcLVjebXg3r0TurbhT/7kHzEbjsi0RBSS0dhwenTAKC84yHNyKSkHIzI0zfoGiMwPDtAq4V2L\nIVFXK9rWMhqVADRNw2a16eewdQ6/nYS/iw/NvCo33SduspzOB5JWBNcyGJWsVoveja379eBTIi9y\nBLdzc3OzQo40+XxI57ZuDJzcPSS2HYfzGaMiR0XJcTnkyje4TLLcVFs3louq4f0PHrB6yc39uyd0\nTcOf/Mk/ZDYakhmBzCWjseb0sP+5B3lOpsTWjaFe35BIHM7nGLl3841ykytuNhVVDCyajvOq4f2f\nPWTZWDY3N7jas7q62tablj/+k3/EdDh67mY81pweHjDc1ptMSQaD4fN6k76p9abI0CbRbmqypJGq\nwDx304A5wIgSkv8auFkiRoZiPqCzLYLtfupuv586mm/3U1FyXAxZuPpW9eZXdzP/RriJMYGM6CJD\nmUSza2aI2LYFleiS7VciNJGLxYKDoxGTcU6UgstNy48/eIL4O810HM1nDL/ATP2SmZePbe7f25r5\n43/IbPjZfdTJV7SPyrT5wu23EwfIkNBSE62irh2BSOM9k9kYoTMWy47aR3wShKZFekUhc9zGkqQi\nyIRMgk4kvHfw0nrsxhg2mwopwDmH1ApnA7PZFDXM6bqOtusYjwcE26C1REiN1gohBEopVJERO8uw\nGDCdT2irjqODQ+rmmqr1pKTQmaYYGIaj+3S54eL8ot9xSWhbh7Udzx6ec3z/EKE7sqEkm3j++tHP\nmc0nKCkwk4w0EazbFjMqIYLWAmU0XueMRgOMkigf8JsNnbKkWSLqyMW6hiwjmL55va0rus0aW3e8\nff+M+9MJv/fOfc6mksNRgRQCqTST8RSRYD4ZIYHBoMB7y/HRkCACk9EQdqzwQL+ZX4UbIT91Y61n\ndjBDDgpa29HajvFkQLAtZuvGGI0Q3MqNzTXn5xcsb1YIAW3Tu3n68Tknb2zdjBRm4vmrjz/k4AU3\ncetGjwpEAGU+60Yr1btZb+iUI00TQUcuNzUiywgmEkTCVhV2s8bWLW/fP+ONyZjfe/s+p1Oxd/MN\nciOlIJtkpPG23ozL3o0WqEzhdcZoNNzWG4/fbLDKkqYQTeRi3UCWEbf1xtUV3WaDrfp688Z0zO+9\nc5/Tb0i9gYSSmugkde23bhyT2aR3c9NS+4RPAt+0SK933032yX5qjZDQtQ5rLc8+fsbJ/UNQHflI\nYSaOv3r0IQfz6a3qza/s5u1vhpuUEkqa52Yigdo7JrMx/IKZ5tWb0RKZZ4TOMcx7M83GcjSbUzc3\nbFoHSaEzRT40DEf3PseMf8mM/dJmXj620Z85tvll+6gau9n8RvZRIvviw+CdmIMshCRaQQgdxWBI\nW90gVY7zDVk+QNDSdDWZKAijfqeWDw2lHrJerslLhTGa+d0J68ualBIiSaBfhtG3HdY2SClQ26bU\n4wNJaxuaVc1wmJMZTUqRIs8xUuJtByQEiSR1/8sdz8iKgvVmzXfePMJHyWq9ROYG7zxZrskmUzp7\nTcEBk/GImDRNs+L09JB1W9NaRzk6xHbXlDlUXWByckiKUDUVZ/Mpm2XL4XSIsy1RO1yxYZDdY7le\n0lSee/fu8NHTJ6TYcjo7ICp4680Duo3tJ4kIRXn3kOtlRYiRrBzy5Nk5RaZYrZYoUfB7P3iDYTnk\n/PKSo3t3uDxfcHW17ufokEilwrtEqRRVvcCYnaDymchbuBkU4ld3IwRSSZTSjA8UbVfTrJveje5X\nDSqz7FM3Kd7ajdaG6XhMjJqmXXF6NmfdNnTWMRge0nXXlFlJ1QWmJ4fEmD51s2o5mg6wtiVoh8tf\ncnP/Dh89vSCljrPpjKjhzTcPsJXtf6FBUtw94nq5IYRENhjy5Ok5RaZZrpbovZuddRN1+pXd1HXF\n6XxKtWr6etO1BGPxz+vNDXUVuH/vDh8+vSTGjtPZjKgFb705+7TeBElx95Cbbb0x5ZDHT/t607vJ\nvxFuhJCkX+qmoekqMlEQh4a6schC77QbipLJaERKmrpdcXJ6yGbrphwebfdTiaqNTE7mxHS7evMr\nu1l/M9xI2ZuJoaUYjGirG7TKsL4lzwe0NNRtRSYL9DCnbhriK6w1UeQoEoPRlLwo2FQbvvvmET4K\nlpslKs9w3pPnun+A3F5jsS+ZmX+OmeLLmXn52Ob+9tgmta9sH/XGm9/h+vzmc7ffbmiKCaME5XiE\n7Sx5McY7x6aqGZYCYzRlWRI6gY8elRe0bYcInqww5FlBVW0os4KDsxk3H6+IyZNSIm3buXXWEnxE\nKsnl5TWD0wHtukbpgqq2XDy7ZDYd4bynyAwxOpTSxBBpfY2OBusdTbUm6cSDJy1HszHWKTLpsN5h\nQsB3CSc8mZhh2xaRaybHMxbnC/Iip6s6Wr0hMwXBe0SSSFvTBcFYl7hkEJnrl4V0MBhMcOeKj8wj\nfuvtd/jpj9/jyeMLbGP5uG6QwXPv7IgPHq2xLtG2DVobmqtzxuMJdeXo6msGSWEbjxEZ9++MefCg\nYr1e4J3n+vyCTAjOjqfMZ5bxcMDNck0KgXhnRkqev/ibj1+3kl9ISq/GjQ/93y8vF5RnA9p1hVIl\nVd1xeX7JdNr/u3lmiNEile5bid3CzWDb/F7mhsnRlMXFNXme09UtjdqQmxLvPTJJkqux7adupHG4\nEMHBYPiCm3fe5ac/fo+nj3o3j+oWET1vHG3dWGi7Gq0y6stnTMZTqrrt3SCxTcAIw/07E37+4Xrv\nZgfdDLPiFm4KHH29cSGS7LbePFN8aB7x2++8w/s/fo8nn7ipGkTwvHF2xAePNlgHbVuhdUZ9ec5k\n0tebtr5mmBSu9WSyrzerVfe1d/N8PzUaYe1n3QyeuxkQOvDJo/KSptnstJuxLPr9VGGYHs22bjLa\nytKqDXlWEHxAJNHvp6JgfHL/V683t3Tz8GHz9XYTE0ZBORrT2Y7iBTOphMxoBmWJ78RzM6+j1jhv\naesNSUUedA2HszHWaoyyuBAxPhJDwglHJtPnmum+0Iz8cvuoH31q5uO65eh4dqt91KPHl7+Sme6X\nHAXvxBQLISX5IBK6Bh9aikKiFQxHBUYFRBdxMbJeLggykoSnkIIoocgNXdtgckUXa6xrSfStXj5Z\nUcYH35+xbtcsjwqiiyhdIIKnyBWbzYYYAiFEYkx4H0gx9p0fYuxbgiiFCwEhNKNyzOLqhs1ixfK6\nhuD57u+8TT7IKeQImTJOT+bgE+tnS0xmAMH88IAU4O7RMTH27Y8ODg7I8gH5cIDzHl858phjk2JT\nO85XFZfnFT9//z2OTu7QtpZ12/JksUEZxc8/vGCc5+BqjBI413HndE5d1ZSDjFJrZB4ZzwacX93w\n4NE1D588orEtVdNxeXnDBz/7mMtnF8TgWC2uMVJRFjkqJtarmuD86yTyuZFCvBI3bN0EJYg2oU2J\niI4y16zXG2Lw+BiJEbyPpK2f27nJOT057N2cr7ZuYH44J0W4c3RMigoV0y+4cVs3XdJsqk/c1Pz8\nJz/m+OQOTfepG200H/z8snfja4wUON9x93ROXVeUpWGgNTJLTGYl54slDx4v9m521k12CzdD/NZN\nETMsik3lOV9XXF5Uz920nWXTtjy53rr58PLTeiMlznXcPevrTTHo3YhvYL0RUpINIsG+6CYxHBVk\nL7hZLRd4GYnsvhsVc05P5gifWJ8vycx2PzXv91OfuNEB5gdz8uzXqDffQjdCCrJB2prpnpsZjQqM\nivBJrbnpa82rNpNSoPMtQmls8CA1w2LM4vKGarFiuWjAB773O98jG2QU4ovNHHyhmfLLmTk9o9ke\n2zx9hfuoq6eLL9x+O3GAXBjFctOBjgwnOVmZODgcEW3ANoLBeAhNIBcKkzQiQl11yCTxHkxmkMog\nkkFqjRSKlLYrzsjEu+++QQyCLDM8fnJNNlR0nQMXccnSdo513fLhw0c8fHzO9aqmaRoEfUuSrm5I\nPhIdFKVhc93QVDW5HvLGm2/y5pvvIgT87Cc/IWmJ9xGC4GZZURSGrDSkFPCdZbHesGlqfv7kkrbt\nUKrk6XmFbyPVsmK1WBG1YeUaMqMIwfXLIzpHp0oefvQBeWEIvv98i5uKySgjRst0NkCT+M7xETcX\ny761idBM85LaWhbWIZXjpm249737/PzxAw7PRgihOD6dkeeaRdUSteamafnR+TmPrq44Ojrhi5es\nf30pMv1K3BiT8fjpgmyosJ0luYCP7lM3Dx7z8aMLrtcVbV1v3SRs3d7KzXJZkX/iJga8dc/dfPj4\nkqazKDXg6bOtm9VLbjJJCH7rxtKpkgcf/Yw8N4TwWTchOiazEgW8dXzI9eUSowuk0EyKgtp2LJxH\nSsdN2+7dfIPcbLZukjasXIsxihgdUmqsc3R6W2/yz9ab6SgjRMtkNkCLl+oNmmle0HwT641RrD7j\nJnJwOH7BzQjqQCF0/yBW2n03KdC7yQ2mNH37rk/ctFs3bYfUJU/ON7gu3brefBvdFEY/NzN6yYxr\nBMPxiFRHCqkxr8FMV23N+ERZGDaLlrZqyPWI+2++yZtvvYOQvRm06u9sf4GZ68+Ysbcwsz22edX7\nqJR94fYT6aVJ368jg0GW7r19jOsSQXSQaWIXkMpgK8tgVGCT7watJfsAACAASURBVFeL8R2h8wwH\nU2zoMFLjncWJACJhW4+sNNa2pBT4/vffomnb/uyli6yaBnRgOBxhXcdw2t9iolUcDUcMJiWrTUtw\nDmRi3XW0dQNKUkw0dhMJzjGcThAyoKJCqRyjApt6wfe/+zYXz65ZXC8xRY7JSjyR9aqhyDPWqw0a\nTV4alDJooRiPR5wvrlExImTfm7CzjsY5iiyjrmpsY/mdv/cDlk8ecnZ2h5+891Nmh4ek1JKbkotl\nw2BswGrWbU2m+4n1oW0IzmGlJBuOqJYrhmXBxfqGN984ZX1Zo7ISkqVpN4g0YDgpuVldMD+8S9Vc\nMp0d8uj9Zzjrdqr67N3s3dwmezd7N7fJq3JzenyPdduQtGc0HNO5luG0xDUtdC+7sSBh3XWcHp98\njpsxQkRkkmhVoKWnaq57N08X/B//55/+ym6qmxukEhRF/otuWsvv/js/4ObpQ85O7/CT937G7HBO\njM230s2rMjMeHvRmlGc0GtPZluGswDXdC2YKVpt2u0AIbNqOm+vrL23m3e++zeXTBQ8fPyHLc3RW\nEois1w1FlrNabzAo8iJDKY2SvZmLxQ0yhK2ZAusstXWUWUZVNdi243f/3m/1teb0Du/95KfM5vNX\nVmu6ZcfTR5d/kVL6d1/efjsxB9nHSNVYpIZBbnCxP7vBR946O+LiZoHRBStXo43C20jTtAgTWdct\nxmgkgrbzhMaD7G8vCtFfKY6xXz3merVEZQKRNFJDbAOucahoaF1Nlk0gBcpCs7INXW3JRwVt11Bk\nmtPJhGtZkfyASWZYN56YwDUNjU7MyyMefPwMnWA8nNLYyM2yZloOUBH8puVgOAEhWG9u8D4xnU77\np8+Xa07PThDAet1Q1zVnZ2dcXi4wRmFGBTJFlDY0bc0bb93j+nrBaJBju4B0ltZlWOcZTHMWT5bo\nIiOERAKkTYwnmrOzGZODEe+EIaPpAfpU4pTjg/cfAInf/+37WB9JRzOEVPyo2eCvasQOnEi9nL2b\nvZvbZO9m7+Y2eVVubtafuFHP3fjGoqKmcQ0mm0D8xE1NVzvyYb8QxHM3oiKF3s2q6eestk1D/A24\nGQwK4FM3d87OuPjEzbBEpIRSGW1b88Zbd7m+XjAss2+lm1dpRmYg0C+Ycb0ZW2MOJhAjZa5Zdg22\n3ZpZfnkzDz8xM5jSuMTNsmZWDpERfNUyH0xAClabG4JLTKZTLs4vublZcXZ20nta1zR1zdmdO1xc\nXpHp3oyMEakMTVv1tWaxYDR4NWYUX2xmJ64g54VJk3tjclPQ1Q06M3gXGeYFPiZa26AzTescmTE0\nmwqZFDKTiAQhBBKQBPzw7d/l//1//pJEIsXE8fEUpQUhCNrYEUPCe4vSCiE0SgASQt3xzv1jQoLW\nJ87PV+isn3fmo6QYaYZKQZZhXUvVRkKXCKFFekEnHFoZhrnhzuEBF1cVKEmwDYeTMQ+vFkgkWhry\nIifGSGc7bOPQuWFQlP1r27fZkVIyGY/purb/zJ1lNB5xcjxjfXXJdDRB5wKj4cGDC7QpuK47IBBD\nZDIecbO8oRiNCZklazUOyXqzZJol3rx7yKAY0Ww2CAkHR0coFE5E8hixKVE1LctljXOenz1a4FzY\nmTNz2LvZu7ld9m72bm6TV+Xm6N4J0SdC6HvbIjWaBFIQ6pa3758Q+cTNcutGce+N7/ZuZL/Sg3Ut\nmzYSP+PGolXGINfcPZzzv/7v//ev7Obi8gJrHc46hJJMRqPnbtrOMRoPOT4+eMENaJW+lW5elZnB\nbEQMnzWjtoue9WaOiUnQhN6M2ZrZ1PZTM1nfXePvMvPRw3OSkoSu4XA64eHVAoVECU1eFMQY6KzF\ntg6TGcqyxNp2u6jMttaMRnS2wxjdmxkNOTk+YHV1yXQ8QWcCo1+NmWVV8/Sy/twryDsxBzmlhIH+\nNmOCSAAfsG1D17YIGXGxRUZBcolCD5nODyEI0nZOvhEZ0ieWV+cYowBJjBGdaeqqpXEd0fewpBQo\nodBSEGLoG2bHiI6Wg6FhtWwYjkq00ohoyJSiqlraTnJTNZiYsVrcoGRHXpZ4GRhNJ6gU6aLnR48f\nIQYZf/BbJ7Sy4dGTx9w5nfPDd97ASEPVdoCEJHj3e98lV5LYNZgUwHuyLEPS9zVcbyqaxiOEZL2+\nwfuW+fGYm/U1ybesNjVJaM6ODrh/MKZQGl0W2NYyPimYTwxvnR0xPlLc+86It++c8N233mCQ5cgE\n84MDcl3SLiuePnqEtIGuc2xWa6QPFFJy73iOker1AfmC7N3s3dwmezd7N7fJq3KTfIKUkEIipcJs\n3UC/UIROltnQsLppGI4GaGUQ0WDk1o2V3FQ1OmasFzco8aKbKSpFbAy/npvgMXmGJOG8Z13VNE2/\naMVqvdy6GXGzXnyr3bwyM+EXzcSXzYx6M6NhiVIGEfVnzdRfzgxlzh/84JROtjx+8pg7J3N+9537\nGJVRdx0CBQje/d53yLUkdjU6RQiOLMsQJKz3rDYVbeNhe3Drfcv8pK81hFdn5ngy/cLttxNTLBLg\nEciYQAk6Z8lyzbqymFxidEZoPV3XMRwMqLsKUSRs1aLLghAFrq1RmcCFAEYjk+Xk9IimbmmtZTiZ\n0tYVPkYyqcBotNbEAMElZpMZg+GITdPhY0tyOZ3t0GZA61pSEjxpLyjykuvNNYPxmLqzZN4RhEQn\nRYVgrDN0MaZpLH/6bx9g5AFxYLlZeR589FMmR3MOsylPn12QZYb3P/qIpqmZDIcY3Z+BpeiZncxp\nnMeYIzASTeBy00JMdHXL3bNTVutLpMy4qZYYr7gzO+D0dMb1qqHzlqapaFixeXrN/Xv3Wa035NMB\nqpQkXVDGnGq1pOkcw3HOcDhCCoEyGYWHJ5eXiAgevX12dreyd7N3c5vs3ezd3Cavyk1wnhATRkmE\nVChtejc+Mp3MGD530xBdgd26qX1LfMHNYnPDcDyitpbMW4IQn3WTj/l58/BXdhOF6t0Ez+zkkMY6\njD5EZBKdApdVCzHS1R1375yyWl0hhf5WunmVZnxMZJ+YUS+ZGYzYNJYQG5Iv+qu3uryVmWq15k//\n5iO0nBEHjuXK8XBrZp5NefbsnCzLeP/DB7RNzXg02NaakhgcJyeH1NZjzCHCKDSey00DMWHrhntn\nJ70ZaV6JGftL0OzGFWQSSita50AlNBqfAjrrdygSjbUWpUFlBpP3ZyHZqCDPDCpCNsgxuWG5qWmb\nmrxQbJoNNvp+vk5rCcmT6ZygIQbPZr1BZzlRAD7ywUfnHB5MEUJTNzVCSjZ+Q9c0CCko8gFd05Fn\nBda1gKCzlug966pCJvr+glVL1zS0laerajKdI2LicH5CVTdcri8xRqAKGI3HFIVGKU1A0TiHI1K3\nHU21YThQuG5DFPC977xFSpGoC6SC4XCOUprJrERguLi+RErLdVzihSMvStRGMRpOYRnYrBrmKuNk\nOiBUHcTIRbXCEbFBU8XEh1cL/r/3H/O3H1/z4cWKR6uO9z5+hvPhdTP5hezd7N3cJns3eze3ySt1\nYzKiFkTvqdYbVJaTBAjXu5nPpgipaeoaIQVrv6Zt+gUjinxAV3cUz91IOmeJLrCuNls3iljfzk0U\nisY6HIm6aZ+7se2G8IKbpAukhOHo4Fvr5lWayXVGVFszmzUqyz418+CC+WyyNVMhpWDtN7cy09Y1\n3cZjq4ZcZZDgcH5K1fRmtJGoAsaTEUWh0UoTUTTWPjfTVhuGpcK16+e1JqZI1CVSwmD06mrNk8Xy\nC7ffTlxBFgiIEaMNITqM1uAlSSakzmjahmJQMCwHNG0NKeK7/raFloIoI8YolDBUdYMpDaoswQe8\ncwwnIwIBKQaQEmVRoqPCtZa6WfU9+0pNExU3mwaJwCjNpm7JxwMGuqR1HUIKjJBIKZCpb6UkjQGR\nUFoTnEPIjCyHdtNRVzVKKeq2YToa97dFhCZXGh8ajPNIVSNERucdw8JQhcBwOKDuOoq8ZLV2zKYn\nLK7PcU3DwXyC8IFGS66urphPxkwPpsyGOWmc82G9phyOuXr4jEooZBvJl5ZWJAbzMS55/ubDJWMX\nWYYrvvfmu6xuKhabmlVdIXSgjQmIHB4eUtUNpTHYzr1uJr+QvZu9m9tk72bv5jZ5VW7yyQAilGWJ\nDgrX9W4IEl0amiBZburejdasq45iMmAyHNM6i4gCLbduYkZKHmEyxNaNf+6mvw1fbyqU1tRtzXQ0\n+TvdaCkJL7gp85LV2m/dXODapxwcfOJGcXV1ycF49K1088rMjAeQXjJTryFKdKmpg2S5rTVaGzZV\nRzEeoIbiVzeTIk1VobTqzYwnJBlRaApt8HFrRtcIYeicZ1BmhBgZvFhrNp7p5JTrm3Ns85T5wQQR\nfF9rLi85eEW1JvySk6odOUBOSASuq1DS0NoWVWQoLfHOYpTG2o5F0zCfH1NIy7LekBUZrbWYTJOr\njI5AMcwJrcf6lkxm/eIgKpBSQkZFSgHb1HQiICnJBj2mcjBEdIIPH10RQmA0Kqh9JLiAylQ/x0cI\nMp2RREKIhE9QlAV1VRFDh1aGxeU5RV5QVw3jyYCiHFAvWxY314yKEpQmyoQ0GV0XEQikToQYeXZ5\nwcnpCXW9wXYWJQzeO54+2SCV4g//8F0++niB1oIUIwcHM1yMtNc1H5x3kDReOEYDjxcCW3ec3pti\nTE53Y3l28YQnrUYjufN773D94JwPHz5GC0GGJNOa67qlLMZ0G4eTghghLwxS7sTNhs9k72bv5jbZ\nu9m7uU1enRtNxGObmpaAoiB/7maEsIIPHy9ecuOJCGKISC3JtSEJQCVCEJRlQfWCm6vLC8pP3EyH\nz91c3Vwz/jvcnF9ecPyiG2nw3vL06QYpJX/099/lw4cLtBGkGHo3IXwr3bwyM+lFMx5FST58odZY\nyc8fLYgxMB4VND4Q/O3MNFXNeDokLwY0q97MqCgQyhAUSJ3R2tDPhzb0Zi7OOT49pW42uK5DSoP3\nnqdPNygp+cM/epePPr5GK0ghMpvPcOHV1JqiKFgu15+7/XZCk1b9GvEyKzEqYzgaIrcfQGcK5xzB\nR4qspLpZsa5rNJouWrRQSKkJEqLrCMEijSArsn6SuhRIKSApAh5igiTJlaYsoMgzjJI4F6laz+nZ\nGQHJqnGMh+W2aXUkSYE2gtq2yEwhM43JDdVqjdYaUxh8iuiB5mZ1w7AomR3PuVwvEIUgHw4JJFzq\n6LznZr0miYTtWmzsgU7mI7pgkdqgc03nOpJOICWRQL284rfeOkKrjEhCKImSmslkgrWOql1RrTas\nlh2uEWRJU4Yp7rJjVEhEVyJDhnOJf/PnH3B1vuGDJ1dYv+HpesHHT8+JCC4WC3zuCM4j6Jey3IFm\nJ7+QvZu9m9tk72bv5jZ5ZW6EgwgpSXKtKQvxqRsf2bSek7MzAuKzbkQEKdFaPnejjMZkvRvz3E3A\nDDTXq+sX3FwhCkHx3E37hW7Gn7gxvRtrLagIQhCJVDdX/NZbx2jZu5HfYjevx4z5rBmX2LSe0zun\neASr2jEeDH4NMwNmx3OuNleIgue1xsaWzrveDNB1DTYGpOrN2NAhtUblpjejE0IIgojUywU/eOsI\nLXMCCSnVKzPjf8nqiztxgOx83yg7R+KlwDYOvEAKSB4ylZHpDGs9XkR0kYFKuNaCiCQCKVpSiEQE\n1lq89ahcgU6kBNZ1hOjxySOTIFMlbZXItOBsNMeGCBIefPSEmCCISOc6YvIURYbKJVEoslKTkscl\nh8kV5XgACpIQ5GODMprRwYjyQLJxC+68ecTx3SGZjphhgRQZ9bohdR4lweicTCq887TOEVwkJWja\nlrZpIUR8cBhTkOeD7ROpGy7PV4yKAq0ko/GAIBMhRARQVw0+BIKEjx495Hy14HJlGeqc0miC6J+u\ntW3D0OR0soQkGY4nxC5SFAbhEhBIKhGce766zS5l72bv5jbZu9m7uU1elRsfPT46ZBLkL7g5Hc2x\nvl/c5cFHTwhJ4Im0tiOm0LvJJFEqssL0bnDoQlGMBySZtm4ylNaMP+Pm+CU3OfWq/lw3nfNEH0mx\nd9O0Lem5m3zrJqDZcHWxYvgtdvN6zBS0m62Z4RwbAkLAg4+eEpPAi0jrOsItzRQHko274uzNY47v\njMh1JBuUfa1ZNUTr0QoytTXjHZ33/WqcCdqmpd2acdFjdEGeDUgxothwdbFkVOavzMx63Xzh9tuJ\nPsg606mc5RilkEJhBjm+bVFGs1lXlOWAKCO28ZSTjNAKbNeSDTXBJfIsw8dAphV1axEhEkkUeUFM\n/UR25zxaaTrb4mpHpjUHByUn8yGXzypC9FQ+AQnrHcPxtG/L4j1B0K+jbgo8/QMUdb0mAuNiTEqJ\nLlgKWSC0xPoOhaGxK4JoSasCZTJCchSmoGs7ikFGURZcnV8xGvcr34zmY5pNi5AK2zYkn4gikSsF\nBH7/B99hvVxyuahRRYH3FmM0Z8cn/OXffoCQipQSIXhiTORFjjIa5xxGif5nRg3bFd0nkwlKCK6X\nKw6Op3RVh5CgpMZ5R1vXjMczvPCsLleEsDv9JWHvZu/mdtm72bu5TXbejRSE0FGYHJ88WZZT1Wsi\niUk+6Rd+CJZSFaAENlhU0ns3X2F23sy+1mBrS735/D7IO3GAnOUmHdydYdctZljSdf2TlcZoIql/\n2jNB1P1cK6lzcqHoQocLDi00KsvwrUVIAVGgjISYGI2H3KzWaK3QStK2nqLQROvxtSfPNa0NHJzM\nuFmskUV/xpM8mEwTfURmGi0ktmtQhWFYFpSl5uJmBcBQ5txslowGA6quoyhKlJKMtaGjJjmDrRKt\nD4BFxAznHdIIgvMoo8nynNo2pDYgdb/eujEGgSArDG+fzbm6WtI2LY2F0+MhN8uGKOHd+3f42dMV\n14trBOBDf1vDWovWGmIiy7Jt0/HA2XSCQ5KQbOqa6dEMax3BOjyR1HmOj+ecX1xjMkPTdNSbaqcK\nD+zd7N3cLns3eze3ya67UZlBCYnrGlShGQ4KitJwcbNCJBionOXmhtFg2LvJS6QSezdfYXbdzL7W\ndEQi9ara3aWmAUKK6GFGFIGi7JeytJVFlwopAj5FlDCUw4IQAiFGlNIkEiJCjAGdS0AiE5g8o1m1\nVOuGsshZNyuyWFDkGikALZEZJC0piozNuoNckiRIJDEDhCBJYNvSZjAY4qJnkGdcrpcUOsMGRxNb\nZidHVNUamW3bthjFte8wxlBmGh08LgRCo5iOR7TeInT/4E2wDqMNeQoYrUgaWtehosK6joEsuFpe\n09p+TONxASjWraXMFYNCsFwuUFITY2I4KHGxw6gxQqTtHKeMmCIIxXXVUpQlRkUGmcE2DbFzaEAI\nzQ9/+AP+zY/e43A4YN12DLWg3YnJOL+YvZu9m9tk72bv5jb5WrgZDrAxMMhzLla9G+cdbWiZHR+z\nqdZI07uRRu7dfMX5Wpj5FteakCnq1edvu53gFGNEpIQLkeQCIURsZ8lGOUhFEpI8y3CNJ6SI3y6N\najtLkgofwSdHUZSMxoaAJ2HJhv1DA+2mgSAYDQqQCu8T1npEkTMZDfqzkVIihSD4gCciAQEooZFS\nIlSGRdCFlovrGzQa223bowhD6Do0GSpJtM5QCDrr8E2iqhxPL68JTpA0XFbXpNDP4crJEAaquMYo\nSestMleMx0MsHkIEPE2X2CTLaHbAoqpZrRvKAqQZMTw4xTrQGqxvcaGmqxqUiJwMck4mhh+8dcxk\nVOBdhwse5zxV0+FjpN1YpDIkrTiYDPm3f/M+tmkYTjzvfOeAoe6vTOxa9m72bm6TvZu9m9tk190I\nJRAqo0PQ+YaL62s0fXtBkkALTehajMhQSLQ2ezdfcXbdzL7WGKa6/MLttxNTLEym0/juFBEjIURc\n0zIcT3DBkWIgSYFAkCtDazuklggERhuapqEoCnzol79USqJySYqgEGw2LXlWMDuYsVhdILzGKEXt\nGvKsQCQQQqIKRVP3c2S8tRiT9euENy0ySWQmCTaiCo2tKkSmEE6gdN/TMLQtWZGDMqTU/49RlAXr\n1Q3DfERjHZnURJVwzlLoATF5cgrG8xEfP3tAlhUopXCNQxgohjkmKmxnWa83qEwyn81ZLteUwZBK\naNctnQWVgcEzH4343T/4Ps35NVk24/2nDzl/tGA6KJgcznjw8Tnzw0Ourq8YDQbMpxMuzs8pR2OI\nCW00IcByc8OkHDA/nODqDe8/vKJq7c7cuoK9m72b22XvZu/mNtl1NwqFMJLgIrrQdFWFMArpBUoJ\nkgLftuT51g0QQti7+Qqz62b2tWaDUZI/f+/x7s5BNplKkzszSAkjFDbYvr1J57AxUJY5CSCBd56i\nzJFaElMgekmKluOjQ55dXhEJaK1xnSXLC6SMaCGJIRJE3/NvMBiyXm8Y5APaqsOHFpXlBBcxJbhu\n+yRsgkwbZKnAi/5MXErKwmBDwHaO6WRETAlhA23o24U4H9EIgggopVARdKbZ1P3TkuWwxDV9Q/NJ\nMcTGQBQJU0g2ywalFGQRJSW2SuSFYrW4Jh+WhJgYmQIQJOnolh02BYgaISTH0xHzgcRTI5Tk+9/5\nPn/+t+9xNptTKoXF09WWe2/cYXmzZDadcfH0ApkFtBngrEUqjdEZpERrO2xn+fHDS65X1c4UHti7\n2bu5XfZu9m5uk513M9AIJ/qrf1JQFAYbIq5zTCYjUkoI65+7sT6i097NV5mdN7OvNdy9e8L/9L/8\n+eceIO/E/QghFVKAlBJnPSkkQucxuWGYF/iU8I0DElIJfIh0raNpOtquAiG4eLboL71HiQia5EEb\njQwC13pSghRBK8311QLhBXVdkw01SWhSSvjgIGm0VkgtKUyJHpSsr2oOJgOQGoXAbSeIZ0pycX5O\ns664urqBmBiUJVomgg0k0bcRUShigDLLkVLS1R2RhJKaVV1RVUti27G5qcgHhunBiMPREevVmrtn\nRyRpKEZDlNBoKTFFhg2Ww+mEKECJjPF8zOR4gC4Fi2XFD3/4R2hG/PVfv8+bxycELegSrLxlMBrx\n4OFT3v/5YzYrx9PFAmc9MkSEiETbbm9neIyUjCcz4m51zwH2bvZubpe9m72b22T33VQcTAYIoVBJ\n4KzDKE0mJZfPzmnWG66ulqQAZTHAiL2brzq7b2Zfa6r6iy8S78xDeq3zZKl/OjEvM8qyZNM05Eaj\nIsgyI0ZPDBERIz56hJZIofv+ej6SywwZBD55itGI1AY660kpUSaBFAnrHKNsgJc9qLbuUFKiIhRZ\nBqFfLx0TWS3XDFPJaFBgtEKJAFFwcucejx89RkTBaDABrchlZH50zOOPH1GMCoqBQZeSzXKNjQ4V\nBePJhPpqwXBc4pxjPBlweX6JJEcUGnu1BhVom5b5wQQZJZdPFwxPClppMF2OGeasFisGwzHCjBjP\nLKUSrJoN2UBDhKA0/+r/+jNMgrq1bNQ1trJ0tsVMBlykDfO8JCm4aa84OTuhXq95cvExk4MD6nVD\nbQNRalbrCpMp6s6+biKfm72bvZvbZO9m7+Y22WU340G5XZY4QurdPHn0qHczHJNU7+bw6GjrpqQY\n6L2brzi7bGZfaxQmG3zhttuJKRbKqDQ8GjEoCpy3KLWdJA5IoWnbhrIsCC6Ahszk2Lbr51mtO2Sp\nUCrDCIlNvl/xyUY8IEVERIF1LcVoiPCCarXh8OiAZbtCmwIpFPVqQ6YzokiIFEkGclkQvEcbyc3i\nkvnRETEqogyEtn9yU5cFMiSubm44HE7w2qOjRmvd99jrbI/Tgcwkq82GIs9oXcWonJArKClwJtG2\ngbw0dK7D43FNR6ZHjI8LfHAsn9RobYgB2rqiGBgGowH1pqYYKXJZ0FRropSM8xFXlxWz2QitEpuq\nJTMShECiiNJCNCAkPlhurq65e3bExgZkSJTDEedXV4gEMSXazuOc25lbV7B3s3dzu+zd7N3cJrvu\nxmSSm8UVB0dHpCiJIhI6jw0BUxaIEFlcL5mPJnjl0Umh1d7NV5ldN7OvNYnReMLTp+e7O8VCColI\ngrZrIYn+FsDQUI4KuqajKHJc9P2ZVZL4GKBQ2Mb27UtEwtmOoAVERaZyvIAQEyFKbOsoRmO6qm8y\nbQaaZV31X+88bdNAgLqtIUactxASUgqc7ajrhtlsjq8tKQXU9meXZYnwlrapOT6YUW9q8GCkxGqP\nVJrhZEIAkkpEGckyQ1Q1p/MjMqkxWaKyFYXJqNoGlyxt54nBMDuco/OMpvaokBG9xyApTOR0OmJ2\nMOsfshjmZCqnsg6vS3QsuF5skCbhQ+RysSYmjdQDFsuKxabGOomNgnXVIKRBZgW1BxUTg7LAth1l\nlmOKnNl0xi6cSL2cvZu9m9tk72bv5jbZdTdV1TKbzvF1R0oRKSHESFkW4C1d03B0MKPZ1AgPRqq9\nm684u25mX2tmWNt94fbbiSvIQog18N7rHseXyBFw+boH8SXyVYzzrZTS8W/4Z/5a2bv5jWfvZrey\nd7ND2bv5jecb70YIcQFUfHu3x1eRV+ZmV+Ygv/d5l7d3LUKIP9+Pc6eyd/MbzNdlnL+B7N38BvN1\nGedvIHs3v8F8Xcb56ySldPx1+Zz7cf5idmKKxT777LPPPvvss88+++xK9gfI++yzzz777LPPPvvs\n80J25QD5v3/dA/iS2Y9zt/J1+Zz7ce5Wvi6fcz/O3crX5XPux7lb+bp8zv04X8pOPKS3zz777LPP\nPvvss88+u5JduYK8zz777LPPPvvss88+O5HXfoAshPgPhRDvCSF+KoT4p695LG8IIf43IcTfCiH+\nRgjxT7bvz4UQ/0oI8f72vwfb94UQ4r/ejv2vhBB//xWOVQkh/lII8S+2r78rhPiz7Vj+ByFEtn0/\n377+6fbr33lVY/wqsytuvk5mtv/+t9bNrpjZjmXv5muSvZtfa7x7N3s3txnvTrh5rQfIQggF/DfA\nfwT8NvCPhRC//RqH5IH/PKX028C/B/yn2/H8U+Bfp5Te9XQidwAAIABJREFUBf719jX04353++c/\nAf7bVzjWfwL86IXX/yXwz1NK7wDXwB9v3/9j4Hr7/j/fft/XOjvm5utkBr6lbnbMDOzdfC2yd/Nr\nZ+9m7+Y22Q03KaXX9gf4B8C/fOH1PwP+2esc00vj+5+B/4C+Ofyd7Xt36PthAvx3wD9+4fuff99X\nPK779Jj/feBfAIK+cbZ++fcK/EvgH2z/rrffJ1737/ab6mZXzXzb3eyymb2b3f2zd7N3s3fz7XXz\nuqdY3AMevvD64+17rz3bS/W/D/wZcJpSerL90lPgdPv31zX+/wr4L4C4fX0I3KSU/OeM4/kYt19f\nbr//65yddLPjZuDb7WYnzcDezY5n7+b22bv5NHs3Xz474+Z1HyDvZIQQI+B/BP6zlNLqxa+l/lTl\ntbX+EEL8x8B5SukvXtcY9vnF7LIZ2LvZ1fz/7N1ZjG3Zfd/371p77eHsM9dcdesO3ff2SDbJFlsc\nRIriIFGy5Eg2JSAKAkTJi4MAjhEgD0mQl8AZERhOjOQhsDM4MQRLliNrskJRtCWRElucmt1ks9nD\n7b7zUNOZz57XWnmoolIKIoVh2H2L7P8HKKBqn1P7rFP1f/jVqv9aS+pGfDekbsR3Q+rm/5sHfdT0\nHeD8qa93T649MEqpkOMC+mXv/a+fXN5TSm177+8ppbaB/ZPrD2L8HwJ+Vin100AC9IC/BwyUUubk\nr6jT4/j2GG8rpQzQB47e5DG+2c5U3Xwf1AxI3ZypmgGpm+8TUjffHakbqZvvxpmqmwc9g/xl4JGT\nFYoR8IvAbz2owSilFPA/Ad/y3v/dUw/9FvBLJ5//Esf9O9++/m+crPj8ADA99e+KN4X3/j/y3u96\n7y9x/PP6l977fx34A+AX/oIxfnvsv3Dy/O/3za/PTN18P9QMSN1whmoGpG6+j0jdfBekbqRuvhtn\nrm6+V83M3+0H8NPAq8DrwH/8gMfyYY7/xfB14PmTj5/muKflXwCvAZ8FVk6erzheqfo68A3gmbd4\nvB8Ffufk84eBLwFXgV8D4pPrycnXV08ef/hB/85/kOrm+61m3s51c1ZqRurm++tD6kbqRurm7Vk3\ncpKeEEIIIYQQpzzoFgshhBBCCCHOFAnIQgghhBBCnCIBWQghhBBCiFMkIAshhBBCCHGKBGQhhBBC\nCCFOkYAshBBCCCHEKRKQhRBCCCGEOEUCshBCCCGEEKdIQBZCCCGEEOIUCchCCCGEEEKcIgFZCCGE\nEEKIUyQgCyGEEEIIcYoEZCGEEEIIIU6RgCyEEEIIIcQpEpCFEEIIIYQ4RQKyEEIIIYQQp0hAFkII\nIYQQ4hQJyEIIIYQQQpwiAVkIIYQQQohTJCALIYQQQghxigRkIYQQQgghTpGALIQQQgghxCkSkIUQ\nQgghhDhFArIQQgghhBCnSEAWQgghhBDiFAnIQgghhBBCnCIBWQghhBBCiFMkIAshhBBCCHGKBGQh\nhBBCCCFOkYAshBBCCCHEKRKQhRBCCCGEOEUCshBCCCGEEKdIQH5AlFL/UCn1nz3ocQghhBBCiD9P\nArIQQgghhBCnSED+DiilNt/k+8dKqf6b+RpCCCGEEOI7IwH5L6CUGiil/h2l1JeAf3hybUcp9b8r\npQ6UUteUUn/r1PP/E6XUP1FK/W9KqblS6ptKqWdOPf60Uuq5k8d+FUhOvdwacEsp9ctKqR9XSsnv\nRQghhBDiAZEgdopSSiulPqmU+sfADeCTwH8O/OxJaP1t4AXgHPAJ4N9TSv3kqVv8LPArwAD4LeC/\nP7lvBPwG8I+AFeDXgJ//9jd57+8AjwJfA/4b4JpS6m8rpR5+E9+uEEIIIYT4fyAB+YRS6m8C14H/\nCngWuOy9/+ve+9/03tfADwPr3vu/7b2vvPdvAP8A+MVTt/lj7/3veu8tx2H43SfXPwCEwH/rva+9\n9/8U+PLp1/fe3/fe/x3v/VPApzgO2X+qlPpDpdS7EUIIIYQQbwnzoAdwhjwEDIHPcjxLfPR/e/wi\nsKOUmpy6FgCfP/X1/VOfZ0CilDLADnDHe+9PPX7jLxnLaydjeAZ4nOOwLIQQQggh3gIyg3zCe//v\nA5eBF4H/juM2h/9UKfXIyVNuAde894NTH13v/U9/B7e/B5xTSqlT1y6cfoJSKlBK/ZWT9o6bwM8A\n/yWw673/o/+fb08IIYQQQnyHJCCf4r3f997/Xe/9uzjuER4Azyql/mfgS8BcKfUfKKVaJ4H2nUqp\nH/4Obv0s0AB/SykVKqU+Bbzv2w8qpTaA28B/AfwpcMV7/ynv/W9775vv8dsUQgghhBB/CQnIfwHv\n/Ve99/8ux+0R/8NJX/FfBd4DXAMOgf8R+H/dns17X3HcV/xvAiPgXwV+/dRTMuCnvPdPe+//nvf+\n8Hv5XoQQQgghxHdO/fm2WCGEEEIIId7eZAZZCCGEEEKIU96UgKyU+iml1CtKqatKqf/wzXgNIYQQ\nQggh3gzf8xYLpVQAvAr8BMcLz74M/Gve+5e+py8khBBCCCHEm+DNmEF+H3DVe//GyeK0XwF+7k14\nHSGEEEIIIb7n3oyAfI7jPYO/7fbJNSGEEEIIIc68B3aSnlLqbwB/4+Tz94ZxSNPUaALQ4L0HpQhM\nQF3VhCZABQrvHNY5jDHUdY0JDEoHaKVwjcO6higJKcsaVzuUUmit8B6c84DH41Gob48DpRUqAO88\noNBKE0YBTW2xjaPTS3DWYa3De3V8D3X8fI2mqmqcc8RRiHWOxjoCFGiF9w6lNMdvR+GcQylAKUyg\naRoLgPeg9f91jojS3x6fxjsLKJRSeO9PfjbHzwlNiELhcTjn0Vqf3M+jFBgdHI8bh1Ya1PF9wjjA\nNRZrwVoHHI/1mP+zMR+34HjqqqZpmtMHnQghhBBC/EB6MwLyHeD8qa93T679Od77vw/8fYAgDHy6\nZZiMK3qDFOU1cZrgjEWrkMntCThPf6ODjkLm4wVpFNFaa5OPlqRhG9tUEMHycEl/d8D+tTEutmit\nCA04r6lrizHggKYB5SyuUYSJIe4ZohaE9MirCZu7aywOKybzJVceWWVjY5ObN+7TlI7ERBxNl9i6\nQllH7Uum4yWPP3KJm/f2TgK7RkWKctaQriXsXGpx9YUjQmXwrmSwPeDg5pzNtS6zowVN0xAnMVEU\n4rUnNCHOW6LQsFwWhFFEZRuiKKKqapqqJDQx6ysrBK0QHRo0mmI+JU5jesmAplUxublk6+Ehs/2M\nqrK00pB5dcAgXMMaTSsIKZoCwojF4ZRKKTpRTJLEjA4XQENsIl5+5ZU3oVSEEEIIIc6eN6PF4svA\nI0qph5RSEfCLwG/95aPwJEbz8GOX6G9sEAbHs7jT0RjtNMYEpMMO/V6Xo1uHqApa7YTl3hIdhizy\nJYssp7KOKGmxf/UAo6Hb69Lpply+cgmjDShFXTlwkMQhzlo0UBYFRVGTJkNaa23StZQ4DwlTxfpq\nzMHRPkfjGZ6I7iCi1YuxZUlZllx+5DKdjRU63ZRWGKO1Jm0l5MuCegmhCfAF3HxxQWUt3jlCnTC6\nlZFECeO9OUnaotvvnswwg0bjrKOqGmaTDF+DazyRiYmDCNV4Qm1Q2qEiQ9KKaBlNK46I2jHdqIvz\nFeVizvajm1QjR9k0WFfz6Dt20VWXOgjIlyWltXRbKZGCJlCs9LvkVcne/hgVOAJtsIHnz5+SLYQQ\nQgjxg+t7HpBPjkb+m8DvAd8C/on3/pt/6Tc5mIwc47sTlocTvDJEcZvEpARBRdQOMIlib39GgqGc\nV5R4lvMch6YzCHFJgA8sh9WIcNiiKhuy+YLNtTUO7o9pmopAaayvsY0ljUO8a2h1IqLYEJmArMi5\nc+MW8/GC/WxJREBWNlDD/sEYZ+fMRjk6gMee3OWJxy9z7ebrtMKS3Z0N8I6VtSFHB3PiOGXz0QF1\nXaA8FHlOUCjqwrGzvY1zlqLMCUNNlmVkyxznj1swGuuoS4tGEycxaE1dNdi6ZrFcEKcxzluwAUnc\n5Z1PXqFYNvjAEZiQuqrBN6gmYv/2IctqRhgEWNfw3BdfAzyLyRLb1CgMJg1ofM36So+6aYhjhVaO\ndruNMhrlLK0k+l6XihBCCCHEmXQmTtILTOCTdsxgpcdksQQcRZHTX+1jS0u1qAkizWBrQDlp8KrG\nV5bK1iTDlEDDYNDl6M6cJIporCVbZLQ7XUaHI3a2Vpksl1T18QyuUorVtZhq6ZkXJUEQ0viadqtF\nY0q21i4xHR1hdQFW0e21KOuSIGjRTWIIIETjvGb9woDZrGJ5mLHRbXPz1iF7szH93T4t3+Lwxj2S\ndkJelbhKEShFXZdoE6EUODyB1ljnSFox3nqCNMQVFaaVUFQFVJ5AB5jYUJcNAO1+i6qq2d05R9U4\nnnjqHFdfvs1wRTMfeeIkpMGhlMFEinzc0ARLLu9e4OaNI5JUs1xWeKUJdcWFS6tktiZb5pTTgrKI\n8N7TNI5+p8+XvvRl8jyXaWQhhBBC/MA7GyfpKVjfGTIdTQi1ptfr0jEppoYnrzyE157BYIXp3owi\nz4jjFiWewBiMjnCNYTIryPMZ49mM2WzG5oVzeJ2TDkLiOKbJK7RSNE1N3dTcvzumqGtsA42rUcqD\nVhgSZvMx0UDTijuo0LMYTZlPxlRVxp17Nxnvz1i4hvPntnnuC6/w2vM3aStDmAYMtrqsdruES8Xi\naM5wpUe/PwAXEIQarzxBGB4vltOKQGnqxhOoAFCYKMTXjiTt4MoGVRwvrvMKlFckrRbGnPQlB4Yy\nL2n3PC994w1wCu87hGHKMpujnMOWDcWyJumEhEGbu7MxWitWNyPm8zllmbGxu8krV28wPqqJ6NJU\nXR5+4nFWV1IibXC+/rNFg0IIIYQQP+ge2C4Wp2mlyecZnWHKZJJjtCaMIrbXhiyOpvRWVplPpsRr\nLVxVMxnP6W3F6CZhPp4Tx558EqCCDib1mGXE3Rs3GQwHbKy2sEHF7u4Kd4/mDDtDFouMvmmT+YJA\nB2ht8VrjXUOxbAiMpjxqGKQprSil3WuzmlTcnBUsFwl17mgyx9e++gKPPbrJC195me3tp8jUFLKG\n0fiANB1gabB0mY6mVHV1ssCuQQcKrUGrkMY29Pop2TwjCII/222iqkvQ6nhxXtUQaoOlIWmlRK2I\nJA4ZLya0uqCt4eKFDWZ1Qbm01L6kcTFFM+PCQ08wGHiqxjMbW+rxjPt2xO7Ou4nihKqyHB6UnN+5\nxOvX7lG0a5zzJL050Txke82wtbnNC8+/+KDLRAghhBDiLXEmZpC1hqbOWeSWXpoSdnq0N0MsAUXj\n2H4oJey3yI4WdNIOPqhQKiVqe5K1hNWdLdJ2hGksCRHd3VXQBqdrXFCzPBxz73CC0jFlUWHrmspY\nusNVNoYdXKOwlSVK2kTtCLyimC8pw5zpckm3a9g7qtGRQdOwyJf4wAGGb718l/e+973cuXmLa2/c\nJm9ynrhy6bivt7I0RU7hKuIowjeetdUBSgegFe5kO7VinoE53vLNeUg7KU1ZHwdm5wjDAIclMSmz\ngyMWyzmz6YxuJyHteHRYcv/uCD+fMliLSdc7rFwwPPqOx2nqgjt3x7zw1ZfZ6FtowfmHz3H92g1u\n37hFFMRUy4JiXnLlyYssRku0Dfj652+Q54pbL01444W7pO3kQZeJEEIIIcRb4kwE5Lpu2NncJsTR\naXdYW0koyzkX19dRynPr9SN81XBuY4NsUdHu9piP9+j2V9ClY3zvgP6FFaxxVE3N4egeu+dXSQc9\n8kVNGIbEcUg+z7DOMhx2yJY1ITUH8wyCgJCGYpERYtDKYJIWk/sL0m7E4XwJbYXzmrhvUCZkPl1w\n4eIGpm1QRcHmQ2sMO2skSf94j+bM0ml3GA47tNPoeI9hoymrDKUNUWQwYYDC4rTCBAYTBGgU88mM\nMDpZFBco4jTBhCHLbElnfZXhygq9rTbtjmFtY4ednS3OXYgJk4ZBJ+GH33UBn1c4W9LtBbTjkKee\neoznvnKLre2Efk/R67c5f3GNqqhItwyH8xm3b9xDm5J2L6TV6jA9mBDHhqY67k0WQgghhHg7OBMB\nWWlN3SwxPmKeT9k7vEN/OMSqI2ZkbK8PGKyskU8zOtqQ7c/Y3jjH6OA+g801smnG3mv3iKII6xUx\nbapAkc2WhJ0WozInabeIUk9WzZmMZ6ys97GVJwwMyiniJCVNEmpncTh6g1XOP/Q4ZemYFzMUKUrV\nJEmfVgcee+JhZtOGR3bO8fVrr3N4/whwTEZ7lLnHa0/pMgKlMComCmPSbgw6ZLjSRQUarxzDi+vo\nMMBZi3eeqq4xYYgKNQSKpNfFOU9gAnRsKJc5y/mCalFRFDCf12RVRRSmXHnkceJ2yEsvvsHDD++g\nncX4iI2tdTo9zfs/9k6i1grKh5QKgrBPuhpTHR6RzWc4V/PuZ55mejRHaUsUGfAKZz1nYC2nEEII\nIcRb4kzsYpG0Yr86NIzrgijqkLYDdh9epUePG9M7lAcB7UFIHLbJj2bUgaHWCwbdlLt3FsyOJvTX\nB3jVUE8b4rU2jbUkseZgb0LLOVYurfCuC4/RWRmynMy4P8pZ6SfcvXdIrz1gNB2xs7nOJM8xsSI2\nLVq9mKPDKevDIVE7oKoDfFMRRArjNMxr9rN90qTLQ7urjOeOYT/m9o09puUhN6/NWO2m7Gxt8dzL\nVzE0EEW0TIqLoMhyOitdssMlvrYUdUHabpOVJZ6KVpIyGS0IQ4MHyrpgfXuIy6AKGrJlzuZmh1YS\nk4YJtlkwWB1SZQt6KwMOp2M0kFc1cW0w3YD1tRWms5LZconxIePZIb3VdW69epuyCFnbctx5NaPd\n7WAwJJGmaRoOjyaUZS0r9YQQQgjxA+9MzCBrBb3VHj/3Vz/O5m7F+kYPX3gm0zFbayu0hiEbK2uM\n8imzakltc4YDzf7BktH9EYNNQzktSIOUOI2hzAlszXKZMVjt8fSPvoMkdqQbMWk34PzFIe94x0WK\nYsm5C228y9jY3iEIQpw7nv2djCZMD5d00hiMp8k9eTWnlWjyqqS3PqS1EdJZWaHVMcyDjDqYYbHk\nFBwdTenGLXa3z/HK1ZtoAx98+hmCxlFjKbOcIAipCk9dl1gF3fWUxSKnuxmjnKHT6aIDjQlDGlfx\nvo8+SWc1YKbu8eGPv4utSwM2zndZ3VhFxZ7BRp+jyZjDecG3btzgcG+fQsPkcMy8aAibkPF0xrIY\ns9JLKJeKC5c2Uc6ynM8xOmMx1SijQGkm0ykm0RRV+aBLRAghhBDiLXMmArLSjne8a5svPvsSdrbB\nha1tZtOM8WTC3Wtz8qLh9p07uKwi6EYYA4FK2Vkf8OT7d9jd2qK31aO7NsT0I7qb66S9LmVu0Tpg\nPrc8tH4RXytm5ZTZIuPW3WtsXxowHlU8fOUyTVVggxpnGwbdLsP1IVp7msyzmDdYX5KY4HjmVWn2\n9w9YWksrMvTbLUrbYNoRpu154vELXLl4nsef2uDO3h4LN8bhuVW9ziibEcceULS6AZvnFBef3mY+\nmtAoS9QNSZKI9fUQW1guPtynyqa895mHiCJPt73C7vYORbFg0IN2us4sH7N7YZ1er40xms5ayu7O\nKqvbm9RZxaVHH2Jlu0ey0qPMGiKdcO31+wz7ihe/cRel4JkPvIc4SZiPlnR6XVotw9pGnzAO6Hfa\nKHUmSkUIIYQQ4k13JrZ588DXnv8673n6aY6WDUeH+wz7HYL1HvPJnCJvGGc553YHHOwXELWwheFo\nOqG31aFpOfzEUboFnXaPRTZiuN4Hhjxyaci9ezNuW3h8s4vymv3RhKeefBdvXH+Flc0hr7x6lTBt\nUdiAnfUe0/GSJlZ0uzF5VdCKQvKiYW1nhdH4kABFkVeEQYs0iWmtDLCLQ5x3qAZcAi5xTJdzVq4A\n++ss5wV4xeXH1lAJ5Dc0ZV0xz0quXFmn9ZHLzKoJ+TRmfTemqWCzs8JhMSKvEmzHYrSlKA4Ybm1T\n5gs2N89z/+Amh/cdvt6n29KkKym1z6l9iEk0qYlZH25w52jEYLiOpcFEhjCO6McddvwSrMWkmt3H\nB3SOQp688iSvvPYqT7/nA1jruHb3VUbLxQOuEiGEEEKIt8aZ6EFOu7FXScC7r6xz/f6Mxx/b5JvX\nr/PouYdZNjlHs4pEByStmGrhsNQcTHLSAFRS0RomDDqrxFGbZllyfe8eUezY6G6ymO0xHK5xf/8e\njz/xODur2+RkOKvQVpPnc0b5lDS9yGj/kEEnZVEVoABbUjfHu0hcubDJ3l5O5pYkYQutHKG2WO2I\nTcR0OmFja5NuNwTreOnllxmuDlhkM9Y6m9wZ75GEEXlVEkYBm4Mh02xB7RSBt1R1hbKewwPorZV4\n6+gO+owPx4TtCNdAmRX4qKGdrKFqx/Rmn3c8coneoIdCcWivM83GVG6J944iqwg0lEXI+fNreGeY\n54dQe3rDdVhm7B1NOX9+h/39Q+qmJu6nxKZN3SzodPuMDu4zy0ve+NJ9FmM5SU8IIYQQP/jOxP/N\nPZ6Lj62yfanHe56+QpbXtMMYFR4/lgY1SWiJTMT2apds6QjimlYnppUGxC5C15AdHfG1575BaBtc\nk3Dr7k0Ga21qM2fj3Ba765vUTcn48IgyWxBGHhdazq1vEuqM3d0OSis2VvpgNefO7WIMJFGPm/eO\nqFyBCQPKuiCvaqaLDKNjTJSwtbXLSrfD9at3KMuaKEy4c+eQJIipdUY7MbRSQ+AcaRJR4SjynDAI\nQDu6SZdYhaxuBUTeENHClpbGQxK2MMpQuoaN7hqxDqjqmtt3XuWLz79wHOZxfOX3rxJHIb5umIwm\nhDpFm4ReP6Spam7fuEmT1xyNR9x8/SqLvGB9OMD6mt31dTbPbYGtuH3nKkVZcjTaJwpiIqcxwZn4\nZ4MQQgghxJvuTARkrTSt0PHiq/u88uqExWRCt9cj0J4gdDReszZc4dVv3uBgNGZ11VMVluUso2w0\n8/mCl169Rr6Y0R9EFEUDlWVnZ5W6qjGtENdk3Bsd0l7vsLK6wXi6xDpNpGLmmeWdjz1MUS9wvkJ5\niw4a7t3Zp58OqOsZDkjThDiy+KogiiI6vZTcN0yXGeN8wRu39ji3dR7nI5yKcDZgb3/GjRv71E3D\namcFE0e0W22W+RKcpiwLutEqGxuXwYRUVcCyTuh2h1RLx3prheV8jibg3NouxdyC9XTSNh/7V55i\ndP8ORVnx+We/ytFkj+d+73W++ulbvPaFCddf2yMKPZ2ozap+go3wEeLiIusb61y4/CjpMKETRuR5\nRlEW9II25VFJx7RRZUlVlBTVhCRyOGcfdJkIIYQQQrwlzsS0oFIQNx02Ntu8fOsWq+sDirIhijVh\nZRimCmss7/3QDkGRsL42ZFa+ztpWyP7dgiCOiJxHBSEbm+c4mtxn/WLAaqfNdFRgK4h1RBBH3L22\nh00a1i6sYpsa6gbjIl746jfY2VlnFE/o+A73ykMiE9Lrt/BTQGsuXIgoqjbR5gphneJcg1YNShla\noSFJIiIVcW92xKvTa8Qd2N68yO27e5go4ertPXTkOTi6TZru0FpJSJIuvgnp0iOvGpIwYLC2htYt\nujogMpblLKcpHYEqaPVSqswxm43oJClh0uLzz36VbDrmkcuXeeaZH0bpgF/+R/+YozeW/PHNJecu\nXOZ9Tx+3VRgToNKE3/yN34cM2mmbD//ko9y7f8Qwr9na3QXjObp7iB1NMattBq0+gT580GUihBBC\nCPGWOBMB2XsYtGNuHOwxXImYTUtWV7tY5QmSiGU+5+jOXVbXBnTjkDujfXRQ0e+vMZ9ldPsx1AYV\nGfb2rvHY04+ynGZktsJECQtbs9oeUi0LQkLaSY96ueRgnhEZTTuN2Fjd5urtV7iwfo4lC4ZJwlF+\nRJl12Rhssbt1kbq2RK5C6wAfakITY2uLUh6Hp6obfKCJo4Tzw8uoMEBlATtxFzVv6BEQmZjeIGVU\n3WLRLBnfv8/oYMbgmS77hzVBmONdiE5mLKYLogSMCsn1kp5a4+jokPPnHqXb7pNnhzhX01iLA+4f\njoAA5xw//9d+nj/43Gc4ODwgwjMd3WN1Y4eiLPnMr/4RnXRAFWWofsC1mwesDQc4HXIwGjFcGTBY\n65G2WtTGMS8KrHUPukyEEEIIId4SZyIgO2dpjCPttWjykifecYlZVjBfzkhiAxs9ussO4FjaivVe\nj8utgMVySr8fo0NF4xS9NcP2hfdwcP8IbWB6f0mnExPaAG8COnFM2m5R64bBcIW01WM5zwlaMRrY\nXruI7nu65RrbV57kIRzOWjrtNhbQgUbr+HjM3lFZT2QClPKUdUNtNfMix9mSuqnBO1xToHFYHfDy\ntduM9+7hcZggQimwdUNsIn7n9S/iqpzd7R6PPfIUVeOJuoa8HtEEJdePvkkVlKyvrXJ4dIduktIe\n7KD8fd7x5GN453jp6y9wZ/+A3c0Vkk7IT3zyk3gf8Bu/+dv82Ed+hPmi5LOf/gwXL17iwx/8AHiL\n95plXrB3/xDdL0jSknu37tHUju6gRbNsWOutHU/zCyGEEEK8DZyJgKyV4nA2p9PpUPmSa3fuspzN\nCOOAeq6o6xrlAobDNr7RzOYLfunf+rchrgm0wTc13/rmdR56xybLqWPQaoMr0TrGeotqWYzt83f+\n67+Ns5p0o8Nqq8311/bpb62yeG3B7qU+Kt8iPGihgoyxukltHbapcR7i0IAOWe3ETJYZ3h+Pu3GW\n2jbEgSaOI4qsoGwsZVWTJhE4R2Mbnv3yN3DK45oG5zzoglAHKK2orSPQCmNgNC359O9+GqWgqi27\nu5s8fGmbc+4KbaNxVrPViQnaK3g0P/8zPX79dz5LgyaIWriyoKxqQhOB15hQExioa4u3DesbW0wz\ni3cOrTVKKTppQvfyeTyW20e3Ga5q8JrWMOb1Fw+Y7WUUC+lBFkIIIcTbw5kIyChFFBnKLCMKOoSR\nwqVtLp47x73D+7hKU3mP8oBrqJ0/PmwjMLTTPrVBv1SPAAAgAElEQVSvefjKJUzgGXYdujIM+j2W\nOkPXfUysCQJY290m0DGt0NBu93j08VXuHL7BQ+cfYbnvaLUTrIJQg0XhvEd5RxIa4ihAa8ibmiAw\n5FVNqB2dyBCgiVoJ9w8nNHWFQ2O0oyhzTBCw2u+Q5xmh0TjnCcKQQIHWiqLIiaKYtJWCh7wscc7h\n/fHmFNeu3eKJR84RtRIWy4LuyhqgUN7idQDJKp/663+Nr/7pl3jPB36EIDhusVAKTKgAx2w24/k/\n+SOGwxU2Voa8691PcHx3xbe3+Tv+noCt3i6Yi3zuc5/jEx/5CF89WILK6fc7D6w8hBBCCCHeSmdi\nFwtjAhpb0ep3mC3HVLZhc2Ob3BYcHE3YOLdCvx2T5QviKGEwWKUsG1qtDk2jCKMOw26fQdBDB5p2\nJ6SOIDQp3f7xLC7aox20opQwapOXBU1QsbX2LvKJJ2238Rx3EtR1g7UNvqkoq4LKNZR1TRiF5EVN\nXlbgLGVVMc8Lat+wyI+DsVLHgbNuGkxgMBryquLDH3oGY0J0oAiUI0kivHeEYYRzjvl8QV6UVHVN\nXTfA8RHc3TQiaXWPFwLGAQQxjpimWEBVoVAQRDzzofcTnGzFprUGryit5fmvf5NP/cLPE6UxR/MJ\nt25f/3M/e+scTePweKxtCMMAbMXHP/whUJ6f+cQz/JWPfeCtLAchhBBCiAfqTMwge+9Z2VilqGs2\ndrYJDdigYDwfceHiBe7vjeh1+qytb5HXNQcHY7Y3donShL2DA7yvSFcG5PMlm8PzLIscbx00jlav\nD2ZJFESoxNJOO1y/d5Xd7YdoFiX1OEcH4XGPMR6FQmuwdUXT1Cg8vSSinXZZlhXWOhSexjVopWmc\n52iyJIwqtlc6jCYN48WctcEApQICrZkuFnTahh/70DN8/gtfwXnHcpmBV8RJeNz+4D1BENAyEYFW\nOOtonKOpHdZ6cDUEEd5WKKX5/OeepT/o8c73vhcTtvFNw9HeTVa2r+CcI1CaX/m1f44rl0Qtw/3R\nPiYM+Zmf+enj1wOsO35d50HVniSOcc4TBhH/8o+Ox+k0/MSPPv2gS0QIIYQQ4i1zJgKycx7qBhdU\nWOXRLqHlNIlq46qM2CgiDUlnhb7W1FVNg+Vw7zaJCtA1LA7G2KAmzzxG19SVp3YNUKO8oilLwrrD\nretXiTqGYlJQjBTea6JIE+AIdEDVVGitaZoKHUCgQioLLTw4j9aaQDuaBpRSKA3n1ttErTVu3b1L\n0zQYFL1OSl44lkWB1oaN4YDpIucnPvYhPveFLzOdz1EoOmlKVhSUZUVRFNQ6IAwDrAWL47GdVQId\nYZ3FBAmKBldb0naL6TzjDz/zBzzyyBZb61vU1vGZT/9zPvETPwUBtAJLbhxVlROYkKfe8yPMS0vg\nLd47yrKgLAq2t7aPfxFKoTx4LB/96DNoHFlWUtrjdhMhhBBCiLeDMxGQlYLGWLJZjvUe2gFatdja\nPsdsNuPw4JBY18yzA0yoSdKUqljSjVtgNfiGaT6ibfqEsaEbdsmanNBD1WgiFTFfLIh1RK/b4Wh8\nhGEdZxtMGBAbjQYqa9HaU1cVSaSxjSVOIhrrWSwWWKfQSlEUBdaC945BOyZMemTzMQqPx5EmMfP5\nnFarQys2aBXj0VRVQTtSvOvxy3zuS19HB/DhD76b+/cnfO3r38J6R1mVVLUi0JoPvu89bG2ss1zO\n8N4zHt8nNY6VnYew9vh46sky47kXr/NDT2nCpMfKygBjDEVT8cjjT3Lz+hvMJzPyymF9RNkA+Qxj\nAhbzMRcvXAY8VdlgXc6ffPEVimpJoODjH/kAKgwItEL2sBBCCCHE28WZCMg6CNAuxTQFNR7TFJSz\nimq+ZDnPWNndhqamby2ZUVhriaOYrF7S7nSoFw2tZBVXWxIixsWMMAqpmyWuLAlVm6PJGIC4PaBX\nxpTjGu89cWIINCyynE6nS5aVoDxF5QlMQFE3gEU5hVWOquI4HNuSQa+DVp7F9JCs9mTFkmG3zbDb\nwjpPEEZUdYHzsMyW1NZjnWUwaNFNFVoHZNmSre0B5/bXuXd4RKA19XH65uJDl5jNllQNXHv9VQyG\nRx85T9M4sqxgPF9QVA0+q6gbyx/9wbM8/NAFZos5Ze345jeeR3nHcKVNmTdk+QKLxRY1k/uvY33J\nytY5yr27mM46v/6b/4zNjR0WixlaQ3PSqtE0zZ8t5hNCCCGE+EF3JhbpWWeJInjk8uOkvRZeGdJB\nSthu0dsc4usarxUmSugu2jAKqe5BP1snnyyolWVtrcvqYEAVQIhiNNojO8pZTudEoefS7i4+SnCN\nx+Ua5yxagXUwmS1BBRRFRVlVNHWJ856msXivqMqS6WJBVlj+9Nkv8+Vnv4izFaudkG53jaPRmJWO\nQXvPoNsmMAlR3CKIErRO+P1/8Scsi4ayqnAO8rLgiSeu8OgTjzJdZEwnM9711GU++sHHCHGYuuGT\nH/sQh0cTUBCYkIcfepiLF1ZppW2CuEOWF2g0yitQsH9/TKA8WZ7RWMfdm1cxOuDHPvpRlLeUeYH2\nlsV0QePh+q3b9HqrpGHC9bt3uPbic/zkJz+OVh5b5wz6A67duM746IDZfCQtFkIIIYR42zgTATnQ\nhrpyLOcZg3RAK9Q425C2uxgd4rUnDAJK71gkc8JNTXBOEa5rTLtD4zxKR0yaJaYFtTesrF9muLZC\nN13FVor9oyPCxuGdx5agvafV7VLmOToIiCNDoD1KKQIdgLXYuqAqMhrgK199CXyAtw0exyCNIWqD\nr3nl6h0+/8dfo65zwijEKU1THy+m+8zvfw5rLWVVYuuSIIzo93qEJqSpquM+5kCTZxlx2OITH3s/\nn/jJH6esGpIoIlCeSHs6nTb91R10MkTrgMopnAeUAw839w5RgabTaVGUOWVT83Of+jlu3LyD0gbX\nVPzhZz9Np51SLDP6FwbcnR7xf/zePyMZrKK6bW7fuc7lK+f4off/ELu767QiuHHjNZIwpMiLB10m\nQgghhBBviTMRkJXzrHR64Avy0RhdN/RbKZPRbbqdNr4pKe2cOPS0ejGNX+LrisxPCY0i0J5FNkL5\nitnePq00pinHNK6hsTmFXdDppRzOb6OxONsQJwnPvfASabtFFEXEgcbVBUWxpMgy6rqgLI7bLb70\nlefBNfzpn/zxn4352Wefo5wfMJ0f0lQNldVEgQLTRvkarTUvvfgtPBatFVevXkcpR5Vn2KpAAXF0\nHDzLqqKoK+Z5hsMxno8gUFhX4W1FGGoiE+GtxTYN4HE4vHc464mMpx8HvPPJJymKgl5vyEOXH+Nb\nL7/CU089QRy1CCPDzs4meb6kLJZok5BEhv7uBhkZN27d5eYbd5nkM4YrW2zvXubCxSd5zw99hGXp\nieLogdWHEEIIIcRb6Uz0IJtQY5KE/kpCdG6TaTFn2B/QX65SVkseuvwwoQopqxxjNFXj+F/+wf9K\n09TYQNFOOsyqEYEzNFVFp5VQVkviuI1FU7iSditlpbfJsrAo7VBa4xtHkraoy5zGOrxz2KpEhTFV\nWRLFEbZpCOzx8jutA5x3xwvWtGGeFQy6HYyJOJrPCPU22BrvHIE2XH3t1eMg6+Du3Tu889FdtHIE\n2uObAhOmuEBR5gVB2iIKI8qixHtLbWuyzJJEhjiuQWuK5ZhUHZ9k4q1DBwEeRWQMLtCUVQVecf/m\ndUzSYmtjFWcrsjxjZWWFJE1JewP2791meHHAaP8eiWuzmC9YWd3kzvx1Mu149fYrOF0SR30mRyO6\n3Q55lT3oMhFCCCGEeEuciRlkE8TsDHaYLmt8E7CSbDAZzVBAvshRhcfagrq0RKaHMZ3jQzx8TRiU\nuLohxZDgicIWjYdQJ8zyJd2oi8oagsqAd9y5sUeSxARxi9o2aOfJ84zlckZR5sftC0WBUgrbNHhn\n0er4ZDvvjtsZgsCQ18d7Gc/nS+bZAqM0w26CV1Aux1hb0G2HlEVN3dSYQBMYDVqT5SXDfp8ym5Om\nCZ12hzAISNM2/UEXExjqomQyPSTLl4yO9rn++ivMx3MWi8OT7eYUVVWhgAbLMisxoSEMQ9qdHkl4\nvAdzU3sevfIEzlrW1jfAWZzWjA4mpKZNWVtik7CYj3EaVvrrzCdj5ocltqzxqmY8PpRFekIIIYR4\n2zgTM8jOO2aLQ6JAExrDsh4TpwZlDTuDDYKWpiwcrVbAZHKIqyvmkyO6wy6LRUFoIFANYRYxzkfs\nrq/SJJ5UhRws75OVS9r9DnlhufHGPttPn+doskA1lpdfeYX19RWct4DHK1BaYZ3FWseiUNR1g1Lq\neD8673HW4X1NO025cesWZdmwPuzw7FdfIdCv85Ef+yGqquSd73yM9q09Xr16g6qsKKuafqdFZS3G\nGFaGK5RlidcFYWgIlEPpFO0XNE2GUjCdjAiwJHFE3eTEuo3z1fGR1UGAa2rwEavDPov5jO3zO0RR\nQF1XhDqm2x/wq7/6TwmN4sUXvk6Wf4mHLl6kKRxNHKOKgg997CN4W3P15m3svOSJS+/gxvX73H9t\nhDEKHST4RjZ6E0IIIcTbw5kIyE3TUKHxjeIoX7I+3Ob25C4DajLnaY4K2v02ZAqagkinDHfOU2Rj\nVvur+AZq1RB3W6xmUCpLVCcssoKoXdNZXSdoYDouUE2A0ppbN6/hvGfjJBxbW+OdJ45CKg8mDFGB\n4oWvfJMAjcdzcoo0Wmt67Q6LfIqOuhhzBN5RWrB1ye/87hf4+Efejabh4rlNNjeHfP5zz4PWzOYL\nTKCwZYFtLGkrxmiITma1yyxDG0VZFBwcjinLktgY+j3D5rCHViG+zjEayqKh10uJWjFhGJNnS66c\nP8/XnvsmN27ewfmGbjuh3zKUzlI1nsgY7t6+jU5Dzu/u8P73/Sh37h/ggTAMwXts47lwfpvd89s0\njeeFF54/nj0XQgghhHgbOBMtFlorgsjTSiKUqcnyBYYAHUTMipJ2v814PGPKEpdEpN2EPJsQmIjl\nYsGymaO8o8gqTJDgA0OvO8QEDlsFjMczKhpe+tI1nLc0TUNRFDjXYKII5x1aK8IowllLEGiUAueO\nN4lQxzupAd9OyHDx0gVc7cAo2icL2JrGYbQhMAGRCUiiCK1reu02H/7we3FNRWM9o/EEYwK8tyyy\nOU45qjKnKksm0xF3b99k7/6I5aKgqhpWV3pkiwpb++NFf6qhKTKsdzSVJQxCLl7aIFss+eynP8ud\n27dpRZpeHGCamjhSfPDdT/HI+Q1+/Ec/gNGga085zRgtpuhAY10NHrSCKAxoJQnP/skXSCLPE1ce\nkxYLIYQQQrxtnIkZZOcdymgmyzmb/QE6NPRszLIqWe0P8VrTaXfoRh3mdo4jpP1/sncnv7Zm6Z3X\nv6t9m92ec24bt4mIjIxsKjLttLOqsIQHBlSNSyBECdUMSohSIRUDkBiA+AOQRwyYIJXEACQmSCDB\nAAlKBiaIsuzMtJ3OJjIjo7vt6fbZzduulsG+6UoQYHvgiEvG+5Gu7r7rnL23ztEaPHvdZ/2e+ZqU\nFUqPeO9xOWJ7xSYe8MphjSJqjS4KlosSEIwuknNk6Hv++l/7ddw4MI4dWiqEMqQUKaqaFCIhjCht\nefzmQ549fX6sjYVAkvnWN7/CvNbEKBh213z72+/wx3/0CYnM6D2V0Xzn977Pb/zWXzs+RwXSXDN0\nDiXh5N5tUjrmG0cUL8933Dpbs1CSw2HEDz1SRGLwrNdznj95Tj0vabuG7A/kUfCv/d2/yXe+91Ou\nrq8QIlNow9mtUzabHSTwnUNbKKXkt/7F38TOTrjz+DE+eP7Ob/9turbDpUS33fD48dtcXvdkkVBa\nMriR3/s//imlUVxcX7KarZjNZ5/3NplMJpPJZDL5TLwWBbKUilWsCIVDuMxh7FBoaltyuTunni85\nrdd0oSf0mUa07LYNtijJGcYcqOclB98gY0EcO/ox4rxg11/jB8+Pvnv5ajBIoixL+ubmOCxEKhIg\nUkIKiXMOyDif0CJw5/YJTz55ghACrRQxwtOnL3jv3fu4mCiNZLvdkRlJMR4zlQtL1zRIBEImtJlj\nw0C1PsO7HVVVIZSBtufyxUsWsyW2KGjbgZ/97Cfcv3uH7fZAFhJjNMVqzrIueOutt2jbHeXgKNYn\naCVQRoDIaCnomg6DwJNAwL/yd/91Ut+gdEnfdQwho7Vm37eM3jN6R9eNRNdw72zJODS4EMkx8t57\nX8eWFTEF+PkFxclkMplMJpMvgNeiQM4psxeJuj6D3Q2VsrTOYQpBKWqsK3HS0Q4jKSZsoXEyk2LP\nWb0mNg6T55gKnn/4lC89fsTl5pKE4/GDL9G2LT9yN2QRyBlijgx9R1GVhBAoywIhBG70aCUIMSOk\nOLZYiICUiZT0sQ9ZJK6utuSvPmAMiVmh6X3mnbfv8Yc/eEbOmTg6bCkYx47KlESRUEqQs2deL1Gm\nJiSPzGBNyegd/+R3/4DT9ZpHDx4yDj3zWU1oB7bbLX/1175JqSHGQDmrqMqaEANlPcM2B2xRYK1B\nCcgCHr71iAcP3+TF83O8D0i1p1aSED1qVmOMZnAOpQ3WRH7w048obMH9O2domQgxYO3x1F0iEVId\nLylOJpPJZDKZfAG8Jj3Ikqa5odm8QAoLeIrKcv78kuQ9s3XN4dBydnYLjGZ1skalwPPnT3m+vWBM\nkW5suXh2SXMIfPjRMwJw/94jPvjoQz78yfmxRSJJvv3tb1HYCq0NZLD22FqRUiQGx/gq4k0ITYyB\nFDPf/JX3jgEWCUAQc4IkGQdHPZuTkUgl+dq7j1Ek/sbf/E1+87f/ZVLO9O7Y6yyVIkSPMEuSKskp\nIY0GJNtdw7d+7dextiRGj0AQgsMqgdUK70aMLShmNYU1BP/zXuYbkAItJVpqxtFzGHreevMd1rOC\n9cyynJcoKbnuPVeHgReXW5o+grJIpVFKYbQmpUg/Rrohkvl503UmpEQIiaZtP78NMplMJpPJZPIZ\n+jMLZCHEIyHE/yqE+KEQ4gdCiH/v1fqpEOKfCCF++urvk1frQgjxnwkhPhBC/LEQ4tf/rPfwIdDs\nBoiWTy4/wfeJ0PcsqxnBR77/R9/D4Tg/f4YMkZtmixKZ2/VtRCe43Gx5/8cf0TuB0hqfJMklXry8\nQmt4/tHlsUiVMJvPSCkhlMR7R3rVOuC9BwFKKaQ6Jl0AGFNijOSrX3sbKRRCSMjw+9/7AUVZEHym\n6xp87zldF/zqe49h3KIlEAWHdkBpSyIxukyIPTmMpJToB0/bNdhS44OjXi44u3OHh2++we2TOVVl\nuHP7hOW8oK5qbH0bVd3BzG4zusA49iipkXnk+z94n3/hX/pN/tbf/lvUNmK1fvUhIKBFxkiBtRaQ\nON9jjaasakxZUM1nlGVJ0zf0IZOEAiFBKIRUfO+730XJ1+Kz1GQymUwmk8lfuj9P1ROA/yDn/FeA\n3wD+XSHEXwH+I+B3c87vAr/76t8Avw28++rPPwT+8z/7LQRDmLEbA8OY+fjiknYYCbpgcbbiK299\nieVsxq7dEsRIf3PAo8mlAhzLcg7CsH16hUETh8yh7bm+7hkOFWE89hf74HBjwofh2GoREyFGhNRo\nY7BFidQGIQRGWwSZlEbGMbBazjlZK4TQfPUrj9juep58+oTLyxtSEsSUkELhfGR/2JLcjpcvnnB4\nNYQkOEcMkXFwHA5bbg6Om86TciaGRNM2ONez2x8QMXH73m1uny65d/cWMWUiCSETyExKLS44cvAg\nBYt6xmI+RwiN8h0pjKQ40HYHfIREPk4rlKALQ1mWlGWFkpaMIIZMQEE6TujrDh3BOXxwpBD45q+8\nR1GWf9G9NZlMJpPJZPL/S39mD3LO+QXw4tXjgxDiR8AD4F8FfuvVt/2XwP8G/Iev1v+rfMwF+6dC\niLUQ4v6r1/l/lFImxk9Y1l/C+yVpGHm2aajUQL4JeOFYLU45f7JlPE2cnZ5yMjtlu7kmL2qun+5Y\nasXpmw+ICQbfo+2KdhyOl+5yJouE1pbvfOf3+fa3fwUlJaquUUIihcC5RFla6nLGrmkprMX7ghQD\nRVEyjiPvvv0lDsOIGzzfeO8R+82BcRjxQtO2PaN7SSaxfPsNhuYGpEIJiVGG0QV89PSjYxgGRh/I\nQlIUNc1hi/ceKTWHfcOskIgM9+7dwTuHkgptLaHfIaQkjT2Dz0ip0dry6MFtfvD+C3LoiLmnKtZI\nKZECxrHHGINAoJQkx4g1Jf/L//w/odRx+Mk3f+1b4D1FVdC1A2e31tTG8PTqihwS1mqYYt4mk8lk\nMpl8QfyFLukJId4Cfg34PeDuLxS9L4G7rx4/AJ78wtOevlr7vxTIQoh/yPGEmaKytF3Njz95gUQR\nQiRLQS8cBE9O0A5bZLFkCAuevRzZNleEMTP0HUIIZlXFMPY8//CSe2+ckQiUQvGzD54ghSDF4yly\nyvDRx5/yxht3cCFRlSVFUQIJozVGa2azOVJbYhZcXTxjPtc4NwKaoWk4tAOSCFLi/cAQBCe3ThAy\nUtRLrjbX3L53l/Vp5OJqi/cjVh9HXd9st2hj6PuOYRwx2jCfL9hsrgnOk42kbT1SRk7PzijLihg8\nY9MglEKkRBIVt24tef/9T4DEzJb86rfeI/kerS0xBnKWhAwhRLQSuMEjybgx8p0/+C63T1fEEHn6\n4iV3T5bsm56bzZaiKskonl1c0bcHlosaQeJPM6Ank8lkMplMfsn9uQtkIcQc+G+Bfz/nvP/FVIOc\ncxZC/IUqqJzzPwb+McB8Nc/IgEwWgcSNA4HMfFYQhGR0PUZVxDHg04G6KhkPDicDxiiSgH3X0F33\njPuej3dPeeMrd1HGoKIm5oAQEGNESri+2vH8+TkPH55x595DlNIUSrGY1QxuRArFODr22w0XL14S\nb3u0UZy/vGJeFUgyvQvHX57RdOPA6emMFD0OyEJyfXGJrZdoJegOLbaw7Hd7Xl7dgJDU8wVCGG6f\n3SWExEnKHJqWDOiipNCQc2IYRgASgjx6ylKTkmTwA2MImNGx2+1xJrJeVKSsaAbPOO4Zh4HVes3l\n8yfosqJ1CakUfuy52R4j31aLFR9//CEpCZ48fc67X/kKIXgOzYHSStzg0GbqP55MJpPJZPLF8ecq\nkIUQhmNx/F/nnP+7V8vnP2+dEELcBy5erT8DHv3C0x++Wvt/lVOiGyVzmRFSU1YFw+hxYyB4B1kQ\n+xFjSkpT0GwPBJEok6JperS1RJnptgMpHUdCv3j/kje/9hiljqOTU85IKRFCEUJACsWnn1xx7403\nEUJgjUYrgZQCPzraQ0PwA4lMP7RopxDAvumIPiOAIUju3ZnTjI5n51dcb3YURUWpA36Ek5OKkEGf\nrvjJx885v+pYLi2L9ZrF4gRjDRlNs79kvjrBx0wKjrbrufv4Pj5FQogYUxASxCiJfUAKwfnlnhgz\nKQReXN3w+K0TpLS0refQ9EhlCFlwdXnFbLmiHxy2qkjR89V33+HZs3OG4Ekp8tFHLxjGY1/25vIS\nW5SQIuMwcrpcEHMmxSkHeTKZTCaTyRfDnyfFQgD/BfCjnPN/+gtf+h+Av//q8d8H/vtfWP83X6VZ\n/Aaw+//qPwZIOcMY2e22dOMeF/xxnDKRJDPKakxVMpvPOQwt5axgaUtCShRVgReBmCI+uuNQCzKZ\nxNOPnuGcByDnTEqJGOPxB5fHiLehbwGB0oqQIiGmV98baNpj+0YMESEFMR6L7K4bjwW8G/jxB08J\nIdGNnqKuSTJxcDCmzOVu5Pn5ng8+3vD8fE9ZWYSCsqxRSpPzsUVktT47Zh8vTxBCMowDV9cburZD\nKU1IgRQjMUa60bPvHD5JFssF3vUcmpZqfsrgModuIArJ4Nwxt9kWjFHgEcSUkaYmK8N2v8N7R4yR\ntmsIweO945Mnz9jtG5q2Z3SO8+trRjcg5ZSDPJlMJpPJ5Ivhz3OC/M8D/wbwfSHEH75a+4+B3wH+\nGyHEvw18Avy9V1/7H4G/A3wAdMC/9We9QcqJolQg5hz69pgmkRIZOFku6BtHu2/p2oY31iuuh4ab\ndkupK4YQIQWsqrj39j0uP3gJQh4HdrhwPFH+hdouv7pslrNACMF8VpNSQkpIWZI5pltkAYKM9xGt\nFS4cT1Sb3pEzry67abTV3Lu75vJyA1njoyf4Y3vI5XWHNQplAydnc5TRGKnIOZBSRCRBWdYgBEZp\nhubAbLVmPO/Y9yN1DBx2O+rZ7HjpTmu01AQBw9AhTcmJ8ey7nufnF3zwsw85XG149807zNYrhC7I\nStD3I9/9/e8RYkRpjUAgtCElyESU0pysV2xubpDAn/zRdzk5PWVz1fDwzpp+G5jmhEwmk8lkMvmi\nEPk1SCeo5mV++5sPMaZkNVvSdi3aCLKOhC4RU0AXmqos8WNCiJ7rmwEXPHUxYwg9Rpdst1fcfNyR\nQzimPaSEEIKcM0II5Kss33+2Jvn2r3+der7kZFmjpOHQj7TDwGF3w/Onz2gODWVhCd4jlaYbPEpm\nqnsLcqEZXx5ILrJe1GQpESmQomR0I0orrNHklKjqghA9y+WKnCU5S2bzBcYWWKlQQhCDZ+hbsjWk\nNOKGjkVVUhmFLgrms5qmH4hJ8OGHL1HWUKUDQhte7B1vvfGQ03rB2O6BRFKGIBWZTDeO5CyICPY3\nG1IYSEmghIAMRal5/uIaB0gEZakxaeDW+hbn+5abXUNKaSqTJ5PJZDKZ/NJ7LUZNCyGwVUkKmS7u\nCTmRcmJFRSN76rI6tloIsGUmUXByojm0W7TMhN1ArhyVnnPQAf9q+MfPLxIeJ+Mdi2L5qnBOKSGk\nJ8XAfrflbD1HSXBuoD1sj6lmEspZSfABqQ197CnfWFDKgkCmygZ75wQ3jAwx4m96lqsCpTOrqjoW\n5UL+aZtHDJntdsdisUZrxTgOaCXxwTN6hwZyhHF3QM5nVKbg0DWIqmJZlZAThTF8+NETjFGMKaKT\nZLtpCErx6acfYx6/g5SC6AMvX75gvlrTdcTfbCIAACAASURBVA5KiR89Qmjq0uK9oG1alqs1IQYu\nNhu+/o33+Oj5M9ptSxAJdMXLQ4cSeRo1PZlMJpPJ5AvjtSiQHzx4wO/8J78DAiKBylqCC0iTKWxB\nSIkYM7WxFBa8i/w7/+gfMZ/PGZqOb7z3Npt2z9Amrp4eUEmQQvrTE+OUAt/81tdIQeBcz/n59au2\nCkXKkUQmxowSmfzqkDRGh0RAAoPCx4Cel2gMQ/Ccnp7RHhrc0CGFxpSG2cMFOUViCBwODRqJixmy\nQAwJQcQowzAOVEKghaVrD5SmwChJXc0Ihz1WSdqbG2b3TljNS4a+Z7FYQM7sDjtmszkRy8uPnvCV\nb77JmxLOgya5yNtffUwYHYMfUKcLalWx2R2wtUUBJ+sTLq8u+ekHH6Fmmic351Sq5O6bD/j++z8i\n+0gxr4BjL3RlSpohTAXyZDKZTCaTL4zXokAmZ5wfsbbAIBl8QOaIESX9ECA7jNKcnFRsdyO972kO\nLaZ1JJV5fnVO2w3kYLFS4NI/OzUWQiBUSaFKMIJmv8VoiXOJ/aHjB3/yU7723ldob3ZwuibGQAwB\ncmYYHMF7hFLUswpRGcYcESGwvdowjgPr9YK+GwkeZE54N6JqgVkvccGjtKSIgvEwUJYVWim6caT1\nnmVRUlhNQGCEZew7oh/xzmEAbSqUcjBCCoGYE+PoyCTmM8swjCwqy/Xh2A8dZ5oPXpyTo8NUC7yR\nRD9ias2h22NsxXhzjVAapS2kyGJVc9i0hM018+UMFxNagBsGrKkZw4g0kMfPvxVnMplMJpPJ5LPw\nehTIgMiKGANjgOgDWkLMI2+enbEfPftm4ONPXuB6z/L0lEJYuuAokyAIUEnz8tM9MYFWhkzi58nM\nAvj0yTPWJ3PavifEhDWG9b0SqyXnN9doJKIqQYK1NcNwwLnj5bSqKhG1wqdA8hkQqCwodUnoR3BQ\nqYo49kgUuRnpgyfliBQSW9eYWcHoPeM4wLoku8AmtKx8wUhPZwwiC6yRKAFJJLZPn9OtZ6yqgrKw\nPH/2HC0Ful6SU0Sheb5xNIOj48DjNx+y2W4QWePbLfNZxSgSJMGsWhFiJMWEkYKiVKisaL0j5kTa\nHTCmQCiJshZb1NR1xX6fKIuK4XD5eW6PyWQymUwmk8/MazEBQkiJ94n+MMIIha1wIbG72PH+h8+4\nOj+nVpK43WJkyWHTcrk5YGRBs3ccdg6ZNaGL5JgQcJyel4+X9BDw6NEbDINDCon3jiwzOXmysvTO\n8eDhA+B4YU1IULpAqkw9r44RZ0qTfKI0Bi0tQgoKm0FYYnaoyrE+qXn0xgLiyKPTJbdnp8ylRShF\n7zxIS31rjTuMbK8axiYwCk3IgkPTse972sExuGMGtPcRqwwJzWbfs1jWrM/usNtuuXXnNsPQ4lxg\nsZizVgVu05KbQIXGx4iLinRwWAUnqxMMkm7fE4NldzNwuWlQwTDTJTkoxs6jgqCQhrHrGNoOg6Y/\ntJ/3FplMJpPJZDL5zLwWBXJKCWRClxZlMn3TYbNGqhKTNLWpGfY96BO0qCAHEJqbpqN3CdcLLm4a\ncnRIeSyMU0zHTORXmcYIwTiOKKUpbcEYIlkroh+o5xX7/YaL8xcMrkOpY0xcURYIBEkkXD+QJYzJ\nIUUmm8TF9Yb1rTmLRUGSkqtDz48/fI4sDNvtDjHXFKc1oxuRArSB22+ckcaRs9M1s7JAJcntasbG\n93gr2TUtXYxc947LtuenH37KrnM0uy2+8+yuNzx8cIex7/kH/+DvsZ7PsEYiSsl8Ybh7a828LDkp\nCwolqOo5Fk2/35JJnJ2eYhQEP2BEpmv3DINjNqsQAvq+p9k3FLogjJ7w6oLh1IM8mUwmk8nki+K1\nKJBzBiUMyUu6LpCIdMGzXC9AWzbbgS5kAoLY98igKWWBbxxZKqLMyCwYRSYEf3zBX2CMoWlahATv\nPVIrnAusT9bIumRwI4MbWSxrohswWiKkxhiNEKCUQpWWNDpmZc3qdMnQjtw6OaPrb2iHQM4KbTVl\nbZjNH+IKw+XFJbvtASFh6D3OOc6fnnPn0RlCjRRzhVl6/vjpx5ycLlFSYJaWtBQchgE9LxERtBYo\nowm6YD6v0UqiQiQ0DaP0pFUm6cRl0yGsJepIBFzbMjYHXDfyzsN7PFot+dV3HnJ3JTibV0gkUmmW\nixUiw+lijhRQ1xXBO27dmhNFZDWfHftUJpPJZDKZTL4AXoseZCkk2QtSHCjrOUO7RSuLCwOFrRno\n6YYWK0v0rKDre1IpqPSMw+5AUSmM0Zy+seRw1R0zjrMEjiOmwzDiXI8UAqkkSmkWJ4ph7OgPPbNZ\ngdXHyXaVtRgpCW6EnBBksiyQQL1YY8uSQ3Pgrce3CEmyP+yQhSH4gC00drlidDf47FgtFqSk6YY9\nd+6e0gw9owtUszNGd0NZVLRjYnXnlJQzXd9x73RFsx+4tapxbiBqjy8bavuA3WFH3wYePLzPJy9f\nkPPAvfWapODNxyeMrUMAWSiqN25xs2+IMWGrOS/OLyitYr/fokTJt772kFk14+LqitsP7nN5seH6\n+oC0hkJkqBTBJyqlaLoN1rwWW2UymUwmk8nkL91rUfXknDEKyvkCN46U5YLgPU3bkSuwWlOfVIRR\nEHJAFRXDMCJiwJaGwpa0bUNlS07urdk+3ZNyIOdMTse4t9E5Qjw+vrraUN2rGQ4tSlW03cjVxRWr\n1fF9C2tIySGVJqXEEDp0Mrjg6dsDWWc+fTFwa73AeYWVHhc8JkbCmPEiYGVmHHpEYVjdWrG5vKEs\nLGM7MqiGwpTEEBBZIlzHmAQLXeGzQRqPjwk81LMl/kLxiXnG17/8Lh/86H1ePrvE9Y6n3cCX3pnz\n8NYtPnx+wLnMMPRobeivz1ksVnRtz9htqLPC9QEjLA/vL/nhD885NBuCC2wuLrFCcO/2itMTx3JW\nc7M9kGMk3V+Tc+A7f/Lk894mk8lkMplMJp+J16LFQgqBrTNp7AlppCwkWmbm8xIjE7iET4nDdkOU\niUSglIIkoSwM49BjCsWYOpwfyBwHhRynBApCDMcOgZxJKRGVILmMNhUieapCczg0pBgIKZEShJDI\nKRNCfFUkj0il8DEihGZeLdhcb2k2e3Y3HcTA2++9Q1EXlHKOzAV375whQuZwscMaAwhOTk/ICe7f\nukNOCp0yJ6cnFLaimNX4EPCtp0gFY9Y0redi33J10fHRT37M7bv36AfHYRh4uWlQWvHRx5csbQGh\nwypBCCP3757SdS1Vbam0RhaJxbrm4nrLp882PH3xjH4caPuR66stH/7sKdfnl6Tg2V9vMUpRlSUq\nwWHfEUL4HHfIZDKZTCaTyWfntSiQS6vZNyPoxHxZYOvE+taCNEb8IJjN5+QuUUqNyRqZoWtHZJaE\nAMYapDKIbJBaI4Ui51fT9GTm3XcfkaLAGMvzlxvsTOFGR/aRkDzD6Dl0Ax9/+pynzy65ObQMXYcA\nksi4biCHRPJQVobmpqdvOwo949Hjxzx+/C5CwM9+8hOyloSQIAh224aiMNjKknIkOM9N09D0HR8/\nv6IfHVJVvDhv8WOm3bfsN3uSNux9j7WSGANSaUbvGFXFp598SFEaYjz+fJtty3JuicmzWtcoMm/e\nusX2aofVBVJoVkVF5xwb55HKsx16HnzpER89/5Sze3OQitt319hCs2lHolZsu4EfX1zwbHPFrVt3\nIL8WW2UymUwmk8nkL53I+fMfAFHXNj945zZ+zEQxgtWkMSKVwbWOel7icjhOwgsjcQzM6hU+ObTQ\nxODwIgIZNwRkpxnHHnLiK199TD+MeO+5c/sB+74DHZnN5zg3MluVuGFADIpbswX1smTfDATvQWaa\nceTZ02cIJSlXGndIBB+YrxcgIiorlCwwKtJ0G77y9jtcnt9wtbnBFAXGVkQSh0NPaQv2hwaDoigt\nSmmUVCzmcy43N1gpkUpQliXOOzrnqaylbXvcMPKNX/06uxdPuHv3Pj/5yQesT08JoaUwFZe7nnph\nwGkOQ4fVCm0VceiJ3uOkxM7mtLs9s6rkydVLHj+6R3PZoYqSnD3D0ECumS8qtocLTs/eoOmvWa/P\nePr+C5zz01W9yWQymUwmv/Reix7kkBJt75Aa6sLg0/HklpB4894tLrcbjC7Z+w5tFMElhmEEkxiG\nAaM1AsHoPXE4RsAhBALFMHpiPPYj3+y3KCsQaKSClCK+96hkGHyHsUtyjpSlZu96XO+wswoUlIXm\nznLJjejIsWZpDYfuOKbau4FeJ06rWzx5eoECFvWK3mW2u45VNUMm8G3PSb1ASMn+sCWGzHK14uLy\nit12z8OHb4AQHA4dfddx7/59Lq+usVphZhUyJaQyDEPLozcfcLPZUBUGN0akdwze4nygXhVsXuzQ\npSXGTAakyyyWmnv31ixO5jy6o5mvTtB3JV55Pvzppwgy3/r6Q3xI5NtrkIofdy3hugM+/w9Sk8lk\nMplMJp+F1+IEuShNXj5YUJiSsevR1hB8YlaUhJQZXI+2msF7rDH0TYtCI41EACFE8quzzW98+T2+\n9/t/+Cr/OHH7zhqlICXB2f3bpJgJwaG0QgiNEoCE2I18+eFtYoYhwMXFDm1BSsnF1ZZybqiVBGtx\nfqAdEtFBDD0yCEbh0cowKwz3z044vzqAksSx52y14Mn15tVps6YoS1KKjM7hBoexlqqqSCngxoDz\nDikly/mc0Y0YoxlGz3w+487tE/bXV6wWS7QVSBH49NNLtCm56UbgOC1vuZiz3W0p5wuiddhB45Ec\nmh0rm7lzOmNWLeibA0IITm7fQqFwIlGmhMuJth/ZbTt8CHzw5Arn43SCPJlMJpPJ5Jfea9FYmnPG\nANF7yJCIECJu6BmHASETPg3IJMg+U+oZq9MziJACIMAKg4yJ/dUlxihAHF/XaLpuoHcjKWRyzkgp\nUEJhpCCmeBwGkhI6OU7mlv2uYzav0NpAMhilaNqBYZRs2x6TLIfNFiUGiqoiyMh8tULlxJgjP3r+\nHFFZvv21u4xy4PmL59y/c8Y3vvwQIy3dMPLzX/27X3obqyVp7NA5QfRYaxFkXAjsm5ahD/CquA1h\n4PTOgu3hBuLAvunIQnPv1gkPTxaUSqOrEjc4FndKTpeGN+/dYnFL8eCtOe/cv8Pbbz5iVpTInDk9\nOaXQFf2u5eWzZygXGAfPYd8gQ6SUkge3TtFKfX4bZDKZTCaTyeQz9Fq0WGQgIJApgxKM3mELzaF1\nmEJitCUOgXEcmdU13dgiPIzdiC4LYgY/dGgr8CmA0cgUuXP3jK4bGEfPbLUihUhICSsVwmiU1sQE\n0WfWqzX1bE7bOUIayKFkdANa17R+ICN4sb+isiU3zQ31ckE3OorgiVKis6RDMNcWXczpB8///ief\noOWaVHm2e8+TTz5gceuUU7vi/PwCay0//fhThr5jMa+RRlKUFSl67tw5o3MBY84QRqEJXDU9pIzr\neh7cu8N+f40Ukm27wwTF/fUJd++uudn3jMHR9y09e5qXNzx84yH7pqFY1ahK4uOMWSxoD1s655gv\nSurZDCkkykiqAC+urxApE4T6v89emUwmk8lkMvml9XqcIJNRWjF4Dyqj0YQc0VaTIkg0zjmUBmUN\nprDInCnmBaW1qAS2KtHWsms6hr6lKDWHocXlgJCSYXDEHLC6IGqIMdAcGrQpSAKET3z4yQWnJ0uE\n0HRdixSSJjTHPGMhqGzF0DsKW+LcgEAweEfykUPbIjJIqUjtwNh1DG3AtT1WW0SGs9O7dF3P1eEK\nbQSqhMVyTllqtNIkFL1zeDJdPzC0DbNK4YcDScCX3nrzOEZbV0gJ9fwUpTTLdYXAcHlzhRSOm7Qj\nCE9RVqhGMZ+tYB9p9j2nynJnVRPbkZwSl+2eQMZFTZfg4+sNf/TBc3747IaPL/c82znef3KBj/Hz\n3iaTyWQymUwmn4nX4gRZICAljDbE5DFaQ5BkmZHa0g89ZV0yq2r6oYOcCC4QfUBbSZIZa0Fhafse\nU1pUVUKI+BCYLedEEnZRQ85UVYWJCjc4un5PTgpVafqk2DY9EoHRmqYbKBY1i3rJ4EeklBghkVIi\nsyTniNEGBCijic4hpcWWgs4NdG2L0opu6FgulmSZUEJTaENIPcZ7hE4IYRh9YFnWxJSoZzXdOFIW\nFfsmsFre5WZ7getfHgv4GOi15PrqiuWsZnWyYjUrYFHwcX+gmi24fnJOKxRySBQ7xyAy9ekCnwM/\n+HiHaXr28ZovPX6X/bZl03Ts2xZMZIgZhOP07Iyu644fDAb3eW+TyWQymUwmk8/Ea1IgZyQCP7Yo\naRjcgCotSkuCdxilcW5k0/ecnt6mlI5932IKy+Ac1ioKZRmJFLOC1EdcHLHKkn0iykgmI7Mi54jr\nOkYRkVQU9TETuapniFHw8bNrYozM5yWdT8QQSQJyzCSRsdqQZUZkiBGqqqRtO1Ic0NpwfXVBWZZ0\nbcdyOaOoKrrdwOZmw7yqEMqQFChtGVxECIk0mRAzF5cX3L57l65v8OOIlIYQAi9fNigp+ev/3Lt8\n8vQGrSDHxPp0zeg8w03H5mKErAnCM68DQQhcN3L3wQpjCsat4/zyOS8Gg0by5a8/4smn53z85Dla\ngEVhjeamHaiqBWPjCVKQoqAoDVK+Fv/ZMJlMJpPJZPKX7rWoerQyBB+QtsIoy2w+Q0pBSqCtwntP\nDInSVrTbPYeuQ6MYk0MLhZDmWMx5RwweYQW2tKR4bK9QSkJWRBEgZUBSKE1VQVEWWCXxPtEOgbv3\n7hGFZN95FrOKGBKITJYCbQS9G5BGo6xGF+bYpqE1prSElDC1ZrvbMitrVndOuGo2yFJQzOfEnHFp\nYAyem8OBTMaNPS4lpJYsTue4OCK1RhUG5xzojBCCKBLtbsPX3ryFlgWRjJTHVIzlcolznnbY0+4b\n9rsR3wts1lRxhb8amZcSMdbIaPE+84d/8CHXFy0fPr/GhYaXh2uevrwgIrjcbPCFJ/iAEMee8Nch\n7WQymUwmk8nks/BaFMg+HIeAFEiCFLjeQxBIATmAVRarLc4Fgkjo0pIl+MGRZQIiOTpSTGQh8KMj\nuIAqFVkdkyucd8QUCDkgk6BQFWOTKTTcnZ/hYwIJn37ygpQgisToR1IOlKVBF5IkFLbSkD0uO0yh\nqeYVqAwSioVBGs38ZE61lrR+w/1Ht7n1xoxCp2OWsbB0+57sPFoJrCqwQhGDZwzhWJBnGPqBfhjI\nMeFTwOiS0tbklFA0XF/umJcFWklmi5ooMzEmBNC1PSFGooRPnj3hYr/hau+Y6YLKaKI4Joe4oWdm\nC0ZZQ5LUiwXJJcrCIF1GEMnqmC6SUvq8t8lkMplMJpPJZ+K1yEHWVudqXWCUQgqFqQvCMKCMpjm0\nVFVNkgnXB6qlJQ6ClCLFTBN9orAFIUWsVnTDiIiZRKYsSlIOIBTBB7TSjG4k9B6jFSfrijtnM65e\ntqQUaGJG5MwYAvPFEoDkA0OKxDhSmpJAwBpL2x1IZJbFkkxmDI5SlaAELjoKVdC7A1H05H2J0gUR\nT6lLxnGkrC1lVXJ9cc18vmD0A8WipG8GhFS4oSeHY1tHoRQQ+bWvvcVht+Nq06HKkhAcZWG5e+cu\n3/vBz5BKkVImpUhKiaIskFrjvccogRsGclIgAAGL5RKN5Ga/4+T2iqF1CJlRQuOjZ+h6lvMVXkZu\nzjfEMOUgTyaTyWQy+eX3WvQgSyGoZzXuMCBnhq5pkUIgZKKsS2JMyAimlIztgNQF86pi8CMhehgy\nyhq6pkdICVmijST4wGI+Y3s4oLVEaYH0iuVZSRoD+82A6wL9mDi9sybd7JGFQUpo2w5baFJICCko\nTIUbelSpsUayuneLi+2eMY/MVEHb92Ak7TBSlhXSZu7VJ4wU5NowtpkxCBIj1hqG3uNjQBmFS46i\nrtjt9+QhIrU6ZjiXBoHAloZ37p3y/PzmeLLs4e5asd1B7wJaZM7OzrjZ3CCBnEFrQ98NaK0hZ7K1\nSGnIInF/tSAITRaCpuu5//AuzgUKmwg5EV3g7u0zLi82CCWIffi8t8hkMplMJpPJZ+a1KJABYk7o\nmSWJSFmVALjWoSuFFJGQE0oYqllJjJEoElppyAmRIcWELo4DQmQWmMLS7QfapqcqCw79HptKykIj\nyQgjyFaQlaJcFjTNgLASJEgk2UIWgiQB5wlk6lmNT5G6KLg87Ci1xUdPHwfWt2/TdAekPUbSIeEm\njBhjqKxGxUCIidgpVos5Q/AInQkZwugx2lAYi9GKrGHwIyopnB+pZcn17obBAUKwWJSA4jA45pWh\nLgW73QYpDSkl6roipBGr5wCkGCmNJRkDSDbtSD1TGAG11bhuIDqHQiCE4pvf/DJ/+MOfcDar2Q+O\nWkkaOR0eTyaTyWQy+WJ4LXqQU0qInPExkX0kxoQbHXZegFRkISmsxfeBmBPBHUcxu9GRlCYkCHjK\nsmK+sEQ8CYedCRKJoekhChazCqQmRnBjhLJgMa9wzqFLhRCSGAKRYy+vRKCEQSgJ2jIiGWLP5c0N\nGo0fHSIJtNREN2KwqCzR2iARjM4T+kzbes6vbohekA1cNVtyTOQERbZIC206YJRkCA5ZKBaLGY4A\nMQGBfsw02TFfn7BpO/aHnqoEYRbM13dwHrQGFwd86o8n7WTuziy3F5avvXmb5bwgBIePHu8DTT8Q\nUmJoRqS0oCQniznf/8FPcX3PbBV59+01M6NR4rXYKpPJZDKZTCZ/6V6LHmRjdV68sUKkRIwJ3w/M\nFkt89OQUyVIgEBTKMLgRqSVWW4wx9H1PWZaEGCBGpJLo4lUCBpKmGShsyfpkzWZ/iQgaoxW9G7C2\nRJARKFQl6dsRISXRO4yxaK0Z+oEcMsJIkk+oUjO2LdIqhBcoJckqE4cBWxSgzZ9OnavqisP+hlmx\noHceKzRJJ7zzlLoiESkomZ/OeHr+BCkUSil87xEGylmBSccYusOhQVnJ6fqU3e5AFQ25Op6yOw/K\ngCZwOp/zzb/6VbqLDYU94ScvPuXy2Q3LumB5dsKnzy44Oz1ls7thVtecLZdcXpxTzReQMtpqQhTs\nD1uWVf1/tncvIbZldx3Hv/+19rPOuaee996+ne5OIrZCQwaKaEAHopOowTgIElEMEnDiIIIi0bkD\nJyaKIogKUQSVKBicSczAiSHRQEubtGlCh3T3ffSt93nt1/o7OLtNDbqxB/Y91Te/DxS119q7Dj9q\n9K9V/70WB0czuuWcr798n/mq1TKyiIiIPPauSYEcfXZnD9zJLdIOLSFkDE1HmwbqusQBHPqup6pL\nirrAPZH6gKeWm0cH3H94QmIgyyLduiWvakJI5BZIQyKFwDAM7NRTLi/n7JQ1zbKh7xtCWTJ0A3kN\n3fo7OzYUsSAVjnWb3TEIgarKaIdE13TszqYkd6ztWQ+bXt2uT5Qxp7fNi4EhQV5kzJcrcKinNd2q\nwx1m9YRu6BkCWByYn6+IMUKRiCHQLpyyilycnFJOaobkTPMKMDx0dPPN7wjf9Cvf3J1yOAl0viTE\nwPe9//v58gtf54n9Q3ZCpKGjWXY8/cyTnJ2ds7e3x8O7rxOKnqyY0DYtMUbyvMST07QNbdvwwssP\nODmfq0AWERGRx961+L+5hUgwCCHQtT0+OEPTk5c5k7Kid6dfdYATotEPmx0tVquGVbMA4PX7p6zn\nK0IK2JDjA2RZJPRGt+rxBGlw8pBxenKC9cZytSTfyXCLkJx+6LCUkWcZIYtUeU22UzE/XrA/2wHL\niA59uzntr4iB1+8/YHU55/j4HB+grnfIDIZ2Uyz3XUdGIA1QFyUhBprlmuROFiMXywWL5QW+bpif\nLSh3cnb3pxxOj7i8uOTJJ47wkFNNJ0TLyEIgrwraoeVwd4YD0Qpm+zeY3doh2zGOz5Z84AM/QuQG\nzz//3zxz6xZDBg3ORd8ymU741rfv8dLLr7K4aLl3ekzb9lifCCGRujVNv6ZLHVkwpjf2SWn7f0iJ\niIiIPArXYgW5qAovD2sK3/QVl3VBXdTMVyvKPKNLiRAgpZ6+3xzXbMGwzDAikLB+08ccY0YfIa9K\nQj+wblogUWcZyYy+GyjynCEYMUbWTYOlzU4aDoQYCG6QOxcXSyZ1jQ+J27f3uHf/BJJx+6knee3V\n1zY/F8BjxnC+5NZ7n+S1V16jmlaUoSLWgfnZJVkMBIfZ7owHx6dMpjVd3zGbzTh+8JBATjnNOb13\nQjHLcA8c7M94cP+YST5lcqtivVyTNyX5pOTi5IJqUrG7P+Pi/Iw6GherOTuznHzIWS8GmqGnSMZi\n3TI5mNDOW9p2Tba7Q54Sh9WE88Uld544oMgKlheXnF1cMtvfZzFfsWp7Bsu4mC/Ji8j5+ZK2VYuF\niIiIPP6uRYEc8+iToyk7VUXXt8SY0Tbt5kU5y1ivV9R1xdANkEGRl6Q+kdUZ7WVDqCIhyyks0nqH\nxUhsE71DCAlLRtuuqW9MsCEwP59zeHOPi9UlWV5iFlldzsmzgmROcCdlUMVyc5pcSJydHLN/dISn\nSLKBoelph4G8rrAhcXJ2zsFkRh97Mo9UZUlnA+26oS5KvHdCEbmcz6mKnHW/ZFrNKDOoqegy53K+\npqxzmq6hp6dbbXaiuHGzoh86zu8uybKcNMB6uaDayZnOpiznK6pppAwlq8WcFIwb5ZSTh0v29qbE\n6CyWK/IsghnBIoQOUoaHyNC3nB2fcOeJm8y7ntDDzmTK/eOHmBvuzmLVqEAWERGR7wrXosUiWMDc\nWDdrcCNkgWqSU08rmlVDVZV0qadPPeaBPg1YFelWLZSBFJy+bRmiQcooYklvMCSnT0a77ihv3GC9\n7BmGRLETOV8u6ZPTtz3NeoUPsFovYUi0XYsNjlmgb1sWizV7uwf0ywb3gRg2n71TV1jf0qxWHO3t\nsZovsR6KEGljT4wZ09mMASCCh0RR5AzZitsHRxQxIyucRbugKgoW6xWdt6ybnjTk7B0ekJUFq2VP\nHApS35MTqPLE7d0pe/t7pJSopyVFWIc2ZQAAA4VJREFULFl0HUNWk3nF6emckDtdGnh4csngGTGv\nOTlfcDJf0HZGmwLzxQpCjhUVqx6y5EzqirZZs1NWFFXJ3t4u7jpJT0RERL47XIsVZDO7BF7cdo63\n4Qh4uO0Qb8M7kfO97n7z//kzRURERK6d63JQyIvu/kPbDvF/MbOvKKeIiIjI4+1atFiIiIiIiFwX\nKpBFRERERK64LgXyn247wNuknCIiIiKPuWvxkp6IiIiIyHVxXVaQRURERESuha0XyGb2ITN70cxe\nMrNPbTnL02b2RTP7LzN7wcw+Oc4fmNk/m9k3xu/747yZ2R+O2Z83sx98hFmjmX3VzP5pHL/fzL40\nZvlbMyvG+XIcvzTef9+jyigiIiLybrTVAtnMIvDHwE8BzwG/YGbPbTFSD/yGuz8HfBD4tTHPp4Av\nuPuzwBfGMWxyPzt+/SrwJ48w6yeBr10Z/x7waXf/XuAU+MQ4/wngdJz/9PiciIiIiLyFba8g/zDw\nkrt/091b4G+Aj2wrjLvfdff/GK8v2RSg7xkzfXZ87LPAz43XHwH+0jf+DdgzszvvdE4zewr4GeDP\nxrEBPwF87i0yvpH9c8BPjs+LiIiIyJvYdoH8HuDbV8avjHNbN7Yi/ADwJeC2u98db90Dbo/X28r/\nGeC3gDfOfz4Ezty9f5Mc/5txvH8+Pi8iIiIib2LbBfK1ZGZT4O+BX3f3i6v3fLPtx9a2/jCzDwMP\n3P3ft5VBRERE5HG27aOmXwWevjJ+apzbGjPL2RTHf+3u/zBO3zezO+5+d2yheDDObyP/jwI/a2Y/\nDVTADPgDNu0d2bhKfDXHGxlfMbMM2AWO3+GMIiIiIu9a215B/jLw7LgDQwF8DPj8tsKMvbl/DnzN\n3X//yq3PAx8frz8O/OOV+V8ed7P4IHB+pRXjHeHuv+3uT7n7+9j8vv7F3X8R+CLw0bfI+Eb2j47P\na/NrERERkbew9YNCxpXQzwAR+At3/90tZvkx4F+B/+Q7/b2/w6YP+e+AZ4BvAT/v7idjQf1HwIeA\nJfAr7v6VR5j3x4HfdPcPm9n3sHnJ8QD4KvBL7t6YWQX8FZt+6hPgY+7+zUeVUUREROTdZusFsoiI\niIjIdbLtFgsRERERkWtFBbKIiIiIyBUqkEVERERErlCBLCIiIiJyhQpkEREREZErVCCLiIiIiFyh\nAllERERE5AoVyCIiIiIiV/wP5FIPKdjaPVgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAF3CAIAAADckC6rAAEAAElEQVR4nDz9Z9BtS37WCaZbufza\na/u9X2+P99ffW96ojJBKSCAJ0RJCwACtmaBBdA8QM7iOGQV0DEN0MM30DF4OSUhIVVKpSuWr7r11\n7bnHm/e83mxvlrdp5sPt6YiM/JSZHzP/8Ty//5Nw+xPrGGLbqjAhc85ykblVG0oxnvWjjDl2nSpa\n1bZOjo80VS9Yef7ytd7JaaVSnU3nnPON9bXj48O5N63oJsaQc54GWTD2K5VKa7mpWCRI0qzIZ7N5\n1a5f3L5kVex37r2Vy6JjdSqOs7PzCCLR7NQ+89nPemH07e/8YDqOzp+/MOlPDx7vakJZbHeiyBeS\nqTX5/CdvtdaqBYtNTI+PT9WaQ+t24hX+1Ltx+caTB/v905k/C3jCm9Xa6d6RoqjNpZbRVJa3V7rL\nG/tP9x7eu3t1bW1lYdE0VC6zw/GB0bRimeqWefa4d3C897kf/XyU5Agak+H4yYN7y0sdLIpmq/re\nW3c21hb+3Jc++0f/+fu3X+8JBs6OB7/6//w7ff/Z7//hVx3tXP8g0gk0NRAEBQcy9OeGof3SL/7l\n3/md/zyZTampK4oNIZBClGVJCCEIBuFMV6lAiJXCNO0oTh2nkqUJVcGlS+ePjndPjgatWkezKlhV\nbcfpnfYB44IXeZ4aJhVIYkUpWFmrVsosj0VODfPSlYv9/tHg9ICDsrW8qLk20mUpFMjNMig0gNNw\n7nRMrnCg5dhATMjIC9pW3USVJMlqbW25s4AIDOKIZbCIcTorRVwkXrC6dfHp4Z5TqwbeKI6GlRr4\n23//b37v7W+/e/vhl378z50eT7c2L8yn4ySatxv26nJ3PgS65o4G4fe+9zpjpW7gzdVlBGXFsN59\n/72cR6sb3WqzolAtSuIoDzTbhEJBTAsnbDIM+oNRDpOl9QXBwPHuWd1pxkE+n/uDwYAoqhBCKYuq\n6456p5/62Csv3bq28+jx+tp2q70wimcHx8fPDo4P9o+llJevXf3+D99oL3VXLq4f7u9dvLQ1nJ4w\nHhu6aiq2Tox77xx5o2nVqnlBoFgKNTXGGC+YoTuKorRanUa3/vRwJwx916nqRE+iUNdAkeWnB/Pl\n5TVIZS6KIExZmXeqrfF4AhgTRbp95Zxu6YuGezY52z05k7ppWG4881mUFHncbjc105hOfQIphDCJ\nIwihQtUkySASGGOMIQBA13UIYRiGmqZpmsFEGacpoVhAoZsGVrAQImNM0zQpuBACACBK1my2AACB\nF5q6liQJJijLklqj7jjOYDRUVBVgBgizK1acFI5eVZG2t7On69ZkMAEcaJomEee81A0ti5NKxTVN\nMytYyUWe5wRBDCVBOE48grVWvT0Ze4PxWDUNzdJb3VYu0iTywmjWbNWTMM+y3NRMSimRZZYWZcl0\nXSMa2Ty/HqbRZD7TFXc0GLbqrSLjWV5Qk87iKVTFjWs3nz54AgspsrJVbRoancyntZqrKPZoNLJc\nYxoMLl09f3Ry2Gh0/Fm44C4fPnlW+gGPCwiVAiCgqZZb9fyRQkwgMZCcl9H6etfUNEroPBkmMdve\nXP2vv/sn16680h/NOQK1DnWqVppnjx89vHbxykJt+Y+//Hura0vVatdpteezLE18Jvwsidqtqsj9\nRs3VGloSSV6ohBj9wZmf+N3lhaWV5Xv376iq6lZq81mUh3w8nJmqJnlRadpEgUsri+/fvtOodyWk\nacLu33v4+U++BgmMkjgIQ5XSKE6TokyKkiJsGlat2Tg+PsqSiCCsqyoCGAKU53nJmeO4aZoqilIU\nBYQQIxUIyRiTgBO1WTOpVeZsPpsvLS0CyHafPJKCIVBYmpVO5tAwtYqrIiWczDiX3sHZ4Pgoa2Uv\nvPLSaDQaDvsYgcQL8izc3thWqbGfHX78pz6zf3QYZqUhlNls3u526q3W7sHJG/dvm1RruLXZaLA7\n3WvUatVqlRKIEfzg9ruPd3eooVNXUeuyo1Xd6vbosH9w+GRhwVlaWnGXnPPnN0tUMKaFs6hidu7e\neXjxxqWOa7ZM4/BgByg5raUv3LgQz/MsKJDRYRkY9g5RBGpt9+mTBwBCphSH/rixssySrHd0wFg2\nPpl95JMfG4yGMWAf+9ynkAod3Qzj4vJLF5cutj+4/55Ip1XN+pV/9MtHx09//wdf/ju/+vd27wz+\n7f/869ROv/mtP42CkEaOqVCWRqWmma2On46yNKp36950OpkPvvBnvvDlP/rjNM9UjUAIfd+XAspC\nJGVZrS7mWVJmqaYZZc4MVSvyDGMZRYFh0/ZSp9FoTkdBEE0Lnx0eF5ZmEkAwJtVqPc1CwzCiLC2L\nMgpTwIWmG2mcvHP77XNXN5678oqukvFwkqYZiKSOwNnpgWm40DABJQjSc9vbvcFgOOwBjGt0UQY8\niGKNqk7DoTooRaEaGECAkcKycjLzmUi9+Zmt42m/rxCtiLRno5Pf/E+/+zd+5S/eff+9e+++vr5y\n3sGsvbKU82a72xpPp3E0nU28+TSrVp2d3afrm1cm3mix3VIIqlQqarWDTOwzMR312osNJgBUlHql\nefDs9PDwFGRKHsa6qemloRqWp6cPP3jMCuk4DoVKFiW6rjNezLwJQPLw6OCLn/vM2kb2+g/f+Lm/\n+PPXt67/3h9+ZW1zK8vZ/XsPz876FafKSkkQDIbFdx49WF/dmAWxUvGj8tlP/sxP/Pj2yq/9m9+c\nx6zd3soykowzXcMUC2yohqEfHO+VgNXdbhqKYJbmpFhdXc3iaH2lFc7fGw1Pbcett5qIw17PS5XE\nNCqQC8Vwnjzc+fgnXo1D31QqWXQoeUZw5tqVFKBGo3FwtF9p2BWzEswCiimlJE1TIYRCEKFalmVC\nQISAqqpJkiCEEEJpnhBCFEUpioxqSpHlWGBN0xxFKYpCClEWhWAcK2Q+myqKIiTjQNFtIy1SqNNY\nivl0XADRsFUoMQaEJ9IQWuEXmCoskxlPKEaWbTPG8rK0bRtKCagRR2kSZwIigmlR5DnjlYpdFAUE\nShan/aKvaQalGEDu2Pp03GeyNC21027atk1hMmciCAJCSBkruq67biWKPQLQ/rNxxsvRxDdpqSnW\nqBcDyNsdp7lYZ8fxxPNmPd9UKqVgJcoHY6/u1hW1luZk7h+1Oi3Dtvqjg/F4alnu/XuPmvWWsl6u\nXuwmoyoV2vHhcZGlho544cdxsLpQjeYpi3OCoT8JHo3vXr55/s/+9Cf3nvVlIV776K39Z7uW6ehW\ntdWqHZ4dAAAWW13BpISAGi1qLV5+4ebXv/pbn/jUS4PBPAy9ze3aF3/0Rx48fnTtxtW9Z7uW2RwP\nkz/54293u8vT0O/3ZnEMx4MM49Kb8jIvyjw3TFWlalmQwE85Z1ubF5vuws7T3dXV1aVuB/D1+0/u\nL60sZ2UWRmGp6tVqPRtOVQRUqkAAxoMxxSpQJWelQjSEkKpQhJAieFnmRCW2aYahEEIURSSlxBAh\nCIliKLqjurjixXM/8W7duGEZOkXYn87ef/+9VquRpXOJ2qurK7uP99utrhrxRas9Hkf33n9Ya9Uw\nVAPfW+2sahCXcSYJkFj2TiYGrCY4IYbpVhqE0JXltYX19TDNzk5OF9oL9Yr9cOf+dDRYu3ZzcXEh\niOf3d+53lhY3z28XvNB07A3KNJqsXVqECnvhhe2trQuP9na/9fp3gzLbunyp211UyuICvZhn0cn+\nxLaqs/7s8e4jgJljkrXV7TgqhRKDHM4DHAWxQZxMSMO2VxfPc1A8ffrs5sbF1cbG7bfeYYy9/Qfv\n2RUXTsDvf+UPqq0KNVWkUKSQxaXmT3z6R0fesaqa7719b3V1+4//y+/u3v0f/9LP/ej25epweLC/\nfzo8jC3FsXBGYA4InkQhULClVpI0WN1c/uZ3vvmLP/+Lq6urJ6c9RAjCgOoUA+zY7mzmcykgUTDI\nWJFhpECIEJJEUZIc7OzsKAY1VEtiyQXDChRJBiQti1J1qkEQxnGkUM1QDcZEEiaU0mQaLm8sFaQ8\nOTmjFTqY+4qEYeilCVCwrFSVVseYTCaW6xRRcu/7tx27ojENUYqZijlHUCZpFifJlr08ns9Uqtdq\ntUkvSHJPQKRVKpPJmWlU03nMFeJYHQaKnScnPMKf+Oinv/ONb97YOofzabWmHpxN3jo8TLnQygJK\nreLWJrPpwmJHVVXBdG8esCq0mm5axDqESZoRBeVcVJcWmJclSRLHfqdb77iL999/rKqGBqij2UWc\nsrKUXOoKSQF0DTtNckItwbPz57dBmZ+d9qlqLq6uv3/37rVr10RR+jMfSoQh7R0PFleWzwb9+cEY\nRlEdK8PH71ebjXyk8Kz5e//Lbc2QDe3c0Bu0WtZgfJqzsF5fjL2chXJ3d39xsRuPPMNkTcMdD/uS\nyMlwUpRhHPkVp+VNj4HweVEWuVSk6c0j3VZZkbarlSq0D3YOfvJzP/b+Bw9WFzeGoVemuVLXSp2v\nbbdiMZRIFaJUIIBlKaGUUmZZYuo6LxECEAJIqToYjNrtdpJknEu35k6nU6QgSqlGaZIkQPCCS0PT\nWZxhgKiEWckNw+SSQyhdx07zTEoOhFAUVVUopWqaZdGsqDiGKMuZN9dVI5r7nHPJuUItQlVWZESl\nVDX8IKhXG7bmnA76nHOMFcVQNKx6oZfTgiioSEtCFEwVDrhbt9MiA7IQvBCijINCqdp5lKVxplJq\nm46maQjz6SSouLph0qOTY90w8izaWO/mYVSWkV2x+v3J6Wm0t3egG5ZBHX80I4RAISUEKxsbe892\nLcsydQMAx5/z2WQsmRr5sW7RGzcuTKfTx/eeJLMcJHCltXjl8rZg5dnZWRznMC5lWjSq7ricEark\nRV6rqq2GwmD4la/8wXJ78/mbLz9389aXv/zlOGClo2BBzIoWpSkkSsaz1a1lorKVDf14Nrr5qc1e\nr/zSF3/5+9/53tNnd8JAfOsb78z9yd7ON69eecEPo+UVhSoaFziOMgVZZc4zjqu1lrDy2WSoGZqC\nlbLg9Xq9dzYsM3Zh8/x8Pq9smgdF7FZrcRwnSdTptHTViILYtVXPD6t2lQs4nfiYqgSpQvA0zYui\nUBVimDqGCGAURZHve+1Gk1IaRj4rSikFpZTE/YTNy0rVXFttzsPZ0NvFFrpw+bJGrh2NjjvtZdtt\n+Enk+Z6XRJbpYWr1BoPKQisFaQ5z5CATWZ168/iDh1khLlavKDXtcP9EQlAUzBxap8Oj7e0t3wkO\nz446Kwu3bl4OAs8PvLX1pSiIx974wdMH6+urzcYiAnTn7uE0HF44f2Vj7cqjh3u786Mrl87p7fbh\nbOqzOAi81dXlrmNZBi4E3Lhw6ehw77033q0U2WQ4dUkjDKIPvrObXDJ027l//2h1ZaXaWKB6LKWs\n6FoaesV8ODgZKYL4RiuaBWnCBJOH+ztJkr320c+tO7y/f1Tr1uIiS1D29TeebK1cuvXKDerW7z55\ndPvOcK324t7b9/750/+1tdB96YVPP3z/qNUFZV6Mo7mknBjICycUqoapWbpJkPr8zedv377j+z7G\nOMtK17U1pSiKLEk9yyaeP1UUxayqum5EQRiFka7rSVIqWK26rf7obJr6WVpCgrrttmnpZcyprqVp\nyjkjhJR5YTnVMAzzotBVTTA+7k0anSZKqH8UOy0bkjIXhWVYBU+dNrXbyiwXYTi3qGspTpynzYVW\nGKVZlhZxqCJV0xTf999/e8epVIIkyLKhN4mLuNQRzUuRJjyLoyQopJVCtag26ca5hd//3S/bLr11\n4zqGxfVbG4PhME3PdFNtuA2XOqZWvXdnfzjsN5vdYW/cajRURHjG+73e6lanlFGazs9vXRUA9A4H\niCCk42q1ahuVilYxXLq1tZmE6dNn71Sq6sbW2sN7zybToFGre/NZyRLHbAgi9w92f/YnvxQnoao2\nlpaWvv297y602pur61kphvOpgrCuGOEkcKk9OJwtLywPTk4UU42zotVqATjW9DKL/G57+Uuf//EH\nz56+eunVOw8eBEl0/pWtO28/slzLC/Isi50qozqqtu3+aKAzUq1UnzzcMQ27WrMoUYosAiKtVbsC\nSIkRY2WcFzXXJVjOw1EqkrPRidOo1VvNPI1v3Hz+nXfeuXLt5ZP+qYxyBgogARQSYwUAxAsBqWCM\nSynyPC/L0jCMMAyjKNJtQzMMKDljjECEJOB5oUAkS0YRYQWnlEoOgACEEtM0JRdZkhqqZip6keZ5\nNDc0rYqVNEumk0mlXhcc54WkqsVLlpQJkiDJU1VVhWBz31dVLYkzZFFCaJIEUDJWMMMwGo0Gl8IP\nfMG4QDBPwpwVpqlbjiWhkIItdJb7/TN/FtcbtNPpzmaz+cyjlHa79SyNJrMzIYCiMsYT17YwRKqi\nZ0lWliUhNAziT37iU51u8zd+7d9XNy9Efryyvl4ULAz9esNNkyDPMiBVxzBPzoZRmkqBI79wjGYe\ngUF/atNmFGfv3X22vDzrtCuKRWuWihRtZWXt+OC42WzM/PE8nFy4sag6+v6T0fryjQfv7/SOvnv+\n4ua5yzfOTkdjz4vC1E/mHMLO4urp4KTeVh7ee/vsyPn7/+Cv6ob71gfHSH262Hj+f/lX/4+K2WRC\nVq1as3rpycN+s740GIxbrZZhWHsHR9PpyNArRSFMoxKEsePWqUGIAnhpTIPJZn0NKoJJBjCazj3d\ncKKwXFhoCcYjP2B6+uLzz797+/08m06mDAK1LEUaF1JKiIRgnGAshWAlJ1QpOKtUXABAmeecMQRg\nvV4XQggh4PmXLglYhPm0s1LjmFFdRUQlVNUdV5awd9SvN7o5F816s7d30NvfNxRTN43hbLJxbhsr\n2LB0TVWOj49tjA92T6J5YltVy7EznkMoDcMYT4dWpVJxqtPp1DC1eqeai0Qo0NKt7tIiY9nrb/7A\nNPTtjXPBPMWANKz2wyePP/mZV+yK+xu/9VsvPn+z0+qYJq5u1ebjkWC5l/p2vVpr1/eePS2SrFZr\nsbRIvdxElZrd/cH33jk8OdnY3ipBee7ihmarO7tP0yBJvKBl2QahOIdhGB/sH9964fnhaJJlWVHw\n/d2D5fWNz37646Ph6cnpYZhFL330pR+8+/1pMPlv//Zfry4u/OFXv3v/e2eop6tpitW5z6YLtWUm\nZFIUzXYdwPJgf8fRbclhnpd5nm+ube48efp//Jt/Q0Dwa7/xnzTb9P3S0KmUJeMFhEDXdSFYnEZ2\npV6v16fTWZmVnEsMgedPb926MZsP80wUjDPJ3JrNWMlLiSU9OTgzNE0hapIny6tLuqk929lRiGqa\nZsZLxvnyyiLjaX3BpTWa40InKtJQs9sSQvSPhyKSVa326P6jSr22fenc4dGplEKyMpiHpmlU69TQ\n1aLkcz/KUqZTk5cMCYmgpNAuUpGEaZgEkqY//d98sdZQHzz8wFHJdDb8mZ/9c822++xwTzH14dS3\n3cbuvUONuKDUpSCCyd0nj8s0W2x3u0utsTc1XHLa311eXkbALEqhado48hVV2987vLB9Tif02cPH\nF86dW1lafvPNO7VW5xvf+P7esz3IgIpJza0KIebe5NLF846h51Fy69r1NI23zm9+/RtfW+iuOm71\n6d7hnfuPkrSsVmtJklVsZz46ffmlq0k539s9KEs1y4lj1NIgUgytN95bP9d+7VPPnb92wU+Cw5PD\n8+c33339ScWsP35wcLhzGIVexdWXltt+5N249JwU5N7dh2mamrqFAI39mCiwvbRQCOHHkaapWTz3\nxv3PfebjjLHj+UmcFnkBCTYsai0vLz9+8jAtMoTpUr3z9PYDVVEhIjlnQjKCcCG5rutSyizLFEWx\nLCvPMymlQEJV1bLMEUIYAcYYAEDXNSGkadh5WkCMAIJEJQwyVdcIVqbjCcLQUDWKYJakaRgsdLt5\nno/mnm5XkqLsdhdn41EcRbphYCkARpxzRBBCqCxZnvE8L9vd7mQ0IghXKm4URZqmQoxKUcZxqOpU\nSG5allt1xuMxQVhKGAYJ5xwAwFhRq1cwhoyxoihEhjTNkBL6YchFWW/WFKrFcfzCretPHu+XGUvy\nrNWtKURCWRIJw5gJKZFCz1+8MB73p6OTteXW537k0z9888loMBoPJ6qqTr15f3J248VrL7506zvf\n/H40yxGjEABMWL1hxXFcZuX47Oy1j35sZ3ffi2JIxLlzm7/wl37213/jP6FUee2lz/3Gb/ymXa0R\nnUgsa26X8UyIJAy9IBr/9b/+V/7JP/3Hv/rP/p7lqArSf+MPfuf4OOJAPznsUaZev3CtyPMiZ4Ll\nnU4nSYOZP0NYlmWepDmlNM4LKYGiqI1mdzqZKZQwkBom6XQ6S0uLeRq//v03LLNScepSglarMxnP\nhv2zTrdJCJh7U9etWJZxcnKS5RgKAoWSJrzIcoJEliWaTpOsSNO00WoCALgUlmGGYQgAiKLIdSqc\nc8MwCK+kTGZ6lYzSgaZRgNy8KHmZXF8+l0ZhwcMkIyo18zhUsMIFTfy021iQGg8OR4wxy7UN25qf\nTitra9vnLt+7cz8MI03RO43m6eTUY1kYzFrdzub5C3jv8N777x093uOsfOUTrzEue/un9cXmK6+9\nalUtRVHY8WmelrTT2kBRHj362LVP1n/2R7/1wzcDU5vkMRvnAIrHh7tI06YluH37mQPMg3t728/B\nz//oZ06Gh3kp33n3Ha2lLpL24fHT5c1WrY3fu/+uaVcAVLDQZ6NpgjRHt1sLC267o1k6D8epKH/h\nL//8O2+9/bXf+aNvo6S13Da6riK04bz/kZef//rX/uj2d16PU3H8dEbnjJKyRKkKHLN0ZMLC2Mtg\nplugVmvq2I6nhWtYuq2XGk/jpEj5sD9SdS3PSwFTVdHCMLRNg2K9KFiWStN0qILjJIcoqLg1xth0\nMqEqsaQuZP7xj7z8g9ffieeZaqiCFwqBBJNwHrmum8UZVJBOjcD3szzBGFddF0BMVS0q45gFhk4H\n/TOTOcRSB+Go1mxZDmYpnR/LydGg42blPGUI7987bC+1/GS+sNo+PBh4XoJTqWCQRGyhsTYZe7zg\nvBQActu1icpmh/0SQ0Clqur/5bf/6OWPXJUAnhXRuStXTsOZveAwKPt7veFptLLs1Grrw7MZFNyf\nzgUvdEN1TbXI/UlfVmr1JE4ctTsdcdWAO/vHuq1PZgHnslJxnz3pX9hYY6m49+7dMsovXtr8029/\njxqImtRQjNRLW83F8XjOypMk9c+fW9BpTa/kH9x9L+fJ5YvXijDZWFjee7ZfxrFCNZUqREgqOM/Y\nm9/7oNttq6ARZX5cRMvb64NwSPPpjZeuY5X+1u99w/j261efv7K42Q2QMomHH/nsLbuVT8I7jba1\nvXJ9OonDYXgf3L9y5Uq9Y0NQGQ/GUTxfXd8cDecH+4e1xU6j1SAqpF1TxTmlaHFzBURa1a59/7s/\nnA1HpIo+uH3brdQ0xWRCZlm2sLqYhGmW5bzgCiVSSgKgKEuMiWEYCCGMMWOcEEyJIhjnpVANWpal\noigYY4KIwCiMIymhSlRMCICQMxH5kW5aqq5FSSxRTmsVw6Qhj8ept9JdwZYznXqwYKrkJiUlkaqG\neAkJVbAQ8/m8VqtCiDSDxkkRhN7G9sbO4ydVUqs13NFopJmGEMJwjHa7nSSxlDLPSlYKVdcppXHI\nNINahpmkES8Y40Wr1XAc5/7dxylPllZWX3r1pf2jnems12hbRgq9eIoVJqQgHEZhomoKFhJLCaEk\nCAiRnh49Ugi8sL20vr747e/8ybmNF549uuuYuqbqhGIG2ZMnT9M8uXZ1az4MHrz/0NDMIs8tayGK\nmenUQi9/vHdUX2yzcLyy2uk2G1/5ylcefPDw0x/9bHuhGiSn7XWNEZSW0s/9IAhaTmepvfxw8O3T\n/QcvPr8FEH6w0/vN3/oKF2Y0gdurzU9fX/enQ5EOLB3Vu00hnePjA4BRt10bj8cYK6auIIQLIefe\neGGpw6AvSd7qdnq93vHhcDqOspSVLNVty6rYqkHDKBnMh0nZk0biNNvT6XSejWtWZWFrwcvn852Z\ngjTJBC9BkSUCQVbmmWS2VcUAZ2FqmmYcROE8NE1TCIGAEgdplmVQYAJijecSE9VQTJAURVwsri4I\nDCeDZ74fKgRDBtqtjmCy0LFUUob5ibdfr1Utw46iqOCJoMrWtU2EVZDKOI6v3bj63GvXvNhzZ7Zr\n1HaOdirVmtR5e6t5y3puodHqHfX2dg4MQ/MCnzzYN2v6c68+b9TpbDIL48hQKvWOqbniy7f/5NKl\n5z/1Mz/yxg/uTQd9llsKQdkZOj55srG5ms9nwiovrC8/vffwv6Z+PxjUW20uMSuyVrs96Pf9nty9\nMzp6MJJsurGyCUv56ivPj/qjg73dUsJ2uw2kTMOg02k8231QqZlOq7V/0J9No63NVaNigAw82zs8\nd/V6EuDHP3wCI2qZlYBlUNMilqsGqLWd8MSzVbt31Mv8XDBIqVpwnvl5s1mfTUYQASGL+/efSoYU\nYuRlqqqKaZqGYZ2cnKqa6fkBIVhTlTxLmKmlRa7bRp4mCKEsy8aj6Xg8zwqJFVpiqZmagtVpNo8C\nrhGD5VAzjDxLozhwnVoc5QAiWEpIQZqmuqElBa8i1Z8Etm6wecLt8PhohLH+3GuvxN68gCIthtEU\nlwJLCefDI0VlrYb86Z977ftvvKdZBMtU8LBkuW4qEhTUUADQFdMWCDm6kYaxAlAwKxWTwmxoSl43\n6WTa2zl4GifErHWnmVBBsdBZmIwi0zTDoEjT2KraHAKFg1Gvb7ZqpUJ7gzGZl53G8sH+7sra+snJ\nWeqlhNLhcf9k/xQBeH4dPb7z9On9vcW1cwut1fmov7lRc6t+d5FOvoN8P/+DP/zh1QuXfvqnPgrh\nUynIeDTrrC+cBOPDSW/15sXeeJwq4vmXX7j7/gfQRBjQiZ8CCKsLjZUOdhfy57ebCnUVjHvHM9Ny\n0yF+98vHb5SPl5ab++HDKzevf/EnfuQzP/by7bfe+f63Xu8Xo2ufvWCRzT/92tuaYq0udzS9bqoq\nKzCAJRPRbD6mqo5KTF2t3e4iUmbIH0cHi8udRmPh2b1pOokatVowydy6Ccuc6FStWUTH5SCr65XR\naKSZKit4lmWGYUIOOQD1ej0Mw6IoFIk1TROIp2kOgECISskURZFCKooCMPKDOVaIbdsapbPZLIki\n07Ytw6QaxRgSjCrVCoLST0aGVVFzpSzz4+Nj27QMvSIFUXWY57lhWUumGXheURRY5aqh+tOQ89Kp\nOlEeKkKpteuKokwmI10xkiSZzeaGpsdxTBAu86LMCwgYK2USAgiRa1UCb+JPPQrpyooBCW51pOZE\nlTpkyAmi0jIX0pxP/bGla7qtZHnSclcBF4DlYRhwlmxsLk6mZ88//4KiUMt0HjzZzcPa1tolKOVk\nNoNSVmtmhZIbL17YPXrsWLW1i1t3330MoRJEHOvq8fCovmksdBsGhRcvXtIU5+t/8npRAqotHZxN\nGzvHre76s/2zWqfBIRVFARnc2XvnpRduNFdwa1n9p3/lf3j45Kg36L344g024+YF2x8FxTzWNDMs\nmVdkm4vNo4fPWJlcu3wTEfXBgwdrm1uGYTDG1IJKVFTqlZPT005ncXGlm6YpBkowGz998PTi5Ysb\n6+0Hjx52F7SlleXJZDI5SRzdHpxGmlqTefLkfv/J3bM0jhvVZlnIyAtZJiTgmCoY4yhJFGKYupGn\nKctyWzfysgRcYIIdU+ElwxCwNCdAMoQhgkQUUqUky6KdnSdOy3aqjkphFBV37tx5/ODZjWs3FRXX\nFxoK4VAi3dQAAJqiiSxzu66qqmlSFkp+/qOr9VWDN/JYeKkZ1hacc60bcRgkLCxwRjuYV+RqffNg\ndBKnmYK1ZJKKSP7g7Hvnr13we1MGxJH/qOg08Er9znt7eaLfeuGVshCAV0QenxyOvJnXcrrDo1nV\nqSBhnh6PDGrtPTq1W9VoUnbaNS7L/sm+ruDe0Z5OMldi26hjP684+jtvvmFW7CwrNFxMT/tJEiqc\naQCOemdJnnXbHZmXmReNDwdGRVWritN15qnXba5YrlukhaYoudDyUli6Css4xWmJRBkW3eZKFIUA\nMqHguCwqtWat2SIqsGwliGeDYc9y7M3NC/tHj8IwTLJYUSnVqIRcoQhTgAHTVTWJg6wUlGqUqoAo\nacZ7g6mmOYyzskBIilkcViyEhUoVgKEqOSxSIQCgquZ5IcFUIGGret2ujubj2SASFBUZr+hmBErC\ns7l3fOPWtiTGzpMTk9orKyuZZ6xubvhxlou0Px5cu3X5tY8/1+7qraPO0bP+/u6BoVQI1qtuneow\nY3Ee51RVozSVck6o/4/+8d/62re/srK9cuf22XAWNHywXttE5SAcjRPoqZRRKipmxktIFJikkenY\nSc4gk0wVtmtXG042Ciq6MjidxJOwVW3LOHGpenZ2wlW1YdKrVy9/cPs+0axnj95aaDXSdMJl3Oqg\nteXKQqsZhn7F1Qfjk9WVzXFwNJrvP/fyBZaD+ThqurXdgwNWliBLuWCWZh4c7KoKAlKjKkFARkkk\nmZoF9NlkatqmRvMkjKdjTySgphl5Xm6vrHaX2unO+N/9i99673uPt88vNVrKL/+d/643PDwdnizV\nW0Jd/c6f3D0bForUx70D29IBLKpug1iO4zhclO+++3ZTgxfPf/TktDeflwUr7UrxuR+98PD9x3u7\ne616Z2391qP7txFpGxVDdWilcBSAa/Wt3aM9RdFM00ySFGOcpqmmUCmlEELBNIoiQghBWAAghFAV\nlShqFgWGbUEMDWFQSoPANzSj6dYIRp7nibIsypwnULAiDsNWs24YWh7lpmkSRRv1ekESIoRKLnTT\nIJTmSY6gJBAzANI0xYI1GrUwDqIktCuOqtMkiStqpd1uD8cTQqiCaZmzquX2B2eGZWGMiywGEmMN\nAS4zJFnB8yRPw2Os6Zqmzr3Z091pWqSIQEzVUs4RJJ2FlU6jznnZG43jPCxC4OhVCJP5zAcb7R/7\nM1+o1d1/+x9+I8vI8soN2zDm01mzVjcMa//0lFGpVejxyVQ3Xddq9Hd3BJOOYfaO+9TAukJNp1Zr\n1RVY6JaWzNM0STrtxel0Si31wZOneYmWls5JUmYsWezY0bxIMnEyuvtjP/l5aZp//uf/26Xuls7r\nRciKnDu6l/ip5TZ02+ZhbGpNVuJz25ej6O545PVG48vXrs+86fik32xV250WlyzLxOradr9/Nnjj\nexRqecIUKTXLIogGXl7m6OmTwzBMijxpVjplkpehKIJIZpDlxZXL5/tnp6e9oa6aum4XsiiLIs0z\nx7E028zCNEsiKIFbqWBEOOISwizNnHp1mkRQSAgRggBBCfIiCooZqdH21qLecIllh0lh2tbFC9sv\nvXR5faM1nx2f9ffKIlBrula3gKYwJPwkwCo2DC3Jk7PRzrD3rNEyEpB+7603kzhf6i7O5/OT3h4v\nQ5MAFSjM42/+yesHj3achtHeqG5fXS6hD2Bq6Go2TVbMNThE+ZmUM+3kUZhM9MfvDb78H7+588PH\n06cnLOC6anIpMlnWOq3WwsLp2TSOkK2tVelCV+/imOx8sKfjSs1tQglMGxADYA31T073nuz2esMy\nE5OjUd2oiKQ82T05t3pxbXE79cv+6Wz38YllObZdQVhxG/W8LCpOdTqc1LTq7GjKJc5UMkkSgqgm\ngAJBzuH4aEalShAuimJlZRVLikpAAZAiy/P55lr7x7/w6XPry2UWReE8Z/GVm9dr7eY8CtI0pUSR\neamrmpSwoERqKisl4bDwIxUooigNXVUNPYwnqpY5OmI5y1Pkh6LgBGKBDa7XpFATThiTQiKomZSo\nJC2LWThHBEjAiITT0RRyBYeAQlUq2GcJVFW31hSl6La6a6tL25cWZ+UeqgdXP7XZvEqfzp/82te+\neefOzlk/QLhKiVsWMk6jII7CKAv9cHA0RAmwFbfg/E++8w21rh4MnwUofe/xB/MwunfvzoO7b9lm\n+YlPXT13qVGxzNlkXtEqvaMx43BlbYWLZGHBVczUMFPLTFe3zQtXl7qLrltTclFM5zETyLabWQpO\nj6cYqI6hP7733nJz7eNXPlbJ2VqbvPTa2mufvvTg6d0//OO35gmoL3V/9M9+ttrRQj73vdFquyZA\nwEWelFlS5FW3YWA9noThPMqK0jJFkcVFLnRsRuPk7FEvPwPeM3Z2L4jPoA1qPOKyYFiyvd2n62tL\nVy98RMkrvTvTb/zau//6n/7eP/tH/z5n+Cf+4k/wZvlX/89f+vqb//KnfvmlL/6llz7zC68gQ3Xq\nG0ytJDn3vSlg2YWNLVaIcFSc3PHSnnj2wbM777/VXTH+5t/+mZc/uY606NnePUWzWY5Ods4GB4M0\nzWZRFJd8Ze386rn1WrfBMRAEQlXJOeOcYwCLnBcFlxAJABFWJSB5IWbTUAikIDXxE5EzBaJ2vVav\nWl4wxLhsthysCi4LTTcxsbJU9Waod5juPjrL/bzm1hdW1jS3yhUa5yycRbIUZZHFaazYulCwW6sq\nmAoBypwlUZpFGSwkLOSsPxmeDiqaiZlkWUoQ0DTNdaoaUWUpam4DQShBjlABeFFxHNUwgaomWcpK\nGE84CHUUYpJDWkqYlSKKi7Ts9UcH+/sOVFDALKwxno282blrFxe2lr789S8PRsPt1Yv5hA2ejOU0\nubCxNRj0js8O2+2uzGE6Lw53ene+dUdhaOv8Wizn9XVL6plVNTY3L8ICvffmg9vv7mpquxS6EGQ+\n8qpqJZsVGparC4tYJA3b3n9w8Nz1zS/8mVewHH7x8x83Dadid2cDfLoLzk5zL477w9lxL/STYhZO\nSharGsI6f+v+GwlOVy+u5aJwHOf4YD/w/HPnzlfc5mQ2zdLItYyKZaqqvr5xTqU6FJBDOux7J/uj\nPCptzdagWsYo8WE8Z3mGev3Z3IsRVPK8DMOwFOXlK+deevWGW8O6A1QbYhVCSjTdhpoGdI1WnKRk\n02gukCwggxqeeHNAsFlxNNtEhOqKpgIqzAo2bLG84lQriKKkVa9AiSAgl6+98OJrH13a3rr03I3q\nQjuchxXT4CyeTk+SdEqIODo+YEwQ2MG8wycOO1bPV2+Q3DnYG0ih2KqY9s4e3NlRQe3i1kv+aRb2\nw+fWryqmCXT8/Keeu/aJy+6GtfX8Kq2Rod8TSrlz8HRvZ0/Hdj5n497cMqtRnL/7gzermr3U6BIO\niyg5OTr1fZ/xYtA7zqNk/+k+zMRSo3v0bG8ymi51l25cev78+kVDtRqtVqXq9Pu9Ua+fR5lpmm6t\n5jbqhSwZYJPpcHN58fLWejg7KxPPNVWCEMFaGBQ8Vft785vXXjBU01A0UMosjBWsIEhtq5qVRcEY\nACDNsiAMszJnkFeqjkKkWzGnkxHCYGllpb2wqOjGLAgOTk7zolCJwvPCwAqUsMyZFBAKKEpOqKJo\nqm5aRVFQSvv9fm9w8OJLN2/evE5VkqapZAILpGE1zzLBuEkNIrGCCMWkVnGLLJeM1yqulPJDf0bT\nNIQQUalqqJRoBqqS0rFofXlhuYDFnM1kBX/j3W+VRhIR/3Q+fPJ0uPdwTHPHMRtlVMI0i4ejqqJ2\nqw3GyiD1OwuL9VY1iL2zs2HFXN97kpv4/MkuX2ttby2vnu3fZsn+Jz96/jOfeS5IelYNh2mZF2zu\njVstvdmghiVLmLRWW9tXzjUXWoAoiqrnGRNcQghN0xQl65+eFUli6FQh6O4Ht2vVKoHIdJR7j+4O\n5oPFczWuz27v3NbrHb3S1hQ9mgaZF8+OJwvOEo+wpriqVhtPIwhovdY+Pj4mGEieLXQrNVdtrNeW\nLy1pLo15ColUKRYsBTwmMC/LMElDJrOUx1EZQgN+4/Vv++nJ9RfPQbWUgC8tbM/65d/7W//6y7/+\nttdb+rFX/uGD3d4v/7Wfdi9EVBmde/4i0jPX0JAU/nQy7I/Go/nGxhaE5Ox0ABOg5CqItHe+/eit\n7zy8dv7lm1dePnx6ihAoiyKOs8DPx6NgPg/39vaiKJxOpwVjhm3olqmqNEkSRVEAxhxISilCCAAg\nOJdCQADSJM7TIktyDKmhVYa9KWckjpiCrSgoJ+NQlggIXKtWa25F0wBCRVmWFNPT47OnD55446nI\nuYpos9bUNRMDjBABAOZJFoXxZDSdTudzP8iKcnFx2XHcyWTGmNB1kxDKmMjTAjIUe1EShIaqIYQQ\nxrpOEQECSGroVNdUQ1U0hFVgOqZuKd3VqmZzokFWyiKXCjIx1aIkQ1THmtX35tVFF7p+gB//hV/8\nyIsf2Wg1qqe7wz/5L9/vPRl/4uarm/XOeDY6PN6rLbUiVp71BrZW0XKNzAHm+r0HT8yWe+2jN25+\n5MrauYVmtzbxp0/u7JUepwX9g9/6g/fffA8BhUM8DSPVIb1Zf+D1ghgcHAzdqvkf/uO/8SaDX/m7\n/30SwTvvPv3BN99v1dbdiraw5FiWiy0oMJ/48yKXeSJ7J5Nef+a4ncnE2907mPshxlhV1Xq9Oh4N\nIeAW1TSiPL7/4OzoqFGtuI7Geeo4aqVhVppmxudpOaFq3mqZaTxUCTctwkVWrTuOa6uqaujmYDhP\nU+l5/kJ3Wcr/vy/NQZmz0WAsGadE0TSKdBIXiUSQQqxB4jpWxbULUdg1m4gyUHVkuTpUS7dBNRPZ\njj4Zz7AuIYZzLzIrKaE4ZL5jV8/fuFz6meCsLJJ2p6Fg4k8jKTSH2GMeVDquxEqrUY1Z4iWzuJxG\n47OlhQVosU7TzbVwb+jf+PhL2TR89PQUYO/Jyf7C6sLLH3tBaPy9vXcrZnXxWufcxkUkwcM7D4Nw\nbuku4MAf+YZuFhw/fbAjJDcsHQgWevN2o1J1648fPwUAtZutaJrUTHeWlcenJ8uf+MSzJ3uH/TPL\nsnKSR6hcPLfWbXe8yTRmxfHxMYQwP97VK6rZcnweIR36XhyEWa3aiNOsyMrewSlE0rbtr/zBV2yj\nmsSRqWtFls/CiY2sWrNVRW4SZ0IghMnc99yG683Hmq01bR0DrutqIfiT/f1CSs0wfS/0/KmmUVNV\npZRBFJm2NQt9qBCKUZwnEEIgkaIoaRJbtp5nZZM6N2/evHvnAVV1CKGmqQhKUaSGqiV+6OomZFKB\nWAiZsKjkOVZoEoeKSksh4yjBVBVY+r6/tLQEJIpnyeBsbzr0mwst4uB+NLx/epJls1vPb3PJwxCw\nWJcFyFF4ceE8n5VR6JstzTS1mEeOZbQ79SSJzp1fbjRcTVX7g+P2YlOA8YVz7abj6N3a6dHOSmej\n2Vz+wy9/fzATtcZKZ6Gr4mLaH7bqFhZpkk6tGkrBrGqvAoWe9UeH/SMFV6pO5603X9fsat1ppWla\npFm7Vas13CicXbhwgSK6c/CssdawNp7LSH7r1kv/+T/+6XAXqEathkjgDd/+9veX3VYF2qvN9Ulv\nVndrZ+PZgyePVMvGBOlUXblwLs0inSpe5NuWKQDTTCVPS6wQhRDGJUEcS8SlUBQMEDcdQ1HpaDKt\ntI3nbl2Zj/txMC9SbJDain3t//1/+9bK6kLTav21T/7f//lv/6XP3/zkv/6H/8NKZUkB7rQ/Vihd\nWFwBQO7s7EyGxSs3bsSRr9nm/k4vj6xYsb/9jSedzlQ31O2rW5PBtF5vQI4ZAwWXlqUhHfXOjqhh\n1ut1wzDm87lp6Kqu8rkgmErApRSSi5IzQgghBGOMITI0vcjyvCxUVbUsJ/QjzjljDJkGwRRCoBAU\nB7GUEkKY5xnGuq1rSlkgiMq4jGNPU3XN0C3LzvO8KHOJpCDgwvaFmR9EYQKwZEWZJEmn2Sr0LEtS\nVaGUKFEQIwkQxASQPM4RwRwJCOHcixViFLwgVMnKIvCDUpaNVj1Lo3l8sLTQKWUqkqy7sDKfBbPx\nxHQtTCRRuGEZcZQSQ0OQra80brxw/rvffEOVTr22hIVWrTi9s0MkOdKt/aPec+3upY3N06NTCFkG\nwkarQYtkMD3ahptXXrjkTX0/jk4mM0rcut5oVV2dAgNohQBqy/ajCBpakI4Gg6DRaDRbrWaz+eTp\n3Z2dB8+//Oo3vvGNt3/4qCyJN0slBI5JR5MTjM3mSqeMcwgxUQxvnirYqdgulJAzQIhKFcKkaHba\nrmOOJ/0sCousvH7pSre94Pk+y3JvPAccEIUyyg1sEAUZKs7SrHdyVK828yz1wkxCoBvk6PDYNC1C\n1dlkXqvVDg96GL2VRLmU0LUrvheynFFEDYwLzhWVqqZKKAZc5FGCOIzLHCtEQsAER4XqkyqPpF9t\n22EwVSVoG1UXGYfPnqkE6TqSKJ8Hw3k4G03ms1khqBEXIs4EJrpBbZ2YLbs5OZk2sGmoSHHKvbPb\nYXw4Gx3Ojno1UIkPMjFB5ZSJMB/2jqdBz1lQsctTT7CQxkPwva/c80+l3y8UoG6sr0oWLS7VP/rp\nFy7cWG90Tc0hRZmM+gMsEc8EZHA6mPRPz+I0unrrMjGAbtKiKBBUFKT0+8Pz58/ffPlWgoqPffZj\ndrXS6w0sy1pdWirjtEji3tkR5IWpUhWjmmNLJivVGlL0SZQQS5UaySVXNQMyaSJ1pbNGoJEM0unR\nlAqahGnJpeNWOJf+zC+KvN6sdRc7EgHbdSSSG1sbXjDtNJssz2be3KpWHu3uVOo1hAASfL3dsTXV\n82cl4dAmsSgxIVDILExBKTHAmqZxLuv1JhAgTVKV2Id7vadPDopSuPVGKcpSpKVMWFEoGNerdVO3\nJBeiZJwzTdNYUXozP0vyIhemZkOAypKnWQEggRgvrSxU69o0OPbifnepef7ylZXWFuFmMC8m85nt\nOK5ZG+wMTm8/M5L0tavbGMzPX+001wy9TpEK5/M5L7Nqg9Sb4uLVhXrX9pNg5o1OznawYSfSYcZ6\nL3F+82s/lE6z0uo0O4ue543HY4VSQAhEFBFlbWMrZ2WQ5H6YjSchKxSRUZEhQzHyOJ/NpxcuXBBQ\njKdDp2otLLUfPn4QZ+lrn/jYLBuUCtjdT7//3eGF7U8VOdh9+sHeyWPDhQXwl7Y679x9i5gK1mEJ\n02bdESyLw7mCcBzHZSFDv6CKrSIXMAwl2FhbL8tSCIAwpVQtCgKxBaGtKjXEdRPalJk6c57eOZmd\nZbrS4Bmu6JV4PqcsX3Qtb3Lqas2NrSv/5Fe+/M/+6ddr2sVnT8aT0URR8vH4ZP/Z0+OjI1XRMdBH\nZzNYajA2wkFmEiOeei2nksyiwmM2rq8sLuVxXhQFAEAlCsYYAGDblYX2gmEYs8mEFZnjOARjVnDO\nOedMSgkAAEL+78O27YKlpq3Ztk4pAoCVZVqt2q5rlSKTUOiGkebF8elZkfOiBFkOAEYz30vCiBdM\nAViFquQgnMeT0TRPM6poKlED3z/YO5SMO5aFJGY5wwBmSbrQ6TqW5c1mZycnWAIpBKVUNy1ClbzM\nOC+B5LqGK65maDjOIkig5VQdq+nNStOsl1wLU2S57c7Kcg5Sq6G6Xa3T0jsNg8hSRdwxsCjKvcd9\nEde+8Ud33nlj7+tff1tRq1LTtEYV2gYz9IZT0xA9PTgoyqjaMYwmzol39aUt6sobz1+MfX/cG5mG\ne/HiVZXoeVRgCVzLHg0HJcuDeFbwGFGJieAxXuqshJ5/ePRs/Vxz42rjE1+86ZdjRcWWpa0vbl3Y\nvKhTGk6KyUBKQUUpNFUnugIpzss8T+P5cOxPvSiKLly4IAC0Kk7JWX80bDc77VpjbX1ByCJNQ6di\nYYxd111eXZOYjMYe46DIRZyydnv14uUbVDGSJKVUVVV1PJu2uq1Go4GRIgEiiu66renEGw4mQsjJ\neCYlRAAiCKWAGKIP310pZZqmUEgIIRSQICVN07Is0fMvNjc2tOs3VhYWahDCh492nzw5jUIkuX1y\nNI89dnrQ232yiznPvHnpz5Iomo1nWcq9WT6eRuOpL4Cs1sxmvQI47B+Nx7vz/TeOnbh+a+sj22vP\nq3preeWSN0ze/9ab2IuFN5Wxz/1xEqWghG2n+9GbH29Z3S986kdXl9carSaq6ncPHn/1u9948PjB\n4cE+zNK6ZdoEJuk8TTxCUKVSoaquWfY8jp+dHOeidOp2lEXtxcUkzQ9PTwrIFZueZYP2xuL6hc3R\nfJhmYdV1nj55aDlGDNP2SisrYsG4RujO4728ELpdjeJc5MJCSuZ5BYsLlBMDWY5WsFIAIVRAatr5\nly/Rlt7Z6hQwLTljjHFeEoKKIovj0HbtKE2eHR1+5OOfOL99oe409p4+M3S10XTHk0FjoXX+4rmF\nlSVCSZLFEjJVU1RKqrZT5gUCMIszyXiR5ZQokgFD0R3bPTw4C8O4LLiiq6UURsWuuLZtm1IKoiDb\ntpkUHzLRpmnV640kTsusKEtOCIVA0TR9MhlmZTzwTkolsRskY7MknmuUtLqrVy68phTNfKyQjELO\ndAu6XSLMoESzZlW5tLLwZz/5SYMVsIgxSK9fu2RqtN5ww8jX7YpuNaMY5blObSWDjJiV4ZxluZFE\n0p/N93fuIhGbNpA4jou5oiKMFMhp7LE8l1FcBPO0ZjfCaWRQDUtMES7zuFl1rl++xLLUn42219fS\nOGp3mo/u3g+88Gi/T1j15Fnw7Olpe8n96Ge3/q//5At/8Zeu/at/9ys3X+0ublpf+9P/2qw6sORu\nxTY0zbHtxe7CytLKyUlPU+3Do+HpMB5Owma7FSfezRuXNIRyP8IlIAhiwCkWKhGyzIskknmah74u\nrbe/+74/imzVoQhXTV3kYRKMCddRDizLaKDOD771WM55q9KmHCRhpmkGLzgrmDeeuqaNhKAIcCAL\nXrA8owSmcYChCLzZoHfKuXjtI69UXLMsIoQZhhIIKQTI0jSYzZMoxpB8iKBACAlEH0bHlGUJAMAY\nCyEYKzgvdd3UNI0JPve9vMxUnZa8KHlBVTUvitF0YhgGQiQrGEAEKkrOCkWlbr0GwP8Gy5clRwQT\nggAARZ6bulF1KppOQz+IoqBMM1aUZV6cnZzEYYghqldrFdvheYYQ0E2tACwTjCMBgCyylBesyBgl\nWtWpplk8nh3F2dnLr24+uf9B122VPhwehvtPhrNh2HQX2tXl8cgbnflFJBWAtrYaUbRTccBHXnw1\nDgoIqKKoiECik4QVBSKxwAykzz1/RVfRQqMqJW92O+7Ski9Ba+W8yNX9uwcP37on4syfj0fDIx1x\nhMB4OpGEMAXlkk+8mW3oFKMiUgWPO82Wa7f+6I++5tj4s597+f/yD3716pUXkiQri6jMwtWFpdnE\nlyUqCzE6mSZhxoWYhaOchUUe5HEIkuzs7GwwHJ6eHo+nc90wmq32dOYlGXu6t3s66Md5zAA3bSOM\nfanwlMeWYedpURaiLNDx6VhKVWKl3VmoOE2FmI16R1HUeeBLwGs1N0kiQqiu2aqqlwVXFIUVpaIo\nnPO4yLgEZVYWCQvGXpEUumU2243z59ZvXLt45cIWzyNUTmc4Sfz+0JtONrbWzaqtuIbRqi0tbI17\nwcGz4ayfJ2MxOZiHvRlO83QwDAZDV7ezJC05s+rWIOpNihFy84iPOUwNx9RNQ9d1QODx9Ky+tVRa\nRHFMTFUhBMKKHyTDse8F/Wpdy8vp6z/86sMnP/y13/4343i8sLncWF1uLq406yv5HLb0bjxJLd24\ncv3S9vPnlbpGbGpVK5blZmHx9IMnDbOhOwbWSXO5HcQBUVUhUBYX49Ho+GD3wd3bjOXtpVpnq2N1\nK4nCa+eWL7z6fPvCBnaMhBcAQYQQwbhRrXImqpppAJjE3sqlpYsfuTBl/faaY9WIIFnOveWtdnup\nVoCkAAnWJQQoDMPZbEYQaNRcTaEKUm5cvXE8HM7mwcbyZn/vRAd0odnGGFlV42DeD1i+srKytbZu\nKqqpqKIsNFWBEFJK0ziBALC8SKK4zHLXsZM0igLPtrQ0TuI4pooOJE5j0arXsizJy+z6zeteMFd1\nqho6oUqSJGEYaiq1LXMyGkouaq5DEJ7Oe0gRgkJiaH4UlQUHQuw/ffhk52H/ZIw8fYEtNxLnwZvv\nLK471obSvlCfZJPB3Ds4GghB6/V6xTWW19qmCVttt91qQAK6S1VEsyQLHNPJ0mEancTTwyfvv4VD\nMN4Nbdlicwg5yZN07vcsR2p6qSi8zDPbdMZTnzO5sbFW5NHactNQQa2qZ4n/0Zefh6yQaapy0DSc\nMolUAoPZeHg4RFllsXZ+fHIm0qBWM6pt8/pLV+pN96zX++rXv1ltdBXdsm3bMS0NK6zgmqYfHh4S\nBTmOYxiGBDwIvTwqkJBZGnJRvPTSc812TTEUgZk3P/OCHpPePOoTTQjIgtRnqJBFVBZBls4xlQXP\nfS8g2ISFEQ19fzqZHe1F8ZldMMFmOOEij5MEy1LDQFUACebe5cubqsHqTY0riV7VuIIyCUoJGZAc\n53oF7u4f7u/vLy4uqIYiAQsC3zRNXvLZZBp4YbVSgxJJDiaTqQQcQighQAgxxj6MmhFCAIDyPGcc\nTGdhFGYK0SFW05wTaqQ5j1MOsapSExOaZtloMmy2a4gIrMJq3Wl3W1RXS8EhwRCj//3koiiklM16\ng0Ck6RQIqaqKZRmMMcuy8jxPsphL5jiW7ZpUU7wg4EAyKaZzHytE1fU0EZGXx/N8PpqbGv2Jn/xU\nZ1n+xE/ffP6l+qd/5BwXZ5PxM8dC3Wbz6aOnTx7sCajVOy2iI6jK4/7R+StbP/oTn7x6c23mzXu9\nHkYqpfp0NC2zPPE8FoXD1PvWG99XVXV1caVqWEEQra5v98bzu3cORv0QRPDiyrk8iamCqIJCf6oa\n+nTuQUw5x7ZV06nhz6MiEb3JWZxnFbfjzaPZyG9Wls92Zz/26Z//nd/8dhzCZ7tPiCLm86BetepN\npCt4fWldo0aj0WCiJIrY3lqzNMV1DErpkyc7lWo9z/MkLwbDsWqaj589K0pzMMoActMUHh32+r3J\n/XuP84I3qw4lEBMAId/f39092DVtQ7N13w+SJB0OR57nAS4sy5CAC1lwzsPIJ1RRFBUABADgvDQM\nza3XiqIIgogXvObWW82mbVtRGj99end/9/7F7aXr59bQ3KtW6zcxbgXzgiDMitDRYR5P0ny+vNqo\nVPTh8RnzJc6s4KwIzrLx0SkuxeRsILkIAk9Rcb1TU0w09b2KpdhGatajlavWwjmL6CUAwmT47OmZ\nP85NvaXZzUKlzlrzL//KX3vtC58WtlJfazkLTiJi27biafTBG3eO398dPjqTodSgKUoisdqbB28/\nfgSJ2l1YCcLcdVu6ZumK3j89g2X5wgvPCVh6wWRndyf1i6AfgwiQGMJRdnVx++VrV69e31JtqTv0\n1osvMAlmU79ea9y49XwQBRXHuHH1fMvV9x9+8KkvPv/K524keoy7JDFyZ6V++eVbg9hfWlqxdatG\n3ejQf/SD+ySk6aA0hZslOQJYVzXBy7LIVpaXT49PGrVmvVb7kz/+6vWr14+PTxaXV87O+mdnZ4vd\ntmR8NBgOe4PZaC5K6HkBK8VkMgmSWDcNqqlCCCllkmR5XhKq9Pv9Xq9HCRa8xECKLKcIW5o6HY01\nVTENOp0OOWSMlUxwziUAQNNUiHgQzCxbi2I/CnxFIRfOX+UcRF4SB3kWSsx1nsmK7VaJgzmPwtFk\ndvTRj91aarlFmCmlYVNnOs0rnc2dsf/b3/rWHPJSVRTHjuOYKDBMpmkRCAkXlzYxVJI4PD0Kbbvd\nWVrSHE0aLENhUAxLHD59+qxWq+lUUSFUpAznHit4XnBCSBT7o+HR1lZz+0I7SnqqVX72i68aJtF1\ndaHZnk8927QGvX6epyXPSyRPesOj4/3eyYO6kxMwDbzx7tPh/+ff3fvyV8e/+dtP3vsgOD7LPvrZ\nz4c8NWvWs4NnXjBrtRoYw8ePH9mGPjjrqUSxTTXLkq2trcWlpV/77d8FupaIXKubm9cuqa5m1s1a\np4FU3ap23fpCo9mVkIVxrGimU2vkggsMiIqqDVPRga5rOS+g1EuY5ilKeFxiqmBOUKkQASVTVdxu\nd8/OJlHCNKwhLrHkSDBNRRiBD+36Zqt2eHJ0cnJimQ5VNNu2szjFGKuqhhDOstxxKlKCOI41XYcU\nfVhoa5quqhrnAgCAECJUjaMwSWJd1zHGvOCU6rOZr6oGparvRwiR2WRu6LrgJYAcIqGrREoexgFA\nMs3TD+UUzktKtTRNsyzLsmwymWVZEUcpYwxipOqaaRu6pZei1EwjLdJcFFLBTArHcSADROK1xVXB\nYV6W1abDeEoUaZkaIeTZzvHK8pV/+S/+A2m2Fi9trlxb/qX/7mdvvrr91r237aYBDKiodGm1BXCE\niPjkZ76oWo2VjQv/46/+83Z3cW3tfLe95k0yLPS6WevWm4oQrlVXiHHY6x/NRps3L8W5Pzo96Bh6\nzdCKMNGoMR55RSKkQNev39zY3lpaWdA0NQlTkUvIsa6YeVpmUa4bRFUqURJm5Whl3XIq6pe/8tWD\nowdZGlNKqKYSSpeWFhYXFylRy7ycTqfHx0eKoi52l6tO6+DgxLAtgJGqWY7jZlkep+lkOhUYRlla\n77aLvGw2W1EUO051bWEjDfKa1bLVapommEgukmpTu3x9U9XQdD5XFAXAcjA8UTAAgnHOoihCQJq6\ngbAwLetDdp5SijEOIz/NQslyhIBVsRRN1Qw9SaLRoDcZnz53/cqF7Q0DweVWg0wn+dtv3a3UjbjI\nZUkqZvvsOBj08tD36s1qp9Nq2PZ4OEEcuBVnNhtbjVocJbqmKipOiiDPsrxIhRDEsLtaBZeaphpR\nLsvJlCqGomp+4qs2jvvjZtVe3nKWzWYQxe+9e/fcxtLt9968+/D9P/ezP/0ifllC9Ojhk53dfZmB\nMEqKJK8b1TSLeFYAwakgvftnJZdhlN7175mOajdsp21Ms+k2gesby8E8diyz9MpKxXWJU+ZxAJQw\nL5+e7ifYRxhowJ6MfIXqGRX98UwQtLi5znRku8ZkOs5g8sZ7P1hc31z+2OWD031z0eFKppsGruLZ\nUIzTeKm6WCR5nrK0LCRECEoIYVEUGAFD0/d39z796U97s/nZydmy23xv77gsy8X19f0fvhVOp/WK\nW8S5iNIcCEk1oqiAUlVVeZlb1BIQqDo1bYsgJfSD+Xyes1KRwLYchWgVxw39II6jpuOESQwQcgz9\no5/4zNzzbt+5U6k6cVrmWa7qmmqpGlUGw0mlWtFVgjUiiYwCTyGG03QQVbgsGWV5wn2eSKlKgpAh\nqxWzjLM33vlOznIDO7Zb+9r37kRMHYexS+FKvVYEXhUZeogjGqO5GgbSspuHp8ee5xlUq1s1E1rR\nrOxNA0b0UrCIx7pUbaua+AdU46amRbNIJXpv6FHLqXcWAcnOegc3b1yeeafBfHTz+YuDsTn2wlTA\ntIzjeXb12rXD45ON7dXd04OIxQsX2j989k7VafzDf/zXx/2zb37/u5vnrgNWdVeViqFThsLBPAvC\nkGGz7kLBo8JDVLzykZe+//pbkpdFnlds1/MCZgCClbs7T6t2PUnlycm4KEQSRZ/7pS/t7j1++uQB\nk0UYlDKGvGT1RkWIhoXBLJjXulUOsKJWpvNAUy0FKEkQEWixnCJaEcUEYh1KSnDCylInSp5lGxtr\n/X7/5OyM6nopRZbnjEtV1TjCWZFjqkhNYaJst9uDsz4AEALCORdCaEjJGSuKgnPeaLaPj49VTcvL\nQuTcNAxv5jkOxRhDCCnV87IAHCgK1DQqRIkJUQBmea5oGlW0LI8tQy2yhCBgGBbn3Jt5hmZEkU8I\nVUhedWtlyaMwZqzUNE0IwbnUVL0seRT5ikps247jOC1S0zQRJEEcIwR0pFfqtfl8zhiAEpR5DgrG\nuZAKBQAJhCUglmWxMsnyQiHakyfHTt913eW3vvP4zuv/r+tXt65tXxnuTqqKQ7PKorPEJDl5loyn\nbPfw7Z/9b37Ki8nZcPfi1fNlNnVbKAsm1braPx4cnz5u1RsFD4SoVWsOwaLIosCTC4vNqeePxmcr\n7dbgbJjF3I9TPz/Aavnc9Wu1qvrNP/5O1XJlWeRBYFoWgMg2jDTNbGqa1LAMuLhc+5Ef/dh79978\nCz//V+68v3e896xWq42C4sGjp+vry1nGxv1praFHBUqydG/vQCeUFznjPE4Kt9U6ebhjGMbi0vJw\nPCiK1LCtyWRUr9fPX3KiJKMakyLNsgRw1js+uXD5GqYqKiEXkeUotqMP+yNN0TmDK0vtmmuq1JjN\nvDjK4zCGECMkkiwGAF04d3E6nkR+UKk6EFh5nhMMEBacc6wQjoAAot6ovHDrk8F4uLW6UbXt3tkR\narcrjWq1dzIpEuf228NoVjk9iIsILi6sgYLsPtyb+9HiubUXvvDx+oVVteNKStSKqaiKoZmm4uqo\nCpiRJZiUmmGuV+0rStGEgVpMxfxsdvDo2Wh41Kmrn/nUza0rzfFkj0ZRB1mTw+G77769vrlR63Te\nu/PBk52np6enBzuH6wsbV67eWl3bXtu8oKhalkQUckfXXN3UOMax1DJSThOZJkLm1cVmfWV1liZG\ntSIRA6LIi4gjlnLOVc2qL3lF6aV5o7kUziIUJwZkw9PDyd7O8d7Te4/vIVNb29om1JSKajTqjUar\nUW1hQU+e9RShpXN2/PS0plVTViiqNhlMeSawQGWaUYJZmVPFhlJJozyLk6VOq39y9KmPfeTs6Eil\nFiVGnsNHD3ek5BBxQlCa5QqChmFxAUomTE2nkGCJAUNZGg2GZwAIyzEBAYhAgilnKPC9JJzdvHbu\n0uXzEhBqu4iqYTxHihyPx48ePSWY2pZumdh1nbJgYTRN8rBSqSKAgECsFJwLRdXjYFbGCcsFIipG\ntAxSSzHu3bu32zspFeCVubu2+sbhbta05wL3T3NvDEVm1kid+FBMSpgIIHgQTyRTTvve092ePyk+\n+twnKkhtWro3O2OiDIO4VqlhAXr9o1rHNtsmdMjmWtubT+Iwl8LyAyGg5oXJWe8ElfiV115Ocs/3\nAwAA1GBjYaG5WD93YfETn33ZadHP/eSnOhvNpIxeefXFmmM/231087nK9iUUg5EnfMet1e0myyf3\n775+abXRsvD1rSULwb1nh1FRRPmk06i2Wq2ZF1Rr9WazPhoMjg+PilyqcQqBTBE+6I9cvW7k2EJw\nOuv9y3/1P5td68/+1Z84/+K642KRJZZiDAdTPw4glJvLq9HMG4/HlmO3FppRPmdQCkxKKRiPoYgl\nplwKApHgSEFYCkGxvHH5vG5VvAQiqCGOsSAKILIQWAJYcpnkqoBYoCSMDE0jCEEgpJSqqhKiCCmz\nLNva2ppNx5wVUghVoQggwbGqWYxDxmFesDTLy4JBCQBAcZwmWf6hgA6kzIIomnn+zBMlwJBUK40o\niCuGa1BHxabIsaE6jAk/jAghmmZompGmeZELABAQ8MOAMASgYExXVQpVkfMyKQxFVyBJgliWQsW0\n7tQ0VZ1M+5DkmBZBNKYKrBhWXgRYURGypbAVabhawyAtFjuLzoqJ3Xffuq2bGlRjt5GPZw/96VER\nHh3uvH9hvfPLf/Nnv/2N73z9qw/ef3sSzfWdh0Nvnp6c9rYvXj1/4ZZht0aTsNpc8VJ/dWOVEjQZ\n9Mdn/Zpd3Vzd2nmyPx2ORAkxUd1KDWNl2Jv2e+Nm3bWqVLWh5RLL0trtNudcs6jhUq6k42B+59GD\n518731qw1tcuvfX9dx998LjiNAb9ab3VUnVrMJqtba5ZVRMQaum2SU2R8jAIsIIAglmWj8+mumPa\nbpVlAgtkaSrmcbetbW/VNs8142yo6iIpZoDCxfWVte3llI1cBxLOsoCFYzE8Dtv1rmUYw8FJGGe2\nQ6ez4/3dA8kxwjBNQn/iEU5Mokbe1K1aS2sLRFfMarW7ul4IZFfqhBDIiyKetuvaxz5yK8v6QMmb\n7frJcPDw6THqLFSSbApgyYokjry93aeGSVWDuiZxHVVR5OD0+PHtu3fefPvk0e5g7zSfJ5DB8dR7\ntLvHMYmyDEFSdWqNRlMjquQgCTING94wTOdseuJJoA36fu/YF6lu0MbR4dlx/2T1/HK1s2I3um69\nm/qMZrT/8GT8dFDErEyyPIzPra2trCwAQ+KmUrp5+1qjMPOMZFIFmkbLlLFpdnbvJNjzNaidX7/i\nzXIvSm+9csto41Qb1TYxs0ammumInPYihuunvTBNivUL6wymEqSfeO05tUzu/OAHIEpqmo0yaBoV\nAMjqwmZNqb3xX36Q7np8DEbHAcG6ZVdUS+Oo1ByqaISXIo2LPM0wUgBSihxYdo1zOR72X3nhxg/f\n/N7G2rIC5cnxvu/NLN14+eWXW41mWZZJGCkEAcnjKOKCEULSNEVU4RJkrERUKZjgEBFVI5oeJ+Vw\nPNU07eRs13ExQWUcxwvd9XNbN4ejabVeWVpur6wtI0I4yJdWamtra2VeIIRUVS+KIs8yShRL03VT\nHYxPChELkAKYF2XsB9NmowZxRi0GtPRkeNhstlXq5IwpGn7h8hWcsTxMVaKfno69MMskLAhuNRur\n3cVr569NBv0H999++SPXNUvJOZMcjHr9ce/MUHDdoIs1B2RxGXuzQRr7QtPcZ3tHmKrz6URkSTAa\nZrlfFunduw+arTUh9eFgVpT845/82PaVjdPZ/iufvX7hhaWlc+7Z9NiP48c7J/Oer0nt7/6tX6nY\nDgR448Llt96/u3HhRrdx7p13H86SeJKHVteNWXr/3kNba7ardSJYs2Ztr6/3Toe2Vas32tW6CyRR\npeIoesU2UxFBTbQ7tY/cuvXFjz3nHe3ZgHRr3UarbVTtTMRFEWhAqAQvLnWqjcp85k2nQ4Kwa1iq\nqhJCGGOEkA9NToRQWZYIAFbmhJDV1dWaW9158mQ2m3341Uae5wAAIQTnXFEUCKEQQlc1VaFxHEsI\nEMFSyjzPhRCCc8MwqtXqcDi0LAsToihKo9HI04RSAoAoWC6ApKYuCUxYQRRNVXUEYB6nUHBKUZxH\nApeWZSZ5lBVpGAcQo9lslsQxK0spURynZS7Gw0kUxlJKhBBAkotc11WsoCRLEEIlE3lWSgEVhFnO\nCEIAgIpTFUJMZzNMiEKxoigYUcEVKahKrTzjcZxSxU6zOM08w6RRlGlqRZTs+OQpx36j27QqrX/z\nH3/z3NXrzbWln//lnzNX8osvdm5+bPXKq91f/BtfQmoOQTEbjN59/a2aY9uG/Oxnb9x/8E2q51sX\nt7SKfTIZ2xWj3WmUWcrjdHt5pQzi6WD03M1bYVZATBDACgQUye3NlXrbKXBy5eYmNWG10xh5s95o\nXG82cpYrFmFSSAgZjz/6iRuD/snOk+PdvR5Vdd1EiJQQwmazmRV5FKfLSxua6hDMBC8glNVqtSzL\nLMuqVTfNYmKbQZ4/3t9LMq4Qq3c6H52FBzuDg72RqVpNtwEkEYilbLC2atc0/ez0mLPs4rnV6fjI\n8wZJ7E8mUwTV2SQ9PvRqzuK1K1fLIplN5wgTw9XSIs3KYup7ECEBZSELQYpx0MOWFArXLTNLBc+J\nguzXv/dDbxpfvHRt7+hkZ/9gEgTwz/+frjMO/TAbDDyEDYK1+dxnJdcVYVcqllOZjGeT0Yxlolqp\nq9RkPCNUCeMYEugHQaXh1roNqCBLVTrNJVGKZzuPYn8OIak41fF43Fhd1LHSO+kFQVCtuAqFiBJi\nq9WF1ShLp9OpjUnam8QjT1HUnMu0LIJ5sLjQSbIYU+Rl009+/mNEx6Pe/PDJWTxlC9U2KzPOy6Rg\neSEajdr61vrtex9kZdJZbDVXa3Zbj2WSez4NZRwyd20142WT6tN+nyny3PaGpuuT+Wx1YfX26++t\ndlbPTvpBEPlBEOZFe3FFo8r45FCyrLu8Mp4HnpfXTBeWvMgTQmGSxZZRadSaH8LyClUxxtPJ8NL5\ntVrF2FxduH/7UZ7nP/+XfvHf/Yd/P4uCS1evVZz6/t5BfzhACDEJgESapmGFJEkym0ytip4muaob\nmmokcYwhhhBiAAEsvfnkL/zcTz59+rQ/GMdREfrJC7duevP5aDIoeFFvttxanXPp+X4U+/VqPYoS\nQggAACDp1ty0iCEG9YXaLJwLhW9e2Ig8P5untlOVimrXnFkwVylWIShzRhSlSAsVKaaqHh8P7Eqd\nCcFkjmjRaFuqhgghsgSNaoMQ8t3Xv/UzP/tTZyeH997/oOFeVDTl5OQYU6HpysrKar83LVLR1tpU\np2mexFkymQ4qttaoV2o1t9au7e7v9XsjJPXrl25CxA0b3XjxSsx5tVo/PT7c231KAJ+N/dHpnADz\n3NY2dbLWSvW0P/uvf/jN6YQLpjUarZbtTMenn/zEq4qiDI/7S7VmVTPjOK53as+O9o6G47JUdp+d\nedPEqVQQBRAhx9CHgzMOikvXrhwd71EFLi20r15Z+e4P3kSaMxykSQSyoOBpbuiaoRFCUCnYy6++\nlJfs61/7U8eqAgExojrVA8+XEnJeSggAQAQpCBScFWURrywt/OgXvnDn3r17Dx5hovlxijHWNE1K\niTFGCOR5DiFUVfXDWz4rcoSgqqplWaqqGsSxbdumac5mM0ppFMcCyNXV1dl4kiSJputYIVlZUI0S\nQqIocixbxShPM4JAVhYlY0RX06zgabq0tDT3PcO2ipzNZrNOp4MQieNEQThLciAkxjjJUoiBYeiC\n8ziOHccRUtq2HSYJhBBCqECIMS7LMstzieSHuI6EoOIYaZoDhlzHVRR17nsSCYCgYWiszA3D4EWp\nKGoYx27VQRgLos6mAVJAIULbIZ/5zGdM03xw/+7Kcn1ppa4YeZzN69WVdu3cf/z//ub77727dW7x\nx770KdshcZD+4HvvhQFrttd0oxbPgrNne6vN1vNXLz94dE+xLepW37//cDz2KaQ61uMw4iDdvrwe\n5SGXrNGsJlkphZJ7PPFzVVP2z/Ze+sRLpkG/9bW3Xn7x4qc/f+nRoyf3bveHJzEr0dpCw7DM6Tiu\nNVrPDu73+v0vfP4nTvtnsABBEMVRrqqqUzWDYAaw0HVdUoAkSYNUV/Q49FfXls4GJ7quGbYNcW67\nJtK0nGSWQSbHgQxNCFNKaZrGSysLTJQz39vbe6YZOoGaNw0AJ9tblzzPG437WIokzDc3z8VROp3P\nNrbPFUU286Z5mYVhoFbNil6xVTsYB82qW7JYgqLVqa0stbFC7j94qFs2SQtlOvHarZUB408fHquq\n6VZqKqVFHI9zNpxOTNNYXzsfzry57yGVlAImfoIgUCW2IaWFSEdz07W8cNay6lRRNpa7H0x6hlkZ\njvpFWUa9vSATechEIibTGQWqhABpdHQ8P3/jan1to9875RrSmpamaFVVjYN8pd3N4zwr02q9UQr5\n7PFpo+3GUeZWHVdFmZeEfiyEgApVVRUVcHQ46rrd0aR/8nAvz6Jb1ef8aUx5G2JZyFE8nmkmDsq4\nuVidDIYFSzRCOWJJmSxtrT68/bSm1rNA5D1mU7v/fq+7smCSTm96imCmKQ6O+jN/7JiWW6srBoIh\nVCk0bGQZFBIcJxmApN2pH58cXr/0IxpVsyzb3twq80zT1Oe2b0V5vru/12g0x96Uc1GkeVlwIQTE\nqFqvAQT92bTq1rMsy5O0yAqKCRCylFLVVYiUe/d3lpdXpNSOksPXXr2hanA08TfPr2eZmHrzvYN9\n0zQwxrVaPQwTAADjvNVqDceD+Xxea9aiJDw7Gqxvrg+94ZN7+7WK48387sLqybAfh4leqfSPJwZR\nZJGqCtZVLWVFrgOJqRclqqqMZ9PtcytIYpWY82QECq4ACiQx9dYHt/cWO7Xr157X62g+i9atZhzl\nZ72hPgsEJP1pv9ZsEAqCIHKqpoCuqsEg9QxBy7ISBtny0jl/lvbPZgudxulRryhju1s5OTz7jf/0\nhx959aMIlo3m0rlz59LY7y5VF5fWiFr97d/+VycHZc2pa5barlbb3fbp6e7hwcnlCzf6p/dW681q\nzRjPezTXvTQfT+bjaQyQ0l1pxXHkhwEx8AtXXgXYOxqNnv/09nbaeO+dd6WevfXGTuwb2UgqsMaD\nmcxLqiDGs5q1Np+OtldXHr3xPsS4ZVaZxFyIUjKRpUKAosgxhhhhzmXBCiRyquJcCM55XhaapkkJ\nEUKu7eR5XqQZwAgAgBD+sIqvVqv9fl9CQCkty1JAYDq253k6pY5p5nnOGMOEQAgNXT8+O11sthBB\nGGMuhKlppeBQCo0qKhVFkUEiIVE0oud+qCsmRpoAUHCuKArCWHdoXcP1hZaiKEeHJ0mcl2VBiUqp\nVnKWZDGEACNEKeVCQAjjLK1UnA+x+tl4ouu6QilECELICJNSCslYzlSiSgSDKNA0XSKBFSIEAxiI\nQkZxrBCiKsiyDS+YW5aZ5YnlYKqSwSDt1Nan/aP92fztH74b3FooyvNOrYaU2pvfffLeD3+/03RX\nlrfPXWhTpfbr/+6rGq2vr78k4Ul/Or2+sXbnzYcVvaobjdk8H4+TJactS1LGUlc0WQJYQhXqSSaK\nUOmfht3FTllqhmU/frajSLK1unmyf9Ttdu/dvf/FP/vxH/nxF2oV87d/81u9/XJz/SaWu6YlIizC\n0IsyLufeykKnbmo4CZP+sdlYrNha4E0Uh2DEMQG6aRRFEY28mltd7laSOFSpAlGhqMrZYHCx0UTI\n8P2smM39ZLK21gm8yVrXyjPx4P4dhOjtD+5fuXydQyJ5PYvgYqWpV6tHp8f90QkTIC94xaz43lGj\nVatUyzgL0sjXdZNIpeTA0VUl5hqhB70DzdKzMFUhqmq6SCUCluvUDg6/QzUfWU713v3d73znzbKQ\nlm45uh3PvOlZ3zG0br12bmOj7lTPTnuMAwGUNJVRkbjdRga4lyeW6ygAWYA0idE7HN15754G6Y2L\nl5v1KiJQr1YaywvdjeshU2IJCg2HIIt4nLIkTrxgZ3Dnj7/PzubB6TAIgqXzG9XV9tGsdzo7VqsU\naDxKwtFg2q4tj/a83feP436SDIMyDFQFalhBHFct3dGAUAOkF4tLrZrj1N2KxdHxBw/Tg74XHIzz\nU7OjpZk/PD47PusNfc9yK4PZcZZ7RGTf/cYfK7Jc6LaoSTVHw1dQ5bpmr4ij3gcEButdV4QjExTd\nVpUikWYBwjJPMwpwMo8f3n4QR/na6gYAgigAY5yl7J137iHkHOyfCoksyzZN6+Sst/NsL2c5gyJj\nhR+FjPN6s5HmWRhHH3aZO9UaVLDtVg3bUjTKEFBMnVoGB8C0a4NhcHrSPzs9mU+nrr20+zCaDOCo\nx44OJlHAEdA5V1iJJae6aUBMVNM6G44AUXTbDsKYMwlzMR/MXLWmAqNMYaexEIU+gFwqZQlDhuPl\ntSVVrZ6eRp7H4qgUWbHS6STeaDY8bLuURR5h3Caqw+xiIGf74c4HT25e3N5ad/zwWW/6ME1jCOE7\nb99xrPbWxtU0Y7NosrzZPJmNOIF+HM1mnoIVBDDnIIwyXXMXF9YVqi0uLiZR0D89VaGSzFOQKEqp\n21T74J23u+3WkydPnu0e1Zprw3Ey8/iffuN7nj/84hdfydORPxnE41Dh8NUbr3bc5bO90cW1qyfP\nTlhc5kGCCsU7i5OZBAVBkLTadbdWaTQatNQHvSBBRvfStd/55rdjpF268Wqtsc41xBR4cHI4HQ94\nEtmYmtQsczQKvfbqkt10FzfXYpFxFfhlWCiCUpIkkWFouv6/ld4YY4qJBJxSCiFWVDXL8oOjkw8J\nhw91DyHEh/OHXUtSyiiKPgRghBCl4FmWhWFoWdaHUg/G+MNwUAFkKThCKCkSzss8T4HkeZaUaVLG\nqSLhh+sVXQOUKKZONRUCUMZJvdowNRMBLIRQdKXSrM5SP4Ol1bK1irawssh5GUQ+xpASJQ5jVnKM\nCIQojpMsy3zfdxyLaopmm2ES+1H4YZyZrmmCcwyJpliBH1m21l1uMpBYFdW29Wq1EsUFUrFZ0cIs\n9KNM1yuWZVEVsDzGABKp81S39QVR4C/9+Bd/6S//zOWLLzx7dtIfTI5PzhjPlxfqL790ybHKq9cu\n3bvzoIhx/zB6+O7+/qPTdm1h/8nuynK9FAF1QQjm9oKWo3l7WT9/qcnBdONcXauzUvW1GkzLGYDp\n9sai67oZK1uLXc/3Dw+PKNE7tQVbr3z/jdvtheWz/ulP/vkv3nhube7t1urk9HAPJKEKRMWgsszi\nOHXrNU7A9RdvUjVY23JuvrC0tKwend5dXHYxYXkRNTqdSr0yCccxi0pUlKhYXOtUm86od1ZkYbOm\n1Qx+fbV5faX+6de2Pvmptc9/6uL/9Kt/9V/8T7/w+7/7d//m/+G5W5fhC1equpjdff/R4dNJ01yT\nMV7qLNbrzTBPz926cDI987O53dTVCorL+cjrqRouyiwtiygKWq4LkrShW9trG8PxZBJEd+7cefTo\nkWs7FdtCCnbLEhl6tchlt7ssSsaL0tLUhuNMz86W6zUDyQsba5QCIFKECo0SBMDq8ophaF4chqJI\nNcBd7eKVy2e9k/fffqti6SvLnZwnqoEBFZpOanW73nAWF+vrywuuU9GxqgFqOK6uWoO94+BorOfY\nP50pHHfrrYX1xdpKrbpS0zu623akFBe2z1u6E4U5NfRat8Eh8xKPycKfzQgQZVJCzo4OnobxBBGx\nsLJIDZ0TIkukS61p1hyrUnGcTsXNI6/SMBzqsJBVtOrFrcuSYZaxhw8eiCJfVWpaCn7k45954bkX\nJZNQgPXtc7M8NKrG6vmlla1OWsyjcJb4ceaXqnS8IB4MxqvLa1mSQwEN032237v36PCLP/6lr3/z\n26PJTFF13/fr9bqqGXEcq1Sr1RoSgjhNDMt0Xdefz1kpXKfCijJNIsc26zVXpVihiPE8SRKqqlk5\nb6/yv/G3X/0zf37xyf6Xm11Zr7kE50gJOJppFgRQcF5meVitN6mmhXF08dqVte1Nw7HjLIVEqbpu\nFsVFnFYtF0sQR8FgcJYmAQVAk2Sp1g1n0aWLVz/16c/pqkukJTKURIWuWnleUs3yorgUsNpehFhq\ntjr0J3khH7x/9Pa399/4xiFMlt765r3es/Ev/dwvnB4evPn97wdj//zqlWQmqy03zpM8z1vNbhaW\nLXeBJTCeZv7MBwAkSfRs73FnqYkUaVkWBErLqTuq8ee++FOv3XqNCMzS4tr1S3NvsHZh5Td/73dS\nJr7wpR+7cuvGS598RXFwJP1w5pmm6dacEid2S89FrttOt7ucjZMqds4vbHWc9nNXb4xH0+Fw4ocZ\npQQRRAjJs7LqtgVXHjzc++Ovf2sWlFvnr1y9eRNhQBAHsuBlpulKu1HZPre2e7SLTdTdWFhaX6w3\nHIqZkJyLUkjGOUcIQQgBAAICw7SlBEmaJlnuh/HB4bFpOWXJ0iIVEHyY1CqEYEx8uIVzXrCSEJKz\nkjEGISpLFkUxABAAGARhlmWcc03TOOcfijYSAsaYYFxVqIqJKAXLWRrxIoNJykoJFE2pNBxVgxCV\nYZoFUTT3PYJxluRJHJd5EYa+omA/mJdl2e12dV1N8xRj7FYqUsIgiFhRalSVJaME9QdnQeBRndYa\nVawQP4o453GUfPhiBUFEMK5WK2kWIUWajhEkPlJQu9v0wyjLWbvTBZDNgmmelUCqkMHR6Xw+jipV\n+/uvf+eNd9/9t7/xn4AlNi6uaq6+f3rMpYCCY1gcPbv70nPnpBiVRf/p4/c1BGZnMxva/Z1DEEVp\nnDWbnXpr4WgwOB4MddtaWF6KWbq4vnk6nQwjD1rq4rm1FAmokSiPnu3d03UIZLm0tDbozafT2J9H\nKqJpmmqqu/vs5Nd//Tc/98UvvP/+bQDT//4f/MLP/IUf3z94VnW16WygUisMy9F4AiVFhGZZFkVJ\nlrKVhfVgnrXqK43acslzJgDG1Zp7bnRW5D6/ef5iyyFlcDyf3F1YyD/16a1Pferij/yZV17+5Iuj\nMj7KJ1+7/fav/pt//9vffv326XGsM2dT+fv/8q//r1/95b/6D66uXhy7lRDE8+WGtbFYf3LvvgJo\nOP//sfTfb5dlV3UvvvdaO+eT85tz5dhVXR3VQa1WACUEEsGAEBgw2P7aBj++93LN11zb1zbYGGwD\nNkkEIVBAuXN3VXdX6sr15nxyPmfnvNb9ofxPzDmfMcf4DNsYmpHjCQybEEWOIieKuVRORNj3PMc0\n7anK9KDTgxjILF+r9e7eXo8DyEOVClxPkyXPtyBPBFGUzYv1sF+qFByvNzdXTKvi2v2uH8fZQtlz\ng8FgqKpq++CQIkEikeAYWsxqOvb6ZEgRUTKTbLYOs2k1ofApVeITaqPTimk6Xy5t3b9PxGjQNa2h\nlUwmoigyQnR8aTkKPXPPUmWlvXGo13sRETEpFUXkxPyUFTrD1sh1XAwCSiAoSA7tMaJRdqYARaHf\nGrim60cwtkib8HiJ4tOpzYOd9f2DE2fO9nd29epA4iLr0MoUsxShJFgFsqC+PxIAHvq9QV9nGTGp\nEhKnFLOl8VBPMcVBf/BW59bINBiGEkR60O46QSR6bi6fdl2bx8zp06c317cdI9DHVjKl7u/vXTh/\nWhNlQIJ0OkkA6oPVu5/96AuVyVK9Xp2Zmtje22+1OtOzsyzPjcdGqVRiGK5RbymKEgUxgTAKQi+M\nJUFstVqaoga+S+CYZekoCoS0QpKIQJHtjI4cnddkKqnUTx//8He/cePt914vTuYNy3MsBEhK4IUg\ncBzLAgBgEoZxJIgyxnh6aubgcH9+eqVVb3Q6rdnUQqk8PR719g8PlEzCHXjA5/K5/NraRr8znF6Y\nkZKcANS9w40QBuceP79X2/UiW0xKzXFL7StyXjOBTYexRPDB2C0JhVANE1JmzJgwpj3bfOLxIydP\nVA4OG75Z61Qfhkx6amqG9L2kIrdq0cFBlSSBbbuBb1qmgQkiws6DzTtTpYob+2Ec3r2zlk0V69Wm\nyHO13T0UxTiiWq3R5Vt/NzWxYjr27Xu3atW+xCiKnMok85xANup7p0+dSCXoRmP9+KmjrU47hiQn\nAgK4o+EYALJaPXQtB8cERZHVXjdfKqR59bBZ7Q39aIDHA4vwBYEWGUCP+0OWF9V0LnQ8QRDbvW6A\nXFERW/22HbpeHIYxViU1johxT2dZNooCAAn8iNOGCZqmAYhs22Q4XpLV9Y0thIjhaEwzXAwQiokY\nIRSGj2R3EgICoyAKIYR+FDIMoyhKFEUsywaux7IsQsh1XVEU/SAgCIIgCJ7nXdugKEpNKQTCo9EI\nR5jjON8POE4AFMkKXEgEJEl6QUBiNLEws7N9KNJiMp0e9oaSJECGpimSxLFp6YEZtAaNXCZLkiRF\nURBA23QYjs7lMiRBAExARoYsjDEe2zrheKqq0jTNc4LjOKbniByHMCbImKEpxw9ESXXDaKQbhWKp\nXq2dPnfasU3HDkIWQ4ogYt+xIxxAhla7VtX0h/PLpZ/59A/ff/gwk01dee+m7Y1Pnz9r7On94cHZ\nMxe//82dIyculifL08cScYx/9Zf+6W/8+n9+2D9cXHzu5q0PMsmiE44EXnrzzXfOnzvZ7XZtJ7h+\n+7bphQsrx+pvvEkzzMTkZCaTCcMg8OwH6w+nZ8uZRBJCqm0PeYWXZQmBKJdPKSTz1vevsCDf6K5e\nufadlz+78sKzT3Xb3bXLB9gN9XFfENlGe6QlVdPusaa2vHDxK1/5q5WlJUhQkIxlSQ48fzzuhOEw\nck0IOCMMxsOWPa4uzspPP7YSns8/9+GPdgf6vdW19a3Ov/v9v85NTi4cW9rZHBNIgOD5d153Bx09\n8j1Ni//sd/9Ldpot5dknzx+fe2nxvXfujkeWxOAzR6ZOzK/cv3/fsQxSoKcrs8VEudFoxGFMc2I2\nL/mmjR1/ulR6cPdOeXKiNR5ADqIo9nyH5woUGdIcJUoi4wcBJwooDEulIkkR9+4f/MovvgRibFk2\nwVBqQsr4mm4N7dE4iCKS5wfjUTqbCRyXpUnOR2wqvcSqjfW1w/26xEqV/IQRxIVEZW1j1ai3imoi\nm8ogmzizcrzVbccUZhwnpqJkPnMp/1R7t0YgRNF0HMW9rV7zsJmZTlemir1Wb3pu2vO8VmdIIJvE\nyDRNluU5kUllE0NEWxaWFdbxnaxWHA6HLCV4ZmgPDRphhqMoAMgIDXrDkMS6p88sVJzR2IqhwEiB\nj1qHB2AK0hm2MF3qW8Ot5hZPcUSIUzzbGw8hiUgCCQCO+iMaQIqlW+1RIjlIFbJmuJ9Mqv1am2ZQ\nt9PUFLHRbkgJVU1zB/Xe+vqDkyePQwp0Om3LNC03cBxXEERVVga9IcOxpVKp1+3SNC2Lim3qThTw\nPJ8v54fGkKRIMSELqoQZ0tM9QZSCyN/dtP/o91/jabh6fxsHxVw+QwPRGNAkJdEkjrBnmjovgjjC\nCBGSJB0e1CANkgk1qamlfBEyIs3yluP2Bn2WZ1QllVBcHNM0jWxrfK9dPXXu/K3Vhz1nJIqU5ffS\n2VSj1X24ulGZmqg2dhmapAgMoiAIfRxEJ04e8Qz98eOnX//ua0ePFG8/+CD0A8gmvv+D79qu/pM/\n9eOApN5+850jS9OLfNEL44ejrizQE9PFvj5gAJdV0pJMS4m8rCV46dz9W/ckQRZF3gvo5m712JFj\nt67fKOTyhqVLXGrtQX1m/vTb76xR/oii0e1370zkFkkHhJ7peK3c9LlUeVaDfLE0+a2bd7Tp47Qm\n7Dequcn0vVdurRw5WplavHbz4Wg8lCQpqSnJtIbDYKYyvfFgFUgSIQLoEOTY3xjuHq7V4xhxotDR\nRyJP43A4N5u1TU+i+DSXmMhN3rp3n6BoTAHkAVHkaZIyRpaiKHGMwyhCUWxZliBSiAQsy8qyevfu\nXV4QaZo1DIviIQkIQRAewQMeqTQcxxEEBoCkIU2SpOd5LMviKCZJkuO48Xj8SJmhKCqOY4qifN+H\ngMYYmaapKSrHCQihKEaQoaPYB5gIDY+kSB9A03YSqWR7bFIKQ7NMMZPr1iEKwtD0IANFlacoOquk\nnZEz6A4AS2IScyLLMTyGiCBxJpFqN1umaWSKeV7iAhwHju27XoywaZoAQoAxpoDn+5rEcYKIERkh\nQALWsiyWsQRJ3tveo2la4DEg4jiIcpl8LGJjbEXYS+eZRE6YnJK1BPmTX3j5O99+5bmLz1y/e+P1\n711+6RMff+bp57/5d98mKXG/0Xvr/Tc++qmT2czkv//P/3ljf3tmeWZkD0ia0c14efnorZsf4BhV\n8pPvO+9dv3b7wnNPC1p6NBodPXp87cHD+n61U20TBIh8olyYrO212p1+ebosySzFRW5s1KsdOXcs\nl0y9evVGJl2U2cLld6//xm/8EiDJP/iDLzMgVZxZ9HHIigLCnD42WQFb+nA/rpVKEywj+K7b7zUf\nrh+WJpOLyxMszGWyytjtshz40Z/5PIiJ+dm5nY3Ndtf44//591/7xvu/8Ms/FvhiIXk2ATPtuwZH\noxi30wW9kLEFThy1UL8xLPBFTZpfvV3/3Vev/ca/X/j5f/Fj22v1O9fXus12q7VRKmr5QrbbGfX6\nw2azabsWz7NWM9aSSrkyQUK83zlYOrF4UK1BCIMoSiXSKER+gCjd9o6fPPvOlcuqqqKYoGkGg2jl\n2Im9/cON7c1UMl2cKIuadPv+TTmVWDyz6Iy9g4MqzbATpcl6teE4jphQXcMnYT+dUjGPr9x45xd/\n5qdee/MNq9ZW5OSTx06tUqzZ1bvdcXFq4pOf/fS3/ubvHqytcgm+WzsUeFpOafxk6nB1m/WwQIoC\nwVAAoB7eHexSNHQMM/SDBC+xYpoiKRTDXnNo4oAAOJ3TMIpIylelRMyScj41n1C3N7bXbz8gCGLx\nsaOsCnZ3NvJC0jQtQWM3dzdny7NuRISuP1WeSAkKy8DhuMao+cXz01sbtcByimq6kivcuWU6tkEi\nQmRFFGKnY2kTFQykB3c2eAGasTWTmjp2Znl/+8DHaGlmodkfc7w0vTB58cnz3/+br8+VsiKt7WzX\nJF659ORKf6wTAcWrqtfrh25Ixa7ACVEcDwYDQeA44lEYJJIEOYhCS3coyIU+cgiXwojn8OzEQrvm\ncBwLqUS32zXHNVEUvDDAlBdy7vzcpD2gqYCzg9B1XVbgeYYN47jZ6PpeTADMMFQUA1VKWf1RPfAm\n5+c90udFnFZTgpD3fbfVPjizMjscG5Mzsz0dW+RYTlPV2iZNxlQYSTRPO6D9YIfiKDGVGB70BJre\nfrijKNn33rsjsJo9IDU+mVdnyBT+4//2RhTYksTzIEM26isry+PZSmNvzabZbD7bazfIOIBx7GC7\n1224jUjVVDoKRwMzYsnHn3q2aw1e/NTztd19yaQN0z997Ox333qbBpkHN/askV2ST0UDz7L7Ak3u\n7+7nQHTuR39UkrT7Vx+cLJ8fVc2Z49mZxdmHm+994ac/HREkCXhRgRAgTU56bpTMyRInNLu64QQK\nh0fNHhVSAkqQIA78gKUhh0l/ZMURz6WVbCE7wN18PptMphha4KDghXFoh7blSDJv2XYyl3YtJwxD\nAoMwjAAAkCBZiiZI4DgWhCQAgKZpjuMIEhAEgSIUY/Qo4o9IIoojCAGCJCAhSRA4iiMcxQTmRYli\nGb1lKrLmeyHAgIDg0duTJgmaYl3H8YIQERgTZBhFBEHQgMIEJAhkjMZEiEk3xjAMXd+GNonwftNj\nWWZsmJCkkBOZdg8AQGKCBDEgMQc5y3UwTwoCP9BHQRBEYQxZBkWhoZu05wOCYBjJ931IgRjHyZRq\nWZYocNlMIiJic2xKFJRoKY4MVUnahkvTNGRZ0zQhoAECIKJ9x7U8HfMoKVFSJnfq/NLEtFav79y4\nsQ5In2FpltM8Ha7eONja+cqtu6tZKddsOjKfq7fD8ycv/vZbP8ipS/OT5x6u3q5MTNZaBwtxttfu\nXDxztra5/uLjj735/vutWjU5kxv0jIwmZVKyZ4etdi+fnbPHBs4GPC0FoT0zNfPNb75CAZlm6aWV\nhcmpQqfZmSyUPBtFIE5kRI+wfIvJZY/u71o0hSARI6Ifx7QgCFpSAUja2dkiyHBguAwMnn1uauX4\nGV6QDupNhpYFkT5dyF544vyf/OXfTk0sj0K3PhqXpqcrC9RP/9zHJpLp73376+fmMzfWavd2BrPH\nTg4Ho7EtHOz7GVWr7gwZgkwoDMG4lSO0e4ivrm2vNuppmZ9bnnn2qQt/9/Vv7GyuF7Oz+XyGZLnh\n3iiVTfpugLnQ8I1mF6pK9p033n3uxeeHY6NYKqfT6UFvEEXhcNinWvXdufn5Qj5JABKDUE5oPAud\nyHjuQ89YIzPByfs2coiADPjaRnv+mRX1iGg69tixYIYtqRXPcNq1DoNpY2gTpi+wzPqdHVXK2TY+\n3O82xzsLK2emytO1aH26nG7u73baa7PHpzYPt8YDg4Z09e6eqqoLS4ueOG412gEROmGIfMQ7LEmT\nIUekT07sDQ4sZFUmJYpkYEAJIjOo9fNq0elbZIQZkVcFSWWlsWORspQp5LvNFg+hfW+3GTlcklEr\nbGWu0u0a+fnJ3ng/PSfTJMcRau2NphjLEqXu3a6WK/kkIzSdvs0amCtxacWNbRDQnbZFizxE+vH5\n+ezCVKfecRwEXAZj7PnR9Nx0rbpTbd9ZOp4Z6+Zw1Akiz/SJ/dpw6ehju7W/OXfhXLs/GpnGynJu\n/3Ag0cRIHyJScMNQVROQ4iSO1W386HWmqurY0G3b5nmeYRjBkwAWQ+RXay2NRR9/+VK12frBG2+7\niCcBIwuibZtEQIGIV/Ppw3pHoCIaEBSD/MCICRQjG9AsxcBBvw5hmNHSo+EwMqnD9TYrsUE/qFud\nka4XSulEQu4Ndccjrl27yymApPhsZSKZylrjcRC6lE9AlgWsHCLfCWJJEvZ3q4dhS5FTPJ3IpQti\nsqkqMYEtlpMlRXY8Qi0ltgbVh1WiEjZpqBTlxPbmnRAX1UzK8aK6RfRbuu/7QOSYSRUxdNfwx2PT\n826cmluey+ZVgn7tyvu6jwa6JSBG3zkk/YCyAl5VQ8SYHqY4dnpxkhImBbbc3N6dnCrevHctl0yz\nCWfYrs0cP5bIpL/7/VfarZFAaU9eeuK9t67KvOSigE4kK9PTAMXzlfLW1jbFyUAm7Z43NTfb7rUd\nx1UkwfNMjpaLpZwXOiFEnKJ8cOsuQiCpJjEORRoGgee69iPoLhmR5CMGCwYEEQOIeZ5/1E3M8+Ij\nbT2KoiiKMEk8Qn3RNA0jEsUxJKjQDyRJRmFEAQhIMgxCWRT0sSsKCYKAcRwJAuOGrhf4rMhFHsIY\nUxQVBEEYhhSkBUEIguCRqzKIg1yugKI4DOPhaCRIsuTQPAlIjGynrzAsBHSMEMbYi0Lf8ykSkiSG\nFElxVN8cphgSkSHNEJZrQJIK/JBmORZQtutHUaCqquc7qqxalglJQBCE4zi25Ysij1Bk6F3fM2lG\nBRSANBU5iCaoyHMRBICIG9Waoqo4ICOVbneHYzPq3W3PTpy4c/09hJhXXr9uGUQuMTuuObjunE7N\nEsg3evVzT59u1Pq7O3tcNi6syDVvm1QoArMptqTARKlU6bpDJpOYmJk0X/XkATBtaxRvP37+fD4/\nsbfu+h4iiW4iR2KGPRjcX1qekeWYjFoE8g2LO3fxucpsujNom2Q3M1Xg1Qkfhg0dCZz9/OeO/q/f\n/jIPJymcxaRLUDYvcKOx77ibPCMVi5NPvZQy7a7nkX/wZ3fWN1of+tixUkVs3N0mXOnf/+Zdwxpx\nUi2pySTps3BnYiYz93OnP/Wr/2exMpfS5MefeeLjPwSHVWN701ld3TdXq6OokUwVKBq2DoaHcm9u\ndmJ5cenqqzdSWv7848cP4Ojrr3z3C5//iS+kk69983tvfv/q4uK5yVxl/WA3kclGmKBI2Gi0iFJp\nZeV4HCAQAwoBEnIMKxLYJxCiEoraOKyFni9rCcezaYYrVArj4eDksWOe7rUPmrsH+0o29djF86sP\n1vTRcG1jjWTIyVK506yntIQs8A3P65ujtJwFbpyQpEQmPe53xv2BzMpSHI0OtvPTU/5o/ORnPmMt\nm3KmsH54f+wGNM/zrGAMTBIGXojzU1N9xyQAeXxqrlVvD5s6sknKJ5u36yAO2CjsHegcx03PVDhN\nHDfMrj1iVd5zHL3Z87Ft+pzru06IMQayLOr9vlFQcpNLPvB3B21UbSbE3KA3RKSvj7xMPue5rcFo\nnC6kWUABjFYf3ltaPnJ04fjVqze7bU9LZ2LSTRdVTiDH5kgQuMPdXn6qQoHg2NHp3e2Dw619Nelp\nKqclRC3JHDs2+8YbVwY1XeBVHoSHe3fH/eOf+MiLu3sbW9uHucIMG3PGwAKQTmj5Zr+rJhIUSUUE\n8t0IQtK2LZqmXdfWFDWhar1Bn+d5keJokhjbZs8byxPFq3fuacksI6oMYFvtPuQoKavo+ujwoMGr\niijwPE12u33H9iVJETiGZ9hhfzgxVSZEZjToJKQE4VOpbHY07nmhL0ii5zvpRK7X0UVew4hyTQuD\nmIVRMp0aDzo4JPWxxZC0JKaGw2EUxlpC9QKve1CLLCenZVVFadSrrcZmzzh88aXnW73unZtXCuWZ\nk2dP37lzpz/qVianoUI19uupciKdyq7fXz956kKn2S8s5ncbNq+mjFFYaz4sF1PJlEYTbqvaDAYO\nHcGl+SOmbtl+2Ou1AEewKX7YccS8Smuir5skFasJLptTLp4/vbr+oLa/8zM//xMPDu9nK3nMsEFM\nxQPrjXfvLcwe31t9tznqfvSlc4x4Z3Zh2uv3cOAOu22epgkCCRIjqnw+kd+8uRURAS+wkGDPnFzp\n95p7B7u5dG48GG+urSc1leHZbndA0iCRVOPQI0lClCVAwUc3OBGHFKBJksSAABCIimjYBgEJw7Jo\nmokwshz3kWhO0xBCkqIBACCOo0dCDY5iEhMkwgwNPCImAR6Nx4IghEEssJzvByzPAIZARAwBJDB+\nNKAFQYCAiuMYQhhEYWAYJEUSCImiSNE0w3JqUut6rqQmh6MBJUgRiREgMaQQQhymAs8HkKQB7bou\nCQHHcXEcsaxAkgTpehhjRVMQioPAFTgaANE0RjTNmGNTVlXPd4YDU1UVGlC2YUc4EiQxlcr0+32W\n57q9FkswEBK5fMp3XNdxctmC4ziYBNlU9ua9q9W9nSBC967fO3H0XLPR9j3DNq20ljdx1Oz0Epm0\nb1lt3TEjCQfW3ZvrRt8TSM0Ow9izCTmOgdVutRYXZj9YvTEYH+bS6WQyGUWBNbKS+XT1YMSrSoiw\nImqx66dlDSMlk1hBIbO5Xv+3//4//dmf/sVwYPY7rcvvvKul0r4jAoKBAJw7/djV996dnS3V9wcU\no411iwdxUk2KUq7V7Rh2/2OfWsmXIYHkD67W6vvO5oOOmAh++z98KWR2rt1otquma/Qp6BcqiQgR\nyydK5VJqf/X+RCH933/nd5FnSAy+d/fhd775eiadXliZe+bpC5MXjz/nmP22bo3jG+9tjOywwBUP\n7nSWlucW5ibVhNIbjc89den3/vufFNQ3T586wgjchWdPv3vl8tLCEYmvjHoum8kAAGqeGXoDrVRB\nhCUrFCa87d39fCZPgsh2HSqTyty5c2/YG0U+mUhp9thEuWwcxJ3ucHZ6zrIDNZOK47B2sHP82DxF\nUfvVlmu6nfZAUSWSg8PBKLCDQrZAA3KqUOQBenBvc299b2V68b03/uLC+afI2JkqlnbXHm493Hnt\n6tXlpZM8pRRSkyJJ2r5vU56D/IbeOnJ8YVmYZ2mo98cR4VJcnMymcEi2GjUcEzzPB7439Ed6Q2dE\nmmYZSEFrbCiKkpgVbGfU1o35qfl+x+h1dT8ICI7Pz5TSCzkndpMjZePqum6PAzvkaYYXmBC5NA2Q\n7golZtzTWVrjeGqvWj0yd/z88cfXH+7oDdOP/aqzPzNbPnNheWN9t9HpGpE/6rYe3P9AkTIpLRkE\nyLYiior2xrXpqbnpyfnRML53dyNy8S/98mdLlSStcffu3xB5tpDLtxrtKIhXlpctzxFpXRUFQJEm\n8kzXzaezj+A8juNQVJTNZlMoqeu6TiOZxTzL0Eg+Mn/C8K2ubQQC2T2oaVqSZcko8tWE6gaBPhho\nmhIpFMtwESZs0w0cFzKEpsksRfCyUJnK9zp9wGCKxZLKmKbu2piiiXb1cG5+KTAC23YpDOIIWy0n\nxQdz5emtrQMviORkIooikaYhgQPLkpNydmrOHRnTxYlOpzM1XYl87/xLJwUO9q3mSx+5IAqpMIRT\n5UnfikiCAaxAqeJq4+Clj3yoMDf11g/emcpPh2NXoeX9g2Z6spTTco2tfWqS8EIfh2Kjqr8zvjld\nWpybm1vf35JV2O2aJ05O3H/gjcdhjNyllam11VEqn8wnU48/tvi//vgvHN9/uLVBCxQrMNu7m5ee\nePqV77wdOeTw0Hj29HPt1kBvjHgEfV2XUolirmhYTj6f7Zpjm8IE6Um0XJxLWqOhYRpzk9NBHIqq\n5thBrzaSaa3ZbAIKJlOSILO6aUcERiQIfE8QBJIkCUyyLOs6vuP6NKSi2GVYKpFINZsPaJqNEKII\nwLAsF2OEEADEI7X9kXuSIIggCBiGdRyHApCm6SAIaJpGKE5lJNfxohjhGLIsi4KIhBADEkKAEIqi\niEAYY8wwTBzHBEmwLBOGIaRp1/dRbMdxjMjY7/UIGkQkSmTSlmUAAKII0QAGQRBjDFg6ChEmCUhS\nJAUghBQGASYC31cUxRjrJEEwNGQYygucVCIJSMn1wigKbduNY0QSMAgRIEOSInFIG7rPMorEybzE\nKRKfyWfa7fbA1GnIECxrBrblGYIk9Drdj334ZU5kN7bWk0pqd3tPUzOaRLd2Hpqxq6WK1W6XT/ER\nZEiDX9vaT7BM4Bv51PSoa+GIZCjaNHVERLu13ZVjS9lUcndzQ2MSAiccthuV2YnHnz73/t0rg93D\nUnLW9UwqRge7a7SgdUedZjv87I/9i7/7zt9fuXnzn///funKa7cL6VLkR8h2eh3DabcDEFYbjbxa\nlEguMKmMliPjaG31npLgPvGZp2aXP9Rsb7/3RnVrdbN+4E5MsZ/8icQPferp8uTMpz7xuwAoldwx\nwxpDhTJsI5kWe+3u2t2bn3r2aYDVa6/8/cWnn+nsWixZLk+kCBi1m/r/+l9/zQvxk0+cG3Z7RES/\n8NL5r/3N3w8ONqamV+5cv1mcytIU+2B11TXclZkjGEt//KdfA2TwYz/6qS8em4/9IC2W/st//CMe\nylomRUEBctR46Jw9e5qB0u7ublpIEhbydZ8MadDpdPr9/sryIgUIisCOYexvb6k8P24Ndzf3SIrz\n/ZCKwWJ5RqS5Bw8eSoKYzxfDENW3a5tb+xcuPvHEE0+gMMBxYIz1yfLsyuzpbst48dmXFF6QeBoQ\nJMcJCSU1MTFVLhQTAn10Ovuhs4sz5SIZ+66jQ4gt3Rj1DXfkByYw+sjRMeTFWACxhtkiJ5SExbNL\nSoYCfIBJbzwaIsdXaE7jWIGMhJAoKHmNy1g66XtsOlnBMcQhiJoj83CIjCCwfYlTGMRm5SS2nX7X\njBwQ6lGOTxutHkDhwf7mxGQhjuDq6sM4MI4fnRKoyB7pgUXtrY8vv7merUydePKoVGDOXTz9/LMf\nyhY1RouiaBj6nsTlaFy6fuUw9iSB4wsF9ed++SMf/uSp1nD79//oD1odh+PyGFFjvQfoaGq+3B50\nCAAcx3Fsi6VpSRB6/b6WSNAsBSjICSzF0DFGFEWlErIZOB3PpBPKUB/rnf6g2vYGliZpM8UKg4nQ\nD+wo9hEJCBCaTuASHC3hiAQYQEDzLGvoo2a9Nuy2IAkmKjME5uOIV+RiIlHSEnnb9CBFRpGFicCw\nOojQQz/yRtLeltlpuslEPpNNFEpajA0vGCWTfCGT0kfjYX+oJpTtwwdilshOiy49hhRK5rUPvfQ0\nlKh7m6t//Gd/vb62l0mUT0wvB4MR4TuZhPaDN95oDHSpmCOTgk0DKadmctLBwcag25GUJM1LQRS3\nGkZCLX777998840rL730MoCkoXdr9e1MWsmU00KSZViczUpPf+ix7qD++OOnZSmxsni0mC8ghNRs\nqtpuOkG0sbpLYfHIzHJtc3Myo9CElcvKZ86d3TtsyoomKcojPJZp2pIgkySZz+eH3oCTICR8WeVI\nFm7XDmQ1+f1vfU+WktlsYTzWSZLMpJL5bJaIIhpjSMIojKMwjqIIQJqiGJIkSUgxDEtgIEoKw/G8\nIEFIWZYTx/EjRzzGOI5jEuBHWs0j7qMb+DRNR1EUohgDYmKiAmkKYS+MPI6nSBKHfkCSMAwQSVKP\n8qIMzcYIe64fxzFJko5nPzrkRVF8VMLHMAxFwRhFBIgJEAOIMMYMReEwYhkmDmOSAAhhimIgATEi\nUUBEXoRDjEIPxQEkwaO9hWLoOlHgEu12P4oJ3w8RASCEDEczPBVGDqbiZC6xcnKJpHAYuqLAW+OR\npsgB9heOzHMq78Qur7L5Sj5TSp1//JTl+e9dvTUxseQ59MHhIEL0UB+fPHv81HOXPEwgHMTEQEj7\nbCaaPZqLqMH64dqpC6dLpYJljA4PNk1nUJgqxyw/HNHNjmeYRDI91Wj2ctmUJhGD5trRM7kjRxeq\ne9WDw+0nXnhMTIMPfWzp9EX6E59fkdLmJz75WCoXX3xiYWZm6Z33rjV6+4snZzHNURx19vyyHzjn\nTp87POj0Opxj8q4X6tZo6Vjhp372ZVEgvvaX3/rmn+7dfRd1a/HxU9oXf/HCz/z8Mwzrf/lPvuZZ\nZE49Erusb/hWf1Db3Ncbje7Bxs//+CdKhfSos/dPvvj580eXWvVWHNDhCDMGabWG05npUnbl2tXD\nd68evHF59buvXfnHv/4vf/43vvDYx3L/4B8+TgFdBPH8JD8c3J6eYeSS+69/90v/8P/4oc3ee69c\n+9vENNOJdz7xs088/xPn4uSoFeys1+/2jea3vv01c9x95tK5j3/o6V/+6S+cX55IMhZFkKyipsYj\nK5/NHezvPvXUEw9X7yUVLZnSnEDv9erpohYbbhSECMD9ajubzX7yhQ9737ZqYcgT5M333/V9v1jO\nd6pd13Zv3Hj/+LHZmzfe/vSPfPwjH/sIxSqeYzb2auVcaSJfFiM8XSnGbPz6u69gPitklaOl7J07\ndyReGtSGkqLtbR+qEl2sFCMisiLHI/3kfDKbznE0r/rSOBrTFMshUVEUTdMEnuF4KkbEaKRHmBJS\nibbdODjcKKYTkRU2W4OwN4QCTxBAJHG/d8hQ3LET5x9s7humT2GkSqrrmFPzsz3XbXWNjJJFsTf0\nhhywhAJX4PL2IIIhE2Nrb2/13MKpoR3vbW9NZKdYiDkZ6h0XxeThXjObqegjw0p4vcFBIkHXWu0/\n/MNvnnvsQ6fP92p7VeSFlakSOrBPHJ0+rG5FZBiSIKXKgiCMB8NsqmjLFkKIJ0Qc4dFoRBBAlmUA\ngOfEVISSPKOJbLPdssdWIp1anphTJNEYjuZK5YNufxBGiCF9HQWxD3yCFRRZ4VKprGWZ/UGbZWWG\nYkmX2q0eECTM5csh9s2hy9EMBgQvZAQQ9fvWwvJStpQJ4vGobQ+7MQR0p95VZG7c7FCOX8pnYE5i\nWZYgI5qmwgh1BkPLdVCnq2hqvjJ58+17j1887cpQiPB0Npn76DOQyVy5cmd5tiSJjB0ASJGioN67\n+zCppQIvVNPK27fedokAsNAN3NgPqHI5ivHBwR7hekeOrdx/uHb64lmagKlk7sUXXxr0+p/+3Mvf\n+fardy9/8OzjZ0ejqJwtlvOF+kHt7JmTN6GLGbuYSugWtfpgD8WCHToSKSwdme31m4fVreXji36g\nKDKXEtTpielao4kQYhFQCC7G2B5Zk6U5d6xn87kHDx9+7FOfMk07qyb82EgowoP7d23DSyWLh7Xq\nYDyUJCHEHsNwURRBmo4i5HkegJQgSxRJOXZQLBZM03JsLwwQIClR5OIYIxSRJEkCDAH5qG6JpmmM\nse25DKZJiiYBwjiO48hyHVmVNjd7qVTGdV0WsoHnEyCGHOV5riYrBCIeLQmGYQAkISSpkPJ9n+O4\nwPVIhB+R2SFBiizlIpcR2U6nx9KMH0cBisMo4gQO+xGIySAMWJZ95NCHEAyMscDxLMXbpgMIiBDh\nODqgYKlUGg3NseEwDFMoZF3XRiAmKBAjkgAgmUsAiphbnnB1M51UTGtw/foNKSVPzU4tLc+NBgNj\nOBrrHZYmu63DMBifPnP8/t13E5qwv1cNtbhRr5ZLeYH0e9UtFcZHFyd5jmi1rWNLx/a3d3InS4e1\n+qBvKKycnE3avjEyerlKani4D1nC8F29b9xd27lwZp5LzSpJcLC7gxxmsXJ8betBc7F9OGj9g1/5\nzLe+++fPv3Tm7IXKxz/14gsvfeIX/smnN9e3P/MPnlyZn69Vu3NH8jGIdLfX67YnSkXs6u+88t7K\n4gRNWefOHp2cSz5cvx163IP7XQ4tZovhx57NPvXM2de+e+eP/8fb/+CLH/2VX/6S7bh/95WrCldi\n+TiZin7qZ76AAZ6YytSae0eXlkqLpVK6WDtoL1ckNzYsHo3HRkSQe7utkIQrx04ysHi4v7ez1frt\n//f3y4vqZz754UG79pkffyGbS8hp6vTjx24/uDPUmzfu/p0iay989Jyjm1MLwvLpTLujJ1LlpSdV\nXde7ndHJlUu/81v/7eq71wMitLoD68KZM5cWzjxeohQ54bmbpUIxnU62mnVd1ycnJ7vdfnky2xmN\nBAEaICxWsjFAb19+h6LowWh8//69sydPOuNhLp2Ooqjb7Vq2w1EywbHV5t6H8uerh6Dfa9EspfvO\ng9WtZ8+e/epXvpzPJSqF7PZ+1SBIubJCcWJ19yAp0zOlWTIOm/s7F5+5uHTk8a/e/N5MYQr37Sk5\nJyfE3qBrdLtI1MhAlZgAkKQb2abeKhzNO67hsiEdSYO+HrpY9pWpmQwFHSrC6UTRjQjTtkVSo0jK\nstulibyaTdvAZ3mm2+lrrBSCkBVhfjLfGI/7QxvEAFMxnaSGRFBeKl+cmF+9dr+90xSplGEaG3cP\n55bmB1bn7q21KCZTiTRNpGkKVpbSlmWEVrfd904cO+667jvv3X76sXPrBw25yDx7dH7Y6YRg6zM/\n9cyNN67+4PX3GCmtqtpIH2Iy1vLawBywBJNMJvv9PoKElko6rhMhhBCyPMhjGhiWqjJ64M4cWZhd\nmnn9je87+yGDIBFiLZElHBdyNMWSGDBBYNhk6LiBYfcJSGlpxXEtQeIJF6f4BKZjkQsYjtvrDkZW\nRGISM6Ik8XFI3/3gYXkmG+ERiQFJhQQgMIKWHuSTpYQso4Do97rJVCIkXMvztESq3+ohH1IRO19Z\nsk2HozpOPxTdaDKhhGZbSaR7ockkyLpTTxS1VKKgW26EIQj44YbLakk+yzO+CKV02xywHJ6emfDt\nILCxmtU2Nre+9PnP7WxtpFKpmATXr978yPMvAMXwOvXf/7e/8W9+4z/8yR/8wdlj5z//2R8bDeNb\n77/30idevHHr6pPPny2migTtPPPSuZ2dOuWTk8X8vt1iOXFu+citB/fK5fLYHkxXJmmKsiwrnUz1\n+qODnWplsnzv2j1ZU1HkZlPJbLHUrLenSrP1ve2FqUlJ5GhIuq5bX9sgaQpSLEFSlu0LNIkxJiiK\nooDvhxDSj36Mj4Zsp9VmWZZh2EcBVD+KBQYSxP8Osj76f1KQQSimIMNxnGNaBMY8w4YAuJZ98dKF\nKIp2d/dlUUZhRNGAF9iIwCSBAYARisIoBABACP3AYzha0zTDMFiOdoYOyzBhGAISExhhTLGQ9UyX\ng7Rv+xRFcQzluXYuV9jd3pUl0TUcAACBUOAHCBAMIEkESZImSSxInB96FE8BSIzs3uzSyuHhIcdx\nMRElMhqgoGnqoshjDHf36pzAU5BURUmQpJmFeTGhkpDEBFhdX09qKgkJhiUmKoV+r/WxTzxbKpS/\n+ldfSyTLC3OLl99978SJY++/e+0zn/3o8pGV/b06HTKJKapUWdne7w70cEJhxj2dFznTs0PIREQU\neUExlzzxdComehemVq69s9Zuj6/eerByMn3uqcf+3f/7e74n5EszP/zJz5QmSrxKf+Xvv57OFGNf\nTadSZ86fnF6sNAZbZtx48rmzF04/+/SJT2cnEj/02U9f++CmJIiNre4nnvr4iUJJEsaVqQots3/7\n7Vd7ffZDzz81sq1mdes//d6/khXlF3/+P9y73fyN3/qiVED/4Q9+56vf2FJzuc/92KWEQve77jhA\nP/j+tcOd2ic+85HdrZ1vffcbH3r+wtz01E/9/Bf/+a/9XxGWAJPAwBBlXMnzhnVfVrRSRSCJdAwk\nt8v+4e+8Chl8/skjAecfbtxCScrwx5bHkKjU2g6cqr64UK5tjYy43jUsHOzOzFZu3b+5MLdA0OFT\nLz739msbh20zp+QGJjncaDlmH2SymiDSo3Enm1fLk9nO4HB6rpwpajKnikBsbjWWJhZgTA26AxCS\nGpsgET00rEFgj0j/g91VKZ+VtQwFBTYpYl7wCeHNt+7NTpzWhGzkhca4V5zOf7C3duz02ZnJpWpr\n0OuPqnv76VIqX6ISGWr3cG2kj1w/DEJ09dqNjb29BaZCNsIEVvSGOagam7eqOzfbW+/Vm2uH0cAh\nzUgiBOSQ3ZaOImHYx+Nht1jKsRSMTZvQzbQgOwEyKSGEFJNMDIMxKyGe12w/ORj4T5ybPf3YVIR0\nHEeAZButtmGMGNJVqYCIQBgjJwrSkzk6xbecls96OhqSHMmLom1GmGCnF47wCTVAoe+7kGYc1+90\nupblFIvFM2dO7x5sVhs7KcU/eaxkDruXv3//9a/VjbpG2PzNy7eCXIXMT8RsQh9FwKZSUEpRYtjX\nW532cDwybSsIw0QyWZmYMG0Dk4ilB4j0hpjUphewyDEc7em2iGUUAgT5kBK6pheG0B7YKq0gMwYo\nY+pQlotOgCRF5kSaYgjAEayGukZLTqlWFHR1k6AFNyJIlkdxAOOYIhBLY1s3ei133I1YSo0RI2iJ\nnj1q6p2W0W10e92hGcVs5NC+GfbbrUo2SYY2FZntndtp3jwykaNQyMmJuzsHyYmpw0bV03vHJ/Mz\nGTVDCXiEgn5otHqmXtPSoagZW9Vd5GN6jBVCdDyX1CAWsemMBII89/iJK/dvmpF75/q1spzEQfTq\ne+/UPHDY8X7/D79y6aUP/9w/+umPvXjh1HKlUduqD5xu25ZwYtQONg8Gm81RjJnth5uJdOHqB3ev\n3roVoNhz3b3V7TSlLiRnh7bh+67MczSAlMBBnh+NrcXpxXDsAAy6w97q2tq9mw+Pzx3b3Wice+zx\n7771Zn3Ys5AXYA/hKJtIiZSoQBWSJIQgikJIAZqhCAJFcUAQiKZhHMemaUAIJUl8ZE6nHtFg4hjH\nMQDkoxIlQFNeGHA0E3o+ABRFAt/3VUlmWOpw/yCZUgBAQeCiKCIIhBEJKBpSLCIJy3V0XSfA/1bt\nMcZRFDAMQxAExzNhGOIYGYYBIXQdiyKZOCZ5XvaC0Pd9EsIAxX4cFGcmIM9iCAgCIYR4CIkwgDFm\nWBwjx3YN27UEWZqYms4WKhQt2cEokRVbvWoYubVG/fCgPuzb/b7n2lEcUYEH2y1rPA5ufvCw0epi\nSGVLmemFmUJ5EtCSksiWJituaEI+Bpzw9999R1TmDxumklHOPjXzj/7lp3/2Hz9Pae5HP3sJQNvv\njR+8ciNum7HhDXp6zTpUKhwl+mFsuq5drJSlnLrW3hIy2Tu7G5nZ0sTyjJJL7O3tHF86+sHbN17+\n4WcJWhyZ6KBR+6u/+ooqFJr1IaDRqScv/c8//qpMT3S3g3/zz/60tSv9m3/7Z//29//rl37ri0Km\n8M4r79Zubdlb9qnZ6aWz4k/+2svipGQSStPwfvFXfv3syacONq7/6s989Ne/+PndveGXv/wGisGT\nT5fPnZhub+33N/q/8U9/5B/87KXaXuNvv3z1G3/1/v/8r3/t9gYKgT9++oUwkHKJGadHPry5dvn9\nNz774y+KmTggLQJIrYaFLAkP+fba2G34tItj06Iprj/szs7PZzKz+7tuIX3+7Ve2XvnOXexwmly6\n/WD/zkbn+t0GYEvX3r+3PL+QKWYG+vCZZ55loPD+5as3rlz53Gefh8SIF6JiOSVwgu1g4CAsp7OG\nZVarVZahVFkpFAqlYtm2/Ey+sLC8cuP2HQ/iMYnEXG5+YTlXKh3s71y/8tpUOpniBA4gUXIXjvLL\nS0lGDGKJvL67enfjfkYWRUzSMVEoqMj1aZoVUxyTZHrDAU+DqYoy1gdSUlDTUoidsxdPvPTxlyYq\nlfra/vbt9UGrI4tCIZevbh8W1XxWTgVmoCia5Xj1Vq1pNBk1BsCYnEgUJhKUQIkSdfrUYrfdaTX0\n5qHJYcntW8N609P7soh7w/rYGejj/sHDnTtv3n/x4qVipmCiwGL9/HQRIIKiBCqlQY1M5dKLsyuu\nFfYGfSmpibLKUeJoaHUO+3bNOri50zqsHTuyoooCIGMUu5Y9bnfbrm85ge949kgfshzNslS73ZmZ\nntdkhSHjYiZHhOKVyxvvvvUe9oispvF0kFApSRb2Dw4hy+WyBRQDlhJ8Nxr3dM+yk4o8O1XhlTxB\nQpElI2fQ3d89vL8+MzEFRYYXBUxGTmQRLLYjm+MZjiRUEnE4SEic4xoMRzuebYz1pJzkCJ5XVVaU\n3QACQiMJwQ/M0oQ8OZ0I4rHpWVMz82ktL0GJiQCALin1HXjgELWTjy3MLEwqiaTpBpYfVjtdWpaL\ns8sgIZkEAFzS9uKYopqDNpKIvqtXh92zz77Q8QilMqdHwdAdWoHnQjdSQyIXZ0+lX/6557XjQvZ8\nNkw6e+5GM64BIU5qicAMcBRXCllJTIx1u1jJaolM4EeXLp1JCImVqcVOy0QYNrrNoWVUZqdPXDj3\nzVfefOeDrb979bXLNz84srhEBWHtcA9HcfewtTJ7xLIcipemT5y8u7v9zruXC8XkeNzkRDCdzVtj\nnaGFYX+o0aJKce2DJo6ZbDbNq6KQ0FK5/PTS7L3d1fmVsjlsdhoHnUZD5ERMwBDFduR62AMSAAAi\nhAEArusCQFA0SZKE7RiKpjieY7suANB1ApKANAMhiWmCAgiTiEARIkmS5hg/cADEmCIiTABAhTE2\nrTEnsREi3796+9bt+4lEhqVYAADDsQEKwtC3LCMkwkQqgUj8aKyTJEkBiBBBQjqIEKCoKAo4hsok\nkpIgsgzvhxFJAM/xZE6EBMRhxABojUccR0GKeISG5hiW4ziGZQkKhn4IAJQUCTEEZoggDgLP8W2r\n2dPdCAjJlJzLMopUmimnCqn+uKOPLJYk6cjNyhxJIIqjSZYk2XioG1ur2wyisAdUPiMILCKQJE6+\n/YMrjtkvlEAUD+yxxVHa7/zuf6osJC49P3fkieWP/eznpk7PAYkejVxFTi3MTVbKxUw6yfG0KLGq\nJq6vr05WKsV8wTe8lJIUZOfIGZlWd598aUkuw5bXCCKBJiLWC4FOnjtydNQ7/NEfenlCyd688s6P\nfOblyankW2+8GVnUnSs7Zhtd+f6tzQ92/9mv/HIUB4dN/af/8Sef/5EndjvDP/7KK6Mo322Pnjnz\nyX/7m3+8t78+PZuPKKwUkuN2c/vhLceu/9wXf2Zr53By8sRnP/fz1er4xmutxo7nmNT03NKP/ein\nfMP4l//8H/Iq+fqbfy1m4P31B0dmKr3a4UGr/wu//HNiPBzUt1SB7vYHmGb3WwftcR1BV5YoBCDF\nyPVO68y5lXKxQEeJG6/u3n+z+vW/fJUlqV/4hR95/Onp9KS0urXLidnAg/3D0Z23Hu7erI1rZjGb\nfunjT1z40NL/89v/bHqxcO3m5XazMZufAqETpJREPlc2DUcSNd8P37vy7j/80pdoNmI5cnNvS8qk\ntg6r7W7PjtyeM3r66bOup2czeUCygqgeHO4eOz07t5LJThpLx1PLR8tPXDpaKClbu9tejEiOLGZm\np6enU1n11oM7EQzVNPfY42dsy0nlxLmlyfJUbnpxQnfGVmjprg1ZZmJimmfFt998e393d3F+RlVF\n0xrazqg5rj710uNPfvzp408enzk5kZ4Wi0vy7InksTPzvET1egNBEBmaSqQ4Hw1Z0eO1iGGtp58+\nfebCMdsZKiKVSyV5Rrzy6tVg4C5kp1hMjcZGtdWlKQF6VK2/3+rtN5t7CseQYXz/zj1R0RhFxXGQ\nT6mnl2cTDLjz7vV+q3vq/JlEORdyxPzxpeJkTk5IlXLWcceCyK4cXcpq5VHLeHjrvqxw5596zKPA\nuw8fIJkDsQxiMg7MufnSsTPL+63DAJEIscZQD11PFkWR5TCK2s0OicjIiwWKEjFZkIQTi/NnT59w\nA7dVq6Z4IQKUT0I1m8eAZMiQowKeibOFdCqVUBRleWExl8myNOM4Xqffa/W7tuHznMpCIZsphn5A\nkkQ6oyVT0sL8HMfDavOQFWVJS8VxzNKsQEqjoYdiNg6pVrNLgphTsEd05axPTYTibHDyhYWQB2YE\nhWTisF2leCYADCEID3b3G2Or2h6P+nG/FqCRhF2m07AJLCvJEicnEaatMX77u7dgyFkDFFhE7Ieu\nNYBkGHvIGaMojn0vqtc6s1MLG2tbIqd4Xvjtb74icUwYWRj4sihAIKxu1mpDvakPVqanKUDEHHnq\n4mmOIKcS2VIyf2zp5A9e+TbLgVOnj4uieOrs+cnZBdP3P/GZH/bJbjLPG95QSWmtbivwHIWn9zfv\nCSIrSRLJUs//8PMzx4o9Y+8Tn3n5nRtX6/Uxwtx46DO0RGDKdV1IwxhFCBEAAByh0A8JBFiaQwgh\nhARBoGlGFMXAj0ajEcaYwIAkYEggRhBFTQmikIAAIRzHiGFYAuNHRz0AIJ8rRH4Ue0FK0RQha+le\nGBOcIGBAkBBzPEylZEVUOI7jeQEyNM0yBEkGCAuShOMQAIIkSUhTMcYRQv1+H0URgeIYRb7vQYZ6\nhPZlWdY0TbM/dEYWBIAkMSZRgENMAVrgSJYWRFEUBIURCScyBrppeyEmA9ujKCqdL4wcU0gonUHf\n992pUoUiYhoSJI04BcgpmCtpokgfWVxKKIl0Khf4RByE+/vrmXRyZma2UChMLBSe+8i5p59a/lf/\n/OezigJCtpSbefWVN26v3fyrb/7VV//+q81h59j5E0pRaZmtmMeubdIUkcunkimZgNHEZGF97Z6i\nsIAm0lkO0sPphfCf/drLv/eff7WYYe3BwB/7s+Wph/du5NP84eZD0rVggAuJ3PtvvkPFBCTw6VOL\np05MIK//2MpxKZRqD4b/16/+9qiJK+VyCOo3H75mucKNmy1zFPbMejLJ9NdXX3xs/kd+7kf/7saN\nauzcXrv+1MUjP/6xSycXMpSA//tf/eWP/9S/+tbXrm/f6NfXhktLlaUTk1CMKgvqhz/y0te/9uUY\n4AjHhmmnM5NTU8e/9+0roWH82i//zHMvPNbtNUgyZiX6/NPnT106Qymqg7juYZ2Mo2az+X////8f\nVctcfvump9NHJ5+J+uQf/faf9Oud8aj36ve/0zxsbdxu/vnvfe/Om4cJcvLtb1/rHvYUgY9Jexx3\njj+3OHlS0QpATjAsD0HkG4sLlWSa3z1YRaS3srJ449oHl998a2JqZtA3CSjZDhj3/JKSFVHcqW40\nd/ZzcqaUqkxWlqbnjiNaGAWRT1OlqQVJUwfjfnmqsHh0BVEcZqWOGQjJ9Nj3zpy/pOtBs9GZnZ0d\njQaNzk5+JpWaYNKzDK0iO4gtF6hqTlRE2zaWlpZOn3hs2LWvvH59f29PSXAXnjouJ8WDzs6LP/zs\ni59+bhjoZhCtr1b7De/27a1mx7D94LBdH3qNzIwyd2bKIK1nfvz5xz7xZCceeyI+9tRJWiRNaygp\nsq27vUHf8m2MUOx4lWS2f9A0m+MUzMZDYrDVG+91JcwWUhlO5pSJTCCBhtXTw06uJOezuX5/3O61\nJ2em+aQ4coaYworKTE4VAcQh8sfmGHB4cWlOEzkiCjHGzc7YMB0SoIREh/4wnZBkOdEZ2MlcKUAx\nx3EiL+AYubZjm0YcRjzLkQTstrph6GMynl+cHbv60DfFbGK/2+TTmiQyrUYNhwEMXRmgY5PlqWIx\nn8ljEDuu2WrWII4ljlVVGWPshwFJsAIrDEfdsd5B2A3D0DajwcB3nSAmfD+2xvaw1qhjQLk68HVF\n9EqdDevWO/cGnT4C4elLK9MnC4lZXk3G29urw1rH6NQVPvTc8czsXBAD23ElXsnI+fdfu5kRK6qU\n9wJmaGNrGBkdZ3A4UAnN3nfe/Ov3mje6sqURHVjiyhqpBCMndn2WoRkIIIF7A4tjla2NfWNs6ENn\n9e7u/PQiSdJf//JXwxFiDb59r9o5rH/5K39Gi8SLz16aqmTpyEWW7Q3MheIcian7W1vtYXcyV+k1\nWu+/8WZO0xanp4kgYGmMCTMScHomAxOASdOF+VxmInX+8bOmaeayE54RjXvWX/z5V25/cGd5bsly\nnYVzJ/v6yI2CIA5IkmRo+n8PYoqENIgjTGDAQhZiSAMKEoClaApAz3FRFNMM5DiOJCGENABUgOIQ\nI0bgIcsEYWg7DkEQkiShMOIZGiFEknB2YZFluPFgiAKfJiiKYiiKoXkB0BSkKUEQIIFt07ZNm+U4\nluNCjBAkH6GDOYZGUeC4FgGJ7rAbodB13SgICc9HngdQHIc+TQEiQigIVV4ObD/wfEhggiAADUgI\nMCAhhJIiQ5oiCcDSLEGQHM1DBGRBxo4/qneg4YGhHXfGeV5Btlfb3+MEVlNTANEsJUKSisNQFNRG\nveuYHhGFneY+BFYyESdU2Glsx2H14qWTLCd8+W++sXaw9uzHTkWwJwspo5X4q9+/1Vx3Lp25cGxh\nWuFBShBPLh2RSKhIsuVYgCV82pXynFCQhJxGikJ+QVRKXMccEzwQ0+pmY/0Hr73huuTiseUf+sIn\nTz51zsQBELml4yd/6z/+4d2NxsTUiRu39m7d26ck9YUfeimZl6LY5WkmKbDmoDVTpP/kf/yKVY3+\n4j9e+4v/8QdZXq6kNW80fuWtP/jX/+2Hn/rkqT//8tcYrN65tfmln/2VYmny/KWL71+/qkriP/y5\nn/k/fvOXPGpMp0Obatnx+N3r31vbuvWPfuUf311bu35rq1KeISlOTCVHlteuj2hE/NGf/s9QCi58\n6IycFpw4NHS3ttvo7LetxjgYuL7lgRABDzv94Ot/8Q2jO5Ahf7jVJICKkPbO22v55AL2OLcbSKHC\nGVJtvau3448/+4X+fljb1BdmjmcymVpj//jFo7/5n/712cePm1GfGvT3Z+dygsABmsGQrkxNLSzN\n/tH/+sOPfPyHShOlvXa32T04cXwpy4p0OY9YYmPzcHJy8s79+6lC+cKlZzBHub5pOdLOgdnr9aQk\nM7b1jZ718nOfChmCSag69FwSdAcGIMDC7JxjhjER2P5YVsRmr+lGDqtwzhgTAjszsSjyxN1r16+t\n3jx/7pJFBgvSYjKrkjBeObZCvyddfv2d3/vP/zU3UezsDOiyOHNmaa/WsPV42OtdunAxVUkIKs3J\nnKQkQJLdPmj4Vtjt9RiJoklw4UMXe3v1ETEOIvf4+RVMMGbDDU2/mElfG1/nBFVmU/bAFxOsyMm+\n5YhJaWT25BQ/9cKTU+XSvdtvIImQM+nWzgFtYhLFxWzWNnUChwwD17ZXJycnBVXc2tr62HNPzJdL\nsWc8WDMe3r+WyMzRkJEYfjysqSJRKmbu3NvzMMXLgpxIAoK0LVfR5DiOxaQIIRz1B17gAkBxNBvi\nWKsUrj6402y3ZEmrDweFibIokpVyIq3REc1NlecPD2sRHkcEMEMnjmOGFxzH1RTZt4PACScmy/rY\nCsMwW8ysbT5MphVZlbw4sFwvl0lawbjbbUqykMxIg54XBmhoj2OvT9KxKNKAQ2qC2jvcyRQq69s7\n1IPhYBSNq9WsqKgaZ9rtQa//7JNP3rl1b9B3VVYVBVbA5O7hHs9jQIVRgVwqzxmj8ebqTYA5iWI9\nymU5wvQDD9q233zsmRPJiUTPsGisRiiEBOm78Wx5qVVraoJw7+GDxRNHixOThus39wZPHjlbfbhz\n4pmTQlL2Yycc92jo8xAcPXqUlhhZyN7eXt063Jmdm37hxefefvcKwxGrqzdxQCRk6fHHzvU67YFn\nTs8fZ3mp39gHBPQjvzfs5wp5WVJbtTojMnkhxblsbbVGHQF8SV46MzMaGgCFFKBcxxMFIfIDgAgS\nAJqBgKTCMPY9j2NpEuN0KqEp0t5wSNMUpCjIkLblIkwwkCIRQkQ8Go1YlpVl2fd9hAia4WJi/Mj5\njgni/oNVUeBkWQ79yLMHFEtjCLzA9aOIYRgC05AgHMtBBPaj0PM8hBAvcBjj0WhEYUQzjCzLqVRK\nEARFlAgCOJYdoghGgAAkpGmKooDjBEFAAUiRgGVZggQhCgEFCYRJhImIIGLk+8GjcCdFUSwVUQRQ\nWQGztjM2I5ZlEW52GkHClDS1kMoN7cHIoDJy1uo6NEsGOPD5qD/WBVbwovHkQkrgyNMnz7AUq2qa\n5Tb0boqmtcnS3Prq/RD15xdlVdE2VwcJPOl3/LnFvGkckoTRbVSn5xZjGm4crC1MF5yAQJjyEUzK\nKhDYarvZHQ8fu/CE6xFX3rmHz6R50J+YPc4IlZhyrj98beqYUinOBsYUzamnz50sz01FoRsBauHo\n6Tu3H7S6xqVnHv/KX/xlsVA6dkzjFPGnf/wxx9omIv1f/OrPyXn+yo13Vo5Mnz+6tLr/VmJq/jtv\nrhMjAY6bB/Wt8VMXtxr7qekcEqkrl99stgZLK0eeeW4aBUy5tDQ1PffdNzqXLj4hafz/9S9/c+7I\n8b1W37eMbEbt9ho7e3vnnrhEJtB/+qs//8wP/9TTL7+4vV67e+0DluJUWpZZJbQR5uko8AupgiQq\nhwc7JIhEiZcTcsBILEk2qtb6/eaRufO3r97GLqjkp1lWqFXbjcPvZbPprbudN1+5li4qjRWTZuP5\nH16EvLfevEoxgOp3dN8FilwZjGKa0yZnZlYf3EahflitnTxbufjMUb1rXPneO+fPXWqPRlxWOHnh\njMeE65s7V6+/mUwmMOHpzTC9UkBhNF2ZcPqmbpqtdm1laRY1q51WO52StSQ3OZsbBfr2bvWgUX3q\n4+cZQhh1YuRqmWTOFlwPDXTsUXTiyONnvFu3OkHr+LPLNEd3+7317X1unIdJUcwkAgP1N4ZloWLX\nzUGxVagkHj//8uuvvfn6lVd/+os/IarM/v7u5vqaMXK6azpEYmVu8tiZxc6ofvf+g4++8NxQrw73\nOtZ+zxlbHGRNABDHpicLrhUhNUpJCcvTkUwQLLAsy3WCTrMXiHo5nSQgqA8Hhbmj99a3Ao9sHVTz\n5YwdRHOLs71R1/VsJwgpiquUp42+Q5WxphDnLkzlKvOvvrlarGQjNxI5tZBPrK6ujgwb8GrkRDiM\n8qm8ZY8Nx+YlHhMAMHS6nI+D0PcDvTtKCGy30e61+wwl21YIQagKistTT148y9J0hECt3Q8T2tgw\naZaiAtU1LQpREEPHDIiQdMcezhGMQDmOd/7cU16AN3ceTE6nGc4PYmNg9uYXZxRVONw9FHkplcnm\nJ0v1zoGQyZw7d+rdy29hCB0ft+rmSnJOotwRHkyslPuDVi9w7BicOnkSWfrq/c2DrfrM5BTHQz7F\nIGqYLZLJWBZFpcqh+rjujAcBMfzIsx9JJfJf/p9f7XX1nIysUHd9VxBETc1W2+NOt9nYbLKcgF1C\nS6RSmrq1+XBmaaIyV/7W22+HAtV1Rtut3ePHFlc3DlwkNPtOeaGS4CVaYuliyodRt1aTRbGUzAxr\nrZgi5DyfzqRe+MQLX/nzv4tDEMYUTSfM7cPa/SoeQasVFosplqMPd7ceO3OO56P5mUJfH37iY8/X\ndw48y/Ija9Qarpyc5yih3RjubOwHvpeQFcf1CIRDFJAkGaMQQkjRjO97lm1MVgr5XGZ9fVVNpsa6\nCej/DfgNAo+hAIQ0RogEBEKIpukgiAaDEQWZwWAgSYrruoCmAEO7Y59jGILEgecJCQVDSCECAno0\nMGhIRZ7P8FyECAwwz3ECx8dBiMIojkMWgMD1+v1+HMeD8YhhGC7JIhBFGDGCSDF0FEWCpqAgRDHy\nDZ9l2SiO4zjGJIFIEjA0xbIkoCDEGGOaoRmGcUwrjiIUBzRFAhbacRBipJZyLMvGBACA5Hg6tLFt\nm3EQUjQbRaFn2XEQCzk1itF+rfrpT73MKcrlN64Hvl+eqOi9wcVz05eOzb3//vumbp2eP7HfqJ06\nqxJnc6qShRDWD/snTswBgijkJ7Y29wtFtnGwA6hEJTNTbXRr41o6I0cjPQBRd2ugjx0c43d/cPlj\nLz8FeUacSvqBfuZYPiY95BPrrf7eYHB8ZfLsicpg3B/39y6cnJxKS//jv/9Jde3BRz7y1MlTK6EX\nP/fRs7ubDRwlBjEb9PfkSD1ojdb2144emZhfPHHr9VVNovedq//y//6nzdZho7FZWeATGXzz3p5U\nTv3YRz/+5ndfL0ipuUxybIy27/3g85/9cESyl9//zsRkKYiGjEgAF6kkmioWO6Pxw1pzQZkrp5Zv\n37jnB5aQCP/Fb/10dad+470Hg2YP8gJFMIJIx0TYbNWTyWSITYqiLM+NLQAgrh5sllL80tJCEDqJ\nzNRGvUkGZj4vuKGlpmfN0ViG6RI3F1e5K1uvvvraO7/5O//qC/Ms0IfExsP9XCafyyZqB5u20X/2\nmSfPnTuX0KR8Ov36d1/5+l9/4yt/9tXTp84d7u/e++BaQlW3N7c4lj939rGpqcliKUUQ5nB0EDmO\nPfCqezUtRc3Oi2HYqqTlosSPdrcHjY3ShKQHbsyKQpYHkjU5PVHr6m4A+wPXHLu+4XarB3fff590\nvVwidf7k2X6ze/3y9cOdeu2gownZ3fVDY+iWyzPTC0c4LaE7Hk2zq3fvb9y6d+/uqiBISVW7ef2D\nD67cJkxa9JK4TbEhO+4YvWp/XO1Di2jt1d5+7dWMyOVKRSmXUCp5RNORj4kQG4Zh+W7se4oqURwV\nEWQqnWehoElpkVMH5uje5iYWVcyLh936xGwhmVJpCtj6OArCBw8eNNptiuG3tg8O9hsb67t/863v\n77e7Qjo1OT+bKWhqEnfaawiPUoni4WF3NPJIQJEARb5LAcJzdV6QOFEYmbobBhERe5EX4DCTTzMc\ndebkidD2AzcmKA5Dut/t9fYOzM6oW2/mMtlavXl/fStVzKXKOVqABEuIGhcRfjav2kYvobCPnT1G\nE8Hy4pzAMm++/joDqUIuT2LgOSEFaJ5NWwYpc2kUAYbhvSAGkCYp4EWw3bUleTKbPWIYjJyYMD3E\nqxqgnIO9+0memC4opaxSLk3oHqj1nSBmGE6KkY+Ama2IxfmUzVi24CuhCE0mGOFyriKrdLW+yrBk\nHICynM/wGQETEknl03wyzfjYBhAyUAIoNo2WrFKuF1Ybw6EzUjIUKwATeXVjsHzmeKtxuH1/dWZq\nFrP8qVOPaakkxm67v9exW4fdRqPVE6Xkd7/zvXQqZxjOd7/7XRLgxYWZRvVQZIRCYoLBfPOwl1JS\nOCYGgwEnSOlc/sH9O8VKKVPID82BFQ2f/cgTpqmv3lzf3TxsNrokCaMIsSwXhxEkSQaQAIAoioI4\npHmKlwSagQATjyTsOI4BpAVZphkuQjGgSC9wEUIYY9M0DMMAkHRdNwxDAIDnBTwvAhKTBGIYKox8\nSZEBACQB/DA0xoZjWoHnQBLTNBmEDokJIkYExhARKIxCz6cgFAUBEwAAyrWd0PPjCAd+hAgsylJg\neSxJtw6q/WYbxpgmCY5iaBKQMaIwCUmKIAAiAKApyDExJMe2HsZRQtVC26UQIYmiKEk+jgmOAwLL\nyCIniwiSkGMYSegYw9CMGIqBDIQCjEBEMbBebThDwx3ryMUCEC+//ubixGTs6u6gN5Gu5LT05tr6\n+vrDIAhsK3CMMKNldtY3d2oP+0ZzYPQxxV279XC/0aq1mo12vTyzkK9MJHPasdNzs3NZDoa+bjAI\nzpbme4cte9BVWU7maJYWxmPjnbevNJrdGFFhROQr2cQEffzxiZXTczdv30snMtOTpf3t23Ew+IUv\nfv7zn//hCxdPUSyqzGlf+ea3b6zu5BZn37h27+++8bYosPtr27Qn3X+w9idf/nPAxrOncx/+sacf\nVjc263srKzNPX3p8b7cmSNm+7r936+7i0ZOKmjx9/gyBqZw2u71aO9zfK0+lfv03f+HU47MTZUrm\niCeefLzW6bzz7nUYEONDs7sxau/3eMhrEn+4u1Vv1L74pZ9bOLLkxU4YB5Zv1fsHhdk8VDg7gPWG\n49kcB3lNUk4sLw+b9cAcyBxRyvKTk/LpY6dOnTxeniib1qg/6sdh8P7ly4N+93jlBB8Kf/x7fzad\nmgWypHmepw/6GkdrHHX76vv3b3xAxeTK/PFRz2nujRQy/aWf/BVbD/rdngRxgpHrG9V71+536r1m\nreF5Xr6UTeaSAs+NzWF7WJ9cShGCMTB2UazHtjk/VcFhYJqGpOaqNVOQxOdeuHB4sHfv3sPtzS0O\nYKs3xFaYYTMFKdve3idGxkpp6rmzzzIe99Y33zbrJuVio9nbXdvVVBWzBCGCjt6yQzebLqSVfLcz\nJBB58fxjTERWN6vVrQYL+RPHTqSmtbPPryDOvnfn7pXXrrAIJileQ3Kn2gEC24sME3mqIhGOK1C0\nY1qEQY7rY7Nre0M3KSZZmguCIFvKvfy5H5o9vjIywlJxRhRhoaQdPXXEwb5HRulSNsLEseUTZAzN\nseOafiZZsAO0dXDYG3trG/W3Xrs8U8r9zI9/6shcudnet90QcgqkhcgNIQKB45r6mMKQjAiAABFj\nSEBNUXmaIuMoX8mMXd0OHASgoGnFiUlIkcVCuphMFrKFhw+3h2Obomi9OwBeIEJGS8i+72gJMYzs\n6ZkigdwTxxY4NiZjlFSlfqc27LcoAptDS6STClsgvdywHVlmnErmOp2OIvGjXhc5WGNh/7DmDIeD\nVseznTgKYuTV2/sylZhKL9OhQIaxY49ef+e1kWtkp/OpUnb7cN/zw63NfT8ghrYfcOKIBCIP0un0\nYOyafrx2sLffrSXL6XQpPXL8kOAYNve1b7wdx3LECGxC0cqaZ/uWPZIUGJOOqGqGiYbjUSotubo+\n7AwFQXQda66Ujoe9cNR9/pknPeytrt8jPb258SDEDilQ2/sHXoS6VT2nTpVSSzSpWbqztbEuC7DX\n2nv+5Zc+uHsnldVsZ3zv/ge6NVo4slzr9nZ3awQUOu0hieiEln31jbeTifx0fkrlReyHgWProzFF\nQZplAAAkwBzHAZoCFAziyHYtApDJZDKppdrtNsdxlmUTJI0JKkZEJpedX5gTEyoi8ezCPM1ShmEw\nDEMgDElAA5oiyNDxOAp6juX7vud5GJAkzYiCTJIkRT7yrMcsx4RxCGkqwogkSUgBCgIIAELI8zxV\nS0JIkxhADAPPQwhZjmeYNo4RDWA6maIBxFEcBaExHiqSzGlyBAgMKQIDACgaMgATpjEWRZFhaMdx\nFEUdDIYQMASg05kiJykCLxMxwVNMUpZd2wojV9YENZG0HYdkSFqATuSoafn0uZXiRCKfZpMKpUmk\nxKHa/sbKbOHpJ46P263+wGy09fubdcxItCJjCtSrg0tnXl4onB/WTMJBgRlEHtNr2qv3NwfdXqMz\nTuWzaoZ/88rXKVH/yCcvMHJ09MRCyEcBExSmk9OzM3Ii/WD14O3336VEqjw/ozvItJiNrSbBkQ40\nRp5puKRhxb2hwwoqSVPru9v1dmc0Nh+ubm9t7j28OXp4e/Nvv/wXLzx56uMfPvHGt7/3xR//oXKO\n/cG3vlecLOVWyqv19uuv36xu1JamTvg6/+d//L33rqx12sZHX3zx4rkTtcb29XtX/+oH71+5Xf13\n/+6VYY+anppL5zUd1ZfOTws0jgHhABhQjKwIJxZnComEY/uuge9c3ZounPvgvYOrb2x888uv9/ZN\nNtIkXpU5aaJYcoyR3hswJFvKFRgKjM1Bs930A1QozgYB+6Of/YlBt8uSAaD8tfV7hjGOIpTLFSam\npo6fPwYkNLLcmanlxkbv9iv3QTLLus744Z1VKpIWSifau33SI8ft3s33PnAs+8jKXCIhjsz+zY2H\nhKhaEZdQEqqiCIKwtnp/fm4WYuQZVimTz5dKak5aPLVU7ZgzSxe8iIuR8MarNyPAE5QahASOQp7m\n+q3+RH7S0j2NZMKe43a8zmG7Xa+Pxh0ntA3Pi0L3wZ0PZJk+c3qpkE8oCqNIfEJV1bQShh4Ig8gy\nl+bnSqWMkhY8Ul9crPAM3n74EMbkqeOnDHv4cPfadveGoMaFae7IiYImcEUtvzAzAzEhEGJouev3\nHqgij0iPSzAB5ceEJ4msHbpO6PEi53j2tavvbayttnqNjd21a5ffrW/uJkhp8/oqF4YJlaME5sIL\nT7FJCfJsJp/b2dlDAZGQEqZuyrI6qaZIJ1q9vZpW00klSWJE0zQmuKm5gpqSvSBCCNEABnaAIzqO\ngKtbKIgFWiRjGLqB3h8zJIQY5dKqrPA71X0/Dgftvj82y5mU5xuTs8X2qHtvb18PYlFWO41mv9WN\nPRw4sSQmUAz1sTsaGUuLR/f2DjrtwXgwbNQaMqfIrBq5MYWpTr3hGqYsO5Due0F3Zm5aFJPDnsES\nAumwyGAZJCu0YrR7yBjxsQs9w+s3fWjOn8nTJQIXVUMWTBYhzqYZ/fwTp13kWhF58elPUGyudqCr\nbBr6VN8a7DYOMCu4kWD7iu0JW/tNmucIlep6HQ8YxXKmUWt39gfROIrHXkzaFEP3BzbHiwjE5UpG\nFIXR0GMYgQI4sEeBO7x/786Hn/vQh5548sqbPxjprePnV7pm30cBS9MaJxyfng10s1wu37n9sNHW\nR3o8PXdMTWYYQaR5AXLuxFSmtr9H+IgjqZWZRQHCfrOqJTMHBwdHFldqG9WpzLytR416fW66mEvK\nAPu+Z6ZTGoQkhJCEMIwihmEBgJggSAoGUTjSTQjpyYnpZrMpinIUIs+NKIqRZRVj0g+CVD4jagrF\n09Ozs+lMJgwCgeUC1+MYnoiQIvCAICgAiDjGGGGMEA4xEVEkCTAR+4Ft2p7rK3IiiEMIAUFg13Uf\neWwwxjRNhyh2XZelWBQihqIZhqMoKsII89xhrwtEjlZEB0cEzyCOjjkQ0mAUOC4KwxhBguQAxZMU\n6QQ4DCkIwzgENMUKoufHHC01D1tW3zQMR0unMUebkS8nZNvSk5Io54TspKZoLIBxJq3E2JpZyRy/\nUMGcMXMk/ZFPX/jIJ585bDX2aq29w8bU7IqQTCoJLaVokRUKhGj2nCOLC7bXpcOA8PztB2uqKJmj\noarwcWDLImv1mjurD6ZLBY4iq9Wt+eXyj//sx7/0Kz9y7pknuKSUK2cSmXSxnCuXS5XJ9NisPvzg\nhtvr7957oNHiqZVzyMWt/cOcIkaxmy9lWv2uG6Lbd1cf3NsCWPjG3/7gO3/zsLaKG3fxq39xdevm\n1rNPr/y7//IzuQX2/uHlz/30J8M4aOw2h3VdIMjpfAZZYHWzmc6Vz5w+cWQ5PzXFB35rcX7y137t\nX8kgdfv97enpfK40+d6NB04Aqgf23371lbsbO4lEaWN9v15rzi1OcEnAaLSFXEwE5alir9/6+A+9\nVJnONvvVbr/HcCJNcvbYzUtpKaZKUmI2my1kxEwOzEzlpibzyYx6f3Nn/sj5t99b1W12e1+vtRqc\nxKQzGs/TPEPfvnu31u7XWkMPO2HoMwQVOQGgIDZtfWSaQUwyHFOazH9w74N8acI0gkJiupSZPTis\nXr76zsLcXDqZefrpZ+q1VvWwhYKokEx2W3vz85W1jbUHa+uB245j3QtG08WkbZgJuSDFgmmaeOhy\nEbd5Z7+1vb929z1BEEY6oSaKg34IIgEEdFIr8Epat8J+1xoN7f2dOgrB97/1/dsf3Lv42OOxj4f9\n8ag7KmWTDAswS4QwInmAGKI3aNf3dm9dv6EpmqwmxqFbPjrz4qc/li6Xmx291mhV1/uDZpidnqRT\nlGGOq/sNkucEwCaKucWzRx574cLY1TGkE5OTWIAEhednZ3LJLA9YiqQ+99lPv/zSszTw273quN8l\n3ICPQGwENICXr72529iYXJllk3yqlN092N1a38gkEpVSSRA4DpGarGTUxJ1r92YnV3iY6FQ7pXJ+\nOOyzPJHJajynklhEMYjjEBF45DsEHSc0RoDQt720JidUwdFHVr9Ds4ySyvGcxJARz4YBskmGHDle\nRFG8IrA8FwcxwJQ9tmxDH7WbjmkhDJVk0rDN8xdO3r93K5nSeJr07JAgIokHAuAkrImUQgOxN9Ap\nWiQhC2l2fn7ets0oCnKFvOlZ3UE/CPHU5KxrBXvr+/WN+qnZ08AjrZ4DPXHYHs5PTFS02UE1CEP5\nwb37n/jUx+kE3Gpv1cZ9BNnB2GVoGYUSzyU0lT5xpiwqvmF0i/kiSUKOFjNKZmy4cytTGIRhGOIw\n4jSWQjzPSlPlyuLcZCaZiAiyO6iNxl0pyUVE0G41KB9/6rmXfv0f/ZPLb1w+3KkdPXd6aqHsR3Z+\nokRyYO3h9uzc8XSpSALWMTwWUI1W/fU3Xx8MBjGOOJVxgtALbEwIbkBquVyqML170CpX5lmewwEW\naPqgtkEyTj4lSwxDAXJ5YYHnGITQ3Nxcvz80DCNCcQiJgAwhDXleQjGZ0LLZRIogIjs2eIHqG+3J\n+RItUBHCQRB12z3bsvzBCLueMRzs7O0yIluYLNMCI6mSHY497OqOHpM4iCI/RASgCZKKCUxAEGHM\ny5KWToVR5LquILI8LzAMq2kJhmZRjAEAcRzbtg0RRAjRAuWELkEAMsKObpExSosJAbCxFXIkwxJ0\n5IblYiXyI1GiRYENY4/gAaUwUKFtZOYmU6NgbEY2L4me4woMZ5m6bQ0BjLSUJoq8MTYFVpTlhJrI\nzK8ctWMk8KqcynCamClqhel0Ybk8QE7HMU0QewTe3Kr3BzpiieRMEWuiwzmV5TKbFkrL5cJSIbeQ\nzsxKJOeRyA6Y4eKxbKYAywX6xLH84d49SaLOnDq6ODP1+OlT9mB4ZG4aWb2sAFYm8tdf+/642aik\nku+9deWNV7+NUXzY2BQk8XOf/7GZxZm548eYZIIS+NreIRvwF088JVDaqDbqHA7DED7YXls6Pful\nX/3JCFuf/5HP5kvCyTNauQw+/NJMpRSYg0av1YekrRVLkzNTM/NTpUry+EL5Cz/yeV7L6t4o9vsJ\nhS1X8gCjcafpjLu72w+vvPvmi5964vlPnfnRn30hWyR1py7mJJjg8tMTERA3Dqo+AiNn1BsMPrh2\nt9HYnV5IqjkJQXdr9+H2xuqHHn8s9jovf/TM3LIqCdb0QobSKCHNJysalBkvJiGW250eRbGt+iCn\nZb/xt1+9euXtfqd6bGVeEnmZETNCUoGiY5jZTLLbrIeBW8rkQjucyE609rvARwGC5MqpYyEI1w83\nSQ7NLE8+8fxFOZ/8/uU3BuaoWq9yLFMsZDVJBAR549YHo9HIMh2EiLWH6/fv3z3/2PEYWX1zkE0q\nM4Xi/oPtRCwMdqt2r3fp2NHNe/dn8/n9nYdxoF86uTw9X257g/sP7pAcySlCtd5oN3ocwTOYCTwP\nUJTp+6zIR0HMA9boDTxz3G1WJ8sZXpIhS+8f7g1HHUhHcWClZLmUKiSldH2/IXKiKmm723uqqia0\nVCaZA1HKNsnqYavZbkwsTydnSz4HaVlqeuNiZeLh9XsiZhcXl8aenZvILRydBzS9urEZohgytOf6\nt2/dr+2188mJjJwPgiCRk1LTKZOKDvrD8vSiZboDa4ApYJr20cVjiiB1Gm1Ikrt7W6SMI+gXK8WF\nxZXL7955573bte7Iw8TR48d0fWzZozi0IPQR4bIc4FjA0YRrW5BmKY63rKDd0jlKnqlMH52a61Xb\nlmUlMmk5lai22jwvBnbghrhe7wcBGI8sUeQhQAwNUYRjjBzHCTx/NBiGnj/sjSjI+F7I8VJ5stAf\ndAx75NjeyDB4QdQyCcN04hhjRHkuiQmxVJ42vL6Q9I5dmtEqQmvYYgV1evpoHAg4FlDMEi47qI77\ntV6oj/V2I7LdUnZm3I3dOK71mgYymna75474tIZp2okClooJNE5q0B61yCDIqcXIJIZNvX64bZvN\nJ59aYoWw3lnX0pTnOZ5NAZJs7bSXZ07oo+Dd928Bki1Pl5NlvpLL5aTJm5drM7MXn3zq5a9/87ty\nOr26u/XlP/1LBkoooIdt2zMQT3Obqw+zSe3cuaPt7j7Nw/JEqTw1SfH02NZz5cJe/aA0M/WoI4Vl\n2dX1h36MBro9Msz1zS0/RMsrxwiCmF2YTiRkSRAlSZJEJY4xAUAmk/W9EGPM0QwZYJoAFCBpBphW\nP0J2jK2x2f7ZX/r08olCEPcVhSjkFdcxMI5Zlh2YumGZoiiqihAjf2QNtUJGLactjPhUysWAU7Ti\n1ATJQS/wIaQZhg3DiGFZiqJYltU0jRc427T8KCQpSLE0CUlREgAAFEUJgoBwGMeh63sszyWSqUf+\nSxSTFEEIEJJx4Bo6jjwc+8N+G+PQdf0w9CkcF5JKFNiAhR4NXZY9dfp8rlAM4wBy9Mgc0gwBIC4W\nc4NRXZJpAkaqqpimub9/2GoPUAx7PZem1YHhxSzvA0ZUMiRiOVYlApqh1KEe7hz2Wn0d8kyypDrQ\nrNl76VlVKHDDaOAyVn180POackVQk2yqopUWC2pRdu3hxz/8dDEtfXD7ylDfr9bXVYVLa4nnnnpu\nZ3372luXcRAcPLx+4ej8D7/0wvLsfELRCvnScDy+de++F8XvX79+5OjxRqfb6g0bvd5hpwZENDaN\nhdmVYdM2O95zTzyzs32PoM1jF2ee/8jyv/mPX/jLb/6z//O3Pv+L/+TzybwyNnzPUy+ce2k4iLe2\n6mFMVCbLjV6t0ds/cnb2qRfP56d4WXEnylpghzSUnn72KVaL1mtvfPInLy6cSoVg+GOf/3TjoP3+\nG/c3brZyyrzCyq5pxCGhaOr88nS2kCdB0g9A7IuBwd6+sWZ5wfTc4qDbXyiXj596bCY/z4eC68KN\nvcaDja3xeNjV24FFdOvjqdI0GRHIc595/OyHnjwzXdYyWsYam77t4wDJjLg0vVDIZFkSurpdzhQq\nmQkKsyCy4pX5FUmQdg735YQQUF5lPh9Ce29/+2B7T+USn/3Y54Kxf+/qbbOvV7d3By2T5+SJqcnc\nZH5meSKIrVwukU2l0onM/Mwsw3DtoYOgTHJCopg8d/5kiOz7u6vHz5yslIsjYzAYtrMpeaKSm5qd\nSGc0SeLM8dDpjxJQlgnF7YeRg5p7ncXp5S/95BfTSvL48pEPP/ehKPTWb95SKebkkeVz508k80p+\nuiTmcoyW6/f0Uc99eGO7u9nfubn97g+ueK49cvq5nGT7vZmFnJakPKx7vHPs6SMBbZE8Xa/XA9Pv\n7nckiicidFA7rHbrhMjSmkDylKBIAFAfvHfrwfWHWSE/ma5QGPX6jfsbD804Xjp9vjAxzcqiPhzx\nFDPsDpv1dqU4JXAcGUcUjpaPLx8/cyLCxP2He82ue3e1FiH+5gcPixPTWjJF4tgPTDeweUFgRUHU\nFFliWZbVdWNsGmpSG/RHg16fgrhcmdCSibn5GVWTk8kEDaA7dnnA59QkjHGn2pJEXhDZkAgZRRBS\nyamZuVQyQ5DIscxMKu15nqomHMcdmRYnMLxAmaYhKTLFcpbn98dDRdZCH2DEkZhjGCqZl3kN6v64\n06+ls4KahrXuagDHZ54+cuTCfCz6ckqieZqloSICiI3YHwa+Phi2Ip7sujotazSfZmC6mJhNUhKp\nGzERS6ICgeBatKOznboxGvQ9d8Dy4eziZGVqcXdPt0y6XJhOyKKvj1MZHmN3d2u1WExCOqpX11lI\npNKyFw26tQe/8NMv53Pw3WtvxQx/0BkqmQwmIggBSZL5UhFFEUWBbC717jvvTkxMqKp87/4NAOOp\n6eL0XGVsjwMUJ3KF67duAi6KYbRfrfXHOqRBrXWAMFaT6u7+QRSCXt/AmNzd3acpURKkVCpDU9z2\n1j4gKZZleZbXlAQNIhx6nmcAiFiW7Q8HgqTVa50797dmppd73bHneDiKZYljOYpl4eTKzCjUPeCf\neeKclk3ZvtvVh0PDIjCmIVQlGZI4DkIyjhkaUDRBQUYSFQihYer9QY9mKIaiKYqKcOxHgeN7HMdF\ncex5nmEYNKQQQpIk8TwPaRoDMkJxFGPXdXujoaCogqRIqhIgnJ+sBJBAPI0QkhQ5XUhFMEQMEeIw\nnSmQBDMYGQDSjMhTPJSSfKaYJCEyzCHHi4BmOFbwPC/0fN/3Xcc0zAEFLN8aJhSZpPgIc7vrtcO1\nWmzGsR8NBgPIU0NjRDFwNBgRMetadOPANEbEu1cedLvB4YG5uPw4oLNuwK9u7gi8ghDhh/7CqWUm\nK3JpIVNOtwfDd65fdQjHQAatsZnpPCkxz3z0hQvnTtWqB/ls8bHzTyVTlWSyIorZqYlFxzCPLS4r\nnLQwtaByMsdCSSYo1rr0zFIqCwmkz1RS3/vWVxSFSWSTjV7PCJjvvPXqe/euv/r2e8NxJImq65i5\nVHI82JssSvm0kNGkva1NnuI1KbN6Z7szHk8sz/Yj0xeAVM6XFud9iM49fu72/VUE6CCmej3/wb32\nlTdW713doGNu1DIgJhgSAsSaY7rXCg3d1q1ebBLOAPk2NR76h4ftcmW+3TGrh5313Qdb++vtbqfd\n6gxGuuvZlj1gmXhirlSYyLuBy4nC9PTcwuIRjlHbzREmqHq3v9Gov/Pw3vXN9YY+HFuWxIsjy905\nbD7cObjzcItKi4zv2N1mNZ/WLLtbmsoxLOj1O55uXzr32NqtuxMT5dh1V44vtzr9d9+9KmnJhaX5\nWuOAFmWKoR+/dNpyuktH5i1Xd5Fn+wErpgk589Yr3zq6cLw27BbnJ0+eP2/ZI4f0BZTmFZYIY1lU\n9M4YB5FtOionkgHmGFIiYP3wkItQNpXN5tKvvfXqxPyEG/urW+uNdpsQ8J3Nu+WJCsfDzrCpyRoO\nvVZz7BpoaIxyiXQ+mWkOa71WkxTw8sq8xnO96/WxO1RpRYpY23QdbCVSAkBx/7AlEMqIQtPlfOi6\nFCAIAqXSCsvShmGgmElpOQqzCVllSGZnf8cJnLkjy5yaG49s6JMJWeYmyu16o3ZYS+ezBIYDz/QD\nF9FxLp9vdTuXL18u5opT89OAVfvj0bX3rz524XynUZ2vlO/1H5CBDwgaEXA8HHoBFFiGwGwYQgZS\nlj5IaFKr1WJgdPzoYjqd1A8ben905MgRfn4WofjO9vY5hlUVRXMCEoeObU5MFIdjfWT0JHGuXK50\nWvWh4557/olWuxEEXqlUHOlDz3cghCzNUxQQRY7gyDCIg8jOpMqdrhtHIMR+z2xyCrJciwxhfdCK\n4iCRSOTLiYfbDxbz80lF8Pf1ZqfBswzLS4Am5QzHiSruu9MLk6P+wLMCz4hyAs/FYNzo5PPaiA7M\nKGQFWZXSBGJPp6auvfN+tz9woohTlFQhl0gl6/3msGvrHUfvjkkPP/f8E08/eWJt9U4+q56+cGJr\nfx8C4fr6rWefeOKf//I/2d85EJPJ73/3zzwivHjmKMfKI6NjxyM7DP3Y6/Ya55cfv/7+3Q8+2Lr0\n5ON31+8HgSGJYqfdP3P8dODgmAUDfcznwIJWnpuZu/7+dUFhIUfFLsHQsLq7SyE0M1kmYoKI0d7W\nphtYW7s1AlOu6/uOo4gSQoiBlB4hyLAgDjEBZFW1dTuVzLe7nTdfvc8wHE0mIw/U9TYmQooj++ZA\nnkwdPXfcj32fQkboBRHCI1tiKM4mKCFWNbXVatGQk6AgqoLpmH7scwJLkDgIfZIkFEUKPF/XdUWU\nIYQkSYZxSGICYcRxnBf4AACaZm3XgjTrhz4ikaBwqiQP+yMWkwTCkKBiEoxNhxIEwPMJReZoRh+N\ne70ewzCjwTibKgZu2BoM8vkcTdO+b7MSzwi8AoE+NpEXsUwsKlKj2qIpmhFo37VFltEEcdDrq+kk\nK1D7mxtE4MkCbcGQpyhJpCMQQijsb62dO3HaMcajQRgYIaGgvJilafrhw4dVIVndP8xms4o8ef3a\nVqGYHeiRGw+DQ2uqXJqcmT9++tmXcNg3R0mNs1zj/s5uo97eqHaOLcxRouxE7vWrt3LZUozRmdOn\ner2Owgp6p980ahPlqVwizZcyARoTtHvt9psSpx45NsHQwqWnH9vY2W33OhhyHCfOLZ8RKIIm8zFW\nEhl1ZI02d24m8xMUBV768Av9TpdElD4wGZ7f2dubo2frnU3IQRqEplnParmhbt6/f3jiyGkcc7YV\nbax3KxPi0fnHMqK+dmcnCPphSPrOKJXSNE4+POwrJr9wZMroeTdv3WU4luWZx06d6TUPo6BDsoLG\nsvkj8/rYNjynQGucwGmqKHC04dgAEKEf8Dzf7Y8P99s7O3vFYvnI6ZWR6/Q9Z2pulkDR/0cQXoBJ\nmhiGgfbHjMVc1UzT3dPDuDPLKK1YckRmiCGJkz+cCz1/cpfknNhx7MTMtiTLwl1ppcXZmdlhauYu\n5vqY6d63LUsghuueQ/Nsp90zdL1QqECcmBiM1AjEjqotz4VtFWTgFGIJO0e1u49WcZqK0OD4qdmh\n1h2o8rGTpxZOTw7UVrVare/1bTVMJbIwFlIx1IejltLf3dyKZE0athu1Xalfwxjg3sObTOhlC+n7\n1bW+2qMowvScfCZfSCZC2w0DGMS4rcPafuNgYbFy6eJMnOenJsfqrZodGBRPhWEAeGFohQWsKDjJ\n9be3D2828C6F9bCw6UrrTQLAGQrrKHUV7pMZGBdQkePlrhrB/MKJywCcONpSHvxor79m33trE3aE\nUr6UYETQDNqNdkiiEY54nleMZXxDjhxbYLhuu6eqOs1yumm2Wk0hnS7NH2MKpfTYOEYgN955q7az\n4yoWTQkQhOmm6cPB5PJseXl6ELhNXen3FQjFEBopLRRGfj89IaSzLOBqW4/2n73w4nJl8fzCSQIk\nHTOgKKJUSNYH9RCOcJxMirFcKuHZBk6wKJnc6dd3O4exXKJSKcjdti2rU8XKZKHY1VqkCNIxyLLV\nxlHXVbBKchFQ8V53ZGrmzMQkEAWxWIwXBTEew3DEtvS4KHIUj8Gk7RhikgkCz7Jsx8TDMIrFIDds\nw6iD4SQCCQxRIqh8sbRMUWMiM1vd83PxU4EutvbtbHo8JmQtCwwCMgSoCCXaWi+gw+rRlmPphjQI\nXU1kIwjVmRihuJZrMzGxzLA8n0Qavccwa43NlUpTExHsGrb04Y23CNZdWJoIIagwURIyjIPWm/ah\nOF7qDD3VVqfOZUzMara1ElD45S9/eXvr9ub+6pEyCOIkNxl/+8F7JEmOBiMUITrdUT5d4jgBwfEw\nwGiWk2WZIkhbNRiUDnSXw/nQhvZWNygKyoxRz37stKQ2PU8jCGx7/8AJ7eGou7w4DwLBsN/pddvH\nF2czGfrY3DKB4qO+ROIkSeIAEEIQJCkahDIQSpEUgxL4YNSPJ3jL1lEMomgiCIIoihzHSmfirMDR\nMSFCkb3NPZbgRu3R/vZu87Dq21bg2KrUn56bd6AAFDEmHQNRDENZ2wU0x0JxJAh9CIKAMEIQyHUs\nGAEt2whcL3A9x3CiAEBRHAJhBEZdx4tCQNcMGMKCIPA8J5mOYwTC8KwocL7veq6D43g6kZRGI5ak\nOJKWQsdF4MFQo2AWdmCBFGzdCAKPIYjQDzAEjcUSMIT1BkPD8d0QzGTToijahhm6nqboQAiRGGuo\n7tbmrmMZrfpejEIFAs/F8raGGDJuaXptv95vaiSUtWXMVKGttX3XDlEMbjSq7c5RLst+5vXn8NBK\n0FiaZSMf3dlv6R7q+kS/pvpyGKjQoKEBkVY72r1z87Y+8sbzixSYSNFFAU/hBBRLk5kiuXK2GM/4\nx5aSpSJeyJNHh/vVw0McJRw7QBFS1Vw/wLtdQ1OByamVY8vnkplxIOJ01dveeGzp9bkZHAwGti2n\ncuKDzdUfX7sH0WUhtXTU1DyAuXVv8/HGAUEnMoUKhJKW51eryt623Nwx9u7329uqMfThiJuZPj01\nM5MfJyNyb3oJWDwev3xxGvAPp2cCCrM4Evzpr37u0599Rlb3Mhm231Mdg6Yz5OzJ4vLJ6biY+Oja\nRwvzk4UCU6rEBC7z8MGa63ooiiaTCQxBaZr13dBRtLFsjkRRAoHHigWaRikSQWAfgAE4BNKMwPsA\nZniYF7mOBSAQGoEUgtEY1a23oZBDbSzQIq0wk8FZ1/O6xQL18N7bTExYPnma49LdlrGz2bR0r9Nu\nIyDoGEq+kHj6lSt4nGgOO1//u7/RFUXtDSMN5omsr/nnTi89/erpr/7qa1RCPXYh+ev/6ic3tm+t\nrT80bG//oD5qd1kYJmGPwKDJqXIyL7JZ+tO/+BPj5455FCo5Ti6Vrh8e8SS7eufx9/7iW3k6xQf0\nUmZq8+5DdyTzKJYSYq5nH7UPEQ546QvPzizn5k6PLZydFHN8LM2LSVF3XdP1d3Z3E6nY8qm5fEnk\naVBv1VM06WnqnZu3xyqTII7bWOQjEYiAhmZ1O/JIV2VLV00NxTHP82xdo1FU7Q2VjuJo3sFRzQDN\nk0+fGDsx+d6tG4/WdwbdARIAgWYCmjVqt13bmZmbjWUyugWBGP9wbfcP/+IvYBGfXJk5dnoZpigm\nT/7x1/4PlwKzY2SAD4Q8lJ6kPv9zL3z8M8/01YOBemRaw9mpUjLBmpaSyWdMSdrZ3No/OvQRgEzw\nqVK20apDEDRTPtM4UlLxkmOHpXxld3d3feNhBJpSf9SuN1qNeqVS8AJ39/BANcxMroAiiGkYMTFl\nmT4IRu1OlSBRDENxAhgO2s16wzGtIPA81/VsUKQzLBQDTKhSKDEshZNYvlCGYdZ1MZzLlKZnCJ7F\ncMYzQXuoR6rnDpxRz84lpgkwM5FZwiN+8/4+YGJJKocAgxgDOaozariV/PLRbsc0zXQmlkkJYBgk\nYomH9x4fHlbdyH71s1f/2X/+mZ/+la9WllO14V5CGO/sgv2dEO6jYX3w1c+9fmf3yXubjywc+5O/\n+tNMIjaTnOvvwpVspXs0tHSQQpOGFL7/4/dVVdFkBadgCPJt3Ri1VBFPZmN5V3NatfbG1t2J6eTi\ncrZer+5vjxg6u1fbmj+deO3zFzEm2D/YSIiEpY9cy6VI/v69x+Xy2Ob6Vi6TRSFI4BhB5BRNgVGE\nYFGYCAkG5gXCtKVsLmVZBk6SCIpiBM5ynO/7umGUx8swigmJZAwT3YEpwDTlIuVEplLI8SKt2COT\n9c598orBOmPnx0fw0KVtBzWYFA3hEAhBYRjiKAGDmDRSVEVHUZQmSMAHaJqGQSgMQxwnZVUhaco0\nTRCEgyBAIdh3PdPUMRJTTJkQCAewIRoJ0VCzdV5kCJqQlRHihZ7uYTCh6TaM0xEAhkDI0AQI+IFj\n+47ru0EUwobuOLYHowgCoziOdzotz3NIHLFNzdQVAkPYmJAdKySyyZHUExNMhLvpcZFNgd1u39Rt\nDKAMxU+mxlUzYBIFksvuNDt4POHj9GG7J5uualiDkYogWDETmynn1+7fh0Pg2LGlpy4/yzPJwIJ7\nXa2QG0vFU/1uN7D91buPOnsN3Ike39yqb7V2VneRAErGY4cH+xtrm1EAzM+MvfLCc+Olsi5LlmUd\nHdYVyUWi+ET5tOug12/eevfdH1drO36offpTL7zw3BlVV9OZSiZTWVvfTGVFBIMVZZRKx46ODh48\neKDJCgIgoRdKA9WxrGQiNhi2Y3H6qF4TuEzg0r2ms7d5oAxHb1+7/ru/9w0ELp48eblc5ldX30gl\nAUvtPv/Mys/8zGuPH9/8H7/x+0Ak5vKVq89euvfwo8bR3ux4/he+8tkTK3NrB5tMPjW0oa1dQxDz\nuIc1No+CwDNAs6O0FUPy4GDnYLc77JXHSoZr6I6aLaVf/eSLhfFMu3romVpgaLaqJjiulE7zJOWb\nFhSGNI4hQDBWziOOGwEgOr+waDkyGLkobBAUEkEhigC9dmdvo8Gx5Je++umhOhLTyWq1jkPQQXV3\n4dTK+EKx3Q1g3Bc5lkSJYVe3Pb9UHMdj2M21dzHaKi8vvv34zv5mrTI+B2B8UcsV0vlcNt482vcS\nUBig0rANRebs8iKTRedLi9uPV3eaHX4ytnTu+L2bD5OJjCzL779/bXx8/O7duwYSEElsPFc5OjqK\nxQQBEzY3N3rD3vTcuG2F+lAfy401Ws2eOsAZimSJ8fLsoD3QdFnMJ3zHV/pa5MOhh4x6Kkq1ls6f\nfvTkfq16MJXP2SNTdhyhEONFsT/sEwxBY4Rv2vJIhkAocOxRq0n47MTUKd03EmP5Ze80GCFyp5MQ\nEnAIhG44aPcBCIygIJ5MMCzXbQ3yhdJsGOIEWu3UVmaWAQsaODIAhB7qHh1uffXnv/I33/5xCGLf\nfePtX/7FX5Al5f6ddZTC1jd3gNBDUSebJe/cHYjppI+A+50mjeKOJH3x9U9Wt3YdRYpTdHXvKAoA\nL/DGJipHR0ckRyNARBJos1VbXJruDgfVelNT7XkPCAMQISAQikiacSPTA0I/9ADA4VhWlp0wBILQ\nGwxHuXym21bv7D+er8w6ruqCRjzJaZbRG7Z8AERJZm1nywtkioWa3Q7iwyjogUiI4pgdGZo+EJK0\nYkqoEgCBLZBYv7oeccmNh7upTAqH4er+gSzLgeudPH78aP+wNFYSE3Eax6vtphWYt25fS3DMyz/5\nau3vRh+s30IlYerkpBXqka6eOnGyUVs/0AZxLq7rMoJgDEE+evDBxCyRLSaCQNuo7ojFkmYplelc\niDk7td1L+XO2YeIA6qiGOpDjLCVw9O7edTJNlUqFG/c/qO2EBJoh+ODylUWQHmztPbG8MHAQDKPO\nnj1+/+H67l5DN8Buq33uzPnvvfGj2dn53nBAxGMADDmhT0ORrg8yuXQYuTAIpOIxS7d6oxHDpxzf\n0m0vlkxZtjYajQgC020rk4wrqhRLxFvdNoKhJEXlU0kj9B5v3J5YKYkpAWJAfoweK+cSfFLuy5sP\n9yIQcHSLQkkEQaIo8gOAFxK+5yME4geu47k4hKqqkUomEATxfS+KAhIjwygAQt/1Il6Mu35AiBwW\nuqquBzaCE4Rtmp32gKZJQPZ7WgNFSYKiBvJQ4BkcBW3TDkMfAMPAA01DRVEcgRDXdjiesQO33+6r\npsSydIzPeI4NwxgEQaYfhDDuRuTuwTCTL9huOBo0f+onf6JQTFaPDvIZvtXq9Ydty0eyxcxQbTAM\nU621MAw7qo8YQlQs/8SFs1tbG/Pzs4SK5tJJxZLjJa5p9DzLElOxzbW94nhYLBa3j/bq7QMfcB4+\nvDMYjjuONDf3WrsnP36yR9BEsVh2bK8/aJYLFRiERsN2IkVrViNXYVAExBG61W0YRr/bOmRp9Py5\n2fWtgOUIiqKG2lan1ydRLpvPdDstHKECy1p7cL+YzoyPlU1Nh0AQCcMP3v3h7MJkZbKI07hheRcu\nnc2mJ29+eM+xjGS80m30pydLp1ZOzMzMvvXD7+Xz8VypfPXq4uZ61XfVheVidoq793i905aCaM3y\nO2MV7vmnz83Nzfzw7R8+3FrjC3jf6kIk/fDx4cFOTyAwy7QBArVk1XI92/cOatVkpaSFfm9n27Ks\nZqcLgqAoiuPj41nRS/I0ydAYTra6nccbj2EISogxHwgAFMiWsjzHQZY8mh0bk3u9w52DtSebiWSh\n2dav3VxTFHl8Mi+m0OXzpcICF5+kfMpzCHDm9LEQDa6//2738IiKwI+/8hLO4SADofFQiOFTkyVL\nkx7e+Gh3vbq51W9Urfc+eExAVASFstHJJhlcYI8M91tv3gldAg2oGJ2gcTwArGpvl83gz3/y4sSl\n8hDocWUW5BAkRZVOT5BTdPp89vLnL01cmLr6yadOPHVcc0yCZDLp4qingBrRO5R2HtdX7296uifg\nHKBHj68/atWOGAzd391pD7sWBNoQ7AXQaKRTHO/74eHG9sLUNIYADEmFpkcHOCiH9sBwNCPwbTEr\n5KcrKujbKJoYTyZTPOw41cfbR5sHuqJnEnES9FGegGh06cI5Op0CKIpLJUAYikK3199PiISrSSQY\ncjQCgsZebWOgdQMf5Dhhbmr6k6++3qv2fBXRe/Dm7c5v/cafjo8tLJ84FwC0ZaMEIUBAyFJgnBdi\nrKjrZghAJMuZrvc33/hbK/BKkzEIczmRBKBQ1UZA5Md5HvJAy1QhMDANZWy8TLMMACMoTkiKXilP\n6rpq2ybNMDhJVsYm/NBzA90wNYrEk/GYqhgslcJRTmBoCvebg8e4YJQnOYyx3WCwvnEzCgcMaUK2\n41uaY+vlselEsqKYgRnAOJ+YnVrywqAjNwLK6tldMkVboOtBgSr1osCWRr12uw2BWCqdNpyR4bWL\n84nplfz69r0oCEWW8w0jTqcYOPN3f/Q9wU8/tXx1a/M+I+r5PAjDLoiCDzYPDAAxLM839HI2qxlW\nu9eeWRzbPLoPUQbCmdXhKp+FP/aFF/VAHZlqFBJAgPmeN14uCxzW7deEJO34ugmCg75fSSzoHVNT\nO7MnclwKvb/+6NHaoefwkZdYf1KNxWIQHA5G/eMnlre2tufn5+dmpxV5JHJsEHiFUh5EURLj40Ia\nCOB6tV7IZQkS6/fbGIG5kR2hAUbABIMBcNQfdEM/iAtxzRuBLCiHZmI8X5idxHnBdINjx44nxfTu\ngx2tYQZmNH/8GMLjh83G40cbXhiEYUgQFIIQYIQEAej7oWnZIApqpm7YJoojYRj6gWfbpmnqMBK5\nnoXhqKIotm3DIOSHwWA41HU7Gc+AAEZTAhRhJEjRCKN2NN10eFbgSDpybI7EeZbECTSEQJzEXd9x\nHAcIQVM3oDDyXVvkacVoqkbnP/2X/+upZ841O1WaYy3HBWHMt92j2lGzX6d5LFcUI0JP5alOb1PI\nQc+/dN5QVdBBXA3yTQS0YcCEIllLkVxzu9qp9dZW97a2dyRDmT4+Izu2DgFQWgxZbKSNTEsmecjH\nnFKS69f2B62Wazi1amv55InnXn2+slA++9RFOwxLk1PPvfzxpZUzufzY1OS850a4wDeGvaEhbdbX\n9vtPMpPEzMlMokLSLEhg0KWzF86tXKjvHU1UxkzTvPvwUSV1LC2WM/Gs43g8L2Ik6kYexdNT0xOy\nKj393LN+EHWHo9c//bmzl68wsTjHkxjsk1B0sPowx1GPbt3wLPPWnXu+bmUS5J//+W8c1u+DmMsk\nxB99dGPoW0KF61p78XH35//xC6cvCc88V37+6fn/36/+FErA/+9v/8mDrVF+ciWeyAya9ddevJRN\nYq7rmzCsArAku6O2TWKpCOAQgOs01f2d9tbGEYUK5cKUb0dqXxm2e7Zt8BwT+q6ly+l4bHnp2MrK\nSr5cghEQAENFHT5+fB9CXaLb6Pc7Q0N1AgtKsDlT93L5cpbPVMYnv/zzn6Ew9L3r1/qqDtHEeDH7\n4P5aUkxmuLQ50hzT/eCDe7bnG64tCGkX9yLKJFh8ZemiyJQaLcmzwqnlFRf02/L+QKl2eq16u8XH\nY1MTk54fUiz++c9+spTMiDAqVQ8ZnAwiKgQQVVdc2rv40pnnXrsUz/KQ5yc50ZR1Auev3XwEM0Jy\nLKOHysc/+2p5enxkdgsTsalF8dLV+c987mUI9ILQmZkdL+ZSWITHecHWJMuxZ48tXL16xsM1ggBf\neu3Zoda+9eAaTIPF2VymIjIiwNGIa+uRE5myL7U1z/ELpQzChqETjbSR41qmrO5v7F5/64Ojrf0A\ndKbHJqLI39xdJRm4VMxYmo4jFAIxEUSDEePIAWhGja3GxZWneIx2LTlfjqensrfu3d2u12/e/2i+\nFJvKxD3D6R7U3nnjzU51L8bClbLQ7x+ev3CKJGlD8XCImC3Na0Pr4KhH8qkIwwYjtd5t0gx2Ymky\nLZIo4jRa+7YbhWGYz4lQEJkjGwGiZuNIlmWS4oZDKc5wPEbSJO5Gjgd4jqHbqunZoO9E6kg3TZOh\nCds1YQzFeZJOwDiH2aA/dHXFt2EcTMTFdrV+uLHr6CMiQiI70EcdDIV4OhuaqNGWE2T62PRxhhQM\ny4qQ0AzsG/fuS4an+WC7r0uSEzhAYGiwHyQSmVbfiGyo0VFwIX1/d9M0VbtlgiZx6dKl/l7/b//2\n63FeuLh8obPbJT0CBsHN1i5OJ1IZtna0qzlgfzjydLOvOvlCxbXNkSSBCJlLl2zDNnSfJEQoACS9\n6UQak6O//HOfa/aaBCfIAzme4AppEUZlwE8MVasygSYZbGvnqBQ7xYLZwLEh0NSUYbvZsSw9V0pK\nmjqQRm/+4Luf/czrDE1I8hDDiE6nh8EIQKOmaVIQBLnOeLmiy26vMcIBxDGdMHQhwm4092gMQgFM\n6tnN7lFhPMUJVDwpOI43HIw0XVHUQau9Pzczmc7EUCzybGfUVI+22iRKp/IpMPAB34MhwPOcEPBg\nJCARAHSNBBvHMCwCAhQBdccURJEgKN21/Sg0ASuiAzbFxnMZWuTjyRhGYp4fIAQqJgTHsWiatB3D\n85x0Ks/zjKyNnMBCUZjjeEUxFMMGcARE6BBCFVvrSX1JkXGCwEhESDGJLPXiF66e/NgJKA1DDGxY\npu0GXUmBaMgaGXzOfvFzc8lCQAp2JkGbmi71nUdb9a2tfr/jjVSg38FXb3VWNzcV18kV8q+88lxC\nZCAwwHE6CojtjTZFs4e7+zv3H2udUfXg6PCopsoyTSAu7IEkZvmA40YHB4e725tLC1Mo4GpqX9Ol\no6MjWXUODgb3Hmwf1duqYW7sr6ayAsWjGI1XJubVkbuzusOTNIiE+9U9L/BlXf/x+zdv31nniBwH\nZepbRyLH7m1vGMNRIZ2GA1/p1TDMz2Z5isQbtb3Do20/DGzXuH3nZrcltXtSCGK2Fx40alpgFCbz\nBE+dOLtiOG530F9ann3llReTiZzp6oUKN3OsHK+U+wr+7e9/dPL83P/7v/7Ryx+/8PQzL735g1t/\n9dc/BkIShxEEDASeGkrdCHDHx3NhBIWuRcAeGDmeb4g8OWi3j/ZrMEY6fsCwoq7rq6urjuOkc3mM\nYKrtzpOtLQDGQxC/fefBzY/u1uv10XAYBb6pa+lkamVlBdrY2w6gYHFpVuTwV5+9OpnN1NfWI2mk\nmMj91d3Dav/9jdtHh+rj9Q0kJPQAMnW9Vu+JmUnZgkaqpyq2bwLdw+GwLxXyeQwGINBZmJ9cWjyW\nSuZpMiPGMT3UQgQYn5lMFOPpLJtPM+VSpn6wnxB4FA9ZHhoO2pbisSCvt4fWwKtkp0RcsEdKd++g\n+XCr9/BIfTJo3KsrO0NMh1ZvPXYs1wudB1u30mUCjpkXXlr5xBdeskOpO9o5dXbadRTf9fodZXN7\nB4OpApVhXGDz8b2d7W0iJKvSqNXrZMv5hRMLF586u9/dP/b8caJCQgTheQGNYLTrKwf1g8er2WRq\ncXnRJXwtMLiYePbixc9+/nOpVIqASVf1FLWJox4ImP1+PQS9CAHWdrY9EIoxMQwmQJhcX9vRJaN5\nUD/c3uYpdHfvjue3z19cBAHPtUaVMplOe7kMdPHC7M/81OcWZsZqh3swAD9/9blknKsePd6r9h8/\n2tpYu1VKpciIggKME9KZ8YQgEIfVLRDTJxdSEQQlUxVKAADU0cwgmU6dPrPAMnjoB4Vcqd/tRYC7\nsbGZTKYpgvA8A8MhzdQ5IUZSHAQThhUiMIkRKEEF7d5uFFgkTsX5jOeCo5GqWXauUBkbnxyrTIYe\nZHWBQGF9hVeHAAiCBAZWsnmRTNz76MHmg3XA9uJU3NNRz+IpZhLCi+nUpGlipoF2mqatYYYceTri\naPDt+xuWFoIulEplJMcLaVI2pRvvvw9AkK8YD358DVPsn/7CF4eSxLBxz4gODtYyKb7TbbiQR3AM\nAuOOAtCwEIEcHgkEIE5nFlk9ZreIZtUSeDbErMmF/LHlyUarur11IIr5CKKavZET9grF9P7elmF1\nlk/nSc6GI+TOtUPQgwUOTmV9Ju44kQXBRGVsplqtCgTerx8xaHTx7ClNNnsdiY/HFUcDvYCJxXAx\nxrKCSPKjXj+eEC1LQWmQFohkOv6Zz36q1WmXK5VsKYfRuB9h8WTOswF9qJiyDocAEAIgCA9MrWdI\nhm/DOE6RnCE5q/c3eTQuCkmcoDzPFUQaw+EwDEiKoUjBMHSGpdLJFE1SKAy6nlkYy7MxDsYoACJZ\nIYtTfK6QX1peqNV3KQZ0vf75c9NnTo9BoIzjXgSaEWyOrKZhOn4YGaYJoJDruxCCABGsKlYIRCCE\ncnxscXkpnUuhNDqzuHjnwabka3QCf/vD70zNZ5dWFjw/4pi0pYYFPotj/nhiYqhpd+5tmgN+o2Gt\nP7ZbO7o6AOqyXJXrHB+FXt8KpaWTS+NTxY29VYKjssXcCy++CEP4N7/xnbvXH1hdmw7hDEPHAQQe\nuJxJBLK/ev9hsTw2MT6jybY58gAdqj/eb63ukbq3sDQFQxGBYHgABZqnduSZiZl8Jmvqzv7eVj4b\nf+nZq57qYB6Fw8Lv/+FflqbmbBBZPTpSnADHeF8Br3/vhhCIG+v7d+48gDEQo4KH63ez+cyJ4ycX\nF+YM0z55aumDmx8eW1nOVcpvvHO72nFlJ1SNUNGDw1oXgol6rZvLlnzfJzFcNs27jzbefX/3nR/3\n//TPbt26vxUS9OZh53/+h+//2f+8/5e/t/Hv/9W3bnzU/Vf/8Q9/7V/89/fuVTGsAMNcOsFRhPWx\n18+CmPnNH34bEngoCjzTdm2bjzOZUiJAfYyDC7NxFAs9xyjksyRJFwpFFMMcxzo43GYZEQKxerNT\nrTdyudzy0jxFo4kYnUqIFIG2mzVp2IMSiYSqND2gfvbpwvKVnM2Oxi9NERMxbdhobjzcu9tdoF/b\nudak+wCsgMNalyBj2dmJljUEYchrm0Q3gCXXVGXPsxuHTVuD333z8e5q795HT2AYCgHNlKVEnM6J\nSIl2JmJBmYucblcaKD5DVzvD1TtPgL4uWOTVY8+vPqpKdlRIUb1ms9s2H623mfTUoaLvGh2Nc85c\nXFHUwf76hoAQkOUU01nQCSMHPHXx2fXDvoLwxNi8hHJwqlBaWGYT6Vaz027Vmq0ewicvvXalNC0Y\n5mhj+5C0hLf+5F2rHn70g8dJMKc1LFcFQRNxYSiWz1goMPQtGwVGhrG6sa6p6sTyxMLKYr3Vfry6\nBqBgpphWNNV1giR7rF31SChLwfHaXmtmfPrE0pKhK0EgJTKcHfohzB3taY9vtdQB5Zkpax+584ON\nhw+fzKxkvvALV1/69GkCt15/9uLZMysIrl96vvTCJ3LZMXWk7uiaiQD0l75yNh2DjpeXQbWWZKpj\nBTCVxDtNMx0751tio2qur+4VK4UQcsrjeZIkY/F4rXVYmkhjOKRrLhhRkxMzvMht76zFYoI8GriW\n6dp2EIUDeUAwdAjoFAeAmI+RqON4NCaAIemZsO/7tmHGeAGKgI2NDcOwEZgaH5sLAIsXEZaNcMrv\n9uqxWMwLgDBCUkKMQjBzpIIemElkBZF+7rXTcGzYHD0uz7IoYbSa2yjkt6vVQPPMgeEZ4KhjuJYf\nBIFqeNNzc7arA5GPsUQulbWH2qdfem15cZFgeNvwcJ8YdCJnQAQm3h0MZ5cmPX908lgilQBGwfBI\n1Ntu07H7T9o7tusm0KhwKoYmjMI0VRinm/1tkgUVrad7QzoFU2Rlb7MWRpYgEEGEKRrgO5gxVEEv\nAgNKV5Bsdko3jEa7pUm+q3N9C5w9efqP/+ZPK5PJf/irX3HVnnTQOD95kiPpeC7noCjFCHFG3Nna\njiAAw3GKRCDfB21nLJ/XR06r3TA9K5ZMDUcGx8Y3V9dxGEmKAhSCnhtgOIWxLICgGEVqpm459vLy\nssCKtVozivAwgBEUU3QNxlAhHtdND4IpJ7QxitRNA4QhPsGpjlFt1xPFnJgTCtN5B9bEMmHD6u7h\nAYqmRW7O1oNRVxIornnQ6NdHNJmIJQskK7iKGVqeo+sEBNmqyiAYBWIZJhmolqVZOM1AHDlz5liA\nRRRNsCSFAdygPvRVNZvijp2YIhIYm6XzU1kdRcbPnijOTOs9D0cp2IfpIQ467rCrb9y4H/RGoOau\nfbR1cuXiseMrybh46vyJTCG3X61ZHnj73mo2l2cZ8qUXLw+k7tMvXT3zzLmWPojlsiQtPHqyCWJ0\nv2/VGtJQdbQQIjP55MLC+1s7LRBqjbSuZLR6xrWbq13ZaY6Mt67f0iKYFymGpKgIX792V9o6KIuJ\n1Qd7tx82fuu/fV3tBEZfkfXWuddO+alwBGo3Ht780gufqJB5xuV8B+Zj2f2m3LWgd+9tXb/+4Pb9\n2/GUsLi8QLIIjESxmKDpI101NMnuNIybH26pSkSQwsHR0fW7N3stkEIXcHJsbHY8WaT3D+ssltL6\nOkz3f/mfvPSpz5w+2j/46z/6+v/1j375V776sQwaAP4IDF1NcdefNP/k999Ymr8yN3l8f3ubi2Hx\nTCJXKtMsFUJwrd73IwyEMBgJpqYrQeQf1RqW7TIM4/gGgkUEQxuOY9k+BOPd/sB2nUIuhWFRsZAp\nFnLxWIxjeIhPTkJowjTRZHxMUX2C5i3XOnF66Z//h8997isXt5q3plecX/9PL88cTz15srZz/3Fj\nty8fGazLeaOII8XNrQPPRzPxSYpi40ISDIBkXGBZdHahQHOewIcT+Wwskbj/cE+WQ4JNtBuGQGaf\nrN02zJofDSdmiwRDVmt7GO4kExBBGh5HGDg4tbiI0vSdew+Ozc8+98LzsVhsOGon0wkhl5w9vTBz\nco4gwc7+7gQbM/ba8vbegx++5dZaXmek1nuI726u3T998eSLr5zNF7mhMrr34D7gui9ffZaEURd0\nTcBCGZRMMt//4EcggVQqhRDxPUmCLUcIkDwaZ3Qk4ZFuY4TprtVo9XYOcTNavXP/+ofvgQRAJihU\nJHcOVytj+dB3tJFsyur++haHo/OVomsBumbTvMiJAkuiutL2vK7rNOamMh9/7nkCYA5Wj04vnOkO\nR6X5QsibktXpSf2Raq2cvdTqS2KinElP3bqz+eBh/ZWPvzJ5jH7hlVO/8Vv/5vzTqYPWRw469KI2\nBGvjRT7O+xcvC3y8fuP69SAIQs9VpVGv12eFhGH5hhfYgccJTCJFRkAAQ2hCjNEE5YdBIpswLYkX\nGYrBfMBxPA+MKCAiNdXSdJmKUQgBuI4hMDQCIn4ANntyPFsG2eRhc8DE4hCGmq6zUz04ajVUx6q3\nO24UJQulAIar3abh281eB8bwdJ5x/SFG2M88vaQqe+fPTCzO52nUSzF87bB26uyJQjmbiIvNWk0Q\nqEtXzqqmEYHgwonleCFx/eHtvqErI4uC2dn5sUG9OV0u0wSKIeje+u7nXvksDQuwC5AAnIgJvUEf\nhmFJ7t24/yGbYjPFMVl2LQPa2qjHhcy5M+dRFKV5wfF1Q3MPD1o8lyjkyxtbmwfbu0gIyn2ZxggE\nhWAIjYnpdCLZax+4Vj2fElwzZOjCb/7WXyim+7O/9NPzx0o3P3rLs0xH05R+n8RQlmVN27HciORi\nlmXrkuHqJg2CAgWCph3IqtYcoADUb3cQBMZxTFJlgiZCIAoikARxLER5msVRlCAQO7TH5sbiuRgA\n+hAGQCiAU1AAOm5owJiHEIEZ+abv4jRlug6EIMl0ynJcTTdBGokwsKf1ywtFIUfJZi9biLcGjXyu\nXDuqupoWZ3lD1lEYV0ZSFAXxTIJgSJJnLc8nWc7y3AAIFF3BKDKIPFtXG/v7vUZDjHF79a3JlTKC\nAgQCt6vVQbv2/HMXGA7w/JHAwVbYVvRNLAz6jUFr80CryRCIBap+/53bL77w7J21tz7/i5eWn08e\nqffYNAJS+GFVIpn42fPnUhnm7ff/9uzFyX/+b38eIOSZpazq9J9sPah1DoZaszybEdMkQUbd3tZI\n2Vk8nnjqaqlcCc+eK3zpiy+cWqkASvjCxedohLrx4fVWo84L7PVr1+7eusFzScm199SmJSBTZ0/e\nWttik5kXPvaxs+dOKY7StQcW7LihJiaQ5QvjS89MNpytZE4c9DUKEVZvrx6u7QxrvUC203mRwBnX\ndX/rN/9r4+jgzOJptaXu3dus7d5Kxa3lZfry1crTz51c3dy4c38/WzihuvWdowe5NF/b35oulC8e\nPx+a3sJ09vNfeVpIe//6P/7iysVKW25ZQMhn6K/82ov/9j/8vBAzLPcARnqvv3a5sX+w9+ggVGCQ\npJhYzAcizXSjKKIZHAZ9EoOS6TiCY9u7+yEANlodH4yEJC+kOJJH45l4hEX1TmsgySCMHx02IADu\ntLrVal1VDEN3EQuImHiyPxi5li/k4htPHgdRCAJEc+R/5Ve/MjcvTE1zZ4795D/4z/8UZjsvvHxm\nb29P6m04ZCJTZJ9+6goEG+Up0Xbtvj7URsZMuTRVKAORs7+3k09fivEJBkP2t7fG8lMgDG3tVg0N\n39ioCVkM0vojbdi1xsuFMSxO99XdqdnExOTJR49btmyxSUTv9VxD3t/cXg/9crns2Q5NocXi9Nbe\nTr6chiHg0lMrNOYEAIXKSDZb1tDIB4B+oz5TDyFbQwABAABJREFUmVvRwcPe0anzkwVABhW2Xe+t\nbUobyaOl40srp0/sbu12us2f/OqXpH7zyb2Pcply5ADZ2aKuWp0jpRDLgy7keUZherpv68mQL05M\nbK99MDM3t7yyDJPRtq44ji6PGjhuUTTPxxkExHzXcX3HC50TJ6Ynx9P1bpdrAEAIzEwvaVYfQ0wf\nACPY9qF24Ivtxj6VIPNCAgKLQBhhEr53dDgYtk6ensmLlU5Vo2i82ZL3tt9Kp5hYin0mgFbXdrwA\n7rdHvo9ikJCgclRIjerNf/9vfv3N7z75m6+9meVFkeUYJi6rDkgQlmbDOGa5hh3Ye0fV6enpe48f\nhjiCEijNkRMTY3tb2yhBwlEEwnAEBZ1OB0cxnue7PclUHQrDVUXhUEagRUMd9SV5cnJ+amrKi+yN\n7QcRaqZyifpuE0GwgTaod/nK5FQ2X9x//70Q8oMAHjT0RAHFEbQnt8bPnNh8ckOWa7n8BEmEEYpk\ni0nT0/kkCfeiWIpd310vreWgCDo2O1eaKF57cE3yFEMLYgzXUUa5cn6iVBgeNvPxZFvuLS7Mp2Ji\nEAS+68YhEI4ztuSMJdleMEyOcy4YDOX+7Iuv3bu5NuiP+BzTae9OzE7sHW6dEGddB4dgdHZqyrSc\nbn/IEbm+N3Q9h+dRU5bGxiZxGAmdIJtkFqcvTWeTH/ywm8hP8vHyb/zOn778sWeuvPrsqadOyB1j\nfWNLqR5OHV9StaGkmItTs44H6U4UelA6me21OySKBK6DuoHIsKYy1KX+yonFRrMdwRBC4KlsJvAj\nS7NczwxDPIIiWdV0xUywCZ7m2lIDxzDX8jCODaIwCAAERbzQJggCAH3TdsAgdEyYozmUJCzVptlY\nX2mPzWUpPtrd2p0ez1y5cPUf/7P/CBfyJMagCEhTOE0lRtpITPP9YQsFGILBgQhyTNuynQgISZLE\nKRhC4ZjIgjDgON6g1bEC7ZVPP/PZL7/2nW98kyIRkiZXVo5LeusLP/nysKd98O6Hf+/ZFzd31sZn\nC8Wx/L3Y6re/9pa34/zL/+vXF56qPPvqUziA/cOf+5XTl0/ceXSTgNFT5y+/8+ObNz+6dri3dfzY\n/C///V9Y23pYnH16/Hi23WwDAchj+MXF07Vq6/HDPUEsd3qD0uS4KQ0ePNkNgSARF3FIONhupOPJ\nzUcb1f1hupitTI3lC9kTy8ua1GAJcnl++YZltrXO6XNnntx5ZDv25nrt+NkLGzu7gsi9/soVGHXW\nDzbjyRjL0CyCH25sByFi9iWulFtZWNzY2Wt1a2eeOhl4JoJ5DJ+EkWMxUdDloxdenLeUZS+INjcO\nvvWdW4mUSOBb5y6MPf3iQjKZbbXnH9/dFIhE/7D20eGHEMZvrfXjuZTjNfb3d+dmHyXiMz2B/V//\n+3uHjfWpmQxipfodkELjgAEiblLtm92eKfB53TL7UguBAtfzHceFQZAiQ5KiFFWDeBojSNvwErG4\nEBNt1yoUk71+vVDJ+AEOgjAKY74XRT4yHFqjYTuZzMQS8evXryOO0nJHHZ5HEd+TOv0oAMcnj+/s\ndL73g0dWxPzE55+F8cZd6YfinEg8gU4/jb76pfOFqdzhvvLgTrNdXfvYqy+3Rlt9pVcqjo8Go1ZD\nOr1y6o033qgeHlBo7OSp4w83nkB4hBIul8Al09hpNI+k3nQhL8ZJTfFi6aJhAivHzwzkveFwsAsc\nRhTdM6TDt94AbDgl5rSeBGK+Kw1k27BdY3+rc7C2Jx+lls9MpYtkPA+vbcmHgyo0jE1MzcORd2xm\nIsaxzKn5ar2+u9qUVV8eHnFx9tJryxiGDzyzJXUInuod1B7fvXvuzMqGC7Sr7VgsKY0GS8srvheo\nHc20DYyESRrfaW/xlWWeY4R0stVqjbdzKBaenFsAoOD2bU+TLR2IYIJ2PY9KciRPuiQwuVQpz6YP\nRluZaVZgBIohRx1AtnWagctz5c/+zEudVvVgb6c9krPxfOTYuu1zJMMS/GjYQWEzM4NTUPTwvvri\nx37i29988+7dg3OXK3fvbrDYrEDYT1+64kfK01fP8DyfTCY7batVs0+cnak1G51DCSfDVFJ8/713\nHNdOJjNAGGi6p+ie5UZeGIyX06rvtHU99MKdrQPXdCmOtzwXRmEUdP0gIHDU8+FKrDCw4ThAWYEO\nIIhU7XWbzVQuV28ccGRAcQSKhgAEtprdbDJNAlExnTIkxVO9gTcYT+Z5Dun1qhMprm96FM7AgLa2\ndvBzP/erjUbj/sN1ECMtxBdz4sbuuiDTCE5EECTks6XZuXffv52K56VBU0zTAsjtbm6KBfZwUAP7\nAGhZly9dwTCw0ajlc9n92p6POHwp27QHaZQBwqg2aC4dX/SOQIslm+vru7v7IIwpuh5CICcKm5tb\nFC2QUYwmsfEZL1tOjgYSx6RtBXBcs5TJd1tdmmSmxyd0TV6YnVtZPHF0uMfFiifOnav1uqo7nFua\nu3P38Y0Pb1w6d2Z5bubnvvrVv/vaX8UI/HB3J5WicQJBCLI3tEZNeeKl52/euYNwbEjhDhZ2DGV2\npuAGganpDMN1+4PRSEYQJC7E+6M+hhOaagAwkk9PKLAS2n633mco3nV9kqIV1YQQmKFJEAgVSaVi\neDqf0rWRqRim7euqYWs2GxdtaUBERjaFg6El9QapeIwG8Cxf5ATO8ZzBUH7+hRe/+8a7OM2QFBWL\nEs2DFkUyPBsjUdw0TRRFQChgedZ1QhhBDVcPYQCEESRAPv2ZV8pZ4eXXLt69ezdfzBu+tVffWT51\nYuHM1A9ufJND4D/6p7/7ZuPNTCH3sReemzqbnS5NXlk+2XUHR7p119yv7+yBqA/APgi6m7UH5y6X\nfa9//+bGz331l47Pnvivv/uffv9/f4dPUrYrxxnxwsnzg67MxfKOHYSBl88x2sAEPDTNl0EIsh13\nZ2dw584TGIaffe6Fr3/ra6LeH4y6aJLdPNrFKDKKoj/8/d/Jj43RNL+/W/U8B4pckcQ8Sdl9/yHO\ngqWUyHBo86jz+MON51597UiVeu1A2b174tgSxiA0TE+Oj/lw0OtWMQzJFmgIQy5Uzhqavbu7R6fM\n63eeTFXOjCQ9FsuJvOhbgNKT86lCvz64d+O2ZQbbar80m6G4zMFhNxwGhVK6duBdPbv0tT//tq+z\nDMaFkXph6kw2nf7rb7yZTORimbTBos3hsK9rKE3KtkQDpK3Kx1fmFc3q9oYQgoAI1RuYrmP0e7sU\nwREErOiKstlZOj7BsuJIGqqqDEMUxzEMTvc73Xw6BUJYoVSUNfWwdojRODRWwEOztzIxLoJIAsPO\nzc+lcMRoN0km+Vv/5Rvf+dadUB7/0z/6XmP76F//u19LlydvPLrOkPBPvPrq5z7xzF7t3kbjHp9i\nKmNTnW6NImDXVxSjd+r04vnzpz0vuPXh/eXSyuhA2VnbI1jxynOvJHKxz336lRKXp6h4AMIO7O+3\nN/kY7Vphhit6UrC1uRPLCGwMyU6JRihbtg5BAENg589csHzfw5Clc6dH8tDU9MgHDw8ao+ZgIjsh\n97X1B+vdo1Z376i3c/CDP/vrez+6/v3fe8fu2seWSqSg2+bRmRPTqaRYSJci3c/E05tbW9feex+H\nsVarhUPI4fruqNVOJ5h4AnN9iSQBQx1mEqK5X5cPalOprC8Z3/uLN3YfbLsj+2jvCAohAAiHUhej\nQh+yZENq9Xqabu8c7QOw1x0cvvzxK6kS35SajUGXiyctxKXjwo8/fE9RpHSqaLuk5mKN0cjzfZTA\nxscrxxdXZmfmMTwqjos/+XOfGQWPXv/yqd/583/4k7/w1cdre8VK0jLttbVVjrMkbR+h3dnTE6lJ\n8c72zR9de3Nypqyahihyk2M5V+tO5dNKv5NIJBhOiGfyO4dNTbdQFNVVg8IpWdZMxbK0SBqaQQj5\nYRBBHkoGlAhBpHX/9g1dHSXTKYoTCIbvyzLJ0KahQxFx+4Mb/WqNDjAGEBgs4QM+xAZCTAQBTxs1\nh60DR1H7jaEuu8ORa+qRoQDZzOxwGD14dFRvqwFCQgxH0JSsayQjqIrh2bqhKKdPX/7B29esEPBd\nd6D09odHbVtiRa7brOfzYq6cX9/dfeuDd+3QJWPk+PHpmeNjVqDotgL4AQzDKEWkctmRYQ5VnWCJ\nEAZ1Sw9hv68NmaRg+q5mmUNF5hlWGSk4C1MctLb+AEdBz7VplvLcIJ9LX3nqlMAitep+ZWxCTKUi\nDO4PB7VardvskCg57PcTqSSTiK3VD35w84Pf+vM/JOOJ117/1NyxhZXLJyPGk/VGgsRB2y0Xyp2u\nlBmbFop5A/YjCnZCf2p6dtCT5J4K2KCtOaAPDPs9SRr6gRuGAM/FWZZjGKrVrjqe6niy7Q5dX4pA\nC8UCy9Etx0FRtNmvcmli8ngBT6NcXijOTtIi7wE+BNk8h8QFsVE3WKqiKZ6ijHgRYzg0kRaFuOBD\n0YVnLoV42FOHIQTiDO+GYL3dshzLdG2UJj0I0rxg5BhDQ1V1E4ZhksQiKKi2Gtce3EM4WMjH6JQA\noHit2rck39eck/OL/8+f/cY3Dn7IZ7Nv3nnju4/ffOVjLx4aT7790Xc8jFldXf/LP/ijb3/9m8tT\nK8dmT8AwjAR+u9FOpcX//Ue/2Rzuv/XR9zAc59kcGiSXJ84tzZ4ZDuRW+zCRAivjeLmIwdGI4WEA\nsRy7HxfRVJx650dvpGL8sdmZ1nDvxJm5TFbMpGOWITMsNj0z9vRzF5vNJkkjlq+3pJ4FoLaPjo2N\n51NCaVoQ0riYismyq8nw2aWXP/z+4+/+6dutrvelL/1sBEfrh3tP9rfro45kKgiGhZAHwqxjY7fv\n3b1z977Azzl67KlLl1c3Pjj/dPHUhcRnPv9cLj3bqzPr92UkSj7//MnPfvnM0x+fvPrKiphDS9Nk\neYICIT2ZCy9cWXjt9ac84KA07fzDf/6JyjSxX7s3OcPE06EZNjNj1NK5Oc1QC4USGsI0nvQs5P7d\nNZLEk8lY6PtACAaeI3D8xPg4TWGOpRQySRzFNtd2djYPOCKGRmS30ek1mtXDPSD0GJbEMEi1R4Yt\nuYBZmc5B7a6BE8L07FQ8ieO02h48mFtOzi9mWTsQQOzP/uu3f/e3fqgeoKvXag++3bz7o8Y731T+\n8Peur9V7Pgq9/tqzRY60e7WyiApCDEVR1/f90PNC7/Dw0DRsU7USlUKIULlS+e1r1w4arZmTE2Qa\niHDcsMJMvhRBDs2G29uPiIhanjqrtA2GxFDMT5U4LAkpiAKncLokGKjLpaLceCxEvViGe+q5C4f1\nRq0VDNVCtW/udxqV6RRCGpo5HGnW+n6nNHs2NVk8+/L5pQuTccEqpajIDyzT3N9czafz47miH/lM\nWhybGavMlGJZgWEwGqUVWx/h9swrp2ZfO5E/OSbmeQwFBraqRA7AYtnx8omV45EDbzze2lrbTSZy\n6WQuHhMoEk3GeApBLUmHLGD34XB0YBMu++2/+o41NLNiJp8qMShPAeLD248VI9iq6g+3OyPHtgEJ\nRLSI8BRn4Ebu5vbBzY8eEyTDxkgugcxMV1jWFFg3zjtLs5lRr/rVLz/79NVxDA7Gx8dDNPJxMDNP\nZWcJy0M/vLGuGtjkzEpCEENLl9r7MxMZTWkMpMMIgYIQUmQzxmd11akeNTAEjQI/HiMQxCZpwI98\naWR6Hux6QQC4eB4F0/C+Wq+5A1fESyfnB4FV1wcBFiVSOXNg7z/coyI0lYipnn13b+Nh7X7XbZmQ\nhjIoKQohS+eWpomKkMw7srk3kKsMj6M0pTre0DCHuk4BFIriquFhKIM4ngjh+xtHQ9VOlsoggTmI\nH4iIjDqyq08V81OFLE6BiWwc5cmd6k5EwlxWtEE/U0jXezUbinCeq/c7awcHkuwKGO/2RxhOpnLJ\nnlRPj8UnFyc3djeswBifLfi2lUwkdMPSDNexMIrIBi4NAFyvN9jd3Y0J4nA4jCIQI/C3r73z4w9+\nDKCRbQU0HicAiiGokdxkEmRmLBewmMtTT1rNv/nO9//yG19DeJzNM9MnSkwMCyKfF8SRrA0HKoWR\n2ViMwxDT9dc3dlhK9A2PAHEWo1AQCsNwrFyiMSIKwijwbMdIZvhcJaZYnZdfeW5+fiadiaWzcc+3\nASAMQwCBqVwlnxlP7vV2uQKbmx8TCimhlNYjF4SgbCELoOBAsQ8bEoILIIp3RzKCQI1GgxHEax/d\n7KtKLJ22XM8HYA7nOZJBgsjWNQICB50uR3GarBfS2UQiRcbFkMLYnBjLx//6r74B2MhYYglwaJZM\nlQszZ09dzieLjVp9ZWX+n/zazzfrO3GIkR4PlEbnw3ffQVz8nZsffP0b/31lNilyQTrPqFoPRAMh\nmYRtDA7wV1/52I3b71UHGwE+ePkTK+UKnEo6DM/vHzWvfXg3CgAs9ABbBwACpnJgBBIQNFXJF1Jc\nZKvHZ6b1kdo8aAGeIXVae6trhXj27PFzmurky2MfPXp46qmleqOmtEZGWwFVZ9huszTz/gcffeZz\nX7zw3LP7Un23t1sopwDfm6vMlrOTxih48uBgZvbC7cdHNsQ0BkZr5N66V2XYsYE0uH33vqNh0+PL\nruZ2j+qOrL34zMumNkplQ8m8uXw+kL3bv/+X/3WoDLtWcmMHaOzBo8Oo+cTZve3trZvxRNoK9Ttr\n3z/7TObf/udfyI2hHti1/fD6jTaCzSBIaW+nz2L89oPVYiJ3uHVAo7wdqjAB8nEGhG1dHwBeFNkh\nEkCObSrygCYxgWdMXZubnnrq4hUCoj0LwWF6rDgxPz0zNVHOZmIcg8tKH8YilARIDojnKOTWnY3Z\nsSyXoF13mEkkrIPOuz/+9vGnn/vLt6/NXLpsSN69J7eWTuR/9ZM/e3hQy5HJL3/5K81667f/3Xdz\nmWyhuEAgoG1Cjx/uJNIZhABVyhRjOk4G48spfahVq9sI+ik38GgwDeneO9+/gZMMEhLGwJGOFB0K\n4wHQl6Tp6cnaUb0mt20S5RCIz3KN0UE2lfjJr/zqh9fubGwfRALXtkNWYCVPIZRBMZ7hOMLoHB1f\nWRh78ekb91b1ECgvpke9LhAhy2fnMBrtjOhUjCyOJTa3pURizBo8KReydx7cWr13e+7sGTzEnd4g\nxrE7tjR39TQAAFORnivk+72hiDFgAFAi1x96DcXJV8Zpkctl00KC3H+yNTs2NZT1icJSIGGN5hGE\ngg2lw8Y4gmOZfDpAIaIL0Uk0hHFYZjoH8sc++9I7H74hWZvz2alTSyd3H62xRBSwZFWxLTM8qLfy\nFZqB2f1H1f3VrXNnpu/d/4Bg6GPL5xeOn75398E7b2+sre+eOHkmxo698959GkaPL55+6/sfnjl/\nqi4PEBHVwwERUZ/6zGW51QxDT3J7S0+dwUgGgbEJKMNRzL0HTxIi3R1snV7J8zF+IIcjXSUY1I6c\nOMuGIThwTBCFKATDQdhGUBrBQdvDmRBRdQgaJEjhhZUz1Xqt0dnHcQSjGadnW6YSAG6BjaUYavNg\ne3FhvpDJrT1eS6SyIEmYLjwcuRk0lxHiOweHsQynQagSRpbnL86WRoYS6jqFehTBgBFj+gCAGEBk\nC6hgohBJcT2558lmAoNtwgNhBHb8mJgIIh+kkTgKRk25bo2GoK7DGGyYUkemPB7X3Xa7nZnMWLZa\nTqY0RRVzqZnJvDfqwBgq8jnmSSsWwwkKVyJV8GUCsdJz4ruPrkeuf2GumGKJ8owwGjQLY/GBJu3u\n1OWuZ8gdST3MVY41FQBAeAL3ADDACUzvy/KoPz82ObA0fnzso8dPOJ45vbxsWtVsgTaMwUiT2Wy2\n1x7BMAjDWCzNVRt1zbRACtUCA3Q1GkNhLARJgqMY2RwRgnA4kvwDExp5MYqonKA2pe7S8dM3v3fd\nHJql2aKmab3OYG6hiJFI58BI4iQe691cvcHGuMJYzPH6UuAXoqDAECoFRYHrWj6keN2DVjKOVlJ4\nilKnefL2Vi8awjZja5H23JWz/S5Rq474TLo5kGw+ICnaZ7U4iMZNLJmpHNR7OCCOetY77z06bJiP\n1tc6up1KHkCR3ZT8H3/45oVLF2dWjrN06vrDO6eeunT/7j0Uda9euYhHzJ/95e/Brnjp9IuSofV1\nJaK4o86OLmm9xujkmSsslT790gUEAmAQPDjqBQH48NGPRRKfKUw2Vev63b6YZTx99/Lly6PBULPE\nR2ubUV1CUTSeTUxn+Sh0EQp84cUrsqx5bmToUqlcAGGcjxc6o4HpwYlcJsPSnm27gT2MlMxMyoBM\nD3S9vvnJZz552Og3uvJsaerRt/7m+MzS+7febkh7ka2TGHpy5YQuSTtra49+8GFpbLwcW15vHcEx\nY7oysfd48+33boMgnYnzp44t/cZ/+k0+k81MFCeWxyz0yK+BIp9pDuX7itqT+k+9dLbb76ZSLBAe\nOzh4EI6508cr+62D3Wp/0LPKmYI/bEVorMIX5QP9yWBQLo+BgU+LOBj4NM2TLAZipI9SQ3coIriH\n+p4ZhJ4NJ1A2Jbi2k03neq32QBoxcdpQ7HQy45oGDHsUAQ8Gw5iYHQ0V04QFkbnzzgaUToQsF0mK\n4QI6xaEYxqEoKjJcLC5QNJbJCBfOnR4rjDXqfd10G93qyeMLz1w5B8G64XQVo2W6EifyFMeDEeEY\nGAKnN9bb+/stjkmdP38lly/7rskzmK70gcAWODb0fEP3YrFcMi9SPGO6QeADB3uHhVRG6vaL8QzJ\nChhEZ/m8rwZv//jHW/vbEeyDUODb+rDdTvJi4BqcAKeyfCyZeuPN68Ou8YlXPxEaNgUizsgUqRgK\noFJ/APouAKi1+mMA0ofD6okTs6lkspKbWzl5YiQNnnrqwsr5lQD2bEcbDbs4hszMT6yuPpLk3v7+\nbiafOqgeEBSZLxZg3ydRJJGIZ8p5jCMVzy7OjMEMobhSiAIATEQ+7uqRSMR4hOFhHkVsioJIBuNS\nHMhC9V5t+eRxEIAogrl984HrQ42hbgdwGEC2buTLpeFghOBQfiz93MtXi6Xs8ePHIxACQJCAmMDA\nIZvtd1Ub1JG4L5aprtaKSAtj/QhwHV1mcThD0wvjxbW7d9pHbUvy/+5rb+1udVbXj9740c3Ng/YH\ndx7kpyZPXjxvRu5Ql9L5JBQGLEkhEeiYQX8oB0GEABGNYygKO7bpGDoUgjhKwBEuDc1uR33ycOPu\nzbvKQCUigadShupSBJ3JZSdmJ1tST3bMM8unLdXVJRPyMSwkja6h1RS7bXR67V6/w9NUYJuBafi6\nETi2b9u4EzIYgWM0wfEgSjB8zLT9kawIBKZ1u+5IDnUL8yI0AsfK445loxwtmQqKIzACOYbFEZQh\nq4ZhhWEYwZAXehxFToyVh/pwt3WEC5QJhQCGIDTi4QFb4skidageRpTd8VTJNeKioEtDKFCgaPT8\n84uf+NRZjPY/8dmPb+7uNztKTEyFkYsTECtSHE/OzpfvPviAokGKRoLI53l6JHUwAc0uxty4KXtq\nIpmcX5qNp6ko0jpqc25pfv3JBh5CLIz4utRr19Ip3nRsz3d830jG+InKWCKR9kMUxDhNdbudga6Z\n3eZBMRlOFVDXHk7NjduOLvJkMZUgAgTQgWGzHYYKTOhTEwnPVQEAUHWr0e4wHGtZzqA78lEYQynb\n8lfXt5SBDegA7vim1NCb+mde+rKv0zFx/NjJY7Mni3weyIxxAery6UwmP6criKdAC+ML5XyhUav1\nd0b3bz45e/oVHIrvbW3BYPDM04sUBn3nm3+8OJs7szydTfCgF9x45yPEJ1w5+O5f//D6ux/ubO2+\n9aO3dw6272883qvXQRIGUWzr4AmAyc32k7iIgr4duu5PffGLKZH+gz/5P+XFWQmE33248fVvv9uq\nKQIkHJ8/c/LUuf1hjcKCj669W2AERzN6B1UCAFfv3i2mMrWDKg4RSICiEZlPlgcd50c/vJkSi/lM\nkWGYg4Md21X8UNONYSzOlnIZiiDk4YjnhGw2y4vCw4c3mvWjYrmczRcFQSAI5Efv/qBQTo3NZ89e\nPhGC3tTMBBAED+8+6NQ6s+PzlYnx2dnjruEmOORwf+2N77x9984eFS+EKECwWFdqnTt7PhMvsHg8\nHk/CJHj6uYWavK3YvZHWFOKEpo+KpbGNrTovCjGh+ME7DzbXDq9cvgojIM0CIdRv9A4tRyqVM4m0\niMFhv9sgadQ0ZCHBEiRiqfrOwy1QdbI46fU7GQybLefmpmcpMu4aIAojNx5dc3HDCIb9fj+TSWma\nNpAGGAGrlqI7qmRJfb0bwI4HWidPL0Cvf+p0vsK0uht+NEhm4WPH83t7G6NeFwVc2xhtba76DuC7\n+LV37yEAC/jMtfc/BH1nbqby/Cvnnn/lXCrDQLAXQGGlOI4jsU7TRJE4S6cU2b576yGOkp1Ga3pi\n2rU9TTZDH4yJGQTBqo16LJeePDaTyCRDAJL68tbq1lRxUh/J9WpT75ntnRHq0I2jIU0JCEwaqgsE\nvtKTErSYjvEQYqVLnAtal648tbm58Zd/9oeO3B0c7BMeYA1UCiZojGJJJPK1ZBxHYT+bjjMcubmx\nLfVNmhddy211O0Zge3CYTCY3Hq3VDusohvEit7B4zPUs33efff6qbkskjyI40h303r32brPfhhmy\np49UW+eTHCkiQ7Wvmorvu6aqqKP+oNXoNw9ZklSHUr5cev0nvkCn4x89elAuTFQyE/lkybP8RkfS\nAuSoPcRAIiEkUBS1XUUymjbY8xDNCd0oIjE4cf3a6v//X//f/aNB9aCBU3A8TytQO1nB508VVVNy\nAwWE3QtnlxamJhicqxTKBExailfIzWga2Gpp3ZatqUAUMAyVfPjo8Zs/fIvi+HsP7k1NVELbcTQ9\nCgAMI4R4guYZ21AJDCYpDIAA33ZjmeLU4gpAkQBNghxtgZDlgwGAGrID+yQSEiwp7G4dhi6cS5UN\nxd/dqnG0YGpmGHjDURsEPJYhECASBC6fzfAsaSqjxt6Oo2sCRSvDEeiFUQDaXtgbapJsGKrjmA6F\nEijg51Mx37ZiPI9BcOAGh4dVRdVxgjh+YpkVGccyORzPxZMkQgROSJMUjCKma8mGrFiSmIsLabHT\n7zi+F4UuCAWkiDuISWZxm7bmzs5EHLHdOJidnZ2bmZqdmcQBe2VxLB4Dk1nKAzXZVnGBAyDcspxO\npwkTICCgRIJg4ygnAqkUVSnk/MB1XdcOjKlT4/nlBBDTyktxF1FipRjOM24Qwhh1/+F2JlOKoAhG\nQo5B/cCqVbsin2HphDRSDcNCUJzn44buuj4Qwn55Msbz3pVLU4Uc2ZO7VamG86yQ4L/59a9//OWP\nETBOEjBGgWyaRXHMNBwUQnGYBCIURfHK2ARBkccWjnOkQGN0PJHVLSB0cY6iBRFamk9WSumNtcN7\n93aancFAq+Yq1PxSGfejQWc/mYrK4yQCDPpHazkeWZzJC2n2069+4tjK1Nd+8HsnL87+0R//u3/6\nyz//k7/4/OuffOrcubnRqH3tnQ8L2YmEUDja66w+3E7yIga4CYH96pe+/M/+2T8TWOF73/s+zcK/\n9s9/ffbExFA7jKXw+tF6fW8tzXAsyObn5mvS6B/9m3/xn//nf//Tb/zNbqdaHdY7ekcdVYeDDo4T\nHuCdOj4xs5S/eHGFAsD7d+9rsh0Xkrpi16rtre2jkWwd1vooisZi4te++Tdbu2sA6GE4PBh2As+J\nCRwURo1aQ+pJ0lDCcdx09ERaGCuNx/hYJp96673vjdSaZvUSmfhnPv8FEPO3DjdokSyUs8NRP5tJ\n4hj83js/0i0zXch4pm52+yemZrO8wGH44wePW60WQZHxROLl559/7vzF6vpmr14nMGRtd8P23MNG\nC6N50wvev3nzqF7TZK1e78MgL3Xcj649uXnjyeuf/Gy+nPov/+0f/+Kv/UKteuh5wb376wwp6LqJ\nEAyBs09WN1w/RFACgYlUTCwX4s8/feq1l69GlkvAaCaZGrS7uqpiJIHSOMOTMGCRODA+nsumExzH\nsSy7cvI0SZJQZIscFnr6RDmPBD5z5tzU/sE92+khsIlhLgiocZ5YnEh3e8Dxl5/fePIwnzs7P70A\neigaJDqN4T3zYKi0R7r19DPn8+nStb3rHggO5e7dx/eGqpS0seWpJbQpX7v3/tJsRddNx4JzqfJQ\nBXCYbbd6/f4QDOCDGnTyxPLtjz4QWZZkya176y8960ZhSINwbe+IYTnHBNWRhfogBMEIhqqGHnqB\nKmkXzp/iE5AdDA/qt9K5ZGVC7PfD08cvHu0cJPkshsVuPrjfHrVWzk+jFMoRokH4vh0JiawRAW1F\nFgQqJqZ8J6QE8aDZtiQVC4ikkL/z4PbUxGR/OPLCoNlqjJQeL5AABMZyZVkdeqHnujZFk+l4wrRU\nv29DIJ5OZ48OqiiEcAzbGymUSMmaPE6gMIw6nvdge701kqWecuvDW89fumoqRrs/oBPxWrfDkBTP\nsjE2rvf1ify0Hdgh4oqxFAvhjuejMBK5vsgJpi2JeZQoZxgObveMbrN1avEUYlAvvHSRxBOH9fb6\n9TshSLTaCgmh2bESJVJckke8wHRcNkQdQ3UD39dcAADL46U4hXqOi8MQGAG6rkMILOZjI32Yz6bK\npUJ3OKJRlmU4CAC77brrGbPH8gzFHe42eUrQJB1FISD0gSByDV/q63tr1Wwph3p9Se5JI40gIiFO\nmY5hAQaGIJAYgmE0lAYEQTiOjRAECiAIgjIUwwuxRqs5UjSKZmHHj4nMyJVVx1INeWl+buNwRzYM\nD4aTiRQMI7lMYTiSLUCmMLinSuOT00I8xnECY9gBpAKuN1INFmTopJgmWc1Wbccei2d4FIugEIUD\nIHAtO0jmUgLMdWpHmquN9NFscSyBsjaHKJYGBmEsyeI8bIIaHQpOBG5u7jd7nZdff87A/UeHO0pk\nJ1nAgRzHdlTZNI0glWblo0E8h525WCyUqTfvrM6LFzp9VRp5ThDFSrHSSgWl4F63KUmKB3gA6LW7\nHZKmQChS9ZYH2pPTExiFbOztTi0kXnhtZTgcNuWaj8PZ6UxpId8yRy7qN5RWcirRMZolKNMb9Iul\n2WRm/O76HZrmc2zBtHQYx5zAhzC0U6vlMoxpSzPHypYS7Wzt99z+85+9+PSFlb/4u9+ZnbiCAYmN\nh00oIlmR+Lu/+e54rhiPRSuXEvny2b/4P9/uN+2jHQKK7OQUMXOVk+0HARGmJpIclfjh/a8zIvmp\nL3zy1p27N2/efvxwqzy2dPLclcrEzFF1p1rfo1IlkHJuPfoODKOf+cwrP/rB+/PjS66nD9nEsDVi\neH57b1O39HxyZr3ZfvXlLy4unb7z0TsQ5MMThUG384nXL2Rz6atnL/zGb/3+z37+Z54an//a2g9J\nFrr+xvX2QJsqlieTpdbw8MqzJ+qdZmkiS3I4TiCaLGeSqXgOjsep3e0dIRYbqywMBqN+byApRkxk\nXcfFMdrxPXkggWBULpeFdNw27ZnKxObmJgSGY/NjB72dQrnY7LTnjy/XG412r/nKx14ctJrZvNCo\n1f/2u39OwyDsI5ZkvPTUCaUvff+dYHu/de/OvQ0E+PW//6skAr7+4oXkRKY2qu1stPsdY9j3d4HR\n9LHKvbvvjIbalUsXNcMiEfjYsYVCsfTW++8f1v4gsjR5PPPR7Q+TKcaw9SAKKZwYjUaUIEAQlIrn\ndd1lBTpRZkIU3Dg4DFBi8+heo9m0a/vJXGrpTLlYGRsqsiQP85WJOI+pkglAXr6Qlvq9scJYlktu\ndJ6k6TEKodr9xofvPUJ2t3cKpQpGMbbfRoiIFYJ0IrH18MHF0yv/8T/9Megg8+Pj3//b78wfnzYN\njaIylamx7fW1ZmvIxblWtd9rH4FQhJG4TzrxCQpUdZ9Q76/fYdGMDwZiPAZAES8ymhu2ey005TEs\njWHZVq3juu5oNMqVirLcA0B3cn48nk7V253zJ5cf7e92hiPNshGYggIodF0/RDCcEVjelKX9+s4k\nmUvnEkvHF5uN9tCwOp3uG9/74eL0dLtVdYNGBLhB6NWqjUV+rF0dxBOikI5JXTeVKszYlqbasuJZ\nllucLoe+bw6UwPVMTU+kU9l8TlYVkqJlSQFA0DCseFyU1WEQuumYWNuvQgG032gks8lYNt+sDReW\npnPFZO2w6TsATjHxRKI96pSnZpPxWOvx7aEThUCQicdwMCDg4PH2ngN42STnAT6F4oPBQIhzRMh4\nYQB4ZiGbJVCcpYTHdx4WkyWWtK5+7oXNvbXWw/UIduDQnc5PKEdyYMEih5Bs6sla7Ue3b6Szy1FI\nDCSdhNzFpfnd9la8wjp92e4rpaksiYSm4mIENZDVJ5s7J+bGz89Mp2K3G53u7OKybMt9vTM+URYp\n4uGdezBJUjRPI4SkNkvlrG8FliN3O42YkKRRIvK1YjGrqspIHSVTWR9CbddptKqOq+fGcjhJO6YZ\nwZHthA7sunLXCGynPsJpamRJqXwWAABTUTia1jXTsDzLdHAAR3yQwUkYiHzXhOBAMjTNcSXDcCgI\nI9lub5gdTxmGAUWhY6oQDvlIhCfjP753c/to30R9NI6ikU+QdOBEduTiIMoSOMxyCZ6NAB+Aokqh\nDAegb9idjiRmsDQfk215KPXAXLlZ74JJcbtzWI4L2QpPckwIY42BNHCcneYGQOpcGjItxQdANlmQ\n3DAATI4mAc1NxTjA0AQXhfraxOx0XxteOHmcgtmhoc9Nl7IZ5uBwXxm0KIGDSBSysGQul8hlVx/u\nmmpoOSofBzI5emYu7wSAHA1BxG0NtgiSefKoag2gl195IcBVwze5NPVTv/LZg8H25VfOh6hHmziM\nALZpmYbbk7ocyauuHHmALrupXEketo6fmNquPkAxqrQQa3XXhujR5dcWGTKcWUmZozrNhBgUMCzf\nVzuvv/7ibuOQyOIHvQMUSJNEmqYCXYddAur1ejfv382nCyuzPA2GjweH+10rbNZ2DvqpVCKdzV+N\np2/cfU+3B1/8xN/74bvfjyXwoaxYzuigeqiOrEph9uVXnvN9P86UFqeim3duHO0PT5w9cX/to47S\nevzDvzpT2yMQgIG88WK2UizsHu2RLMPGOIQiXn7h2XRe3A56NC882K2NTS9b0Q7McAzD3Pzw2tWn\nL1EiyKQozVdNNIpleZiEkABCKDBTTEuStr+/y7I8hBCpJC8IcdM0FUX1fMB1gng83qv3fD+4eOmp\ne/fuJbOZycnJZqcdRGi/3//kZz+zt3dQbTUMx/QgD2bQcqriRc7B4XY6kSxMTE3MzBy1dqYrlY+/\n/uLDzZ1CLt2uHW7sPWEQ2vWsfrfT6XejADFklQKBFMezGP/aq5/uDWokRyfStDLo4RQzOTe93z6q\n1nYm56Y1M+JiZGUyVSomaq0aTiAURYiiCPoQj8MjzbI9Rw8tCIJmjs31GlKr1s6MpXzX4GIokYTp\nFHbvyZam6In0KRPC9tsHSNQjEEQfDdxQk7VuX62TXHk40tYPNn/1H/wKVMhwGxsbNJf1fBCCmHz+\ndLvu76x1Mon8xVMn7t58N8lzV89dwiF0fe3x9Vs/ArDhxz73dGk8MVZIbz64k0mKEzMVx5Z9NMhU\nxMw4T4k4iIGao4xNl53IvXX3GkaHhTF+5UyFj4GS1JaHIyRC8MiXB10/8IS4kCmmKAY9qu0vHz+x\nub03NbUAIkQEE/FEKXBQTXHBEPTcQNFliIocwLYdz9DCRw/2bAun6UylvNTtGd2BgTF8q9enWSqX\nyzIUt/pwg6WFbqdhugpAuR8+eW8YtAbaoe71xTjRqO9TNMHyLMOR9fpOs7p/+9YNkiQcx0tnc0CI\nYDCzvXHo6RqPE5o0mBgrLi8vnjy74gFOMi9eeeGMGWoDpZfMxGAs8mxdHXYnCxkEhiVFVRQLweg4\nF4NdDwWg0Wgk6aMTZ4+PTRYnx0vjlVJfGkiyCgJot9fXJMVStJvvX++0e/Fk6pvf+fZoNFCt3dI4\nS4pQPM0Yajew1ROLx5SRRsV4hMWpDPjipy+LGRyIbAYhiBD13PDe/Sd92ZhePkbFBSaRmFpcCnAs\nojA+m0qPV248fPT+9Q9PHF+2LY3icCZBswJjWUa/3/f80PdDAABIjrHD0LB8TQtdh8LgpO9ive7I\nNG0IDhgew3lI8aTEBA/FAofUsXjAx0jbdQicbzVtwBMjk8R8igrJTCZDscyx4ytiMmX6LoCgYjoN\n46jneaHn0xAa2S4EgLKughicLRaAEJCHkjJSfSvEYdzR7e2tLUVRuBgXS4p2YPko1PMMOCU4GGCB\nPgDDNEaJBE0gMASEoef6jgsgKERgDgqqtgODCInTsA9X0kXf8XVHjyVEEobhMMzn05o+FBM0zEIQ\nCtTqLVX1yuNTkt+ev5B6/rMrU0sZqbcKe1KRZSs8L4COQIau2yNYPyRQWiAzuez9hwcHh4ptu83m\naraIrJwtxzLE+vo2GNKeTgw71mioAnCk21YEIK4VYiEJ+xgMYaYbrO/s6YYzM3MaARO2QZgKbMpu\ne6/a3KwzEDmWKd368NajJ6vLy2eb9W6CY15+/lTgb/lhfeFE6sprC69+4YIDNjke4jGcF8tugAEQ\n5gU2yfoursULaHEquVPdZ2LI6UuVn/jq+a5014daITbIjCH5+XRLaumWCYXh+VPHCNgQBSCdoF+8\neuX151/L5MS//uMfXz5z+X/85n9bXpzrScb/+e3/bWnms1cvTo4n5uYTB9X733v3a5/+1Md/7Uv/\nbrgXfvC9By+cf7WcnDzcqbsG2Kxp1+9vXL+3urZ96Pngh+/fLqVLSZ48Nh1v9G+/d/tbZ1+8oGLg\nH3zvOxGXlG0URNKrO43jJ672g6grDR9vrj97/umXXvzML/3yv8ylF7/+F28pw3Dt0UEyUYhCotkY\nORZie2hvaOKkoOiuGwXFco6LkQFoe6FB0qCsdGV15IQeitM0nUjGi54FdJv9N998k6QJjuHv3XnY\navcxBEfQ6MGD+8PRSFa0X/1H/2h8esYGgYFmLJ5ZOX/5aQ9FhXJyt7H/cOfgUb1dMxQqAzfkXS6F\nm4GJsZyQLrxz43oil8DE4NyV6edfOLYwLSi9AxJGCvnyznZ10GlJI+Xhk62337/G8szYeBEC8T/+\n4zfe+v7G7s7g7bdvxWO5AIQN2xr2O0GkQwE4HHQwKPiln/2pp86c6dUO/t4nX718dpnn2fnZYwKV\nUoYmFID5RAzx7eb+brva11QzRMDd9s6/+51///vf/cPxF8Zf/JUXXvjFczV47fxPHHvqS8cRVUZD\naoBHGRIMS8npKJgam1184wfXz5yef/bKGRDGB+bRqbMXqs0GRPjDofRHf/QHlcmZiexYnBRruq/I\nxtAxJEVH99p4DIFtGIJwayjxLFYqp7KxRODqmiY5IFQoJRvSIYaCalvu1aRPf+zjR52DbD6/X635\nHhJ6yLA/0hS5Y/dwnTt+YqbVHGIoHqEEQQsoToGBhTFUX+p4YbByLOk7EAInDqtKtkTiKL104myn\nUafYRL48Y7l2nKGyuZiskrphRRFueJ6QoMzdLkXyU0t518pub9WSyaLnhCNldOXKlb2DXcxC5L6k\njFQuFo+JieFAEgSO5+eiSAlCh+FoO/JEhqjubmIkoij9bq3fqPYfPthNCWkYcAgihCHEt6HMsUnP\nCw7226kxemlpXHf1RCJhgejs8txQHXz04YeNanthfnl+eSECIzWwEEaMU8m1W/dmJ6bOnzzdHLS+\n8ks/AQQA7FqP7q0em10+e/qEKJDf+Luve1oYIASEo7Mzix7i7R12a2EHRwIcisMgWsmW8VDs9hw/\nOgRcqLrTS1LFfrsfQI4NEigcEwRBlqQYxc7NVCxXkQwFIwhF0QgQYxjBj8JYLOZ4DgaBKIi6sktS\nDOqBsir3Oh2aIYMCwIncwBxqjq45cAiECAoDEKwPByydaNQbTugLBIeFaOT5aASQKR7y3KNaFaNI\nx/WDwHV8h45xpBceDQcAAAnxGErgEIbZiiH1hqgLbK9tPf/c1R/fvk7HuXg8zlCEDwatUS8vChyB\nR3jS8YNHq08ICpeHCoulkcj1fT8IAoQAQRQGgCB0fUlROYZDAmjQlcaWKsP9fciV40J8bGWi3+3v\n7h3t1Y9yuQwdoq5lICCxvrVbKUwQJKjYjbFl3gMVHA4wDubF4rF5zNFwywzyiUKz38YRHojwhaXx\nam9XDjCMZwrFQqsXHD8xlU6kO7tDR4UmFqZxVrRtezDsjo8V29WDVmPIkDGMhwMgCFHX8m3TVAkq\n6tS7kQ9BALf68CGL04srsztP1k1YvkCt2ANLaphJNsDgEHBVkRctu1ueniiq5tLisV5dkxU7dDiM\nSK1vNOhEMDcrogF01G7MLsx89nNXx2cK1+/ciTxwdmKCoamdD98qznAvf+y5v/rGX1YqgmwNG/2W\n70SpyhQd+vo3tzl6CaWJL37h9SeNjeOphbr1sC8dWputg41q+3D4wgtXfNvYXtsgObhYTA9Hnd2d\nteeuvKBr0i/93C9+vP360sx8Ob30tW/9parKj9dWl5dO9nqd7a21q1cvG4aJY4TuaDAWYmgUS8ZX\n1zfGJ2fmHWeoyDEqrYycJ493CvFpOp542Dk8ObOgB6421CbSEyeX5v8gtManxhASGGpdiqOT8UQ6\nldVlRdcNMARYliEpkGBoQ9cD0KN5wofsAPbZGNGWTDfQEAwXY7wzniYYZGdj78rJK8+vPP8O/uHf\nvf+dZCVjDYfJRLYyNl2ZnIklUrv7Bywn9Pt9kGayWT5Tnvzg9ttf+cznr30I7Xb6k9PxJ5vr45mM\nwDOgBmmyxMTE0viYZGpkDESRiMfJOx89qFTmbS/ot7pzU9OBr8IAcvL0qW6vJ0vK1StP/eDb79ab\nrb//S1+dmM7+2R/+xbBX36vunDl98Wi3tr566BnGmcsz/+Af/8o3/+aNnfWDdqut6RIIB/1WzdFV\nBEFWTpyQe4OlpWOxGE8z5NBQK7NLjU717//Lfx0Jzru772WWi+lchoDQX4j9zPLyouwMEAPQlqdP\nmfrWfLEAWA2AVPkCll+OP3s5/3/+8gbChNOn85vVW9c+uPNv/sm/SHDcv/h/vFsPHupdYzlbKmVy\nEAJSPCVYYpkrQiSgAgyLcc+/+mKve8jQBIngtSqDwOSdBw+5VJrCmIvnlvfpwzbWGnba2QRDYE6v\nV/dGZBJJwRGEwsblTywf7B0srcySWHB/7RCmOD8EIBwxO7LuQIl0WWT4dlMBAw8CUV5MpJOpJ0+e\n5HI5Ph7zAAz0UAxFTWOoy9Li0sKTzcdeGFEiyoABSQNJESdpYq2+z7DsaCBFITI5N7e6tVEuF0Mb\nGUVaq9+FULINtRVDUrReqZAPwaDT7iVzSQCCrHY1gkKWJFxFxiOehOiV2XOdbuv8uQVF3Vs6Pt7p\ntrJZEoY83/eDwHt4/0PSHH7q9Rc8FH2yeh+DIoGko+IYgOLxZKI7arekHkrSE7HS0tT08vxxz3Rx\ngnzvxoeLi0uwS6ktd3yysrvazU2kCS6DYe5IUZvN7fv3bhVKBWsYvPLsqz/83g8G3db5U0vaqMOg\nnO17yrANhG6CSQ0OW8UYLcSKu61hPp4KGJzByYTAcyz1aGdVzJVd1w/cKMIgz/VpnolC33XtWJYf\nKi2ECBg+wgIMBHEMz3qeY1huq98eaN1MMUtgsGUGgOcjATSey4E4Xq0esinaxRWBJwPfRiK8PewT\nBMHwHIqijm1DODqSR6ZpYgQBIAAIgpptoiSlKpqtOUkuToiI0ulTGA46vmc5GI1jAr17tDudL9I0\nKXXlYbc3PTlXUwx1MErHRMwJICSCENhynVg8FuAgSxK+MeJQCvVBOkSNEAEQmE0IoWkLGV72Jcsw\n07HM7Y21jy+UIzuA9Qhy4ChEIMCbnI6LWVbSFZAgE1z+8eoaxRRNtL/a3XZCn/DwQqnYua9YijGs\n1fhkLJ+Pme6II+3M8TlJkT+6cztSKRhi0BQenyAGnd7xfM4a2vpo5A9CIBHGc3E10B0ggAjCca0Y\nQy/MFFkWiCeJKNSfunTaVpzbD7rnXzlVKQm1bXM8P9Gttdvtx/kK9JM///qth/eqHTmRThlyD9Cj\n4ZHhqZgNAPGcaJprjiwszxSTBdpyRhfPL3i+5kFAIsNSCVI3tMJsNpvKOJ78uU+/ZjtalglLxZmI\nBvmcgCCMQwB2GL7+8utOAB5VG4Xj0NHOkUASM9OFoFu7eGacEUhN0oEQ58SEoiiJdHpl4XQIAAfK\nejaTg4Xof/7Fb+JMQMYCPRrJXm3l7GuHB1Gh8iqBI2fOzGi6HNlRMpYrpOce3F/71l9/d2qy9NM/\n+8Unj9coOhwrF95+572vfftbP//lv3d5fHEw6D5a3erX69zTUSYu/Po//amRMUgVk0N14PpOXkjA\ncESIhGOGBAFwLAnD3GgkAwAAghiEBEAYpdJid9AvjmUwGNEkbWd3NUbEWYKamp+sDtr9QF85cc7F\nwdGwdfnS08lUPgzAbBH8u2//7fzSDEIQosjrflhO5GVj1G33WQgPLAtAPFlqz84t682OrwZStb5y\n/OTIlRJJAWIJHCb2Ng5E2s9OzlFinPYBpdXKkuRuo5HMJnS7wycRue//7//5v55/5oWvf+s3j08u\nbtXvf+21/6qNoB++99Gb330HJ5X/+7/946ZSe+nlU2PFyd//nZHnQsls+nvvfe/S089/4SufWttd\n+6M/+8NT7NzGo8frdfT5F566+tS55FTs3r17U6PkyoXph48fkyRVSZfv3rpvuPqlS5cQlFh/9BjZ\neLDz/NNXNvdGpWeOQyQDAMjjJw/UpopzY7ny0ZF0ayb/ChlyO+Xqbn9vbunl5z97WXLaFIQcynuW\nMywjxSTFMgWchLFaq/tg7QlC4ENd7XXbuUIOgKGe5cN2kEgWR516rhTr1HcxAZNAgzBHBJCyDKeS\nH1vtHPbDnYDMUSToSnpOEGxVFkSOIjHHVRHHRWy+kJvc2NllMDiWK6hqM7Bl0DPmUhMP7z0hEHzU\nVAEAHOktTqRUy9YtE06kdjrtvmlzHDeQdSeyMUxUbEj3bJHPH+70gggicaDTr4kib4QGXyQqsUq6\nlWMZcX9/v5jJRaEtDftsjKUJURsFBIsReLB0ahqM3B/+4I28WDi2fLJ22DlzdiWTonTZW5wpnjs+\nrtVGhKGcPjGGIKSQmus3t5pG96O7awiOFRJieWG8gGPVw4NOb680Nt7ShxjstIf1kyfnzcD1DDOC\niPaBHkelpxZPJxNNEiIL0/MfPbgDuHSn0cdgwHJIKhmpnq6Yg/Wd3UJ+/uHBjWOLKx+8+06z3xtY\nBsa4yRSfzFPd5sj13WG3hZBx3XUyKa4QSwAQfGrxdIzhO5oDEpBsOm5fEwgW8QC9p5gIAvgODGGU\nAAWYJ+aSgBTQATboWT4u4wSUS+dhFLF8B8SA0A1wkpB0hQ5oBoIBN+CToge6IRQiOLI4MzscDh3H\n6g/aIAgGXkBiNEOFkWvEYhQQRpIiEUQsChHTDyICdDwfS/AP9jfZFAshIAhGmqRwAJrAeTGWGI5k\ngmbisWR/MFAMCcMRGAoiAFBNi43zERCgHqrrquc5FEH7XgiCYHqiCFAwzWAWHMAMjJiBibmVQsmN\nJMgxQCSAEKtYKoh8SZJlhqZZOgGiiGWN5I5qqsYrV87cuX79+EI6VuQD2AlczzWhyLTcyAfAIHBh\nhIB6qsLAkdSXXDNAA5Plo4UFVEh7xfFivz8YGkOxQKuqPdCGuEnGYnE7YCgErR0OF1fm4ynfMBVF\nBVOFmIcP2/bol/7FL567NN88rMIiNHc5g6y6M8czYxF4MFgfXxrf2t9gEVIgBRR099+9Pje3UKyU\nDg87E9OXcNIj0typsdKDtZt9p4EDeCzNETBAskC/0xE4anZ2ajDqjwwZEwiRK3iYPVDbdWW7mJg8\nfWXOsd3MjLDfXrMDZdRod/qdldnlX77ys43mQYT4O1ubcAjXqoff/rs7V567TLCkYVj94aA20O8+\n+vblkyuL8+L6xsaVC6fvrN24ePlUtdVwXffcmadGQ40n8FFt5GtWd1Dn2TDFlf7pr/30//rt3/vm\nX21eeOr0WLmijdQ4IzQarSdPHp1cPtmq9txBF4fCP/mr3yuN55l4fOibdASQrBCoQ8MZaraWEydD\nCDUcH9Q0HEftwEIQiOMZS/Y0W3MhA0UB14V3jppf+OSXVj96vHOw/5W/90UIjLoj6cCoV9tdRVMX\nF1ciwK93emO5yvfe/NrWwzvFGJcr5EEYKRXS7U4Dp0jPD9eahwGO4TalDl0cdcupYpxk+TIJQ0SM\npYCjKkfRg77MYyQCA45r1FtmKp4WC6kjqUlyVGVqIkJB27YFKv7g7lqSS5+bXPntH/+PRzfXfvff\n/m42SymXh6vNG+deOZ0/Bl2YenZ7fZUmqS996Ys/+9V/cOISc+rqKQdr7bjUZ37ptRPPzy1Onvw1\n4Fe+8a2/AoJQ84wJcGa2sgzPg7JudvpNDIdm58upEo5DLMOH+0drA62FzE8WoyjYr0oHzX4uQ8aF\nnOuT959IN95948qlK7//59/+D4//8JUXn0pgUK22+9Zdejyf+oWf+0qj0ZHlUcdsHXSOMI62bLcH\n+B1Zbw20hfnCsK/QBOuZTgQBkqT0JX1ycnwiMdvq7Nc7DQSm4dDDCYZmqY7clCR5em767p1rGM81\nWi0aI+Wu+9EP33zq4jNxCGpoEh+Lwwyo+HZ2vOCY3tHBAUlGge8ONWl2kUX2EFnTcUpgWTabLDEM\nlkoL27ubsqp5BI66QP+oQZRyHghBXsgS2O5RNStUCBTTDdcN7enxMcuWBRG992An2G8kYkXH0kzN\n1TUrkxcWxhY0SdZMDcFgyzYGqsJEBBR5JyZPm4oO+WF/0KJZxAwI15Gq7zcQKFxKTCaTSYwWnCA4\neen8dOnV+w+eyH2t0WjMvP4JHALYOLeztgFCoi0HcYwydDWZySXT6fVHmzCg97pSJZf3XEdM8E89\nc/43fvt/XHzmMhcTMSLmGiPXdlg8IhKJ1Y0d1QIxnDZGMgtjZ+fnnzx8Nwjql86dJlmiPxhErm6b\ncmCEBIn0m9KgPeoyITiPpUR0c3f1xPkV2rIlRyYZNEaLmmawDKEaek2SEmKs3ahTGBdneRTALCME\nEUxMViA4aLUbtq1YlkUxtBBLwQTueUFfcjwXG8qGYqhLadEFQgCEG+12FHKua8fiPMcBmqxAEWTp\nwVi5XGs1oxDIJlOSrHqW65peKV9gKbI7GAZBgJteITextb3Bs5Qma3Eh4YKBD0Ze4JIkOeh3m7W6\nyNOg6+ueo6oyw9HF8pgbhKZphgGEwRjP0qNBXxB5F3DbnarpqJzAjZS+LcsEjrNJ5mzuzL3dNZzD\nABEGRdjQdSyFkCxmBCqIQaBDOK4ejydAyJ2eKgUY6MIWyqO+Dz736acf39ryh2q6wKMcyCZID4Ik\n1RKEgtx1C/mMEMNcUMK4KMIDnCWKuWMJprB++/DN710byjDLc6YxdEBnciHLxp25RFKMEfu7B7xA\ncBx04uTEwmz5wa3bg97BaDAsZ8adMU4126k8/eTJo8tXcoX09P7u3sKZqbpfrywUz5w/tb5z1PMO\nCDVTFpP7hwdEcq6YKoVmhNMkhIE8hkWeGwV2aSzzeO3uwuKxh9uPcoU8Lwjre0eJfMq2vbrR+OJP\nfXp79fHd299j0nHIUz0Lq5QKyUzaA4GRaWzurT919eKo65SKKx979Qv3H93ASMgwNBDxsgnO1SgY\nxyszcw93VhWnXypmdQXaXWstT11ubQey4Rcvjw+3PoJEGiGTSWEa1rQ//Y0/0Y7ctXr3yQ9/QHAo\nyWCLl4qvf/LUH/3pf3/3wzdTmXiuHM8V8lEKCnxV04dJlhxWqzTLQSBOAggcov1+H4IgAAiDIGi1\n+olEQlXVMAT+P5L+8t/S+zDMvW9mXsxrM8wentGMRkyWbMUYu3HYgSYN9zzlpAxpT5OcuE2TNGkK\nscO2Y5YtWyyNZjQMm3kxr5sZfs+L/h/X93MBFBNyadsyKIYDMcgwSlUsSI/SZfFjE0e7tfuQVLhQ\n8/Z2DyRSKcl1I+4lsLnT3EgAjCAIRgKMAjInIBHB4KLneIHjYwCeqZY+uH6j2R5eOHvuaL+RWT3F\n8bLneblUgUQxhZdU4Ab+iGZ4JIolms8qqbalO7ZTqmZFhfbjaH52buPuw3/xT3+NluWvb7+uKMu/\n8HMfG0HOb//tH8zMzf7sr/5c4EP2GLx58wMoYuPR8NSHF97c/1+SwFAM2xxv3DzeWR/dhmn49Yff\nrJSqz7z8WK/T5RkaoyAvdiupWdO36jMndrYe3Lx1Z2a2euvuHYjCeTk1O4chCwsrjcGYLcm3tva+\n+d23+sN9hPCmGvTlb/YAJZaK9e5uvHdnUC7MS6zYP+r+4X//n1sPdq9cfPTMmTP1uXqlVjYC00RC\niwhb6sCJQxyj7ly/b03McqHMUQxHI2FkP9xeNyMfoShBSmdypY9/7DNMlpq4U5xmxFRaSaeefOZJ\ngMDdvrq9YdHkUqeNthsWBjhr6giS5KNRo/cwDKcIcPIZQWTJTD7NpJTtRlePI4Th5FR2MtQf3Fl/\n69XXj3f3Y8eZ9Pux51IYLrJCYPsUwkEBEVgQh9KNnR0CuFhsPXJ6qV5IiyTjjqy0UrV0j8YxEBiu\nPWIo+Mzp1VI5lyBumNhhZBFo0j44QkJ8/UZTwuaL8mkOLyARdfXdW0tL59fWHi8VV3Udmpmd11z/\n9bff6quDv/jSF//mK3+F4cj502czUrFz2O7sNQ439jN8PnTAyYWTMsafLC6eqK0c7zS0kcph2FK1\nJJBgsZ4/bm/ly9xv/OtfzRSo7mTvwfatiTuhFZbjGZIk/TC5d/cBhcGBrRYy1PHh3UKt8pkf+wwt\nICQRPPvsZdtRbcfBad6PQgJHM3IqVyg/2Nx2/YjmlS9/69W37977YH39/v62kJfbgyaKJZkUt1jL\nIVD44Reei4Ng8/5DjuJcw2sc9X0XsV0CAQIO+NBKsIiEItSPISdGbCgM8QRCo/nFCgZBVEIQCcci\nBXVgkzA/HhieG+MYxbASBFPN1gSBaduK1KmRktMEhsdxnAAQQhEl4rxM4QSEIUDmWYZGK9W87U4x\nEqMYEkVRjqYG3V4chBiCRmFiG87K4iqGkAf7DW1qRD5Ek7RteUNN1xxrOB3FcMwwNIGjIIlYmkzl\nsvliwYvdEPKcyLJCqzRbb2lTNbYgDjJj1YPsBIETBMYwjGbpw3ZrfnHpjVdfS0Jg6DZBMuPJxPMt\npcReeuZ0sSoX8xnXtDzL3NrYVKfWaDqe6g6Gc14QpzJZhmeKMwqd8k4/IX7qxx5DSUM1jhBseuGR\ncn2eNdyj6iKeKZGsCEsKKYhwqcC9++a3jvc2GUxIfAgCyNzC7OqpkwuLq+lM+cG9HTyAEDd2xu6N\nq7fPnj7TajV2D9ZzNVJOc4ahOZad2A4eogKRUic6hSGxC6AYsSyHpCgv9m3fk1Mp3bBZXBKIlDH0\nHCtWbT0hwpmlUrWWW6zPsBiDxVg+V1VVO4TQ7kgFGIUSJAwRZ888sjizJEnSTL18+fzZUadjdI5O\nrS22BqOdrurC9IPN/cAAXjeJprVX/6bxH//JV37r1//8v/7OlzA6HceEehB88J393/mNP7r/1ibo\nQaCLpYIy0ueDJvG7//BP/+Q//flPfPpnMA7cPrh+Y+tuJp9N8blAR9NcxlUNhkRRFGZYQTeSCBJ4\nWoyiBACY4xgA4iDwKIoQBI7GqNhLQi8OIwiG0MgHf/Jn/+eg1/313/2t/sR6/vSLtI8NGocf/ujT\nq+cWeupQM41uvztR1Zn6wo/82E8qmdRRc9f0LARzbLuPoeG5sycMc+J6+oULF1780If317eGY+37\n713DFIWSxGa7XSuUYB9SmFQpW4EjROZTpVy22TgQeLpWzZlxlABEYPmRpttJRPPsdNC79/57mRT9\n1W9/8bXrb2Ise/361Sj0YtQdhnt+OD37WF2u0yrh2iL8tVvf/dd//B/eund/b3P9eOdwf+cgCAJV\nM/wI9WJUc72hMfrW915594N3KJJIpWQlJdy+cyMBXqlcplgGwbFiKY9hKWQSO6SSebC7HevYT/7w\nY8Zgq1JGb33w4ObDW09/eK1Go/poMp4Akc9tba9/8OaegpSb8+O/+MaXzp1bKhfT3X7Xh8MYt+dP\nlEPPRUFcL1dszfIMX5YyLXiIQlGQhBAEOY7F8OTqytL9Ozt9TyUIzLPiyAO+MUynYAyzVlYrBw/t\nYkZ87sXHGns7Tz56eW97y+5MUAEhQ/Jo43i2usARVHvQmC3M2NvOUfuATUhtPBISGvcChuU01N9s\nHqAMygkyitIEBWeK7NxC9ai1P/VHMiMX54rpfPb2jbtKPueT3vb6hqG7YiqbAP3Eaj4v42yp0Dlc\nb+z170v8sx96QXduDMfe6dOnZZk6cXIxCgDXpB9s71IoOQfyOAzNl0ujZgtHY4lBLpyY9QINpagf\neOmFBEuEDLJ153q1UMAQ+Ozpk4UUa6oTzQkQjEJIfzrpP/fEU+9fvdlsDKaahtJ0zxjDcKzDhgpN\nb249PHD7OAH7kU8yLJ9g7WFHKgoJynU6/dlq5YmLljne++Ef/ZDCooY/ZKphAvPth31jon74E5/N\nbqqbh7fkFDsdThEUhnCf5CmvaZjaiMPItJADwKYp2gy869c/0GxvpzF2HC/EEd+d6Lo+X6/N1uuN\nox2GwbKYkCSeHTox5AoCA0USjqEEjoSJ73t2IcNjiY3C7uJM2Q7CiWkmEGpoJpWQIU5FsRcmgZ94\nNBNzvKKpVimd9jE/8EIYicLQZ1nS9AyY5iiKsnQDA4lvGymZ7w17MRILacVxjU4njJOIZVkIAwzP\nxAjk+V7ohYbl4AQJAci0vCAIUpJomnbfMnAMQTFk1GjW61Uao3iSw1EsgmBD1TNS2vJtNAJZJe+Y\n0fHhYHamlE4pqj51Hd8LrVRa5Aqlg60jfmiXCoWl8vxiZWkCNDWwJ4a6cGpJH/f6kwaBwdPOFPNh\nnojRHIFks8NWP0NmOEnSfVfXbN+DtMClSJIg7EceX/Qcl8EEioMuPnl6t7WL8+kEwP2BWijOBqEb\nhminO41jnCRlECe5XI6kcBxDQtiNMLhcS1MEzxLJ3EJ+oqkUJVtWMh57FMmXK1nCQtq93uxCliXg\nCEExGJN4xfccmpZVS/ehxIoDPpVSbcsNI5piR6NxNlXoDDsMTYdQeDw4Dk1nJlcZTqeWYzMkcdTY\nxFFCVFCMCDA/ODjaHfQsO/ZK5SzI2A2tt9/fFZiM60OcoenTfrFQrWaUowPtwpmXvnt02+y5LJx/\n8fGVWzffv/2dw0fOnLv+vftxnz5/+vFf+pH/X17OP/34k1fffe/N195Uj9q//du/I6T/ya//q//n\nrb+4+cKPfMQiNABj0/akKIjCymmAQZSYEQQhk8k0W8cIOqB4giE413Ud30MQjCT48ciUBTnyUM3W\nbdPECEJWaNcyavkUx+e2NvdpXiBE4vre1Vb7uJgr2iMDQ+L3bn59dnaRpslMIZMVC2FsH7Y2Ewze\n2H3Y6g/TqeJYHTtBCBDYMCwlxQ/VUbmYf/4jHx0bOiZLHJwcNncrmWISgd5El1lx1JmAECqkMmQC\nV3LZarly/+49YzhKCmkYRUkMjxxvb2OjkEl73cEzL1wJEezU2eUHG/T65v1qoZYVuczqmqubBC32\njjuDQS8nyOLJEwSOACsTGsEzT7/AMqwfgVZ7MByOIRBAkfeJv/Ohg+PGUWfnvffeQ2FUEMpf/MJ3\nTpycLwAEZ/18sYi5kLt9uDN3akFSCjEduBAz1qDJMN7eQL777Qef/aGVETsEIP2N738/JLhTS6dn\nq3OKkNu4sxnoAY8xoe0GrkeleM0033/zOuTAs2JOZlkMhT3PO+41ISpGg6SUylnaBIkSBMHfev19\n38UciITgeDJRc3KaQjBJwkUF3tzdXTh1Ug1b6Rl+ZNLNSffSY09qhr7b3EMRNg51SWbH4/7G+k4E\nY+O+CwERwyBzqqkIgWJwgsCCwvuoN7M4C4dGp71XrBQpGv72979ZrJVgEjcDKzQG/dbg5U+8fHjU\nVE0jAPHjzzxerFb/zxf+iM+Vq6UsBjNnzpy7+eDB+tY6yZFxghTyZXVqEFScK6Zv37or5KQkFMft\nxnHXeOGFJ/rt1uuvvFIqp3M5MpMlc6srN997CEJQquchyK4XSs888fj25t7/+vOvLJRrDMXySvao\n23AdtVqWDo+2z598tN1sCSSLUrgXu4zMeHj8cHeLkTO9iTpfn5uO+44JGZpPYXwYQGUlP3VMSx/l\nMzyaYCQXpuup1mHjoN3c3rqeKddSKfnX/9W/OH/ppec++uLG5mZMUpVKzTQmTmAXKmkAO3EE5mq5\nra11lhBYgqmWyjA6TQDu+14EEknOxFHS7PYVjq0vVq/dvBHDiMSkYYBofqRZLoJhCIr5fhB4DgpF\ndIAsL9R/9kc+sdfc/dZbr9FyzvFgiMWrUvG4eZQtpAFKjHU3AZFl64zAhlDEigKOxKbmwAiIg4hl\nGRRJbFMHcVCdLXVaxwRNCCmuMxpQJD+1VC9wJFmIYxBFEU6gAstpQQBI6ubN2zNzsyTL6JZNYAiK\nYcVifjgecCxZrsxxPC6KAgCJ53kxSvS0YYaTaJbf2tunUAYN4TiOSAgxRnpJyWeF0jSaRsCbDgd4\nGmdo8fbmLS9Z/NzP/cjG8bbr6IFvMViCwl5ltoTzWOz6OEWzETA8+8TabBxSopRwHAzhiau5CAoR\nEO06DgpFhWoBeNFnf+xD1965Lsu8aQxTioQ5pGmFvhdhLJQSZBiNIgAC2BQERuCprY3DOAkKxfJI\nH8UEB6N+KpOK3FBKMfcP2xiAfcPDQuzKqSvT6aZlOmsnT8yt5txggOEYTEASK7WOBwQJkgSeWa0F\nSCQXU5OJqhljmsV9YIxbIxRFU0pWddQYJFxO1kAQeAlEEwCNBZHkBbbR2vQdPbG9yNWTQMfRdBDF\n3cFWtV4zpr6cFSHVMF0zigJt0mUJ6MzKiXquAsc3JUrMFuuW6jIoM6ssaJvu+1+7e+PV+/NL8zCC\nJAkEI3F17mMvvXxJHRsLiysQivzln37l3/37f3X0bpeu4E+9/MTrb393dXWNZ7CpNSmWy1NTa/Q7\nQ3WUzsvjSQ+DPU6EIzVE0AhGYhzHMAxzbA+LARKhhmkX8xCKR2fOrmTkhd0vf8vwvO+8/gaOJCmJ\n3Vq/hRDwcy8+L8vktfff+eTH/g4EQce9fQxHxpqRIFi5XkwC2HGGnhdOhi23nq1VihCCHx9tXThz\nNiBCPi+3O20Fx0ozZSiCStliIOCG6XIsu7K6atnmmTNn8rkMjuOLZ84GUHL3zkMJp1986lnXdefn\nT/E8e/3OrYxSuPfg1sqyder0Y/uHO7pjDQfqk5efsZzYsozp8Gg6as9WH/VcajzpOTGAkiRCECt0\nVFXneOrSI6cde7q5dXfr6B4nyQHMwGTEcWw+X0RouFwvjvWhOVUbww3E8Z21lbVCVphZRZ768GM3\nNo8WL6dOPy7Un6V9yzu6o9EiRhWRH/yxZ556tEbAjQDomYLQaO6/9PRTgab3mt0wjhzXdVRvpjwz\nU6nP1Kr9QVsQWIrGXNfm8nRxIXPQ2lKng5ySjizgabBvEKOWyuHYyZU6BLm7O1soyja7apAwO5OW\nx8A73ZaQT/X1Nl/C6AzpISBBo4W1khv3aCmZmatLXIrE6OlwjNL4/KnF8nKluFApzpQW5utLlXKe\nIGcrUjknb9y+HTrhC898FIlFBCgklgt1V6FyzgRvbUf9vSQ22bJSIkDoWYyhgaOjzvbOTrPXLFRy\nlx57tD3oDI8bWOxa02bv6KCx19HH4WRsEQSFEej61uaD+5ueDz/z3EeHY9+L6XRuQSqVYpHbON57\n/dp72+12Ish3jxtH6hhFHJKjBuMxRsS5NHtiZeG41SRoxDMnJ5fnA82cNnqDw26gefOVhaxQSBM4\nZBnmoI9F4bDbQaDY9HTVHhn6YDhq+3H4YHszhMHDrfVbD+5UZ+qzlZVCPiVw0WOPrn3qE89QrNbr\n38ewIJPJmLaFUQSMoV7giBlayqD5PLV84iSMkVECp1IpCEQpkVNYjMM8OIIpnIu8pN3tbu/vLJ1c\nUHJ8T2061lCWade3EJzASX7UN9Sh42lxgoZ3t+9tNXdf/PTLhMRYgRsEHpokH/vBl8szlSgBtu0S\nGAlHSezaga2bvqs5lhsncjrDMiJH8QSEkhBumerJkyuf++nPESyJk1h/2BMl3nEsgGEMy/OyQtGM\nbdspQfENF3JiUzWKhQoEUEO3IQhGEdz3/TAKWAJNizwOA0XibEdNQAChQHMMgHqFasFw7bFmkBTj\n+J7rGSSLsDQdxwkUAoWXJU4SWDElZnGMH0HagdXux9OEikWeoSEkz/FlSWB5KEwSM4qH3tRFgly5\nbhl2EGhyilJSbBT6LCklPh65YS4lyQIZOEAQhGbrQEnzCIk7XmToDkkQGBrDsJ/PMCybqJOuHxty\nniSFAMGhmblZnKATCE0SgqFSHJO2jYClUhzJh57Js+hCvTw8PmxtbRa4lJzlfdTFWJwThCCKxtrI\n952Z2qwZuIzADyYT3XBGYw2CEFGUx+MpQaO5Yj5JoKO9Nk8rrhPHCeKEgajIU1WNoohgMC90oiT0\n/TCfq104dWGpOl+VCuaxiqpoFs/SMDvsjxy1jybI0099YnntSn9isrzY67ZQ381nhCg0UymR4lGG\nQUSWq5RrQ2sAo0kUBzCaJEmSxHg6X19YOwWIOIBjhEL+1b/9j0iy+Gd/8haGUoQE+s6RrRt4GAwO\nd7buX9s/fnjYOfD8MPETkGBwgntuaJkOQWAoFseJw/OoRNBIGGfllMLLoiT5WDz0R6miUi/Vjg42\nADohxGjtyoXq7InATryBcf/+tXsPrjnehJUQLzGmxiSIfBiJMaAzhMtglkDDtjYKLYsE0cc//FRC\nJ+3x0f7efRA7XuhtHe7FFBKxqJTiqjMFCEkAlFw6fxEl0PtbGyhNjacNJDEfWaqvLVZD2H1393or\nHEAKduml508vnHzmwocClyFjarZc7w57co7dOtzo9PdUY3T95nsxllx/eGen07q5cdBv9WVOcm3r\n2rVrrVZDTgnbu1u7+/tVIQ/UMJ66bISemZ07NVeupal6gVyZlcspJDIbkXWIeOHQ9Dv6FLW0zBtv\n3fn291+99OSlv/srn/uRzy4991zq1OmaER+awYBASBwnd1rtpy+dxmlQXqputPbv7m/nZssxDEFB\nZNqWG7irJxfrc8W5hZqUYkulQiGfVcceRcgzM/OZQiZXSuvmkOMJCA4zsqyOJ61mdzpUoyhhaLHf\ntfa3THci3X3nqLUxXiic/NBTH9bHWui5iRuCCB91jdiBNu9tihxZKPOpApqr4QlkJ7A3MSaszHtw\nsn6w0x03j9vbB+tH51cu/sJP/LIxtD3dJzHa0HTLVAMfrtcrw8kuwY+d6Hg42bv/4O5ffOFvaZSu\n58vf/sY3UQyUSqXx1HCMRKTyWaGCRXA1lxEI2ui5aa7CEuzhwUNJZq88dmm/sRdjyc7xDsGQcAKr\ng+mDqw8SL3jxqSeqZYXE0dBNbr13yxzp2sgIPT+fV+DIzcoijZKlXGVpcW3kGPd2d0pzczNz88ZE\n23u4PeoMUBTf6+yXZ4sA8U6s1p9+8txzTz3ymY+/qLCoqnV5heXT/PMfedF0dJIiGJrqtJuH24cn\n5k6szp5n4eL2ncGk7esjm8EZioytYEyLYH4xly3xuj8CWIjD8SNrs+UUR8Lhwf7OibVTrf7ES/AQ\nwlEY82zPNLxsujIZ6vl0gWfFtYU1lsiDiKzki8WCgKDTQhV68WMnrzxVC0m3ow3/z99855/8iz80\nLcnVoEsrq7De/bM//2KxWEwizLYiz415VkiSBAFJ6HihH0URGI7VqWqdPX+ZFzOjqSalS/uNwX/5\n/T9td1ycyBNYytMhyEERJ9GGaq85QCBc4BVekIIQwCgJJThHC5KYtm3f0i0ogVAEyWdzDEZFbqhP\nVc+2Qs8Fkc/SpO/ZFMIPe5P9/UOMwBIU6KYaQSCEEj6TOuo2b9y/pdl6GMTTqdFt93AULsiKIvCT\nyUAzNNM0U3IKJUmUZTAIhgGCUySGJ3HiZVPpwA7QKPE12JyaGZn3bd01dZpACJSwDODa/sbGnhcm\nKMMlMIESlOeHgR9xtCDSsjE1SBgtpLJIDBezGQzBW50Gy5KVcoEiUBgCtulwjEgipBMhrdF47fzq\nT/3CT2wePhxZzeVz5fm1WVlEMxLD44RMKiUpTyCw69lBmOCw6FrAd5M4TFzbjf2EY2UMZkQ2R1OS\nE8EYRfd7Y4VTID+WWN53p2mF52jctQ07MJk0m61l26OWG6OcmHm4vpXEZDG7QGJpUwugOIERyfei\n9fv3QttdXVglMYoVMj7gj44GSYg1joeCVEGw/Po9k8SWf/9Pvp5AMIphfuBDEIKhVBJiUYxGEAIn\naAIlqjfdPjhyPSQB8PmLF3R7CqfhkEoYQTixeI6IeSyktP4ocWwkFjPKHEPlGkdTHJUoTIRizHGC\nsWUAApMyKRgl9w/aYYJgOJj2ttfOMacvFXJF4cKZE5Ch4WF0++7BTj9cWrwkCblGc3B0NNDUKJuu\n4bCMeFLzyPFMXOaLly88xeFp14xIFINiRxIoKLQZIpZkFqMwsZAVc2nDNfcPNl759jcIBBjTUX9w\ntLe9IYisZmsMy6uqHqPwyJw+3Fsv5vJxEPq+P2313nvzVUHmeuP2QfuBZ4+zvII6ASvwnheEHlic\nWUkxsjNQ6dCvy9ylU8ur89lpfzcJdIKIRqOj3f37QejbGLx6+XztxNLQNfliPlWuUnJWKdUP2oaT\n8JX5S7otIONJPBjrZjiFEPTW9f13Xt38D//8D/7zf/qPN24/2NzeOb362A9+5tkEMfePO83D5i/8\n8Gd/8qc+1+y2bty9ffX990+ePlWZm3NB4MResZ72Yv3Gg6uvvPY1McWIEjMcDdTxxBu7g9YgjoBh\nWx4IpHwqW817iafbVrun3r/XoekCxwrqdCDQdORCg8a4sbc3HbWvvf9ObzBRlDQUJwQEqe1pOEbY\nqOiPkHvX7kzGvfnFWZzlsks5TCI6416nP2gft1ia/PCLzz/z7JVcViAJ+Ohop1hMI2gMIxFBAVXr\nl4tyRmE7jUbiJp7up7hMXs4TMI64/vrtu2tzi+bY9EwntN3O8X7k6gSGpmReFngSpfudqTGNSrlZ\nlpJM3SII4vTZU1NtpFsjigRpnkkMm8LosTolWeTkpdVUJQ0x2HCq2o73Kz/7j/OZ7EsvPo1B0Gp9\nwTdtHMGTCH+4uWcHiR9D9erMmYWVNE6hvieypJLKtzv94WRy2DieaKrl2JKSyuSKbuLTIj21xhQD\nVytpOLE5Gt5Yv1sq5A/2Gjeu3Rr22nFkWMYom+Vcr5nKMZUFKVMh51fT5x9ZsD21UqlQGDseD4PA\nQ2HMttwwSDwvBAkUuL4fBBhBoSjp2BGOsCwq7d3da2+3ESyEgL24WJ6bK5w+vSRJwoOHG72hWsqu\nFbIrslBRNQ8kiGvZnmpcWF5FE0jtT0IfkCjP0IpuuBCKRTCwJyoSQSRGkgSnac7uQdNLELlQsQP3\noNnqTfR0rjqduLbhIxGU5YWakicDNNQ9a2pBENrq9Hk5hTMcDGBLdxAI41kBATgEQbl0hsRwjkmh\nCGUanjrUkBAIJOuqFodSMlGObQSJIVniSBLQDBlGYKI6R/3J1HMokdEd07BMDCUc1zDMUVmRUzxr\nGWouq4Suw5KUxPGh79O4jMQwDcNEDBVkBfLs0LNhgJ47vYYjIY6CH/jIR156/oVKqQhATBBYEiO9\n3ojlFN2y28O+7XswhkEw5jmua3uRG8VOSKF4OZdlSToJExynfD82TZNlKH06QSGYI9nYi+LApzB0\nOhkeHu0eHx//1u/82x/7iY873uiFxy48df40FyNpRExTaYUT4jgWRDmvFDvHLRJFjOlA5HCaRkkC\noSjCt6GpaqTzCkREGBHiaETAMZHE1sTkENYzo/HQ1A1XcxxAoQiHtVuNcjkPY6GSYfzAQkBYzUqh\nPvRsi+dhkvFb/eaJ1fOmE4cRGIzGphc0mw3X1BIQxBDo9lSBT4eRZWo+BCE4QQM4iRIfwSAYSpIY\nIAgUhahEyydnL472kn//j/5XYBSK5bM7e4dKtjA1/e2tI5aQTyycDCCYSMusEOpWK4FMmkFYjoyi\nCMdJx/R4miMpnCAw1/QEqWiE0J2tB0qOMs3JTKmcT6cGw97mwdZeZ7vd31Cnu2unFwBq0kKkmf3d\no4cMBwg08GxDSecsL9zZP/ju997wApikpEarb5h2OFYR20FAMFIHIYEEKBIlkK1r5Wy6nE2neU5h\naQqCFuvVaj5r62pj3BcZbnBwxNNUgiXtfpNEIYXjaDLZ7jW/9873VmfylqG3uk0EjhstNccWLq6d\nhbz42Sc/PJ3YK2tLgsgWsiVaIIZaW3OGBIPalmka6qWzZ5++/DhKQd9/61sY4zphxw1b69vvTfVj\nBHYde6SIlG8YaAghilzCMGk80BmKvHj+4qd/+uXHHj9NCqls9tz+Xe9LX/tzLgPl56Sxbi8u5mIy\nGekdFA9Q1K9X8qHvj0cDEkaxBNq/tcXAvEApFM48vPvAcwGEUpgghjCYDsZ3P7g77E49PWkcdw3b\nevzRRxiQpIl0NV3TR24qlVpYWrJsYzLupGTypWevCCm03d/RRx1HNU/NL9bmCiQFB3DUH2s+yuCE\nEjsQlRG0YDidmNrEkBlRwDAy8UUKHQ273X4PgpLbG9dvbtwQWEZhmEpemqmmVxfKO7dvQiEkiwV9\nGNRySxkpw9Lx04+trq6mzpxeOH360mFjhJGCH/sUi8CoF4IRCiP6INBGXiola1b7xr13BInneGZn\ne//4qKdkc4V6HuKCVInBOICJYGwPQzLuDVuixLkRPA6h/an25vrVxbMrmmdGdHJvbzMKoZW5FV3T\numo/QsODxt67195+7OknTl84M1VVmqZpkoFjlEK4rY3jieF99ZXXbt/bGA7GVETaA3t4PLXshEzl\njRh/sN5kYUWgxUBzzq6e0k1NSomf+9wPLy3PuyHY298BdoyGoeuPVWsYBYltgoOm+tZrd9EwjcPp\ncqZGQrHnagAGLMLhMA5BEMXROId6sYtikMCJ/e7IGNu5bKE17Nw/2Lm2uXPYsyyTnbaR1u7EHLgi\nyaCB61vTfDHX1bT9kQawpD1qsyIFkUiCILrpgxBBI5wUuDAOQOhzLJouCj2toXr9CDIgNJYUlqPh\nYefo5NL84xcvsjSOoLEgc6fPrimyYJkGikIR8CZGN4FshAv5FD3UOh5sxWjA4Lg9mTIUlwRht9G3\nzYSgFRhjggQAFIlh1PX8OIJFIcXgrEAIGaVAM4IfQ45rBg5Ii9XQTTqdDozEURR6njNxtASLypUs\nBEckhXb6DZYjaALCUB+EHooiSk6hOQKFkUK2tLd/uL27VapUJ4b23gfvbO49xAg8DpF+d6RIhUK+\nDKNIKpsiGTyBAQRBBIJCCUxi8LDdiUOIZUWUxMI4RDE4myn+3/Sg1WrgBDoadhkaz6QVGgqxCD27\nesYadz734x+7cOLMoNcvFBUml/Ngb6L1nDjAGUGWS8bQNsd2+7DPk4rEKNrEQlCSZngAYSTJ2rap\n2+N0lgZACx0tdm04TqAEMDhbLFZnKgv10hIVi+2d0faDfYpkHMfqjjtiWgojT+HJzt6WgGHLs/MI\n5Dh6OFtdMPTh+v4HMBnbfsCn6Gb3aL+5OdLbtj0Ow0kqj+TLFBo540kPBjEIfQzGcZSEIAhFUBwC\nEAhRDIYh+Jkr51++8qR3AP27n/vPtCEUMqnDxubE6o61Xhj0W733qwt4wjjHxw9cu4+jEYVCk/6Y\nJjiWETGSYkUBRKhn+81JI4nAxq2rvVEbAMBzymzt/OnqRyIttb/RoSmkVpd/6LMvMZy107018Bq5\nGhOFvXZ7HyXIsTrWjSFBQ1pg4ilOQ72d0dGdnd2DlmU6wPbBsK/fvXZ3cDDo7/c3bm5ymDxtOY/U\nT+fFFBpEeSG1urRGxSgXwiuloshQOEkQGJ4hxWhsVfLVo2F/Y2PjqUfOTtqHHEs5murpdjadrhXT\nve5+kgRBYrd7nVy+WinPMnwaZQiAk5odj7UwRnAXxHvHbR+GbOAlIQa8pLffJBwQTYL1G7s4xFeK\ncxmxUJZn5vPLJ2pnkdCFKBJN5eB792+Y7mhjY4uhseW5JZrLIFjty391s7UHjY799965O9JsWiJM\n3ZqdWcQx5vTaed+ImlttW/UFVoHQBA3iE5X5UXNgB6FUSNuBkc2zQgoynN6Tz1yuVqv376/nMlld\n65bKTLkKg2SYk9GZAlMrYHsP3z/Y2pbpojHsVWuFbLHg2L42md549/scApZLtUJOoSkWpmnLd2U5\nw3DZyII5jIUcq5oTn33m4sJyvVirOF68vrGlqhPAk2biLa7OfnD7vevX3hs0hymmolD1U2eearfb\np1eWA0+17ebW9p1XvvOmbQV3Hm52h6NvffebO7vbBOY//dj5al5SaISnuCiJbQDUKDJhNF0uUwyk\na/uVSuETn3w5ANpguh0T40wZJ6V4fq00tseFWgahIhyPbXUEe36aloAV52tFjMJfe+0NxwISny2X\ni4NRc6oOThTruOt7ht7rtXvTTkvtbbb3J55hO3omp8zMVFmO4hh6ZXVBTgmsyBZrlfMXz3zko88T\nVNTvHWZTQl5Jp/msagxXTi8Mp60Hm7cT4N1/cMs11bRM8TTdONyr5bN5PmWMVDmlkDwL4ajqRVNL\nyxVFiktoCqpW8zAU4SSSQLBh6RHikzzqA9uJnQhJcJaOIKjdHYxHhqUHKT6XU0qCkOZSWQR4pjZK\nQpfEYZohIQTmUik2lYkAgmO0wHIkBixnWKxzKOWadhcjE5JFEiQYTAcYSVi2Px3pgReGYZgkQRQ7\nljdWzV6ukglAGMDwYX903B8hNMMoEsZQci4zMoyuplpukspWogQNEgjCcIxA5xdmwsCe6h7Npe4/\n3N3ebUw0dzDWXS+OI7hez5MUTJKkaQW2kyARRgI8J2QSAwqmvjnSYD+JLVdheT8wF5dLLIMSOCQK\nrMCxMAxnUukkSbzAJzBazmQZmldoPjS8Sq3uh4EsiJaqN49bKIysri6TJGG5FoSAXCHrB05tvsam\nuAiLi7UCAgVwaGcEtsjLcAirTggzvAfi4WhgmibF8ADyaAqTWBFPiNXZEzyjTKYaydBoFGUV4dTq\niXOPPCpllaubbx5NDyzgd82mapupXL4/OKZQOE/mCnTZHBtEEmdEkcao06tnMIBNxxMUhVEKssKx\n6/o4qpBoYTgOGTEnZ4sAJdO5IkXTg+lwqg5hOE5LIhTFg06fIgXb9AReKlTKYlrCGSJEEIJh6rXF\no73jb37lq0c72zsP7o96re+98Y3yrEKyRq//sNNe1yfN0NEgkMAYGcD0N159N4RRGCcTOI5BCMFR\nGLsQFKMIBMNxBAdsFjtz+RQAUOKCf/5r/yya4rPpxbOzpzmYoiKiLs3FYyYeCCy9PDdzRZYrpmXR\nLOT6Whh4vh14OupYbn/UcdyJKBOZXIln2EKx+r3XX3u4eW/sDo5bh7XqzMri6VML5+ZLq/4Ikd15\n7SHcujfOC4sMkApKWuBIwx7PzlVZkvBMo9868OwpTsD3Nx9OpsbOxlFGyM+XF5EoKqZky1S3dra9\n2PPhGGVZWk73hmq7P+zqKpbmeDwlsVlz5FSFChszWbFQSJcydOri408ZfnTq/CNjzRAkhZdEx3eH\nWh9lgr3OxsbhrYPmppzlYAI2THM4maIQDiIYxIAkKZ4TDctudQZHx81QNyVS4eGc3geHW1NXR+9e\n27/xzt588ZSp+QxBVfIKNlT3JZ7O50qnFl7oN5uO59YWMzdu3Hvtm5vpJPeTn/3Uu+9u4yT/7//f\n30CSaarIN3ea771/VaJYMSHu37pz+hMvmpaq27rnRT/84scnzSHHMOlyVpSYjd2e7uusyL7w4ScB\nQG9dvSkQHEgiAYe0/u7ayaIiIPvb/U9+7AcdbzyzsJRA2a986WFoB1/62vcSJBZRUYbTCJe8+cZV\nZSZFSDgDAjUaVaoFW590xq0Kmz5dlE9eXr5z885EO4ISpjMaAASWWb7Vd2g+8lySxOGF2YXxSNdG\nwdb2hu/7K9W0PhnWUrmf+fEP90dD5PJqEqG2asnFGS6bYqadyycX03VKN632fte1A4ngE1glRYlK\niVPDknCuVC2ow8bm1gfVyjNzi5kY92aW66FrWKFVIGUcgStIRgIQCzECn9vYuxphYiqXHU2N3rif\nLxXNiW/q9oVTi0etQ1PX+vqYz8pW6HAye39v49SZtc3mvuM4QKKb+nCkTgEGxb5bSWUWSxV1OIQz\nTGPcMW3Dts1ep/vIwhqPUAcHB4bvX7lybivaQ2D85KkLuwfHrfFgMpmszJ/5xc/91IM77wS6d+7k\neYyRjg6Gw/EAE9XqXL1Syl+78a6knDy9XH39zZskI+IkznEcgoWaPhEExrbNTC7T624rqawX+hQv\naLoa+C4EEFagbHfqJTadIjAGWlpZPWw2wigxVMMx7DhmHdfiIQdjbYm1H3/qYhAgr3znLQhEYRgR\naQENcd00SpXyeDiwdBsFaFoUSQRO8fz21kPbNAic0SeOmCvYQSQJomv39ZGaoAnO8ook+4nX1sdD\n00BxJAkSw3JV2/ESAACQZPmTn/7M0fHO7uFxIZdmKHxhYZFmMIbnbDty3AiOIdvTBYmngK6PVVkS\nPd1UOAaP8MQFHMmiJDK3VLVcp9nrVKoz+WKZplkIgnAYimKXIOkYIMbE5AR5a+sAw9knHjs7nXQQ\nCjI9zfdDCIEd0+VZPpPOWZZFMORgNNBNTZZlXmBJFMEwRLVMimLqtTnPj3vDrufrnMCzvCTiDEPx\nbIprdbpbh3swBlXn8kNrRPA8y9EdszGeuprtSjI/mQ5tR0cxRECpyXiKwRwU4Fk5e9e5H9MQh+Mk\njB7s7KumkS/lcRrXQ92JfSQG5XJ51Bv7DihV5wlOaB4digwXeRDDUzgNoXjiBVFoBgycOjjoTCr2\nE489OjUGpmfZvs2JQhLEoQsSl1T4QhQF1VqRE4l2rxuEGomFC3OVjevbaaJkj12pWjYmkZQVMEL8\n8tfee+OdO7/72/+mUpRxFIIgACOI43kcQ0Uh+e/+4x84QcczPBRJTVpjKpX7yhffePHlp2SJD4yM\nBaWPN6frWz3bxYzo5szc4Uc//UImY5quDqNgqo0K+VpeqZjG5HDQyBUzxsSIEwSnHF/wrjx9udc6\nHE87BEFpRg94pwqZitYxlrLPezBIzQqYEK4fr8eB4TsawJxHL1yBw7gs50b7kxxdzEjZYdz/7A8+\nef/2e7O10my5mj4lW7Z+dLAX+3C1kjUsm86lYxiYmm1E0ebD7Uw+M9w9mqsv246nlCu67dQrs3RK\niXyQ4VJtc2zqRjlXajaOAs/M5hQvsikUVwejOI7Pn1hu97r95nZopzgCIUQa2G5ZSbss54VeEoUK\nSwHXBA5tukfVeUbzjkkJqxTqj75wqdNrx8Bv21tOPB2PGiQZIxCRMkywuXHoeI1yTciV+YP9fi67\n+uzHzy08KaROwRaCSJlUJuNCoRV06aceffnMpUc/6DyYZsdP/PSjoRwUKnXgMKpqv/PutQROlJwk\nCZQ9ncq8ONF0KIThONLNcXGmlNB4em55FNN/9do1S2NpOkUwqB4PsnNSzzl68mPLfL2PcgDBBbUT\n4DEWhGaAJIyU6o31RVlg4CjEiVZjrA86cso7ea4a8NTXvnz7aA852oF3t+3JJEBwwgh8O4QmYwNH\n2GFvKssyhsNTU+cUqTI/u9EbDM3g/Xeuf+iJJ8+tnmRFRq6IcxdP/OzHf2BeEqU4KTJsXc6enV9L\nU0qOywcJaTiRods4AEQCeYY37NsMP0MS3Pe/99bBXlsScgiMIwiWSqXiJMgJomrqOoU7pcKb7WPl\n1GKmnkOwkLIjszUqcBLiB2fOnryxtXH7YM9A4FQ1C0jMdD04wVsHfVcNnn3sOQoisghHBygN4dPR\nlKSZ4lx9HNutwLh7dysKAYagjmW89KFnK5WyNtUz6YJAS9ffuxFH8Esvfmw6thvNAQzjpUqNILxb\n917nFBinAKdQY6c7sdu62cpQ82aH7O6A2Mu9+sr7PEedXltIID8KQseyQz9yDZcjxdZh+/zJMyiA\nkATgGJWgNETyCE6Hvt89PvQMtZBTHr3yyNzCTL/fs107QeGpa5lQZJEjWkRDM6awFM3nd7tNIx6V\n6jQIEgKmoIRGUTpBYNPRAQxpugXjxFjTrSBgUxJMExBL8rlswtKaZ49M3YejAI4QEnEjL0ai9rDb\nV3XD9iVW8seWCKiCnG022oZpp2tZBwlurN8d2HrCMw6J2gQ8cs3+RKcFWcnk5pZWgxgejMc4zQQA\nwUhczkoogQ5Gajk/F5hI6KGunZRnzk4N9OF2+6AxwGkmiG2cDpUCHcaBa1pQAkIEoWVZkWQSxY/b\nx6liOkGAFwcIiWIkQZJkHEYsw1iuNej1RUYQKdE3fEO1HS8xwwjjSZJCSSTJpyQURjhBSCtpOIwp\njhczKT4r56rFQi6P+yim4kWolEEk3Ibb+63Zet2OHD32Vx69RGYL3jgZN9TRQNVM48at90FkMzgc\n+m43CPt+uN3uegFIUTLr4vDARfu+ayKxl1BQHDpG5Pn6xOJJCY8RQx3GoQ/HWBISUEDqYxMKIgoG\nH9y+v310pJlWo9EypoY+0PJ8LlRD2LVXl2YvP3YOY0jNdSmaL2QL+Uz63MXZTJGaml2KQ11fo2kQ\nBppl9yNketR68Hu//1sokgAAoghCYJKkxCQm//CP/ujwaGs6jnd32wRnYbjf2Q3AbvG9/938m9+8\nod1mW1fDwY3QfBjsvbpz/Br2yh/d+/e//P9hLqhmJBL1RIbybedovC9mZYwmYhcYxrA/bg0Gg6nn\nTVQDwlBeZDqtTmNneHRXjwYZxlhUQC1D1oCa6j5knGZ+JveYwFd8H/Yi/eH6ZqM1xinpyWefi5Ow\nXKpVC4tP/MAPX3jqUybOv7u5f6fZ4mfqS49fEubLqVLVR2DD0tNlWU/MBIc4QaRwPiPQWOKHoT0y\nhk2tPfG0h0ebY1eNbGO5XicBkAmOTEhzaBMJZas+CREKLxMocmJhTmHJwNAZDAsc97DdwhhqMBlP\ndG1q6CzPACgybNNyAC8rbuKqjlGuzylSfnF5CUD+1be/G/sBErICPo9IFTZIAIh4CskHDtdpOUou\nh3H22TOl05dmA1hDGBAmuutOsvniK6++9t3vvnX2xGOfevJTm9/bvfGl96zjoW/0u4P1J557JlXI\n3X5wzwsDThSax43paMpRbEygE3dqeAbDsstLJ669da9/FNBJ+dXvX/di4tTFx/7rH/71V7927+3X\n+3/w+e9iYZEMcWAlbEIIInkw2QkwC6PwG+/fzeVOgBjBsYAhoZPLayJf/vLfvNrvWX4S2q5ZyKfT\nIusbYxQOWIaM4ZiimMlEI3BuMBgDGPFC3/EcyzOzhcXS/Mr+NPr0L/2Ld/eP9sf69lFvb39Ds3bq\ni+mf/+VfrFRW3n774YP7x4YdJxgmZ+RMJkPhBOR7HB5zeIJAyfFxKwwQgc/wnJKE0HSsaxMndmA0\nYlvtPoQgu7u70/EwTjzXn3THexFkZnMiTTMcKyzNzdq67XsgpRRAGJxaXEgMB6jBnDKbI4vWOCRh\nttMY7B30tnYbIUQUivX1+5vX3rnqaE6v3WNo3FBtbeANmtbVt+91OxNAgJHTf+L5xy8+dh6noL39\nDYIA9WoOhfyVhXK9lqd5DOeo7ePO1mE3SjgCS2XSZQxyA083XY1g6HS+sL2zF0GAYniSJf0wQGEK\ngdjdjYZjRhhMnjl10k2mEOL4vi4w5LjfozCiXqqtLK2mCjnLdda3dya6FiUxhACUxBiRFkjStg3d\nnZ45eyLNMZif7GweBYB0VBsHrDEKCZy3HDsGYQyFPM87boigrKr6tovGCGt6ieH5GM2jCYEj1Hhg\neHYSWYDHBRIwJEIHBtBHbmjFwI4nnV6v0fAtA4ciKgEpmnLGk9Dy4RAlMdbS/X53pNpge69ZnVlo\nddoxiEiRW9/fJSQpJNCdxnFvMgE42R9pg7G5tLhmqc7e7oEopU3DZynZM4O0kLNVt33UpZm0yOYU\nSuFgUsBwmgAkHQgyNPXGuIg6gXHU2Ccw6MK50zxHMQSaykq9YTsBUTabhRNYFlIYQPEEIwgMxSIY\n9bTpYLY2SyJsc69JApCCaTHBgGarzXZeEEppiSKidJoMEQ9CCQChY/2YYEfd4QfjwWYxzZXm05hE\n5WYLldU8nyaBj56fu4KqhGRRi2x5QapAhh95EUYxmhuijJRiM3iIFaV8qDnvfe/txAb22BseaeXU\nPPCZ2EUzYiH2oyQIqqVMKsPEXtA+aoWWD9wYChAKph/c2pQZxTCMo6OD48ZhkiT6VMcxEsGxVq8J\nE+FP/t0f1v3prY1b5ZkKhqCxY7uTARy6UBBsbWyiEIJCMIZBcewiSLJ3fPzee+8RKOTZmiRyo8nY\nD22EcFXj6PjoIUgcVRseHO5u76w7tm6bYygYczh5uK7+1998hYbP5XOXC7NLXE7YXL+T+OHJ+gKs\ngmDkpWlxvjSPgwSFmcTD1L4fW9SJ+sVPPPdDwEB5mOcj1rZUzegdbT7YuHbrK194lYwWVqovjWy/\nuFzja3TpbA5VUDrPs1kxwqP2wd69u++CyPZdGwVE6KLAxfoHA4TCdF3lEhiyHEWWcuU8QmFLa8uq\n1icib+/OLXs6RJPQmYwVmkZhCIkhDMCe502nGohgQ/d4TuY48ebde4wk9CYTgOMUI7W64+PORLNi\nN4AerO9hBNsfaDBEYCg9O7MEEqSeXxgdj0tKaTZX2bpxv717vHtzG5omxtQvZ+ZlvtRtakgYTkGc\n8AzL4IXWsf6dV+7s724RmKkbk1SKTAK/e6w1d7RLq09llLk339391b//h//5N7/Y3rQX02sfeeKj\nxUyFl+SPfeYTqj1K5ZVyrbq/d4wgtJIvKimpIEscChDfUSjcmg4yAnFmbabV3IqCier17EDXdf3y\n+ctZoaw1w1vf3dH3YzKYV4hiGmUVNtMfqGurKySBBhF844MPPvzI0+MHW+V0cvqxpa3eaGhSrsfR\nuOQa7uH2pjUeFuUs4sFwAEk0bXs2SmJBkvgRWijWU5IS2O641QdQ5IZJKl9bXL24sz1oN4aB51Rr\npZVzK7pv/PH/+ROMogr5ys1rt5576pkTiysMisBREjiR70UojMAgxKEAiZxyuZQvpJYWywC2HGsS\nOLY+suGAmTp+AEEx6pvuOJuhz5yeMbVurZjCEFcSmVwmd/LEmVdfe6PZ79ESHWP21Q/eUdLipSuX\ncJpp9Pt/9aUvcbKYLRay2eKpsxc1y213BobuDbtTY2IWMuV+2wgd4JkeCmBd1QzH1h1/bAd//co3\nq8vLME4NBqPj/d1KRlqsZPtH27IMs2zkxTZEYIOh2tztHW21JUGWU9Kpy0sIb1N8XCjnW4NBCEOa\nqQWJizOY7bsIRgGU5CTlqNXgZdaNLIqCeRQty+Lj589QOMTLzFQfNob9zaMDgGMoSWAYDscxlkTA\ndxVZ5hD0yupqoqmeZYdhjMdYRcjxDB66FoZAMIBwDHVci6Xp1dXV0LVwFNAkkcQhDCLXMQPfwdEE\nwAknCG4YRDFM0RyOsRhGgRiRWIbhSTPx0rMlvlTo23YIYaOBdbDf8ux4dfEkRwosI+tqsPFwf3u7\nqU9N1w0cx5lqGsWzjuurpmM5wVhzhyM7nS6XqnM9TbVCDwCwMr8IuYjW1UmIGbT6FEwgYQj8AAqi\n0aAHwYlIsymY3Hj/piLL2XwujgIIjj3P8TwvDqMkio8O9iE4brUPw8gRZH5ojCEajjDgOFZkOqgb\npGmxUqmIebmnjYIg1LqqRAqRHeEcohrjVqtTyc9fOPPEI488izLK/mCSxHyltCzy+fHQcUzCMeit\n9VHr2MaQ6sLCY6bLbe3qbsxuNvYwLpyppafNblGQsiyf5lmKxHACAXGoiCyLBDQCISGcllPLS/Ot\n411F4FJyetRXSYwCcbK7/XDQaS7NLcAQvrpylkpgtT0oK4VRe2Kpbi5bFuXUcbuzsHoKQQkYIBLF\nFpQcgaCFcurcEydjfCiVwr99449XH8kft+879vB498Gkd+DqUxQBtXIVgqA4QqEYAwkOIOTb331T\nU/3IRSM38RzH85x0Ok0SNARBPC8ahqbp4/G4f3R8vH9wQDG0SJMMRCzkV6w2+tv/7E//9+++8j8/\n/+UHN/YfO/vM0daulNCYF0EJeuncxbQiG9MWgZh3b1yXsPRPfPxXf/2X/otELMNhzrM4FGIkoeA5\nwDUsAaWr0srbX925+o1tMTlFQulTZ5ZKdaEzbaTzhVwh73pGpVRwPRuCIMO20tm878WD/gjHSQSP\nUDhBDW+81eZgCo4SCId2m1ubjYP948aFcxfnawuQn4SaExsui+ILpYXYB+pIHw9Go+6AJygaxkgA\nHR8OIg+lMH7c15MIQmEkCDyGoeZqVcc04iCkMYKhWCSJx6N+7LthYKMwhvg4cBO11/rz//nHb37z\ntUsnn/rRT/6kOXGLmbI+NbCiUPSnrZlyXdfs+w92uk0r0EAwgkaebWkYFbCmAfzxxD6Cvv7lV07P\nLS0tP7G1+dBm1Dv9vXz+Bw7v7mTmivt3703tqZSwMAJXKpUkDmEYUCzlAVwoZ/yQmKo2ybO9SUvM\ncJV6xtYmp0+dyWdz1954e3lxZm027Y/1lBzzbLTbvK4I7Fq+hON4nMCOrgURkikVtrY2nn785Kc/\n+zjLYd/6zpeFyjLsxYPpcZZVRF6Kg8CyLIKlKJJxLSfDpQLahyAAojAGoWGrjjslCaRWLMdQuLl+\npOrTubkZNEHyKRY2rPV37pjGlKEFP/K/+Z2v/Mov/urdO+/pes807Xazs3rqTG902Gp2C4VcWpEj\nPyQQInC9tRNLXti/fG6V4OAb719LAhtBPJRkSAKjAi+XV86cPKPwqXGj5zu2CoKKSFmhXcjPlCrF\n3c6+pfdPLM5GFCby6etv3ZY5Y2+6p+Slq/euPfrUI+++f+voYC8G8HQygbxweX6x35uIiiQIwnGn\nuTBTR2OAl3BV0zmeZfG4fzT9kz/6aziALp698uDu7W6n+Wv/8BfefO/Nrb31dFbudyejkYfDfOI6\nLMyEsXfi4vzscu2dO98bdSY/8OIPbN2/vfrCc0pK3NneV0djSZDLpWrgGb1eu1a/MJ64BJCWymuG\nZlIQ7ujOaDhRbdsPwjgGqUwuQYFpWSzPESQWJpHjWDQgQBwWK1nDHEKxHzlhPq+89OLzm+K9V199\nd6qpIp7SdZUkGD4rqKNxviyjKAKgGAZJDAcwEbG8BCHxxJlSHO47LsVSY2ciiIyfOCHkkgiCswSJ\nk14YcmlFVUFn4ixW5n1D7R4PFxbnCkoOpvCxpsqsdGppLQ6ci6fO3r93D8dJAmcCO+QwBughAREp\nmStmy/v7+2JGNg11f39XYig2nfJdHYNiNEkoAkNgDILQIILTItbpH/E0MbO8LBeKU90mWS50x4PB\nUEpJGbbUa/dqqTmGZvYPtnOF3LDdx2AMRrGjVhsjcd9zQgSqzc4cHB/jLOWYAYkz2lRlGGamvnBw\nsOcY/OmVp616hGBkhFBTKHkwPNBstUb5ZmzxIuOM4/m5x3OW2+t0F2eWZVbhWJIm2cnUp/OFvjtB\n3SleKNbOU1S2EEBUtrSs2ZE9HHO4gFrQcDSenV9MYEQzjXIt50cel0GGrUE2n7f8IYojk7GTT1cd\nO8ZxMpVRCAzf2dpdnJufrS1bmhoDtDY/22r3RpNmuaokIMBQbOPB0eLqySSGAj+pLpfv39mS8snn\n/+A3Pv7Mz1858yFFFpqNEc5hlVp592B/rGppkQFJiCIIAoG9/QMIxkejcau9DzDXsqeVSg2DYJrk\nfNuN4mDY2wcwJIqiquqiKCM0NBwOrImNRtC91x9AOIxK+NVvHlx5pv8P/umPeEP9iRdPDeIpqsDb\n1zZxjIl18Is//itzuQvAECiUsZGkOFNCURSOMdTQOr2uC2vnnzjpByTJyAAtB30XRCxLIxyXO2zt\nDs3O3OxqWipYcHD63GUMQS9dON9s72Rzcks/Vu34QuXxmAxkkTM0y9XMWLdJWQyjyDKjpcU1dTx1\nwtjHoPzyfLvdbnbbF2YKNE0jGFysljtH7cgLFVaRSOFU9YQ38pyhA0OhLHEZmsNJHEUjN44hEHI8\nE8QCgoEYhf3QUfL8uNeGMUSzVduyWAEv1cRCttYdHG40D0rVUnPSu/D8o4g3sSJHm6nmB+Od8bRx\n8rR8+cwVPsmo68PlVFEi6OnERDD+5q3Nw6PBV7/1zsH9qyfnS5JMB2gE8XSpVuUJaq0081Of/PHQ\nD9+/c31lbZaAgp3N+9lcrrqwoHYnsAdCM4IibP+gc+PWFkzmSzOXOvu+M0EUTrJG7elof+WE8shT\ntSc/Ov+jf7fyd//h2Y/86NyRfRdTKF3107KkGQfPPHlpMux86qMft7ywUC3gZFipKaVc1venjm8o\nuUxCwnowOXFhPoGj8UQXyVTkwRTJBRHo9AaCwhXLhSAI7CBZOjGflTO4hyaacXB/N/LIBCXv39zo\nNQayIC/MzXzr21/52CeeQzBnMNmvLqRNr72wnFEUhKUxyzJMU/diO53DWQ44rv7Oe29v7WzPzy3m\nCgXXd0gUQWIQeNGgrV1/797//p9/USxWz52/mDjw97/zShg5DzfvZEvZdFm0EntkGKHr3L930wq0\nVFVcu7JMpBA3NmMktIzpYNjhBfbnfuHn5+fny6Wq74f7+0e7e4eCIHiePRn3OJ6EYBACEEMkDujI\ngY732qbmztaqOAX9tz/6r3JeWqjWBZzJSxk4DLDAExBIpBJG8Dyk3x3vyyK9VKpxMVxOCQqHygxC\nQQDybDT2I9/gaMT3jP6g5TjGSr3ialNbnbSbh51eByawOIJkPgPjRAQBL4wQDAdxgoRJYntUDDd6\nQz8KbUujWCwEPsYiIeRMtZZud89dnv/cz3zi2ecvcTS1OLtMoTSBwMv1tWq2zqN8MVXMcikWZuyx\n446D2XR5ejxALRh10TyTlYBYoHMzcp3BCM+wQtNSWI6IEzSBluaXUBRHaKY0P6vks0JKDpIwW8pF\nUIhSWKCNRYYIXIemGd+L4BDlEU6AaQokwPU2bt1VBJ7neUZgWV6wdSfw48Zxx/VDVhIwGtPdqeHr\njEK5fpBEyYPt7e/cutryzON+r9frSYrsTxEiEGgog/hc83AyGljvXr1reFE+UxUoBQQoEuEoQple\nAHH0oTaaXTlRyFfni8v1bI2l2HylRIuirBT7g8lO+zAmYD1yDMgZTjTPgzCER1JwyNhjqwdhqOf5\nCXBLRamSV+6tv/vute+4Qa86S7cGm/ujPiyWcWV+5bEXGxr84id/bvXsS2Lm5MSgDw/00KYpqLKz\n3tndO4ZxrDscUDx90NmGxcCNXN3WdcuWJaVSqVq6MVX7Y61XqFUKlaqsZCGAVsp1x3RG/V4SBxiI\nJZEVZIHm6FQ2g0CwMZ1Ymj4Ym6KkvP/BWxgeZbM0DKBSuZYtVKIEgTHSdPw/+OP/ASGE58MoSl99\n7/67794GMNzuH3qRyTAUBDA4grRR/+7tW9pEI2Ayo+TiABr0xizLy6LQbatxAAM3ZgFZZIsVdibl\npyVbeut/33rjLz/45OWfP1E7y5BcZMGD5kSMC2fmPjaXe4oKSjJTjX0cJ9kAhiKCUBGrMx4LYuqF\nlz/Npsu5cu7C+TPz1VM8XMC9NKRLWzda67e2aZK8fvO992++985bbzI4x8JCd7cfaVFBLKW40mzl\nLAIRCYqrgVNZqI8nA8wLa5xSQMUyl07JKQgncEm4ubF+9d7NTD7NQuB4emTF9pknLjz1kecvPnHF\n8hPLDQ0jIJEkss2ZQpHFSZli06zIERTwQyKEUpSAebCvuTTCbt1fj/0o9iPLCC0nCIIEQwnbdh99\n9FEEj27cf+v5p14MrKRWmXNtDyunspk0E8UTiDLrS/yzF1+sCmkrYSy5C5kEI0A/+SMf4uj0n/y3\nv3H06NSM+OyTT7eODsNh95/82s8TWdhB4W6vsTA7QxAgJSIvPnuJZHACJwsIYhtqX5u2R50Klr1w\n6myvO+l1h7HvYa5XzCk/9JMfFmiYiI4Pmnpt9cor37n57jtNimw9/nTllz77YYlI9rWtL//tZlHM\n//1f/ntvHH2Pz8Vqe9x92OWY1NRrZ7G0r4dSJkVBaMCpfjLIFmXHJQ8PDxMkhDHINFGB4TAAx2ZC\nInwYYB1VDeMIwKjEC489cykwvb31fWOkBgm9v7X3zDOrMzPVpfkaQRCf//zvPXblSiqVm4wNMSVZ\nkbHXfHj68lziMZ4RHTTXSQak87LhGuWZiuaqe/sNU3ZO1BZiw0ESFAlhkeDb/c7B9uFHPvSyNlLf\nWb+KAuyZ5z/aGWgYIGEKi0IoLWXmcrXecAA5KJcQ/fW9ckb0rIkssqNeP50t5sF07gyPMoMrTy5V\ni5UAshofNErFehLCmhbI2XIUJbZp+Oq0VJvJCHxeKe/cvGdMui9/4omVtU/8x//+nz+4+35NKfEw\nLuUyWMw7XV/r2y4VLi3XzURtTzdml7JXv3b/kdNnf/QzL/z51/4iFmp92y7X5p++8HgpJY7Hja9+\n429wL/PklSe9MLp18z6EwJodm2FcKJU910x8nwzR2PQiEKIUAqFoACcRBCEIwXOAElPzq0XTHp45\nuzAwB6zAOr56cjELYVJ/okIIPrPAP//84s7GvmvF9bn6dDQVOBmBMcc1+oMWBuyUwoqsBOWQPF8o\nyFUoRAVOwhEUQZCm3gxCOwhtTqB1Ywrs9cAacyIxJ3CSwhBUvN/s+gg56auCVBSFNJ7yQADLOOu4\nnh8kzniCocDGEFoUzfE4n5GSQA19b7FceuGRR/EAefX6u2SEQSiOIKwLUc1+I0kg1AdKphgZJhzA\nvZHZCDtRYieIr0d2cQH3rF5gJSmGpmEmdClDRUZ9N1AQEEZoBFEoAll+imQt280pecdPKDK9sLJq\nOdNG8zCj5OrZhblK0BocHbY3bmy/pVvuY2tnq3Nzueyy4IlMWhlNRk3jiJPoW7evddvttcVT9fxK\nXpi5f3yzlBfjeDq1WxvXJ7/8kX+6N77f6fcn2uR4+LBWKWLMdGlR2DQBL9NpDt7vTPr9LptjC7kS\niWDTScggUttQU1IeiuPA9bubzUJKEgr0Uf8gp0jz9ZwfTwkOD7BQ9V2akHLlWcwLGntdisMpnGBh\n7nDnUMxKSAgburG0MOepgKdLpu6ajGYM/cFkE0NTh41jIVc+7I1DEFIs8979xr/6o2+4Pmlaqmsf\nkTgi0rmuG5dy+f/wz//N17/+1a997WuObTMsS9JMKostrC72hgMWRmMo8SEvQL0Egv3Iw1ASBWSh\nyP3uf/rLM+cuvfiR03U83WodwgNw8rlLjQdqkNHWZpdjmHGTMAhVACKe5Sw75DnEw2iEFDGe4kTR\nAO44OtItVWAJJbNcABZRAbLI3bq1f+niYkbmcUibTKdshhm33e++vRGGpiJqBy3swtkTlIiOhqqU\nUygYU32P4BW3Z+FUdnvvas52UzRnWcb6rVurJ+aOxrsoSWfR0mgwuXTqMR7mj/YbPC/6hGK29fOP\nXGwe9hwBxSkaJC4EJ829YxAS3gjOKgU5YouYUkAk3EZYIJK4EFkJhgWlvDBTKRzvHl889Uzgg299\n/Tsn1hYuXDyLrcxf3m9vaWOIwrNzMzxC4BHq7Lfv0ilsY/uBaho/9uOffbB+f/lC/d7NrblinUkl\nhx88ZFjs3RtvLJ2dcyA/TrBmS6dFZGg6ruNk8qVsPucZhht5k2m/XqpP1dFYtVFWkPNFMxgbrn7t\n4fUEsrNK6tSFZ88+Dh03dqpl9vKFZYnjzeHkn/37//Ebv/ELSxdPnRpMoaz2tW/9zc+/+HN7zcYh\nsrc/HubpvOjtLV85ubF/vH1jnSLFdFZUUmG+jC4sn73+wR7tUYIodgfdvFzy3DAOfEmSQBQHtu+7\ngT1x+5DaOTQgHES+QWXxE2dmr77/mjadwReFkTY6ON4oryzc3Lxdqxd+5Kc+/NUvfYMikB98+eWH\n9/e3j3ZTkvjr/+Sn948fyrLNi5yfODJD49S8PbJ8M6YBY9s9mEKTEGIY4VMf/0zzoH37xt16tUaK\njosPLVxjCD6M4RizoRjjSFRrjh3Nno51oVpptwYxgh62B5Z1+NLFywk8dZ3o7oMdxMF290bDgYng\nfEsblyplXdUhx8NwCScpEIFRdxw7Uc87PHVu+aWPf+Std1/7yitfqy/O94fddlevZ7MzlWpA671k\n33RHVx49W14u3V/fD/VAQpmLy/MCGrf3evXCmZ2+nUoLJJREiHPn/u7JleV/8ev/DsXhb337a0RK\ntH0HIymChCUagmCV4QnXiR3YIiIMQ1EswogQBIEnioLhODDnFYp5hI3QJJYlJoFFThAD1RkSAhJB\nU8eU+NSZhYtmGybcfK1U5Zy8yJYQFvdsF2GQtXQMw3ECYijGKJlkcAaKYpRGQBxFvkeQ8GmpRtEE\njiMoiuIk6Sw/Z3ma4+oGqlmeprpTjCGswLv54NZctdodtSu57O6gnQi0lcQHhw1SKZG0/OD+Zi4r\n4JAUuEzkJ6snz+IYbHsUFoHjni1nZ/faR0eNfiGWF+dXOu1937XZiOyOhrlSjQxpBw4tVwMgsQ2b\nQCk8oTiO04cGxeOhF86V55hEKIvLNIPlisKte+9FiRvDkSyKpqf2utpxY+f5Fz6STc0AlGkM+lvH\nO9mMyPAEwTDj455AsD21iRySSr54pA5FzOaE1Fr6UhDZOH43Qfy50yU96WdrXHQfbI27C8v507Mn\n8sz40H3PiexGuyem8NF0EwwPGZzn06mFtXO56uLh4WZEYGdXLh0cbxMBRjKMyMqd5nClsuJZfuIH\nMAYFaKijIIkTPbBnajMYRqgTLS0qvuNnBZlCacgyO+MuxMBGaMc4hXFQe/MoXz6VT/GZ9IIzJRjC\nZwhLIFONg2MCQzkmx8oKSnOSwm1sb3/j7VsXzl36B//on4ZeLPJw4DkAwgM/arVarqc/9uTlp158\n7qkXnvnQyx/+67/8m/fffx/yoel43MPx06dPf/3BnqJIQRCACA6jEAIYSEIIJ4OI51PE3/21v//a\n2b8olBbv3+v99Gf+NRrkP/8v//7/+B9/VEgJw8kogWNA4XGIDk1flIVme5enUsbUI3gERgyWYKvZ\ntXDCvfPe6w93bn/mZy6RTn5sOIuL84Y5avQOFCGLBMzddxpvf+vB/sNuYIdh6HMZJFWkfvQnPvrp\nT79EEH67sa12B4v1hTCJ72/d49MCQsIiwmR5qdNuQA4o82UfArs7R8dHLelJpT/pquogl5IpwTt5\n4jEXDuUq0dP3VhcemQxsAOj2cB9NkKWFbLFWyOSyh+3eREOXllbM3k3Pd6eGoRRTSm3poNf7yKd+\n8Lvf/E5y5/aVM6cvXXnC8l3s7Jmnp46txz0A4CiK7ty588TZJzk+50f++YUiFIWQC6bjsZApnnv8\nAkfyO+s7mdnCL/7iT5N48vob38VJMl+ofnDrHier5theqNVgP4FDYOsGyeEUgUg8NRg4pjWhKSky\n9CyL107NvvVOS+KDT3zyiVb3qFTLAkJpHnXnTskZRbly4Qf2B7tvffB+ZPsffeZFvaXZtr7Ap757\nsPHII6d6B43nXvxk5Ljfe+Pt4tJSfXbmvbfuw0hucW3GT/pH7YNCOSVJuGPHHNWD48Dx/TDwSMBK\nuXQAo6ETj4830+mSq4YogSii7Hqjva2tT37sw47lvvvOjbFuNQeD+myt3VOPju7fubXzqY/9QK4g\nJ0nYaTeW1tKiKBYqynBMCxKnpCRd148arWKhQgqhqnYYJSOlRTPwbNuLwviD928JOJOVlIKUysxV\ndE3XbdOL0dFQgwGdeMyDm0e9xlhKZ/NZiZOUrY1jIsuQJK5wmTjQp5qKExKNMxiJkwgt8SiO4JvD\nI86gkcBnYbjMKyzLT2z3le+//vLTL5EkfXx0bf+gWSgsbm01CETLZkq9Xq92rraxsXPQGpBwWF0s\n8xK3s7M/NHoSKdhqyPH8zMzKb37+vy1celS3J56qciS6vfNAG4w2tjYff/zJF55/khflN6/efOml\nT46GxlA1SByHIYznUq6t43hk23ZaFAkYJiAURSESiypF3rWg7kFTrddQHDAMI+VSnu83Gg0YIGk+\nW8pUZCyDxxwCmNqcxLAyCEDghQgEUzSNwlAcugkIExChGBJ5vuf5SRghKISiCIoBTZ+EBOeHuCBy\nIIhhD3CczPIKikGup1uO4QFn6lsH3fbpQowlcHdrwKwSMIGZltXqd9v97vz8PCN6V56el3K4Op1m\nFKbbaUXCtFKd2xhtmJrXNqcQjpISzcgURgJNH0kSNxyZjj+Vc+Lm7lZHc+VchiBoBiP90PWsEMGx\nvtY7uXyC42nTUbNVdPVMuZotwDB6Z+uBlKqXKrn3PniTEimMA26kiSl2e3sdP4l2BtdgFDm99hRD\n5iIoeP3bD2yXrM4Vpyq8u/3O8molJ1avXd9/9umXwxhuNI7SqaysUNeuvk+SuONApxbO3b1/yzGS\nE7Ul34a29vbOrV0hsNy9h+9gMB7YyeLyQr9h1Gfn/Ng7Hu4TMO7aDgJjEYBCGACSCCGET6UUCL1+\n/cbFxy5FBNg73nH6JhZiKZbv9vuT0ZCnGZmVjL4eE8C3PDeAEizyPNc0LRSghWxR4GQogTNirqe5\nhVwqjmPLstNKNfRjScmgNI3iCAYBWc58+7Xrr7x2y/WDnEAbhuF6AYbxKJI4ls3x9C//2i9GSRz4\n7ksvv/zSR14e9Qa3bt7BUfiJJx4jWXpp7qLrOzSluL5JEiAMAwgKUQylEhSglGlBH/vIT33961+S\npAvfe33ni//rd+IASZcqAQy5IHKdiKCYwE8mk1FG5jg6R5OM47kci7EUgOKQJNlHH127evfV//3F\nL3z6Rx43VDAYbSpV6o3vfnMyIdaWHvnKF7+/+f4RF0s8xuMokuCUN447hvcv/9Hvvfbt13/9X/4c\nTmMkQw6GzVo1rVlurZI7bhzUaxWREjiKIVEUQaWbH7w/szh/an5p+8ED05iunlqZTocMVOmpeqFe\n0A9BobhWzCwOju6n+eJMbnnU61w6cebuvVsSc/mt114r1CuaMyWiUOaEfDplTFyt4wYhvr95PFOr\nm2Ntfu10bzq+fucuNtDGlMgORp4gseNhlwQE8NHQQW7ffXDhIv74o5cH7S4eCRmhQhBOq9VSPauv\nj//bH//+P/rVn5NYimX4eqk4Hk4cQ6+Uy4uVWgzFIIhhBMFZWinlB8YgX83zNDNtjQoMn0+nGYY9\nWf+ho+P24f7+zuHWxg4o5GvDiWN7kdZu8CkGZ2IUBC88/ZzeDw/cwyQCM+cXTqsrj547kXn6ifWH\ne+VaSdlmd+49zM7MPf70WdvrjNTu2ulFBAebD7cYOtXtjku5hcHY8A1E4NOhH6rqlOaY8bBH8Hy7\n20pxKTTCJpqxtFQbtHrUDAyAW8jleZ6bnZlpdoaBAafkqmtaf/qXf/XxH3ghjNX55cwslWn3R3/1\n7T+TOUXyi8bxZLac80RbwBHNnMIwDBgZhejpuEsxeDorb97dvLByanl2NrCcyXHiJEFKKYwNBwVU\n6IWq4RTYnB6GsO9fuPBI8/gQw/FsNqO60zSbsn1zYWlld9gnMZArZnfu7kZBmK+l+y5Jw1Fttkom\n0KDdlZSskC4oYg4C+MF+0zbCtJwvFQqHW7vqsAf70Sc+dGU66RYFphOH7XaTI+sQnAwnPUniSRu5\nfe/hI2eeOO6Z+cqp+xvHgsCgkTNbKUahm6/WSJK9fu/ew/2dj738kQQl8xkehoLNvRCjpDACB5v7\neUXxPJxBeJLgYCSKERdBHYWGlhYLuXwqDhMKj46Ou5WZ5eHE1O1YEhfSVJ5IUgya5iCZwPAwch3L\nswzVjVwIglAIRiAEhSGaJqE4iUI/QWOMIBAEASQGEhiGYQTDMjmZQ7EoDlAYIWgi9KM4cDEEgwGs\nEIqCKihEQBjxxAxlXvINX9872I4wWxCkXjIoz67uwhsYFOUkHsHDw3YLweDjjmEZ5nCkZrPxUPen\nmgVwQDMEjRIYjPS7g+lkWMyns/nS1I9okq7OL0eH7U57ODdbNieuyOQszNSnk3K5yCqIZjbanZ2Z\nhbpuHo8EDsNZ07dFirJNf3XuhKZ2ugdNjPAVWnRNgMRoXi53WhMOTnME1e3q9VncsukXnn9qGX7h\nGze+GhLW+p0PTDfcvHdjZGoz8wtjbRQH4Ur9hK5Njw93i8/l04UXFSHNsWzFIxhOhsN0QSHxk8Th\n8X3T0jwTp1mOEqB33n1j5Vyllp/Zur/DSBSf5a3AonmGZiiYJq5dv5kuFUw3QCMkJxZsU+OzeX/i\npvk0iGPDmEosbweuoQU0yTMiO9B6Xmgt1+ciL5x2RwROsyxz1GxJ3EwQhnvtxmDorZwotRstK/Io\nCE58GNieIOfHjc5oMk2lUoatwUnsR2GCIEkUTVTtV3/l52AIDWOYpukoDmAYzZRyLxU/DMEQBEEA\nSn73d//Lpz/zmXKlCEBsOQNWwHGc9Hw/8InQT/LyvNrRX7r886yQRkgeI7lMIftr//zfFEryL//S\nz9MSv7e1X8mXBY4ydI8kJAhNMlmKE2iBV0I/MXWD4pV/8+v/4OHhjX/323/+//7G5/bb7zoh9o9/\n9jcPDo3PffZX9B6SZxaAbwPY8oGP0iRPsBTOzpMn3nnlHkH/yR/8yb89bm+hOB44MA143KfHXWv5\nRMqHEB/ynIkTTTvmRDu/dObrr39rpjYzOzsLwmA8VbkKPxp3ClK1tvLIXH3BGQ0S4CYxvjY/h8/O\nv/qV7zIspffVtZXFH/yxT6qutv3w6PzZ882HuzLGixDt+e5Im1aqOXkxx4jSratXLd/Evvzqnyys\nzumOYTugdzitp0qhoaV5fKVST3y4Xj37yJlPfOubv3Dl8dWVs4uf/73fjhL1safO1CvZW/ev4hTQ\n7ZFqK+curzUPjtZml+58cNMNw+JMRY/c4dSFacyjcQTHcJ5PEFPkUnNz8yRHP9zcGVkhM/YvXfno\ng/s3I4cQiVSazTuuRuMZVRsRsvSN199NYyKaJOu7OzoWYpz4R3/+pYtnzrWbnbSUyxerqp9s3r/7\nIz/6ScuXnGACY4nje2unT0yHVphPNEf1E5+iUYUj05n0rfU7HC8VcyIZIbHvmYEbhbHjmoLBlnKp\no6Oj+ZWF773+er1S/zs/9OOnV8OvfPUb48FUTqURHHnjjTvLS5XeZECmSIyiLj/xJBQkFMV4UGA6\nJo6jKIRmM5XjozYEeAKCeZL2EDdXUiAw7zqm71gXTp3fbx5zKKUbY9tybdOeK5VlUjBGmh8blgcZ\n1kDgiVxWkXghxuLDw8PVcxdymcz9vQMaYGMwdUBEiGTEwU8+cd6wLdt1EppBc+Kd7d1VhJivz+zu\n71A4n0llJ70+TwAMcWdnctVqmWNFXXPWbzzIyoqyOBsDYGtWSuK8EDJ0de38KirAX/n+X86vnL7z\nZltk6lAczdSqc/P1P/vzv8Bw1onCNJd97a23L547sba08Pb3X0OC0I1d2/WX52rVjPTBvU2SoxkK\nEAxlOWbiWYmTrNVqw+BhJlsSmerDW30dJ4ry+TLBIgjOI0IckCyjmFMrgLyJOnQ9DScQgkJBnGA4\nTZE0DOMEQkAIyVEihsQogSdJ5HkejEBwAmAA8RSD4hiNizCUAABA4icwFEMQgqCarZEoBYMEeBHk\nRlboUTw3V18hExwCcLm+SpDk2erjpj8imGSi9VLSaU4UpqpOpCiWZuAmXCPrCmtSGWU0GfeGPQXm\nJEIQ+BLso0+c/ijEANO0EQw+cxb/i7/5QmvYPX/hVONoL/HN+ZmqYzqjyRQjierSKdONeKHiWHC/\n11isrei6/spXX0GIACPCpdU5Bc2BBKuvrFGEIs3PnzvB9ga9L3/1f9aWhADvpWvZGwe3rnfb7927\n9Qs/9atnK49gUnjn4S0YQz1DYwk8lS2KLH/l3JWu+oU7d2/OzS7fW98sFYpx5JUFFoNh3dU4mZ8l\nl9Y3bn/hS//rueee0kOotlpOl8TxqL90cm59fbPXai4sL5hTI8Xwxnh49szJIIhz2ez29jaKQU7o\nzs7OWX3LdswYRgRJDoIwLacCOLl45vL68QPLpaA4iLzQ1V0oxH0rDnFYZJVhv9dq9iOPJDliqo2C\nGIUJBMAQL0tRBHzb5mkhK/KWbQMIBxD5fxkKS2I0xT7/3IdBglqmTcg0ihFBGMAICmAoAjEAACDw\nRz755I//5Ke/8IW/WFiYSWI78gOe44PAZnk5dJ1Yc6UElRjZMnyCw1AIYjDJt6ybVxu/8OAf/tff\n+/9ERQ6RKEZiCPERjGZZEidRluUCGw4CwJDUpDuMmfQjZz/+b//pr3AY/Wv/+B/2Os1vfPXe7/zm\n79v9REYVPETcAAYwDhAYiyiOTWFwJMY8CRSaKpuGz4viYK+XzfMYCrueXizlmp3u8sradDBJ5TjD\n8lZWFjuDRr1QLuaKEMDu7W7YXkL5lhojAzNKz5S2u5tEHMRCpEOT1eVlc+ymq+UTS6sYjT3z7Auv\nv3EdZ8mlVGV0NIIStFwr7vYbmVo5haV4hm61ejFEwy4yPBxjlQW+O9oBUGjpARoR5VQZeLFpqByJ\nLCzOf+f7r59YPUeJ5Ne+9dcOeK5Wrik53PPsKEh8Hww1bW5x4aDfohyVYcjjzoEdWJW5uYSEAy/h\nGH6kTYQ0C8eJZUwRAp1YxqvvvzE1Jz/4d34y4ehGo/GFP3tr7cQJ001gDDk43PE8LQxHYjGlO17s\nxFgA1PEE4KhuW4+cOllSMvcfPhhZ4xiC/QBqHB3XVmb9aESxXoQmJM3DKBmGFoKFAIphCBJYwhhP\nQQjznKCkyXw1FUewRFBYzA4G4akzl27e/0C1JiyPGBYUIzJGKDfvbA6Gv5fLl5vtVoJSgHYxgNVq\nla2HbSHHVWgpiuMQQ1EAYMxBsThEIiqtaKo7W18yNdjVYJZHeJKOYtdxjdnlWmun3R/0Hx7s1mbn\n7j68TfMsjOPZfFaReWD5jjN96tJpBCW7jf2Xnn3pW68ey7Q4tUwlXeqoBgOjeJKgEUxA3HCghyBQ\nDX1mPo+iUGfcHQ0m508+MrcwzzDUdDRudjs/9WM/+5df/Kub1z8o5l4oZFOaOa5Ui33DHLgBrWTa\nvebJswvFfGV788BJolKtvNuzaI4NMbB2Ze7C2UVZob7z5berszMYDjeae5VaJfBRBDZYCkdg/813\nX/cM60c//WOf/93fpymfJuELp1c2H9ylyBhJAjxh7Z6OobQiL9MJ1twFcvl5rQUhfOnyiVUUMChM\nQHGCAsRz3TgxHcjRgwGGIDQHCZIS+i6CERiGkSQJQQiKYDiOoSgOQRBJMgAABCE93/VslyAwnuMg\nOIGi0PM9hmEIHEUTEoZh3/a8JCAZPERAlLgoRfixS/K0YU8CPwoDJIZABIEgCkWRl7C0O7ZK+CIi\nYkEUzZaXYBi1TNt13cROIjtZ5M7OMrGhGACJUCzheXY8nVz/xrogsqQoCFn+aNy4tPjk0olFQxs+\nOnvpq3/7p5N9jSFpUzfz5VIpXyNygshn4whLcWUcg0WavXzh/NXrb6XThWJhDgsESUkN+qqF6hiN\nR4T96vtfeu/uNQs9ee/+9khfPz17cf3ety6fOvnq21+emIOMkNvf33/u6ac2t9br9boopTuDcQ0i\nF+bWGBS9s35996BVFmdOnVobiZN6SsIgEDohR6VLxdmTq1PXs1PpQhiG04FpDKZaNDVHYwLFYhtE\nIZzNl5pHhwsrq4LCciIhS4TjmjSVDEZNmcl3JyZG4ATOkgiVyadvbN+4eeP9XCmbWl6b2Orhzv5C\nfRFCuWyqNO73yuVZnoranXGzNwm9AEQuibBQCAUwUMeTYqWKIKgPJTCCUSSJgqTRtSAYZlgCSgAn\nCF/75ivPPv+cxPEgASEICQwPwwBFYRLFozhCYQSA5Lc//1vr65vrDx5Wa4WxOkAgmCJx31GhxKcx\nBIURy+jAKOqpowyeJSEutkAlk3/jrbe/+9VvfOzjH24cHefSuTiOwygIYwyJycCP/UCFAOYEEEnL\nr37zrS/+wV8X66e+9PlvPnPpUzc/OPrj//K7qA8klkZD3XXcCOAQhtMkRWJoAmIMo83As/xpaSFN\nSdL6nXtas4GgKzHi+4nvBN5a5oTW1jiKZRRyt9ubrdZuXv+ApbmTy6cjhFw8cao3GVeLxcGw02od\nNwfbhjmpF4uNwWEunyYzpOE5jzz7CAWTEBRNDNVSjcsnnhrut2VRqi6tMDId6Ud8jr129f2TJ04K\nvHzt3ZszlRU8VjASxiM3lHgugmIoE1SKlbvXPkii6MyjSwCzv/ndrzzYex/PxIwI3dj5PhxTGSmz\nvbk1ZujV5SV9GjomxGEiCbDIiVGcqpcrCIZYkc+xFEfiCctSIYHhSL/f3d1uPfLoEwmgu/fbd+7c\nevqpJ43JAHh26JoIQ8AMhfBkJl/M5/mICIfueDZblxwaipMcKzoBgEObiMz5anb2ZE1kOKOtP9y+\nVV0oZcsUgAPKZ5MwkCSp0Wjohj5WTRlfCeMgCCLLtViRnFspAipZXpnXDidB6HZauwwenJivHbUO\nsrnceKTt7D58/KlHkvgUz5K67RAy3JtMYNzjWZpJ+wEW+9FQkio4TviuSbE4iCOO47wkAgnEpJTe\nZIAQMYS4MMa5YYBQ5P31rZmqD0dQvTZ3vHO8dvICTyv98RSiuF5nhDnEI0ur23caw84xy7Lj/lih\npdW5VS9GGYrPZirjoxaXwZfmZ3fXj/RhUCrWhqOuO3LiWjxTr5ekrG943eaAJjnT0uaWqse93s27\n11546am3X3troptyqhhEYafVIxS0bx3aiXvxiTMx5AM4Ehna6Iy045E5thkqc+Pd26fPrm3c3ME8\n/LMf/bgLxQRA/vpLf3vpscfH+iiVkjDUN4x+RiKuvv/mQn3uR3/40//jj//7T/3MT1+7eWu/0SlX\nFi5fvNw46Jy4dKZYqHCs5EcRBEFRCAEccqc+Q7FJFMEwCMMwQRCaIaM4CSNHVHgExpMQTUJA4BkI\nw2EYEDgMIxCKwhAEhVGUJEkMwSzLAgAwjAM0jmEYwAiAEYFvWpaF4AhKsDEUxFEcxGESQ4RP4CwN\n40kMJ3EcmlaAAIzE8AhAEJwkkU+zhGHpUAITCOG4sZfoJIkSMZYAEEAhTGD9Vtc2zCiBJEXmCA5B\noDC0Iy1KE0oQhLhJeUbitHVRyNMk1nzLTCIkO5v/e8/+gziOZYUfqD0mI7oADHR1fWc3W6nJMvnG\ne6/kskwUermMJGJ8TVwwAv/Nt98Zq4NUunD27GO9Xm84OCyVhcaDJmVlSiRy9923/tPn//Hq3OLn\nf+/3QpsfuAePXDxTVapoLXn88pM//0u/uLh64vyJi62j/sxMNqWI5zmx2zT7g6nrxUEFKmfKElv8\n7rvfTyB/Zf7ScXMjMCLPcxMYWX+49/SVRzlJfLi+NZ5oCImPzGm6VjzqHSZJlFJlGEoIGotMHNYS\nj7ZojOoN+yiMQJQ4U5i5/PhjvU5vbKoMwW7sbMxUau1uS+BkQeBGvZhhsObWIJ2SzLFNohRLM9bE\niDCGYygvcH0vRKk4igKa5CgUdUwNw2Aohjw3hGEYJanN3Z0YgmzbFSQ6iZAkSQgCgQCAohBDcSgC\nIRTzAvPlL3/5xRde6na7hWKOIIAocY4X6qqhaQZG4ChDxSCKIchBYdrC1emgNkMLDHTn5msff/mS\nOW4TURgAvFItRiGIgsT3HT8c0yyHYsJw6v/BH37ecXtZmQ5o+Nd/8VdKpYXTc5dAMAWxG8W+ZRkQ\ngqM460chShAQYluRuzfY/fGfe+HDH7o0CozBRLU9lxjvQxg+t7wYJf6d69eLuXmcIKdTk0P4QXcS\nAthH0fXDg4lqKEq6ls+xJPy9W6+JCnnpqae//7237L5+fvmUZtn7GwcEwEWRxuEYRtGF+VnV0FcW\nZjhJ3NnaiiawejAWRM4c6qV0cevuej5TSaVkMS1lSmVs+3ZLycmxA6EJTJOUINEomVy6fN7DkXff\nv1auF93IhyksIVDHnebFdH+6P7+YH/emjf1jRUp3d/qSxMj5NMQyaBQvzK3okQV72nA6RFGW56jB\nvppAYbFWZcVyjJNSSsxPasdH3T89/suCXD239ux+c2fiHmaLhRgB9iQolkq6McalzMjyXceXizKc\nIPeu3U7LRLtxnC5lO+3GI2dPckp04dJ81+o7Tj6MIYYRYATKpMTJKJuSZvLpgKbZ/cO9/GyVxgBM\nOSJNwQSAYluPAy22ls/O3968OTs/P786+3D71qNXLt66esc1NT/U37l6O1OQX/jIhyBi3nKtdFHR\n9QkMaqbmdvsHIidJIpfLpYaTPhSHAEEmmg5cFQ5DGscQBjETjxBYJzRFJdftjCpSEU5gDqNDVVMo\nyqa5gGA8Nz7Yay9mZ1949uXDzmh9/cFgZPUGUyiGW8ctvCDcu3cnA8lIELE4wlJ4DJGqbY6nQ4Em\n0oS4Wlv8+te/nk3n2r0ujpMCy2Vz0rnzK57j2NF47kS1O+rLPFetzQSBwaFcRubv37lN4Nzi6tpY\ndRiSqFeyR+1ebbnwcPv2I4+fAAh59972bLY6UvcDzdcM87Gzj09HWqu11x3EP/Mzn7vy6I9/6wtf\n2ttoXb15c3Vu7Vf/3v+z/mBboarPPPZotVybrc1cPimEbmJbvqlGCILFCYSiYRB6BAl77gQAAAOI\nJiiAwCAM4whFgAwACJMQRVGExgBAMSSGEhDEIUPSBIagMKZ7ehIlQRixFJJEAU3SMJQkSRSGHoaD\nOMYxjHP8JIqdKPZgkOAoSpEkS9MARiM/jmOAwXgU+FZoJxD4v6smFEFCL0wATNKkmyQO7AMMIWhG\nd2MYwxKUQgmUkVhOxBKYBAAkEATimCTJJIpxCINgiMQjlmAxCA80C8YADABIoOZee6xIDEF5Zkgx\nGaDhJErM8vn8QoETofbkeKVWjUk/Qen8TLnZ7Nw5uDGajDlZ2dhroUQSuUDtgMlRSJI0TSJRHKBU\ncu7RhStzl+93D9saRsdlDI62G5pSVXGZ/8vXvv2pn/nJhw/v//Z//63lailVXj4hnlq/s+vnGzAW\n3b93m8tj/3+6/jNMsjSrDoX3ft1x4SPSu8rKyvLV1V3Vfrp7vGcYg0eDFfdeSQj0XTn0IbhyCAmk\ne5GEpAchIRDCCwYzM8D4numZnu5pX95XpXfhzXGv2d+PqB6Qnu+eX/FUZlVWnjix9tprr73eb3zq\n+ZnZ+c297Wu3r5598CQyO4jt/NyhP/zkp06dfZDVi5OTjUTxdBDPz8932wf9LDlo75UrhZ3WlrM4\nU1so+FNFXtzu7RXLxTDpWZfeubvbKFZdJmdmF3mlvN3aOnX6UUx1YbpWrUw48CxTG1vrYVmOkvjM\n6ceT7Le1ybiMLBsmA5xePJRo50nuST+OYz8Q1ldBJEYdDZqEp0QQ5WQJXBD5aWqkFERGG805s+DI\nghCSIxmTzyzUP/fZz3/wfR+6cP31+fmJCtH09NREub61tTWIB0kaG4BafWbQyU+fqqweX/nSF78S\nx7EUXpblUmGh7Dv0uXBB6JlUJEmvO+obQGPs9atbd3auFzB1pqyk7B+08/Y3vLLfqJZUsZSlfqVY\nc/koiUeCWT8sQubd27v8yLse+/Vf/PWU2t9ILh+aW3pxvTcaVAK/kOxFLI/39i4jozTjYVSemZl4\n8YXn3/O+9yRZurWzE2ep54sbN/f7SUeFxVOnnujtcjcMDx8/ppRLemue9iLPL4eltXvbxXLdSerE\n2Z89+8XJ2bpXYr20W6rV0t7oxvpdTq4e1bs7BzPLi6OsPXRtES4WMfRNZ5RrvXB4cX3z3uGzq15Z\neiSKUbFrTK/bnqo2Zgt1WywP414wIV3mzj55mmLgOZ9p1O7euDt1fGGjeXfx+NHy9NxcMVz/yhcO\nugkvahPHGOFkZergoBlVy15oW829wFNLZyZvXtlP436xWCXrliZn/MiLXcbK4e723sLKSrPfR8V1\n0SXCdpu7M8uVN67fRCUbYfUtR49u3b6ysjL3LYfevtPrrl1ekxIn5kq77fV7ay2TZB6xiu+rcrJ8\nQjrMJwpTw0ESBmgAet1YqMnd5hsF4b3/W9/7xhtfb0QzE+Uqus7Z85VHnziZG+VX6tMLM/c2mqVa\nFEQe18CgaHkeVrx0iM7a3rArOn6SgY1HE7W6T7o/6o0Go6ahRmPS4z2r2Nb6VrlWnm1MzlTrd67d\n6qUd5ZHPxGC36U3XHnvsxO6VOxdee/XQ4mEsFKgq+URkmJ2Ybnzl5ktCDHq9Xrzfmqjh6XPHP7f1\nVRlM5s6WG6VGpdiPk+deePneTue1a1vTc/OdVkd6uLa221iZjKCwMD3/id/63alSvVE8BE7q3Imw\n3BlBfXqxVm90drqLswuvXPpa7uKD9t4TR5fn65Mu1oeXl74Sf4NPBB/9wLuvvXzj2T9+9m0PvOWT\nf/YZ6vP66szv/9GfSuk/8OAzyj8y0VixOZ88dPiJ6imlwlKp0Yv7gzhvdw445+iIISohGJJ2hguk\n3CEBZ5wxRtwJwdBxjs4AGusQBOcMgIzJrcmVEEooBYwROKfD0LfWCo5ZPtRaSyGk5FobTylw5Lgj\ngizL4pik5FEQMo4OKcFYa6udNQYyY8kBEaVJwljGmDDaOUDnbDoYICMkYkzqWEvOXDZyzuXGeVzm\nGhhZIhKCWxTGOpDMMUTOSQRMkJDGcZZZkxrXi5MYC/deunHt8pX9nV3SulgMtMnK1SJwQOty0iOb\noE8JDPySq04FC0vT2sTL09Hf+fhPNFt7t28+/9rrrxc9Lx+wsIFbG/eKVXXyoWNfvPjSJ37/83t3\nOoVgs593Cp1iLzHFYvnm9csf+/B7/uoPfN+//w8/+/CTR/vN7d2Nu5/96peOHTv56PmzLzz3xe0r\nU1PVej4YfOu73jlT8/e620sr81HAJdKHH3/8QHeH2Wi4mS8uHlUUtPsDK21/96oqlBYPrUhGSZZW\n/XJN1Tr9rJ+a5t4aJcOabKxOLfd2RsePnfnMZz6fleHRh89OVha37+wwbsnlg2HuJKU8L/qjVhcC\nPqxNSmXB5pnxA2uyza17MzOHdDwsVIuG8TyxE5WZnW4nk3GCaJypl4Jhpj/7xa984B3P7PbcpA+p\nSZUQjpgQDC0asswhAhG5qaXyF1/4s3/18//PH//xJ/d2WtUSe/qt5w/2tm5cvXvj5rV+z/kN6xdK\nd29vv+Odq/V6oNP27es3SmFNePulqcYoTi0TSZaNBju9Tre125x4YKY36N678NXhxr2pI4d399t+\nGEglANDGcKe1FYRNIRhXUmtdrjSKhXA0ivd2mo8/9bEzD5z9v37lt1Iz2m9uEOJoEO4bluPwxIr5\nG//7P7h17eeaB63SlJs8MRnKyqNvf7cfToxsCzhL0gHxxuHFI8PhqPrgzNb2/uREvV6b3tgaTk9V\n5pYOC8rj2K61etWFpevXr1dG3eW5mTgenVpabY1GV+7cYgqnpypL03XGwq+/dqE0OeGC4vXXXq6W\nKwJo0Gq1Wut7h+aWq+XQDuJXXn3t6Ec+/OIbF5kvK14Q1YNmZ2/QZyCRkEdRoDEHoE53f+32xrve\n9s73nnlnPIiLuiKUv7d3oNTCAyfPDN9I00HOiaNgqLgX+rnV6WjQHfRLhXCYpwuH6s6gs/lbn378\n3CMP/8bv/mY+MCfPHNdu5AkdUo45FoPiKImn5haLxeK1K5fJUNLfHnWNYzp3VCvUB0OYnhisre+H\nWIesLSI5SLY4Sy2mXNfjTKAv26mVYdQeto1xjVIN8vTk4ZUrL934H7/2W4LT8Q8+UDhWKFTy2Qfn\nZw/VC2pit3Nn+96tJDbVqJgk+Z1Wd6CH129fWpqfO3fy3KDX78btW/fu1aqN4TA2RghA61TJVybN\nZkqNnGe7rf2JSq3Zai9Nzu1sbZWiQkmFviju713jnPe7g357OOnVJiarzax3++Yrpx58YK5ReOXy\nS/OLi+V6ubo4t7RyWKRxq7W229k7euKItcHWzm4S55WwUK+VDnb6FT41Oze912qZUcynipnIO3Gn\nWq2/euP18lz9icee+cZzLz+2cGRj89qMKEs17fNhRUXCwmBvb7Yxc3dt49jcY2vX015caLXjem2w\nuDw7dXRmEOR70OypQY8NUIqAV2ps6b3veJ/fVqI6eXrlqHNKSi8eZr4XEbrd5lauQSklpUREzjki\nMcadc0pxneXoIPQCIYS11gIhCCYY08QAlVCMAYKz1nKOUijGGHLGBJdSMgbOOWttmubOOc6lkAJR\ncSmcM3lmGKC1FrmQnCspkQsC55zr9lHKQGsdJ4m1zjhtjCGwJrOIxjkAAHJA4JgQjDGdJlaalFye\n5/d/BS60s5LxPM8o04wxROQcBQpk0mMsSU2qGXrRbq/NVNAa4HOf/sLO7tag1++3OzrNSoViksZZ\nlnmex7DIAMk5sjmiZcoy6bhYV1NeMVq78OjBw08+EJtwv5k9/ujDazdvfP+P/Mh//uV/+8AjD84t\nzP73X/3l4f5gsN9szB8IpnRvZzff2iR18uS5nZ29a9dLT7/1gxO12Te2Xvjys386M7v0Hd/yV3YO\n0unZc5dutj/+ne+WQj/7/OfbvTvHT85PTjsdd1q7u+vbw1qlNEV1o+Vo16hGKZQeROEgyqUbIvc1\njpwwm93Nu/G6HxR9ORy6jg1cP3L12brSxW6STk0tVkpiubzwxtWL3WGr09o7f/Ytr730+slTK53h\nwQg9X9IIB0HDdJAH0h80B8VawaZZnuwIFf7sP/n5/b3B3/nxn2S1ibQf+1ylnBswnkChvP/wS7+8\nuLBycnV+u92p+wUAxzmBFQnYgDEigQDWWjK2VIn+2c/89D/7mZ8mgnar98KLX9/dXv/oxz7+/PPP\n//t/96u724OVo/Mbm2uXL74xWa8j5a++/FKSjGZnZop+IVCRzoFQxJkdJnk/0f00f+HlV373D/+g\nVKtmWeYLjtoWAr/fH4pAzM7MEFlEKpYLRKRUeOnKjSMrq7/+p//5pVdvfuKTL3F/AiSfnH1omPS4\nMs0caoXGl5+9+uDJ1//2D/3Dn/t3vzAIetzzw1JpYbb+wuuvzU/NnHv0mf/y6/8l02snTj4UlUsv\nvfbS6uqxXm9va/NmwfcWpx9MO/HGTnfh0BLjlsAcWV1KRqO5mdn1e2vbB6299oHnCz8Kg7DUarVr\nFV8HLgxEKQoeO/8ws4g//h8frdYm21vNicr0kdnl/btbozR5xzNv3dq9u33Q6cTm0o0b/VFvcqrS\n7OweOba8OLuYDeNAikoU9dqdtbW17/krHy9XK5t39p7/xot+FM7PzNYmK7HL7m7fI0ZBKHypet02\nerIbD0XgTVYnLr1+oVose0xMVqf2dg4alcn9/f1hMlw9ujKgQcGL4jjNrGOhxz3FLBzsHNy4eusj\n73v/vWtXjp9YKU+Vbty53dxueywoB7OrKw88fu6tv/on//X61tVDq8vHVlYuvPpabsxub23lyGLk\ne1oPdztbhVKjta937saU443LN1aW5gpV2Wx1JmZqDzx4aOX4QnO/12kObly9wVDs77cWlpaiYmiz\naGtvI8mzUhTWq4Vqtby+t5HCSAhRLlXmZubzONm7t9EoFnV/ON2Y6FjT7Hbq05PW2ka1duHl12tR\naXZqdqI6efnyZfLYZqc16tnVmWMT09U7+zfCyXCxMTFTLHf3D2QUGuUxL9Da3t28i5CtLh++c2Pj\n1VcuPvLo+Uq5sHbnbpzajfXdSFWOrp557bXXOGdLS1NJ3A9nCrV6qVopcqcXatNxJ0bHWs3elTt3\nw+pEwPHwbI0BvfLKlUKpftA5KPleYbIU1cJC2Xv2i8+dPPPwkVOnRjRq3RttXdnBTjBbX5mZX5mY\nnCbnPJCW3CiJgQkhPa01oJO+lJLHaRJ4PgADAE9IRHTOgSMAsNZyJMmFEMIBOQTOuXUAwLQlrQ1j\nKBjkNgcABoYxJhgXQgjBOaJzjsiSY845zpCICN34nyUicibLMoaCCcmQc8EAwBmb5pkUSjubZRkR\nAYAxZnwqMwCQtYJxzoUj0s7meR75AQAYcg5ICEFEjDFjDAPM84ysZmg5Ms4l55JxSWhavZEfVUGo\nUZZeuXLla1/7+u7WLmnjDCnuO22c1VEgELM0GwLPBZOS+eiYJ0PrwDjK8xy8SJthP+100gEPgsZk\nPc+GCzO193/omaHrhZFaPXr4V3/7l372n/7jxYnpxHX2e3u/9hu/dfnq2tzCyXp18d7te0KYqany\n+p2bJ1dPfPVLX1058sD84rF+qlPKv/fj3xXvbk1MFBGTT/3p7y0fmTt+8sRomCexGTnG87i5tXn4\n8GHmF4pT0yyU169fzZKDqYkakwAAO+u77XY7iqJaqUg6v7exfvqBU91+v1auHV46vrveXjl0orO1\nsdO6Q8gdKbImKoT37q6dPn26Xl/a2rtzbHFmRpz66X/6r//zL/7+6sLR4UDWav4oiWdnp//tL/6H\n1cNHOYPdnfaLL774G7/x+88++8ViKazWioVKyStEN+9tvfd93/rvf+7vO6uMJh8ImSbJGQpyBhgn\nIkRCgjzPpeKIiIC5sdtbzd3d3UcfPcOA37618a53fEulVvICVSgX1rfupWncbjf/2T/75z/wAz+U\nZ0YFwSg2o1QP49HG9tbNq7cPLy/8yn/9pc9/5lOlMPAZQ3BGO2BcKhUEQXNvv9vrI4ggKDnnGo3a\nD/3wx3/iH/y9MBDGiS9+5fKffPJLO819Q4x7hSDyg3Ix7aXlGjRK/Kd+7EfubG7/2L/8vo/90GOV\n+lQQFudnFwbDzr3b1wad1mgwPHHsRLUx9ak/+5MsyxQGRS+YrVamG1Orh0/89h9/Qnniwx/74M07\nNxdmZy+/cenE6vF+p9/N+tube0uzS5P1SUMm1nF71ArLQXPUotzVCxOKpJAiCL1CTwx17gaDkfSD\n5ZnZjZ3dnd3eS1eu8FJpd9AJfU8I/4EjD1Fqeew9+cC5SDG0eTaXPHjizKDdB8uGJhGBRA7aJK+8\ndH3x8JJkPHV56PmC8yAIRnlcKReJi+FwWCiVyFGSJLamR6Nhoz7tR4WgENQatd5edzQaLM4vj9Ls\n+tp6YskPi6pQV97B3Tvbh5eONputrc5efbKxunL06iuXLl19tRiWrt9tBJ5vnb67fvPo8aVDy9Mb\nW9cnnEo73WEGi0tzZRXHXe2xIIpot9PZarUmlycfe+Jsqezt7NwuNmCpvDzYvvHqN567ee/Wd3/v\n95wtlF599bVaUAsDGPZkb3+YactLudadKASbu7n5WXA46rSZhl6rXZbSQnrQ2SpOzldKhf2tncNH\nVpNRnmZmP+vGiYmzLNHJoZUjGXc+pcmgf33Q2tGtSRgELm/t3Zmdny7U5fb6jrZi6diJ9qDMAHZ3\nOjrTuztbF9/gy4cP1Sfrw/Wd3qAjavLVi89XJ+q767tkZg/NnegM9hszE2vXr81NV/uwb+JcJ25m\nYsrlsz2d9wf7/SyrNqaPPXbmlVde0/5oetkur8wdPnz41dcvHTqyMjt10k8Ou4E9Fomn3jldZFXk\nQXs0HNi402sWwkhlVgXCOOv5qFREBCrwMp0Wo9IY0BERhSQiJESBAMC55EjgrLUWGCIK68A5B5wB\nAJFjgIjIGCMEZwURWgu5s8xYBg4cIUIggjGwW6udc5xzzjljQuuMQOeOXGacyzmXiGSt1XmCPGOM\nWWfHZJwxbpy1QAIZIlprAUAoKYXnBb7OMiaEx31i3DmXJ7FjhgFkuUEAzlEKCeiAKDa5TfPcYRDV\nhQx7/fyzn/na66++ksYtoweR9IzJkbqCkXUmTxgjEclIMOkYCqU0OSesznNgTDIyrkd5XmbFqeqk\ntk7v6zKvJtfo377wO4HPrc/CemFuZvrf/eNP1qerPuprVy/Mzc2fbyxvXN8ZRvvyoPfMk2cm6iHz\n66HyKgvHVmZX4yEr1Re7SVd/4/KZk/Of+h+feuihh56ee8plfCY/NjJZVC8xD/pZ9xYv9ZyZqVdL\nZbW1dTcfbvdxp8Gx208atYXzDz7W7/SvXrvggTt1+p2V6M6h2fldtd7q7n/1+S9EYbVYj3YHmyry\ns5RWFpdcrnUK58/MeBHcW3uNCo2d2E6UkASFIgTHwpLn83BifvI//ef/ODs30+40u4N+KSp96CPv\nfde3vP9v/fjfe/WlVz3BJYlRt7+6cviLX/nif/5vy3/9B/5Kt9OXpbKSnnEpMjAouHMIY9c7cIFE\n5JxljBnjgqh04tQkoUxSu7J66Pu+/0d+5/d+k3O+trYhAq8Y+OVa+bnnnvuxH/2xrh3mScpAOu0s\n4WCQpcbtHTQ31za5w4IX6DxmnHcH/ZNnTi8tLZ0+eRwc+l6UJm7Yj48cOfzkWx576PwJIAJIGOE7\n33rq7W899Wu/9gdbu531jf3WXrK/eUOIQpIqysJOr3/k0Oxf//7/48ULnxPRPi9g6Zms2dsfjfaK\nvj9Vnbtx4Y0oqL3vLW+/fffutau3m61RCF6jKr/81RcfOvfAxsbayy9/wwt9IlpZXekNOt1ui5Q4\ncmgBRvrWy69++MMfvnzz8jCzuht/8UvPf+i97z9x5NjnPvmnYnZqutfrxln/1NGV+KBJZJJMR6ow\nM1F69KFTQzBLyxPdXlsnGQh97NiRy5euFcvqyMJMuRiunDjebLe++JXnVBidOveQXxC3b95K9JDI\n9Ppt4QvGoNNsV0sll+vJ6sT2/p4KIyVVFBQKjRJzFMfpxNzMaJRs3dsyOh20erOzs3EeJ4N0kA5t\nlkw16sbpOO2+/e0nykGhFISil+91882t9ScffWzY74bliMnRl772u7xER08Vb6zf+8pXP/XY+Ucb\nU5MgNCFUZssJH6qyCMrR7mauk7gYRufPnA2V2bhz7fCR6aKv+q0kO0yJSc+ee+hbP/qR1y+8Yba2\nHzn74KAfb6/tXLp8Y3d7+Nann/EDP0n7WS7a7bRSsnaQZt3ERxVCKR66+tSsI02gweqFuZn93b1K\ntb60clhKb2Nt/cipU/XJ2WvXL9WnahGTec/cu3PXVTzXlY2phvAgLE5c3t7QRgfo2ntbKHSv279z\n9c47nnn75Tcupb0cUulj5dyplWowf+3ytbKnpkrVrDK6tXFr/WCrPlOsmFImbOpMkuoAvFKhKLTv\nC78bm6naog/U7Q4cV0srtfmVw0xFe5tNlx34+dyJ2cUiOxK4iShCoU33oG8CynRKijPGq8USOa4C\npSkBlxm0yJAIk7QnFeM8MM4ywTnn4AAAGGMAAOC00Q6Z8gQRWWvJ5oAIY55MoAQTghFZAMcYY9wn\notxoZ51kkpABWkaQm4yNuRkiF0iOwLo0jw1g7sgCOevcfUmcGQKGntaGyAA6IgJ01uRGZ8R9h0TO\nMQAgh9YypSSTDsFaO8wSra1gHJ1ljnSuOQpkIDj3lAAAQuFy55AizaLA32o1/+jTn7186YbN81B4\nXGttLCLPbM4Ek0GQp4aTEEqlOedCpDk5IGaRoY+OyLrUjFBIBJFkCUAmBGg98EVwcmY558w5I51q\n37FbF28WPR+UnA6rN671CfucM1YBlkf5Bv/Ob/uhysI5sBa4BEvApQMGwIaDOCqK4z/+PWmcFQtl\nIAvMAaVx2jfpQVZYnF053ex1ejvNqWhimLRVzAUWi6zS7nf6uD/fmCnVy9WpaQmQQFqoRhsbG3fu\nXD975qRPqlaZ2by1k+Xp5MpSz3XLlZAZs3F7h3hYikqRmMjCsuSl3aR9+Y1rpYkpaVUO6d395i/8\n1C/W5xY+/dw3rl2/e+fu+qHDh+bm5grK/bW/9Td/8u//1N7mWqFQKvuFOE6mJyZ/87c/tbxy7D1P\nPdwZxsqKkq8saYEIyIiICImIM4mIAJDnORk9WS9muUkzYzLr+c5xPcpShk6qgBCD0O90m1GlZACM\nMb7vxylxgR56WZbFwyTptPuddsRVPBgqX6YOfvBv/I1Go/Et73nvY+cfBAAAQHAADgCss9bmzoKU\ngTbEhePc/G8//G3W6t4o7vWzQKibG93Lly+XQ+Erzgne/eh7gyhMXa826d/dvDXRqNQrGoC1N5pT\ncws+407Tzsb+/s7+0295hqH8+iuvTE3Vt1/ZrNRKzWY7LIaXs2vFYlEgW1hd+erzLzjnJFOTExMv\nX7shhNdLtM7N8qFVhpW9HbRmUehU18qV4ah/sLc+Xao6g+XIl5G8fOtWZpyTMomz11/5xrFjqywI\nD/KWDqmtu5e3RsdWDmU7dwlwZ9Daun2Vl6Pe3t7SzNzNOzdLjWhyun57/V4vHtRLVcF4rztwwAIV\nAKFOs1G3nxJNVGscQ8u0F4jlI3PxcKA8KYGFod/NBwM9csqoABS50Jfkhq1uL0mL01OzQ51euHjx\nV3/9vyFS6FWKs5MyVO3eAVi2vLi6t9u8u7EppG8dVuuhRu3QxHm3XouiBm9e7LY2k+WJxbS9X14u\nZd1hVI/qE7Ov3XqpF3dmZ+b1MDaDhBg899xzh1eOGizPLB4eJjcS6lkehGF9d2tLyuq9q/dW5g6h\nsRx4KAv93mDucNmC6bc6rVa/arzeMGn2Nv0gSuPB7MLKV55/abY+5XuVQT/vHuyfWj506MjTe3m+\nfne9Mb3g0vz25TXZKGjqqUiw0BbLgQxw8dBj0iWFAq3OHy8Uou27NzR4gJ70vWGWrW9uFkue648a\nNa++VPZKVKCgM+qEPt/f3j62eHxierrn4qzdmSpO+CrxCvl+0izP+X3IeRIF4bLCw43CTEMtjAYO\nQaQYM8a8MAIOxbA0iEfMEFjOmXCCIXjlQmnYG0ouOWNpmiMy46wxRkrpnCMiBnwM5dZmRMgVZ1w6\nZ8gYIgtEDAC5UExqZ43JAYDAMmIExDlXwKy1gjEEZ4EAnBACGSABIjPGaJ0757Q1hnPtHAAQjT/g\n4JwD6wBAcmEcATDl+46MznIl1biLQIWelAgs1XmWZYacNkYIJaWUXDECa3IhBJMqECAFUx7nkvWH\nsXaOSeIIEBSacfzVF75+5crLQJmS0Nzt16sTuU4QOGdVY8Fax7iTAR+mfRUIzgw6EgacBmBMW7JA\nAQWpsVpYI4DQE4wzSUPrMraPGYLnEk3CBRP1AIVVJEeYAIIl9GW40xoVC4VnX1q78KM/6xcwChrT\nU0utTrMxVYiKolIqWw0HbR3H8f7B7se+9UONSoUzc+zoIlfMQLW32xolOh2i5I21K2mhdPTU7FQz\nvRPE2Nm4wEFdvPp6N0kXl5Zf+voL26P24sxCztPaZHVjfXOqNr2/cVAsVJcWlrnL0Ssn+64Q+UKI\nQdqPIAhKhTzV1UZ57caNdpwdWj7avLt70Lz1wz/2dwbx4MPf+X0/8iP/n/4AWt2s1I8vXftCmdlO\nv7+xeadc9DKXFPy6zghIOaV++p/83Ojv/9iH3v0MWJMTE+gh5OSQITrnuOAAoLUdy3RSckCNXLuM\niqWCdumff+6Pg6IKvcgxxgMviIJbd29/x7d/FwAIT2nnhOCco89VEAS+7wuBo14fnCtWSv00zjjX\n3Pvyi698z3d/NwHp3CIjxoAxIGeNsZ7yAAkYCs8yFEAKwABRNSrXiuCcbkxXnnx4njsBDJzWBeUf\nXzr7xsZrU3PLN1tro0wUy0s+COyr11975e3ve9/ObvfE6Uea7eFBs/POd7y3NxguH13qDnsHze2F\n+VlfeaN+3NkdTdSnQz750MqDslhOyLY7Oy/dfOHxRx4999DDL796Jd5Of/3zf7673ldYFpEs7m6s\n12v1iudHXhQUg0uvXTp57tyl4SiNRydPHPZDfOKp86Bpe227GE6QIWPclVvXb924OT0zOTU9+8TT\nb3vplVcuXryYHHRGu63JhWmSuHuwr7N8qjaxsLDQ7/eF52ljN/d2ClHJ87zZ6emFxgICH/G0T32h\nWGGxzjye6VxC3u9n2aBrU1v0y1nGRqlL81yl/fmZ6UAWbly/6wDf/rb3WO3arVa56FVq5UGS91Iz\nGqRCsaXDh7Ttzs7UGsWT/f3u7n6solqpVjvoNM+cffDgYHj94hdNPz1z9Oj+ZrpwdBVKw55rhuVw\nojG3d6/z5c99o1Ke/JaPfvBrL74wiM32wfr62u3T55bOnJ7d29uLtZuYUKMEU6uHvdbCxGxnvz2/\nuHBv516v0wkj1dwfTM0s7uztDtNk5cSxbrc/HPYbE6emJxsF4d3sjdrNZGJiZZRkBxs3+5oVq6pj\nerKgdCeP9DCQpEKWqqzXHjEG3ODEZKMx5U3OlXc2mtxzLDxYOX5+ejB95epdyHS3fVAoeLVyUEgM\ndEYU54yLHNzxx89EYbib7qvJwI95HjQZTw7ardrscjLyq6VDUk87bJTwcIAsHvWkyi2ZchjksbaO\nuAxyjVJUkySRgRy7WaRSw2HMmNBa5xYY8/KckBkiMtaCtQwRGThrnQOGKISSShkCZxznnBFaowEc\nIiADsmSc5ZwjceccUa5kwBl3QAyBCMlZAADJtTEMkLTT2mpjrbWMMefIWuuc44Ccc04GrGNAjpGU\nUoAyxpAjclyqghIewwQRHSAiN5YccQeAgFJyInLGCmRCCME93/eFEJJpY0zmrCSlIhn6QX8Q9w72\nL1+9+vrLr+1vb4uU6dRkJi8WCpnOJQKRtWQ4AGOCLNgEFZYwRwIk65CRc85YawA459paAis4BtLT\nuaPMgXNSuNwVkDNJyHROTKSxZmgzTAUPCaxSKh8OPSEhN2hN3I2TrotVerC2mSZZtzHhLDAOg0HP\nMsqN1uR+6qdedIYiPzh+YrU+WRWSHn744dm5hU4cx9r5fpD2+Fx99Uh0BCU8+Ja3ZzjcS/Z5FUMm\nCo3w8KlTvbgfi3hidebG5evd5qjhza1MLS+G0wI9ksxZK1KQSSmDvJjxzWx7tH3l1a3bvpt+9aXr\nP/iho4PtUSCKJ2aOzNQa6xdf/sNf+wVkMhuNNru3RqPRhY2tdrsZFSM/KPT7/fzATU4vIvkJ2Sor\n/l//5Gc9pPe/662DLPe09RUQ5wiMkCVJ5pzD8bhbKCF4nMSZdqEXOQe9Dt6+tX742DFKBlqDjALO\npS+Dhx9+1BgHgMi4Ni5NUxAyDEPOeblYKZXLA5s7ZEmqD508HmcuTsyVqzePLy8JCYgCCBEAQXoK\njMmFYM4ZzsAREAED5EIAGAcZYxGCRjSAAgCYlAB6tjTfqu3evnezVi5sHGw9dvbpGTmRdLjLLh5f\nfujuzc/8yR/8ySPnz62vrV14/eWJifrG+taN9atpMohCtjx/aGZ5de3uFmPwhWc/f3p1aWfz9lAP\nV44uSDZ75cLV3u6dz3zqpd5OEBZKtbDOFQiPC8l4KSrkvUFYqnfavcnatBLRA1NzO3u7yXZ7arIe\n1KNeqxd7w7zbKZAoi3BtlMzMzj50/Myffe6z22tbd+7cnj20dPLBc831zeb+QThRlVLqNOvmLRX4\nWW6SXBf8YGJyejgc5nk+TIZJ3mu3hnlme8Pe7t6WX/CPHD1aKFZl6E01ZkpeZRCn282OlJLFI2nd\nwX43kNHqoSNJnHXjNMncwXazWqiYkdvbaWa6O7cYdQYWFScCB972nVb1aMAVK08V+nGKBiYqMwcb\nw3p54tSpFWF0fYaqjWk/LIy07vbilun7IhMUvuVt7//Un/zx3bu33vOepy5cuLS7aYtRMR1klNtG\npWooN84WZAnDqhmmrfZBrVEHdIHnJ4OhcOFbnnn88uVLyPJB2qzUT3thKEXx05/8zbe85R3b3YES\n5U4rrVXmgqhSDHnWTear80VR2WtuhZUCrwW7u7sLbBJ7dqJY7vSa7V6HZey97/3u5z5/odtR+82O\nN5keOVusRuzJudPd5v7+NgMr1vc6vGkOnzg2MrJaLBerk5lTw4NusVjQflaeK0uSPi1Oi6Chll0q\nWNPnoqKEBGprtBCq1PrKGR2nnDEEh8w4Yx1xIVmWZZxzBjbPMgKGHAGdQ0uAzhJYEEIgoiNDhFo7\nMlYJKZhwAMY44xwH7gXS56CzODNZrjUxYEJIKRHJGGetVRwlQ3LWAQkmEEkTd87FeZaMUsk4EAEA\nMm6NBQAy1mljrWVc+J4XeL5gXEhmmUiSJMkS7Yy1VinlCeFcKpAb65IsyzUhIgrOmNQ2Y0Cccwbg\nrNXOWeeyPM+tyTVxLpMs3d25eevuPUeYGd3u9O5dfCkZxb4f5pllTAV+IcuHXJokAcZRCAEARBYZ\nWh0jIjLSAA6QNHLOEQCtcYaMkEFYyJM4Gw59L8oBneQZY4o4uTxNkIgFHlhkObIwAMisFCyQLAx9\nAJCKOyeLxYijtGkWSOErJoWVkc+4BAl60GMOOLGJSs0ZZAwuX7yQ5MP3fOCD0/XZ3mazGBUxTnlu\nPF8dbN1LIj8oliLPl151KmgE3AtzdeLU2/v7zZHua8h03573nuIzTCDyhOJEqAKXYdGBx3z/cGUF\niOXpYCo8fjp4xOWJ5wWf+5mfcdr8txvbxqOPfNv3PP/88x/8wIeHg8GoP9hduyfQFSLfDJrCZtXC\nZL/d746GxYJMkqRckEx6e3t7VVX4qX/8ry5cuf6TP/6/J3boIEDkvX4/DMNc2zxPwzAMAi/Jsyw3\nwDgTkOqk7EWf/JPPcMWNSckmyosQCB15UkkpiUBwpa1zzkkpe6M4N1oqX3pqanau22sOkhi5PLy8\nmiQ5cmkcAAAiWqsF40BjyR+FYGMRkhxDBogOgDsHjDEgAQhoJAluGYDLOPPIodL6odmza83Jz1/4\n8rHjD0mZfubl34XUf/qD3/Ff/v1/YkL/9R/8ns31jcLKfDrYuXBprVqfXa7OYtVOBBOt7eYDxx9s\nDprb7Zs9b3MbGETusTOPFeTi81/80uf/9MbeWqdWmKrNpdIPcqMSx8Vw1OGcaUfUs7aqNvpJTUZ3\n7t5r6TgIoihUzU7bWe2BXD1+jCvJiK5efn2iFs1OVD71h38Mnt8bDleOHbt29Zbt9Y8szvWSfNjp\n1aqludmZzZ0mAAwGI0BpDUtGeaVSQrCjePDKy2+cOXW2l4zWb+2AlLXGRGu/y0gIyQ/aSblc73Q6\nSZI6EoL5hUKxRXvtTveVC1eWFudWGtXXXr2Y5aK5P1o6XIuz4cRcnfvi9v627vWn5QwDrvP8S197\nrVD0S4UiOAqCyFi927wpWHjmwdU//+PPzkzWZxaLI9vVzE3UG81Wz4DpjZr9AzM5O9UdHtxbw1I5\nWJyZlFQQjDMD2WivVKnf3e1Zlrs0nyhXZpaqHJ0qmuXq3N3bGzsb7ZNnomK9dndr823vf1ulDqKZ\n+n5tf6M+ascCar2RmZufDD3XbG1Zih96+IxLYdAfWic63X5tZm7lcPnK5Ysz05NimHpedPf2vfZe\ne37y9JVrd9PEORgtHZpbu3dra2d7amZh8fCcVE6yqBBOvPSl1+YWhIeFenmiM2ynOQZCIITrrZbN\nqK4axcIJl3n5FgtkJfQnsnQIkhtBjgDISO645OA8dMCQjCbnmAOHCEIwIse5hFwDGEBnHY3ptXCA\niGgMIxIMGBHjqAqekl6WCySTZyOPUbnklSNfcka22Bl6/TQloQxwIGIEYFOBIBUXHB05qVBJsNZx\n5IxJnSbKD0fG5SYBo50ViMwJEBwixQSTlUIUeMrzJDFCxMxwk9IwSz20YeQbY4DQEmqLWueBJ4Ry\n3cFAMomMC7CCcYEERNZZBg5NDkJKsg5kOhiUgsJrdzc//YlPlytVB8QkF1ioN0ppFvtcEaGjHBHJ\nSOWjtZZgPOIDxtABQwdMyrFuwDgbT4+5JwDAQ8EZesWyszAcjhhngnHGABG1ZsjRE1JIjgwQiTEM\nIpBSMsaIKAj9wPOJSGdaBahRZ0Aq8JmQeZ5LSS7PLEd0grKMMaFdqh1JT3lBw+MYJx3up4xny0vV\nPNPGaKl89Il0v3mwU/BUqRCBLwfIjO4BUKVYJCr2hv00G2U6TpwrFApeQTFZJIZeUOA8cBaZQ46S\nl2ZADqUvLcG7/uox0IOlR8/9l//6q2HEhnnHhK4YNt64dnV71J4s+rt7+/OTCymjg3jgi6hYqOfa\n7O7u+vMoKens3nnqLU9+17d/2/nz5x0Ael6steuPisUiEQWBVyyG1ros00iIuc4BmJKKWQT33HNf\n9jwPrebcR+DgtNOpkoyTE4IZkysgY60HMpSRJ31iRqjI9ytZaguFQmN6QnpRqzuslOsvvfTyd3zL\nuzhxRwTICYiIGAAAIQAAw/GMCRgAjF+z8cBXAAITAMA8IgAQVhBksNxYes/Jt2+O7t69eK9RPbx4\neHF7e/vsU6co7Xqe6febDz/4aJoMtnY3V08tzdUbr194wwV64dj8jc61tYNLjz/8RNn7wKW99bjb\n/9rz67/5S7/U2WQSJqVtlAuTfll1B21ACpgn+qPUk6rX6y1O1TLFduIelXmaxdduXA9RLs8fOnz8\n2H5na3vrbqkSUQbc5adPn9DWXLp9a+rIoTAqdYe946eOFoLC+s1r7W4flGjMTCXDQbN1cHj1SCiK\ne1ut2MS9uFepl4Sn4sEQSPZ1ygOvVBeLhxb2mgdTk7W93a2t9bV8WOeChp0Nm2chZzoeeoWyx9lT\njz/x+uuvNiqFuzevPf74429/69tu3tlqdePd3fXpuUav11LGq9er+wcdIux2u6ESCwtL+/v7Wezy\nNCZDjZkJ2k9nFpZv9DeS2GxtNU+mKQvt9v5dKeVkdYGItjb3BjFOL05Zci8+/+L73/WBarHz8p3r\nzspqyCcaQdwbuTStTVVPnHvqq1/+QnFhZm5phvssLBT3Oy3keOnatZOnz+aUZvlunHK/JkbbPVEo\nzywcOtjp8sjNHa7n8XDr4N7xI8utzt2p+sILz3+t3KgtH1t1w6QZtwulYO7wbDZs93aHj54+W1Ci\nqPjMRPHOzc2ZycbyRLkclLq6PdhIOyxxoAUfzNWnhquHm9t7jfrkdNR46Y1X55YaleqclN5qcMJC\nJEwDuiVB3DIDHFLbGSFwctyhFMiRe8S4QUFoBDnnDDlCcACIyO4DlrPWElkgBsAQkIjIOc6RHHEl\nJOPa5JyrcZMbG8sceEoUAtEolcMoME6P0sQyJxTX5JwxYEFIHipprRaEeZIiEFfKWCJkJIR2LkM+\nMsaS8zxpOST9ESJEvix6AeeRr7jnyzFoOmBE5BsXCBClgpTC8+VwEI8yzYzLiLjgaZ4DAHdExpAj\nX4lCFLixXMIMAy6iwniPyuQ9ORGOhunJQ9XHTi/fWdsF5JwwZZA5k1kThsU8M44QUDCmwOSIbCz9\nE9HYhQkMx8jOOVdcMMbYeJxgLaHJU8c5F0JUK2VP+UIIApfEOZGVnHPOAcg5A+iEYNGbUw0hhJLe\n2KEkhIjTXAmV53mamChAY8xwlDjnUKJxTluSDBlXZK3RxlrzyT/501Kh+P3f952t/W3pMaUUIpID\nw5SlPIxEGHI/0rnuEIKDUPgy0cS55/vAQAdScVSkQTrlgwRgkCVGEPAAlec405aLsJI6I1wOQNbQ\nsdXjP/ePfjpdv3a6xr9w+8qXL14joiO1sixNDPqw2+0mJuec++XSzt5eY3raF+ralUsPPXzu5/75\nP//Qh94/xknj7KjXL5QqPJIMERC1McbYsTXWOQeEQknfl1bnxuJBs2MtZVlWLhVybT1f7uxuPfro\no4WoMIhTLhQjKxRv97sqLNVrFQaUJnFjoqIkz9J4amISHUmulFLPPvf1Vj+bKnoAAEQEBAAI4Ijw\nTVz/Xy765iDozQsRYKzp+DkAW5icXuDzn/2aIRcf3Gs67J55cLHZa2zdXZtsFOdmilhcfBjs6uHl\nNPLOTnvGJhiqg73to6cftzDzjdevf/XzV1567u5g3840Fp5+/Mg73vFka7/7yT967tLXNxeXZv3Q\nMT8Twzy/t7mJAs8+s9Lq9+J0pItRVPAaU4XuRiceJsNuYjQJJrvNlmL+wuz86QceevarX9vYHfQz\nnse3bT46Mj/xHR985xf+TCpZ2D7YEKRnGpWdtQ3dNy603GGtXBrooRC8PxyA49Z6OtV7uztJf1St\nlInbz372z4+fPFqIgp2tvaXlpWHaPWh3ysVKlo4Yo3JlNqz6T77t8aQ/nJ+Z7e33dvdvIePLC1NC\ntQGT/iAdNuMjq0fr9fpwGE9OVO7dvGtywxzfuLddr1aMos5B02bakFvbuFubLj325MPcU8O4C8TD\nsOATHLRbK8tLoz7rt3uR5xekt3n9ztLU8ZOrWaffOzg4WFhcrtfr5Zre3NkFGz/5xLk47cgIOqPe\nVvvAcbe4upj2aXftysqhGeeGm5vrhfqM6QuC0UF7e6e1d/jEjPb2NnfXVx9Y9VVh7eatxtLKsXNn\nyuWy50smIddyqjGb94bCV5trB1SS7/7Qt2iw5x46BRkemltq39sxBQh02B0lPe+gPl2wiR7pZKIg\nn3z4/J319f3u3vTcYWaEb5Y8V9V7jFPZk7XhsC8DKkSVJEuNSYELAGKMSxAMmSUiQmBM65QYMs5B\nMASy1hpjyDprrTU5IkrOiTEAxgiAEyIFnuf7PjkLJAJPMaBkNHSgEDRH53MuBTIGDnjmyCEQQ5Nn\nSCg587j0PEXk5WlGRJZcmuVMCkCeuRyAOYMeU2S1TRNn46KCgq+KkfKZ8gLFFM/yXOc6J+Iy4Ewi\nZqGHslgEAO3IGKO1JcLE6MiTzuRWG9K5LwLOqVIMuWB5boETR84ZCz1fKRH4PiMUjOdleOrRxyvl\nxr/+hV/KNIDGXCeWUs/z4uHIEXq+QEQCEJxzLt50CgHn/D6dY6i1ds4BgLPW6AwdATqrHZFVSjEn\nEZlJU+55XKDHEUAgIkcCcEwKqbiUEowWnAOAFAKIsiw3xnDOEVmSGWtJIEuyTGtN4wpMoK0jwFzb\nOE6NA0QuvTDO0i996YWd7ea73vn06uElyVAwJaUcJkPOfL8UKcWCgsczXymlpC9Q5M54Qbi/s88o\nUCrMRunk7CJIZXXqLMiiBM6sibXNkAlf+GlGDkEoaXMLqg6eTfW+X8CZlSP/2/d8bOvVn4pNKD3W\n2lqPkNncMYcCGKVpqRwlLl3f2fjOj3zsP/7Ln2cM+t0BkR0vwTVqdWstFzzPc84lAmitx5IgEUmp\nHEMEYIxxjp3OAEFY69JElyrVTqd34sSJX/iFXwAExm1uBqEoIJIXiE6/VSyWfM+Lk2FUDDgSMpQI\n2WAQFatBWBgVK7/2337r7//NH7xfsxEQEYAQOAD9/wX3/wXZ//LlwIE1nHlg8N2PvGNAw93hjXt7\n+bWL91i5WJ6tV+dL2/Fe7kxlYZkH1d5w7WCnOz956Iuf+OqVS5uh3N/f/srm2iYz4dzUagUlke0O\n8vWd5srKys/8388Mdptf+vIrn/6zLybpUJxZXf362k6gAp5T+2B7shqFHtexPjo/Z8pzJb9x7ert\nYdY9cXwx9FkyGna7nWef/UqrmxT9qd172yePLsxPB2cPzze3N3vt4ZnTx5G73dad4tyc1W7Q7hW8\nEJ2jNI885XHRa/er9ek3rl7O+31feH5JjQbDYuAfXlycqNVLUaFj95USPhXz7MB6dOzwESdMqR74\nBWmytB93lVXMpRx5Y6ra6m7Up6aDKOz0O3zQzXPXbm/5vqrXqlOPPvy1r75QiaqVqMKsGrR1MmCR\nN9NvHxxaqT5wZmZ1eXK/ORRQNclwrz+aOb4keTo3ffhGd22iNrG3eW9uavH2zXshzJ4+unD93sgv\nVEmwbpwcdJu7vc3ky83v+fh382D+3ubdVq/ZqE+SzbrDvVpUKUfe3k6brBe3yhLL7XZsXR5M6bc8\ncLrV2+hlB9Va4fzDT734tQtbO0NV3RgMulMs9TQLI1WfKHpcmiy3xltcWP3GV15ptXurR5Ynp2cc\nXMycOXb0gSvXrzkUSuL09AzyNGpULr52oxyOZg+dry4svvjaZU9NRMHSsFU96JjQ1bjEON0LCh5w\nMcpyznwpBOhEIlPEmEPniBAMI43ACYnQIRKhcc45AGKMARExKRki4xyAWWvHiFYM/DAMACBJRp4S\nQjLrtCMDhhCdlFx5Ejmz5Ky1xljnYBw1g84CZ0TOuftBAs45S85Yx5zHFbOWHDlrBemc2Zwz8JXn\nSVYrhvVSiFoHYQiSN7t6NMpzYwJi0uejfGQBiXSmbZKaXpoZx5AzwdFai+CMTtIkrpQjRDRWc+EZ\nk4N1yJgjsmCtcRI9EdU9z/Osc773jYtvtJKhUJE1OSWJpyDutHyvJJC51GljwjCi+5Z9hohCiLF+\nAgBEjpyzxjDGwDpyFhhJJhwZa7XRhARkgYiM9oLAE8oDR0QWkXEEh8450toJ4sgYgR3XCUDMtTZJ\nEoZhlmVCCKZEmuREAIxprcmYNMmAC854bhxjTAiV5XmhEN6+d2d98+YP/vB3yEALzEthNOg1peNc\nyMCXnDMulI/SkyEZGoEeZlky6AtfCsXR543DS3GuJXFZLnDk2hERChVywjzNme35qkCGHHBSBXSY\nGeK15RQ6ERZOvu99v/f0U5/6zV/777/5+xVZaaYmTmMRBoPRqAp+3u/vNls/+fd/4id/4ieAwXA4\nDEOfiPI8D8PQGMMYS9NUKaV1rrVWXjC2ZgVBgA4tJ2NSybgxkMQZY8xT0uSZNVkyGvz8z/98pVTo\n9Hu+rwLlpYMUTF4thOvrm7WZkhdG7fZBfXKi34tnp2dWDx1BEVy5vR4tBEeXV1cOHUXEMWQzQAT8\nf4P1/7eLyI4ZPXMeggNgeT5SYVAkv1Q/s1g6emXtpRTvWdG9vtsdpXT63MTOndd7SVQvTSkTeP2F\nb334xxb0hWuXWu2NnaPBYi6dtW0RJpmLrm/Hz/3Ksyr80mNvOfKeZx7+az/x8R/9m9/1xovXREGy\nEyurUnjDOAZplYIMbS9Lh1fyZ555OCyiVxh2umBGLWL1+YWjly9c3tra6I8Gz7z1ySMfenh/a29n\nc+93fufZR594+NDx1b3Rzvr+ZhRVHStNzx/qdXYreenokcMHrVaSxcrwqdrkIE5KlfL+cHTQ6mHu\nnM5dz504dKxSKgC5aHISwOphf65anZ9dsCYtF6JsEN9d2+t0Dxbn51742jdOnX74ofMPbx6sh41q\ns7vb8CeMSRlj5848/OVnn2c6PFh3WzuvlsOSyeOJyVqWD6ZqZa21cwmQWpydrE2WLWRBTXoUBJ0o\nt9QZ5EwWvvzs873W8PiR45yFTJa80uRmvHbixKniwC/4KoQgkn6SmSU/eNe3POpYc9AV7TYcX3lr\nkg62ugfVii8C18uBsXCQ6btbe5Mm5UX3wNHjuW/bo9iQP+ywkoyuXthZmX/k/Ll3be5u3bh5tVac\ncBTbNOvpPIoE575IbakYnH30zKuvvGKsfd/bP7CwtBwEEQW4eHSq1PA7gx2v0CwUw/bOHhdZfWHp\nxt3NRm362My5XsunbqXdJwGBFgkgB8WIec5yIYhLo7W1SMiAI4BziCgYJ+BkiZATMCKwAEQIwBAJ\niDHSjqwbK45EzgIXKJm0Ntc5cs49JRDR6lxrDQCR8hiS53H0uEbSxmbakAXGhM+lQJFlGUOOUmbW\n2txacrnOuRQouDU5Y0wAGGOZGfrchT5FofJDT0nmSwhF7koFA5hkdpS7WFNmXO6G/WRgjGaMUaqN\nRU0IwvOYSvKMjFWet99pD/s93/ezPM3y3IEz1qXJ/V1WzrnkSnkMEYtc2CwXwO1giFmqyCpwqdZe\nGPT6B4UoIGe10QKY4sykKVeSyOa5Rs7GK13j+0TuPq1mCMSRIR8bpcNClKaYZZkjkkBK+YTOOKsY\nMMGBABGJLFlLxK21VhvP8xjjRruRS51zxjgi7A0HnHNryBgz9hHl2lhrjXG+H6RpmmcmigLjbBwP\nhBBZli0uLm1vrj333Nff+663jAYJJcxjYSAdk1yi5QqBNAGk2SBJEpPkBMTJeVwV/Kr0QkZ+KAJL\nzDokLpBzILLWcjCBx3IIGDjLkGi8O+qkAELGoZY5yMgUS7Mf/hv/sL48/wf/7j/R1b5QwWAYVyvl\nfr+fJKNP/dEfvO1tb3PGWe3CMHTOIWAQhfCm/PLNNTSlFIElIM/ziAjIOWOUEkk8jMJKsRS02hQp\nf6h3W83BBz74LStL8wfNbrVcsZY6ey2TxZJo0O3N1+qp08vLS4NuW4+GxvWeeOrdv/TLPwcg3rh8\nZWp6tlGvEDkAGFfu8TsLgESOCBDpf2HrbxZ1+kvfDH/xAgwwRQjMC7XVkot4mIVh4fTyky+8LLGc\nH5kfdfTmhZcuzEwsrt3erFVWP/LgD5JlikPoKp/9wr/pyV0E5ecpxwIwXozkVLW81PB3Nneufeby\nS59642cLv/z4ux77ju/+HrETdxrHF0xiX77wctQIuFLI2czCfN8Mekm/lY6CMFicWo6Y1+8N3SCZ\nm5ktRgUC1mvFu1Gn0pjcbrYPryw/dO7xg27z+s1ri4uLtXJ1b+/gkXPn125f3+nsV6vl4aiPiKEK\nYqvLxZKU3kJx6oGTp1782tfr9cZgNBjEWRQVtze3yo1iwLjNEl95vgftJIVYjOKk083CQlUDTM5N\nSR8vXnlD+MoxCkRVZ7zV6gAaLvVb3vLA1ct3/FqZ84XNze16fQI4r00tFYtFNGhz6vaat65s8Nut\nE6dPylAMk2GxpDLncdDMuRBhfWfHTM+/84m37+01KZXZoLV58d5sMOMHUnkwPTWdpW5qer7ZzP2S\nOuhuTy6UJ6a8G1e2K9Fsd284dWLxXmez32o6LiamChzdcDjsHvDiREUKF/rF0qEjU43Ziy/fuXLn\n2rd9/KPHpxfml0qBVGv3bldK4e7ehi+pXi/094bDfDQ1XfvYxz7W3uimfTPdWKg26kdOLV+/cTU3\naX0i7PS3nBXIzLGjs83O6ND0sdG+X/bmc+2yxIVAHIEDxf1RpT7LIECJgGmcxpKHJBgxtOQAmBw/\nteCMcSA5EgMihgCMkTW5MXmWCGbJOgbAGXHGGCOOXApUUiKSEIwjZlmGQMUovG9wBAscDQEZ6+w4\nBQAEE845cGAcApLONRlyzkkupELGkXNOZMEZAPAVCwpVyXQhlJViAQDiUS/VjnMvT2LjeG6YI04o\nEEhbZ3XqjGWMGZsTCuC+YIpzDsYGQjmjlRDVatWQy7X2PC/NszjJyRmGYK2VQgXKCz1uTJ45LpV0\nQJbMY295fP2ge+36XTA21Xm5UsnymHMukDGBxhGAdRrGOjhHjsCdvU+xkYwSnCEHIucMCgbArNUA\nQkqptTbGODeWcTiAQ0TPk5xzwTkRIKL0FGOMGxwb/K21aNDhfXFfGyscEJn7Kj84rTUTHAjHug2R\nyXUK4DzFgJHPq6OerpYmfu83f9eMDj7w3meEMIUwFFZKT1pmGOPWEDKR5mmcJHk2kp6Snu+Fngp8\n4YXABBDyfASaCCWgQiGBSSABBEJ6GnLGGRoAZ0E5BgiGgDmBICDObGf93mtved+7nv7Ad/zrv/dT\n/+0//f7sqaPPvv7K1NTM5z73hWPHVsdzacbug+n4Nmqtx7A+Fr7GKREM0ZFjSM4567QfRLnOyTpE\n16hXrlzqYqOETPTbnR/90R91AAXfz4fxZ/70k4qzcw+d2V7fXLtzt5+b0uycFv4DR490KjVybHpm\nAUhkaXr2xInx1EQw/ubt/cvaCx/z8f+Zod9H9m++eBP3GSIQOeJgnUaUnKMzihxIP+jGIyn5k489\nZUA3exteWqpOL1lLN9d2nnnbB8gasGBRfvrPP3399triytHY9BmSMcYx1417xxbqb3v4nR7yrXtb\nKP3dtd7tr6//nd/42yKRUCjgxt5GebF2ZHl57c49p63TMYTZ+bc8+OwXvzRKTMn372ytL0wvUi45\nqqWFeUC0qFM9zNJ8fm7p6aeffu65L283d8vV8lxjshaFWC82SsXi6pns1msazMT0hHZ2ZnH6+s27\nB80DIDET1Iet3lNPPL3d3I+BdrrN7U7z9MkTg2HHZbkSampiIsvyYqmyubtXrlWPnVp0zu7ubS4d\nPpbGmc2yMPKNtUEUTE5P18vV7d3tV7/xerlW1pTOTs1Nz04cO3660xvGeeyXlBQ87o0ynZYqjZkc\nh3GqB7SzuW49ExYCr6wajVBrI9nk5GSpXmq8ceUbeWwnG1PMlucmZweddikMSlU/y5NaY/bsQ0/f\nbF7b2LmRc50O96XvH7Q6tcLcZG058NQ73nZ0/2CvP0rv3rtdLNTTNAUaHZk9DKidYCNKdloHcyvT\n7zx6tjs8AMN7ze7S7MLRYyeLKpyaWdjf3+61uwMNl65cP3/ukVNHj3/q4p/ayZlKo1itlzb29o6c\nOF2Mgq3WzaufvzQ1s5CF3q2rd5469wGPqibmvY4/6saCCZtnQRByKcLCBOMKwCKic+irgAyEXAEB\nEjDOCDF3loiAAWMCgMiQ1mM+65zNrMskYwyJAQrOGGPWWgSL4IgsY4JzZABSCsaYlBIAGABn4v6T\nTWicM5YIGBPMaTKWkDHLmDUWHHFAY5wQnMAhku8JMIYjK0YRcy6IpJKkk9ikDgC44HmGXAVRVORe\nEAZJnm/pVGvr8hyNceA0EaEEZ3LGpTE52ZxQGa2DKJKK5XmujbPWGWOAIUfkQM5ZY3WSJIFwCcv8\ngOV5CiQ05UtLyx/98Ed+9/c+8fLLr/hhmOmMCwmOeZ6X6RgJhfKyeCSEQEIp+TdpGmOMtAUEJjgy\nFONwNETnRJJknKNSKk1T51yWaaWIMZGm6ViL95QSQlhLDJm1TgoODiVDYpjnOQDgfQlIpWnKALlA\na62xlogUZ85ZY8z4/n/z/wMEgCmR7vfbD5498uEPvrdWCYphyeTEQ1Ae19oBQJ5bMi5JkjzPuVSF\nYlkGUVRuEPMMSmTMGCOZB2AZEJjYOc583wpBKARYtMQ4Y5wROgLhABAJrbBCc6VYXJz0j9Buy1Xh\nb/2rXxyM3K/8zv/4vr/y/f/wH/708qGlOIm9wBfIrLX2zQI5jqVzzgE45ELr+2luxhjOkXM0xkhf\nZsZaDYDSklk5uvjyy3673fGKhWHSXjy02u300WgWxy9+/lNve/KxMD/2b/7lv3j3+97rB37n3rXE\nuosHg2pjbvX4yTOnzwKCI+OI29xKpaw2hPBNZeYvSep/Afp/Ccf/JxY/rkPf/BPnBGdgXQYoGPJh\nnOVIluHefqtQrlcK/nzp8Fz58G//0Sc+/ck/+9V//8sCjEkRwArJ6+VpZrjNctCQs2nkeRAUogjX\n72x0tjb/yU/+7R/4yFMInrXQbo+2NtfFRHVie+Pu3u69xcVD6CDCqNVtywjSQffKK5eUi1LKm4Nh\nxySBSxGsQjZI+41GnQtZdKLbbm3e2VyrzlsmD59edSbJTVatNXrDwddffP744aNJrA0Nc8pjm16+\ndaVWmRx2k9ArK+Xn1rz8+mvbzWZlslFp1C9dfP3I0RVG0CjV7m7uDdkQlBrpvifEyvx8P0s2d3bn\nZpdHwyTwA+dluclHSddoffrEueLcZKPS0i4ZZd2N+ODmnRvnzz5RrZVItHq724PuYGlxuih5p9tU\nHnmBXViYFQwO9uPU6tTGhaK/29sPw1BN+N5k4ElRCaLD86t3bt0+snTo2OHDa9dvNvf3vEKJcyuF\nuHLvedZQquYdbGslgr1mUqmVJ2tKybTdT6RaCupiaqHgF2tRSWX93u5eUxMrVYp3d3f2u+35uYmJ\nsNbZaR4cHGhrTp4+xZW6ubWO3CsEhfr06pSQa+073t1blUrl5o1LM3OlycVgOEiTtJlxy6PGG3eu\n7+3vTM8fLZSX56anluaywYGIOzTaTwJmPYYONPqgPc3CAqrAgUV0CJJTCNp4ngVSbmzZ44wAjDaI\nKKXUxjDGHFlrNViHSICOMcyyhANyQCAC5M65cXgAE5IxZqwWyHxfMcTxp5ELAcB0lpN22rlMG0NA\niMmwJ7jKjHaMI2NIxBm6TDvtGCAyQnDOOsmgGElfYZrqJM9GWcaMClhUiop+VAAvIHLA0DqXO507\nYzlqy4faMed0njHGlAqIIwqw1qFiDFgcx77H0zQHhlJK58iTyjFiZDg54ogMrcsAJefCOZemKYLs\njXrNg2a57H/7t3+w09ne3OiqwHPOMGTOWE6cc+6MY4xxzu83447I2LE1UyiOwKXkSqnxrMJaTQhB\nEDjnnHOMiTFyOeeIkDHU2ho94oyFYQgAzjmd54TG0JtqDwDnEhHzPGdMEKFDQouOEJHfV4bhvojx\nJqYAIuNMOpc6Z6PQ+yvf9e2rxw8NWjvGDMOokjqWAxBwpXxl9TBOsywHgIr0KkHohGQggHmWKUMI\nUoHIKNUuHdkk4dIDyZEJg+iIFPPBgQNDaDl5QETcWK7AcsMlSVWZr2skSIeSso//9b/6A//n3zp8\n5DRYcJa8wCciIBoTCM45ACMiY8x4kmEtjJcJxsg+vglCiMxoAMklT5JRgH5YjH7+X//r25eu/8wv\n/Kvzjz+cGp3kWQn59traicVDf/Jbv33zjSvPPPlYHPezpFspRwfr62t3tl/svfiOd7zjxIkTRASI\ngGisZZa4FOOmYXw//7LSMu6fvqnMjAcv9+v6/3SNv4Vxgjd/L6etFYIP4zR3zvOqcZwlSe5S+pVf\n+ZXL1974Vz//j33f9XJTiKTTwhH8wA+8v1L0f+93Pl2bKAdRcWuvmY16BhgmAeOABhBkHg+kYhMT\nqtY4JkQG3XZ3enleBirTWRwPp+r1xkSNMaaq9tzRle528sbVy1pBi3pBHnS0PjK1PDFdandaYTGM\n03RybjGq1OrSSI7AWbOzff3uFZ8XT504Oxx05+eXmu39KFRJV/dG/V6n7aEkTWud0fmzj1TTYi/u\n+5zyXu/wzETg8mE+ELLiV0ssCLuDfm51Zbp+e39bkMqtubNx54Pv/dbXX7nY66YrR+cHQ7W7G3/i\nU39y/twTk9XJmcnZF15fX7u3dWR+9vIbr3PPT3KXGp3ajAgrE3URyN3rd4xO9nbvzs8uxP3R8rHj\nhXppmI1MHqNzivMsT1JtrHGlYjQ7NSeMXt9fWzyzwre4thoFSp+vb63bHEqVchAEvXZCxhu0u6O4\ntzAzceHa5ZyyWmWu2+4M4+FOqzs7P1Oaq1+7eu1M5cTkZGPY7+EI91odTyqrk2ZnEPrl0TDfXe+e\nP/+QdtYBamKRqkg/2DzYXJiaDqnQjYeXb12tT9WrsnLQ3AtLtZXaQjGseVTsbuZZk1ob24px4myv\nux+FPhNceUFUKjPuOWcYcAGMrCNKkDPrOEDuCJhjAFxrnepcSs8Za8kIFESOERCzSCSd5UhWsPsB\nAwIBHDkDJNPMZnlcKIb3n+wsE4yXiwXOpEJinJscc221o1xb68ham+aOKOGcM3KgnQBw1hI4Am3I\nciZzR5m15UIxA5Xl4NKcIQR+oVIuFAoFxrn/xbkAAQAASURBVKVx5PLEMTC5SLKsPxoi58AYgUHB\nrRbIlBAMXE5giXnMOZfnudMEmpAZQ2Ccp6RxWviMOwYOiTMGBECSM0fEg8CBIPSMQ21cko7ivFso\nVb//r37/888+e/XKrW4vISYAnCUiAoZOjI+PGsePEAFZTgytQwZh6DHGPKWIaGz7s7m1bmyhYb7v\njy0unHNrreRivCYTx3Gep4wxIYRSPjnE8XQVEYmlaTr+K3maCMGcc5k2ACAEG6sxgBwZG0sWRFbg\nmOhbJooC2nVLTzx1vnvQGWUmYjKUnqdCo0eAQFYLgWTTeNQtVAoYFYwXOR4oETn0OFNkjGACUJOs\n5HFOtm8ciCzlznjoE0eQvnaA3OMgHI15rCJnAYGBA8GNA3TIpAI0jYVpiT6g0QKcdh4oYC61uSQh\nhDDGIAeGzPM8AABHwIVz4GAkhCBrgDlrJTDgPNImTw1RsUpgHzi9+tYnn3jmnW9/5O2PzS0umDzj\nSL7HhcTzD587ceSQV6r83ic+8frFSx//wY/f2Vz748//eW5ZqdzwGTtz+iQgpnk2/qFjLB6DNSKO\nV6zHdfqbWD/+0jelGI7MoXXO3X8vgAEQIhpjLTgpJRE5IALHGJR8laYpkkkdyYKXSvODP/T98zOV\nwKdRkgUKnDXIGDIOgB/56Fs/+rG3ESGCAZCWYGevrbWdnp5QAhwB94vGOZc7RBRFUAXmH5pbtsw1\nt9spoEcgZNTnwysvXn/02KMrjaNeIGcrDfQVppK0/vI3vlJqfASjYG/Y6ZpedW4q8dn6ta1MN6uV\n4kR9YWdnoO3eyVOrPa05k2QBc9xd2587NFushYLh3NzS1z/3XNI7WCwV51aPJFk2Msns8smoXLix\nNuwnrTTvSZ+lkOfIpmeX0zRPdRoWqoUg9IKABSzpm43dAyUQCZYXFuJR5wuvvfzYY49xa81IZyn5\nLKhVpjsUJ6OWsRiFtW57sL19oCT2O23M89X5I8Ww2toZHl9+ZHFy8c9f++PEDMA6x1wpjDzB4KC7\n6ld3M93rtS4mb0RhUbgwGxpCV5mZ3Ny/ExEvl5Ayl/TbNrWaF5sHTPdNb3tXaTs5OZ3Gw9XpOZPm\njMwjDxyPs1EUlgqqXitN6WDQ7XeDSjRXZFevvDw/ceSjb/2WkTO9QZdbdDYpEP+OD37sa9/4WqFR\n22ndIOEVo5mSmFo69Njm1h5HUa1Usyzb3t7vreW2q3wEl+eUZgVPRSoUUkqphGM5GSACRIdAzo03\nL8b6zDhO7y/REOucY5yBI0SUkpMjY/QY05WQxhhjTJrGDgiIeZwRcNLWDSwAhIHnScUR7pMXAWme\nM8FNpkdxAoxr68bGRMYY5zDmqogIbw4zv+kTB6AkSeLRSGtdDDxPcWTCAuU6pWx8aY0MWWAspJnJ\nNBl7/wOGNrc61Q6Z5cwPxh85Y4kZy2As6JPVdpxLzBwTTDpAAIcMyTokclYPBz3yS4yJb07GnHOj\nYX9xbhaefPLWzXtCMCmltjkyzjnLU+153phCCsHGKzacc2OMkp6UMgxD52A0GmVZRgBKqTE0MEZJ\nkkkppZRZlo3l3fHMYOy64ZwTodYjKbz7o2ygMWqMp93amjHoj00046yVb7YRBISIHBgAsPukMucm\nu35rzTdOhoEAYEEInocWGAACkdbDOM3SOFC8qCRnYLLcr1SACWTcEnChLDl0ReCgqhGKTtJqsUQD\ni0BZpEIcD70wAsgBGAMEiw6ACUZkx7WJMQYI5MhaVylWWrsH+UjXZhZAwHhy6XHPaH2fCMNfAKhz\nDggAxdhvxZlwTjPGlFQ5kQArhVzv9q7u3Dz7+CP9fh9BPPrQ+dylTg+N6fct8ojfvLj50Jmzg5H7\nxJ89+8hjT3zyM1/1QtGYO5LlDrlXLEaFQiFOR4VCwRjjex4gN8aN91EBYJxZNra8EuH4fRwbvcZ7\nDOCcA8cYI0JEToRjfUwpxRggjsM2iHOOCq0hIh1FUa6H9XoI4BqsQJVQ224SW4QJyUDnTinmDKVp\nHBYC5xxjDIBnOlXSn5quiHGah3PMOeACGTFEYCSuDtYrh6aKgd/ZacZrzRMrx0ToX7p9xUc9N18b\niN4m7PP5cppCd2O/wSqDYff7P/q9SoZfff5rE9N14RiDoTNbc3PVWuX01sZe4JeWjvLtvXUjhrHL\ndzc2rcsPWs3eaBT2R6WJ4uTsxNLKfCX6wM76VhJnBE6EQT0oidBXvufJys2bN8rlslcMD002rl+7\n2drdnJyYctYVKsVytaLTwVQ97BzkkSzs7jb7w06xGp1+8HxttpyOhqNBe2V5+dTZB/e2eo5xz/el\n75WFD5abjB/sDlcXDp9/+GTcbXtBeXHBXbx48bd/7Zfe8/Z3BpLHfR33NOPApjyUvAOJrBX2Xl+n\nKEi6pt9u1WcnMpbeuXy3vjCbjrxbe63VpWWWuQCIecn5hw5Xa9HDjxwCh3dv3Ts4aB4/fmqYDLPR\naBh3PAqEZKNef7Y+u3n3nhdYh9DumtOnHrS5ltLbaq0Vy1XGtdbZYNj0ufLDYr1ccilTfLLdyjwv\nQo8uXPujvc6oWl0WwansgPXvpml3xJAUegwcCu5Jj3OhhKc8Hxwj1EgMkSxYcOP+0FrEb07ztdZ5\nnhORQxRCkHUWxomK1lltdW6tJrJW2yzLjLVCCEIgZByFx0EywTkHdIwxIXnkhwXfQwRHCMjjJNHG\njZHdOtDGOQRkSIwTEd1fPxnLwQTWOmdynSKik2ZMl3qjBEe2x2zkyzCQnHOwTjvrh9UkTYaJGSVZ\nZiwRZ0iCQHpAQgFAZh1Y44wBIiGUQG1BjBt8Yw1jjDMmUDAuANFZzRggglIy9APJkcAa49LM9vt9\nAFBcFMuleNibn51CRskolhUvS1LGwOSac57pFNlYhCEiR+DSLOGcSxkWCgWtda83AADP9/M8H1c1\nzvnY2DceGBJREATaGg4813bcSjgixjkAaJP8hdTL0AFZY621SPdPNXlTEcYx2SeyQADIJOPjjTNG\ngM5JxmuzMz/8Xd8aTU2beFSoVxIDLigyQyxzoCG3eZKlmlwQBB4Xbgypb9Zg5xxx5ghBW5AceYUV\nheKjbNDy4xiGvawUhaJGvQSLtdhkTAkpOLdvbv+MzfvIAMG6MSl2gXDba7cLYUEWq8AAnHOGIX9T\n6KAxKQHGGKEDysmRZB4Scy4HBAaUxHEC2th8sjjxyvMv3735xt/9e3/7Zv8GKJDWxnFeKUet5mbS\n76JOrt29sbm3fuvuneml4uRS8dN/9qf1ev3o8ZO5hoOD/jvf/Q4CxxhzzkkhgJixYx7iOOcAfzFB\nJUIiJ4QiAOuALFlEaxEdAYAQYyGGjW014/eOcx7HcRiG9xkVgRRMa+acCT0/T40DDZysBsG8SAjk\ngGiUB0CWCR4WAqMzRCQLxH0lfW0yKXimYwFMjCM6rHuzGoIgG5eiKB6OOu3+1Nz8sTNnvnHh5W7S\nPbl6YmF1evtgsxi58nTVueK1vKucOXPomLMp90UhDCrlxrkjj3S7u3fuXrOJFs4/98Dxl15/1rBh\ndxgnsTtx/Ozx06fubdxOr2Xv/86PfO4Ln7147cqJYx964dmvzM0enpqfffGFl6anZ23uZhtTg04X\nwARUOHb0bH1mcn974/blawu1uht173T2Zg+vkCD0eZyOJgpVM3UoKBSPrJx45dpFGZV32r2oMS2C\nRBwMIlV49dr1OM3Pzp6dn56acRNZmsSD1vTERGeyUawHxXJ1/siKTrPNg96pk+fu3L7OI3/n7o1T\np85Ioa5du1EszQShGqXdl29cPn7q2GLp8H43vr1zKzc98vOwwuLtvdmJ6YvXt97YuFQKa+fPn792\n68JBa7+X0sTkIV+WalOHrl69vra/1R81B0m3VIk8n+8fNDfv7B5beuDo8rFWc7tUri+cO3Fj49ZE\nvdRq73EuQ1H1CuUIUDFvb//G5s6dcq1OTmY5OMYbjQKyoXBqZalajaa7u8O925ZnoQLObWy4E1II\nJSQTRAhKgODWEgfG8c2xD0N0YwmWnCUpuWA8juM4TZRSnCMAA2uJyFhrtNY6A2eJrHOGgdV6nJLC\nEIAhE5xxBMGAcxBc+oJ5nHmSC45k3TDW2tlRkjoL1lCWa0BuLUkl3Zs8c2xSBqL7NJPIgtO55QJz\nBgoAhbAOjM41WeuMsZaPM+A5y0bxKLVZDpl21hDHLJCsEoSR52dJmms7ynRqIc1y55xkEjmABq31\nWHDngr2pmYIQ0jHGGfgClRg34ICIDoELREZ5ngqhdDZQSvpB+MxTj3/tuZcPWr0oCIfxAACEUM4a\nIfhYSXDOEVhrTRD4SqnxzZdS9vt9qXzPC4bDoedzKbxxM8SYGF/GGCIkMogoxDhsAIxxQohxm3V/\nXkcwDsokR/SmBDz+6jeN9gjsPqAjMWSMgMghARk3yszqAw9TUGYsdIBBVNCGs9CBA2ut4waDiEsF\nzqWZ8RRXyifjxmjLGCNnFePgjecvHFlkJGBVMp9nOmbZyGjNw4jIecIbSymEFh0whgj8m+DImEBS\nTg/B9EMv3t28sXjivHWEjDgKS+iIGCAREgFHhpyNwcs6w1gwrjpCcgIWeJ6LEwvkAP7kzz67MFVm\nAPv7u6WJSqfVLpcKf/6pL1555dVaMQo47m5u3Vu7ledZIfJv37h8YnUl0/byxTcaE/PzCwtPPvmk\nI5dl2bjZ4hyRwN3PGwBEbowhIuvuHwKjlMrz3JBjTCCgc44AGWPakXOOMZDAkTPB7o/Zx5798cOv\ntR4fKYOIBNxq44VS21T5vtFCCA+Y2xtkubb9Ydzu9uYmp2enyh4CghuvR0iurHOeCIzWwOT4kByg\nsX8ZRAV9N0h61J87MvfiC69WD+ZACeUFtuS2uvuA0DrYbnf2lo8eOnp+yeV8efLwxTeuFPwyCymD\n3hvXXhr0R43GlF9iXOY37r5UrpV3W/bkyRMmd/s7B6O1W2HJO3f2+NVLryzNzxw/9lSjNjH3zMKd\nna0XX3nZWeuGyWS50d/aq1fr6Sj1ufU878LLr2ZZniRUrs0YtEWPKz8AJe7cXW+FlfnG3IkzT+x3\n9sFjTzz+tizVGTmkQhSVn3p05asvfaXWiB4/vqp1Nhy2u90mRxePRrVSdPb06vpOi7i4vbXe2j9I\n4/50vfRt3/uRtfU7w8x+7YWX3v++9y0tLTX3mmEYMil6TfP1/Vc6Rw3TcObo0Ws715x2rJf5KmxY\nPFKrVyZmOqNYQ96Ynd1qNh+YPVNTCwBoVH9ioq7NMIxkqTaT6TxOB8BZrTG9vLI6GUwvzR0bB9T2\nRnuZaXVbzZmZhfaw09wf5aluVMqVwpSnKjmzRploCm9evuXR5DsffXo/70sMr1/ebG+T7xpW99Gi\nNo4LzxFwwS2Cp3ylpAXr0LncEtoxTeecIwegMRw4xqRzTmsNZKVgjDGnDYzzeq11WjttHNnxGXEO\n7DjnC8hxxMATkecJITzJGWOB5xeCUEnJkYGzYK3WOk4zyWVqbByPLCDj43EfjukzOjumqwyRcySG\nzt3nOIjoHORgrLXgkKMYS+Jxqp1zyJlQfmbiNHeOGGeeYNZjVIl4pRQFEjq97jBOCREts6NUjxkn\ngCVrrFVKKckF4xzQOefQKeUbowXHIFScrCWLjhuTO0LjXG4MIfiBEtxZl5Lz3/fedz30wMO/89t/\n8PUXX6g1Jp0DbZzne9ZaRM4RcpMJIYrFoBBGSsk0TY0xiGgd6DgGgDAM46RvjImi4mAwGGtR36Te\nYxz/5jh07I3hyDiyMSJ8s+tiyJARY3xsybjf7CMyJE+IsY7hrCUAxjgiI+uUH4yG7X/wz/7xH58/\nX5+Zsb2RFSiZsjTKbebyZOzVsTQ2r0IgPBBSW6MAnDGIlpwjR+39vY3t9VOnTzDt/u3P/otsFD/9\n7nc88c53iPC4gcwyZ1zsYYQGOSMCQyQA7hdUom96TyQh5wLLZdns9G9dvXzk9BkCE6cjpULnHGN8\nXILxzRj3MT3R2iE55SlklOWGSXlzY1cqnAgrt27cs3nDAMhA6niYdQ+efe6C4vTYg8sbd9ZCr8SI\nH+zFJ44eu3z9GvdzBzbO4iAKo5JylCiltDVj77w1ZlxWrSXg4IjIuTTL3nxEHQCkOk+zlDEmJTfW\nOkeMsdwaDmit5QydcIoLYPepzDetnEmSpGk6zraTkmeghM8kFy6zTIAfeHd2er/9Pz73lZdez41p\n9vtKqWTQ+56PvPev/9B3ViPGTeoccOVz5M4Rl75xxARjRGysvZIV5Xptc/vm7Ew1TbefePKkY6Oh\n7c+uLjkGvVEcRVHPZViY3tjLBKSSM0ivN6bK2/f2pxrzQsper7O+eS0q6friYiCLwx5yT6W9nVu7\ntxemDu13dpNuO783eODsKdNuv+MDH2K+/8aFC/PzSzm4+cOHNm7eS7LM8yQnNzU/9eLLL+WUBc6W\nZHDvoNMaxfWTx/1ASCleef75nc2tqamZydnDhuGd/W0/kMy57t5evT4xFU7c29+WUrqqWlic7g97\nzbXbzplWq3XQ2k/T9JFHHuu1k36vU67XKkEBi7pR8jlfWLt9Y3t3Z3tjRwGL4+x3/vvvPnDqTK0x\nubO9xyR//PGn3rjw0s7uVpLbVj7yrOu24qnJo/1m97U37tSm6uVGQ5VHxTJrdtohN0UFvUETGLV6\nrUqtWK4uKS4SF9+4caVRqxiBHdvrjvZHybBRmwbgSZrs7I3S7sHSTL2/u2PSXFs+Pb9QKVbzOOm1\nN4JIrt27KwN+6NCh4VaXQyRG8Y3b6/HQVyaCkVSWW9S8EEjLrLXEgHEmhUAApw0AkHXjRVAiGIcS\nEgKgk54CgCxPrNNKKc+7774wWf7mAUaMC0a5HbeTWZYzxhgQRxAMPc4CDkoI31dKqTAMAy9kjDlj\nkyRJkgS58v3QGOecHsMQR0ZoicYnIlFunLUWGTlA4wDepPOI6CzgWEjg3GnNGTjALLfWajeGM6u5\nDAhzsA4pFxwCReWA10KhCcKgoC12+q3BMM20Q86sA/kmsfU96UnBkTgyY9Aik4KTszCuXsB0Yo1z\nxhoCZgCl5wdRMc+zoBQwZ5zJiWVHDi8+8fi51199yWSjNLPl6kRuMskVuLGjmVtryYK11hiWZdlg\nGFtrxwx9NBgWi8VCGMVxPBj2fD8cjyLGgzvOeZ47ABiHcY6JPxGGUTg2/zFwAG8mcd4/muovlF8p\nBGMMiDEEZMwh2vuUEwDAAaUuRyDP0M//o3/0L37h/3FpwgIFDFCPTNKzaY+cJgDKcyAKwlAIpbWW\ngQ/orDXoiDPQWTZav21au91i8cLV25du3Eo6B1999osP/9EDf/Of/rvJ2VkAiWSRkUUDFjlXyN1Y\nZLo/lUQAAgvEQSlVyAa9qcna65fXjDHHHzwb+JEjuK+2gwUkB0iOkKG1TgiFxJwjZ1ImlfT93b3R\nj/y1//Mf/H//9unlQ539dsDS9t6mBbp59/ah+YlzTz/Rb7fqxXJvmL3+8isH/U51srzX2y/UCxu7\n21GxWJlsRFF09fq17//BH3YOrCVPBXESB56fjLMdGDK6P50y5Djjztk3u08LDJEzY8etLTqE8c4w\nWCcEtxZAOC48Bowx5vt+kiSIGMexcy4IgvFj6fnCWTAWHZPI/c9+8Y1/84u/MdKuNlPmBlfrh9Lc\nFBYW/vAPPylc/Hd//IeFFBxA62ws9BMy5OiAxseWjde7xLDfXZidCyLWj0d7nRb3dVQrxXk6HLCJ\n2nSztb+30ykH1WqxxJmemaleev3VY8tHVo8s21RIrxQuVTObtgcd2XUKfGupWqlXZgtfe/51TxWP\nnVk5uOn54azJ7OTEfBrThdde6fTahVJ1a21TSd9ThXKtfm1tbWF6dqR1dbLhfM+l+TvOnLu7tdG2\nuSzIoFDY39l98PzDR5aP7K9vm3QURvL23Tvz0zODZq/T7zidi0lXFsygvXTjdc+TJo6rlWK73dWx\nPnb4hFJKUnDk0PFOfxgWfAG8FBU4p9feeHl/d3dvc98Z99an37G2vrG93wrrU7c21uvV4tHDi/VQ\nHjm8cv3e5srRo7OTU7vbW61mt1KeavVdFnS8Wr09itNkRESt3YPTp05u3V1zStxdu3fqzBn0xZ31\nteZ+69jqytz0EmkHmAjFnJd948ILjNgj559hULDaBTKaqDSsjRuTpQxZu7eb6mRj8/bBxu6Zkydq\nYWWv2+73eg+snH7pwmWuJ9KDQBg/G1qjU6YUkoXMOOYzJhC4FJ6xFp1z1jLGhGRcqHEWGPCx29Ax\nzqXkWmuttUDwpUBHAISOrNHOGs4FQ2Rw39eF7H4EgbFGKCalRARrDfNBCi/0w9APOecMhWWOGWKG\nnAMu+XA0MM5y5TmtHRARCUBghIAMkSEBAQHZ8W4OohKSc57nubMABAhgnHVuHHKjrTMAQIAOKCxw\nBMM5oCVOFHi8EErfU4y4dSwZz36TxFiSvjTOaiIpZSBVpRCFSgBZhiJNs8w6X3BPBNZpKTgjTA2l\nWc4VRoVQ50ZbFNIvFssmH/i+XwqKRjPGzMkTR97ylvPbO7sTM4sXLl211v0ldyMzudVaD4eGCZ4m\nOSIi8jRNQz8gok6n05ioVKvVPM+FkoO+HlfQ8WGBY9sM3K9398d01lohBBcIKCXj4xh6Y4wUgjG0\nDMfe8HESmXPknOOMAWeG4f3zLO4PY63POY/N3t6OiYeq4BOl1uTcpegyhkbniXPALHHPU2HIGRhr\nhGDgHAPHBAPnOMeFx59YzEeuZ3rdi0NtrOCzh5ZbzcFP/83v/fbv/eF3f/TjHBQYiwgkIEdUZAkR\naOyVBSILZBEJmEPw81ykWfvwYu3mnVvmyBEWlu8nPCPROCzdkXMgmTJckkV0IBlHzokx7eA//PKv\nvvr8yyqMDELPxIPb2wf7e5VCJfLCS3e2JhsTyYj2ugeqWueVkunsGJUqP4KUjpxayQ0sLxzp90b/\n/K/93Y9+5KNGW4ZiNEo8zyfCJE1V4CPDMWp/sz3S1tzPWyLnS+Wcy9KMiIQQ4y3uLMvuK/MMAMBz\nkgQgMqXU7u6u7/uMjYmRGFdoBjkyyK3jPjiE3/2dT8TD4crRuVZ3pxyG/XaLgXS6cOzIysVL13/n\njz7ztqeemm5EhijkmKWxlIpzScAcjacwzFrNdv9/RP1XtGRZWp4LTz+XDR/b+52+sirLtqt2dFU7\n2oHUeBAI4SQhiZY4EtKQzhE/CAFHMBokjgxyCCE8gja0993lK8tmpc/tXfiIZaf/LyIL7Ys99k1c\n7BExVsz5fe/7PFoliKfKF0XEbFtNaBVXV2vzSwuRM3mrXr1w5nS9ElIDKqQegZl71t8qhr6a4Gw4\n3rrxstWTey9chDoYd2k1XnAWHx4cNWYb7/vgo5PiaDQaeHE4SPKRMH5j9iQpWrNLgR/1jk+SSRlG\n9YXF9VzA9uLGWOmeFLTdbC0vFNB69dCPvKWZthglz37z6eeffuGFG3cK6G31x8OyuHnr2njUTSfZ\n8tKppcWNa1fvPPPk88POoFZrQhbEtfmH73074u1C8pNBXmvMRVFUlJM0O45DS1Be6EmqxMHJYHXx\n7CP3viUKm2unL+KwFdZmH3/88bOnV09vLq2fXqGNcK+YJKXJx+nXv/a1UTKqNxutpXkYsVNnNpbW\n1ucWF5yxGKDZmcU3vPEdy6uXDGncvrW/uXFh0J8QbBgXZdkhSM3EjUajXm1Ua+1mVoqF1fbMCu8N\nb9zeeinw8Ae+/QNJqmqtRcT9L3/rS9duPX/Su764wD74wXd5Qbi2edpA/dKrz1kDqIuSbo5cbTQi\nRQZChojNgXPGBcppQKAjCHGqADAAQsoswhBCCO/uc6y1xty91ANoHTAAWM45IUQppaR01hJCKKX4\nderLtDPppjtJTO/+TTH1OOecMcooxRhDgB1AFkBlgIGQBQHEqMgFQBBiAoCFCBngIMEYAWuMUkpr\naa11zk5TYpThv6JuTUfeEEIHASLs7v7QmOmEGkLoMW6kgsYApxlx1dhvN+u+z5VSRsPhcNzvDaXQ\nCCEArNZS69IoCR2gAFFMPE4rvt+oxNVKHHIWerwaRgHlBCJOPY95nHCt3GSSjceJsY5gDzjYarXj\nOObcX5ifpRi1W7Uf+sHv/rl/+o9+7G/90NxMPQpCipHVCjqLAOQeDUPfWlsWUms9vQxNs/MYY5/z\nyWSita5Wq0opSimlePoEnz7Wp0c8Su8mlLTWhSiNu/vuQAKnh/og9BnGnNDAY2HghYHHGSEIYwin\nbyLGiPwVqxICTAlwxMNeqtXH/sE/pO26KDONLCYEWIcx9ryAEIYcZtTH1NcWGS2gNQA4bSQADmGk\nrcIe18qYvMhGk7Q7ZspVvMgRmlFYluA//9Zv/uuf+7tbrz0DAACIGi1Usm+dBMBB6MC0qOmmsl1g\ndQIAgJAaLepVFHD59a9+DiGglXVTpO7UsuucMQ5YYCzAGFsLnDMAOiklQODlV6/Xlhf3Dw+Q1eVk\nkkzG125cjWoVgmnLi3v7h0e7d6wp4nrgxzRTZaXVqLWq1XY1rARraytGl/ecO/fXPvJBZ5S1Vgox\n/ShmWTZdd2utiyLLpz9lIZRUShljlFVSSgOclLIU+ZQAYYxGCL7+2Z6eTqbjMaPN3fcRIjLNCyBE\npod3B5kDjBOPGEaA/vs//cPLSzPbO8ceaxSpCZAf00AWQiiUQv+3/tdf/IN/8kt/+qlvEUa1dYwg\nBAGw0GmgFVAClQKWAiIxTofdEeahV6snuqjNxY6YXJaqN8a6QC7P0wNVHlCaZGrYzSfA9+J2LdN5\nq11bWZwddTrj3qBdn2GYqLKYaVfb8xVKVYDo+vyaMjZRjvjNjdOXWguLJVBjna+dPduaW1zfOFXm\nBQIwK1LFLGwEJkACqF7a9+er1/rHt3qdV6/fTkYlw0GeyZiFJ8eHV197eTLon1naXJ9ZvXTunvm5\nJvPxt3/gvbQWfen5Z3/vf//Z3uHBa9de/cxTn5dpmhydtIk/E/kyG9YCtLN7+3DctZpzCOGk6Nw+\nCkm0uHBqeXEVgVTkB9r0jjpbJMAXzt1TjDN5ksy7qA34m84+sFE7fXy7e9LdwZ7inM+2F9cXl7Px\nqDlTjeve7Tuv1ar8zs4rrZlwY/b0+GhiC3fz1Tvjbra5vgmJuXLn2acufyWfnFQpoq6o+0Ho6nFY\n3+28FNTzl25+fr975Ytf+sL2zaPN2c3B4aEthqPBzp/90e+KYT8CQI2Ke9ffoLKw33MgifVQBU5F\nPpLWKcQsghAW0+1K6IVGGgoItBBaiAEEwEohjJYMQeIgRwwAZC0AjmhlOefa2emOSGppnALAYuIg\nMgBqTAwmblpMnd79MWIIesZgCBACEFoDgHUAGYgBDoSGWVZYoagDziqIHEIEQmwdRohAoykE00qh\nELmDAEDsAEWQIkgxINCBabvVAe2QNUBqIAEHCmjnnHHWQquJK4C2nFDKy8IA5WoBaVd5NfSlhqNc\nHpyc7B93TvrjcSktJgYia5EzCBGKMcQIhJzFXlSvttr1Rj0IapUqwygMWOD7ziLloIBWB1hhrBF2\nEButGNaRT+ph3Ahn6rwR+7WoVomasV+LGs1a5Hnf+9f+2vLCDLDSY4hxRBmGAGPEgyBy1DhorQVG\nAU7CaT5aQ+VTmk+ScW8UexFDGCPEOeU+oQRhiDCm1lqAHKbIQeugdUAZXTpnEALQWaMVBI5BzBnx\nGGfYswZQir2AQoYsIgQwArCzWshCGQ0IUcYaYyCzo/7h0nwrDAAcl1Y4KJHIxsY4CJhz1CJskGIc\nYqCQUgAZhJ0qUmikVkILyVighaEAFAiTmvfKK0+GPvN9rqVRGUY0pFH1mWdf/Gc/+/f//S//49Gd\nKwza3mDvpS/+frLzLMj2oZ1AoKazAwscYoFEmofA2DydpBubZy5fvvzkV77EOSYEKweksdY5AC1n\nCAAAMJJGAmcBBtI4yDkAYPvW9kK1/ee//98Ph4NkNGK89t//6x8iwxDA0uhqtTo3O0sxunHttdu3\nb/MoLIxLSwEAC6NmkoqT4fhHfuLHDMB5biEihHJjQKG0QKZwUhlttSsLo6SdJJnRrshFnpVGO6AR\nMgZqaw1Q0mhny7IssiRLxlomRToYj3q6ENgBZywCzigpZe57xGOIY+ARCJywVmOKrBUIAmAlRjlw\n7v77Nv7j//fzp5aW09HID6PC6txlgJZZ0UFWz9Tncm3/8I//FFgALLQIWwgBhE47IZQ0UhmR6ZzE\nlQBhd7i7W6vWKQT5cEIIqdVqk1zjgDJGMWJexJQow5j5fqaE6B0ftaK6RbEwujk/0xn3MpP5jShs\nRMeH2yRi1kBTCs+rMs5ALeDUL6Qts3FvsF+tRdiFRS4CzkNan4wSTkmRpKNsXCSpMYpxvLK24ftB\nWct6xcnBzvYHP/QhzyPjdDAaDL79ve+hCDoMLjxwvjc+Otnv3Lh9OFY59Bxh5vzZNaXF9u1btTjG\nCzPt2ejGrdsvXXs18FAyKgLq+3kpcEdrMhz1Vtcb42TfC8tGAzk9jythWuYOy289+XVb0Mff9t6j\nnd1RP82L0o/w+un5pfW51249vb29Nftwi4JwaWGhtOne8W4UetsHW0VRVuIWBn6zEs/OtLb3twfD\npNKol87vjs3NneG9F09FvAVLgXICSARsedg9RNSeJLduHHdPz57eXNrIi+7MbP2hB+/DhFmrJ+k+\nwAEGQbu2wOqN8ZEs+i5yCCHowPQiH2qDtFUIOYowAhZoZbWGzk6lP8BoA+w0xjY9X2utpyVAKUvr\nNLT/p00HITRKAWhfXxbZKWrVWI0QBAAB5CjGACFpbF4KijHnHCIylUhIWUopEUIYQaWU53kOKG20\ndW56DuKcY4yB0QA4xpjUGkI4xQ4DAKZsAqGU1hpBao1zDgJjoMIe5hBrbQqtDbbEOStGCa24KCLt\nSmWx1Qw5QY6UZTEY6/2ToyRLlXHurj3HIIIIApxApwXAjlEQhMRjCALHGAsxUtZRSpW2FkGl1NTf\nVpQSU6KNAwDEcRz5FEFAoKWcQGTDMJBGBdxDAIeh9+ijj372s59HTiPC8qIUWvl+6IDKssRZYIwz\n2jlkEAbTxzSwMJfW87xxPkYcawsgYpTiosg45wqZacPeGDWtsBqlEYSlFBBCzjmASBsLlQYUcgyn\nQxhrrTIWOaQNNMZqyITMrFOEe0Va6KKMuG+EJEiMZfcnf+pvr507q1TJ6m0MLQGztjw2SjPsrCyM\nLh0g3I+mUm+ptTJl5IXAQYiBMQogoKBiQYVRd+6ec89dftYBSgh0UDIWcOwBACBQn/3cp1585eq3\nf+ivfeQHvzPfvfonf/y73/nd31+bWYK0igE12kEIgS6NKJ1RzsEsy1Rm3vXOt//axz9+9eadH/2J\nHzfaWGcoYghCrSwhznNM6oxT5KDCJDjoTgaJ6KbJudW1r3ztM6+8fG1lfRUB99nPfmF7extiMh6O\ntBEEw8mof3ZzzfPY9sHetRs3jFKIgLwU/UHyT/7Rzy0tbaSZoIylxWT6cTUaKG2mq1yKMabYOuuA\nMVZboZy1GDEEodGo1+sZZ33ft1pKKaEDZVmWZV6rVEI/rFWr9XrVWS2EMEY5bQLP55wCj5VF4fk+\nsBgooIlzEFiEEPQAIEUhQp//1I994Md//F9UogolQekEp5A5IYc9SjmlVIms2xkvzlUtcEIoqw0n\nviOoLPPSSAsMgtAszM4wiPtH3c3FjRBHEa6oieG0XY2Wjw6zcYK5v7C+/gCCQcCDMPKSrAgrTS+c\n4eEcZNW55U3ix4iDTOZ+WPV4FcJQGlIYczQZDJL+pJhMkt5kPJhp1M5tbDAEk+EwILYR84XZ2sbS\n/MUzp85vnu4eHc42W8tzSz4iN1++cnJn+4333jffqg8Gx81WZWl1IQhpmvctLDUo7xzt3z7pXzvo\nnjt3fxS2OIne+ZZ3XTp/Ke1m3/bGb/vw4x9eW15lPByPkmQwVoU62NqqhYyoPPDT3uAmINmwPMlU\nsntnq+iIe9oPVdlFJ1q3rh0c75+sr6/euHUtrPq7x9saGxJBidP9462A82oYnRzuST2UdtxsRTOL\nrXGRPPTGR0+dfiAdgONbqd+q1Obac2trca21tLxxevW8D6pvvu9d7fjMbHSxwc9TPe/TWQijSV8w\nVANFsNw6DRRXEoRB5eikD7BfKmQ0rTdm9497f/Snn/RszZM12Tfc+kqNrSuttdZpB0qISggtIdRj\nHEOEgGMEIWCxs8gp4AyBiEDEMKEIEwQAtARDZ3VepMYYaw2Ed4PSzmilxXQsYIySUhqjgbMOWADd\nX3VqprIIC0ghrbTIQSq1LUQhZIGgi+OwXq9HcYUThsDdRR/1+F0KrlZKS2A1pxg6h6B7vdBttLMW\nIKMdcIgyDwGCEMaIQYudJaWCWmKksKdB6JSvM2oHCy2+MFePooDx0CCSKXEyGaZSKou0AxBjCCFw\nBmhltYJWQCM9SjxGCMIAIAuBH4ZTiIIQZS5KIVQpFHCIYqa0U3KaRocEwzgMa3HAGeEexgw752Qh\nMCZWG07ZysLipfNnoTE+p57PGWMATftfRktn1BQFoCww05E6IQQzTzsMcTAcC8ZDQghBuBrXpCoh\ndJRSzvn0KUMQnv4TolRFKaUy0x6NNkZrbSxQRktlhFJZViRZIYSU2qSiLLXLtBqlKeEMQ5COBx6C\nrki/7zu+77HH3o0rTVqpOJcBrY1MrC3DAGmVWFdgYoOKDzAKo5h4lHmMEAScxYRADbCFBFFkCCMB\nYOGb3/Bmj/E0Hfs+w8RyH6fZiGDPWm92dj1Pi//0H//dL/3zf7yyemZ1/dTv/c/fgToBsgPksZjs\nAnHiitQUWZZlwMFSqvF4jLH7Wz/6Q7/zO//lNz7+6x5lGFEAkBAKU2KcFaLwPE9rKZWxAPyH3/6f\nTzx9+fSZ88NRNw795569fO7C2mB0EESVT33mLzZPbygtJ5PJ4eH+/v7u17/+9aOjo6ODQ+ecVpby\ncHtr/0f/1k+987H37h9PIPHGeSqdEapURkpZOguhRdZaYyRCyIG/aocZhIC1WilRFIUxhlOWjEd5\nmpR51jk6NlKd2Th9evPMyvJyvVYFwEopjVG+79fCKkJEG6cBJn4sLXEIGggB9IQBpcWZsRoAi7Sx\n4qGHLv6rf/WPnMtULicnMuk7J1kYhoyYvH+YDjpRwKwD4zQzECkAJ2VeFEWWZbKUGBIyU1uqeK2e\nnNjC7d3cu//++3uDwdWrV6O52vrG2cPxbrc32j5UzOPIY7uHB6124/zF05WwCiDMpeCYKSmAhayw\nAWXKgHE/K4yCmMaNWGRJq+1hJ/JiFPlBgLxxZxIwzqjb2906d+a80WWWZEYLo+1isx0gwi2llolc\nx3H95u0dY5FSNkuK3cMjj0WtSry8tMQ9f2v/aGZ27catrsylH/PO8aHP6dNPP5mXSVSPh0Xyyisv\nlJN0phI1CA2Nvff8uZdfuyKMbh0uU06sk62ZuYW5me7x4LUXbwFHV8/cd3Fzw+dF9MgbGPe6J73O\npLN535lB/yBVYw0sUHjYSeabq3mmjvb7Rg8mIj0ZndRazUqjiUoYhFSMszgID44OciUWl2ZPjvcq\nUbS0OJunRUD8shhFQXXt1PrBYPvU7Orq4tKt7VdPdnZn69X93b1Bd3tufam1OFPo8s7t66ikEJJH\nHnlwf+v4+NYI5QBJz+qScAMABY5aYw0E05QbRhxTAhCEGHiUaaWmY02EMYIAQkQphQgZYzihxigh\nCmOM5/FpH9IZo42aHuG11tPRt7VGaUsQhtABYAGEnFBrrQOWeQxOASoAFkIIpSglnudxxhijAKJp\nwnIaBIYQQ4S00wAAYwx0FmGACcbQGWMddFNzEbQWQocQudvBsRYhSgiRSkmtrXX1ShATz0fa4xBj\nGFZrjeYc8mJEA6H00dHR7slRkiVuyiuT05OsIYRAqxghBAGCKCeUYZ+zkFKurRJCaIcAxEo7pa00\nVioNIQYQRXHVWYugJR73GOGM+B7zGQLYx4yDaYINE0iszzAE4tve9fa//MLnhBAQIt/3pRR5WQJr\nESAIOYDcdD8KgEUWIoQgAEWu6tV6nmed7v5MuwEgRAAHQZClhXGWU48QYrQGABCIlNHOOSk1hIWm\nlGAMndVaTufpwCGtjdLaATAl3ChrATQAQevsOBvVw5gwQJHOjgYPPHQ/aJ2XyQkjnABq2RTq5rS1\nlPueChFCRhHGq9YG0pSMeaaUVmtEAAQGaAOUk1np2NBzyEpRr1a1k1JlfhhrBwBiiBJZZsWoQIhU\nKo1nnnj1+77+d37yJ//G/ZceePWlZy/efz9Q2hWFMzwvoDUKQliUWmhTlIJCFlf8x971jl/4hZ9f\n3dj8yIc/kuclBGgap9LAOYgttpx7+8fdP/y9P/q29zzOCZZisLw0/61vfGPz/Po3vjauRZVPffLP\nfuRvfh8AttVq9LoyDLxRv5ckYwBQtVrPSNHrjh96+NG3v/09d3b6ZWFK0a/VfWeAKAuIDEYcI0R8\nhqEFTmDLHcDTpcjUvlIUhVLKWsA5TZIxI0jKEiFy8Z7zMzMzUziNc25KkpjuV40tfB5Q4kN8N5IO\nnXPWAKCwpQRibSShGABFMNJCYUrf//63vv/9b33ppTtbO0dPPPnc57/4RQsc5WS2QR544/1R5DsI\nvKiaF4VzYJIlWAEAnc9Y7EUkoBUKAmhINared99F6wRAxdqpWcPgKDmgvlg6VS8Sudu7HTAaxb6Q\nEmjtsSSXSSkShAMHHdHQF6GvvWKcl4UcTAaUemAM1luLKtGNZkwCMxx00n6/3myzZqterx/spkJb\nIW1Z6ICh4929+x64f2t7O0tPHnjjGxrt+c5gqDRs1mejoKmKjpKOOLQ0d/qV517xfR8x3D18+R0P\nXRqlSad/nCTjwbAjbV5pxs++9Hwcx+lo3K7WVH9w/7mz2rqtk+Pa/LnCgjCqV4Owc3icHYuDdDdu\nVZfumb8zun303M2oEt/Z2T91+kKtMYcxDmI6nnSANcXEVIJFowDSfjk27focQRT5BmOcTLLZxsLx\nQSfygvsfOXv9lSvD/mB5fkFYOSlGnFdPjq+WUSP0wrTs7B9s7R3v1lrN+Zn5O8cna6tnnLLQ2P2d\n40rY9KKwNzgBnsmEJDhcX163FiTDsY+8mDYArSZJ5nvYWqKNdQ4Cx61iiBBGECLAYWQB0M4SYCGG\n01IixhhoO3XHEAynmHGrjdWKYkym6UTktDRKCQQdhA46a5S2wCIMpoUhSjF0DiA0nfRIo6SUXuAj\nhI11uTCUOErJ1NShtTbGZkIWuXAOIoiVsUAqa7VHsOMM3k0uO4KhlBpBYJxDCFI4neljBNy0E+uc\nAwASYjmBlcCfqbEKtxgBRkNCIkTbgFEAIUAkz8fDcVkWDjiKISCUYkiklELkDGGlBSQYQ4wJNFZo\nk0MUIsKchqU0UlkAmdDSTn2CABDOjDEMU2e1VrJaiWqViEDkHIzDikU8LwXBFFhXFnkt8j3u4ogs\nrcx7gVdIjQmXStfrjTxJx6PR3c6YM+4u9gsCgLRDRJX1OOgc3njLW96yvb1tRBlFEaHIlBYTCDQy\nRk3TL9MgKbBgutkzxmCsCCHQAeu0lN7dBgOE1kEDnFbGWqBtYYHBGDqEraMW4PFk7HyyfHrppWef\nXzq3dv6++50mQGnkaiCySPm2zJRGiNgw9B1gEEcOEAggglzLwjKFTCGVsNZ6UUy0tBQ9//RzX/nc\nlwBCURxPJhmlvnSSe55zzvNDaQwntCgKSiKB4Md/6z8/+ugD9997Zm15Ix8nFDOLlHAAU5KWAhCq\nhNEOHGxv98ejxfn2m97wyP/1j3723NkLZ86cdtYVRcEYIdRX1imTExffuH27yO2rr77kBxzowgpy\n5/rNzmjfY9Tj9Phw/+knn2m3Gvv7u5zSFMJGo3V0dJSkeSoKynxlyA/9yE9SLz7Z2y1yFfqUhazm\nM2CZ0SUlSCkNDZZWKlUgp5xzZVmWeWGtha/fZcuy1BpmyfiVO3fe/ta3raysEMKMMQgBY6ZNBaiU\nQYgEQUAIsRBaZ42UDBPgHEAUAAgwdQACqDEAwAAAKcAUEiABYNYACC9dWrl0/8r73v3gO992YXvr\ncGlh6ZE3X5yZmdFa50pYgEaTiVIKWBAyL/ACxhihmCBSnvS35pbqF86em0wm2zt3LHRRJXQODvoj\nnwc04sDlwBbdQT+Kl60EPuPpeOxzf3Vt4fbtrVqthiBUzCshHRRimKVCW2h0IXNYhTrFIyNW1zcn\nwwHAReCD27dvQcTXNi+89Oq1uZl5z684Sxu1BaNo4DduHV5pHG/XW42Tk+N6vQaB2u8e0Co71z4T\nR5GQUkENjHjjfW/41jNP3b69NRx0ZlvN0ytLQub3rK9LZe7c2ULUO7W8IWT+rWeeeM/j72g1Grf7\nvXZrlvKoUmcxax8NujhAvclQuLLdbhNFHOQQKYzpnVu377u3frh9OBoePfjw+ePuEDseB8Ekz5fa\nS1Ll/U73vnvvGSaTpfbMZCj726NJno3D3KO+X62laXpwdLi0urC9fT2MWKNS8RnoHu2fdAbnz91X\nby8VarLQWilImSSd3b0DTsNiZImmHmQz8YxIJ5P+ZKa5Mj830z9MJge2HJJyEpUTEfmeVD0HiNEA\nQY9iDJFC2GGKIcKEEOAMsEYpQTGhlE4hJBADCNC0KwGh1lo7YAGwjHkAWq0NQkgaaYxy0CEEKSNS\nSms1QsghY60jiCCMEcEIAkIpKEFZlphSL/CkhdgYShCEaCrQc84pbYU22gGICMYOGusA8Dj3GLba\nIKgcBFPgwRR+ghDGGKHp4NgZCIDVxk2PoZZEHFbDaK5Rq0YcYQMpRTQG0LM0QtABWyaT/snhnslz\nTmiWl9M6D0YUIU0IZZwYK7Sz0mBEnEXGwLxQo1LlpYBJKrRxkFAhhAUQ3s0jYoSx1sY4S7GrRIHv\neRRBTjhCzAGCkHEA+L5nZe5zxLnL88Hps5srS4u3tg6U0AA4LWStVhsOh3f/TWMhmo6KMIQYAuyk\nodCeXp/57o+89ytfeubLX3k6WKp4flDCxGNcQSOkhBAChJxz0mqIsHN6mq2eBoemXZi7FSc0ta5i\nCKEFWmutTUEpdY4q6eKolqfGYxXK8NbOVns23L11+fyFM1AaiyuQlLD0jZFK2zTLjRaUE+ohKYeE\neswZYBTHcjJIKo0GwJj5gQWQVuYcYkLfGqbSQZMVIA5bucyMFUoL4FAlbhZCS5UZYAniGMbVenT5\nxdsnx4Mic7PN+tJ8uxpGmiBnmXaoVHo8zgAi1OOvfuvV9sxyq1Hf5oc/+IM/+MwzTwshPM8z1lIH\nlRCEWAQRRnw4Ktsqe+DezWuXv3nh/L3XT651Jr1mra2zTOTqq1/8xnf/wEeuXXsNQ8A5L7NcKwsh\nxoilmXjft3/P6vo9t7a3ozhWOtk5OJQ2u+fUMsLIKWiMUVIaY4UQQpQAakKYlFLczdJYQohzjjIs\n8sxa++Y3vunUqTPTlOf0ixxCaJwliMXVyrRxIoQQVubpuFKJKIsNoM+9sPMXf/lFDdBHPvCOh+7f\nsEgSQPYPRn/wx59ylCJPc8Te+663n1udFVni+ezbP/Btd8GjACpjBuMRgDjLMgOckrJRrbGAcc6B\nBqUQxK9RFuJed/Ty9Vc8zzcQ+IGfprmwuRf70NjO3mG1Wg1rFSxUMZxcuvcRUap+f+iALURebcZ7\nR3uE4FRYvxacvXTx4PioLEtT6myU7RwdfOCxD7/y6kvd/jiMZgCUUiBrHYHAQHvmwlmnQDWodE96\n80tLaZHnyoSN8NXrVxZn5qoxH3UPq60a4cYhWZZlsxkf909m1mZODk8O+8d+HCVJyqDpH+8H8zNA\nS5WNa/XG6fXV0TCxFBwcHT/6nndevvry+vqmH9OyHA17BxCvpqhsLlSzdAg4iqNq3a/FVXjjqLuw\nOPuG+9tPPPHE1o07jUa7Ebe2r/UBghyIYWc/yXJDJPYYrdBXrr8gck7g8fLi0jiZrCws7Rzvbu3s\n3HPxPMiBUspIU48aLMDt+uygnz733GtLC6eXZ+4/GhzeuPnNU6u12IfXb15fml3e3d3GQPvMPfPk\ntx584z04ghWGxt29z752bWPmwRZdLAeAI8/wLM3HUciElAAQq41FghCMkLKWYRxwjBwAVinkrEcp\nY8gYI6xzEDpnEKJ3b5RaAmAZYx5jxijt9PSYjBACTkMEEMSEEKXudjSmqA9CCEIEQ0QJcQwapa0B\nxjgIoFByqqg2xgghtLWFUKUQkFAltbUAQYIw4AQbY4Az2miIwDTWCKyxENIpOwVaQLHSmkJogbFW\nA+eAc4z6Mee1oEKIJyEh1AfEAWsAyKQudZkn41GWJdoBhxzzsdHQWgsQtM5hjKcLSSVKSpg20Foi\nJCpyq0yepGVZ6CAKoXUcI8y4kNJpU5YlpogShCCMvNjnnDHmYcq4Zw2ABDLGRpOhVgIj64BCCKfp\nKKq3Hn3Tw9devR1Vm0prCOE4TQAm0CEMqHPubmUcOACcAzqKg6OD7fe++y1nNpdOr25Gnv/k089s\n908WVhYx1GWZQggpZ2VZWiMhxMAiABDGdzGz9nXZUykVhBAAPR1n3SXNQkAQsNpAgH0aIgec1WFM\nOge3H/vQ237tX/4LgLNSKmyNMqnneClHqhxbpStVfzBIesN+GPoQYmJKLQtKqV+paJU4lTIUA+eA\ncaYoceT3TzqyFGHsD+XE86lxkuMIecz3kIPaQOuIawZ1U/qFLAqRR9HM7sHw819+9r57TtVbTVdm\nygDqhblQeSIQpFpZK83c3HwyycaToVZiUIr/+//+f/5/P//zeZkBhxQUCGCrkcGg1WqsLC0e7996\n8yM/ulprnjv7wM/89N+VE5NMypmKfzwEL7945R2Pv8k5BxHKszJPcueg0ZYQRiH//h/6sf2DnueH\naZnG1WgwYDdvbVeicL7dcIaIslCiEFqJUlmtAQbTfIE1gDEGoAUQlaLUskgm6RsefmMcV6dEMGv1\nlPuIEHQGajXF8xlrhJIlhFYpkZYMe+SrT137Fz//b+aWNrOifOq1O7U6KbLJm9/4lqtXr965cwix\n5wVEZqM//pP//Xd+9Ht+4K9/KC9Tpa2y0BrgjACYCKOg0QghhnHAaBh4lGJgrXEGWkVygRjxWWDL\nUnAEVzeWlSp2dzppOQwrS0VadA978405AvC4MzqzfnZ8VOR50WgvIMYnRZYr6XDA4pBQc7S3nR33\nWzOzfmPu1vUbtVqNh9Frd16IW8Eky4O4BSyiGJxaa1ebwZUb15wD7dZspREWZTZKh1t7+2G1Ohct\nbA13j7uTpdWVMlehwZ7FdiKqldCMcqpwtzdikI/7vflWWIsshnMeIVrmR8f7paOjztiLqqwVlkp6\n9bmFZtOOioPd7PylSzyInnn66Ruv3oYkfeiBiykKlecr7e321Hg8rAVq2Ds63O9XwlZZlhBJRChi\nOKw2D7eueJ49f/+5rz7zZP84n23PNWO/WfNOr6zVWGVnX4yy3my7joNgkpYawr4WKksXZhc4Qunx\n5OzSueKs2e4eJpO9Z577mvHtk688efXyVR/wzc3F97/jTZ3D3VGv+9Aj50plW95sMin7R9sLqw+v\nz54bbWuGba66AFuMcZFihAMItLHKWoigjxFHiHIWOyshABQCgnBICURAW+gQENJqa0IvEEJOm+sA\nOMYIdMA5CK3TzlhrIXKvYwUVYwQhLqXEGGKEgEPAIQgxIdga4Bz0PB8iqpXljGhZTCt2SumpBMNh\nQrn3eizdYESAtVJKrUrKsFYCY2xfr/NN6zVKKQWd53lSCQgxBlPjgWOEen4Fc0S4BswhiAHFQOdA\nTpDS2NgkFeOk1I4ZBEorHIEAYqsdxMhCgBECzkVRpBkttFACQMB6XVVminsYQlypMsKQtY5hj1IG\njBbAWiU9LyrLnCDAOIXIRX6AAIIAI0q0FcZoCJyxAmEHnTVac8byXv/7P/pdT3zt+Vdfu8njuCwK\n5Sz32XgsgXXQTZ+5FjgAMMAYF3I4M9+anWkd7N24eOHs3/zRx1fWK5/81Be7J5327GwljNKyUEYi\nBIjHjXG61IhghMgU3gn/CjYLECYIOuBeZ4tb4BAC1kCPcowpcM7pjBG9s3XjrW+69Gu/+o9NkilQ\nydPEAseR7EMEtQsIw5wCALJUpWlKSZQmWRxXGzOzr77ygsfJytICcqVI8v5wVGu0gLJUBRye+Kgw\nxoYxLOQYUx8awylhhE6ShHKf+F6Wpw4hBAvOYJELhL3OoPjcV56+cN+lSkxH3ZO4VgfY09ohgJ3R\nGJJqXIOgIISMx+Mwqv3hH/3+L/7Cz3ueJ0olSeHjVpFBbcDG2vLmytxnv/DVp7/yzG9+/JfubHd+\n89/9+r/4hX99+8btjJWc07zMtNZBEExGQzsFP1sXBNHW3v4P/PhPSuWEtIwA7lEpxcapTXNDXr+5\n77MqR1DkhVZJWSQAAEY4Yp4xWms1vYY55xACWZbk6RhCXKvVylIiRJRSGENKAQTYaqO0MdpRghC2\nCDgtc2kdpTzwa71B+Wd/+MdLzYjo49C3BOJ0kHsl+/zv/UElMm1oPBTZsbE+HCbd3/g3v3x2Y+X+\nBx7Yvb3VrtewVppRrbUDSCtJMA49nxDEGcHAaa0ZJIBhxOUYlP18dEyoCape6ZSGzmGsENk57AhJ\n2q2VGzf3tvf2/TgaZePd7k5toe6ocUhBaBwwYcVXtiAWBNW5CYCGmGQ8qDZr85tLyoPDMru2s33Y\n78OQSlfe3r0zTLKd/V5pXFKqK9duvfTiazPxLCvASjzz8OY9+WAcY/q2S/ezLONSN+JqmmrEqkkB\nHOVBNazNx6SOTrLuzsG+VoAQFEVR7FVqYc0JUQv9Gg9MokV31CZBsn+Qp91KhZaT5Nb117zANevV\ndJS/8tJrL790ff9W8vDmO2zfyo6479QDy+2F+ZnqbCt+5N57IsAmW4cLNKgL+PDpN1bZ/Itffene\n5vrbV8/SQTbcHShFb+11v/jSy9d749raaejHvf4wz5Ky17GT4UwU7m3tFoXTMPrak89vXLjYara/\n+Y1nIxoux1WeZHNBtDG/tH/9aHf3OG42h4V+/L0fbbYWJ2nXIXH+4r33njoNlMtLoYxyzlmFMKYQ\nSYisswoio62ywEGECEEEqulVMY7jeq1BCCOETR+aBjjOeZ5mQgjOKOcUQqe0SMpJliVSaqsAtNAY\nY40CTnnUUmSQVT5FBLhp7B0TR6FlFBIOvdCjlE9ZKKUsPc8DAEwmk36/l2WpAwZAK0RRFBkmyFgp\nRAYhFGUppVbSFEInaZblBQDAOIswLMvCOYsRctZyRE0prdLWGGcsxpgCCSGUFkolEVDIFWWRlNpl\nSTHqjif9sQUGUOB0CaTWwlJMPMah1j4lHNmAuJDTWiVu1xux71OGpMqyYuCA9D1SicNK0PBZBBBy\nEDBOoigI4khp53POCGeYBn6snYUMIw85arTOyzzJ81QKay1LctPrJVLYSZGEFfxb//4XV1bi1cXq\n2Y2lRhRAJbkHIQaQUOr5yhqHHUDQOgyBd+P6wYV7H773/ofSIq/W4u/5ro/+0i/84tr60t7eLiUI\nO0QAQ4AqpRCylBPPYxhDDNF0/GKMAQgi6Ka7uf9DbzYuYAHgvgRAWcW5HfYOfAp/9Vd/7ad/+uey\nhKeSQKsYQNSgIkNIEODIYFS88PJrL734GoSkKMqd/f2TfufgZPeFZ1+cW97UE/PVz3z1tddeu/Pa\nq7bMk2EPRbHz5wK/yjgZp6nMJAce0dpIJbQaJfkol6M0SzIwStB+r5soNyzyfjFMdV4qKYT41re+\ndtzZGeaD0WgElbPWFrAcyFEmS46D+ly90apnyaQeR1bJ//W//idEOClKZEKllAVG2YJR9OGPvpNH\ngbDoxdf2/t7H/uH86qbWOvCpBVxmYnO5zQnNx4mTcjzsJ0mirT3sdOcXli+ce2hnZ8shU+QCQWaV\nwRivrZ+SShz19go9McZk4xxqgCCjQSXNJhAizn2l1GB4Ymx5fHxUZuVkNN5YPeUA0goYUTLkKEHG\nAWVLSKC2SpuSECTLLJn0CJTW5pUozNPiV3/5/z086BEeE69uYNzPionUYzNmNT6xJAPeUZYfZelJ\nZ2Ad6veGzz/3FAMam1IUmQNIK6GkBM4gDLyAI4oQJQ7iaU5fGJ2WBfJgyFyEnCdKIKQbTpLd431a\n4aEfOefG436SDXiAkjxTBkiJxuNSG/jyK691+4Pj42OjyjwZqTxVSlSiIPY9YOFgMALKrswsLFab\nXhQLo/MiVUUu8wxpawrV2+8f3e4EKF6bXwPaXLvyarPZRJBoBU6fO8vD8Lg3kBYa4I6PjkyeVCgg\nDt+6ehMoN1+fgblan1lYW1himIDCJYPUGNeamcOUpWl6dHCosqzu17FBC3OLDLNT6+tHh9uT4WEl\nJL6H48jr9XqtRr0Qoz/6xH+DuMBEHmztlElWjWtRVBkMRtlk3KzHUmRrK+tFbk96xfLGJT+c56y9\nMn/+3Nojba/V5O0qrQ16Y0Yj4OjKynq9Nnvl1dtaIWfxmdPnhBDXblwNKvzJp75OCbz3/NmGXwlV\neH7p3jdcelMlrlcaLSnQ8VG3UoufeObrm2fWAIT9XkJQJRnrzsnYSGetmyqQnPk/yBEIIUEUQwIA\n8DijGANnPEZ8zhC01uopEFYIAaGbno6nCQvoAMLAvs5QhQ5orafb/+lwmDFGKfU8b9qQRAA6Y43S\nEEJjHEHYSCOKcsrDgw5QirWWxmhjFcJganfL81wUZZGlwALPC4IgwIQoo5NsUhSiKGVW5H+VQ58O\nGZw2VmlnDIbT2pQjCCJgMIIEAikKp0roJFClsyqbDMfj8TQM7oyVorDWEASAsdAa5KySZcAIxwg4\njZwm0DYr9ZlmIw5pNSK1Kq9VgpCHTkGPIs4IwQBDCKzF0AFttJLOgMiPMCSMUGCs0wogqEUphCjL\nvCzLLMuGkzEAiFKaZZkpJ53D20b0/99f/rmf/xc/893f8f56wEOMnTaMUqW0lIb7sVIGY2y1sdDG\nNT4YnvCAYgoIQ8qkl+7f/P7v/mgc8N7RMbYAWkgxg444h6czAUqptncDeUopDNFfbVO11gghDBFj\nbGrIowRwYgbdnY9//Bd/8qd/9LF3P/bgW94kBXaWjQaFtWw0ypXG+wf9p5968XOf+dpzz7w6O7fU\n6fY73aEo1TNPP3902KvyStEdP/Otp32IbFIwQpdaswHzGWswv91oLo8GhcdCzjlCAGIgoSu1Ohn2\n++PhQbf72q3bd/Z3Dzsnx73uYDIejZMkzUdpetLtJbmQygU89LmX5ynnXCrTnJkfpKlALk9Eo9aM\nqlFpSh7wJ59+CjpAAAqZnyaJ51OL1PFg+P4Pvft//dHv/6tf/qXPfvazn/vEJ/b29k6ODk6dOe0Q\ntMCtrW+Wuej1elOXYSZLBaFG+N6HHpHK5IW4W/01tijEcDj0w3B9bSPL8kLIUgo/CNIiN0al6cQn\nXsD4qNfNJyMj8kHnkCItygRCuLg0B4GVMlFAIh+n+QRDg6020lgJgIVSjw1MvZA4zKZvXBj6N6/f\niEOOnbWq6HUPs/FIlwXHKPR5LQoxBK1azClmFGbp+NTm6vd+10ezLG23GpVKxfM8zwviOA6CoF6v\nR1EUBAHndJq5FEJMqWSkEW+Os+HyYtSZdKWWFtphkq40liJja404K7OvP/Hk0tKaMWaUD22kNxY3\nbm/fLGSujFJGByQuhqXv87BCuHIEeVS72AuttVvXb2RJFlZqD2ycnWnUnVKJI7NBBWKfWCaKEkhx\nMOwokbUqtZsHr62tns7MpDQqrFePJ8NKveoFhBOIkO4ODwPGN9dmi2xSynKpOqNzVW3GnLHxqGws\ntKUupRMo9LBSUssoDkMUpJkECFbrrf3DrhdwDVTvpNdcbHZ7ndn2TJpNJsloNBj7TN13333HO51h\nlq2dOd3v9zzOKrOtybDDGLyxf7Uxt2irzKvGx4f7w26vFsbN2kxMgxIYIYqLF85deeX5k163zPLT\npzYfOfvA5ub65ZcuH9PuaDzGFPOQzSy3Akgg0EVWFsYxKjRS1oLbd3Y7nePH3v3Ger3+wuVrQRRp\n6UwBQUmNC6yyAY/yZCJ1CQAGDmklOA+dc54XQIAJoZQQJcuoEjMaIAQRAlopbQSBDAA7PbxrXQCI\na1ENIpflmbVT9jcxVk/1SNZp6zS02gIImHXWQQcQhAgAhwillLyOGJx2nRBCmFBnjBLCWg9hSCnG\naMoQh84AgrByyFjlnKbUGJs7oKXWUjqrJcbQWUgoBsBpawlCEDkEEZgay5yBEPmcUYI4RtZqo0ur\ngQPGllYoI0QhysJYJJUWSmujnTbOOGO00bLIFYQw8BknzjrAPYqB80Lmc5hpXY0DiBxnPPZ9KQzz\nAwy0R6C1UIgMQGu0tLpEFiJHMESMUGCNdQYjkg461tqyLIwxZVlmRQ4dkIEhHHt+CHTCOSVIt1oB\no8H8wv0L87O//Cu/fvDydcxCgpgGQCvphZ4sijiKxsPR+Qtnao1YGmEcSNM0iiq9/t4D9576pz/7\nd6/f3PkPv/0/5haWpQOGEQcBRIhzZrWZznPBXfkD4pQppSx4HZsMHKXUGBNCwCFyQKWieOz97w3i\nWI4TK7XvVY0R1oDxJPP8+KjTARBvbp7vdpO1+aWr1+5sbW3JMv/LT3/+0v33KKXuHBy0K5Xr27dP\nbyzOzS/CkEqAglbz4PhgKWoZo6q1mFZrUpZBGCd50hkdDEbj4WgsjU3S0iJknYMQdvs9gCBCqCgN\ndEBK9cqrVx5/7M2NKOh1RxBxlxfDibhz0Itrra2treFJt9lstht1bYTvBY1GzUGgnJ0MC58Gk3Fa\nGuEFfn8wWl5dwwRdu3odYPz0009vbKx3Oidnz579hV/8f/r97snJSaPROOkclkqGlXiYyKhW3zh7\nARAmC1MKZZ3LsiwMw1LqwWgYxRUH5GA4rHBeZAnlZJIMuBe15pd2dnYGgx6AGkCFECAUHBxsb5y6\nJwojYCwmXhjHf/6JPxt0Dj/87Y9N8qzdWoqC5mDYAwggAHZ3DqpRjVY8bU3k8WazrrQkFAyHPVNM\ntJwawBUPgvF4fO99F4f93njQodhsrCz++Z/+idblaDQKwwhhXhYSEyyLMggCjDGGSEo5hYhRDAFy\nfuhRSklci71aeHDSwTBKk5J4jlDY7R1CiTSApXK1yrJIYRTULJ56adFgMKpU677vK6WcU1plljoi\n46Pjg2azfTjo1ebnnFW9dMgB2Wy1Pc6KLG/W64v12au3bveSYWW2ObM4f9w59CI/in3nHHTIBajb\n6U72Jptnz7Sr9ULJ3rBTEhT43ONVwiHAxPMDU9rZRptR7+b2Hep78zMtUSSZyFhE0nw8HI2azbaC\nydWjW7PNylgg6vz+Sac92zjp94Oo1u1MlhbOpOPs6Ohofrb9wKWHuoed/f1DrCFQ9uqLV3qDflFk\nFy6cCkLcGw9b8wsFEKktnKCIh2HFaWf2O0dzMzP98cgQO8gHLKBnN9evvfzaq09ffttbvy0t8l5/\nSChaWFpiBGeD8ZmN05dffVkpRYh39uJ9W1u3GQNRtfLmNzz6/PNf63b7pRSLC6u9k0G7OptFohnN\ndE5cNjHcSuccdlAo9brVRU6RI77nTcXBjGGMAMPEOmVfDxGWQmRlKYQADEyBJNyjWkulJHCOECSU\nsto4N83ZAafcFDVWSjXNXQAAHMQIAoSQMQ4gB4HL8tI4ZCxC2GVZBiFUsjQQ0IBxRqSUGOM0yaU2\nGGPoAABYKoetUUph4pyUEDNlFIAQWGessdYJWRBCKEQQAYgctBBjxCnxCIbAImfLsqTQSZDZsS2F\nUsBSSkuFlDJ5UShjtNJCqLwojHXaKQRANaxVQz/mAbDSWss5r9bCMdVhGE/DKtABj1PmIashcIBh\n55iTqkQIYIwIIwHjnCEHtFLC47QosmljpSyldbCUAgKMMCpLCTQMWwHzZ9J0xH3PFsnJoGcsWt1Y\n/Oj3figtxc7+iYYuVxZCYKQAQA66+w9cvP9Nb36g1Wym4yLwq85YzjyEodGTBx44c+99F775xDeO\nOmPlICJoCuMHABBG3etC0Sn2xCEAEATWUTptIQBlNOXMWmGtlam6Z+0iLBCgwBJWWg0QSPOiVKV2\nKsnKxmzLaFuI8tKDl77xjW+N+8nczNw4GS4urpw9c8+Xv/L5SqUCrfrJv/9TUImo3aJRpJR1NGi1\nIghBVuTTOCDGUAjRn4xkWdYqVSkU1W4yzrU21gKIUFEW1jnGPG0Vhg5b1emcDIfDaugJqzGkyThl\nPEIF0JZeu7U97Pe/bXklCsNhpwMgfPe73iWBk8ASZ0thWBBJgfPCaol//Md+4ud+7p9JUQKI/uSP\n/qDdbo2G/R1ozp07d/W6vXrjijNaSsm4X0pdrzdfu7797DOXv+OvX3AukVJyDxe5cB7GlJRlLksV\nhX6RJ4iy2zu7oefSZPTe977v5s3bd7Zu1RrVbveEUCdV/uIrlwfd0dlz9wIACmUpjU8Okk//6edD\nXp5ZalpZgrWMLG5UKo3PfO6r33r6mcsvPzszW/sv/9+/RZBvb+8d7u+1ZhZHg3FZJFoUBCKt9KRI\nh4NuGIZaFjeuvRoE/guXn/3n//yfG6tOup2Z9ux4nABkCWHAmKn8i1NmnJayDIKgLEtRyGkPkTGG\nbh8ejItsmA6qzahzfLC/tVMPGoPD8WAyvn5rtz2zPDe/kueZNUUlDquVRpqO5+ZbSpadTieIA+Ps\n0tJKyOPCWGVhkoug0cqMORmPMaMG2a9+9fNXr1554YUXv/6tp24fHk6cqi23XAg4c36A5+ZnG+0G\n4hAHMFPjTn+3NRcTWjo1rni66gFkRLte8zDd3+/dubWnFWq3Z4eTYbe/15oJw1ALIxwB7dlGs91g\nHst02cuHL2+9xutQ4eyws4WQjCOulFxYXvLj+MbN47JgreZms7FRZkzkzOjQ6hD5gYVoZWn1wfse\nHA/GRS5mFhY1IVIVe3vXsc2wKXsHvYrXWls+HUTRQCQTIwzD0ujhZFwI+YY3vmVhcfWFl5568cXn\njVVpWWDOj/qDvW7vs1//mtIgqsTaKmNlXiRRJahUKhDCd73vfTyqJaVszM3UZtpxfSYOZzrHCZCc\nIa/IU1mUQggtS2s1AECIYjpRMc4aYwjBnFAADeOU4rumISFEnudCaoixtbZSqVQqFWv1lB9trZ6i\nrLTWzhkA7sqdAYLaAm2dckADKIxVDliELcJqWh91UAPoIHIQAQQhxtSjw+FwysAqpciKPMuySTLO\nsmy6yHVQC5Om5bCQmbNYltBYZB3UBownaZYW03mClPJugJqSwOe+xxjFlECCESYQACuUFKosiizL\nkyIv06wspAIYIYIBcMaoUhaFLDCG0BkEbS3yGbYE2Wroxz6vVyPKkHUGAguhc8D4vk8YpZRCxEqp\nAUBBEEgpnTMYQwCdMbKUJQBWO4swttZ6XmCtLaVI8kxp6yAUSk1paFmRl7LwAt84CBBrNWfiOO4P\nTh586N73vetxjkk+ToxUFHGjQMCDjdWNR9/w4Lve9mYPYwBAnpWeH07P7xA7qXLPIz/1Uz+2v7/t\ne9woi+4yHgCELo7DKAqUEp7nYYim3DHmcQcBIhhTIrVyzvkOEQusc29+59v8mXYuJcMMajDOEu0A\n9Tzs+5ixrCwnZWkRtgCORqOT/hGi1g/w2bOnt7a23/62x0bd4zc8/MDa3KxSYjJJ82ERzq3cuLqL\nYdUY7/BwsLfXEaU+Oeq88PJL29vbAJHhaKyMTbIiL0oIsVSqKISzEDokCqmFllJmebK8Mn/n1vVx\nljqMCmMsobv7Jy9cvvKvf+nXvviFr9+8eYcQxjmdsu8efdtbi6IwwGVqXJp8OB6VhRoO0ueeenb7\n1u2P/+ovj8dDSlBZ5P1eJ4qCk5OTn/nYx7761a9yzvOyYMyDDqTjBFtohf3D3/394XDIGNNGjsdD\npUWaps45RAkhLM9KzoOsUJnQN+7sFEX5ta989etf/Qoj+PaNG+lksLtze9QfpKPJeDhRuTQA5k5P\nRHH52WevPn95NqpR7YajrrGlgZp74e//4af/5E8+Px6rF1+68g8+9nOMR0IIKcudrZvJsIeBIcBI\nUWgjRZElyfje+85feeXFg8PdLE9+5Vd+5Ud+5G90B33C+K2tbWWc0tZYp4TUUjljp7pwCGGWZVmW\naQukttPfRAEymCT12fjoeHt1tb27c6wzcm7tjS8/+8qZhQVxPHK9dDNanavPDoY9wmAnLddXF9dW\nVpQtR+O+KEYzzWq9Gkz6IE2SPFMrccARruGg7I64hY1mezierKyuf/WbT6IwchSOJv2Z2fa+U9rn\nveG4DWqqhFhqkYznXcXko3ygd+/c1Bi+7b3vuba9dSQnuMpCUY/9QFjdTyeQsySXRJQB94ajjpSi\npmOb2rRIKAFKFR4n+URvnD2DUuY0qlfiUZpgxo0Qi6tLxsBCl+cunE9GwzCsHOweQgeXlheXN+eu\nXLl68eLFj77nA9BDvYP+2dWz/TLF1hlge4M9GgBeywqcJHDf90KGtdSGeXSQHQ7KHpIJahYKwFuD\nnaWF1XOrp05OuoVQb3307cdHR88+/8w99XPLSwtHu7fPn1rLy6zeaFTqMxnQQk6MRzpp79I99+3d\nOfDCNlaVUSflhEMILLxLOXfOAICm8b4g4AhTACGlFEBDEcuybHpm19qU2hVCl1IpZSrV+pT9XQgx\nHS8iBKGDwFoIEQJTjAx0EACHtDHCWAKtcXcZvAQ4hKkDKC8EAABTCgF2EBrnGCdlmSshwrBOmNc7\n6YzHY+r5CGIHQWmGjITWekWmD44Oa7UqYwgwlxcKYaCUIhhba7XWRiov9LWUnKGAh5wihh0wxqOE\nUQyhox41SmKMLHDaGEBoWhhtJcBISgmNBtZoLY2zCAFMSS2OnNWB72GntJBhJWbUY17UqMNJMqzV\natY447TvVwDEEJswrjhnxuNh6PlZWRDiIKHWuFxKgCD3gnGaEULSSWosgphbKaSeKjxRVuSqsCby\nrVRhGGLKGMJW2WKSccohgm995/2ZHn36c18Z5+LUmdW3PfqWv/jzP3vg0j3nzq+m2SCMPFnmvs/z\nYiIVCcPAQaJU3ukPlhdXfvD7f+h/f+IvW3OLwlhgDaE0jHwppVRlvV4viwJAO/U3cd+bntegA4xQ\nYwyJgu7xwQP3Xfgn//CngEqgk0leCmkswKUUhcgQQtYSpTQASJbqaP/ksXc//tnPfGKSHimZQTSX\nTpLnn33x8Xe+1aPwU3/+v2vzMxtR3VlicnPP2YtFkdJac35hhvq40zkpRW6MS7PiqDcyFkhjlXYk\nCPKyVM5ABLGdfrECawHCUGsT+Dzw2HA49sLaM8++9NzlG91u0u8PAQAepSLJtu9sbZw5PcmzhaVl\nANDgpAsgzvSAspDgYNxPRKl//3/9rpH5tSuXOefVSmikcBzLsvQYe/mll1548fm3vuPR1eVF4LQW\nAEMGNXBKDzuD115+6cEH3pCWKSEYIaiVGY/HfsTLUoU+FaVy2i2tbVw4v3m4feMv/vwvqAXMwU73\nZGF5xkPElLIe14ZHY2uBBS6RmUf9J5760o2rl//R3/4+jxCNbXcwrrbs0cnty888aZUwiW5H8e//\nwZ9cuv/hN7/p0YPDnVqlWYmDMp9YrR10Uiohigv3XLDW7B3tNZvNShR+9KMf9X1+eHgYRREAQBkd\nx2G3P2jVQylUFEVJMoYQQwyMs8zjVjtC7hamyHB4sLSyWBYqH4ML5+6vV4cvvPDC8upGdX5u8561\nq9cvG2rf9m3vvvLS1WCmtde9U2vPh7WKNUAUskjE0vKqFcIpFFJAZqJmq7W9czuM4lPr6x0BdS4X\n5+Z3d/eFMG9605uu3b65sDQ/35zFBo2622EcSDmWEOIaLCZCGd0IqqWAh6OkuXg2ybMvfeEp3+eh\nz+tVppQ6OdxCBj7y5rfc2t5VSp0/da5VqcV8cPPWjSJDqSgswK1ohSGskESed3CnvzS3gqwGACCP\nAUJXN+f7k0GWFVoa4huUgmq9eu+9F0+OD63D2PdPX7ooCTaBhzl2VvYSWbiyUNoZggMGqT4cHzGP\nKcQn/YnRbmdvr9lsSCNZ3WNR0KR82L1VD2OkzO7OTrVSP0gOXrz6IqPk7Lk1z+eNRotAVK3XuI6u\n3rxFg2BuefXO1p42RbvVGA8nAY1UlkilKcRSZNqURunp1hEaE4ahtQBjrLSuRDEhxFrNfP5X7gsp\npVJKKKWMQYRyQoMg0MoaJ6fRdUQwdMABDACwRjuAAIIAQG2tdRYhpKSBALspSQwhJY2zJQDgLt5L\nO+cMJRgBQCACVnse9zyvKMRwkqRZzpUN40grzSEDEDHfe+nl15585slTZ06vrG5qC165/Mra+rJU\n6exMCwPAKUMIibIkGHDMQwoxshwhBFzgY49xZw3CeCJy7UxZ5kJIoGleaq2lhhYYHRCGnKWU+Ah6\njCGIrLUEonqt5hFQ5ClChDGOie/71hgDHKSUUEqdtZAx7sPxeByFIcdISoAtqsY1YZyB5Nq1a/VK\n3GwvyCI3VhdSWQfGaT5Jc4QpAChNh9WIB5GfJGMaERj6EDlKISWc0PZhp9c56BkYvONd7948e2+n\nPyGUr69vLi2uPvP0k53JcL2xIqQZTVIAbKUSCyEgxJA6zDghGjj74Q+998qVq9u7R35UhQw6q7Ms\nY4wyRoUsnHO+71Nli6KYPtOnjlxCiNUaaK21/OG/9cPhbHMy6lsLgIbYgKTMtdYYUwiRs85oBSG0\n2kaVuCzLpaWlgOG5c+dv37y1uNjm3Bc6B4l+5/sfH2ZZvT7jtxcB8cUkHw/3wtnZc+fX44rX2T/y\nuWcADp2TLptMUq2tUhZiRAix0lpjHXTOIgDI1MlKGN/dOXzLQw9+7cvfyBX+1Be+BWnEmMc4YoRa\na0UpO8eHp86eurOz+w9+9p8WSpVlKaXURJaFKctBvdZ6+lvffO3lFyqRlyQTJTNGCHRA5iUBRBtV\nr1QPjg9POkf3XTyXp9mkSBrVxpVrt8bD0dxs+7Of/Iu3P/rWvACIuCxLwqAmpZoMi8ALi0L5Hk+F\n9ryKNAnzoo98x0evPPdCpdKoVqvVZjCe9La3twnxqMchJRaQRrV95bWb//6//PZ7P/j4hfs2+8c7\nfq4617ca3nyuwTvfdekP/+iPUuHXa82F+eVf/Te//uM/MT51en1v92DQU1YbbST1A2M0IfjChfOf\n/OQn52dmoQMf+9jH6rXq1vbWbKu9f3QYhiGCbjDoMYK73ZNKpZJmk1IoxhhFPAiiyWQyZXobx5SQ\nRJZZNaggQC+cf3B3u1PKYmPz7IuvvnzfvecZ9++/5+1O6X6nG1b5MCsRqayeWuvsdY73Ti5eOO95\n/u72wUJrRivojFbGdUeDUxfOlaUorWssLmbDfDgo46jx8itXTl08e/be87fu3JbW+YSRmA3FAAWg\nL06stSEPkSMltEk+qc23Fpc3jgYDlozSvC9dMZDphOm1B5bKtOjaI7QAAhLeHt3oZV5BrGmY4/J4\nq7u7sbExmAyHJ517z56fa89c3t1qtiOHxGA8qFRaBsrD3jZm1TTLjNaxXzk67no48glr1GcZ4zNL\ni7f2tifFGPu0MxwsLS3tHuxD7VXjRm/U82Lg+5YQLeXEOtyfFI1aW5Suc9JfXJrxqCeKMs/E4vzS\n8tzSztY+wxRp/cb7L926daPdWtw/vF3mAhOurMQiz3I5UdKX8HB32yOUBX4raiW9tMqri+3Z/mFe\nWCNF6YAWSmCE/MCbDlI8L5iKeKbWLo9RWZYO2dIAa62USisrpVbWcY95gU8pV0poa5SSRjuMqLNW\nCGG0VkohiAmjEKLp+Z1yrqWydirmdBDeXaISQqQ0nudNvw6me1prhDO21GoySYQQziKCuTFuWp4E\nTmmpZtutl1+6/o1vPH979+hNbzOilF/9ylc3dlasLT/w7e+pVypCFkapMPAIlAHHnCJopIcR83jg\nc4wxtEgajdFUFAenscskNwhb4jPf87ABeZkba6ADshTQyaBWiaJouvillIdRjJgnRU4IicJamqZ+\nJcaISSWAFiwMPI6BlZU4NCZww3GmzNzswlefvvzf/tvvfeTDH1xb28QIAAulMtpIznwIxTjNKKWM\n+0KWeW4qceyHkdZTaqAdpQmhflQJMfeO+v28HAYxmveqeSa2tq/Nz8+fvrDpgCkVws5iRMpCU1oa\nDa1RJDLQQm0K5OTG+vKHPvj4n/75ZyZJbjRAHicYJ0kSRVFRFFEUaG2BUfV6Pc9zjLDnMa21lopT\nlqjhuXvOPfLwmyadJEkKZSTn3FoLnfZ8qrUWUlNGPV6ZTMaYAMZB6Nfuvfjgwc524NcefvCha9df\nGY8Ovuuvf9etV69EzTryAqsBQBhIpY2sxbPA0v4wzQvNqDccjr2w0mw1xkkeh5XBcAScM8I4YJAD\nwFlEiDbOWYAwVUZ6lA+Gk9u3tlWuv/zVJ6qVGWEx5xhDUxYZBJh4LBdlURTzM/Pf/p737W7tSi0M\ncpOBNMYA40R2mCWT0WhQq9XiuNLvH5y656IScuv2dhjGlNI8zynFAWeMUIkQhDAvy729PWlREPIX\nnn2GE6xVAQAydupF0aXKGaJCC+BcpVbdunNjca7y4ENvEEl2duOs0KJS9T//hU/e3r5hrV5cbM/y\nkPvk6Wee/8Vf+Q+U+JnAM0tLv/abv/Kd73/7XDx/Z7+zff2lufXN7/rO97baUZrpb3z9qd3jXrvd\neumlF86e3RwOu8lw5DGOECiKrCjEo29969NPP52mKUEgGU8+8sEPJekw9PzBsM8pwRCMx8OpvwVC\nUJZFmmbN1gx4Xb097SlOK9HGaHR2ddOjLEnG1IPEt93hwd7hTcp1USZREKvU9o4TBxn3WbVW+eD7\n3wMdePHy8zON6vxsc3lp8fyZs8dHXT+sLi6tRi1WkFE3P7yzf60wY8Pszf6Ng+Lo1mjLVeGdzp3j\nweHK+tKkGCe6AAA0anVV5NlwUPM8ah03tkrZJm8txu3BYFCUJVWgBeoblbMz/PSF2j0kDZvhCjfx\n6fZGpJgHfciio73eZCjb9aVWNDvY73PLxKTc39rvnQzuuXguk2kiSxZFSZkdH+1NRonS+SQZBH6U\n5/nq2lJ7plKp+pShyXDUOz7pd4+ybFzkEx/TtJu+7b63bcyvtyut+bAm+0OhxcHJoZO6VqkGiMgk\n9wjHjiFL87R48lvfuH3nxuLsXKfTMdbOzC34LB6eJKfWzhqNzpx6IAhrYVTzWfXlZ15NT/qnFhYX\n663ZVi2gPOJxkaudnaOjkyTJjXIog0Q6aA1wSiOEEMQMcY9wYxHCtFKpDAaD4TiFlCsHpXWlVOMk\n7w/HuZCltNZBQpi1wFmpjTRauqmDDbqyzKTKpgoIB6yxUksJtL7bfAROW+MgsMBNMbwOYG0Agkyr\n16dD0EhZKm2lcslk1Ot28jTTWkPoHDSFKABFg0QUyt3e33vpymsWuKP94xefuvzM158dDScvv/jK\n1ZdfnQxHnBEpSweUc7oaEI9Cjq3vU+aRII64F4Zhnfoh9fxKozlKM2kdJNRZbUUeEl0nZUwVRYo4\nSSEolTQy8SiJGIkYDQLPYOwYN5CoXGhVYIiBRb4fOQgcBtZaJR1QjmIsNSBehU0joGHtK9+8+jv/\n449eu7796c98+Tf+3W9/7ovf2D08gRhneVk6yMMIYyyEkFJmWTEYDPJsXJQjygAldjgYjMdJUYg8\nz51RnHJr7WSSTtJEAcsjb5CMo0oVAyiKDECTFONRmUhnhCkos0QBaDSA2o9YmvW+7W1v/r/+7t+u\nE7rg2Q89+sDf+xvffWZuZnLUi2jsHCQM8YhKl0XNUAAFGCBUyWJAtHB5sb6yWip5POiPRDndoBgA\nAy/EjhiNEKTAIQcQ5RxhGvl1JXTok/nFdm/Uj2qVi+fOvv2NDyEoqq2omCQk8MO5OaBMkowBQ15j\nziHQ6R4eHhwDgCAlOyed7e1tYWReZgZYraUydyETGFOrHQQWI2edhghrg0ajcjAqgrilDQAAIGe1\nlM5BTDyEuXLKC4PDk85f/77viRv1XAprkEy1zIsyTQb9435njxLdqkdSpEWehEH12o077/vwd3iV\nSqlLKcs4jpUwSX/QatRHaSYxsYSWShPrTDIGRv7lpz+xtrZapoVzRpnUIeMgEVYo7frHXSvSmVa9\nLNzuwSCq1bWhV69e/fRnPnV7e886NDc3t7Q4W6sGd3YPsMm/8Of/9YUnPvPOd7z9689c/eKTt567\nORroDODyxivPvfzNr9cRfvTB+zbWF//Vv/7X5+9ZvbX9apKNHnjkgcl4zBipNarNuVZn2K3WK1qJ\nqy++CIRYnJ/T1vzk3/+Z3ZOTuN3ojEcO0YOjTjpOx4OhKHKHZG/Ydc5Z7awwVqiT/WNsMUKk3Z4F\nAGlpUF9kL99+bed4d+9429jy4r1nNjaWarHPKTrYudOs+kuzTQogpXSQDK/cuTrKJt/zA9+3fvbC\n5VevD9Nyr9uL2/X2yozCuDLTXjm1IZxZ2ljzq/GwnGxcONdYnUmRLKgpkZldX6K10G9VbACrJDKJ\njWCDi2p/J5cTMDhM0n5Og/rgMKmX8Rm00hpW57JFvOe3kpXkFXTwRNZ/TgyeL25/bh/eYZVePT6u\nnifn/G3PXjYX9X33mEuL6fIbZh+9p3Z/cSyYCNrBApZcFbBWbVbqDY1BkUxOra/HAWs3qu1GtSwy\noyV01gv8485Jvd4EAO3u7guZMaqu33g2TU+SYb8sLCWVpFtUvbrT9HC7t9Rama3MYAGLQQJK46Q9\n2D4adUeJHGiUS5BJXdartY3ljXEnLfqSlKRdmQEGVZuN1TObYbWSTcbpaDjqjwPPHw2GWqr19c3Z\nhUWp7GiSEAetVEBbhJDR1jk3jRKHoe/7vnPw+ecuC6mDILIOF6XKSzE92mutAXKEIClLSmlRaiUB\ncJRgTytQFlprZxWwViNklSqUKI1V2kxfq+7CrI2ZRuu01tpIjDHEFhHoIHAIGnC3Ae+cUwZlhU4L\nmSmFfR8QTxpiDCOMO4w+97nPDfsDaJxV8s61awfbt2POTVEAC6+9dr3IRRyEGEJnNWMesJpTVA28\nKPTjuEJ4DGhISIWSoBJWMITGGEIQhnpuNm63qnPtWi32GYUIWkYwwwQ65DFUiULGCSHMOIiIR70A\nEIogKYqcIIORQwgZDSgPmReME2tpFfG4kFYCFNcbr1y58pv/9tevvno18qNr1258+tOf/u///b9b\n6yDm2sKyTMsyN0YZo4oy830exaGUsizLNE0BAMvLy/Mzs1MYQJYl6WTsc49TAh2A1molhCgmk5Hn\neWmRpWmKKcGYKmMIZkKovBCd3ggCqrX1GPZ8vbYa339p7m//ze9+/zvf8PaHL/zE9310rVFF6ZiV\nRWhMJfYxcEl/2IzqTqjhoPfmtz5y38MXlJaNZt1ae3x87LR1DhploYUOAojAtP1QKi20cRYChw2E\n3PdGSYoQIRg7Y+cXF25vbaeTImSBjyjMpRiMR8e9gMScVCH2LaAnJyOpXZpmQigMUZGXUmprre8H\njHkEUWchwcxZ6Jwz2kmtAHAYwenn+fDohFMah5EsSuAMsM4ozSkzWkupOffLsvzAt3/IWuCFESFE\nGZ3n6WQy6nWOk2Q8GPSUEhRR5BAnfDIc1mqVz3zm04899livN/jwhz7QbManz2xmWdbrdSpRHIah\nNYBQBjFBzv3lpz5x5tRpCAByqEgLZ5zPfGeszxmiePf4EDGaCXH1+o0rV64/d/n5J558+s7t3X53\nWI9mGvFMPpI6tU8/84WNUwuf+vT//tJXvvCR7/zwrTt3MAn63fx4b7i3d6R0ftK7/eQzX3jy6S83\nW7U4jn/tl375A4+/Dyi3urh+6b6HRoOkzFUxKYHRZ0+fevappyvVaDQenN5cr1Si//yf/sNP/d2f\nfubZ52dnZzUQSd6XNuG+A7A42tlLBwNnZKd7UJjk5s41VsU5yMZpkhXqlSs3eNAksGJhYYiwEMlr\nV297jJ/ZODXfWiwLnSVZGSYb62du3LqVjkU+EZQJ50yWJUEQP/Dwfa9cedk6sbayetg9NLkVRs4u\nzTfrLWhsvV7t9ToGGOrAI/fdbyHo9/vD7sBpu7awPBqNhBAQ+giTpdXloijKpKi1KwjTMRmHzSAd\nHNvMBjQe9/phUM+TtBZWQi+YpDkjgdW6PFGZERCVzZi+/fQbd+4cBHlEAnbz+Ho8H/pRdLx/GfmC\nBTyqRSc7B0ArHkZRPSqyzGOk1W6lo/RwdzugAY9qIfcr7ejWztaol84szAFjt7dugYWiUasSCgLC\nm3Pz33jqVuDpcZZ4Ac9TIUkWBpUK9bwIEA0XFpfe/OAj4yzfOr6+vLg8E4a1Bk5PTsYFWFtaUEKS\nCDkFEpuPhhMNjV+t7t7eVqVy2K6trS2vrkADgCZFNyn7WR1XMqkoQBACzj0wTcJBq5SyZRmG4eHR\n8RNPP/O2b3uPNUAqnadKKDGFigDknLMQkddNddABY51DCCqjhSyANQA6q0pCiDQSGswwAlOoFcbO\nAa21lGIaoQXAWWuVFhBC3w+FUMZo7KhDUCkhhQBK+kHAPD5OJkZhhpksSidtYbUB8rVrV9N0Evrc\nGm2VqnhcJomHiCiKF59/8eEH7q9UPKCF7xOPUWhVwEnoU0g9SDxEIkADWCqKkSgGlah69frN1kyb\ncUSxqoRRqxlJqZzSOYGFFFYa5wAlmHPKGEMYY8IRQtY6RAilcZFPMLFCCIZ9SHypHWa0EocWOE5I\nNpn41Xjr+vXf+R+/v72173mekpISkiblcDSZmVuYjAYOEObBSTKyVmMMIbrbFA048zwPIaSUklKO\nRqPDTt/jPiGEYpRMxkk6NhZpABFhjBIhhNaKMeagEUIAYDyPIUbScTYdeTHqxwHnjHVO9mWevPvd\nDy8uNQE2w/xg49zCd/3gd/zGb/ynANVqfr0dhywr5teXnnry+Uaz/sDDj/zNH/6hMAwffPihey9d\nGgwGcRwrpQjCshCOUqEFgsQCByGEACKEIOMIEaULq1S1WjVlOdtq9/v9ajS3uLqirciKSVxEYW1G\naWWMw6EPMNUGE4BeeulVIdTCzOydnTtSSkqIUhZYB8FdsyNCCGLirHsdBmEhdNZKq2XYqnV6A22t\nVKUDDBjCPU+qMhOp5wXG8aIoPC+glCVJBhwCGFcqldGwM+h1HND93gg42241jg67BHuce1G1evvO\n9Xsu/oMf+dEfrcaV06dP/cgP/8D8Quva9ZtxXCWEdDsje7dLARuNxq0bN7/8xS+eP3vhxs3bWhkI\nRFlkYUwAZZgSKVyvP5iptfQk/fynP3PjxiujcXdurlWLGwGP6rW2ElJ4FkD12//1t//JP/6l3/yt\n//prv/7x2flGFatmky+uLEMATvaPrcK7W6OxzhZWesPqnUrc/JmP/b1Xrl7fPTr4vh/4/myS3bx2\n1Sp9/vxmv3eoVAqBV40r3/rWk2dOnR+P8hvX937ix//exsbqhz70nocfvJROxtU4TtOU0aBer9+4\ndf3U2TO9/vFLr145e/4CIWRhdqnbO6GU/uVnP43KPEvGI2RNkSb3nD59anlt2Bvm40LkYm5x9ni0\n9+rt59Ni0KxXl2uzeCJOr6ykw/6ov985umX1pFWvGFGGLEAEGqsno4HI0nQ8efrJJ6q1CgYAc08Y\nd9Lp1+qteqOtARynGSR0VJZeNa7PtQ56h3Gr0lyZmzjloiisL4czy7XNVVHHfDNgp5B32gyibXtK\nN95QrT3oR/cSfl43H2b+Bc3Ol4es/42tJ8u6GvPJCzvP0waY3agLmswuLc8trjSacwz5KwtrFLBx\np+dTdnzQuXX9zuXLl/M8t1YzRvcO99J8PMj6GplJMY6iqF5vthszw0EShtVuNxsOk0KLlY3N5ZnT\nzWAZmIBTPy8mSuSUkNnmvEgVKMGFMxcfufRQv5uLAiWZznJlHJbKBFEsjDGAd7tDmeQ+hB4wZdKp\nVihkMiYcS+NjKgs56I2Go9wCmhXSSIEJVEYrpSDA+C59l0pV1hr1b37zm0oao6S1VimjnQMAIYQg\nhAgB58zUfFSWOcAQEKec1Lp0QDinATQA6Ol9efoSZ6wxRksjS+GMQQA4q6UsjVEAWAiBUhJCWKSZ\nEIIgbKxSZeGstkb6lbpB3NAg0+Tl6zuj0inIc+Gkslev3eh2u1NeTZnlAFqtBIYWE4QgmYzTL37x\ny2VezLZqtswqHo08LwgC4kckrhkaGMy1w4BSiIgxbjScCAOVxdV6s9Vq+b5fZFmlEleqgXXKWaVU\niZC1ViulMCEOEu7HhAVlKQEAACFCkVQpxdYZAwCBiEFCITaYQgcNQBBY8I1vPvfCizcqcdPZu0Yq\nzrnv85Nux0GYl6IsS8650mIymSiljo+PKaXGuMFgoLXO87Lb7VJKlxcXCMXGaoQQ57RZb1QqESEo\ny5LBoE8I1kZqLYUQaVYUhUizQiiDMIEQ+r7POZdSdTuDRn12dm55fnG9Vp1fmFltVFqUgPOnlt/3\n3rcA2/+ejz72//zLf/Yv/+XP/Ztf/YXv/d6PXLz39N/5mZ9a3lwzhLz9Xe+qNRqQMoIZox5CiHMO\nIXQW6tfLaBBCACyBAGOIoOUebTfqczOtRj32OEMIraysebVG0JxHQQvEczSeay5vAhpJSwimuzeu\n72/tcE4Pj/YBgisrK7V6HSKHMXbAepQwTpjHp3FbrfUUU+qAAVZDCKM4VtrtH3ep50MIlVJSK0Jf\nN/pqGccxhG40GmHGp7jjsixUqYRQzrksT6LY+/CHP0ApBtBqZZdWlj/7hc+/dOUVytlj7368KLL5\nhRkHUFxtOAfjINre3jZKlOUUhkyKovjkX3yi1WpxzgGEAADG0WQyGQ6HPmec0GQwQNacHO299Opl\nZSerG23KLQtgVA8sNiSCfo3Nz5/e2+382Z/9ye/87n8wYLS+NhOFfjVs3tza7nS7lXqkbFaUk2ol\n6BxsvfDUl7/17Fd2jm7HrUhjlar0Y//47586tyFM5pPGzev70PnOoEolevGF5y+cXz06ulX1mSqS\nL376k1/+/F/6Hs6LcZIkJ8ddHlckADwKjLPj4UhmYu/WdkRDQjyjwfra2d/49X9PAltpNVuzc+29\nnW2PM4hRo1aXUnp+fHi85Xl2ONyCli4ttaCLLzTWEl1wSijFjebM/Py8MQ46RCAlPp33533fPz4+\nHqhBc66VyyJXgjoIgJ1ZmDVaD8aD4WRYCFGtVuvVGFkTskCXsnvSicPq0vwCdEgbsdcZNFpNNlsd\n29LEeGALW/eUV1zZ3W2324zgtfWlIs/G+33M6NzsElBOpGW72dYzwkJZ0LzebnqVoCiKxcXlW3fu\nRJXKKBOYh0LDhx58c7fbbdbrL71w+b6Ll8aDIeBwXKaKgLhR8yrRzdvXDvb27z1/IZtko1HOggpA\n9ub2jdn5mTqLWzNxbvIinWRZ7jBuNGdlAerVKgEVbGitGqzMnSkndjQYMxOFrNJeXByLcuukUzG2\nALhdq2/v3N48tfLMU0/Wm624Ujmzel4Uxe2t7Uq1GVZak+HAEV7azGqBEAIITVXIlFIArVQyrtd2\ndvb2Do+mB2oHVFnm0xXrdNMylalD6CByRmhLJQZQG6usnu4YjdbWWqOhtRpTCiEGAGCIlNZamzDE\nhCJmmTFKK+ec49wHAIgCcO6LvJwMR77vMwoxgQjZSZH4YU1b8uzlq51Op9lclCJvzzTjuLm789z2\n1m672VKiQJQgjLTWxioOIEDQIfjNb37zOz/0eDOuWAZiBqNKg/kR8GJLIwA9BLBWSiOJsB1MxpO8\nbDTmT3pjYLHKRrU4fMObL00GPWdhHMedrIMJglgb4wopLESQUExDoLXBpVFKFAUApSqTSrUhlQKu\n5LW200pmiVAqbrSPjw4+/7kvfeITXwyCSGkFoVNCAOQgBKPR6KmnnnrwwfuZx9Msl6WohBVOxOH+\nHsPg5ZdeWVta2NxcjqLQaCmlzLJMGTfsDzDGNIrLTCZZIowhhFer1TRNC5F7BJdCUwwZ4wgTCLEx\nFhgAASCEME4xhpR60uiykGFtpl4Lx6MRo1jJQsnx3/6x7/uB7/3QwtKiH8X1upfn4w9++LFSGy/0\nxllWapeMM4wxJtBC4KyigFnoMHLIYqWUscA5C5GDDgMEEbZRwMosk6KIPMqgnxM8Go38+Tk/ihvz\ndQd9A0KLGWG+NpYSbvLRr/zLf54lI+sUYzRVIi+z/nBkjPF4YIwpjJx6uadavr8idGIIAQTUowgR\nDfAoL5RDpRBRpaatcwA56BxwhKBms3rzZifLUmu1tVbpMsvHCFGPB6PJied5cRz6vv83fvgH/uAP\n/rA0qsYbZTL8r7/zP372Yz/bOTmq1isACc7CrNBRP9vfOxz1e5xj4JTRQGIaBNETTzxx48a19uwM\nnUwODg7q1SrV/Pj4mGDnMYwxHOQjFSA6H4eUAo66JyejTrHbOVhbXdImX15cVCWYbUSdg513vf3R\nf/tv/+3MY49/+fK1o4Go+bY3GAfpaDDq1dqzBpLOQRcCffjK9cO9w/WzF1qziwCYpEx/4G/90B//\nAfvyF55gmNYqFc9n43F/dradThKGKTZusT0/6XeG3c5k1EvGQ2gdRHCcDQa9kzgOb1x/9cFLD83P\nLN68dnt/aw8z1zkeTIaT//jvf4swjcMw8IBvSiAcaLSqUuhSCAR1JagCKwhDzuEiyzVCE63jSnWS\nZlLbSaqMMSeHR6sry1blQUiysUgGI2DB3MxsURQzM3NFXsqyODo60mm2vLhUaTZ0mmxurjLGDjvd\nMs/2tvcuXrp/kiTAgSj0Dw72jAOVWqNQ0vO8yaDvcSqtsRygAM2tzYpSzc3OFFZ1JkOvXjs4OV6k\n1XqrLmOGPBih+Lh3winsdI+T/nBubu5w2IkajWSUNKszcRxDiKM4QogeHOxfvP+hvMxnlheKouh1\nuhyjNJnEtdiv8sfOv0OWCmKIMVb5gAd+w6+UIrl5shWHfhjEAMGo0pqfWZUNW2b2xedfPHX6XKmy\nUT9vRpU8z0PPn5uZPT7odU6G9116aPnU+vbBIQv9AqIC453OsHRk/6A/6N/Z2e++573vXgp4MiyN\nQnlujAEQYEqpNsoB6yycXngJJdoZiOkrL73a7Y0AQBThMk2FzBGaquMso541ilGCENFaez6DDhFC\nLHZCG2eBc8hoACEzQBtlKXCEWIwxQvjuWR46o7QsC6lKz/OmLHILoBa2XkecYOSos7ootLGYMJ70\njj0eHZ8cX376eQjh5z/32fW1hfWVWegAJSQvUgfqzjnrXKnklJWqjSGcEELGw1E2HkfhpjRI5ZN4\nYQ4wBniYK0QJYtAxbJyVx52j7f2DJC0Hk/yTn/rs5urqwdbt+Zn6wsLC0vLieHTn4ODIQmidgchO\nhUfOOYAIsNA6xMM4658ImVGkEEJ5lgFCPB8Dq41RFHPkWD4Y//7/+J9f+OJXshI6B/JsAgDwPM84\njQnrdAaXLz/34IOXut2OszL0/X6/63Pv1MbGeNSXFBBCBv2hM7oSBXEcT5KMMDo3x4QQ/TSb3pCs\nUpNkgChjzHPOGaMIIRiBKUvAOZemqdOmXq0xxgDQQgqGiecxY6HUeaJLSUqIedwKotzXRLeX5oQz\nNplAZK21cTWKEZHOqFKVhcI+0lZp4Thl0y9+jxEIocyFtRaCqeAcUuim4VgMkF+JIdCcUYdQu91u\ntdsW2tICREMLfIRDDElplBYl9QOj5NHOtlLGYrO8tHb1W09lZeEwswYAgCCGRTF2EGlrLDDOOmvh\nFDtqjLNWMcrTvJTWjbJSGYsZlVoZC7jnQQgn4/H8UgMjwDg2ViWjcV6kWsuiTCyAGGMpFPRQXK2M\nhpO5hdmP/+bHf/f3/vyFV18OgtpXvvSN7/zQX19YXJQqQZhLYQb9CWPeydH2yfFxEAQAOq2lA8Ln\n7Ohg58UXX7j3/gejKCKETCaTVnN22B/u7u6urM4bCI4nw7lza+xaFVmvNBlr1xgMZCJ7o1Ho0aP9\nYwJlozrnUXjpwv33P/y2/ZPhqQcu7SZdL2qE7Zm018uFt1hdG6Vpr384N+OdnVsThQNJ2ReHBqJ6\nqwUx/LG/81MzC62XX3j5cO946/qNVqOptX3+uVcfvPRmJ92oNxC5Pnfm/OHe7njUV6IMgsrxa9uY\nAKijVrPdbNYyrqv1SpJnd27s57m8cG79s5/5Eqo2Kwbaa7dvZkoGUbXWXADEkxoO+hMMKmfWH4n5\n8ubyJYKqod84POh1TvphXLMOCCWcswSD0aBzfLRzvLufD9NkmBplRC7zpLh+5UZAQ4BwtVpjjOdl\niTANo2g4Ho0mQ8JoIUW1UZdShmGsjUyyif3/M/VfwbamZ34f9ub3iyunnffZJ/Y53egG0I3UIAcY\nkDOcGQ45QQxWMGUWKYqUVHIq+8I2LVeRVrlYxRtd2LKlkmVySItiGMHDNEPMYAAMgEbn7pPPPjuH\nlcOX3+yL1YC0rlbt2vWt2vur9T7P9zz//+/vVCFXs8nV9PrKVJbgUGs2GibzYbG8LpOh7PgboKLj\ny2WelvVao9/psibX1M6zWZIuCUA73U1mUJvVVyWrVHh0NsuFyatqOLzOVitVFceHh5wQznkYR0Gt\nXho7TVe5FUkxBkTm1bLbb02WU4t0ofJC5a3WxsH+A6BZp7G7d/D5zuAVn/etiX2vUZVyVSwbvej1\nL7/m13ypVaPZrkedG7t37t99Y6O3d2v/rs/CshTX59cuE9fPjsvxquaYHC1oqbPxpBv57/zgB4ef\nPk4ny4ujy+U8dQ5UpczyRBaFVRo5SwBA1jjnjIM0CKRyz1+cAkeVtFoqJStZiXWYMkKIEkIphRAj\nAAnCnsc4RhgBShBcPxpbuxZOEUwhhEIIpRQGEFoDjIbWAAC0llJVSqn1flWqSpSFBTbNlgCaOA4J\ngrVaDRJ+PZ0jXtfQ//TR4eVwVirz7nsfD0cLgIPlcrlYzGtRpIWAwDlroXVrIgGAFhhrlGg168cv\nD31Ga/VA6VLryhkNAKKIAmOtVVYWkBCj7L/8V9/5/g/eOT46y5PqJ+98OF9V16P07/7d/8fl5bTV\n3KhKo4TWUgFrfYpinzGMAEDaAYcYINxhzChCCGFMqlJCZzF2VhbAGch84oWT8fzTTx8Z4xAiQghE\nHabEfqYHRYSwly+PkyTRRhqlkmRJEM7TZDQack5vHOy3O81ao04IQwhR5hHCkiSZz+ej0SjPy7VN\nARiAIVGVSJbLqijW8Xjr0BKtdZZleZ4RQgAGpaiqqor8kBJklKTUcg50BZ2EzkCoXRwF7XqEneYE\n+Y1oWRSW+Y5HhoeZstM0lUZDYLUS0FmOEbYg8DyjrFGaYuBzEvrMp4QTQDCk6zQWaznnjPsQEYBw\ns9urtHXQ8+M+IHXrPCsx0IgA5vsxAJTVml9688vLJMc8uLy6brS6pVRaOalAWQlrHARoDbH4Wd46\nAIAzH0GCAMaYWOC8wE+zHGLknNFKYAKlqrSRnkfu3rnFGIUOEELSNK3KdaCgsc4QTgxwFiI/jL0w\nSrKC+v5/9V//lw/uvYqcNx0mv/svfy+OoizLmOc75LSRRrvZeKYqRSCySmMIjRbASFXm4+vT0fhq\nMpm8+urntLJ5mjUaDa31ZDwjhOlS21LvDbZbG53WoDdcznDo37x/31I+2NqF3Jeonkrz4ujpP/6n\n/+3/9T//PxDqiEc7m4OPnj89ur7avXuw/+C2C7x5KVNpoB/EzUatUW81GhS5gKJkMjw5fPHRh+/+\nwi/9qf/jf/Z/+l/9b//Tf/+v/Hu37u72BnGtgbd3GvP0crq8rDXoG1+4i7Co1zEAhTEpR7ZdC9Pl\n9Ed/9EMIAGMsrMVBEAwGA6318xeP/5//1X9BMqHieo0bG7bb0pgXL58Hgad15XnedL7wvQb1mllp\nfe5/+vDDjY0+R8Hw/KLTbyTpzI8CnxkG1db+7vVkNk9Xd+68qqwbTkca4IM7t6bLdLXK9/b283SV\nZRnBkhButHt+ftLp9ALutRrNdDXjvme00MgxzOar+WBr0G32IcGFzLRVGJVf/NzdJJFnpxdp5o9H\nRa0eK+NNZnNAyPX5RezVGl5dpGWvt2Gdu5ieOwRr3FEiWy3Putxi6ag8uT7a3t5eLiZC5q88eP3i\n6rKQ0vN4KQX1fACn0harWTXY6jdZI0vyoB5zzheTlDeSVqNuNeC1rpGOU+nqpBFGSgtE1MnF4/29\ng8oklSmmS9VoNk/Pjge9jevL01aj/eDejUqLne3Gp59+eu/Wbi3yj19c3tvbIfsHizzvbmx88atf\nRQ5cnV/oDDknWGlVoUIJEEW+x5XRWiqE1l8P12y2nj89vbgaIeI5J/K87HbrvsecsQDa9XKPUqa1\nphT5PjdKY+esdhgCiKw1cp3IARFYIweklAAQxokxRhtnrQXGeowBGwhUQQcwANYBTAjmBGNUVQVe\n5z46WEkV1lsUhd/9g+8/ffQi4lilSwbMi0ePxhcX9W73xfPHhAJnNTCWQoAJNlJAgJxzUpecsijw\n33333etf/cbXvvKFZHSitS5XSw+FLOg5CyA0Ugmm5OR6+s6PPwSEhGFclmUc1hhjzoHxZD4ZLzjy\ntrf2TkdXWuechHHA48hnHgUAYMQgIlYp6keoyrVyopCce865Ik+DehcBqIyh1GMez4pcaqCUc5ZY\nAzAGa86iksb3g8l49uLF4b27t6yuFrM5I5gQFAZBWSQiwLVmrV5vQmBEVQoxi2qNrSAqyqoqy3la\nLFYJp9ZooLVlzFsTeCBE2iiGaRRFa20yZ4xQ7JCDDirl8rTSUuRFGgWcc4ooY9QjjohSBzS0klSl\nhEhbk9aDOC9MVQCAXJUKnZecelKVlBBVVRQjxqkzYA2fIVhDCAnBShhrAUaQU7amwFdV5fs+9Rig\nVBtDqO8wrQDgTluHMZQAYwRBpSQnDENGWVhJhwkfTSbKYko4RMSYqqq0MdBC5LQ1xjgACCFKaGst\nQtg5uQ5kF0JqYxiDxmhgDSIIWEM4HY+uP//6G91uP89zpRSByPM8X7k0W2CMnRPaSK1VWeq43mA8\nzAvx7MXLL3/p7b/1f/lbv/5rf1EUqsyrIs0IIZx5L8cvjFFWW4wQpwxDhD+rLgg6RQkA1synM8JF\nHNRu37x7dXmOCQrCcLGYI4OgMX4ctg3/nXd+/Nobd24c7OarHPm83u3SRu3he+8NdveDyPvwgw/3\ndm68fPniz/3mb/yNv/rXfuNP/9LLJ0/my3yRybDevppWh6fT1VLqFxfBV3oQQoFkvRXOJvN+r8c4\nFFq98/4PmrVmr9X71V/7pT/9y98qiyJdZUmSaKfff//9//Cv/UfNVitJJhRDVejlZDwcDn2fct9L\nl+l8stzYvEHBNUV0PJ6+/94Hv/5rfyEMGmQ8uyIMyUrE3I+j+Gg0ZMg0faCKZNDgRXna29wenc/u\n37w/6PVpLTQoHy0ud+70kwJAC2/s3k3neUh7r98+mK5myXKmtWx4nrZWufJofEycOx0WtTCA3C3K\nqhIZtLDb24AENWr1+WJCMS6r1Od8NV+tlsuA16yyskxpgC+vny/yJIobZ/NhM2oc3NmUlYTMIo+1\nG/1nLz4hsAKOs3osUSGZU8zJvAwCpGS5v9lxQI8ml/1B9+7B1vX1deNG5+zqcuvu1uh6fD29CALf\nY7Tb7Xbj8PT0OOhsVUVZpef5KptOp0EY1jutVbqs0PL0dNputoB0EWSWIIiRFNoo4xwsS0t4aCBi\nHtoYdJ4/eW6t9LlnrW61O57vr9Ls5HJYazXvvHVvdj2p8ejg1RtFkQ0GjTbpiELv39gcnl/vbG41\n+Mbp86moRFJWmENhhKqMh5HPPWmcBs4nDGrw6OkLqZyR1gt4f9BWqoQQQoQZ8xljeZ4RgDzfJxhC\nCDkl2FnnXKUktMZaLaR01iqlSqOQcRRBCq2SpbVWS8kwM8asqZCcMQJRVVUAQQgBhQhZAKEtysSP\na7msEKuvEpGn6XsffjofjylyTkkPg+OXL77zne/8W3/+L2RZYS3AnGgtMAJKibW80lpAKaWcEBDn\nOfgH/99/8eDBg/rOoBxPtVhVNU6BBx23UAkrijSbJtl4vuw122Ilfe5zBiIP5cm81ow/ePIw7HcP\nZ6tKImoZQ2HsBbEfOYSVMwxBh5GFnktyZCNRCky5scqq0vdDbQTxfCgRcOjh48PRJEOUCVU5YoDD\nxtn1NANj4hMyngw//PDjO7cP0rKIapGuyjzJkLMff/Lx1qDf+fpXl+kSOdBpNn1Oi6KQWpdCpnle\n5ZXVhhMqsQbWGV1hiGVZIYocMBrYsiwBsGEYekFQaZ1N5q1GA2p9PZti7PzAk1pzTiE0UqpMCY9R\nz/OSbKStMxBlqnCQAhwoDJO0zGVVWY2RJdZ4PiUIKSuwAQRhAAzClhCqlDbGQUwwtpxRQjG0zpAA\nK+37IQAAcA6dM9p4lHMWGAERwc5ooBxi0NkSOWYgcIZ5XrDIKsrCNEssxAS7oO6JUjinOKFJURpL\nIITaGAi40QJAA6DFGEd+EARElJlHOQ28UbHyPJJVOfPowc2bX/7qW0GA0jwzzloInDOezyBqaK2L\nfEYob9S7o/F1qzZALXxxPhFFPp2sbt261e01tclff+OedapRiyJOiaE+CZfFPIrrgGBhNcJAaQmt\nEblotVtainw1D2t4Op30+4PeoHN5eR0GgdbFLJnF9fp1sWje3u2kwTk43//cjbd376mFQbr7nX/x\nb3q7GzSA0zIPN3faB7e/88Pv//W/8h/8ub/4m1cXlwc390aT8cRY4oca5iF1wqHLZ9O0evhn//wv\n4hqfFFNUJ3OREx5+4bVXWvWGscIaZA2cL2bWmNaNBiP+/Vce/Oqv/EIQstV83m73gQW07rdbvWR4\ntX1zV0NbSohJGAaNVnsD82B5evTX/upffnDv3huv3SGbjVq5ms5nC2wr0moEETawsq4qTQpteHPn\njtWgWMyH84t6j2fVIqLBvf29bLxseA1kSbvWzaciTctMpH7dxxBOZ0m7Rtv1+unx0X6ndnRxLTIc\n1HoWmNyUXtRlgb9MlyJdQClfu/MAODBfLM4uLyopBlsDFGohsqPFOBTR/Tdee/z0iVbu/fff393e\ne3DvldgPEBOEUaXUoNdnxD0/OmJF4vshgCgRyXg2ZZyQwKsP6pPJyHioMOLy8tzngcgLUOqLo7Nm\nq11k2eXqutlsP3nn2RtvvBF1W0CVTpvdg4O0koXQUqWr2aJZr8tlxX3WbLafPn9mEQQWqFJGQZil\ns42trSDeOTo9Go4uoIV7O7uDjd7h8fO9vT1l85cno2ajMRyNSi2bmHITBIh7OJBSLlfVsjiN49gY\nIy7K/d0bySxNi3kulsIIYyuCeeCFQCsLjEOKE6Sh5ZzPluWLF6dBEEzS8e2DnXarOxyeQUSsNRgj\nzhlCIYDWWgUgxtACBxB2AAAojKgKKSu7tihBCLRwDiFgtdbEYOucccAiDB10EEqptZaUEWk0dIhh\nvAZUAee0BahSQdxe5uaP/uhHw/PrLEkRQlpJqy1GoBbFn3z0wd1X7hOICESyEsBaCIBzECAIzNpe\na7TWcVzzMX7/xz95949+9Cf+wl9UCDZaPgybQFiXJ9C3OllcDUcXFxee51VVFXAmpdxudpfTKeNx\nshL/4ne+c3w6hATXQ2+zGwcRJRRYqwFABHPggDbamkrb3PMYqjBCSJSC+phRLqSBxGLuAYi++93v\nEoyVVM5oDDHAxDmHIYLYKSUMgBjjTz755H/2F/8cpRRBSBluthsE41/+5T81H49FUbbaMWcsyxIl\ncBiGlK7X4FhbNFkuS6EZ91vtblVVyzTJqzLEPmN8/cwUxyFGyDnLOcMQhmHopPZ8g6BZLBYEQVkV\nMgq01u1GvdFqKCEJBmeX5/VW21pAvNBokReqKKWz1qMMI8QowggRzqEzQghAGcIAAmftZwpFAADG\nhFGGMUYIEAyUA+t1xRrPYKTSUjEPSOsIhJhQp63RhlMPQogAaDZqRZ7WYq60AtBpKZ2jhOE1vMg5\nyyiWyhhnIHLQOcaJUgIAW2/Ens85AYaAuOYObt64oze9IK40ZDy4e/duPa7Nl1MI4XoUTj2/SkoA\ncRTXtbZpUcb1WikqiFG91W522lePhpPFsNVt/83/8//+9PR0e3vz+vqy1+0iBNN0VZYFJrAoE1kV\noc8dgM46L/Cl1BsbG37AizJLSwkxwgQ2661Ws31yfIgcYoRoKbFP59NZpAdf+vqbJ5eHo9FEFMqj\nwe4rmzXqNXjj9//g+2FUL8r07be//Pvf/c43vvXzy9nieHhRZCWq6QAwAEBqyqXIcExPXzz6h/+f\nyV/+3/xVWK9fXVwGrmjzOB2fN0O/KioAaavd6/f7xkrGiFJmMVu98fm3anHIOV0ul5TyoqjqtebV\nxVmzUQsiX1lUOlJBUBh1eXn59a9/7YMPPrp7/97uvbskXSzTNCXO9kPfpkmD8aIsgYUsrHth89nh\n+ecfvL5/a/90euHX/CpLC1cRnxaVGJ1fMshzbSotQo7S6QhNXbvTKBezFVRHLx+3m60giG/ubEDL\ngUIU43rIAfWev3yyzCav3b5Vi2ovDp9YCwBGjW7cZo3RaLSYXBMvrDe6mbJ5YbTCnPO9GwdX1yfm\nabUz2M6ScjZdvvXWW+lSzZNkb3/b85hWqhLqYnzU7g6Uc9T3Hh8/xRhHzRhj7JRjjLUabYoZsnC5\nXAIEiRQmT7faTVPmpy9eNFu1MKqdX1299urnPcR2BptVll+dnm92t0uZJ0nCAz5bTUIv9AL+8uTZ\n/tZeKZLJfHY9vNjZ3ZNKVKLY2t3yw1joYrmcU05Gk6u8yPZv3ITQmrJ85faty4vr6XwW1QNIEWZO\nFNXu9vZ4PK55rSzVStnFYgGssw5RgDFjEFhMAcHQKB0EwaMXz4pSBT7VMr+xt0UIgYhSBDGGlGKI\nDOPEGAUB5AQz7Ky1RhkIgJKlrHKjJIBgbUoCWgGH1vxDZwGA0DgojQ0IxJgAiJXRyGK0tjI5C41R\nxoRhHAVcOyiEXC3zF88Ol9NRVZSMIAcAIVQpyRjTUn384QeirJxzCGNrrLUAIaS1RcBJqRHBPvPL\nsoxrdWPdR+9++Cf+4l9lcd+ogjis8qycrxxX6XKyXM4hdI1Gw0nNCIMYOmsZY0YTh8DoejL+/o9/\n/ud/zjmrjUBIM44xJZBwiANgKASKIueQEdKstXjGwABRBDCECLMAALKazx89ekQgdBhyTCxA0CEL\nDELIao0hWgsij49Onzx+vrPbcwRUUnKKKSdFke/sbFkpri7Pa1EcBZ41VquSMSZEJaqMMHrz5s3p\nLF2ucmMApl63F0S1GDsrhFCVMghgBOr1+jrkNgrCqqqsNsC5rCzzouz3utZZhDknTAM4ns48yoQ2\nhDAAMUTEaJuWaVEZobSU2veYRiBCIQaQM04pVVZb4JRSCIE1ytkZu072gBACYwEiQBuMCIbYIUcg\nggDKSszGk52oQX2uAUAQYsCAlQBYACEE9sWzJ4wia5Q1ihEKgCUEK2MQQqIsjbYQIwAsQsBqiwh2\nxiotCcKBR+PIq7Jl5Hv1gPSaQbO3g5nnhS3q1cu8EkIQQvKi8oKQMs/zAspCIUSaJniNsSuKdn/z\najzrbe5sbe8eHZ+u0nlazG/e3X/tc/eOj55z7nc7G+dnJ1prjGFVpkHgbWz0q6pyDnlesFzOXn31\n/ptvfXE2HTa6gyAO57NxGHjWwM3BhrVWK4khKLKE+qERsuvvtfjWyI2T6aqUZZ5fbrW6WGmE7eff\nuB+E9fPzy82N7mQxniznb7351eLxR69+4Q0xTR59/Ml4Plst5lErlHlZa8RZVvzjv//PXnvzjf6g\nWS1W59cTzzmEebO12dvYSKWcTmf93kZpHMGg3o4d4pXm59ejer3OaIxYCWiMo3aj05NFfnp5MSnE\nq2/UMlm1u42L48uTs+tZZaalQKPFaqO/cdDfddOiPF+qYXljcFusQAPEDRx1Gu3ZYrwqZ6PZhe/z\nVVoSRBezpRLlwd7moBsZtWREiGLSb3SrWSqnyZ2tG40oLvPs2ZNHyXIxPD2dXJ0rJVZZmhW5kVmA\n7Zt3btb8ME2X49XF0/OPp+Jqml85UDlT3ajvkhIuhouA8o8++BBDgDHcvbG7t7/pgBzNri6vjna2\nO2cnL3a2B1VZmrJMZmOKba8XESxGo+Pl4jqZj3VaRdhzSjtlOeerPDu6OCmsKMrUDxjFoNep6yrp\n1EJb5Le2t+Jmq6qq+zduBlq3mUe1U5U9uHO/1x1QyglEnWYj9HitFjFGtne3knL17OUTSFwQeFpV\nr9y98/jxp9PZaKOztVwk3Pe2trbCqLa7u48hnY+WUbN+fHXY3g5KN14sD4fXj0Q+RCY9PX2ep9mT\nx0cXp/P5qISGcOoZUVhZME4YDxEJIWA+8wEAj589xYzmeY6gu3PrZpIuEcaE0SCI1jMECB3BiGHk\nccoI5YQwBKE1EFiCMARuvcfTWq+/1UZrZ+E60ghCJ2WlZKFVCYGmmCAIPiO0oDWCBkLojLMQYGn0\nfDHLssRKAawyWmmttbXrOT7B4MWzZ0VR2LW1HHx2nXW0HmMMQqitMRBoB/wguri4AC71Apsur8Xs\nknIbhmixmCbZinHMGDHGhGHonAuCoKyqMAwrJfNCGIujuFlrNAij1knnFCEEez7AvrNUGmQtcFpZ\nV2knMEXamDiOfd9fy9id1s66jz/8OFksnfksmPQzTJsD1up1CLVSimAWBfFqlVJKl8sl5zxJllmW\nijIfXp1BYG7u7d/Y2e73OrIspqNxslguF7MyT6eT66uL8zJPOeeEkDRLktVinVG+1p5TTIqiKMtC\nSwWBFUJUVbVmB2GMa7WaA5ByzwKgnRVaQUQcwnlWDja387xElEitlsmqUhWEcM15X2NgEYDQAQwR\nIcQ6LVQllTCqhNYgYBAwGAJgjVJKa+2cIxgTQihhCGKAMaUUEwjKHEELgQHWAGCRg9ZaB5wx5vz8\nDCEklCyqUlsDIdbOSqE5pVp/RrtbC+o/y9vSxhizzthyUiJr6mEYe7XlbDm9HhNE0zSfTeYejz0e\nW+u0NhjjRqMhpZyMZ87CMIy45/cHG4ONzd29fcr44cujzc2tOK6dn19XlayqKs/Ter3Z7w22tnYX\n8ww44nlBVVV7u1tvf/1r2ztbQpRZvtzY6L/11hcBtGm6NEYFgRdF0XKRzGazxXLe6baAdaLMnRVO\nVdhZC+1oNJnPMpkamLq+3yUl7gTdT549Ax6tjGh3G8xDpU6QD5+cP+0Ouq+8/lph1cn52fGzF9zY\niHAIoQOEWEYkff+7Py7HK+SAAS4ty6vx2FEGvQBy6tfqPK5FtbYf1xqdeDi7vhxfbO5tVUYk5arR\naxhitIXGovPr4fnZJSOUYvLRxx+8OHqpdM44/Ne/+8+BFSiM0fPnT5xBO1t3bt54Iww6i0V+5/4r\nW/vbXsA5ZUVW4pXZdx1yqXf5ZvZw6k9BPYWrp0dhWanxECWLu4O2FcXNG3vDyXiWLRDDb3zhje2N\nDZ0W/WZ7f3szCNDOzlazWUuyMSFlENLzi1MA7c2bN/dv7Pmc9NvNIlkWq1m+WLxysNeqk6ePf8K5\nqNXQxka9KGecsl6n26zVN/uDKAh3NrfOTi4jv1GlUlUgS8vVMmm1WgH3oNBY6IPuXjdo3ezvt8K6\nUzovUgdto91YmCyFlY3wuFqaEF+uRpkrJ8U8XSbUwbPnT59/8r5PAAR2Op+NpstcC4fgbDK/Pr64\nODorV7lHA23RYHsnjuplVu5ubffbnTRZBj7NsuVw8bLR8RyWx+eHDkhKsahKj/HhaKKMTrLVcHw9\nnU/yLCHY3TzY3d3drkVBHEaiEAhgj3gcEY9wjCkCGCGMETUa1pvdyWx5en4lVaFkVQtrDx48kFoC\nDBnlwGHnHHAIY2qtNVoDY6EDyAEEoJbKaUMwBgAAY39KF6AWIm2cc05WlTWaYgCNVLooyhWwimKg\nKlHkeVWWRhlg3U8n5tYAU5bl48cPk3xujWQUIqARdhBCgBHEQEqZJMk6JMRp8zPJxPqsXJ87WmvK\nPYNQruTZ1fVqegxcSrlczi5MPre6TFYLIUSzFVun0zSFECottTUQo7yqMMcQw0KKVZqlSZ6lK5/x\n0PcxIpj7ADLrKKGcUI4RopQTAjEBSguMsTJGO40x1sZBiB5/+lAJFYaRtdZC4CCAFCKEhBBrp8+6\nGlWVOD469TmHEGpZ+R53VrZbtVazUebpdDxZrVZFmsVRtLO9DSFM05QRSqGTVQac1lXurOq2mqHP\nyyJbP6JxyqSUSprpdLZarTjzldGMMaUEZhQgJLW11i6WqzTPirKsqkppkee5lHJ9H4XS0uhCilJp\nDR0PfMY5REQJCQAwWldVaZxWRhqjnVZKlkYXzkoINADaOeWAhsg6YMFPX2t6MPVYo9EAZWl0AUWG\nrZRVDox0zhhnMMb37j+QymBKAMQWQOWskFpbiynzvQBjqrVFiBjjAEDrMk8x8TkLfV6mWTOuNaP6\nfLbiNNjdPYjCRq+72WkPoqgGIbYWKCGtspzyZtzc2tiklCtpqkpqbZvNNuccADCZTIwxd+7cns+S\n+Szh3EeI1GvNTmfAaBDXWpQEnudTSpVShKCdna1OtzkYdL78lTeFLM7OTupxbJTy/fDu3XtbWzsY\n4+l0zBhZO7w4c+PRBaek3amdnh9Z6yZn00iHNRmgkkDnf/WPfcOvNxXHuBl8+OKTuBslxSyISacd\n//Y/++/XlQljfOvWHass1MiDlFFaloUEyu/UoE+G0ykmXi40pGyaLCFDYd3/9rf/hzRZIAhloXc3\n92/v3WUgEKl5+exECYcB67a615NpfdAP6nWnzPnhiVNgZ//ml778la2d7f/sb/7N4ekp2e5GCwhp\n7JkgmOcL4ZOoycfZlTMkX+RcewEM9lo3a11/kadTUcA2lLaKWoGjsLCmf3O/qKqzdIYjVkF16407\nlSyfP3v66qv367XG/s7N0flssVjU6u7JxSfLfLUqJ/3N9kcvHzPj8Ywvx6t6vR7GkcyLiEczQn/0\n/k8OysmyWPlhsDXoXlxeteqtKinKVPCGf7B/o8gKVZqry1G71Wee/+jRp9t7Gw5pBFGelDWvM9ju\na21HlxNl7WR0raSo1YKvfu7LV9PrbLEijIZx1G63pdXz+Zx53moxDYLgVnd7dHV5cPtgeHn1B3/0\nh7/6K/9WVVXArYbz9Ob+tiq59P1uo+cgEHk1vhze3LuhS+URqoQEwi6mEw9zp93l6BJjCDDsdtur\n2TJZrvb2bhLMXzw/Hmz259PZnTtfKPM8CPwszYejuRYEYY9iLcWCQBZFIVBOGEcpNdoxBjCBSkMv\nqr348LlW2DnHMPEZCcNY5ApTAjFGFjpIMIbr7AtoLYIOIaSUNFpbrbVUyAFgrDUWOWC0MdjBzxyt\nSCqx3nZCBLSWzjmLMXLIGIUBtNoUWYaFwBQjYAJalxaUZfns2ZO1bUqJEkOAENbGWOMYJs4aznzr\nHADAQuSMQhBa4Jx1GOOqqhhjlPCikj73wrg2ml2fHL587QuvMeYlSXb48inWGFtNMMEQBp5PEcaY\neh5QWmhHlZJpUZaVrpRMRkPnXBAGnDLiMCUEYLQuJBADa7QoKyUEhlIrAQCQSjlrIz9GjALK5TK5\nPDtr1OqYkmVRrDtchAjDP3X8EioroaWiCE/HQ+ecxznBygKLoSuzrBFHzONlngKrB70uhLAoimaz\nGYahsiYI47xUy1UxXWRWa2UlsAY5yyjHGK2j0eI4hshprbMip5QmeRL5gTHKQRDGUVmUQuo6sEZb\nyOlsMuXcJ4RNRiPf9421xgIAsbYGaE2JVdYhZysjI+fW7TKm1DkLrTHQIGccRBZWGhBCAMKUUuJ5\nTAkNIYAQOoC009ga4CxjDAhJsdV5plQJkQ8AtdYRCAEAYRguVstuuwYwEkpKpSCE1hitrecFShmj\nNKZQC4vQGmIqw8AL48hqA4BbS3KttVIrQqnUyrhKKZHmWZHlxmmMaafT29zechCmaY4Ixhiv44em\n0ymluN/rVWXx4tmze/fuPX389N0f/vibP/9znBLlkBZyuUoRwczzx+OhNoZTJoTwff7666/t7+9X\nVTWbTWphVBai1gqajS6jQXNrUG8UL54/wsiuRcOnp8dB7DvtCAW1qO4IOH/83NbaXo3NZZpqscu2\nXuZXca87X00yKwLoxzVfVVnAGr1GSyb53ub2qtGAHqusripZlTnyEQa4gIJ3IleR7dde4b32+eHZ\n1eycBt7pp6eBx58fPrx1Y/DNP/6Ny9PLjf6N84tLn/mtdl3IbDmfbGxsjKbzp6cv0irhjP3i197+\n4L2PTy7PNYU//+aXTx8fzg7PyfY9QhDr9sNlNncYAYIgB5fTi+5m7+j5E594m1tdkaqlnkebeyJ1\nRVLs3tstpJitFpg0tDMrgKzvWWBOnj3Z6AwaYVOVxd3d21utbZ80vLhleB416kEtPH3yqNNrv3r3\ni0myHPTqi9GEco4RvR5O7tSaAPoXVxcOBI3+5nCU3Ll1k3JfprgTb3/y3tP+oBv60fBqNLwaNet1\nBLDP4n5v53R0yeO4krZIVu1ao+N3Li6GDdZJsjSOG34UpGmai2wxXT13z5ud9nR4cXjycjAY1D9X\n32xuUc2CIMiyzPO81WwsZfX8aNbp9uV48fTsqN2pT0bTOI7KJLNGQYhHo6tut5vkiy987nMiyTyD\nIsokgFLKkESc2KRIX3n1CydnR0fHLz0Stpr9IitfPD8cDDZv7O1IpxxyZSEQ9DrNzdPktFHbSooS\nG76CKssyUFFIIYc+IQRghDBYz7K9sJaU6vDlMYSAYQa0LovkangZtdvWaAcAQg5TBqHTRhpjOIaE\nEIShUgo7wzmVEmkLCYYGQGCdUhJjRBBx8DPnUiWU7xPrnLIWQ2i0gc5RTDnnSkittVGV1RBB5yBB\nJOYslBoQQp00EEJGiV4nswLkIIbIWgCqqgIQU0I+s0dhZIwxwDHGEMAIQGedEprXvFUprg4vPvfG\n66tlCgxYLBa6kBubm5Rh64yzhnNOEEY+qYzIihxYV2mzTFKEKYP4+vqabsRKhFEQV2WGZQU9hbB0\nAGNkMIGQ0CpfWWkYoYQQxDzEKAAAOPj97333yZMnFrgiK9byUIoJ+mnyZ1VJ+FnvCRhjLw+fP3n0\neH93oxZFVmIMrTXq9Ph4b2ebEAShUVoopSAElawWi4XUmnKerIpVJoyyQtusLDAlhBDuUSnl2l7r\n+z4hZDwZnp2dt9uNMAiWYl6WZRRFjDHjbL1e9yjN8zTyI2QdgQQjulzNIsKNtVJqSkhVSYiclBIj\nFHCvkoUQkjNqrNXQYeCA0RBayKFzxjmMAIDOAWARdBA6QhCEGBFigUMOA4ydMyTgk/PTzkaTOCkr\nQ2LPGYMxxg4CaJWWQpTriJh1NUUIWWPyPMUYS6PXeDIIoXPQQqeMdtBhhtM88SidL5eeR7FHHUYK\nAC1VJiTjMYQQU1KV1SLN9m5HBjiPs52drgZgPk+UFiz0GcVPnjzZ6A+csccnL27e2Nvd7L3zkx9N\nh5fb29tFURDCDHCz1TIXRaUk9RilVCkBLKxF8WIxK0uBEOHcL6Rut3qcew4g4wBF3ubGzuXFKeNB\nVmVhGEf1oN7sPD5+aHzokP65P/m2D+BoNFmJ3FOxcbjZbJeVKDMZ8ThZpu12G1OiHWx3euU4C8P4\nxcvDw9OXWVqEXgh8zDwiRL67dzBfZID5uOnnHq488w//1T/46ttf/eDhh57Pwpr/+Orh1vUWQuyd\nRx8VadFudyml9z732pPDZ9//nZ+M89Vwcfnpsw+/8uZbz//es+n19JOXT1c4/bvf/i91XDVv1x6e\nvUtmS0tQqWTRrNODnVvHl1fIgIg1Nut3s3KZ56VT4nI0TkBOPUx09vzpWa3exohBqW9t7QFoCplN\n55M3btyphKtFDcVDaO3V9WyViulEodB/79GzqOY3dnrNbidJpOeiBq11bjcWi4XEitToRKyAgY3O\n1tnxWS1o/bFvfjVbrAjniAcCKKtdsxZu7+99/GlRVZUxstsbLJbFk5PHpbLdXvP69NQH+OrweHtj\njyirymprY1Nq/fjxI+azOK4Hgeecmy0TL6y99rkvBL5fC+tXF9dyKQZRb7PfWy2XUzH3a1Gh7cVw\n+tWv/3yyXDrktC0bvLecLyzS8/kcIuT73uZmf3R9uRgu+q1unitZypu3b0+TxHECibdY5n7QuP/K\n6/XYn45GURQxRoQslJPj2TBXabfVrXlhmWcbnUE6zaLN7stHJ+Or1SqRnaBRlcphFwSBJY5RQhDW\nBkXN7vV0MRxfa5Vi4ANtVslsNpt0d26USUIZhiaHkFprlBLGKIeIUhJBq5TQRvq+jzHECDBCHVDG\nIGuMsxohbI0S0kCMhVbUcQshJnw92MHArmUtAFo/4NZiKSufUwAhRMRZaA2WAmAHOfO1Kh0gEBKl\njXOWIWKs8cPAWWi0xhhDCJ2zCAFhDEaUEgwdCjzfKlvlhSjF+PxcpFlVFFJKC8F0PmEBrzXi7c3B\ncvlwvfqzxgIEKynyNLWOVULlucD4s1EPhtAo7SSAwGBsgZOlkBRIoqUUJXZAaq0tglTFQc1YBwFA\n0Lw8PszLTEhTVBJSpoocQQicUcoghAgjSjoIMEQWIFhm+Xg83Nvu52kaebgsis1Bf2djQBDWskiz\n5PK6aNYbXuBTSgebm0VRnJ1fjUaTjZ19woNVWsSqnmRpWVVCVNbaKIop+cxNBhwSlcqyLAwC3/fX\nsxGhVeD73Pe0Uq1WBzpglVVOkoARQjEkQlklJIRQVgo4AqwjGFvKAMJ5WTjnAQCcQwYBoCqCkZYI\nI0QQgA6s/VNKGW0cRohgRrCHIIbOAoS01gSCR8+fvrrX71CPASCddtLwoOa0hRTe2N0BzhAEjBKE\nUmSh1hoRpJQqy3KtIq2kQpSpSmCPOAIU0BAjgxxATiuVFnmtUbcQTWcL4TBAvrIyDsIgDITRhFHj\n3IcffTKbZ8aSWq0WRj40WinVaDT2d/devHjOKU6Wq/d+8s6tmzs+RxeXx7u729CZ9XPPZD5zwFSy\nBABIKa11lRAQ4myRdPuD5XLuecGD+69HUU1K3Q1DA5zWtt3uKimOX75Ic+EFAQDo8vJ6+2D/4MHB\nP/nt32o04Pl4VJV6c7Dn0QBSfPjiCCLnU1SuirjmF6UowOLNBw9+dPijBgrny4UuKqilz2laZdgq\nSyChTBQGuVhqnJcVZdLVSYzih5eP+MAz1jrfff/THz46Pd5qbTx8+PDBvQce8xeLlTZmY3vbOfdy\nfFaZ7O6bNz96+ZM6a/Q7g6BPaQs9HR8FDv/cL3z9ox++Q9rb0eGj53U/Eql6+OlTP2o6S3/8kw/3\nb+0IIE/TYcP3uW/NYtlodxUIeOynWR7Vfd6gL04epvlq/2Dv5OzQQvS119/MVqsKuFmR+sQDzkGg\nt+Ou2PBPLo6prVmPMEyYFxSgBIlzBslUbTc3fd8HEFa6ev1zNwOIRvPzoFa/Gp53m42ry9Pt3c3K\nFGfPnzTjwPp+g4aRJR4Pl1nZ8SJuSa+xIYWIo2ahpMXm+OIolamhFNfYNFm9dv814ogR5vHjh/s3\ndrRHRrPz2fEEEfhidmwbiGTUCtXrb0Nts7Sy3PgefHZx6jn0pVdfP1+cUmv7/U0PwbxYTqcvFOpZ\n64wnYRPksghb0Wl2jihdrDJhTHJ62fQDZcV1aoQSXZuvRtP92zeNj1p8gywDXVZRTKVyFZIX+Tj/\n4LRFux/86P295gGHkNY8a61GJnIMG2uBQDxkgT9PLvKsYtiDRirnEPYJ8XxmY2Z8RoD0hBXWGFFW\nTjviMwuA0tYibJVTWSUtlBZaa4FzFFqCrKoU9LFGzmgZexHQzkoFjdFVvj4onXPKCU4jaVWeVQgh\n41yAOeWBAfDJ00chhspa50yhBEIQQmuV4BAiZI2VBHpAGQgths4BZ5xb28+5I8Ap7TQhoRCCISxM\nVe8FN+7eLJdZKd2yEOfjKQ058fHV5dnmYItQHcZEC6ktNdCpSkMU5UlSaUMIKZKZ5+NGM2CMDJeL\nXv9VJxlAGvjacxI4KXRFOENYL1czj3EgIQHddJ6HbR8Q7VFdZCmEoVJOlkuIrXXAWggBkEJw5kNg\n13Ii7HENTavVswZ43IsCDzmwXCa17U1rhHOuVqt1Ws3xeJwnVafT0rJK5+OdQX/Q6T569lxYGNab\nxqI4rAGHpKq01tbIrCzzvGDMQwiEAfewxzAjxOt0AlFWQeB9RnZDGhJIOdna3xRCeDzKlArjWpUU\nACAMQOiTQmWYetKCXBrnsDJKA0gQhMISCBhGYp3F5RwwmkJKqIPQCFlqZRFv5mVCuR6NJhCQXqeJ\nXHl+cRj4ZXn4KXjta1JalKU5ijmkSiWM+qQTgICnUhqIsAHOOGKhNiaOYhvA5WKhpWGECiUARgyg\nSthuswZyAYRWFgoFQKGQryAsnVCdXktDDgGjCAKnRbYKEObGZqPrdLgAANkZU6Hf7G5i54bHp9pZ\naLTQyjlzeHi4vdO32o2uro9fPr9x66YFTuTLOqfXUmGICOHOQkydcSjLCwDQp48ehWHUaA+I57M4\n9uKaIRRAarhMVTkYbCymV5PhsQdprRY+ujysGkW4YhJlj59ftestHvpxp+4Uzkf5m/deHY5OCcMf\nnp1h6jmnmATJ6KIe0NU47W7eOD+7XE1XnudhHDrjfOrhEC+rKWuqyeQiWSxff/1bH35QMRtTyJLp\npCxWlWc7g/aLi8eX+Un/YPPZ/Hh/++bMrRA2P/7OH/75P/8bow9Pt7e3fR03WC8M/UWyqMplNsGr\nKpOquvfgXlR0SPmJ2qU3W+02YjAp01W2Ukp1QoauUqzlvbv3T09Pfd7e7m3N59PT89PudneVLb2m\nDyHmIetv3NKVvL19ezUfHT1+1O9tAF0Wk6H2aKvRzPLJ0+djB8zWYLPWaGVp1WzVEUImF/V2kOdS\nljLPrhlqeDyyyobYQxrmi7LW6vS2NnQp97bvAuGKpd3sx+M0S6V8Ob8C2DY7zcppJ2y3Efdu7Lz7\n8INWt5dnZeUqP2Tn14d5lQppwlprMr1khIdx1NitC0+Pr0/TYrGx3SpV0WxyxstGhFaLZbGCeZnX\n+02i2AeHn5RchfXWwpMSeIgUWjjrGKRw69adRZohXkFKAGOjyeVBu0kxldYZRT788NPXB4O7/d58\nPpubaiEEo5x4tUxCCj1CSVAD6TSfzEamhHcfvAYwqPxqcZ0v5pOb/duEUY8HziJjnHKWUhJE4TKX\n1tokSapK1uNGURbWGM651YYR7oyrqooi6NZ5pMYQDAGwWjsLwDqjA0Cntf4sf8sYCxxjLC8VXBPE\njKmEAM4RQjAhlXFr4QSmmJDPgDOfrUMBsNYgBLQ1o9H1Gl/+03xXiwAAAP5PfuIAAM6C9aYOQggB\nBsBChACwGGNjFIYUY3x1PXr9td3bd+6fnV8TikbXQ6hto9nwOQe1SJbSox7D3GNelVWFKIQQQsOi\nLIUQHJNKlBuDXi0KpBStRjOoR45hgLEuBQ44XJReHILMZYVkjDkIwtB3VnHOILIAGAAdsLrShRAK\ne6QsM4iQlNoqjTEuyxIgTAiuRAWA44Tu7m4zBhknnufV63GepUmSOCvbjXoUh0qqRqPhnLu4uKqq\nChFMReX5wf37904urmfzmTCu2en2ui2M8SpZFEUmpGg2m5TSJEkajUaWJGWZV1XRbDY9z8MYr2Fw\nolBlJaMoQggxxiB0nuc5s76tRgiplEIAEkKMVpV1jHCCsRKVcMajxCFgrEMIMas8z7OlJghC6Ah2\nCGGMidGZ0ypbiOvjl7Ppqt1uv/b5+0dHJy3K5vOrHZSwkBTz3PcYcCUOQrnK3//xe7EXyVKitWnZ\nWowQgVAIYYzDGEOAnXPWAICBMtrzPIMApsxDSChpIL4ez4QWX3j1PkA4jGqIBcmqdA6WRWmcxhQx\njxpr40Y9Cmt+wBnDAIKqUqtkhiCp1+sIoddee63IEuazL37xzdH18PpqvLG1y7kPMBkNZ8mqiMKG\nVE5K6Xm8KDIHrNGaYmyVhgBwxjihzXqdU6YtMqKCQFdaxXGsnQUEzxbzRqvJMPrg3fc8zjGKpKzq\nvdbjl482N3Ym+fTe3Zueos+ePH/j859//90PN7e3tDGqIIzGWpeQu1orWuaY+gwpluuSWJSnZbvZ\nK+bZ+HyIELo6v3p+8ml/Y5tjPxw0QIJHo+sNr3t7r6YrAyRuRQHQqBa2Ij8At/nlcVmv1aqydM4x\n7p9fDyFyPIyXlfIZYwSNh6NGVCO3tu9ba0bXV0HMazzs1pqL1TSvyoVZSieX89X25o5RJpF5aavO\nZjPywsl8JqU0ylVVBYNGO+hcjC72GneTNNUpev3e57rB9SRdYkwKRzQoy8JhhIok298/CKNgNr+m\nDKxWJYK4092cXA2rAmDtTOUWyySq006nRrFNZvNkttjtbeWrlFnXbXaFsovF6u7dO0dXJxbhQb+B\nU309vZ69fBQ2a0rk8/Fo0OsjAHJRau7uvPIKdHA5u458zEktJmByeb2z0RIKT+YTxryD/i4xGJSg\nF3e0sEKaZD7qDvqgABSYGsXLyXCnvpOjIldie3s7m0XFsGKRt5IVYCxXIhHls/NDBElRlc1up9GL\nnp0fhgEviyJsN3pxPw4bSSXmWbYVs8OzF0EtPL48e+P23V679U9/+7fCWvStb/ymHB/pUjfrDaAM\nxs464YDjQdsPPABhGHtC6qOjYwjXKkNPOGm1ev+9n2xub4S1EDptrFRKaSm0UQRio4QqNQQWAICA\nRhCtZxcQI+KIqjQhxDm5TuT4mUZCKQUgcs4RwijFDpi1/369+Fr/ptVSVIVDfrKYl2UJHYJIA2Ad\nMNYiCAkAwBoAEUIIrQvDz64PIXQOrd9orbFzFghKiLRQWnR+PQHATeYzLQ20RpbFcu56nRbFzKNh\nq966PB854kEI87LQjhhnIYQIOo6ByNNBZ6tajAmyeboMqQc8iBCxhYTY2sWqLFaYIC8IjFJVVVlY\nerVAVTnFLgr8PM+8sK21NBIZY7SUDmEEoTEGQQI+i+vDWpR5kXz/D//gN3/jV2W5kpoAYLWxnJF6\nXNeimE3nEIEsSX3fZzyM4qbv+8Px9fHpCaaMEFaLwywv83Qxm40wpowxKSvOWZ5nzgEphedxz2OL\nxcL3/dAPsO+HYVwUmdW6191AGDrnqqoCwDniarUozysEAbBaSqm1ARgZY6w2BhqgjXQ2DkIIXJ4l\nhCAv4GVWNuKYOQMA1FpqBYqsjKIQAaxlIqrCAoJU4ap8OdNnx0EcNbNktttr/uDb/+Str3+9ALwd\nYWAVxvWr88N3fvgOQ1Q6ACGEECFKnLEAgKqqtLbrWHZjDIIQI6y0oBhjSqU1CCIDiTR2lVd+wGfz\n5ODWzel0ysI6tNwPfYjBeKaEWkOTnOcHlDMHLUDIWm2s8H1qjKtFXqfTgxA67s1m81azhxHV2mLM\ny0J9evjk8mJEiC+E8pjPGEtWM0qJhbYq03oYK6MD7kVR1GnUQ49jymylIbR5kTlZAYKJ5zsH0yyv\nN7rvv/cOjmC9RvqtjaePHzXqPWv1dHY9XxSLbH5je9/zGnu7d4aXi16n+/TZw/br7dloXpXS+CCM\nGkqDTlRLMoE4QtQBY3rtVp6me/s7T549fvT8k95GR5oMQdvf7FKPamVPD08D37+8GHHOu/1OkU6D\n0J9OMujYdCIujoaf+9znzo8u8yodbPZenDyr1YO4Hi2SRb1e186QyEfncjQsxhEPu7SD56gYV4j4\nc5GfiknQjn3K9KK0iVGJafq9126/OWhv7fVuxLTlSkKkZ3MASsAci60fh/VZmv7BD7+PCG21Gmmy\nWAwvQxZs9pqMlDf2Y2tGh88+mo0nVvPFvAAgKEsKcUuDaJmbp0cnSVXN8mo4XM4vshg0G6R1eXKd\nFsXFbPSjjz8uneputLB1O80dNVVt3owYI8DsDwazo9OjH30cJzAqaNPFX3v1q7cGb2w1btjCeAQT\nYIvFMh9PQ0ub1A8s6vOGXcgubZmFdQvc9/ZqXhAR37cELqvbjX5D4KhyXRQCIOudBo7po2dPH9z4\nfIv3L49HynIDwXA68SKPEFSLeaseHD99yKyINjfKgF3q7DiZHo/Pr4ZnjZDGwECjgSyhzg/2eg8/\nfTfLF68++JzvN589f/77v//7d27eivzAY4xAgiCzFmJMCPMqqSn35qvkxfGJF0TSuqqqMEbco0+f\nPj4/PauFkdZSaimrshKlLAutpdZKG7nu6YxRWkvMMUJgLaxe51wzTIzWxhgIAHBr3woiCFPPd85p\nbSHACBFjjNZaSgmMXZs2MQIEAYSQsyYMQ6sldA45BBxa68TtZ0KDn74cWlMP1we9cXYd1c0YAwAU\neRmEUVrK09FslpTzZWqB45wDq5UordUnZ6c/+cn7zAuzPDdOS6VKIYXUZS6RQx6mrSiajy48BOOA\n+RxZbQyjQDsJQFXkVgqtCidzpYTWGhFigEuSVZmvpMhMle/tbGFkgdMMo6IonIWEMASJMWYtNofQ\nKS2M0kHocY9OJuPpdIwQwBgLJbMsK8uyLMu4UaeUGm3bne46Zsg68ON3frJapbW4Dq0Lg6DXasZR\nEHiez5nnMUIQIaSqKgAtIXh3d08LVYubjbi10d8Mw1hrnS5X6Wrl+75xwGiLIIEQrinQAFqlJKWU\nMeJxvhZLGaUxJhhAqUrnTCWy1XKaZoskXaZpap3J81wIIURZiWI6Hed5UhVJupyuZlOnZFXm48mQ\ncAghkJXMVlkYxAgyD+InH30EEdaIOmGARtaAZJ6sb6JSSql1dKfjnHuexzlf60fX0vt1pQfQIGzX\nzmmptbbW84PVMpVSFkXebMUIA8qwcbqqyiIrMMSdTs/z/CCIfD8kmK2VXwiheq3WbNQ4I1WZzqbD\nPFsqJfIyC4Kg2WxOp1NjzMbGxm/+5m++cm9fy0yqwmjpeQEGxCjHWWSMMcZ6YdDr9Tqdjud5gcek\nqvKqdJikZaGt4ZynaepRgo1pBY1qlB1+8HJxOB3gDp6b17fu1AwPle+bsFq6r7z5jZeHF6tlXhWF\nEVXcgH/0o+/UG2FV6SBsBn4c1moQOmikKIuqqr7wxbf8MCSUdwZ9FvqMBhuDrarIPvnwgzxdMU5q\ncXT4/MlqNjrYG2CssmIyHB0HEczKKWZqd7cxmbwsinGyGjEKW7W6x/zFZFXlRbZKxlfX2TIls2xS\nR3GL1qFiNd5PYVHKVbu9IeYqWaQbrX5RZcvVjBM/rMWHp+e2kpub29o4oSy3ZnGVdm/3KOHnybXm\nLurwYpU7txpNRywGIJWapYgjgWZPjs/u3Lg7Gj7f2r4PjPUcIcoWVeF7VFtxvTjfOGj6Ph6Pk42N\nrV6jNbseEUR3dvehT8zlhSYcxvWL4xdd4TjylpP5T6aLL73+2u3NjdOL8/7OzsYu6fc3L87OI78m\nVbnRqV2ePy+K5Z27t6CF5bKodNFrtS+Or7lHtDK6LMZXZ1FQL7OFKls2N9mkKI05Pjy8c/vmF776\n9WWSCalOlpN2u3x5+hJBNhbXJ5Oz0phWRKQJAuyGw2EhtdekyWSpJnJvc8+r1bQ1IY6mk9nNvf29\nZm92OcZ5eZXnd3cP3nnvR2cnx6/cvgUh7G1t+M3exdni6nr2lVdeSearyIusUYxxQLDTBlpAOZfK\nnV9dL5ZJHNcBggBagEGRl61W/c7tg8V8powCUK8zgJRSAllGvLUY2WpnnXIWUPM/NtHrLF2CsFLK\nOQ0Rstq6taseUyENhA5jCJFDCECIOMWV1EIbzinGWClFmLe1Ofj048eyytcH9/pY/1mHDsBPY7IB\ncMAA9z8OahBGECKMoVLKWgQhtQ5eDycXo9FGv2cxZgQ6UBRZzuuxtSDJs3fe/2B/71XCvUWymiep\nsUA5iSDxeeBTWKRyo9PyiYta9ThkDmJsASDQQxh0mvbqhDBYzDJjWK1WK4XgnPsB9zwqlbYyD3xa\nq4ezZaI0MFJhzrQy679Iaw0B1loDBAlFVVVFUfRn/+yv1uoRpRBj5PsxxcRoVRSF7xGEkDEmCIJm\no7FaraIo+sVf+AVC6Wy2GI1GJ2cXpZB+GDuEfO4TRsqyopQz5lHKy6ykGEVR1Kx3pKwo8eIomoyK\n8XJYq0VClIHnx3GoZIkYKUWprWMs8H0fCGvC0EBlISmqEmPCCVXKQAIBdJWqlJEQOGtNVRYYY8hc\nXpYeI0lSaFXVAq4VyrIUGicrLZWqrL53sP/JJw+DOPI9b3J+pDrdySrbq8URpBQyAxQmqtaIIUMa\nGAcBYwwA6ABg3CvK8jPmsjHr3EeIiVYKWhVHdQytdaaqpLXIOSeFaNTDVrsxX4x7OwNHuCxNlqVF\nlTPmeZ63tbkThU3nsDVAG6uNlEKHYYgJDDxfSuEQYoQIWXoeo5QihABAHCGMAGcEQPvG62+2mr1H\njx49ffb48vKcM4wxjKMIAD6fTTd2tre2t/24DiFVRud5KnPR7NQyC9IsdwA8fPjwV/70t2wA3nz7\nq6PZ8Pz4BXG2V2/monr54nR7e9MmYw5RtpydXZ5s39iSJvnog3cOdrc++uiDxXLigNJShx5vNmrZ\nYskQZvX2s6Pnv/Qbv1ppoBwdXc1WK8EJTkTSaVV5ViGAOeCXk3Gz2bx3/7XldDzY3MjLUlxI6tHR\nZIEwmUzH0+F1LW6kRX7v3iuffvLo4OBgmazylWShp0qnClBVJbl9a69T2zQJHp/l3fb2Kzf2kuw8\nFbM4wIKABNknV2d//PNf1osSCosrAAlL0hxYPB+t9vb2mvUWRhRRGsTx6eWJseLG3gEL6miWy8o9\nuPf2sliOx+PRlQUSl03W9fsbUcNqxRBzWXF99rI7aNTbDVXND19e3bh5EHj18WR4dXnaiGKjIXW1\nGm8PBhECitF4e+NBkc1X+aK/1TSlvr6aPj+/6Az6QYvHrcajx0/7g05Bi5PT5zuDjudZRmOZY4bq\nQHtKujw3vlejnELOuh7TSngxT9PVaDJs8KZH4sHOwG8sJQVPzi8bcW26yCwy2hjInU/hZHbic3F3\nu1/p4v2PPwqCoFZrNBv94enk5s7Nr736rX/8j/5JvYYQJV/8ylsktyixQb8+tIsK8P3uXj7NHmy9\ndaN+//69W/NkenU02tq7xaBuNTfjoIkANFL5PocYVGURRg1lDcQUM/7y+BQSrLWUIucYQAgdRIvV\nqtFopHlSCW2sU0oBADBZAwWMVhJBB63TSjgAy1Igwqy1Sqn1GNcZ95ldxbq1MANbSwhBwFpoAbTO\nwbVF0PdDP6RCKK211hYzXhWlliJLlp1ORxv0P2nPDQAAIgcAtM58duI78FkBAJ9RTSgmWkutnAUu\n4IHWcj6Zn5ycbW5uikJyAjmGXuQ3m81Wq1OKVRDWR+NZUVaVUg4A51wlZcwijADHkAT+z739lXad\nIyeklCRwVipADDTSVgL7tFpmwsqIhZeXl2EYOgeCkFkt02SFMfV9b3PQeXH0cRh3wjBc5QXzuDFm\nPY1RWlHKjbNGO6WUxxClFGO8BthijJJ0paWoRYGUElp389ZBlqTz+SzLMlGWmFKtNXAoCIKtra2i\nEqPJrKwEQJBwiind3NhWSi0WC85xmWetZttaHQRBliUEgSDwKGs2GjVGCcLO87mzxveZc44Q4vu+\ndbgUyXojQimFonLaSCestoha62yarso8Y4wRhBFCcRgRQo0xSjngdFUUGFkHdJHl2OJ2t/P4xeHV\naLh381aWJcvl3KNMOXF5dbpMM2xK3ugftLdwwHU5bG62t7Z7T14e0XqNEKalFlJaY5RSBjhrHcYY\nU2KMQQgZaxkmnGCMbFEKrW0cNhdJqoSqhVGep7du3Z7NRrXmpucFCPjaKqM08mDg+5wRrZBSBkNC\necAZJgQZLYuiEKKq1+sOmDAMpTKEUeMAMIBTVhSFEMJB4Kze2trZ2t370le/5rT69OGHP/j+H0pl\nVkl+fnFFudfodMtSEuIQRFEUwMJSRKzSRtmiqNKy2Nzd+/T08WR+YZFm9SggGFIeR/7quqyk8P2w\nuzF4eTVaFLm4vj46u2g0Bq3Gztnh2Z39u8jKZDGTjJbZLM9EGDWni/nejRubm4NHjx93d7fe/spX\nnz56JPLCgxgWFizd/v4O1Z4r3NVitLW19frn//jz58dRFPVaNxbJBAPhjGGMtDbaUkoGcbtbPzs7\nxsSKYgVMkS8VhJBzvkxz8vF33vnmz/0p5KJnz56dwtErs8xjZjQ8qzV32lu9RZpVFFQTcz28CkKc\ni3xn55YSstFqNap6ZXKPeszjW1tbqlzG+wfPL1+eTq/Gebm7sRdhbpRutfZ8dd2h205mqNB3Nu9Q\nFxaV0tDMFrN+q1+m+WU65DjIldQCUV6m83EUBMBTe1u7Tx4fNjr1NBkDbRuARTQcr86wZzCndb/d\nJG2qVslsyTnPCrPX6KarlfblMhmuLi9v7b5GbejR9ne/+8ODu7csAhu9nh6f5iJttBtipbOy+Nzm\nHjTkxePn8SutfneQLCpu6GDQHc3HmUshsJ5DybSyxi3ycRd7d27sHM0vkqQ82LmhrHUABFEtrFVe\nFAqrv/Env/XJ+38Yxr4zClmzmE3H3U5jZ8CUPpleOaANEmGXHc6fImw1Ay8vjz760ce9WqBV5ZGI\neb5UgOOQOUI9JrVyEGvtXp6eU0ohsMRaqQrOQmWgVO7i6rLRjKTQEFGlFETgZ+eOcwZhAoEzxkCA\nrHVQG2edMWadHaGMWaMCLNDWGOIQgtAAwylZLpcCgCAIIAZSGkq5z31jgbG2EtLDnlLG8zxKMbAG\nALCefq8/FCIHoVvDXX/Wrf90PgMAAMAaA6C1gPtcK6CU8ij2fc855zEGw9CoFADLKHHG+ty/uH7k\ncT/LoLVAVkIKpa3yfW6NqjfqMUZZNWnEtXY7dlYYBGSZot09OV/SXk9nFTQaUKaUk0K0Gk0HoNaa\nYFxVRT0Ol8tEqupb3/rm+WhxeHQdxC2MMYZEKoExNNYyxpQxa/MLBfTOnTvGuCwtNnr1LMs9z9vc\n3BR5tv4/xLVotVoly5WSldE6LYt+b8MAUYrSQUAoCJDXbjeNs0Io4zRA5PrqgjBqnU6Wq83NLVll\n4+l0e2O7Hge+zyFiwHJKKKWkXgu0FM1m0zljPesHQZrmxljrJETIWi2VggQpLQHEzlmojFLKWksY\nK4XwOfcIKUXFuUcxL4rC43ixTIB1RVoQDJUqaO4Ved5pNI+ePGlE/snLJxuDLQCxyqcR5b7vz8bn\nBzq3ssAWFPPc94jRgjmgpTLGruFxn+XurlNTMTbOQueMMaHHjJbGEEIRgtz3w1Va+n5ACTFKe4zm\nRi9mc98DHg+qooQQ1uv1Wi1yFkOEvcDXWmstMUDAOoyodToMozTNOOdxFDLu5osV9ThjnpIKAMSY\nZ4FBnsUIJKt8b/8GcEwqOpvpn/z4xxdXV9qBb3zzW1KqZJURogyiWsm4EXKfWaU4pQH1tnpbRrq3\nv/LH/rt/9PdbG21eD/P5rL+5l2VZt952lbGROZuftDdbzw+f37/3wCOy3WhV6Xyj1WHd/pNPH0Y8\nurG3vbvVWy3LLNdGi41+770f/qhE2q/50/HlZDHiBCPogAKD7pYx7smjjwij7U4XOD0cH5bFVOup\nlqLTrefJghKyv3/j7OLKebhZ28rmy5oXFdM8ADWlgFthKaWEJJR98gu/9G8HcfTRh48Or8+ePvmD\n2xe3vvz2FybVlb44is+9e1s328oXYx15g06nPp+Njy+Odnd3V3KxEtON1tZ4PAxib3w99n2/2+42\n6TDT5Wp0+WI0uXXrlh9Ho/nDSboIwrg16NQ4f/rwabvTT1XlqqrRaPS6/SAInr54DihotDYstFfj\ncb3W3uxvzsaz66v5/v6tShScQRnw9mb73XfeDeteCZzAOOQhJP7mduPFixdpWe0MekmS9NubD1+8\ne3P/1mySVco1g0gvVnc2G7Gfa5h1azIAtdFsXpVFVVWr1erF4TPqYK3mKejkKu0EndFo5BLRqsWJ\nyFnNxwbOhxexV1eIVUCdTGZJSfa276Z5cn59gTDgPsEhmBejVCzajfaDN19bFdlKp41+fT6fPn3x\niVeLHcTZKju9OP3iF7+Mtffwkw+tKDutHgJhNlrtbvQiL5YlgJRxiERZIYAQBkY7yujpxdVoNIIQ\nI204xsLisiwZD0pRjcfjIPAgJFpCgKAx2lgFgfEYWstgtNbOAoQhY1RJY+3amFNBAAxwmFEMHITO\nKo0wlkbKQnkYUEoJIRA5Zx1CEACQZZnDhDGGMfH90NgqCIIw8Bww1lpn4Xrd6pwDzgHgjDGEQOfQ\nz8Q2EEIE4bquOAcRIlJqgplbB1YYFXIvjmMlcy8I2jFiwFWF4MRjjC0WCykCq50xDhgAgIPW1Bt1\nShElcGOj3+m2KCd5KoJ6XGkFihz4PhSCcIaEwpgzLySEZGnmh2EQBgghCKysBKcsjvHGZv8v/aW/\n9A//u28/fHLo+bEymnNfqfKnxQ96nud5HDr04MGDwWCQrCZJkjHkJuNxs96YzWa1gEdxY7VaWa18\nz/O9Wj2K10bKtWF2PJsXlbQIWQsgxNBBYxQnxBAMrKUERbEnq5z4qNkIanXfOad0GYah1UApVW/U\nKMVrLxWlHCEEIIyiKEkyhKDPqC/oZLXgge8A9DgRVQWUJQg7bbTR67zqUklOmKxKj1Hf95fzGUK4\nKGW30yYQ5eVFUaQb3c5sMvUYa3abGACA7PGzi8+/0rcej5qtQbcvRyMS1VFU/+C9705HV404qoDR\nGjrnAALOOYcAhATidSwM/NndNxb4QYSIcgYAhKTRAIAsKxAktTBaLpcbu7urAippRJVw7hNGmUfX\nMe8UEKOB1lIZ7QwA1nieRxCy1tbrTaOdVK6qKsY8TD0htE886IiD1gFQWaU13ty5U+Tiv/1v/uu/\n/1t/r8xXm4M+Qqheb65W6Rtf+OJmX52fXeXKQusk0QCAVr99cXJqtWvF7dnFJGxE/96//e//vX/8\nD5bn81YtfHZ2HkVRZqzPOQibyXBkQLXR3JZLsdPc2u5uX55cfvDe9+7fe+Vv/Ad/9Stvfb3XHlhr\nEeFCwNnl2dHx89/5N7/z9PxwNVmcX16P5gsWcqI1Ani0XFKOBw+2W616nmRA6/Pzq2atqStd8xud\ncEcs2XKV56N4dRJba88XszRJ6nHjKLkCFlDChcwpotYqTjzyk3e/3+vuFIn6jV//c9c/N/qDH/3r\n49WTi9Xxy6dPf/EL3/ztb7+7Ozi4/+UvKuQstlHbLxfMuGKxnDiSAxx6dUtjOHwx3I777z5+Icqy\n3WxtdTra6kWyGM6uE7nAHvaC6PzypFuv7+7vpUtR5Kut1ka/Nzg9vWzUmoPmZtQIjoanSZUd7Bx4\nEX365MPN/rbn05OTIxrQZrf+9IN3MdHdg3aSJ6bS44vL1J/L3ub00+LV+w9UWeWr1WJ1ZYBvrU6X\n5c3d+7u9neHTUSvo1rcG2pc0VrZE2PONk8PRjPOYAnn8bHiwvf30k6OzR4s/88t/RiRFr1HPqySs\n1ZNEmcoVVeZR5pxlnHoxv55ctzu7uYKbvYPzk8tVNhmdHy9W8/5gEzNawYLgMIfLXtwH0q9hWLM6\nSZK0mE/H01bcdgILmX/z618/O75ost5Oc3/4SA+a91bLqtGoAeQgYVJqHtDKau0cNkBWyinth35Z\nJU5LohDHUBptrVwlOcREqJIQgiRUxgDjgHPLRRZHQV7kwDoMqDPQOQsQXIN2HUAOAAQpRNBYSwnB\nGCIIKUBSFtIQzn0pNCHID5jUSltLWVBpy7wok3qxTBDjJXTSASgMw752Ghi9PnGss2t0sLYAQ/cz\nzcyaQai1doBYoDHGDhCAKAQWETRf6rPrcVFJCCHFkCMS+oQ2m7QVFZWzzlgiUlHmhQQUUk4oAhQp\nH9soDAPuDSer7mu3P/j4YS2OK5kevbzs9Le3tm84ZyuVESxZgJ3BxkLgkChKa422yhgjqkpBn3A4\n6NW//KXPT2fpeL6SsqIeCrywkiVjzDhgjMmTlGJ9cX4ynd5ttcLIIx4nqqykVlLbpFJolThtGCVK\nqSRJIHSUUkigI5Az1u91hNSTxZIwbgEsqwpVTEq5LnhamE6z43shYzxLl8vZHABAKQs9r9duKCU8\n4oBB0FoALPI4cJ6UEhrDASGAOmWx1NRhaCGl2GhtJZJyyRiLQi/NdSVEYbXPfG3ESmspq5CzbLl4\n+fLloN/rtWvcozpXEhbHR8++8c1vLVfZt7/97W9+8+3F/PrWna0C+RHAw5NTkefL2VXQ3tx7/Y/v\n7x9kWQaMR5EnaYFyqT0fY+wAFNIYax20wEJKfOc0ABXjYRgEZVlCax1yQpVC5j4hYRxsbW9yZDwS\n8JZXlCrLiqpU2pi8qLgXTcZzz8NSaIAJZ9yIAmMOgLMGIORZjSgjSgnlQOSHq3SptXSxX6gCYR4G\n9YbfhRA//vTJf/63//bFxWnk4d2tm6LIgfVVqf/dP/fv3Lx99z/8j/7jz7/11nx4VegcaShy3WlG\nj9+/TseXWTY/OjmyxN589bX/5C//rz988pE02WR6UZVpp9WSQs9GxX53T+WpLitcWA6904fPtjY2\n/s7f+jtvfuFtRgJgnZb5fDGdzlaj6apB/X5n81f/xK//PJCPL4/+yXd+xzCNfd+ndD6fKiv8qIGM\nyZd56MdZldV5q1fbvJoPL0+T66fPOfKmk+zk3Z8ARzjnWuuABjpRWCPf96uq8i0JPF8pZYwmp8k8\ndfCNu2+IZHL+/JNscvG8PPEb7Fu/+OWd7d7O/d5ivJrxi4ODm1VeHT4/ujh6+bU/9tZBf//Ji4dV\nmWdlfr2EjV0+TK/izdAvqU89ZGk96pRSlMnq9u52nk9CzKBHPCL9UAMMolYv9Jq5LGodb6PTKIus\nLKd3724cnx9bM88X4MbmLrCQEd1skVWxmowXG7vdFy8+7Xb7w9Fk78b+qFR5vuju3a7E6qMPf9Bp\ndBu+v7FRH16d9RqNRVqML87GF2eDxtZYjp31ypXYjLrJSjcHvNmocZ+ORuPbezduDW6tzpdfO2gA\nYD3bPJqOr7Lru184KHWBRKaz8s1XX//kxdPrxZSE8PGLkzt3bnGU/8G/+t2ou+lzfDk6+2Nf/4oX\n+OPpPEnzZZIBOIe4Wizxrd37TsaPHz/udjbfeH3jo8efdjpdKB2HDevA2XwevXL7Xz56iFu1R2en\nVtJGd0PKwgEXB6ExylSaMY8ynzKf+bHWlmJSFTmmRGkFgIuCIE2WRZZqJaoyd85gQhDFsiqKUhBC\ntHHAOYCcNcpZ4JyTWlWiUsZBCDGmEEFCkdEKOeCcIwQZRyCCkBGdC11JhIEFhhPogHEO5XmBmP9H\n3/sBJixdJQgRDJDW0lizVjqvZe4QQgjA+prr1Zq1FgG4VsIjCCFAwDpGidYKOIOhjWPmEVzmqe9x\nDAHnfpougxhOh8Pr4aW1WmvkoNXOEgCBNe1W2yM4DkIpNTT2u9/7kTT644cvl/NFvdmAEC2Td/7k\nL/7C6elRr9v8+ttvQVil5Yr7bJUugyBgPk+SfDIab/Y3jdP9bvf0bLy7s/Erv/zz//Tb/9wYbAEY\nDoeNRgNhUBaSIAoAttZ+/3s/3Nro/vqv/QqCMs+LgPLVctXpdAgFqir9wGeYMEryPD8/vySEaK0b\n9TbzqJbGGthpbrb7g8vrK2Nyhh2ldLFYaKXiuG61S5PEWouAazabcehLWeXJOPRAGMbQWMc0www5\nRCzV2jmNq6pkka9n1wiRrMw8zytEWaksDDxKUVmg2WqBKeY+U0pVVQGt8T1PCccwL62czcecw7xY\nfPrww6995SvSmeF0LJV59uJ5muaDjf7z589v37oBNPzok0etMNzb3ex3unm2DDgDWm8/uPfm59/4\nZ7/7vd7OAa8cDsLUGAKdtFZpRRmzzgophVRre3IchxDCPM8hQl4YeH44Ho4IwxwBAlwzrl+eXfJ6\np1ZvIiQcdqPrk3t3biIHKKKxX89tqnSpRJppUY+bUCNEEEC60ooZxohPCLBSBIwnlcgXRafXr9da\nUoPzk4vf+q3f+s7v/Z42VSP2OaUyLyHAEAGGaVGJn/z4hz/4w+/1NgZf/trbfi0a7G7evX2n325d\njy5Ozo88Ri5H5+Pl9fPj03q9+dYX3uJ+a7ffGU8uO93Gxw8/JbOZEujq+BpBW6tThM29ew/++l/7\nXzLaMtoqaSnFGFM/iNCqgBidrCZyPgIAJLPFRtT+T3/tf350cXQ1HSqsiovl7mDLWayHoBJyVk5H\no0mRqyduRBG12lqlgXXaKN/3uQdFlROGMKaUcmqRFFUY+hqBpKoMcJvbm+Rzr95IkqxA0w+OPkjU\n8uvf+DKwutNqJnJx8vzs5//UL/w4/bEB1WJ4PRstm0H9lT/5C1KVGDCn0Msnx4OdzUatfvn8cZaX\nXrfnU96IwuU4u55f8Tje3rqxmk7nl3n3YENpA4UdXk0Bhu1ObHSeZGkl1PTlNPTDOAyWk9XoZMxC\n2ut3tFbT+bysmju7N+dPn3/w/kfb2x0OsVArmIof/+sf1Go1ZO2Hf/CH3b07A39jcb2gTUtg4ZTy\nUPP27u6iXF1dn+zsdi+PHtYbg4VImxTnZTn7dDTLZthDT54+bkbNvW6Q5FOlsmZ873vf++Hu/d3z\n56eoLvobDWUlgO7ieOTjcGsQRN3I87xOrVMsy73u7mB7yw/Yfq/jUaaFqoWRsQBgMpsOtSqnxfTk\n6eXW1rZF+NNnT6bpfGdjJ6/Sg/2DJw8PV2m5f3CjrDLs9Nn1+Nv//e/tbtwNvfrNvR2tSuissZWP\n65z5xsGsEgBAUUkfYQqQMUpJBRFS0I7H4+ViwRgCBCoDtdYIA2WMg0BqgyF2wFngIEbWWamU1Bpi\nTBE0ziLrIASckspoBLExBhG4zqeHGARhrEVlrZVaMq1ZwKHCy2VaitXJ4VlZiqooTaX1z3QyCDoI\nnDMOrCczAGH8WVA1AD9jj0AIgXXOWkopRkA7Za2uivJLb37+7a99pd1ul9kyjiJjJCasVmssk2Q6\nHWd5UmiurGGMYQoQchDYyI+BsVaZvZt3v/9H733w0aMkyYQQ/V5bK6e1PXr5D8KIhiGmDL362p0I\nDa4vLgiGWVkgihkhtSgEwDLK5rMlADaK+Y0bvV/95Z9DxLMW/t6/+TdXo7HTOArqUhjCOMVmNk2f\nPjksf0EJsfIpdNqVZdmo13zfa9VrELkiyxfLlbGgVm9qrRHWUmjPDxuNViXUyfmFVJYQVosIhghj\n7AzQWldV5XPqM09pQQhq1sN6LTSKJElSZUk9DIWUyGketjDFAFHi+yHVjBAITL3RSrLS4zHUVEjD\niKeFLIUUldBaa608j/XareVyiTCA0KlKpEbGPicYBoEXBV6epsOrC4BsvdmMouj6+vri+ooTGodR\nVZrx9RAhlBb5rTu34zjO00U7ikyROhz8zf/b3x7m/7tPHj5rxtFK6dDiAgiHIOcUYWIdyE1OEILQ\nYYiD0MvztCzLMIoYY2EYaiMxgv12q8qzo9nEeXE2TuPmilK+yvLmZufGK3csJhD7qySnBHNOCVLt\n+qCSxbIaU4QjHvTqTUhcUiyAJcoYKfTWoL+zezAaT//wD773P/z2P3/3nXcgdJjYOMC+7/J0SbDn\nUV8BASD2OfG7bQxRmmY/+L1/mVWlhvbu3bu/8Wu/fmt3DxSF0qXQImBethomq9HTZ5/WoxhB06pF\nZ//q5e7ubjNqLcZjn7nZbJauzF//j/+TX/nlXweAi6yiHqUcGJllWXZxNTw5O7MIF1I5B8uytA4u\nZykB7mBwa39wE3H4S1/905WSANLpdLFcFE8evtg6uH12ORpdD4si45zXwtpsPmo06pggqyEnnrVA\nS+OxQIiSEJ7nEmAiBUIIKUHIzUY4waKEk9tf2m7335xezj74/ruMkbDyT358+q55/2tf/vrzTx5l\nk6wRNZZJYrvc87iQutHq+3Hj6urKOrTV2tERt0bJqhon8267y3klgc3TMdIsjnrzqTDG45QxyPIq\nm02qdDkaTcb1Rgsg4gehF0UvXxyFUZNo5xtPGtfya4xHsML3t157Y/uLDx8/v744efXBgxzmcTqK\nkN9pxsTp49P03pd2uQFJMr57b390Pba2klU56PeDDbwaTbu1gBEJA9Dywepqil3ciMNcFtsbrx29\nOPzO9358a/Pgg5efPLhDmltcgaUsl2UWY9heaXPj1o394P7Z1dXR+WkvHJB5Xpbk/iuvt9h1Uo5P\nX1w2e41WbePF0VPCGTawWav1os+nyWo0nEJIb9y8+/Ls6LW3PvfBRx8URXpw9+ZHT55C41spmYW2\nqGhavv+HH5rMXbw4+efJ/+/f/Xd+sz9oF6IMQh9DUlYVj4J8lRmpPELz1SzyuJIZJsRaUJVVo1YP\nAk8ZuZa7OAcYoQYhgKkQYg3bMkYSQqCDzkLn4HrPiSxwziAHHCIUUQghAJhSCjBwDmoLPMaskh5h\nnFOrjZEKIHp4eHR0cpmnhaqUloJgLKQkFAEAIHAQAucAdMACBx1az9vXHqjP+noAIISYIqeRg1ZK\naYzDCGZFttHv1Wq18XgccJykUiPZakZrTQj3Q6mMdlZpaywABsaBTxHVytZCH1N/NpvX6t3Do5ee\n5yHkjaYrSjyfxdfDBYJmsbxqdRpBFNZrjUpV1BlsoFLeKsnjsA0BtkpYbbrttoMzzOzXvv56kVtG\n4zt3bv72t7/9o3feR8ARQpSQkDruB2enl9P5fNCr+xzVAr/VqCerZZLO45DnaQaM7bTbg34P/JRG\nW2v4jOPR6Aph0us3jAWEAOPgapVaaxuNlpSSIICwq8V+lotaLVJVPswWrWa9024zQqUom40GhSop\nkiCIna2sA5hykSgpCkBAVA+WqyJbiDisAegXRea0rNWB00xrDYAdTyZaW0Zqy0WGrNvob6/mEyEE\n57TIq06nW1VyMh467Xq9HiHkzs0DIcToeowR+9JXv5KkuSqLrKiMg5z5h4eHO/cbPDTtg4NmHCGr\nCCFQWwwhpAQoQChVSiktnYUAAGAs91kUhPPpjHueF0ZBEBmtfd83UhFC9vcOfvLuj4+fHH35G39y\nvkr6/aAWhcqiXr3rlPG5BwDkHmHc94O2VQToRkBYnq9YQElgjVINxqkf+EHc7G2Oh5P/93/z//on\n//S3P/rwYb3ZbDWDShQYIwd0npeYIN/Hy8WceRQhxBkXZYUJadb8Sspa7GmrXj769O88fPTgwYNe\nt319fXnr7gFGoFXjHz38mATe6Wheq9VOhsgo6xdxhFv9g53Io+gZ/Sv/i7/xta/+nLWgyPKoxgAQ\nWZYsFul0slosMwOYlIohXOYVNg4gLJiTGJV5UZUlgxSgjDHmBX4cNfu9nbffftsat1is3nvvvT/6\n/g+11kKIr3/9j0dR8J3vfOfmjd31ANBYNR6fBFFolFFaibTCGENKykyT49x1du6MRicQ2tHVgmv+\n6o3XB80NOc7feu3t3Y2D6Ulmq7C9sRE36tRbmtJJLRXOASPNVs1RDDBYpMVgUCuEW2XF/sa+FBBD\nj0gzvByHVIa1OKz7hSo9308WGaBs7+4rxydnnoQYoBtb2x5nPsX7N7aM05l1NGxOTq9XWTpogRWY\nXFwN27VetE32etuojXqb7e5We7+38+Lps3631aIA+3R1aoPo4PwMNRuvcw9WqgAhy5UZiaTbGrQa\nrfHpGZ8lhXDWzWpRbWcwuMVvNIOwKkoc4rf/xNvTxTioMxzgnTs3b925WVUVsZ5M1AW5mJq55nYh\nsqPReSlXKz7f2O3Iwmw0NxnCy/l4o910wK6swlYgn1BKN7f6ebG6Hh16gS2KC6PHU6WqF1XX33j9\n1r2L43NH3MqC3/3ex+msrAeN+XQxm171ug2tBcYYYe4gNMZqrZ1SUBmAICRQIiO0YSzQQillmu2W\nHwblvDDOAeswggQiionV6jMmgLXAQqPWAAAMjFZSIYQIIYgya41TAkL82Z4TYu5FSlbOwrWPCVAQ\nBJE0WhmjrT45OTk+vmDIAxZiiIxRCH7WmDu0FjoCBwEEa5qMXS9XEUIOws/WrQBoa5wzUlqEuXXO\nKQscktrUGnGSrLRVq3xFYkopLYoirDWbrT5A1GronMOYIuQ49wminudprS1wtrTauqjWEEJYaxFi\nRjuIRFQPlChrjeYPfvSR0PjNz791ePjwF//E1xgz2pog5JBorYXWrlaPispyjxkoqzKjxINA9rvN\n3/j1PzMcDi/Pp2HcxogjIAMcSCnPTi82eq3lcgW15YxgjPNlXmTLWhQDB6QUi9kcY1yLw4ri+XK2\nRj/OlyuAcK3WwARx7kMIF4vFZDokhLTbdUKA0YJTFHpYSRPVmvWoQQgZjq58n8/nOvQZdM6I3DpR\nCOBHLeazCqh0iBgnyjplS5lPHaj8gBIOoY2MUsvl8vz0ejqf1erNjf6gKAoIXVllzKMox5eXlzdu\n7FVVCayKuD9cDEs/bDYanV77ww8/3N3dhRB0u+0fvvOTZi2+f//+w4cP97f6i+UqyZP+AOfzRZok\nQT0AUhMHSwKcsdYhayywUFSKECKltUo1NjpaSEqpNi4MQ6VUFEVRFC0WCw3g7o2bSV4cXv3h5XC0\nvb3pgK6qlHBeq9U8Tji0FECPQJ9iIJQ0hTI6jFEY1pgDRJu41eGeD1h8dTn8R//F//2f/va3nz5/\nRil/5d6toqiUkYSgqqoAAJhgyjxtTa0RY4TSLHPOEYaFFFJKiJDT7v9P1n9F25ad933gzHPFnfc+\nOdx7br5VdSsBhUwQBEGCESTBKNJN27LUstTD3bbsbnvIL21LbnlIGrTakm1JbZGWWhEQFRhEAiBi\nFVA53Lo5nRx23nulmWc/7AKG7N7jPJxxxhnraa+5vvV9v+/3N9B3ej0H4O0H9/YOoygJR3nGrcKz\n4vTkqN6sbSwvEUKLUtVWellVDcbv37vlfvULf+p//h//n4wyr4WWJcVuMs6n89l0NtcKVqW3Porj\nSGUjyhCEUCvrMIRal6JChKY1TnmMEDJGlUYS4EQh5nKqteq12h/75PPPf+gpCOh0PN/eOv9Hf/SV\nOGmIwsznmTF2Y2Ozs9Q7OjooisJBd+0TV4fD4f7+7k//7M+Qs9HB2fxAmBJC2Gi01tfXZjgynjYv\nnRMpg01aFXPREFlcFLKCFExktra6BLU8PTo+7g92tndm+azIxaOjU0I5iWtzqRNDEwBNWWy3W1WV\nTceT3dMDwNHOxcuNXm+Y9R+f7EISnDt/EWqzf3jUatSiMM1GFfKA1huTg6zlU2xKNrXHk7N8Wq1E\na/t3HpGYp6wWN+LD0WFRlp2tpfsnxysXtoNGxDLCA4+sX2qseWuGoz5QSs4romkD16vjYino+sLt\nrJ27v/t+NpnWeLB3uF+rR8++8IyxMM+LeHXjrH80r6a1Ns+LUTWXz1x5Thbqe6+8df2ZK1k5FX74\nwz/xUmXKwezknVtvXbv2CZsZ7IP+3mEUBKUufJBklaeJMBUs8vzwaO+jH/vY7t6TKht3SXd95VLA\n+ORoQqUQ2chF0SiDtx6dFNpBYxxyl6/t0ADo0iDMgceQYEj8wuKLnDHaMsYqWSzwEmMsQiDPszyf\nY0oAoVaUAHghSwAc9A5AoLXinEOEnXOLaCGKCfq+/gUh5JyFEFMKrTbOe6UUhQQjiil1DtCAOgy1\nMYgyDqksjHNOSsmj0Di9CPHBFHvr/Qf7p96D74OP0C3+Cr//+UF/RmsZBAFw0FjPeUigI1BxypxV\njKOyqIDXlbCzecaChHkiFKgUUNoBACjBhCBnHKDQAe+g44xjjGfjqYcAU+KdgRhk2RyAWiEc9Bbj\nYDYrv/2d1w8Pzsajg+efv3xuc1kpUVWq1Uqm2SSO4zCO+oMnSukoCABQlFCtlZSq107+7J/+jZvv\nP/7Sl34PAEQIAt4maYAwyIo5Bm6WZwHBnOFOp1PlGechgcBaO8rHjNAkjZz3tbTFGDfWxpHPq/LR\nwyetVst7Py2ydrstZCmkGA6rZqtutPDOlGW+vrYNHIrClBBy8dLVoiqslcjjqJEYa2jEZDmNSaqV\njRhJYj4YD4Qq83yOCQyDeHg2rjfajBCj7b27T7Iym0ynzvu0dn0y9RijosqHgzOnzTSbT+ez2WjQ\naTdjFrVaLaVFHC/LSq2urCghQ45Pz47ms9HzN54aj8fP3nj+5jtvXLhysdlqydkkbmzsnL/05ltv\ntbd38mnhoY/idDDJKCCLb4EymlJmLG7WUymKRi11CGlddVvdOE6XOt3d3ZO43vzWK9998YXnam+8\nc//+XWvl2kpPibyz1Ol0UyEmFCIHiHHYKMYZ4e12gyIEAMQRwAEAFBh7//atv/r/+r+//fa7Wlse\nhWsrm1pLXZUcE2ec84jhSGtNMQceKm0IgaIqMMbWeikFXIhOofMYOaGt18CjNIiAB9W8vPv+/a3z\nW92d2tUP33j/7h2bzz/20sduv3e7qgqMcT1iv/irf+oXf/rXgLOz2YAwPJqMikIUpTLOKWOdxR5h\nB4S2Kggh8thgZJF21kUQcxpY5w30xgroIKNBGIaLSBlCEABgnudJkmJGy0LVm7WT/vG3vvWN4XAo\nQgAhjuP43/8P/k9vvfPe22+/zRgbDodbO+f/vd/8zTDi3lty9/bN5dXVy09dsw4cHBxfWAutKcu8\nGLizc5e2pcmm5fH2jZX+2Wmr3qaY5TNw7+geNKbbWh4cT5OgMxjm791+sHRhBSDIMY9bUZlJCElR\nzEoJJ+XI+tA6F9O6d+zBg/sssWpqJocjSsnOua2wnlbe758Msv5spbuWPylQJYVTl7a3CisKZM+f\nu1rOxcXeVYWdLWEZgnSjO8uypbVms8mmZXV2Olrd3nz88G4AMAUmZgH0SgxJbBLm8Rrpvb97S3rd\nXV+iDSrnmAf4tTfeXV1fiQJ2NBgUpYSYT8ezybQPYX796vbD+3fXV3eG87OzwSyIwkLl9W6YlXPM\nu8V0lk+yVtJMNSwVCCCt8QZhwFN1PDldPbfRqjfmExN4FGyd6x+ddWqd9YtX9x8+OXzzSXdl+dy5\nLY/tqJzJQr312m4xnkKcGu2EUu12V2uLIMGYIoSM9NrYsBacnJ0a6DEllciscSHnQhhnTC2NA46t\n0QgTpfQHKLm33lvnjFIKQsgYARBZb62zC002psR7u1h7AcARghYci7VWAwMA4Dy0DkDgeBJh5BxA\n0GOEaS2J2u22dY+0094ZCJF30GiLIfrBcupCO/Dvgo8/2Fn9oOEOAEZUS4MQggA5q2fZdHuj8yOf\n+YQoxvNiHoYUEJ/UE0Co8ngwKrNCCWkApBBCYA0iBELMGAt54K3WWsVxI6nFZ4MhxlgqCaCoZEkY\ndxZgiJD3QuuT/llWgPn06O/8nf/tf/7bf+30ZE+LYjoSaRJWVY6pqddCrtksqxIeOucQ1LyZCFEt\n9erbP/nZg/2jV15+PYma0+l4Y71xbntDGxlGQRSEFMNsPqnXoka7k01nwHktK0JQGMcLZaau1HSW\nK6VYEDkLylJAOAvDsMqLUyHTNPUISikHZ/1GLWUsQgCMhsNOu3fSP2aMrW1uQkoJpRGvTefjqJVm\nSvdWV4AjupwT4jnGoqziqNZokqrMGSVRmJZ5la70Hj16POgPG+0WpWIymn/1K984f+7cpJiEPLh5\n88Hm+kZaW37zzTvntlZH44yvJhiBfDbb3d9TQqdJlM/Gl3bWGYR/5k//h6++/Mrj8aOf+8IveQdP\nB8PlGy/ZuQGI/dTP/dLvf/lL03weRbEp8+lMQgghgNoYAJ0xCiGU1GMIvZaiFte0Bw4CQiEmnjEC\nAKAIE+RffvnlF1988Y++/k1vDcHQKdlipBOGmXVBmNZaHR5G2mqKicnGk2ExnhSTaTYeDatK3Hzv\nzm//w3+chqzRaBXzjGGkqzwMGaTMGOMRCjD2FGtOhJQQM2etdk5K7YCHAC8CZ7xz2hjMMMfUaIMQ\nDBAB3mtrgHLvv33rQrCzvrO9cfnSpetXB2fjympYuo+++MLP/fTPv/T8i/PZTFYKM358Mh2M5pgE\nIpcOAogRhAARQzEiABeV99p4Y5HzjNCQsLIUwmvnHCFoQUyQKOGAAgusMQwT7/xsOAUIY0SzSoRh\n9JGPf+jdt98LQgghppS/9d67X/7dLwshgiDgIfvaH/3x0d7uysqSsYq8eOOleZ69//rtlfWNlNb/\n1e/+qxs3nqt0dXZwMJtOGu14PsyLUE9ORUDpNMvzYsIJZpZ147XexXOQEl5PVq9shbVolhVHgwEQ\nvjybdJK01U5GxWSmpgHxzhoAAord5tr6fD7Y6HQfj0S301puNZQ3uagwJuOJOitOzndX5iMnS3fn\n5Bg33Yk4nMnBxdWLCa6N8/lgPpR4VltOy2x6cPqIopBzeXC852H3+pUL995992g0uLB1aT7NMCw7\n683T0/z93fd7O0uIk1annWWz7vl2lEbpenJ0epiQ2mh47A08v72zEgcvH9+jIRqP5sdno6jeSqnb\nuNIeHk6aadxotMqpiEU9KWS30yjE5OT4/sry9p077z3z7NNf/+YffvyHbphInxx/B2Uf7tQ3MFWt\nVpArMZ/PT/tnPAie/+hzKAzTRr0/mfgwGR+L737nbQ7xaDhKeQNbePXCFQyJdhoDYIzRpWNJPJvP\ndw8PHPBaCIYZNE4pyTApnI3CZG1liRFQSemsN1ZC76C3UhQBIx5gB0ApS0KYVBJ5wBjz3i1Cv6I4\n8A4q5a3T1lrnrDHu+/UW8N4jTiH01iuKqZSeQiQKAQAinCmjKULOOoyx98B/fxP1B0f5IsAI+h+o\nCP4PfgLECFo4yxACGoN6LR72T2qJ8wRmsyxNmVIKeGaRtpAiypxziCHsHcU4CBjnzHtvROW8ZYws\nhsAOIO+d8cAKwFiknQ4jnue5LrQ3qFZb0sBhynf3948OT5zW/dOzOGIiozyq53m+f3CsPWm1lgPK\nZtMhwj4KcJzUTk/HQmYvPHfjrTdveu8BQN1e2xhFoIcEx3HojLHWHp+cJUkiKxkwhmkIoK+0Qggy\nxpDHSqkwiafTqajUuXNbWmtCSJqmWZZtrG8opbJsVkuSNI6KouAMKy14QFusrow9OT2ptzsAYsOD\ntLeqtEAOF9PSGytVNc0zBHCSssG0jOOQMVKW482tlVdfffXk7Ojo4Mh4N53OrYFFrsaj7P6d3Xqz\nIaVUQno7YowBGBvDMAa7x4etelKW89F00mn29nYPXnrx6f7x4c6Fi06p/snpM089J4qyLMVSlOiq\nsh76Sf7hz/zIL37xl3/nS/8obkIAAMMsCJgspTHGOcejIMvyzfUd5SRBThvpEGy22zzAzphGs3bj\nqQtaimvXL/yd/+l/qi+tdttNQojTZtAf/an/7tdr9Uat1kE4fvJw95VXvvfkyaPT/mk+E/1+vyiq\nSpv+cFiWJeek3Wki4MtyzhhOYpb0Uqul1tooF9JIaS2NIRhQAj10BGFMw4IQCGGlJHSAIgw9oMQq\nIzWGHgFrFSTcGaOdtcbRMLr3xt74ePbxz3zYD+b779556bkPf+HHf/65Z54lOHr8oN+IU2/AdC5m\ns4KzMCtKzGKMsFJy8RZrtSOEG6URthhjZD1wQHmrkEWUBAYigp2xYcAoBIRgazVywFtNMIEIWu+B\n1xihsiw++9kfefHFF7JCvP3229/8+tfv3nuotTTOAOyqqmABvf/wwd27t733hMT1TtoENNjb2yMQ\n7GyvFdM+Qujc+c1yXu2sXF6rbbGQjVBVTlVVmDSs8SgwUhzPxwTz5dYaYrzbWjk8ORRK1RuNx0eP\n62F06+yg2s+TZi1i9aBOqkIaOZ7d+26AWTEvgKjOb24dHh6urW3ks/zJweOoEYXNsCzKt/ffvbB9\nleka8HpcnvF6DQJyf3DwzAVWi/BbDx4txeu2AjTlg8FB4HG7W2+H4en9Jw0fnFu5YoQ9OjgGAAo3\nJQPw/HMfypzYPdqnyFGrWKs1vb3nZcUTvtRtyWIOoNZQD8dPUt/bWN3YOzqczk0p0elgWhizsbV1\nZ/yetZmX0s+iixcux+nKnYdvDWbTzacuUhBSHszyyfbl7Zt37i4vLy8tt+I5mZ3snhWzmopAjGZy\nsLl99ej05FH/zsbm5YQ156oM67W7X7t7dpJTGydJI59Pghivb61wFhrrESJaA+0Vp+TJo73RaEIA\nIphYK1GAfGk9hM6L7soOj6NKCw+999ZqhQlEEFCKS1k6rTCmlNKQ44DFi66Js0BK6YGVUjIaME6E\nMB4YY61xhkHCELTeeACwxR5BIYznGCFCMHy8t//g/mOOAuSRVoJSbJ2DC/Yagh+c3IsOjPceAbzo\nxi8qI+cMWqzwICS1CDj1wArtPcbnd7Yp0rO8AAhSStMwOjudUabqXZqJQVHNOWNaI8AJDhAhJGZh\nGEHGQlXmyHldlUrpkDLvPSKwNJXWMmax1lprixkVWhCEvQTIY1naN1575+MfeW5laWUwPKYYeDEf\nj2a6zKO0VZZTABMIMUFI5yaKgqVm13v+zPXLly9svfbq20u9lRee/xDwNB9PQ8Qm2jmvojgRxlgH\npXHaSEYJ59RY2G02gLOlNJgzCGEYRZQx6zTCIE5Cb3Ra60xnfULI0nLbaVNWeRSHIWGs3siyjHDS\n7C5biAHgeSkxsYQQBlhpC1Fl1lrOOYZoXhTGonKWEa6LKs+y6fHRk9G4v/fkLE3r01kxnZzN5wUP\norW1jaIYjIbq6PhgfW2pLEVVlP3Tw3w2vPHM5V6taa2uJfXJcHJ6fNJqNPuD4cWLW61mczodX33q\n+ub2Rp4PV1e6w2H/opohi5U8I41Od3Mdcwgh5RzIvJpORBrHDlhvATImxiTmzFtlPQ4RpWEArCME\nWa1WOo21zvWr16/3958wTmbTcQz9ynLXWl9vLyX1lenEfe+V73z5n/3Lmzdv51nJAh4EAUKA8sBY\nRDDf2ti0TgFgEAbQlPV6irzP5tNZ6RilCMCIcsKZMdRbxzmfzGYOEAOgdT5ikCeBMLTS3hrPCFJK\nzEvtvDbeKQcsIQYA4HEjCoUsW414Ppi98Uev/tZf+2uf/K//+mw88ZDO53k1n4ZpfDKZKqO0EpRS\nqaqQMxIQIYTzyjuICcUUKSkI9ozgQnoHgXMOGUARhhACTDyCNKbAOqVUEFCIoFEOYWSAF1b1ekvD\n4YBSCowdDUZ33n/493/nf2226sBbQjFGpLTKasNYEIdEKeUciMKYHM5uA+u2ts511nem46kRql5v\nSqGiJrfYH4xPBqO+sxoAEKFke2Vt7+iwXgsnxaxW70CPbr7+GuV8udfeeXpt7+RslM9lUq33Gg8m\nkx/69E9bg5U2SldVXqR19uTJozRqXb74lJLQKMxIfe/haS4LButiZrq17vp2Q+fSGBekwejsoKzk\njetPzY+nZ6f9d2+ebD+1vfOpZ2mEi9lczIvRfHL5qWvDYV9bTVL8+PTRcne51WxvRlsIcqMr5Hw2\nKTUFMY7FrCzm89pyfS1d91bqQiFESyG2L1wWxgyP+2d77zdbnRvXLmfzYuulT26e37j94P23Xv3e\neDyNw7o16OHePePllUuXN0m9lW87Soti1qzRmBtVOY3CC91rcdTqD07uv/Hq6vn1LMucxoGrv/3y\nzSuXzoMwauAgPz3L+yfOpu/fvOMJK4wLrfbebm5uOguEkovKFyGHINRa37z5rjGKAuqcgQhAt2AK\nvbX22rVrGGNrSSWqxa6QEJITQgmBnnlCIYRa66pa9O8I8AhCzwPqvccYB8ECvCMQQmv8D2p2YB2h\njFGm3UI74zHyjDFr7Ww2iZJWMS8WhnEIodJ6kZr9AxjmB9dx3iyO9R/ogpUylFJnLWOBkAJCTAiB\nGHU6HcJCzslgMEjTFAAQx7HzKM/z49FYKROGYVkWjLOQBwTgSlZJLYbEAewgosZBJZ0HyAP/gwxu\nCKGWOgkjhBB0kBAijYuS5GT/7vHJydrWz0wmRxfPn3NeYxpEYXr5SsNC/Gj3sKrKeq3BKG11WkKI\n0aCvtMsr9St/6sfPX+xEYXLt+uWqnAchEbIQ1azZrHPOG42GkUYpUxV5o9GA0CdRUlXleDKEgLRa\nrdFo5Jyr1+v9ft85p5QwxkAI5vM55/z4+KiepnEcA+Azk7VarU6n473PZ6pW7yCakAThhE5OTpqd\nLrcwTetaytFw0mquZOUTAEAUh6PJ9PHu44ODA05Zq9V2vn/z/ffX17ezuSCUJkny8OF9xpjRsNls\nl6WQRQGBWlvvEWTrjbjT7rz+ve+22k1RyijkH/vwC9/65lc+8dEX26vbbDozFkVRJIqcUbRSr0NV\nDadFb2sJwHzQP4LGaV9pRwHBEYDOaAQ957QoipWlHmNsOppzGjgLCEGEQg9MnETG2XraqDciXdZ/\n6qd+4snR2Z2HexDg4Xi6tXPxd//1H/zO7/zDw93jetqo1aJmK2ikgVMi93gyGWutMUTYszRkBEKI\nfBT1snkmjarHNWM/oAastYGoojRhPCwqEXbapdKDyYRTpmWQD2VVDBJqCOYjgSrj11ZbynMhpbCy\nLMuEcwKgysoaj5Tgtbg5ns7+0l/+67/99/7O+urK0f4RpwEP8Xg6l8pBTAKWWiMwQhAaWFlbCqit\nB14ohRBy3njvCSLeOgg9QcBaTRBCGGttKQ299w5aFjGIPPSQBRwAgCFO6/XZtFjqrQPkRVkJoeI6\n7TTqw0G/2WwQgpQyCQ+LoiCEVVBQypMkKktBOKf5LB8PBwGLrbWVUi3O2o3G5GwwmwzLYpbEtaee\neu7J3lHlq8no4ZOje5MyTWN2dFQ04tbyUvvkeAA8MiRMm43KlM0gAoV97vKH9MzwMDy3s7V3fHjn\n4f21zc2lVf/o/oNa/XSpu5zN84vXLpydDcZHk83z59J6sn90OM/LCxevPtm9d+/myy++9GFaxqO5\nXds8X2v0xpNpWWRxnezv7d598PDK1evK+eFgEpPozp07nVZ7e6s3KYbTWV9L124tIx/MRqPV9ZXJ\nZNLuNCb9cdrsng4fZsUsjaJpPk3atWw2L6YFZ8m1rRt8+/k8n1dFGXM7OOtfvHhheWkjl/by1fPM\nwBhEa/UOEBoi93DvbrtXk6Uo8twhl2XOeri9c36UDV5967X+aBzH6a3bj5ZXVghFvtSnu6cb9ZW4\nU8esPh+dBDC9e/NwvFfEri2hMUYQgk5PT4VWDVbLssy4wjiLHTJKzcYzjLHWCnlrrfFeW20wRBii\nOIy8h1prD4EyxkNgjAHGAIKB9wA4ALH3kLAAAOAdWCicGGPGGIoJwgAYhxCAkGBsf9AWR5guQkQX\nHjGKiQfQWru5uR4EwQeRmM5CCLxHjDFvF4ZfjxDyPzAQeA+g/0GffTHRXRzxEHqlLaGhNUaVRUBd\nHMeQsiAKl3okClkxm8ZhYh08G4xGWZ422/V6Oh/nEaPAGERQksZFUWhdIAcZijwgABKPfFWVwDtr\nLXAQeuCtIwwvHmwQQhKQSsxpQK9cvXQf4UF2AAEAAElEQVS49zCgKAwogHgwLoIggNAf7e91Wk3C\ng/ksx9BNp9M0TeMgmkzPACCbG2vnzm3NZjOtpZJFp1XnDEHnrLVHRyftdjtN6qJSCMDRaEQJHI3P\nuu1Gs1lPeOKca6Q1YwzDhBMKEZCiyooijuNao55lWVUV1umknuSy6LaaiLiymtVrTTEvsjlM6hCH\naTHqp2nkTOG8LHNdVrnSohjOo7A2Oj7K83lezIb9QTbLzgp1sD+E2ElpJ+OZhyCO46IogjiSUqaN\ntMxy5ywlYHV1+UPPPeWsWlteG4+nab377jvv3Xjm6qc/8ZIHamtj/c6t28qaza1zzU6zFKK7tgad\n74+Gw8Nh1EqALrInNwMKlmvNCsJRoaxzBFNRCa01YaQs5YUL561RACAeIIghxhgCAiCHCEMMltda\nHohGM1Zlsba8sntwenBwuLG1efP922++/IaoimcubGAHjJYQI2PUvCz6eeGMjeM4IBRDRAiBzmqp\nC50RCJIk5oSwKAxDrpVSSgnhylKUlZRaDQYDhMCVS5e63S5Gfm25c+7C9drqxeFsMjp58uDm7W98\n/dUgjrq1dlEpQTzAaKrmpBVmplTQUm5rSTLJJz/zxZ//S//lf/WpT/7wYDg1TlvrIcIhxdYYpYz3\nnjFmrPYQQIacNdYaC6DzziO/mEshhAj6QJGNIfQIKKUow2HAnTMOuEXJhTF59PjxG6+/8+DR4xs3\nbnS7bSHKG88+/dzz11vJf/CNb3zj5js3CyEnk0m73QwpA8Ap64ScjQYnnHPSQisXzjVPjg/HR8O8\nyhudlioLrcRgNGAUbp87Z7UzRpcmF0rgEG5fX8rGc0KDpdaKFE57l8PSpO71t1+JQ5qEoVRVmcmt\n57ZlWU1mw7apz4t8ff3CvfvHF85tkx260m5G1JoWf/PWa8vd1bgV3nr0Xm+l98yzN954+81vvvrV\nOAquPnW93+9DgveOH/XnzYs75yLgxbxiZfr0xo0njw6nk5GcjlmtubK9fuUnr7/y8htLje3jUimX\nNesNq3W/f8IxPjp+WHo1UyNA7FCMVtbWxofTyoukWY+jZK235i3Y3d2fRRlGQX/Ut16vrC6hWvTe\n4zu8FsGIeEi7nW6sCekEs1IbF+alzY9Or1zuFsKUuSgrtba5/uD+Q0rx+Z0NazBkweXzz9x5cAth\ne3FzfXmlXaNRTqGl/JU37nzsQx+7+ebLeoIx0MhWnBEJ4PHxMQAIIOQhNEZVQjST5unZYNgfQAcX\nHvZsVi2UgZPJ5PKVi3EcAwAgxn4RqYFxGMTQaYogIYG12nqXBBFmHACwqBO9dVopLRXgljGCIfKE\nOOcIRUgh55xHcPESoJUCEBJIAACLQKJut7u2vnr33pOABtbDDwQyGP3/xXH4709QAYRgcTXngPeQ\nEFJVFSEkjKOikgHBwJn1lZVaLWFh5FxVqycQWMbIdDqOaw3CMOeEcvy5H/vhf/nP/zU0thYk3gFV\naRYy5CyGBFgHkMUYIY8W44QFHU8IwxA56yDC0ANMsHE2DEOvkyLLKcZJs+adYYwFYYwRisKQB6ws\n5lhVBGGrLfD+9PS4010mLDo+GU4nJSXMGBgElHc63iqlVBwEhACM8dHRUZqmjOB6PQXeAOCms2Fy\nbitOGzIrFpa+wWBAOJNGB0HQ6nQdgEEUOucoD+JamqapsZ5SLrQSQqiAWa2m8yyq1R1Rw/3xxadf\nmJyeIoQYhQ5qY8T+wWOECA9ap6d9oeSTh09OT88ghBRha/3iQSulXORgKyUQJYQgiEwQEuBwMw3P\nb21iBGUpv/mNlwtRMEKWVlaefvrpKOa/+y/+2W/++m/cu/3w1u33jLOXrjx1uHvgnAtrzbrDhCdJ\ns+ec4Vj9hf/6P79w/Zn/4j/7T+vt7alSopTaeo+w84Aw0GzWByfH3hoPIIIUY8poREgAAIhjHias\nXouEtxB4rVQSxaPx5LXvvVpp96Hr10gaAFVRiCjF0oPRtBrORcqDpBVTijGAwFsMfBCGIAytykIe\nWKWVqqxGg34WRVGapvWl1kn/rCrk+fPn/2//+X9x6eLO26+98dabb9599K6wenc4QdHrv/nn/pOd\nX/xlYOy3fv+f/Zvf+cdvvXdzPBkXxtCkRlnIPW+ypg/hbDIdD48Jgtls9tV//s8aEK2srPA4GM/m\nPEkKUS4c8fVaUxknjQEYQoi80x4CYJ3RmiBSOQMZgR4Ybz2ExhgHQBLHIaTWaW8sBJ4QWEndqnfe\ne+/2X/3L/733Xhuz/+gRoiiO45vvv/u5z33uwvbqL/3yz7344odjnhRF9S9+958Ph6fWKQ/RbDb7\n7Oc++5kf+TTJjuYd1lqu9bCyaRgIJ72TZ2cDWI+FIRVpkAA9ONs1cOa9xDpwKK3VV5AllLeVzIfj\nQZKG9x/c2mol2qDB2XReGG91bkqMULPRnk1FyGtaZx9+4fn79257LfrHcrW7BBmHgIxGk7heU8bO\n8uzl118ZDAa6EhSutZvr0+nt8ejR+lbP6PysfzgczFr1pbiefvt7r19a3zk8fNigaKUdxhid7j7Z\n2digEBW5UNK0m80wqI37Qy1Vu9lxMhfCQkcUQNOZONw905k4f+6itzaIGkfT/u2jB912p8miqNt8\nuNc/ejJv1dLAFoGaaFPZahSfayLjK1gc5YdoVi2dqw2OdjXa6K5vwsE4DiIGg63ODkVRm3fIxdbZ\nfKRNsXNp59H9B9ZgBzUkmgD63e++7BB+6/aDN2/drTyMiMMUCiGMVNvb22majsdTCD2EUBvJebi7\ne3MymlIWKyUAWkxEaVFNozj4zGd+eHm5V1VVFIWirADwSikMEfYQwIXDCyJICGeYUGut0hoCgBDE\nADtKFm5Ixhh2WmnLGJNCKy0CG2COvffW2kXfRmsd88A5QCi6cePG/Qd7iweJ1hJjbK0F/w4S84OV\nVAih8wZBsvgdIQShV0JiiIDXVZFDCIyWzlUf+eiLzUY6mJxFzFIUUeQZR0XhHfSYwCBk0/lwe/XC\nF3/u8+++9tbpaT+Mah4j7yGlocxLQHSACYDaA+2cA9YvpOrOOUZpWZYIIYQAAh5ahRkhEL/71ru/\n8IUfzQb70ijKw6U4qapCKbXc644m01mWJUmaZZPVjbV6jVEOKGGqSoTy3gPgIEW4KEoILMCwKArv\nfbvVQr02AI5zXuRzymAtrrcaCUV0OppihDDGaZJ2l1e0MZQFQRDN53MPSDavWBgEYRonoZRyOp5c\nuXJFlYWRZjrONzeTS9eePT461Mqsrq4ePNjb2NpyShdFprSZZzoIGk+eHMSJbdYaX/na18tKRjyy\nVjd78fHhCWVJPa1pbZ0HEKMkSRx0CCEAfVEU9SQhGJ4c70PQqfICeKuqLEzSZtrae/SwHlz4zCc+\nVc1LK9VKb/3lr79y8fzVKE0e7T9+/kMfVhiUUsUaOmAxwSSKPv+Fn/mTf/uHr79xx1eC88ga5Rwp\nq3mv10XQ59mcEowARwhAZBC21lUIhUEQIY9DFio/owhjAMq8WF7qhVGgLOBBMJ/nQuqQhcboyTwz\n1tZrQewh85Z5H3GGEYHOYmyA9wJ4rxVGUFpvsOfNZqnFcHDaNU1OKIxwUYl/9ft/uL+7NxlOkiiG\nQTB/fLK8vPwLP/4zzWYjU30I2Kd+9lc/9bO/WOVZ//Dw5Mmj/YeP3nvn3YcPHz548GAp7P3yF3/i\n6vUrV69fARh544/3D9diQIhstYJBKQRkhPOIMSEKZyyHTBmHkA8gFcYaY6lHFGMYUaix1cpZgDCi\njDhtKq0CjDkmUmkHXZGVRrqwG3/9q18vZ9m5ne1K5AghZQ205sm93dfjN9qtH7LWr6x1gyCOw+Tv\n/v1BVhbtdrMoCqnl6try5WsXSdJMMpEzjlDAYh4DXbEosZNJEkTn1q9YhTutxjvvnAEHQx5QSmWl\nTkenrWYvN3PpRJoE/dMjqEUJ4OnJuJ52NjvrZ6fH5VSJqiAIn6tdPB2cWuBG/cFwMHj+xjN3br5/\nejJe6a21G01EyINH9wnDWlSrrdVrFy4dHJxsbW8fnu1HrRDwtcf3j4AG5zfi65effrL3+O33Xo1r\nfG/v4Jd//tdOT/eELnlQ47GtZClABgJwbufS/m6fIXXh6Y8f7z8xCA6z/mQ2CRhdX16CSHV7DVBz\neZmXRrU6re5Sb8OqTrOzknQcwxOlaRASB8YHR7XVXre2PMmK19+4tbLc7vWWrtUuaeMOd/cbzeXJ\nTAVxQKKQxeFoNF5aXq/XOuPBLNPT7nJbKxPX6s65vcdPXvrQc3k2rSXtSvU3ty//we9962xYRKQh\ntVJCpiGDxGVZtijPT06OgpDX6/X+qH/nzq1anFiPKu8550mrfnBwUJblL/7Sz2+d24TASSmkrKIw\nyPM5xcRaiwhGhFrgHMIYY+cAsM5a55yHEBDMeBimCBhjnDULvBchyCglRC5wSkKQMQ5CSCmmlgpV\nAOghxs7Zy5cvxknotAN2UZtjCLzz7gck+/9O8Pv9FjyEEHpHMMmqYm1t5cqli++99w7hiGK0sXJ+\nc2tFqmxtpePEFHmVxKmUKIz9YvJgrYZWOzN//pmdjz9//a03371z97FyYDAZY8CUyhHwAAAhq0pK\nAJzQljGstS6q0gfcQ2CtZRQbY5Cz9aSps/nuk4P5cJxlRZiEGgCCoNb2g3kd4yAFYRhC38AQMkoo\nxe/dez+MmrU4YTwuiiIvtSirRrPerMfGqDybz2aTyWjc6TYKXRklOo20KAqtbRLHVSE2NteyLJvN\n5wDiZqdZVVVVSmGs9Zhy7jzwgNy7t4sxZhS/8ea7K50mRnRtZWU+l/3T8erGhVdf/d5TTz21vrY8\nG02jKKoq2Vtams8q7wSEvCrK/YPjfJaXUmxsrBwc7k8nkjJQZnMCAQ6YECrgwUIFygiRwkZBzDDh\nFFujRFHm2eTZZ59945XBc9evD/pnjSg63Tt+/rkbN99512ozHZ1try0f7T3pra4sLfcAdDhgWkiq\nAIiZ9sjlmSnN3/jbv/WJ5z+By4yntaLKAYBlVl7cXo8CPpmMlntLkDgWsA/QKQe9dUqUtTTy1uVZ\nGQSMUtVqNcI4SpLk8Oh0PMillJyyPC+l0UJKxBkLE+C0MMZ7bKrCaxEQAj2wVhvPKEfKWoiZUgpb\nw3lMMJhPDcaw3e4gCN9/5620Ftdq7OzscJbNm2m8vFJfPbfaaLVVZTgD88luiIKQh1uXL21dvvIh\nB34JY+DtnfdvffWf/qMv/8svf/Plb/6F//Q/+/zPfsETeuFDwHmHs4EHeLm0xyeDSuhyUtSTelRr\nGWOn85kDAHHitFTGMc4Mgsha5xxAEFggtQoYR5QoIQMeaKullAghTmmv3X7rjTefPHq8tbkpqxxC\n46y1UrOoVlbVvTv3P/25TzFGKp3lxVgktU99+hP/8B/8U+dxvRGGYfhvv/LH156+QkgzmJelr3yt\nVYcEpzCZzGY0SIfH43NLAmtz/OBkejSsN9OinME6XV9qTqd9ypzxeb2bHjzeX15eZpTm2GEcJSxg\nkBWT0BkIEfHYiXIOvO91eofHxxe2LxvtN7bOLS/3Wknz6OgIQMgCNi+nV85fRh7MB6Pldk9UWV6M\nrIPIBwz3AoriqOGLcq3e5NpM5/OVtY17ewdamSpXS6t8XlX7p3tsxnq9ztlk3FzqjvqzuXFxtzcc\nHtAo7sR8PuzvHj++0rjYWEme3HliHd1eu4Cxv/nq2y999FOdqI1N48HRo/HR9PpzK0ZUttlaWbvs\nHeF1f+/9N7KpZGZc5qLR7PbaKwenBysbjck0b/eaZ+PBwfB4ZKowOx6NRi0a6AxkwrG8lGXRWV96\ndLDnHGhHndbKxquv3P+jP3g19HVkALQ+DVKliiLPG40apXQ2yzHGUkoI4TzLLl2++NnPXS3K6uTk\n2HllrbXeVGXcW+k5Z6SqkigWVSmKnFNoHIUQIkIop4s+jHPOWGdkiSiJ0sQ56733EBDGOOdFURj3\nQeTQYui5OIuttYscnUWeGaVUaQ2AkcJyHqRpOh6MF6e5MQog/O8y7P/umY4JAQCCxYITAB5YigH0\n5oXnn1ldqkFkoihYWloK4yCKEDCCYUAog8BpraOkJi1UWQWsc7rSYkZgq9dpfOFnPvvn/uPz/5/f\n+Qdf/pe/Vw9TzjllzDkkhSkqAQCCCwklhMoYCihlFDjLCQXW1lp16EG3t/zoycNvfPPlz/3Yx1BA\nhTEIAIAgC7goK+cdAKAsy+VedzycTIZZp9eOGIkChDEgyMUBB9Bh2CCEcM6d0Vrrei0ytdAo4Zyr\nJUmjFsecGuOkLJOIUYpbrQalvBJCKpVlWVnJRqPR7w+V0a12ezqdtVrtxci6Uasj7BmhLEldWb75\n9lsXZpOXPvLiO2+8dvmpF+qtWpXnnNNsPnXAHhwdttrNf/5Pv2St7S51WAYP958oKb2HrVZbyVGa\nRNaBxZv+aDTsdDr1ND2rRpTA3lIDWlnlWlbGaDQejDvdpXuPH146v33WHzKKpfUf+cQnv/fqK87p\npd7azXdev6Kub++cL6cTRsJeo5mrcRLULQ50NoKUAAx+/U9/8b//7/7fTM4C5KH3GPiVTs8ovRgL\nAWAQJpRSiinFoTcGOttIQmOMB7bd6+6eTZfWloCDWlsAkDFOCQEsEqK03qVpDbFonquQQwCwN1gr\n7bUPOcAYQUi1B1BZ54BSZUAZAgBbX2ehQww4640cDgbzSV8INp5OPvtjn/3s539q/dy5S5cuWSH8\nfAAQ9SauBTUPiQdGFxOhhbVWVNoDsr6+/hf+27/8c//nP/Olf/L/fevdmxagzlKv2WwsdZv13ir0\nqMY1w0yXYjIrCuWcUI5AwmmltfcOEAwMctAbq5EylFLKqAJeKwusYYSwKAgYKQqJMXTOeo/zPP8X\nv/sl50wQEC+QNpYQopRBCCURneeD/tnRxYsXs2mBMbZG/ehnP7O2svaVr3z97v33J6PRzuUdhAgZ\nVVPnXavV6k9HQRB476WpjJUa2DdvvrO9tTUcnm5f3BZ5UcwziplJHDCI42A6zkQp01ZNWD0TeSdM\nW91lobVFfvXy8uHREYb06UvPhxD2HLp06apxjnGCsS/yfO/xPr4QZEISipJmvT8fERalQTIbT0Ex\nwpwnuuEBCpMQxurc+fWqKt597/2Ntc0gaAaWGOh2j3ebtTaA5HBw+OR4l4VMSONRPJtWm9fXV3s7\nZ/1DXWROiYjxMG5iBQkCxQymKe8tbQnnwkYKKrvaW7v76u3PfvhHO421WZCjCuTDmTB5pat7h48q\npZ7a2XaEWJycTUUtJEkjJJqPbz84fzlptBoPHt8DyF+/9sw3v/2dK1eupElbjLOAAmWqbnc9WFr6\n3pvfvbi51l5t3b//eHXt8oP7fxiAFFmiqgmlWDsTBaGoiul0OpvNMIbWWuftdDrtrfQuX3nag8AY\ncO78JkJOG3n58kUeUEyAcRpjJESFMcYEeKchwABDba0wNggYgsBbG1AGAFDWUEqtXXjBoPfQAs85\nt9Z6bxBCfhF56qAzdjEyhRAKIQjDQRBYAB2E0HmM8crK0snhSRwGUlpKqQMQuP9dxt4PPotoYw88\nApAQApwihBzs7w5OT65c3pFy5oCN0ihJolqIZTHEHhklpTVRlFgfEoCLUpRl6YyGwI5GR9ip7a2L\nnNuNzWXKwSwbIUi8p8YCyiKolbUWEmSN/mBRCyFIINAQAA8BgBASQryFzuNX33znZ379C/lsVOt2\ndaHDMKwltdlkCjESShRFobUGTqyttGhAlpbqcdzMS5tlBQDQWUWpV7oaDMT25kYtTY5P9mtxAqAj\nCEFvh/2BNWp1dTV0vF6vAwQhhNZqjADDqNFoYJxl80IpRSg1xmJGhRDU+7IU3oL1jXPj8fj49EES\nh81G2zr9+O7NSzub0+kYIQQR8N6XZbm0tMT5w++99oaoVLvTnI7Ha5u9/uBASL2yvKGVJwiEcZTn\nwlprge6021EUWWsBEGktrNe4LKwCWJS+1VwZ9guF3MnRPgmYrspOq/vl3/uDq1d25tW81zm31Fnu\nn5w9efBge3OFYIids84Dxu18jMIuhyBXOUDwi1/4/MHhyVf/8Nvd9aXhrBJ51ms1T4+P643Uesdx\n6B3AxAOonS0IYb3WMicxJDaMIoB8rVmzVM3Gs/7ZyDsogLQBzpxn9QZUWhlNXZ5ipCWkmAihEEI0\nSKUzwDiMMQfQewAxdN4HcaCrwgE0m45Djhhjp8eTZ59/bufKjzWXlz/y6c+sbW1Z3IFeIqgMnBsN\nqMUQe+GdNtoYBTDSGsxmc2gdA6g/Gr7/vSlE7sc+/aO5UmeTyaODs3iSvX/3YZ0nK+vr1288G3RT\n7n3sjNXq9u3beWF5GFdCaGsjwhj11mlnnTEGY+y1JcCnYeC0mY6G1hhTawIAMMEWeA/hNJsKVULi\n8qqwVhtjrAPOgbLMKcOHR7vvvfvq1YvnGeEEMmjxdDS9uLO9vfVrr7z2+pMnTz720U9wHBKldVlk\ns8mgnib1Tn1vf197v761HY3z0eB0Nh9M1JyOECpkq9N0VidRbanetXOxtLomrO52ukd7u2qalQg7\nBRBmBtpZWbW7q7LIh9PD5dayBmo0OSMMPz7c7y13FQBSqwKY7uqyyor5ZH7j+vNSGGjyOAqnZ5Od\n1va15aX+aGBDW+bTaZ4po4HnjcYq9HB99dxv/8O/i5i7eu2Za0/dGJ0cXNk8J5SdTqsE1vtqtPfw\nMWcE8CDkFGOsCBvlppV2tldW7z96NDW+lKLRTPono3bSWqr3+qP+g9sPms9vrLWWueYnB/2ox6Zm\nPpnMAcDfeOvw0vrlbFR06rXT6SnvJFrb85e39o4PkySS2pSiaHerp5++bj1M47Q/m5xMT9u9Ne1R\nWRSXLu/s7j5U1C+v7eRTefedu15xqa3UiGCGLK6A1M62201KMQKWQKeMYzyqNbphnAppADQBwWVZ\nYYZa7TqAzjkjK0UJkkJoY8MwNA4R5AGAQRBQShljSgsIoYOABcwKUFYVIYRSBoD3EEAEnQLWeASR\n9xACgDGmHFWm5JYASK31lAUeQoQRcAB6j0iAEFpZWSYEAUAI4gAgjIHz2nvnvYcQQwgXZ5kDwDnv\nHMAQEIqcVx44SCCkJCsLRLCYy3anAWzJaQSBS5M6haISxHqkjTNAWIgRgYhx7fzRWb9x4TwJ8dFo\nXyGnlAgwk5WlYaQhtMayMAyUKK0AEFiEjbOMcK019hgDAACgjNfimvVgqsvNc+cmJ1lGWTXKo3ri\nUYhC67UFEBttIYS9XocQholvtpvT6ThOahiigHhQ45W11Zl0xjKOjZGPH98OOWXIh5RUlVzf3tBa\nn5wcAQB4GIiyAt5SGkAI88kEABDwsMhLpw1BYKnVHYyHo+EgrdW8sVORR1Fy8+bt45OB0RIAd2Hn\nHE3qEJHD42MPmahUp1GHmHoIDk76j77zqqrEu2+/tr55btA/owSdHZ31Wkt5WRRFZozjlA1OByxK\nPcJlXi4t9ypZFpOsnja6rdR7v7W1kdezm+++X0/j2WRaAd/rbown+dbmehjwbDbpn5wGDFRV9ejR\n/XObq2f9o/mo31pZz4VQztUQw0k0nQ3TWhdbkuX9tMH+zH/0KxfOnadB/M7N+2+8/X5UT4d3JwGP\nKIIIGcYiggNjgYNYl4JFBEDNIY05F1rHIR/NS4yxUBUk2JT5IlnbCGmMwQA6CIyDwAkPmJbSORe1\n24sRCKWshBWxNkJ+a709HE9m8woydH6r/onPfPrzX/iZ1to64BxADjx20g1PJnl22Ol1rbVKiiSJ\npFWz/tBDpE1hFUCASGEpwlEazbOJAzaMWF4UR8f9UlSY80aUWG218v3J8P2b995657Uf/+mf7LQ3\nlTVBEG5unHvjnZuyKiEGSDloAuaRgxAwbzBG0EohjJYIoSAIinw2Ho+n+ZxSWq83ojgFHgyH/dH4\nrMyLJIrjMJ1MZgELMVbOmel49PzTz125/sy0yLyBi8aid2o+EwiBj770kY9//OMAgKIoCKR+fXMN\nWne4e1gPZB23JuMZmeJLa1tVb/nW3dudZmc7banBVFE6rtTZ/kk7rAeErzR6Z8PR9HDcSnobS1tn\nw5N2a/n+o8clsZBShiJKOMj8ncE7GKMgRud3dsrCcxfUGjUTl/tvvm+F2t7aapLw2sVr79y660A0\nmsuo0X344ChabV1Zf/a79985PVL5/tmly9vXn3qqUWvownsFf/mXfnN/uD8pZi6kOzsfOjw66XZ6\nQh5BiJ66fvXs6HB8dvzUM88UwkNG8un02RvPvfnqqwh7FrPN9e2HD+/PJ+L89g5H7M13X22FjXuH\ntwgG569cWe31zj2z8+qt14uBeOa5Zxzwe48GxTiHVtTay8cTf/vBAWa41aoRrmng19bXD4/PpCIE\npcCYw4MzUOuNhv2Th7vLrY73tr3eJivLN/vDj567/E/+3j8RI6otMc4GJNbGwhBS56WUHkDOeZFN\n46SWD4bLvWat1nALytA6gCBBSGtttZGqCBiB3hltKUbW+qoooygKGNFaG6OMt9Bb4J03RjuXj4Zh\nGMeUamXKrIjDiCexqiREGEJrIYQfrFEg66G1XkpJKfAeL8I/CUQQQgSR0YaxuNFoLHhKJaRSgofB\nQjqGEPLeeQ+c9x+Q5sQziiAEGGPnIPQeOu81igLOKYujCALnvHfOUBrm01kcQM7D8XSWldI45BAq\nSoUACFl9OjolBJXVLIqiShSylNlMERJoIzEzHsD5XC7aQVpr74FzHiHsvaeYpBGvihIAVJYlJNhr\nVWsk/dM9MZymSz1TGVZn5elwOhwlUU0q5YAS0jSC1vL6Tv/oSOaqt9otpTge9juttaI/S6I4y+fA\n+Ua9ns+mzthOs9Wo14WczSan7Xbz0sX14dlpIwkmWrbqtVxYo3W33fEeGGtJVgDnoUfD+Vga3V1e\nmmXzQlZLvZXZrFhaX4XGjYb9H/rkJ/7w9//1ue3NXqd1fHjw5P5DD12chFvb57P57ODJ7lf/6I8J\nIZ1O5/TkSS1JvdPTycnS0pKQTiqxtLw0nEuchPOyLCvBOZd5Vc2zTrflHNBSWaVFmnS73SSJGCNB\nzOdnw/PXL08nA19WQRg+/9RTh3sPbzz3oeODA4ItoW5pY+3B3pNNiDvdlYjw3PlaGISAsjgs+4OI\nIluKOiWf/dFPDmfFXKmwnpbzUmSzZjPFBBBCKKUQI4qwkjYJwzgIkyTJJvMgCB3AGEnoIKW8KCpG\nIwY5hsg6hzFkmFsANIClssAnVvYDVl3evhyT3r07+/VamzD1wy9dfPbjHwqT7nNPf+KNb33r5Pj+\n9Zc+eeWFnwQEAwgANLKcVtmEAF9lc6M0xMGwPyCMQ+hPT/vee4SJg5641EEHCbPAAEzHUmvAtBQK\n2BLayuncSKcEY8x7L7UUoGQJmpyd/d3f+pu/8Ku/cfna09qaZqf3iWefef3N1yGjSVorhQqisKqM\ng7DOg0Vag9YCYFyL6purK0nAWRg44BllTgoIcDaZ3rj+NADg8Gj/+OiUMKaMNkZLLV766Ed+8zd/\nU0rpPSxEQSgCDJVaWgwghDIfQYghQlprovcnpu0p5wkmh/uPdy5fonU2LodurmqNVndtqTT5rb1b\nK1Fab613knAyGALCKAm8gUEQjGfz4bSPSrjWWoHEImYJlPVmOj+dMkul0jq3zZUWEDbvD9YbtfF4\nbrhPWwkbRGmzVg+xxrro7zVjYLA9OD1+/tyLY9Pvm+PZ3ujc5vI0b1YKrETpQX93b3B0+fIzj+/e\n6zWTC8tLJxN4crA3RWfHJ4OoE+9PHh/mJuJIF9X2+kYax6f5PNM4CdKzg6NarXbv0eO1dvvh7ZtK\n+jSqP7m99+KzH4Y2EQr3p7O0fQbH9QK6zABPQ4sI4OFkPMjLjBGArX37/fv1ZqtWS/JiAoy59/7e\npz79yf39/SLLGrXafFbGUX17eXt1eXW3dvAHf/h7T1/cAdjefXir1en1cPK1r3/zOy9/T1QYAsIY\nsKqklBaygjgw3m1ublZSAIS1EJTyRr2lpKkq4T2UWnhrjVVGKuA9AV5V1fehQ8cI0d5744UTi/aI\n1spZEwQBo1hrF9Yi57zwlgQ0CBhj3BHsDPbeY8aBc2bRlCGU8gDoD7B06wDClBBCENbGSqkQwRi6\n9Y3V5eXlo4NjhAij3BjlgTdGL4hjhIAzFkBMGfVGQEy8gx75HwAz3oLDw8MLO+sIAQBcmoStWqLK\nLAwYpUho5YDHGAqtrMUYgSwrPLBpGiuhp7pEiDk3vXTpwo985hO//4ffbAUpZdgohRDS0njjMITK\negyJMSZJIiWFAK6epNPp1DLGAQTeEoQzVU2fnHR/6Dl1cGpFRQkKOKUYCwgIgRA6hAHwhNEUxSwI\nGpCVYTgB0MVBWOXZ9ub2ZDIG1nTabVkW89k0oLTR6szALMuKOGSMMaWUsiZsNscHJ87YKIq99/3B\niPOwScN+vx/FcVGWh4eHmFJnwXA4Pjk5e+P1N194+sbtW3ePDvZ/+qc+9/brrx08edg/PUuSWtwI\n3nj1e2VZfu1r3zk4Ok3CICtyTFGzVvfGAA8217e01gyziZhXRYUBjYI4m0sHPGOsKEocsEk2X1vq\ncUom4+GQ4kaSrqwt84i7uQ84Bda0aqmuinI+G1tBKX3pIx951enpdJxnmZJVGIbH+wcBjZq9JaSs\nLsoorhtZcYakzL33PIq0RvPjaaHKRqM2ODjmH0zVEaEUEiylpDxCGABvKaUEoQW1pS1EiDmHtFJG\n6YhjTyEjWKpSSgkQltZpDx0gSGfLy82f+ekv/NTnf+pv/Y2/L/QsxS0PwSd/7Teff+Hz0BBP3Eu/\nvIk9txAZXakyA9BRjKFVwHkhbS5RVYEgsta7qjRGuw+cSNgDRENoPYLKSYiQlIU2EhijlBgVeVmW\nWmutjdHae6+1ms/nylnsHYak1mj+s3/82/+Pv/SXMImVKcJu98ZLH3v04E5ISbNGyzIPa8RDRIwX\nwoMAdeodCKHzFjrNKPJWIUyikBalEqL88IdfvHr1KsXkb/6P/0NeFjs7q8urS/V6ur29/fSzN2az\nGYLMex/G6WLARhAkgBRViQBUSnjvpdSIMjifT5/sPhoNh2mcvP7d742PThssPHy0e/z4YTXsV+PR\n8tpyP5sb4Mt51miv11pLGmCN4Wk2mRkRdTsns9nDgydn4+MwQiF3Yt7nVFtQPfvSje3Vc5RE4zy/\nv3dPg2kQ6UcP77/6vfd4nDiE7j7e2zs+uf/w8a1btx49uPvMU1ce7j3KzOzx5EGJZ8rOL25tNePG\n/qMDA9QwG7x+99V0NSzleP/h3bWkiacl1HJna1NWhVJq//DAAG8AKCozL+RgLMN0aZqpvJBhVD84\nOXtyfPzo4EGzU+cRn2eTWT6eVcXN+3fnutq4cu5welxbTo8He+PZaVyPDo92MYa91ZWTQV96u3F+\n4+h0/8HDuyJX51evdOtrj28fQIN0JeMgOD7YXWql77/15j/4p3/vO6987emnrkxO+nv3H7777juD\n0VBV4t/8q6/mSpCQ69wgATByzlimAkIRY6S31EUIAWe11kkS8YAqLZSSzmmjlChzWRZGV9YIRokx\nBkKPAdRaAwAIC4x3ACPtLEIoSVLKmDbGOsDDIAiiJEk454utVICRUtI4Y7Ve3HdKqVKUiyUjCKEF\n0HroHFBKKaUWuducU8bIbDZZ6rRffPF5ZTTlRGsJAFhc+d9BHiGEHgEPQUAgBwC5RSPJKIgcofDs\n7MwBgCmhlNaiqMgmjOIk4tAD5CGGCEJYq9chAnoxKjBFmoQIIWuQVk5KiZD61Keev3JtazwZAo9E\noZwxCxDTLEKUlfLea60ppUEQKaUo5e1OhyBSC+ui0o2ocfLkSCvNklSIEiHU7XYxxhA47329Xiec\nGpEnjXpnfQvQ2BscMY6Rz03GeaiNieM4TetaWcaCIAhn2Tyfl9tr29CANIgpRPk8S8Kof3TIWbCy\nugYg1MYwxoIoWsD4IaNJGCDnI8rXV9eIx9W8+OiLHwEAPf/88/Ns+qUvfem5F5/rLvXSZv1nvvCz\nzvosK1777mtf/8pXOSZClBDaIp+t9HpRHEgpnTaqUgQRBNl8JqaDSTEvKKXZvHAABmlMAs6TyEHQ\nbDZWVlaSJJpnE4KRMzLkuNaonZwdBwGL4zCOGKWk3qor5+M07XW6DR5x7Zs0DI07fPzw4OH9Rzff\nKwZnvsicyIGThEDCcKWVdfDsdEgBNcIcHByltQajwWLRwTljjCrLQgkJIYyCsNFo1NPEaiOEKotK\nST0ejiLGGcXWm0pWxnrrgTUeAxhAGEOw3o6evXrD6+Zf/xu//dp7N3HoeACGZ8f3v/cGdGdOHmsr\ntEIqm0s1VMUAI8QgNqLCTmMr83xofalBaZy1AHqALEQWIkCYR1wZMHBuBnxpvXFeSqmkKZWaFZWW\n2mrrtcMAUky8dVZb7z13zAM6A3ysYVaV/+If/28ISqhHUk7qzfDapUsQOGB1rxF1OGwjEAe400yS\ngOgqk1UOvE6ToFFLIMEegsF4ZJyN6zXplCdAQfMLv/jFX/qVX376xlN/9s/9uR/6zA8/9+JzZ2dn\nlDFAMaCYh4wFFBPPKQ0YiykHAFnrjXHee9K+eHHvyRMU145391a662ooL1zfagWtnecuTqaDx4cP\n4yBJeJt0o3JqQxKr0eDB4wfrG8uQhI/27q7v7OQT0UrWqNVF4ZeXVobz07LMQxpMRuP3b98Cnsz0\nnDV4Yarbr/7JM+evIWxMqaLG6mxcDUz51FNP7x8c9S5cnGfZk9OTfjZoh/G59SXuyYO9JxeuXB/u\nCg18DcZNTBJap5oPKk95cjLKtpYv7h4c1sOYwKTJW7SOIpNQUmMqsMKnONEW8rjGGyEPGUwCWw+3\n1jb2JqetRjvZCF9/9PL5F7ejI3R+Z+vRyc15Jmp4KaqlWTGT8+pK7/JgcIYkq9fDSk4f7d5vtVrt\nRuf2+7fewTe3d1ZFpYaTcSXcZFKcnPUfHzzO9bjAopF2BsNhpFF/0k+T1rs393bWrh88GPgCEeUo\nQN5YjJGxBoDFfp3I5zPgrBSlNSqKIlmV1iOrK6uBs9IaqbVCEALglDeU4kVmngdAW4sIQgQjTCki\n0ANlnLEWY+wRVMYxTCjhmAKl1AKYMVo454ByhEDrrXPGGeOcs1Y7qz0MPcTOO6uUBRYAxzCFCCGE\neUArUVy5ernTaeV5vqhPvYeEMGf0gq5ZpHN84BiGaHHcW+e8s4iyJEkOD4729w63t5ch89DbMs+8\nKrvtDqVsOp0RygJIzkbjSVZESVxrpFU+kaoqyzKOmPUGAz3PRmsrG5///CcfPXpQ5IazmrZmOh85\n4L0D3ltrbcgTBAAhhBDiPGg267PZrJqV7VYXAIss//q3v/PRn/9MNR+SKHFKTsczK10YhrmYlFI5\nQJN6XUkgtOIML5ZNIPnAeWmMCYIAIyjUOI2jWhRMJ5PByUHCQCMNKAIho0DYiHIhVXd1G1I6PT11\nDvAoRMZp6+KkJlWFMfXez7JiMivCMF5aWtLKbm1uBgH94hd/ej6f/O6X//nHPvaRP/9f/le2LD7x\n6c8cHxz8yZ98w3qgrXHOZfk8igJAlHVVsxUjBhggp2djay2hsNIqK6tasx0EAQAg5EFV5FLIR4PT\nWp036+n+7sOVTi+bzpfObasqZxGJ4xBBEIY0CVhRZOsb54uqhJA4h6yHtbSBEGrWa6VRp0dPRsNM\nm7LWP93YuhiGoVK2kLqqnGNsOpiImdTWZcUUUWScqKUNgBFAEANstKOU1tIkiYKIsxlFCCFjDCQ4\niiJRVVHAoTW1kE5mmUfEAgogoBhC57yRBsbfe/Pm1775RlmKlV47jPi927cu7Wy++OKHAcCqKhnV\nyHpgHbTIwwA7bbXkGCKEMUKcc+Ag9UhoBRFxiEKMIITGWYgwDbgHAHgLPciyzGq12AgRlTLKAgcX\nGTQAoUqWUkkAEQRYOQdJqCRIG913b77/md1HrW5CdSEzFKS91c2NcTZRXlGMQuC8t1rrehIkERPa\nWIdYgDEhFmJlnNHVoi6RUlJKrbW9leWllbXxeDyZTBBC0+mUc66Uoph57x3yAADnjPXeOw8Zos5q\nZAACnGIkSyuFXVvb+OyPfK6q5K/+8q8FOGSeJoZD4TdWN0IeeelrODKF6rY7vXpjvbciSz/oV2tr\nF61ByHoxnzSiNsPxbF6FUd0DPOqPzq1tQK0zW1hgQgqnp4MXnv4QgKzWa6xd6w1FKZCnYTw8Hb94\n44VWo6mdlk5evnCxt9Ib6+KsHFag2j9+TCgajkdJGE2GM5U7NXf1YOnKpRdIXL91uNdZ7ZWqGAyP\nnrp2fWv1PHbRhXNPtdKVcTFztgRejPLht1779ln/8NzWapzQSutJPm8vt3JdnU2Gp6PTRrfRHw17\nK2tLq9tnw3w0Uhd3biDLN9Y2jSwLPRAq6yyvGEuWVlYB8M1GOh6e/cm3X1na3qqsRQH76svfaG92\nH/Yfn+SnvqpslVMGjmYnJRCNRvvKytXf+1//GM05mYYohySAGkmtLSFE4MxZGzBujTFKEUIoxYvl\noKLIsnw2zyZVlSslK1EIVWmrpFYQI+OsA54FIcQEAOABkEopZRyAlFLOQu+9VFob65yfZtl8ngkh\nhBALq4lSarHsY5QkCFAMEVgYgIlzzn/gt0EIIYi8d07JSmlBEDRa1NLw4qXzFliPIABg8VbrPfy+\nU8YtuvBBjAl1cBEBBbF32BhgLZ3Nir29Ix5EUur+6ZkzKgpC63RRFGEYEsK08wDRJEmklOPJkFFf\niyNrfZars9ORMapW51JPlnppvRZXeVEWqsirxQPPOWecpZxpayHGWuvpdEoDbrwty9J7TykN0lhW\n4u7DR9VoGkYJRoRgNp/lWmtrNaXcWW80dDhChBpZqmqqbJG0m9aCRtys1WMPXF5kURStrq5GURSl\nyer6am2pZhmqLXWmonIk6Kyfi5qdzspWKap8Oq3Vaq1WKwhD55xxDhJoAMSMQs4qowAjuRL92eRo\n1Kchqzcbx2f9IIp/5dd/Q1r35ME9Zd23v/OK9vDjP/RD69s7RydnQsmiKGq12vb2+ePT07TWqKWN\n2axoNFoE8+FwQiFhkC7u+nyBvWLkCQIAMMY8sKurq81mM4lDb3XAyLR/gozGVrfr9c3VJSvF+c0N\nJTRjrNXrLm1tSgYzrwuvaMiW2u0bF8/DKvdllg1OrCi8lUIISMlwcDIeDapijjEsdal8RUPs/EKa\nRBBCQcjazYaRIk1CI6U3pt6oMcYo5YQwAABBEDlLnU0ZY4QCgCgPIMEYw7QW9icj712aBGlMstnw\n4HTvP/q//sdf+sof7Lz0wwBExECUjVR+kOd7thwxXXkFGU0QTbzDkPAkrYdhGMUB5yHnISEEY8wY\nDTmPQlpP2DIhTQ+hrESRV1XlnLPGEAAhQghjg5AjBDLuELYIQ8oqLKQsXDFnziMcWBj9g3/y5f7p\n7PGj0/HZWIwG1FQhdEEQeIRLB4UQVVVBCCkhBCJKccgDAECAaQBxPYxjHjKAYh4MTk4JgFLK0WhE\nKbd2QScTjDGCUDsBsDVOG2MAQAQi7AA0jvOQUg6810qRwOKrmxfa7aY1anVp7fGjA+7Zhe3rJ8e7\nYi4NM/NpXshJh0atVmP35vut9iZnbYjgw4eHna3VaTWlnEwmE53ZyxevKC2AA2JeNpOkmIwYQ3Y+\nyIvp5dVn2leersXd22cPjif9qZhvr20vNdsASm7ByYMnhRRXti/SOBwOZoCzfjbrHx4/e/4a0HZz\naVWXAkIIIwrqwblrV77xB38UMRrVYtZM56KM43h9e+Puw8eHR2fnL1w+y0vOiPWguRw/OdrjAWy1\nG/1+v1tPp9O8UphYNJ+UJ0cTDNNWvTsbjtO4MR/K5ZXtNNzElN2+f1PnNu/nKUsKbA8ODnAQbK6s\nvfzK1ygg9bS1ury2PxjcvXt3a2vjd//1l6J6xJNg2B8dT4aNJKYqXF3Z/Pa3v1tvNvRZcWl9ZffB\nKZFtYCzBpFCVci7wTGvIaaiVZYxHYWKMUVJiwox3yuiFJ8A6tWDPpTKEOAoxQcgYAwDglAVB4Jyz\n1i4cgYQQBKDW0jkHEWSMAQCcUti5hYUOYxwybh3WEAEEvffeWogxAth7s7j3yrJEBCNIFuYAYwwh\nJOBRVuQEEAwhIfCjH/3QrTt3qkphTDHCwHsHF2QN0lovoENjtbHWGoMRxQhhxhAhBIEabv3JN769\nsbn01JXNkOFaRCHy8/k8DENovCilBxgANJ/nWst2s+WQxoBTEmhtS5Gfng08MEnMW83zzz179atf\nfTMMQmmMUBIgUlWFdZBgIKVCzrKIUU7m+cRau7y0DgEg3s3mk7SVKDPLJ0UtrUEMZVE2Wk0n9Why\nVm/XarUGJQnitXx2whDklAoJkcVVMVtqrylkEbSzaVYVGaUYc4SABwik9RbANCvU8s5lU5aEECk1\nJsRXhTXOAliaMgzjIAiUMlEUGQvKSlDCGV/sHsPt8+fiMKqMzGWR4HA4GnPOnn32+ePj47OzwR9/\n7atf+Llf4JxnZdXs9A4PDxBmJ8d9iIKrV26MR6NWg0KAlDSc8/X19ekoK1xVS1Ip9WQ6zYqcUkQY\nXlnqBYxAb8OQJ2kU0nVOiTHq2aefTtJUVFkQMCGr51+4UavVKiGCMAyjwHvbW1tH0Is8k6LaXFsX\n01m7kfI4yMb9spgvbazFSQBY8vrr7xNGGeFnw6FxNsYcQaINIB/4iwDnFABnrGg16pSAMIygB0Uu\nTk+Gg/EcOkgxhQhY7+JaCJXV1nCGjbIL4/lStz6f5x6Sp565+pGPf/jKU1d3Ll+5uXcaoDFjbKkR\nnY5P0loMGI0bsdIS+RgE3CiBMAt5CoxjZVk3duCnpVAYIgAgsDaKA865EAIhhhAy3tEgdNpCjJWR\nFnEPrQNOag0QhNYgTBmDzjnlFILQycwAoCAK0mZ/Pv/dP/jG5sbFWljGR6NWu04ZI5xFARNGIBZ4\nC6zVSkurjYXOeoQgTOJgpKYeOAwxxIgztgh1ARBFSSwr5T2Ko9QZBSFCGBmCtVBSaAwJQUhJDT0A\nC5QBUeW0KAvyu3/r3965f6vWi3/y535seblzfHy8tbZpQzi2bio9hkGY9oKGXWo2i7xst3tVUcwm\n/c2djXXMbt1/Zf3CBSHNxup2UYm8LEWed1B8aeP88KhvjKnXG0meJu1GXoHhuG9Pj2r1WlPxK9tP\ny3KQTffiXiR8MZXzoFEflFM1m8yHw25n9dr6dTSh/ZO5tQXh7uKVzUePzniQIE5nOoMJ+9or3/7F\nX/oVe9o3ynRXGkCLgIKl5dbdx+8vry+1a/Xju4fzcoADqACez8oopGHa0MJZFBid37n3cGn1/GQ8\n1EDPy1GRz6J6++FbB83mijCWRnhczQ9O+1ubV7QSb7326rXL2ycnJ2l9rdPpRYnfON97vO/K/LQW\n06cvPxs3au/eeZfWwlraZBie7vdvv7Hfaq+vdteuXrj+2//Dl2FJkHM+FIWuvEMBZdYIaB2zIaa8\nKIpGq+Uh1sYRgELGpTLOAmutddZaCxYCRfhBJiUAgGKCMWaEKqW0cwghgjACkCCAGUMISCmNswDB\nCmjEFj1xHIQJREgXDmFutYEEQ2swxt4bAIBHEEJEGbZWWrDwrRNrnNEOsQWsbRtp/Www2j63ubGx\ncfvmnUatWRYKQGeMRtADQhb7UAgRACACAGICvLXWAqA9IgghawAE+DvffuXalS0IIeeszOYOgjiN\nxuNJpSEArCyF1S4NIy2FKlCrEXvvpcohlkLqPOOchOPh+OMf/eh7Nx+OphnCmBAmtbbeERIqZTiL\nEILK6FYjss7MC1EWhUOeWW1spW318z/x+dWVdScdDogyKgiCcZHxgFFKx+Nxo8YjpaMoIkG9GByH\nKMqrOcfYU42sw8B3WjXgvZRVGgeMEaNlL2l77+fzvDg5dV4zAiD0KI5DHmukIYRayHyWe4g9gIwQ\nK5XX3ghJIRr2R81mExg7F6rea+Wics5oqfrHR889/yxwHnv4s1/4Agvo3uFx0micDkc8TJSAZSXe\neO3VtfUVUczGk1NtKms9o9x5wWoxsXpe5oTSbqczOj1tt+qNWgKRNUovr/UwtGEQAAYatbTVbnTS\nWlJPrJPFbNSsRWmaYs6kLGIOIfQcU691q92aWRe1u/tHh52lFoWJ9a7RrJWF6O/v17prkOE4TDEd\nIxicjWcEMQ5DJRzANK5xjDFCkHNutdpaWw9C5pyL43g2mU8ms9PTs6KyAY8osFoqy8OyLPMyd1p7\n4ANCGmmjzItRMf/cj//EL/7iL9UbLQDIbDZ7751dhFDEcGnMbcI7jXo4l+0adKbgUQL82DhKw8BB\nUJYVRUiATFoJPQ5ZKLTy3qZJEAeB954wqqAGoIqIIc7EIamk9Fh7qkVlEUKUcoyx1ppSRoHRSngf\nQuoLUwBgMQidczyKj4aTCj6I4gAi0qhEnDQC7K5udtIUz8fiA/2qg0EQCGmlkIwy4ZQnzgGAKdTK\nSikgZdYv3qLhBw1GY6y1hBBRSu8kBDBAxDqkjCu1DsMQY+hUxTgCkCqJ0OaztY//2PUf+8mPdZpR\nGobtZnNta/P2w7uch/vDA9ZDq8sx927WnwYKeq0vLbXPd5fcTLWDXi1a3n1yMpxMDwfHrM4e9O/r\nSCpi02ZjaX15bWOd48BWoBd3cOFB5s71djq15QCn26sXmnz19msPm6SLCwJzsNVcCQF+dOv2zrnz\nVpQxcU9dXLu42bNlCQSs0Z4DsJ60ZWZ293ebm4mtiW+/+537u49tg73/+MHZ2aAeJVEcNJsNLBwv\nkLbmqevPehTyIDm3db4OoyvrV7bXr20sr3/mEz9+7dxzAaIHe4+qKuusdGc6K/WokgPtRltb7Tzr\nhwG4e/edWXaczYbXrjwd8y5x0Y3LVz/2/LM1mtx+6157Y1MgeGvvgY/dpBxcOL/54qXrH7rwDMrA\ntYtbn/rkh//8n/3Tv/ZLvzAd9h/s3bU0Eh4I4zHAFEKoPQEBwFxBpZSQUk5GY8YYDXilKggB8F6q\nSikpyspbg7zDCDBKYxZxFhLMCOVBGHuAIEYIISHKUhRKl9YqALU2AhKEEcMoCINayNIkrEVB7IwW\nZQWdW7DwWhkPkHFWWwWA8w4q6ZxFAKBF1oa1ljFWVZUxCkNirctLgSmpiuITH/0QRkAIRSldeH2d\n94vujDXGaImhBx5ZA52HmHqAjXMOAk5ZylhwdHQ0GxWt1nohrbROGJ0VlbXWOTOZT6wDaVInCEeE\ntFupVHOIDKZEKmwcNRZYZ7JZH0L5k5//kXw2BxZBR71xFALnjIcOeZBGaRzVsmEBKtRsr8KQVFoT\nUltZO1/JCHU27NISchrweiXdeD5L6kmtlgBlOOGeBcA4aLGdVcAaaeYWizCMsEmcZ9NsqpwEyDFM\nGE7KzGgFLAk9DZTRDgnAxWR2PBn1hSgxdVILj1Gj1Vtd32x3ms5KIXIIsQfEAwY8ht5CrwtREM6q\nudLSj0aTZqdRqOrf/Jt/02x1u53V8Xh+djK8tHPpmaeeFmVhVLW81N7eXDHOHh2eFHklSxnQoJE2\nCKL5LM/H4xoLA8i8hhDQIKlX1pbeSUMgRoSCqhCNekcIYa3tdpbOhoN2o8kxPr+5sbq+kRXlfD5v\nJDFAvN7uzirRn04tcJZAmgSFzIf9s06z4bQSZdVbXrIERM3EIqe8As5wjMp5hiBxEAQBS0JKEbHW\nOoQt8CzgzWY9ZJxTrLWWFjiIQk7KfEywR85E0MGq4NBDa5a7PY5JEgbTYjJR81//9//DP/+f/F8w\no2eD072Dx6PJMIpjY31unDLOKDEajU6G4yen4ydng8PTs5PDwfhwND8c5ocjN61MoSjhcZTyAHDu\nO/Wwm0YBwt5YAjz2zkvvBIAQMxZAiBGhHmBnIWEYQkgIcs5RSjGGHnkDrSfGQI1xiFC8ANi8AxD6\nfDpXhbRSHT1+fPr40e79h7fuPJwW1nMknPLQ8ZB5YCEwGEGrpBUgJBHDNMsya63TBlhDAUIAeusW\ntAJABGJujLPeGe8VcJCyUkttTRwvIlgdIQxhShknnJPP/sJPVflU5HmVzUFgolZSaJkJ7VK1sr36\nra99e7XT+uizL+zdu/fgcH+5016OYjHLaBh34/pmvVueVLJwSytrp7uP62k9gHzenx/f3b964dJk\nMup0OoCLXEwiHjV5bbm2fHI2XG6t7j0+2Fw6/4mPsMnZbGv7IiROKumUXFvujI77VVE6q2v1GDXq\nl7yrt9oeM+x5t9E9mw7v3b7VXk54wh4d31te2kgT9u03331AyI/8yGdDEDSopg5Vk6IZpgSQC2vb\ne0enzpgPPf+R/tmIB7XTRye1oP30xaf/l9/5Xy5fuj4vlRBVa2nt6NFZrdF+4fmPfus73+yfnp3f\nPheF4XRQrNY7F7cux81mHDX2d/dODvdZjXe3N19//XvtdltaMTjsY08+/OJLJ/t9RmrPPvXx3kqj\nu7T29tvv/vAnPvfee7vzCQSOOo0w4AAAALQD2gHrHUSIeG8BAO++++7nf+KzlFKtdVVVQRAC4Ky1\nSgnnCGMAIwYhRGjhfjHOm0qYBcJljIEQE4QXw0xr7ULlCKG3zmEUWKe1VsBba43TZvFv3jkPHMEY\nIOScs9ZD6BBCCFHv4Qd0mIfW+kXNHseRUkZbBaETMm+16js7248e7eqFhJGQRVCRsZYQorTm5AOr\ngXcWAQwRsM5LWVHAKGezsXz5u689fe0ChJAwzgguK5EVhbKYMAYgcNZSREJOIDAYMQCNgwBTihHN\nsooiaKWilH/2Rz79b//4m0dnuZQKQogogcpBAK3VhTPE4AiHDnCgIPcMO5XlpbZS2mp8+giLSsZ1\njlSc8mwwLeaSeRcGAUvqNK0B5Mv5SKt5LSZFbmazeRg0inLqSGA0sgYgQhHBlPB2O9RWqKpwXoU1\nbo2QU8XSLg+DbDwL0lXCLA8DKeVkNCtLgRwxClIGpMoYp9rYo6MTANDm9k42r6wVENlOpznoj4DH\njWbn7/7dv/+Jj3/q5s2ba2trj5/sffub34rDcHN9Pc8ma5trmNhsOpuLCgFYS+rtbvf+w13Ggmk2\nN857RCmllRRxEjJGrNaUksPj462NjnGWENJZ6sRhQAPy4Y+8EHAaJcsho5xTByAAKGAh0+XRk8e1\nRr1Wj/qzSRrHUqpnnn5uOOhPZnMeRIzGeZ53Or3JaApJygnVWgcBns0mhCIIIUaQc8oYQxRGtdgY\no7VeXV0N4iibnnnnkzBCAEdBTAhRWlKrCUZGSKVtLYyL2ZxiIrQa5/Nf/9O/+au/8e8dHh7msyml\nlDGitXXeUAaBh4AQ771SyihRVVWWkVajgb2LjBHOYIgwArgAEHlCiDYGLU5i4AAA1nilvTFGe+CR\nxgQY57yzHhgPDMAOGui/HwHvIfDALwLgjXGUcu+hVRoh6L1dhApYA5W0ziMASFVpTkk2rx4+Olhf\nXTEGI+e1Vt5b6w1AOGAMaDLL5vNZ7jH5PpIAPPQAQgAQAHbhboKLYx4BjCkAyFprtWl3erPZ7Pd/\n7/cAAF/4ws9Yb4Q0DlFyfDaZjAbI6+VOe1YU07yYGbOyuplpdTzOVreuP/P09ZkoaXelJpVzflaU\nEKKIhlSBzXqHYnaaT5OghqIN5EggEi1LNTVOmIjz/f2H9SaDCOI4HJyONyFxiCpp5pNy1/VXVrbA\npD/LNQ9wkNSq6bQ0CnMIorCfZ95l773zTpIk7OQgDMNzV9aEmHowq2bDJ9Oz1c3NuNkOSHo8OFHQ\nDcZnBdAH/SNo0Hp7xQnVDloJDjyyw/6wVW8d7x/cuPHsaFpKqd95553nP8w3NraH47NaKx6Phlev\nPffo1jCU+Mnj4wd397qdVjWXULh2ux01aq+98c6nfuiHh3kxmI2sUzVT662uba9vCFHKYnbh3Np8\nkitZPvfcjbffeh8Ieef26Oj0pNVeunnn5nvv3raaOi2ph8A7u8gvhX4R8UsRxRRwXm1vb0EInTMQ\negCdkAUhGBOICQTQYQIxXHAgGjhvjEEES6kXrfbFUR5FkdZaKeW9o5RC5wEAzlillXVGiNI6CayF\nyIc8MNohhABw3kNnvFbWmsWmKvLeWw+tAwsGGQBAGHcAKiM9hMZoCLEHDhO7c3F9/+BxwENRKa01\nhNh7gBDx3kPkPXDAWwQJABh5J62BiBAKZFWFHCe15v17j/d2D9bWa3HEtQHVdM6CBDjoAPbAWqMA\n9BBZoMuAc2UAQggC4Dz2xkJIPShH47OiGP/Ej//Ib/2t346jZqU1AEhRbb2PGGHShRDSmCHuwXyi\nAhQGJsgURngtBR+6uAHwHJajooQqm1SiEJVqN+rNJLHWA+2VzinDBHNCoHWg1Wkbjaz3xsg4CbNs\nFgUMMQyw9hBqpyKKMEQoCLIJ7C1twSAGlMVcACwrKRELykryIKqlrdOj0ziIMm15wGShAEaIkLws\nKcWEQewQxvTWrbuD07Ovf/3rv/5rf4rx6L/9K39lZWUlun271WiuLq/k84xRfPXyxdG43+vWJILO\nmdXVdaPd4cHxwhVK5nOlRRAxqSQEJolqSgkpFCGknM6LUrR7XUTg+fUdTmAYhrU0qIpcadVuNzFE\n7Tbt9/vT6bQWk72D/afq17wH0FtvDeZcVFV7aSXP55PJBGHrIGAQQwBPjs8AgBjRhb4iiUOIPEWQ\nUeKt1cA7bSjGrVYzCAKtdcAjo8uikIP+mBOGvYfAXLl+5c57t7WQiFCnVchCHgQHw5Of/uLP/8pv\n/sa9Ow8xAlGayLLijGIEhRBhQLyD3nsPkZQeQw4AKAuJYOm8wnmBIcTQR4wudPJRFFaVqKrSecMY\nCZOQEIYxhohoD7X21ngHoNRASm8dBpA7ILw3DkAIgYPAe2+B9wgCiBnnCBLlhdZSKeOcxxgigGez\nWRgHQRBpXXmHpSSikvOsDDghmBhtMCEIQKNtXgkhFlUaTJJEKlspBT0AGDn3QSd2oVylGDqACCGL\nMg5CGEURgvCN11//yle+0mw2653aZz7z6TKrLNBoeHwUUlavdUbTCvKkUq4y1bQc3n7nrdlwfHHn\nAqdBvZYsLXd7qysCgNIzS6JRXjrgq6IQ81m3liKtOu3lZ599ttGsjcb91Y0eC3FS5x7aUX86GAwx\noQa709GpBSquBUurS4CpymbSVL3eclmom+/c6Z/NtCTHs8Hm5Yutte3C4LXzV2rN7tJSx/lq3D8r\nZqNmyHq12ks3Xrh+8TryqJxNT49On7p4pRmkX/pH/4iE+P3dOyYwczOL6vF7772jpOz0OrkuJ/PR\n3/5bv3XWP7h1cD9sJU+Od7tLXSXk+Gy81Og9eO9BnDTfeuvuH/7Bd2rxej5DSdBrJMsXtq48PHzs\nibt17+Z3X3s5bcfnLm3v7u567czE2Zn9zIc/gwVBCkY0KPOCUVwpD3HQXW4GcUBJcvB4RmwDOe/8\nAMICAIcxBZ54D503C6duWZbnzp0LAoYxjuNYa4kxRBgQghhjGCNCCGWYYAgR0EZC5KEHwFmEACGE\nMUYpLsuyzHMpJcaYc+79QgHmpBJSVsYoTggPKKeMEAKdt1Z/n0xHhFBK2aJC95BAiH7w4yFYfJN+\nAI97b5USUpU7O1vLK+2qyhH23tsFvm29M85iQry33rpFtQEAgQ5C6AmBjCOhFYJ8PMkns6LZ6mgD\njPY8Sh2iUjtprDEGOA2dRhAQ6ICz3nuCmVBOCEUp9w7Wakmn1dIy//jHX7h4fs2a0gNXlsIaSKRX\nZaWBsCB//ulzv/HFzyJ1zIqz/+av/jd/8S/+xb/51/7Kb/+rf3T92WeBgNjg6dEhUiYKQumMQnBS\n5ZmspKkYj4OgHfJuJWAcJ3EcRWmEETVWBAHjATNeV7KYF/NSCh4GmIUeR9DHLF6CrRUPIlcCTQLv\ndLPZDMK00VwyjmjrwiQmHGMYQRhqjZV0W1vna7W6lGI2H2tlwyBeX1/f2N76lV/79dffeGttfedH\nP/ezjAbNZrMsC4JRFNCQU+90vRYRhOr1uiiroigGo5HQgnJSVnmz2UDYtztpWguSiHur/n9M/eez\npVt+34etvJ6449kn9zmd++Y04d4ZDIDBJAADAwQhCKRkmrYgybRIVVlllpNUKlVJf4DKfqOyXJJZ\nJG2KgEASYUgEEhhgBhNuvrdv39Dx5LDz3k9a+ecXuwdiv+2qc07t/Txr/cL3+/nqpg7WMcqljMeT\nBcGs0VabxgMQQhbF0iNwGCvnEcGUsfX19bVBj2TZC6+82jTNYjgGbYi3i/nEgzUB8o1Be61XqoYQ\nQgAlMhFCLopKCFGWNUGYYoS8wxgwBsZYnqSUUoqJMWYxm65270qp2WyeZwmlqKkWv/7rv9Zu9cfj\n0lO2ogrGKT85P/yZr331N/8Pf/fkcrIyW5m6TmORSpbFtJdHEfWJJAwH5HVwFryjlCKCldHGeofw\nvG6OL4bHo+mscdPaHI/mw2V9Nl0cnJ4fnF2cXY5H09m0qItGG4uV9rUJ2iDnqfPUBYKwIFQSKimX\nlEtGBcGCUs5YhBl/Ws4TeEpoQgEBUOaFpAiZshwDVghr7cplVYzGF0W5aKyqVVOVTaOccdgZvHof\nMflfSE2rJCkcnnoA/23q6srDaK231nMu66o5PDjqtLsYEe8IZSnCkrKEZC2YV+c0DflGy5Gwsbvd\nyTsxi25sX7t167bs5H/ygz97ePQYIdRtrz/7zCt53vIYr21v0kz2ttayTrYsF4zzw9GDDx++eVke\nr11rjctzkYsHT44CkneuvtLiveNPD9xkbqeXejFGYID5qhoV8/O1dtpL4zde/dxmbx0pv9UZXBwf\n/ZN/9I/+2W/9036rk8k0Esne7vU715+j3vVbeVMW/X6fyejdux/Pq8ZgYosaGn2lv1aPJ5t5O2f8\nyaOHHsKoXoxdSVNGIQjkLbGQ4vc/frs7yLb21hxWDw8/M05/4+vf2tvZu3/vk+3d1vaVVt4mDx/f\n29zqRjF5fPDJm29/7+FHn3W7nePLk3ExunFz7603/zJgdTo7Xr/SGi8v5svZSnl6cXb8R3/4z65d\nHbQ3OgbVh6cPI0H+h//uH1Zji21g0JCn3wqFQENAwSNKOMHMexvFoigXURRZ6/v9QZqmq9HKCsr4\nbydgrKZvlFJMQAghhEAorHq41RidUooQNsYWRVFVldK1sSUgE0sWxYIgXFVVMV+UZemtDsGF4IJ3\nq9qfMU5X3D7OV1iPALCqF0IIQkTWeozpqjcMIVhnvvGNr8URA/BSSuccRjR4RAjxwYUQMHlKl0QI\nMcopZqsbAgCEjLUJn372UGsnRSxlTCklmFIhIeDgreA0joSgpJV3eu2e0bZpVJIkHqAxjTINIMIY\nIxicKn/ll74umWcIEhllWBLOmKApw7oY3Xxh56//nd/4z//L/9Nv/s2fu7m188Kv/K3s9s9Asq7W\nElguTfAsiZJ2jgHpUgVtZ7OZRXbWzBEmwRmEsbUeU3l2MWJULIqlVraqmnany1kUyZSSmJCU4kx5\nGeU7LNpgUbsxNY4dkbUyQ1Upo+x4OMIYt9u5cS4Q7BBoV7EIlfUIUyMkznJ+OT72UJb6/OzyAOPI\nqHhv9znA0R/8q9/9/BvPfeUrXzHGXL9+vdXK6qZE4OJY1nW5mC8vLoYiimfz+cXo0gUfZ/G8mD1z\n54bg+Ma1PefqOGIYe8YIBIsDbG5sLefLulYhhDzPMcZaGYwp4xElDAC0szIWWTtrDXremk47H6z1\nBKdZmhrrZZSknS6AL2Yz532SJ4RSJgUQPJnOy7ohXCyKJaEIE8QYWT2ZT4eBHkVCVOUyTaJ+p1NV\nFUXUGC0icXp2+Oyzt6Mo+if/0+/wqO2p0BAKU52OT1/4/At/7z/7T1VjtAqmLiUnrUQKEpBXEYWE\n424m8oTnCe21404eCU6kILEUlOJWlgvKKOGYRxbxaaXPFtVlqSa1rgAXDk9KdTKenU+KeWGK2o1m\n02VdK62VMyaAxwgQ8igERBHhlEnKJKYUMA6AARFKcQghhNVLhJM4TtOEMYoQeKdWg9KqWiIU4jTl\nUgCmZdXMZ0VTG2WsNW6ldkMEMMOcc7eKNA4OU+LC0wrsJ6E3wQOsRKUiSiiXGFNr3GQyefToCSEM\nY3x08KhYTjrtFBNPetvX0t7gbDy5mA5LXUxnwySK11pdQ8tr1zs5WaTLi+E7P15+8ul+t13MRjGh\nYPWjR58dnTwp1FLkcdLujIt5O+kQxDEmO1u7RtlHHz/mVtCaD8+XN689t7G+g8Df/+zjRw8/WRbT\nx48f5+1Of2NzXhafPPz08eHDV1998dq1vSt7m1//ys99+fOfnw7PHjz6cFoOo3ZamnC5MI9Oqj/4\nk7d2rr5I4uxPvvdvxsUJZovZ4lGSC9mSVoSsm7/94zdfe+GVy4tZoOJyfsm76bypcsTv7F5vvN17\n5lZA4Jp6Nh6t9TrWWxqJP/iX3zk+PW93e02FOq2NybisK2s0Vop4l2Do6hJy3vaNu3H1xvH5+VxV\n3c3ux5++O1FLjVHpSdzZrq1UmgveTpPOaDEejougN04emx/++d2Y5aApqAyjfnAyWOy9XX09nHBj\nXJJGP//z33jxxeeLopBSlmWdpjljYvWVE0IIoQghjOiqNVu1Y97BSi2DAnhvEQraNA6cRxAwChgR\nzlZ2mziO4lhShnVTK1XjlePPOWv9ytBprbXWrH4ypRQBQfB0dh+8c86tdOvGuJWF1bmw6gc7nc7G\nxsYbX3pdq5oy7L1FODyt311AiEDAAD7g4ELwaGX+YKuHNWAkkuRHb793cjbMsyw4Wy7mq3vLe88I\nzaSMOY8kz1vdgIm1fnXDUUq5FFVTV0qXdQXg5vPz116+86u//K1uK3KqXlIdKOaAKYP+INvKUzeZ\nvfatb3317/7XQVDjD70f4sJ1s+3SG0OqjStXSq0r7+JOK++0vTHYmM1WG4WC0Pr8/BPrSoJZHHUQ\nFoSgKGaMkbqu66ZinDC2yuoMcdpDrOV5xqNuTLOqqUvvEhIzklMiUXCP7n84nZwGMMZ5j5iqMYYo\nb216LzHKVRMh32F4DflWJHMZ4Y3t+IN7P9CmXs717/+LP3/vvQ8IZueXF8bZnb2dZVEYq3a2NjGQ\nSMh2u93r9drttvcuy9KNjY2Li4tut/vpJ5/gAABeCoaR29gcOGusVnEcA4C3llJaFUVVlk1tjbKd\nTkcIgQgez6YOQlNXXSmwUUrVOth8d7uzPgDK69LMJqOyWBpj6lpprZ0NVd2YAI11gVClFCFEMh7H\nMRUcUUIYZTIKAVlr1/u9tV63qUtn1OqBObs4pYIXdf0P/j//OMvbxhjrnUO4dub5V1/+T//+35/O\n5+WigNrlEU0ly2IWcRwLGnOaxzLmXFCUSNZrZYNuq5PHiWCcYYxC8DYSspUljDFljQlgAM+rRgM2\nwCxhnoiyCcPx4vRieHY5WiwbbYJ1pG583Rhtg/agjbc+BIQxppgSvMpYIpQgvHI5kZ/gstFfIa8p\ni6OcIM6pJIg1jZ7NChHlSdwlNHWOGUeU8cY7Y5vGFI2x1njCmPPeWGeMW73+4d8irq6UC4gQyvlq\nE75iTHIuLy4uOOecy+H5+Lf/yT/7l7//RwQkuTxZ8pDvrV/NaDK7GEtKMLX3HnzQbrfrpvrRD763\ntrG2s3/tnQ8/W8wbUMjUejadDrqdcjb1VamWs2CrzY3+WmfQTrrlXDlNvvYzPx8MeXjv4XreHV1c\nvv32uwFhwuNv/9KvrPXWp8P5N372G1tXbj45ubj1wsv3Dw7uPXhQOT3Y2iibuq7sq6994ed/8ReA\nuk4/caT+5ODeXE8bVt5+5RbJ2MbutgveNXa3u/Pc1h0L4aP7n57MRq3t9U8OHy+aau/G/icP7mcy\nDsr8+PtvDtZ3RNzJk8F0WCEjBvn2px8+1LVXjT8/Gz1+dDSfLyUX3/vz75+dXRqNCEnOL5effHbA\nZHs8rxyWH9/7bD6alQt19+6jrY2bbdnjGk9Ozn/xmz+/ubERJ+md555naVJ489nRo8bOpeTnJ9Uf\n/u7360UVrGZMU4QBsPceYUcwUISRR9baxXLyyisvf+mNL165siMjQTDlLMKBciYRkBAQwYxRQQkn\nhFDCCaEIyNOTcvVlM0wwZpSsMu2cc0qpp8h/KaWUhDJr/Xy2HI+nWusoihhjgFZ3hwd4Ott5OrFE\nNITggwWAEHwIAbwDv0ptRShAcL6p6kjIJIopJiGEZ5+9s7m5boxeyeoJxt4GRjgOFCECGBEGAfkQ\nAkJEsAgcIIKN0+1edzyZf/bpw/l0RsC08jQ4u5jOVF07o7RS3jpvrA2wCoNVjXHOBQTKOI/w5XCk\nrMHE5xkzavzaq7d/9Ze/xZFNESIEuCTdTNzcH3SiwLQKhQbMaT6QpGssbyKBAmRpv406KIC1ljAG\nGGlr2u02C8gVtTPV+flhmkX9zXXnXK/Xq+u63W4jhLhkxqz6HhtAO9s4Z4NH3hjKOWURopkQG1l+\nBaGURykhLEmiNI6Dt3W5ZAQH5wmj1lohWRQJQE8vy6ZpRuP5smjOzy+dc6+88kq/3x8MNp48PsZA\nGBMASBuzvrHV6naaWhfLMo2TzfWNSMg0ScaXw8loMh/NVaUnk1m5bLSym+ubVlmGSRrFnTxLIlIs\np01dVcViba03vLiIBG+q2hlLKQ3WxTIKzss4ISLWHpEoNQHXSjdNo2aTpq6804JCHidpFHPOr12/\nuX3lWt2YUlkTcKmUh1DX9YokQQhBBBvvqODW2jiOGaGMkiyRkmNKUJIkZ5cXTIiA+ccfP16WDcIO\naONsMx4Pv/aNb/0f/8//97TdrWqDA3TjOI1Flsg0idp5lqcJxUQIEUVRFslERpyRJI46eZbEMo1l\nFkUYI+8MJSiLpCQEgWeUyEiYVd6kR0JEgkeYcgehrmsXiPPUOFDa18o12mntrUOAESKYMEwpZZww\nRjmljDHJuJQykkkioyhKVnNOKaNVWYYRpUQKERHKy6o6vxjWxkVxlrZ7UdrGWPrArEdMiOBRrVTT\n2LJsjHEYU+8BY+qc8d4CeEQAU4IpA8AhIG3NCv6htW61Wi+//DJCKI5jH8z7H7zzp3/2x+PRObuz\nNzg7O/MLf2tzvx9lm1c2Hh4/skS12/nhg88EYdb6UVXt3rh9Npodn55d271eLFW8nww2s/PzU6B+\nMhtdbT079VVjTdKPPjt8+OyNOzvX9h88eIAE7W91J+PZp+9/WEymbzY/eO6FFzyTunJvv//e/fv3\nr1+9laUdFODTew+uXd/PRMum0YcffGpdk8bZ9PLCWpW34uX8rNsit66tF7PR0fHxV3/mqw8fPPY1\nXeuuHx+fCSYEp8fDi8rpP/n+n77y/Eu9PJmcDqmxvrGit/bRp59tru1yK6wKvbXug8endz/8tCya\ncqHGw/G1n7vy1g9+YKyaTea93u7OZh9jOpleuHCpmgV42xrkMW/VjR2eTbuJWdLR51597saVa4fv\nH+7euIUce3J4nHay1sba0Xg0Hpb9Vlfp5vt//oOIdryWzi4xwR6cJ5pTDih4yzBFccLjhNy+fTPL\nEkCBUkoJ9d47F7IsBwDrNMVoNbZeqVl8cJTI1Tn+VBXDVinNK145pZQQQqy1Ty95hJpGO2NXtlPn\nQlmWq/k4WYlkrMUYY8oQIquf4L1fKd4BAoD3Hq9mo5JzCBiEcM5VVZVlGULgfOh0Ol/5ylf+6f/0\nz2VECOGUUudWqUyUUgrgXQiYEMo4BuxsIIQpWzHBXPDKurOzC611xAEFKIrCGEsp103d7eRbGxuq\nKQilCZdCSl8X2Afvg9ENz5M4TSjFCIWqXASPkGf7u+v//r/36//oH//21f3r+2u9G7vRX/v2F9sx\nng8POy++aqtJUClOExqnAktPqItkVU4jZdt5nocQGrscjgSjISfUO1a7fmejaZpqVmMCRwdH7U5f\nypRRX5TLKMqtqb1HkZCUcCEjLmXAwTcFTXLjg2ACaeUkwtYyITBNxIBiCJPxFDAISVut1mQ5ny9G\njPMoFtPZMEp8q0Mns+bPvvtOJLNiUXgPl+cX3VY7jmVZNI1WDoyy2nuPgiHBbQy69XIyW8wDIkzI\ndt6yDobnQ8JEoNhZv7W+VSxrpczWVs4Yq5syiYVzcnd7fTy8tEZFXCAc1tb6SqmIM0aJD1YptZZv\nEMq5zEgWAyKDKN4arBXzcRIJ6xRChGIKKAgmnfHgfBynjy5OG6WVNSlPldaU0hXrnwnuCEGAGefe\n+0iyJIla7cw7wwgpiuKz+/dHMz1b2jTv26bGYIytWq3+b/7mf/Brf/PfK7U7vbzI2x0WUCuRhBLO\niGAUB0CMCsa9D4RgxgjBAWHMOENpwrSDgIMIpTHGGAZMCuYMc8EDRhSQpyQArTRSdQPe84ivEg4a\nXbpgMaIBY4JZQBDQqoJeBdMQhAIgWAkfAHmESHDeOUsJiwRV6inUiEfgvV/p3xDCHjwAFMXi/PLU\nw3oepZGMKOC6LhfLkhDMeGQNePBGO8AEMNXWM8CwynwnGAAwRiEEZfRqDKu1BevTNL17954QotPp\nLBYLbfRgbWM8H7/77vsslM1a1pVRMp/OPMDjxweE4leefaWuFtq7N37qZx9/fPAX7/75r/+1v17V\nhRykPIVuP//www9//pu/oCwBgZcWNXPVNE2F/fPP39LtejidhEJ/4aUv5nHvfDw0dcMk//a3v/3k\n3sdVU6Ke/+jDfz2v0QuvvliUM0SaeTGSWX14vkSI8LzjoVwslsUCC4lFhNbW+zvXd4enBzhC9+/f\nlzKNuADlHo8eL7oFDSRPWxfDy07UbssMMz46PX/lldeqUX1UlNOy+PS9N10Iv//RO2985WcWJ5N3\nv/t9p5eurqqmunV116lmuKwLB91uLnj7+pVb56fl5XCc5XnTFEVp+pu9Zd0Q5FDAvf4m8fTFZ28x\ngh4fXpxfDh8fX7T6bSLx/Y8eX7t25f7j+4f3P+4+91Vbq9lQdeTuZHmWxwkE54JGwE2IMQHEfHB+\nPJq+9upzmzsDwghencVAESLOA/ckz1vz+TwgjwjGBDFBjTGAGIBfHccEUwBvnWOMaa0pIqvJ/KpT\nW+mxrDUYYyEpJpHzesWiWaG+yGqqjiAEhAAwXrWTgVDkDSaroHqMCUWUUko5YUxru9rOTyaj+XKW\nZS1AwYZq//rWsy/c/PjeI8EThJDkEaPEobDSaFKMKeEAnlAKANp6KWKCwWqTxNnZsGCiVRaTyaLS\n1iEUBAeMedbOIhm32+1KVUohAOq9Pz85KCv1/J07wYY07zjrJWeG40CRNjrPo+ee3fh3/9q3Hj76\n9FvffmVxfj+YWby2JplF42Pq1myi2WwiGEdZ3zVeCvTk6HB70BFJvCzL3qBXzLlzzgTfl5azFDCZ\nDUdXr+4VizlhLGu3tPIIu+l02mp3kziplYmjFHNGBfeuplGqjVfzJefcIXCqDuCZkMtyjoI1uiKE\nBMKXRVPVellU0/ncBgBrL04PheBJLJnsVgXaHCzSPHv7/J0XXnjhW7/wjY8++ujFF5/vtVvD8Wg6\nHTurqWS5TA8efOaMygnjgH/11/7a6Xh4fPzPW2lr/fre/ccHECzGeD6fK20DRlrrLI3Pz6bjcvnK\nS89+5Y3X333vraYcxTIPQGSU56mMY6mdV9ozwTHxVVUlrR6K2zFJqTNVM9eWtqTIOy64OjTOGV3Z\nZZwmPoTJxagtkwuisjxtKhUcCMwJoICRcy6WAmEfAChGAaxgaStLnTZGwwfvfzYZTUYzTUgHOWp1\n1ajZzu7Wf/Xf/Fefe/2nHp+Oytp2Wz1bl708ZthHkoUQgrUogBCCS+6dcc45AomQOCBtfe1tAEeQ\nQwEoBIbAWgMYY4oCIO9cJCV4X1lDUKCMeUoxIo0yCBHmvXcmUIwJpQIowqvFERfRTxZgxDmHMQPk\nA3gPGDGCArYhIABEKGMAwYGlUsgACGNMqBCUWh+898v5wlu3SPIsbWVZFmjcWDGZjPJeK0kSrZXz\nPpJZCAgIcthb8IkQqm4IYZlgdV1rZTnnBhlESSyjxw8e/s5v/fZiPo2iiDAiBCuLWcL5dHjODo/P\nn3nmmePj44D87v7udD4pVHF5fMppa6N/7bNPn/Ty9i/90i8Kye5+9GDzytZwcaFC3YRqUgzPLs/K\nxiSdnlr42WhWYJW/8rnz4Qmi4plbz84Oz0aXR89cu3ORjGbl8t69B1/+wpdGavmv3/n+xtb6q1f3\nT05OmmpeN0tMUeMMsW48nqalurp3NU8X3ritrfXD0yeLQnOHo9bW+bSI8t5yPh2OLtKcdNttVRYc\nkWI03x9cafe6CIXT09OLy1FGsmE1unXjdiTSt96/e+el59NW+sHdd+p5iZH1QaFAQaH33rzbGWzc\nf3w0Vc3GYOPa3g1Vl48PPkiTtnZSJnGt8eE7d2POtzbXMQbKa4TDv3nzUnAKVt26dXNZL9//8bv/\n67/1N86GD+5/9s6dO3eu7WyHqvcXf/THCevOh3U76RhTUGIpCE4jGwCBJZRgKhhvP//S5zbXtxaL\nGYSAADPGQjCUYus0ckFKaaxaHbIrACSAD4DxakBDKQAOgTBGMMZVVQtP4Cc4dUJwFMkkia11IXjk\nA2eScUIx4Zxaa1cmeEKwd+ARcC4QEOccwgaQAyAYY0r5SvnOqPTeE0K9A4Q8pdQY1TRVkiTOeULI\n7u7Ox/fuIxScMyxKXABKCcZYay0EW62bViQDgoE8vUhARPLBo4ejyayTR5Sg4BwCVNd1Kliw7uj4\ncHtzi8fxuJhXpep2+mm7d/+zR8PhsNeKiwVOY373w0/X19pa67zdswERCl/+6svXbqz12smNzZcA\nCqBeJFgVQ7nbJU7TyiIqg7F2rqXEUM+WhSeax1l+MbxQldna2sEM68ZFa9HF2dnOzs4qiLDf7y2X\ncxllxvrdK1cXi0VZV4JjWuBeT3jw4DR2nDIieORcwOCjNAJPglVRJMEj76gQwnlsXYUJa7e76bIo\nqurw+ISCi6Lo/PwSEAHE3/jy62dnZ4TT/vpad63/xhtfFEJgjK9c2b969aq1WjL83O1rjz659Yff\n+d1f/o3fuLG/FyXRxtUrTPB/8g//ia7ziLtCOef9aHR56/Yzx2enRblY6+/HaeSc6fbao9Hla6+8\n2l/Lh6NTwaiq6rTXRgilaUog5Fkb0xhhgmgCRW0x0M5a2huk3V3UFE5N52VFjW71u9V4+r2/ePP1\nz3/ZYWEp6m+uny/KhSkQeMkpwg4TiIQkmBFAEIAi4qxOYtnO05kyFNFWp0tZtL+/eXG5GI+GnU7y\nzS/99G/+R//h7v7evY8/jrM+Z8zoBoOtaptG1DlJCGGMrQaM1loLyAaghAMgD0Fb06gKEMEEaVNj\njBF4gpAPGELAARAOq9YWUyrj2HvvtQ0hAEaUokCIDwYjxhnFAax3CAKnDJCzLqxAeAiD9w4hLwQl\nWFprCUE4gG4MId4DVo12hAaMKCU/iRUmKPjgQmCgjK6VKqsqq1txkmWdrnLeebssC845j6R3PgSE\nKYEAFDPvngrcrbXePZUzBADvAHNyMRxXVZXlbcrwcrmIIpHIBBMoF0u2vn3zk8+Ouu3s+rUrRydH\nw+mCRfFgY38yvVgMp50ka2W5rV2jnTf08OOTa8/tv/ziK2++9aM/+PFfvP75z01Ozuvl6dra2l6y\n7glML87uvv/Bzu7tD84+Tn1II44W9VqSHp2eIMbvPnqYb/aoiE/PR/sbm3du7n386SftXnu+nAfG\noiyPjKUEn54dt5LO9vX9y7NzU7vh5NwCevGV5/OElYvTWHDj7O7GOg/U5fbJo8vr+zc217Z++MMf\ndzqdalzHOL775t3SKO/oenfzATt8/97Hab+FKRIxu7Kz9/7b7yzny6Lw06X72V/46t1PPt3cudlb\nSw5OD8tFUzZTEYnFbFGcqWVZBevWu1sXp3MZof5GnGSiv77uHcahGi4ubt2+nvToex++0+l0Dp/M\nwWEI2Fn82d1HKHQEY+AtCmCcQTgFjAQjPqCIs6KolXEnp6M4jrVuKF6x8YzWWkpOBXcuxHEMyK/I\nuqu9DQBgDMEi/5MC3HuPAQUIK6lMCIGx/yUNdXUia61CCFJKvjJAreY4iHjvCeKUkhCCsyvgF8WY\nERIAYBVtHQI4G1YGekI4pYAQlzIBAM5YHIn5onAOPfvcrclk+vDBUVmpZblo5Z2VoCtJIqUUpZQz\nhjF21lIEzhgmxCqqqamr7/3wzZ/9yhe4FJQSyiUCWOFfe61sOp9sxte0NpeXIxN80s7X1/qzyXjm\n6kxEiDFEyacffdbudUNgSEhCsFZFnkZlXZmm8WaCueMEx0yYxx9KF1maoM1N7lmUMpTQGzefnZUT\nj/B0ujg/vxysbS3LKkliQkyzWArGOOfzyTTLE4TABQBkg8eUEcDUeRdRGhBYr5wKkczqemkc9Aac\nc+4bZbUB8Ng3lJDGKKWUVrZUFmNKKSmq2lqfpa1ut6HgEQStbN5uOw/K1etb67/2a78iRFRVhRBs\nWS2xI1wyjDHBHiVyMpldu3njja/8NE2juNsqlgvKyRtvfDEo9S9+51/s7e6eToqyqjmPhqNTil0U\nJRej01Yry1KJUKibypg0SzZDrz/o93XtEKF1Xe90B8oqLiMmIus45u3gpiIAVAYAIUy9iBl0+l1h\nzchLsnv71sMnZ58+uDfY2UlZvBgWGLCz1jlDcGCcAkLWO2sg5RkOQBF4o65e2XBWK6Ws9cPpjItU\nazuZnXzxjed/8zf/d9tX9rJW/uToJIoS67Q3nhNkXLOsC0lbNE6EEB4CYAQIE8pkyoj1DDPnXLAq\nBIch+OC9sxgDxZhhRBiCgBACxggFCoAdwgFhGSdWm6bRhBBGmeACGEEhOO+0BsY8QZhiQhHGEJwL\nhBBKmOCSEeo9XY1GEQrWhoAQpoQQSRENODhtHAT0tG2Fuq6DC4QQwpgHVzfKr/5Qxvq9QbeHK71c\nLBacEcZECEGpmmGBOKaMWWsREBKICwEhxBkDAAw0itjh4eEPf/jDKIq899qYJEkpAWt1XdcvvfQC\n89Z1+p2ji4Pj2fHO3g5OxGQ2n7y/xCbcvnL13ocfdkR768aVux/fTffyej49OPl4PjvX02b6eEhv\ns/3BdU+BRvzDTz64c+t2MS/Ho/mTx9/93J3n17d3qWtwjY7Oz/JUGk5kHk+W05/72Z85evjwD//w\nj1//0hs3bt2ZLhciz4GAI3Rn/+pGt/v44SPGPFjVytO1tbXpsriYTobjS0TgyrXds7Mjjd39g4f9\n9qCdtZJuejG6mM8K78A7+NxrX1gxkdFkAbWvcVkrVdhaJvFisSBC5Lxajawuqunejasyjsfnl9eu\nbVvT/OitHz1z86XuYPP8fLJ3db9W53vbG532teH5cDQZfvnLr1zZWzO2ury4fP1zX6ZCFtV8MV+8\n9NLndbP49JOPe70eQqjf3ftH//Q7RlmBNMHeWG0tpjQJGHFOIXhGuLchT7O6Hr777rvmb/1aHMfL\nxZxQzNlKMUZQWIFeIIqiui5XNF2tm5WeZKVgwRiv4mAAIwwUAlCxMqmC1vqvFvcY42CdtVbpGgOS\nkidJwghxAVlrOcGSxwRj1ZgQAiHSeeI9QzgAeMAIkPdI2xAETwEjSjhCiDNJU8I5BcBSiFiy/v6G\nMe6FF16oSvv7f/Cdspr3Wj0A8N7HcWytDSGsLphGK0Sp1oZxiSkSMvnw7r0Xnrmh3YxGCVCRyEhj\nxLgMCICSi+FlVVVaa5lGqqqrqmklMtjm4OH9Z5+5vb6zp6uKYUYIY4zPlxMCDBOsfci7+fradjsR\nMusgRKWUJXAar/O4j+IOAWSdEr1rejRjUlRF3WqvpVn7cniOUDdJO3VTEMyMquNEEkIuL4edXs9a\nm6bpfLkgKCAfJI8AvFIGI08pZ1QEr01VrD5zBN57S0EvFyWllHG+LFVR1ghzwhgilBJe10vvgBCs\ntQFMdaMCI8QTHEBySknIO9lyuSQoEC7m83mWJ5zTOI4b04SZuv3sbcrRsioDhPFotrmOP/e5V61u\nDo6OisZQ7F98+dUfvvV20u1ubGwcHR/u7e8QhBHUmxt9CG4xm3Z7LYJwLHmSRFo5jIEQYqxnaRxH\nuXcYNGJZChyI9ih4xLkBKdu5sH0DNWL0q9/49ifvvltXZrC7/+D+bLEsQwg+GOtVInLHCGAqo4hS\n6qxGCEeC5Hkyn08Iwcuy+uijj7Os5coqjdnNm9uD9W5dqyeHZ73eOgCA13U5Dc5FDG+vr3lvnTOU\nYoQQeAo0EEIwoQBY19p7W1alUjUgsFZb64WQ1gchuQVA2v7kjWAeAGGMKAkhYErSNF25shEiBBAi\nhD4lnDqMCaIYcYwxiwXnInkqBaaOg/DeW2u5iHxAEIKIEkCegJOxMMaADyEERhnBGAA5sIQwQhjn\nHCGyMic5Z8qm9ggAMSFjRGlZVwxhH6wgkXcO81VSZHAQkA8AgDD23jvv0iix1h4cHKRRHMcxC8Ra\n66yWUhqjXn7lRUbLJu3k6bMvH0/PPjk8vrq7/eyg88M//97HHz6Kfu5rt198Jmq1lkUzmk56/bSz\ns9bNr58fnG1fu9HpbH/3B2/euHV7sLPlS398fJzTNO/2f+EXfqkxNaqrRbV8+c5z1WQUZ6LVax+c\nXri42r2yPR9OXrjzwub67p/++Xf3TGj1Ot1+t9TVcjm/GI+mk2Eio3fff/cLL72iSvXC8y+X5XJv\nY/39g486vc5yuaxV/fDo4Gs/87NHT473t28phD77+MH24MqzX3g+T/PRaJivZS74J4cHGNBuZ2/n\n6vq79+4Ox6GubCCiXDycLWetVntzO4+lnpzf/+JLt71VH330cTvpTCcz42icZJvrW9PzcYzF6PTy\ncni+qGenkwuR89HFJUP0+9/7cavbe+ONzzcX6v7HTxC2dWGu7l4RKDKaHjw+x4jopqAoJgRzFllv\nHVEEPA4IgAfvohgnMd+7shGCY4wSQpRSSNLVOtRaRBkCH1YoVBf8qhhfYRpXX7b3NoQVsDTCGENd\nYUR9MNYaYwyllP3kn2caE3CeWa2cw84b442zgVJKGNYGiShhnCBEVsBeSinC2Dn/k1+0ogELigEw\nIYhGUUIICuAgQByljLHFfNbK40G/N50u/8a/+ytvvfPu6ZNzmaTgsXOBEOa9RwGXRc04t84RIiiL\nOCOVbmaTRVnWnOGEx/OyEWnbABKEjofjq3s7jw/PnH2qJi7LIo1beZqNR+XWencyvgDb3Lh+fTgc\nHh8fp+12qTTg0G63vdNl5fa2Bju3ngXCcZohSyiRMW0j4wCoC55jhgR33qhKMU45j4aTMaZUW9M0\nTb/TdRCapgTAVQVSxCEg7yF4B8FbawghANg0TjICBKm6kTIIQsGqqq4ppVIIa3StFtPZIs/zqrGz\neREID8gj0IuqlHGEMaWU+mAdBIqptZYSRhAoVWulOJNNVVtrAUDbqmkahF2axhfD8/V+i+Ow1u8G\nC4eHh3u7O3meHx2dIKVfeOmlW8/e1gr+u//+/9XJ5d/4d371vQ/er+tqd3vLqMa58NrLtznH3axV\nVRXBfr3f63YHhSrTLMMYpJTKOhc8kwLqwKIWQtiAZRhTJkiWEAceExqsyPJ6PjTzYmt7V0GYL4rl\noqprRSilFAN44w0wITiL0rQuq247Ezy0YxJHTEiiPQBGu7vbgJPq4HA2m7XbbfDIWciSdlMb7xrn\nSgo6T0WeJIJhh2iwjQmGcY4IQg45wNb5gIn3OoTgwClrAMC54B0QDHilU7AGAFPOMGLaeoSIc1YI\ngXxYSQ+qorTWU0qR94AwJphQGkKwwTHBoyTFgBkVjNNVDsbqZXHOEcZR8ISQQBFBOACEQAK4JM60\n1lVVIRSyOMmZ1FprpRbzmlLMOV0BaorlfDQadbt9oKwoqrJYIO9iziilSZbFUdqs5rEheL/K0VvJ\n6oNV2seecx6C88gTToplgzHGyBfV/JXXXr524xpbLBXmiancXnd3fjw+uf9ontP9Zza2b/Vlgkdu\n3GtvT07ny6E+fHD5v/rrv8S6ceSjCkO63f78i1vtJHv84OH2xvbLL798eu9gPi2TvcHF7Hx3fb23\nvTWy/sn5hW6aGLPtTp+acPbwyVDX9aKiPP7m178V5fJkePEXf/EXX/jyF1u91g/f/v7tmze8M2ub\n3WUz397c9shubvSPTo5n59PdrV0ayPvvfgjOn5+fDtb7T44OECFRO+Ut8fj0YfD+5OSEc37nzh3R\nIhTjwJULRbeXEeDDcbGxtZnK9PJ8yANvJ3K7N9jvb6ganV+cqgKKSbX7/LXRZMYJ8rU+eXQyJFSZ\nauPqxkuff2WwMzg+ObucqmJe7OzsdDfo2x9+KCJWN2VTzF996aV+q+W0efjg8enRhENMCQSLUECA\ngdDAOCYEOJVWgeCxMRWn9PrVfYSQ9yHNsqqqtG4IYQihgICFIEQUPKKMEcOUaVb6llUVDxiBRzRY\nSikhiBAq4whj7MFh/FQESSlbiV4MYEZFtyu9996alWreW+2cW10bkfeEMMYYwkCwIwwjhIIHHzwE\ntCIDB6E5ZeBdwCCEAPC61hhTIWm1rBhjkrHp+HI+n6dJ8rmXb4Fx5+eXPE6rUotIUkoRDYyzqqoC\n4DSNlVIghOBxp52Wherm4vDh8ZPjk831we5GX1N2dWuvmC3iOHaMcM7nRYEwMdpeViOEwnQ6vXF1\nf3NjwxhljMEILxc1YnwyLRhPB2sdrBenBw9BVb3t7d7uji5r3h5o52TcwUrZ08uKld01tr6Z3vvk\nMxuwBdwYoJQWRZFEcSM1FRThkGX5+HImhHAuQMBNU9Vl4QK0Wi3dmKf2AMKM0ateygeDMDhrvLPG\nGB9wknWAcsKZyLD1KLiwLKtFVZvGaGMAcNU0CAVMIHiHHCmLymjtvQ/MNzUCgKZpfECIwHxeC77m\nsV8u0VonH41GWRplMj47PY/S2BlbL5dVVQ2219cGnb/3n/zHH977GAfdb7cQeBklISCRRKPR6M7N\nPa11GqdKVcaY5XIOBAfnIXhEMJPCew/FnEetgI3TRliKASGKkK0ZM9bU3pZ4GYLVXCDBU4bRZDhf\nmAWlfAWXXvlxqBSYcgBYVccoBCGE5KzdbRWgtVYUYePNfD5+7fXXv/3Lvx5sMMa0stbl5UUaUxN8\nJKkUSDAI1nAiMMUYA0bemto7A4gYFxAiZVkqo7X3AWHvEQLCBA8ABBPAyLjgwXHOMSLGBQBEICD/\n1H3dNI2HICVnjAA8FYoBAGNMMB5FEWGMY+K908qgFdsFBQcmBC9F1DTNirVnjf0JuMbWdS2EyPM8\neL8oi6ZsVnsCztB8NgHwWZ7EcUwRrhZzRmirNyAIU4R7/TWjyrqul8U8xz234rZijAABwQRhH+zK\nG9g0zebm5k/91E+NRqPZfNpqtaqqaHd63/zm169fv1aUJZO9zIKejs6GJ1WKddLLUMrnzTIWvY3B\nlaKozi8vRtP5SC9/dPftqy8/s9ZPx5fnt/d23XwRZ3mjl2dnFx99cr+fbuzt3r6yv/vW4UdJmvYG\na7Px7PDJ4csvvjY6u3jx+Tvf+ef/4tqV3Rs3rndN/daP32rneRJh4yhF9ub1PUD6bHi6d2O7t9F9\n8NmnLpXzsznhfDSbZ1lLpNE3fvkXRvPptK5u3HlG6XJRqfWN5P27bwqaSC4mk3G7lena9NdaJ0en\nSSQpg07eLhdVguObW1cPDi5avHX26NQ7Ingcy958PB8eP3jhzk//8C//IgQnaYbsWCLaYrTb6QXV\nfPG1z83GxXe//6e3X3x+a2P75Piom+V1WsUiHQw2yoqmWTadqt7aTqPIB/cexQx97pUXP/ngiauo\nYNLohngc/CqfyIMOPOHOGgBmvZORLCv10UeffPObPy8koRQTQo0xBEIUSW91CIQxprRGiBDCrPGU\nIIBAVpw47wACgEDoqWcVgKJVDsPT4Ay8OsRDQJxFnlgMiGBMJQ/er2iOHgB8wIxbaxmDp95XDAjh\nEAJAQDgAsgECwQzCqm8FCGB9CCE02kDAKBBCqOC8qctuK6FIHR89uXr16htvvPKHf/RvZotZ1upb\n6wknTd28+OJzk8uL+XzuggkQrCNGKaXlaDwjqD1b1o+PjgeDfq30pVUYBYSCDmgxL+Iony6r9c2N\natmMZ9ONQTuTYjJdrnV7nfZa3jK1NdjTxrr1tZ2L0/NuK13v9AXoYjmyZjE9P6ARSfIeKXG6vY+3\n9+StrlS4nJ2uBkfdtHUynDJOKeVZHEVRrBrbzdJFMdVaW+dixpdliQjGmFoffAjOe289pVRpnQoe\nHCGUY0yrqvqrBQlCJIpaytii0g5RB6LUKgD2iFEuwIS83dNN2eiaUIYRsdrJlNVFSQjJ0pZSynu3\nyuVRWkdR1O12MSZJEgvGrPWcMs5EluXeGu/c+vqajmOrm6asquWi3euur68BIr1+e/vK7uMnh8a7\n119/Y3x54K0TQrbbbYQyres4jnvtfghIKYUYk3mbClYtlxxTgrTgAQWHGEa1Rkvto8AkDnEGVhfF\nXPIIc4QCMrWptaGYGKO9sYJzTAhlUvyEhMWkYBhsrRgmvlHO6FaW71258u69u576/+zv/1/a3c26\nXADg+Wy6PciUKjtZr2nmyEJjKyk9oo5StkJlhBCct8Fj78EGwBgcBIQIJpgxDACYIu2sc85DcEYF\n5xFGjAlGQggoErKqKgBPCKEU53lKKfc/EQIThCilgkdMcIwJGADx1P1PKA7Br+oeLiRCjFJHqcUo\nBIoQwpRSQmIgHmNsrSeUYGK1tasAmU63JSTz1oQQrHYikltbW2maAsZZJKsFNFUhI9btdQCT2XKR\nZLFfXUKEgg8WOfDWOyeEqKoyTdO//mu/6px78uRRFEWTyQi8f/mFl4+PDxljbLnQaYqJ8AE1V/Z3\n0876vIRyufjB3c9+bfBShOjx5fGjy+Pj8mz/1hYN9eXbj/Mo7a9Fa93dH7/1DnAmdPq5Z15g3QSP\nZoG5L33l9WVdHz04Onhw9NpzL83mhUjSJxenre3u1q1djVRVTW9d2zba1cthMap3ru2zjd7p5BKQ\n2b267VXY3Fl/5923+q1edzmXNH5yetrpdDqgj4+P03ar1+6BTfIknQ3H0vJXX3ltMpk8fvRwvd+W\nedzO0kGryxD+6pd++offf/Po8CRJupX2O+0rKWqWFw8bWwz2trCUotMZLas//dGbp8MZo3B8eqSa\nOhPRxWT+2p2Xp7PlotGtdvZ3/u5/8s6Hb/3jf/CPtrfWvvzG55+/uqe0Xd/cOTwelkvVXd84OR8i\nFDMqLs7PO+vFR+88YDjzGqOA4yiqqgIDYYSAI0YZziTlzAVvnI3i5JNPHpdFs570rWsIIcZoAJAR\nAbAB5F9ZUlfubRcsQYB/Ilpc/a+HQCmNImEM0bqx1jrnpBCU0pWpFVbuC8QRAYopIQhTjlJsVEU4\nAwDKmQeQMl4VXJSutvNmpYz0wThnKKXOxQBaCIlxWEGlhWBKGUolCkAJi4VcLiaX5yc3ru8y4td6\n+Z1nbrz9zj1rdcAEIaxMrU3zK7/0jYOjs9q4H/7wPWNDkiRno9HRyUXcSrvbO9etroLH1fLGzubH\nDx8iFPq9TYLjqlrEUTK8HHEuO50uJVREeTuNDw6OLs7PWu322uZ2qzf43e/8q71rVzc2eycHT9yg\nc/PW/nPP3xKd3FcVpfHs/ES0NDHH/nBep4PWWl/M/d3PTiaz6a1nt9IkPDo+XRVrRVl3887pyTmT\nAMF7hxCQ5Xya5rlSRMioUnVjTMSFd2CcTSAQJpZVFQsByPvgtdYrU9hoWtVVQ0RcNUrZIOOoVsZa\nD5g6B0qZACTJWs4rHEDKWESx1hac9xAQQmVVhRAoY/HTWS3y1lnDGu/BufVBv2oU9tPN9YFzZj6b\nbPXWdEOmxaKxipRL600ADBiXdbGsSqVUVTbdbjcSKE9SghnjlHGUJIn3kOd5rayMEowZ5jxNwKmS\niQQJrJYj3otRTsI8uMbFOMOtPkYmNVrVy6Isy0WhCwdKIUuCNUZrFgLBDAUcvMeU+xAoJgQhilka\nxZRTgjAGf3Fx8ejxg9/8u3/v2q1nxpdjGixjSHBUlxMpZVMsy6rklGEMlBBGiQuIBILAEky9D0oZ\nQBQCBsQY5drqujZSyiiKEEUUewgoWA8ABAXnAxDCKAGClDYr6J62ZuXXVUoJIQJ5CthglDLKMSIY\nKGMMgCBAq+BV74P3yDmEADmnCMUrG2AIziptg18J0gCRleZdStnu9lYin7JclmW5khR77612Mo5W\nPU2WZcvlfDa5bLdyLgUiDvNIax1CiGTCOffgVu8zpsg0Osuy8XicZjHGeH9/H6HQ6bQkk5PJbPU6\ns4tSpTj2qDdT9Pwx0nq8XNpOpx/zq3/wR++/8vwNgPbjB29du3N7s9M5Pbjgrmmt9ZbQMOIWAh2c\nnXAhXthe++TDtzud1sNPnmwur2ys7zWlf/W513Y3Bn/59g/SXnpj+/qV7jOKioOPj69uXiEJIjEt\niurBZ+8Ez2+//MyTxZMXX3nh7Xff7W/0i8vlr3/tV+vKRGlmIeS97PzsmB7opHEtiVnMDIoffXYw\n2Ni689IXHx2c7e3u336mPZ7MW60W9n4yXXZ77NFnDwTBnU5+NDx/+bXXjcKV9WtXNvaS/UVZFMta\nUtFpt5kgN69t3f3BO1da7TqKCBHrezeKQB6eXl6eD/d2dx8fPP7SF75669oLk/J00RSjagg+MiHK\nOt2L8dny8JM0k7rW3c5G3r76+K3z4szI4AIgj0JjFWEUAUAQjFPrtEMhih32vqqbLGvlrfiDDz/+\nwhc/FyfMWIUIKFVZywN4TJz1xhhT12WcyLwVz6cqIIQIIkCecj8RBcCNMjJKEMY+IEQo53y1YScM\nECAXEMFACBaMrnIGEEKYEixY3TQBoU7ck1JAQJRRSrl3KARDEBYShxAiRora+mARrqmIEMFMxA5D\nWI1rwFvv4zh2ISStTtGodn+PiNbm9ub//E//8ZW9G9Wd62+/+2CtvwM+tKLsyf2P/Vc+t7fb2hz0\nqCvffP8xIFEtZucnB+1WtAmw1mkfHzxMN/sp5zf3rh48fjKfFtrPzi8v824/SrPRxfnmWg/h4LwG\nJPauXm2qajgcaY+zTve1z714eHyeputx1uv2ekcP7x/ce6eVJVd29tYGG931LZRkQLlDtF4UbjS6\nnFzKxM6eDE/Ojnna7nbbs8UUs6CDntbTulh2e3m7lRtjZtMJo4ER0K5iXKAKrNKCMkzxfDoDj+I0\n0lqTEFafsHOuKmvC6HReY0IF5cr5RtvGBmU0Qghb74zWpiyrOeeUEIIp1saquQsQMCUIBeuND5Zi\ngsALQkIwTe0NZwDBcwxIVNrkkTDWq1qBsbZW0V48V0tHoJV3Ly5HSdIxxlSLYafT2d/qz2azmJdJ\nElVVBRQnvVZZFZvrG8YZSolnDEUICeG9h6bxiIlOL5Rl0IL2r1KtENMWLwX3YX4R/AR5xFTTj+Vw\nuBhPl5ikuRTKoGpUIu+AUoMdB+e9V0YHsAQ4eJOvtdv9PjiHfBiPZt77rN3/ua9+yxSFAG+0KaoF\nQ95pG0Koy5lgmDMgXADCQHjEM0ooJcQ5Q7FljIQAjdGNoRZgvmwAY05IUVUrc6y1hhDMOWu0xpRR\nwXFACHAI3jkHgCKGEXhKed5pa2tIgJVdCRACHBgjGDttyjjpZq0OxtRoZ4zFeCVQ1jrY6eQyOB2U\nEpgShxinZVkzBC6ggHBjQ1VVdVklMuq0c0aj4GtjFadiY7DunKvrKhKSRIjR2Crf1HVVzDc3ttud\nQUDYKOMRWKy8M4IKFCAEBIFQThpdt/I0BGf0CsuKMSWqrn+yN6bs9//yz3vdtcl4qQ3b2rnZX99J\nss7EoMliXMynjx8+6OXiK1/6+v2DT84Wp2sx37p2VcQp6rfObJnsDIStKSfvPf4YiAtNefP2reHl\nhO0Aj2lF9JsP7jXENcule3BAAAXrmvmiWM5v3rj23vfei5IsSZLv/cUPeJ4HTz+++/D1z33l7fc/\nKBbh2rXnEbg/+Td/uD7o91u9Kzc/P55OEApRHq9tbj14fNBpr00ms8GgPx6P13oDcGFv98rR0ZHk\ndH1r+727H3Epbl27tnXn6m1rAuEIpzOnu5xIJBRAt9XGjTLzmQTf6bd3b27Z4Hd6PedMFsfHTx62\nUnn7p14XIprWzd1PPo6iKG/3VJi3WrlShki7uZXVihe167TXFDHLqX3p9iufLR8UdcUQ8zastCLg\nPacshIApWs2uvaOEsDhOV5yW3/vd32m3o+dffBaQDwFJHlnrQwAiACEEyHvngmOcc8qZUoYAQghz\nTjCmK7HjSk6OAFZuDsE4JQRRobS21noIkgsp2IoogDGilIbAMJEA4EKglCLAGJNVP8AYIwQbC84F\nxpgLJoTgtFZMYcrAOUxswJgyyjmv6xqQxwQ4Y4RgwSmALcrZ6Zm9eW37jS+9ceeZ+vGToVE6jmNt\nPef88ODJ1nprMrl8/sVra9vb03H14btKN4tg0eh8SCVx2uZpFoKrinm/3z2+mFa16nW6T05Ort+8\n7YFaGybDWff2NUDkgw8++NpXv+q9P724YFHc6nUxQhfn588+c7PdbncyzEBnUdzrrkUZn89HXINI\n1nk+aA/WvZ/vvnRrfbJORX56cVk50yiPAvYOh4DbrU4nb6mmMNoKxhkTlGIhIueWGFMbnKo15zyE\noLXGlLng0YruTQkA1EpZHwigJEmUNlVVAaKU4pW9EABiKWQcAQZMCYC3Rlm74vxYY0wcx8GCcy7L\nMqvNChMUfAgIslZujDHKBC8xuEaKnY11pRrsHef87PS0UBXjHCEUxYIQlKbxrVs3ZrNZniX9XitN\nItWoQX9Na0UArbW748vhM3duKaUIBGdMLC0AopSDs16VmHHGJSIcJdSYJhIxhMYT5MqlqnVRVIwx\nIDjLMguxiKPq8tJpg4GEgDzypqp4nHAhsffWNMGVa70rUkhbl5PJ7PDwsGrMyy+/TDGqtAbnKSbI\nOw+OYFNXBrxnUq5OqyiK4kSSp3leBqFAKfXKa71Sl+JlUWMCCGGlGgxoxURaKXHRisYRJ5RFwYO1\nVkYxsRYh5D3Y4FcAPoKAcrmSC8exDAE5G6IoSpOkrJpPP7n/3e9+9/79h3EcP378mDHyta997We/\n+tNX9q84pxbzeV1WSZ7MF1MpJfIOIah04xF2tmEcpZlkgsZJGsVisVgYpU9PTzudzio5VogIexxH\n4m/+xm/86C//7MnjY2Nsu9NjjAfnlasJZ1gAxSSAc94BoBCC80+5fk9DMa1mdGUvhxACs+o8ky3W\njaOkL1tJrcdLPXz06KGdnN68tvn8c1svPnNne2//gw9+tLW3Vi4use7Xpn5YHWDCu93+zZ3dJ0cH\nFpO8ez2VQllq3WQ4OuVRM1mOpvPpC69888P33p3fP9vqdrqdrLW9cTI/6Ty38Vr06v0Hj6/t3+C9\n9Ec//j6L+cbGYHJxcmfvZotm44vle++/eXZxnono9edf//6f/GV/d2u+GD768N2//mu/EfEUu+LK\n5h5h8NWvfu389BwFfHZ42mt1j08O17c2+xtbCU0ykr/5J3+5vb21trG1vd1bxoVd+IZyIeXl6dma\nSFs4Wk+7LIp5muqmtN4RQtIoRnne668dnRzn7a5qxlf3Y23ml8N5p7szyPdpC3Va8bKqpYxdIGXZ\ncBQRgoMJtjbOOSGED46sPmIATImzATvHOTPGaG3TPBOIG2OiKPJO/at/9S/Pzo5/6iuvU0yMdUgS\ngnAIzrmnDEUA4ExKGTuLMAGE0Ao/jQJQTDgjEFxwXjBOEKaUrnDtkYizJAeCm7o0xlAhBBchYMZY\nJLn3gnO+0tVgQjCmK5g754wwgRRGBACkt1pQ1hhjhY3/ahaEECaO0qdZ3kopGkVCCim5UXWxaLxV\nm2vdupj02v1vfu2n/vW//lGxmEYRZ4RwxBmNltU07/j93XxzLd5a+9L777wbJ2J9fX1ZTHGrHTHp\ndCiKxjknBDOOLpbLjcHmyclFlrWOji+3N/onJxc3r19hTHzve3/+i7/0y9PlDw4ODm4nabfTC94v\nZ/MJ9ZKqNz7/SiT4g/sPB9HNlNnLhx/m64MEXef9Hd+QZoGyvLO1s33/8f3u2qZHRCmHEdfKXlxc\ntPOMUVYuyjzPW63O4dGpcyRN06rSdV0bY6sV7ZYQjHFZmziWpjE4jq0zVdUwEXlAgJENPiA6nY6t\nCzJJrLaEkElZAIAQEiGktVZOU8KzNArOaK0RClqb+WzGOeeURVHEBEcIGWMWiwVBSHJ8dHTUztOd\nweBJXeSx3Oj3GMWnj4+2tnciETVN02nlVaMoJ61Oz7rGO8oYE4QApamUEWPBOiCk1+nO5/NERlrV\nx08OdvevtrtdWy8DYC4RIdxqjXPGlo2gyDLwZWOaEpkyiWKSJhfjEU9zY33tlYPACPbeY8yruuQJ\nK3W1xrZW0oCmmrbj0GoJxCny+PR82Bj75PD4V9/4MsbYW+NUrXQpOdGVsmqJMU1iiQlBsGJfU611\nnMiwcuSjAMhLLhAiWtnlct40pmpMlGacRQECwggQPOWbropZRJ1zBFOPsDHO+yCEQMg55wGDUdo5\np5yRUra7raqqvAfB44/vPbj7/kd/+Wd/enZ+gjFEkUQI5Yk0pvmXv/Nbf/Ivf+9rP//1wdag2+3e\nvvVMuVimWWadDt7LJPbIa2vSmCOEpOQraEGSJISQcrkoisoDkoIBRsGjdpZsb28GW/3v/6P/4P13\nPvytf/a7RjWd3oAKCRhjTJum8c4ISqIoMtY558CHv0ILhgAI0+BWYKgQQmC83z2ZT29dea5e2sXw\n5PHRZzdv7XzrSxuHHx+/eLv17W/9jG7Qu3c/4IhQnHzpp37+7OAoUH5+Nr+6v8+AH9w/wII0yqrF\n+cG83N3cAATD0cJrOxur7Y1n9HTWiuRwOZ2ZMhWd4Xze7u/e//TcqObP3r17a+k6nd7NZ18+eHi/\nnBWHDx4HJ4+eHPFArQr97jal6Vvv38sGg/7a1mQ5/9yrX7774cdc5rbxToYoisbnw27WUUXT3cw/\n+vBumiePHzzUwR6po2nd7V7dnjfWzovbL/Q+/6VB/OCz2piHD5dZf++Z7WuTi7HIsuPROEvidt7R\nWksu19bWD44OtdWtfgcgIJoMx2Zr60p/PfVgF+UFgaiuHKJsrXdlefyISZTm0fH44PjywYMnH6xe\ndQCgmASMKKWr5RohmHKGvQvwNAvVWpskCeJoOBx+5zvf2dndevbZO03TSB4VxUJS9jQIW8qVSTWS\nCaOirmutdfAojiKCMefUe7+CNK2OWmut9/BXcvgoiTmXIk5izmQkKAJCSABnPYOnfxghhDAeEUJg\nhYERHGNCKQUfKOFxnC5m87Ku0rxFfzKOxAhxxrMsC96GEJRS1iittTHKGi15d63XH4/HHi1ffunG\nYjn9+N6D4XC4s7nRzvreIcZTb914edTvD/p9fuu5PVVawu3mem8y8kdHR6oelItllmXOGBRwu90Z\nTUsE2BrHmGjlnenweDyefOWnXn//vXc++PC9ViurjT0/OQXMuKDgEecdrf3v//532q2s112bTN4C\nr/M0kcaN7t69GH0vMCYT2ep0Z7MJBOo9csYOBgMZ8el4hIOJxBUkWLvdBoDxeAY+OOew5ADAOaeU\nlWWZpikVQlvLOfMeirpxEDDG2noLqqoqEwBj4gOiFFsfquUSUYIDRjh47yoVkA+rhgnAW6edVtba\noihWbUFVVbGMECIOQpZl2jhrLYHAWmm/02u38rqu262ECV6pihGMCTXG8QjiOEUIbW/3JrMxRiFN\n06osKMKrzCzGmOQyimRZlr1eh3ManEeM7+7uSsm91RD8ys6GiPfasxIQBRRRmFSEIeO0LhYIIaCc\nMlFWtUOyKFVZ6wBP+Z2CR8Y2SRIhggFjxkSUSMGqPIuRD5ej2f0HTx48PiwrtXftel0Vpi4lR9aY\n4DTDjsQ8BGAcY8wwYQgTG3wk49UUe/VxGWtXmdBaG/JUVgCrow0HWJVWAQEGHiAAQKMq5zFnwiNg\njK2qdWttAI99AO8xQlIQwXFTFuAhkVlR1L/zW7/97tvvddtpq5UJwX3QlGJrdRxHK4/e7/327wAl\n//7/5m+98fkvL2fzgClmFHmktLXWCsYYY9Y67wwCjhh3zgsh8naHML5qvgNCmLJaG8bIRx/djQW+\ndfPGr3z7F3/39/8gjpKIEIsQXpEMCPMI6rrGRKAAlFIhBAZvrUV+5ZFgzjkATClnX/jCF9/94but\nRDbTxeZayln6xhc3To8//vY3Pp9HbVPX89IQjibT8ZXd3fuPTn2gAJJn68fny6awjYFWqz0rlpOL\nC4pJLG0qhQ56Oau9l2/evb+xtoUoHJ7Nd6/I0tijs2M5JTaoJnDR6jw6vxwYuLq7k7QHGNvtvdtv\n//je/YOT/vrO9s7mS6++8Ht/8Ht1/WR//6ohLGCxWKrNzd00TYfnl8H4vWtXP3n86dnh+fra+pXN\nXbWsu4NeE/RoMXnmyvNqURNPDg8uRNr97//f/9/NwfrO/l4xn67J1uTk/N6waPfXnjx5IpJkfTC4\nvfP8+eji+OJsWTUGoLBKRLwoChFjGefK6LXBVtHMKJPTYfONr37j7sfvnF1eVLbotDIa+6QjJovx\nw8NHKx/m6gkDjDCGsGJBU+qcW/EdV/UywcxayzAWQhZFcf+zhy+++GKWpsYohIJ31gAgeMr/WqW0\n8EhSbQmxT+G3nEdSKqUYQUxwa70HhAhlFDvnVhObulKC00RwSiknlPMVzwuQaRhjGBvnPALAxFPC\nKSMYE4IZExRTaowhTIkoACZVWff7TiCEMRaMe8AYY875slJxLDFGdV077TiXCKDV6qTpWmPwwekT\n45uvf/MLr772zB//0Z9RKgn1CBGtHKPUKD8dT4TM1gYb9y4/UsdNnmb1otCq3NgY5L3W2dlFJOIk\nzYfTuVK63R80TYMIfHr/s+1B2wPcv39/ba1/cnIiZEIos07nWTyZT8E37ba8tru+0e/laXLt2jWS\npYvLUSzFbDbJt6J0q9vrblBgb773ztHRSRTnxcKUqvYBRTFhHPV7G61WizOkG1WVpdWWUiIjXhtb\nVYUxVgjhwQcEeMUGYth6gylywRNCtDXOhGWxDIBlFDsXAkYAgVAsBDPaeW+8D+A8IYQzgiS32inV\n1FWlta7relXfYUDz+TLiikQRBBoCTqI0eFtVjSQkiYKUolQaYyTXOjyWOY9OLy7bjbpy5YoxStVN\nr9O3Vve7veA8DlDWDaUUAjLBGmsxQS5AK0qdMYHQ9vY6snY5m1hre/1BXSxkBFGSIqfUYklUEII3\nqu73uzXHs+USU1gqPS2UDsY4RrnwLiilGGPaKh98LHPBI4yp4NSXnsdsc3MdOVeUDebymZdee/j4\n6Mr2DnYuFsSpkiBbq0IghBjyNnBKOGeERSyKGOdZK9eNE0J46wAoAFRNbbSTcYR5pH2RZZlHuK7r\nNFqtwj0hjDJMgUcRU8ZhFAhGCLA2FQAQzCBYyZn34IPjlDlX1aYJiEqRRyL647/843sfvruz3Zdc\nLIt5korlogqIxHGstTXGpXFybf+qh/B7v/XPExJ/+ae/Upk6ALBYLGZzFBDHhBOW5glCxFpLONPK\nkuBW6WmzRWE9iChZye1ZEiPMjk8uUJDtdvfmzevvf/TJ7tWrUd7CBK3GZRiC88EbFUKgQjCCMGYh\nBPABBfgJ7RVQAPbd/9+f/OLXv94W0frVzaSXjGc+jzr9fIfGg2WDDt+7Xxi7sbu1tb39pS+98dab\n71rPKtsAYroo1bLMkvZioYfDYq6KLE1Hs4VY35xOlssaLcpya/fGZxcP5qNJO06mw8Ysj6O4NZ2M\nJovhq1/4woG9rKalsWG+aBqPRRR/+OjQyT7EaxPjDt97P+6kWztX7n/2cDhabG7sx0n24x99X8TR\neDyu65qg+N13PgyMGEPvPzwuC9vJeh/evX/zudtJ3J0NQz031tokHQyHpXeRtem7bz9kBP/Ul15v\ni8GDTz85f3RMEhkjRmL+5MmT07MzkMRir52djhbb25u3bt8+OTzwQRNCjS56rfWN9e0fX/zgBz/6\nve7GRl2MAjRp1lVKZWn3criYjV0KDHnECF/tGxECCH6l+X0K3Ufemqe0AARIWyOljKPs8eOD+XzO\nGV5pEK0NAAgj6p0LgSCCHQQCjEkmcIQptQEIwghTghkmzDkvo4hQvlwuGaFSyjiOnXOMcBw8xYRT\nGkWRFIwQAgjJiGNMncfOeethFQzCOXfuaeA6poxyxXgcUCCY6UYZ7ZI4eOeQkJRSwAghwtiKQQpS\nRAyjKEpUUznnjKfOh6YqqnoOyNy8+dx//Hf+9r2PHszHl6C9kGyxqBkWo1EZp5QwnKb90eVwMa3u\n3Lo2ncC0mD/37C3GYT5RxihKMSJ4Opv0+muMAE7jxWLabiVa23Yr29+/enp20e22ZovFolyG4Caz\nKX8CMScSo0NVPnl88Oydmzs3boDknUxIwZC14+mksGFjvZ9n3aq2w3nR7SXTxXSxmK/WJJRipRoc\nXKfTGk9mDpzkHDCVXGjlV9enMYZREShXdaW1llJ6Z733tVYBABMiKNdGIcCYcSmY86CUWgVaCUYt\nIN3UVVU4YzinGOM4jpVSUkqllDNWiGg6mnopY8KRAIJxVTUUozSWOLjFsux0ojSNz0ej49OT3c2N\n3d3dK3tXq6oCAIxpHMcYYwckTpJ+H8VxHBDEcawbk6TR3fc/yLJka3MbMAmISCmL8YQQ3OoPiukU\nY5KkObLGLZsQc+6axWLR3e5HUYKts1QQmVEZo8JpZ4fTsqic9iBEQinVeuG9LppqfW+PcM4EJ9hr\na3FAm+vry9m83W5NpvMHRw9/7mvfSJJkNh06XWpVUIbSNEXGOEoJgyhOnHPaqjjPhIxVbWWUgg8+\nYATgAYWAAGPwqG60d8F7cOD/ala2egfBeUKAYk4xYIKNtyEESgIAeKecVQgEAKaUSimIs1Vtet3e\nYt78P/7b//aHf/mX2xv9SJCiWLQiYeoii6RzzlZNluUKjHNOqRoRnEbyyvaWNxr5IGMJHvV6vWBd\ncJ5JhoA0TcM5dzZgjOumoZQzxlbB1q1WK45jziIEstXfqIwrlRuNRiJKjDfLcukI4jJmmAHCKARj\nDMEeYwwBeYcZY5wRBMQYE5xfeal88OzFL7w4rUcy6xmvjh4eEc748dJW0bvDJ4P+RtX4B6cnp4t6\nMm3ufvCwmDcibc9nBaJiXi7CtOx2siRuCZnp+QIjp9R0uqgF4WnWGk8vavdkrdX2LVwUJSDP4rQu\n9OOD826/PZ2S9f7t5exoMfHC6+WyufHM9cY2c13EvcHe7Zfff/fHP37/U4EphpyG3icfnaQpC56+\n+eP3AODWreetQWeXIw2AODUa1UfDXq6VjX7wo0+ef+XFe2+9uzNYa7c6Dz47nE1LTqOAQOZxbZvf\n/uM/uLqzCRFuloW1Sxaz0bISUER9OR6PU5bt7e48PnxclaVSaqHrfr/f6/VcQHGeXxSTwdWd6XhS\n1jPrLSEsWK4LTypyfP80wrEgIQRAdIWOwwABIYwBuYAYIatl2sreSTFfFb8rgOeTJwfHR6cvvPiM\n0bVWlrLAGH+6lQ0WU+IAYYIwQpQzhJBxdrUCjbgkhDImrLFGa0YopXTF8ueUBKSTJEnTWDBKMOCn\nkDu3muEiAEopYZQLsZpOMoYxYQ4RIFjI1ArtUIjTVnV4uJjPpYwlJsJ7RjllHCG3EnjFkqPgL4tZ\n0zRN0zjnzoZH7XZrfbBZFvPh8cViWt2680IcS9tuLabD2XQmKBFxEghTNlSziTOeIVlWy8W86vbW\nCHEHjx53Oy0m0MHxCWAJwJTxo9GIAnRa+fb27nB4STEyxlzd29/Z2X/46JENfrI8unXn5na0uZzP\n/uxPvzfo5BuDXr/nfvzWj+KPPnj++ecJpccXZ51Or5V323FKOtlaXzw5Or28fx632yGQ5aKyRlVV\nlSexaqpgdLfbxQilUVxVlfOIMyYj3mhb17WUEazSBylpmmaFZwCM4iSz3gWEUfCcsqqpQWsgFCOK\nCNZaM4IxoOAseItCAPAYKMYUkafoN2utszaN0iTOvHPemuCs9a7T6QRvjVaddkYRrqqGMbGzc6WV\nJhDceDS7ut+y2tZ1naaprhtOWbWcR1zkeY4wJYx759OsFZzXyu7sdJUyVVV1um3tLOccIDilOOdN\nVSNCI0aC07CoaMKzpINKg7JIO4uJTFtpwCxrMz9UHvx4NpcyRZgDwYSDbrSUEmOOEbVWCxYE48/f\nuRVzyZE/Pbm4fefm4/N5u5NDMME1FLs0kY01lEgmIwQmBGefNsGAAxBEKaOUcA+ecwLgEcZBohDM\nYlGUZe0R8d4jTBljxpiVo5sSAsFRJhhBklJPwHkTfFglJHjwjMSN0X6VOAA2AM2S1qMHj//H//Ef\nXFxcbG8NGPYIQaebO+cYj733URIt5ksmSTA+ZnJu662tjf/iv/gvOBMrZJOyClPeNE273YmStK5r\n5wyLZNM0hBIpo6bRK2h7HKeEPCV4U46MDSRqN0X56PCSUVxpM1jboIR6awlCmJAAmHOeJbGgq14Q\ngjfKaYwxAsDIA/IIIUAhgGeDbba/ffXiaKwdNzgvl8WyPiVWv/7Ki6fHx5UPiDR5O7k8cKqudaPq\nwhXzMojYIBun8snp0aCzcWv/2aL2J5cnLCKdFg2UzA+P17MUbF2WjjJEmVeqNmnLGHblxhuI4OOT\nxZX9nvWkleS2rq7tbCFVUdBKTc4vLt987961/efHw+Pjs/ONzuZ8vMiEKHPsgS2XxfrG7nTqlmWD\neEwIXAzHMs0aE1rdFBjT1n33L95rY7kc+eNPniStHhjy2dETluZzt+AJNTJcqrl0FggmmHqEVIB8\nEHNMIs0xOFsVb3zuC8PZ5OzsTAoWQnn34092ruwr14plpyqWgqFaBa2QjNPx6aKfDRghZ0+egKkx\njlZPFQBgghHCGBMAWNViGIOM+IoHgzFumoYzshqcaUM/+OCudfrK7hbnslFzQhgh1Fq7Av96BCub\nzF8VJgGBViZPMkI4eM+5sNZ5bwBAMO5XYnjw4B2GgPFqxes551GShoA4WenaOeUxE5xgBgCUcCYk\nCgEwZVIyGRHkW52uMaYsy27PRigNATnnKCY+IGMMpdh7YkyjtW61MqXKxWIRwJycPtnoreVJK+ZZ\n2aiPPrynrWsM4KBbsazqxWw5i7Nu0Sgc8GQ8i7jY370yHI7qRmxu9ObTpVehvdHZtBvnwzEAttbG\ncVIuiyxJy7K6vJh4q5Moqgu9tbNtjHPgOr0cwL/0yst333v/mes3c8kFRXHMuxv58cHxeLQ4fHy2\nf/WWXlCNIKj6cnSiTHM5n0QJCyFUtd67sg1WMUaWVU0BKCHOWMYYoez+p/dv33luNJ0tFkXSaq+i\ncJRSCBEqBSCCKfE+eOe5EM4HZ701TV3XQkQIE3DWIacaIyKJgaiqmc7GWmsUPGMMixhjzBnudDpF\nUXjvy2U1c7NIRrX3uikG/a5rTFUuOafO2/l83u+2KWHFYlmX1SKWglEMfjwcra+vn54d97rtK1ub\nERd1wwEAERwAgvXWGEZYr9djjD988HhjYwAAxWIu0pQyxBjTSoUQnPVpmgdnCUUoYsVwSuNItHtV\no4KCy4tZpZr1zR3jgLJYmyJJWpjQetkQQjAOgBzCsbPee08w5QQjRu7cuBmMZbGIJd/f30vTT3rd\nXDflfDbqpNJYiykTInaNJxiLKLKuAvCSMoyQU5rSuHaKUuqtc94QglYLLSYigpV3LslazjljVbBm\nJbD5KwoT55QgrIx1xjSNkoxjRgECYVhVpX/q7Ge6Yb/3B//zm2++iTHu91qSYwqMU8ooxkJyzoui\n8B6ibg8wCpIDggD2P/8v/2+vfPHVex/e7bY7koiiKObTZZS3gBJrbZQmXLYWi8V8fKEblyepUoZg\nnGXZSmJvjGm0SgMDTBBm00Wdx0mxnDMpp9MZEyxrpYFTYDwWMuaRiFnMiYdgra2aRmu7csMIwXwI\n3nuAQAgwjOndTz7J8+77H9+9cf3O7vbWW2//WMbiT+89IZ54DQjlErcHV65f1B5l68t6MndLV8+9\nCa3dXYHy6Wx5kByV1TSWOJKy32tP55NpmPq47wOjHqyynKfW67PxhBOx3x3kefv7bx4KmmLrGYG0\n3Zppw5GoayC+1c6VreeuWaMuv7I9qFQZbaLd/d26sqPRZFTXpDKy40kUEOa+dtRDcTbsdQdKqcoZ\nRxATdNo000VRm+JGu93N4ykkJaqYiFwNfTloRbGjCmPptRkkrULPoGSjskrSrcW0/OTDg/MHC0Lc\n9u6ARfnHn37cvvrMaOIjt1jrseFoaW0jIKIIJMblXHvvKcMeE4uE9QEACMJCEADwnq5Oea9MwhhC\nKOhAMOWCO+sYxYhgwMi5kGf9x4+O7969+7f/t39jZ3dACNPWrB7cprTGB8YYgIriFiWUIIwgQDCx\nSDCAFMx7pIwmjCRZpJrKhUAIopRiLKIkbowmhMQx19p4DwlhHoJM4hyQB+IBUSasD4xzRDCiACoQ\njFfhvIjwKO3QNDudTAZXrlCvg6MMCWTsirmKgpOczhdTJiiTCStkYCRL1sry7Hwyi7kQjEspY0xH\no0k9WyKCGWqBSzKRZjRxetGoZgUXm9bFYHd7OR2VZS0kdUgtL6ccpzHtodC0ZZDIl6Y+vyhv7u5u\nbq0Xs9HGIAu4qKqRFISFaFkUZ81orT/W1iLik05u6qrV6fXy/uZr6yGYOCGb2x1EmAVyfnHZBHUx\nHREe9zvd6WTJgtfFwlvVbXfAKhcsFUzZOokzF2xwKu2wfMmahjSq4px760QWjeeLGIOHsKxrTgkK\n/uL42FrLODcaCBXaWILRSmOHAVxjABDnNEl5FLGqarIkL4qCYGh1O1ovVy6GOJbWekeQCsGWpi60\n4NxoXZaGczro95QJsRCMocnluU3jwXo3SuRwOtq6st1vDQBAOxLlyfbVVlWUGEI7ywpTcwIswg7p\nG8/unZ0e523hnIt4jBCqlksURYxSJiNIqHGWcF4WRZ7nydq6aYxa1tVyWS4KzqM04cPh2GO6MWj1\n2q13372HEIybOfKB0RxjjwARQqxumGeBkO3tFNOKYFBzlXV3/80ff+/o+MHutc3lYlQtljHve48E\nRdqUlBFMjLaBELYShllkpGTKLrCiVAgCmBJQWi+rqqybKMl4FpXTZQjAhGh07SHEjAlOA1hCwNma\ns7RuamOBsjhOImt1hKlSS1U1nCFdqWKp0rj1vR/84Dvf+Vcb61txIgNg74FyKuNYSikYQ6tOGrB3\nISAcLKEkJIO9/+H/+Q/3b/7Fb/6Hfzt4RallzLTaUmtNKGeMWqOd0mGhYifn08ni4rLf77bX+oIF\nqyvOJGNRWZWUFJxz4q2gRhtTNsvRaPT8Sy+eHB8bZTGQpq5xh4ngBUJFVTDGhBBEEyGEMUZb4wNq\nt5L5fF7pknPJysJubO5PJ+XW1q0PPni0trbGaKfXG0QotqDTVrSol0/OHz98/GhrYzNP8tAEwcTu\n5sbhwfH55UXWSpfVcjQar69vzhZF0zTGIgis0x6Ag2rZMIx67Y7RilEUwEWSn5w94JznKa2bedLN\nPzp+3O13OnlLah+LxCzmEZJSpEenw92tm4t5YQLRjZ1ezhezptEaAsckWtTmcjjmURy0JZxRLspa\nzY/OWp1OrQ0hzKpFXdceweVkvDLkR1i00vbSl604qZYLKui8bFqdfKK1pjg2Cwwwu5h8/09/dPLo\n1CnNBRls9r72177y/DPPfnT0aW9rLU/S8WKKqLFap2kGWscJQZ5zQd97+4NmWVIPwRMAjwhBiGBM\nMA4r+WBA4CFgDIAxIAgIPIKAAHlLkOBCaG0whsVieffuR3H0SruTU0oarZxVdVMaF1qtlnOuUaUP\nLIliyjByCDhGCBvjZMwjgrXW3iMhIkoxRgEhRAAIwYJzzilGaLVQDSEAAkJIJKUN2PpACKUIcy4R\nwc4FxnjwSDDuRKzcU+QhuMoqbYWIZGy1IYSg4DF4hJ6iKJumiiLRbXeklGnWUkrd++CD9V4/jZNI\nxoRgbZwQUQBYFMskksj5oi5CMDLiA9GdTud1Xda1iONYa91f7xndTMazop5S2Z4tChlHERdp3p4v\nxtaaZ2/fUvVar5MmqTg4OOqvrVe1mVeLJIo4I/1+fzqdVsV8b3uDcLZYFpSRNI729q+l6xtqUdiq\n6vcHgJat3tp0WY2ni6IqV7vQslgyRvJWvNbvHx0+2drYlIJxwG+8/gUuk26n0zSmtmG+WHDKVV0Z\npXWj4jStmspbl7fSdtZblgtlrJTRSrpe1/VqDV5VFSHE24AJUMaiKIkSGgjd3t3RuonjGAOaTCZM\niMgjzr1WttPKFeXG2Y2tK7PlIuWkaapl2fTaLeNDRNjOlauSk2I5lVKmaXr37t1n7zxrjM5aOSHE\nKJtl2WrTFjMZCBIiAsCbmzuSy6a2cRwbYzDGaJXP5X1ZN4gSxkWSJGmaOmeWs3mSJFGapQQBpUJE\nXApC6dHZeZx2hMzni+pyOPHeaq2dM8YomWZRFMkowhhrXS/nddNYpwKjyd137/3hH/5h0mlxLsv5\nLIoia5QxipBIShmswQwH74PDDvkoib0BrSvOJcUEURa8t9ZbBxjTgEhZN5ILKSVCUJZF0+jBoI8A\ngNKgHQSUtTPrXAjBOb8o54yKTrelmwaQZ4JjAMZ8FEUIoaPjx+28xQVtmqbTaRFOAMAGJ5EAjBAK\nqxFKnMZVVcUJt9bEgv/pd//1T6M3WrlQtUUItdLWeTnmnNeNVcpiwrS2VVMDDkKIui5dgMVikbVb\n3kGnI0UctQiWUmKEgNIsa2HwdVkuZpNE0r29vcViXhRFCKFYLrVSGONIEO99VdVJFCFClksIITR1\nOZ+NOJeCSdUoVizYeHTY6XejlG/trU8n1Usvf8k74qsKQTWejljMPKJ5q9fUdmezU2OFlTm+vERC\nOG+mVXVlf//J4eOorFvtrtJ+NquSNF8sZpvrG5Jl08ml8W62mEaC7+5sIoQmo6lFLkvi4/Ozbbkf\nxVlR6V5PXFxOIr56AXgIiFD+5OiQUxFJXlXVR5PLRGZJlDEqlNIBDAUCxs3nyyzO6lp12hl4VBS1\nNyHKIiV5KlqU0ul03u90IxHXy8LVBij57LPjJE8Gm2sW8Pl0tr+/vyzKncHWvbv3//j3v6vmYZBv\neB6s15dHi9/+x9/51X/n21HqpuePF6zFo5xwBihqXOlMkSiqtE9ifXZ2FozPWWqCAXiagbeCMq5o\nXysaBiKAMQ0+OO8DRgGQYMwaTQhJksQ512l133vnwzROvvXzX6+bpXNGKcUFNsZMppdRFOGgrKME\n+4xkgDAhhHGJEGGMU8qMsQQBYZJRzAhCKDBKGGMRZ4xSZzTnnGIC4LmQGIVAMSbo6QoVcAjIW9fU\nmjAGAQcPhDwNdep1OpPRZVVVQgifOIIZxmiFRtPaNI3gnGOcxDIyVi2Xy2u3nvn0k08ODg7aaaKb\nOkmyRtmyqBGRAQFAWJoSBbO21htsrI+mkziSO/HWbDabjsZZGieClbWOpQiEKGMoMSLJ4iydzpe9\nVtbr7pliXhbzF569PhufC4JuXN8rlUVEwLnhFFtrd3d3z46NbaqTs9PpfNZqZavpSvXm25iStfVN\nwKTV7s4WZRSnl5NZIJxw5pwL8HRlMpoMJV+RjT1BgRFmnY0wogg4pRwCAhtLFpzxwVJE67JyHsdx\nXCzKuq7LqtLWeG9X0RB+FaYcsHMuSRLOJeNEW78sTZKmy+XSe48xMMI7nR5C6PLy0rlaShmsoxh2\n9q5UVaWsk1Gytj5ACE0no9Pz852tQa0seKR1SNM2JTxN0hDC8enh/v4+pVhwypPIe6+1ns/nrVaH\nUeFMKFSdxCJN86psOJGNqVcdZwhhZeykWEaRHF1cxLHM0iyO47IsPcKIkvXtzeC8C957324lxurF\nwvTW2u9/dK9RFf1JjFeaplEsCSYYY6sNSkkWt7xDPoSTs7Oyqr/0Mz+jVSgrnXBirfa2CQ5jRqxR\nxDMMFDAimAePXQiAWADgDNlqlQ0diroKgDHmKISmrsejy7zVYxgnsXTOKWWklP1231uHgEEACJgx\nwijCJKz6A8pYUS60tcpY57DHUC0XAcwKyFrXtdHQbbcIo5WquKWEECY4x8I5k7XjsiwF4yfnx//1\nf/N//eY3v4Z8LahHRIyG06pYeMD9tc3lslBNo7VNsrhqSiHYCt8dRYIS7kA3TSOlXIF9GGEIIYpo\no9Tu7m5w9vGTB8boLMuuX79aFsV8Pl8NSEkiGWOYYCFEURQUg9YNCg4ccEnjOA42MAeuUg0reVkv\nOoPBUilgejSczufzPBcOlC5NX6yzgFIRnzw8vHn1Vg2ld7qsVRRFZVU000VXJqenx1f2rq8KE+tM\nWZa+vyalRAyZYGksO4PBtFZWO4eoM26zlW1t7sH/n67/6rVtW7PDsK/nPuJMK+94wj031g1VrCKL\nRZMUSbNEwjYEyzZkQOZvsAEbAgz70YYfDQsEBPjNpCiCpC2JpizLRYukimSFe6tuPvfEnfeKM4zc\nc+9+GPtsnrosz4eFucaamGHNMb7+9dba15pGMrBhHJvbLRekHQ5q1DIXVaJOGRRZWfKr62eLRani\n5FxiRS4zGiDum956s9kcEyBeu0W5EFQYOzLKkaCMEZyRw24vgB6vlpnIpBB9NxIGDkday4hgUuYr\nX/nKJ598og7TuxfvvPp8//u/+yPT+WW2GA8t5xxSWpaLzuz/8T/8f/0P//1/V8q8HS3HERgYO1gf\nkHZOxqqsX1+/HoYhE1kaAQPCmIQvwg9nlpIQAoC9tygBIJhHDAAnjHEKkRBCKbZWR58459b5Dz/8\n5L333js7P04B2rYFnAhhzjlrjcgkSgAu4IQzkaeUAEWM8BtXI0SZoBATQVFwijEwgilBnDIUg3U+\nIexSQjghxGbzUgSUEIQQxTghhJwNzjlwb9L7UvDGqBjC0dHRRx/+vO86KQSlLMuyRAikGGPAGIfo\nOOcoRQCoykUmi3Eci6JYrRZlnm1Wqwj46bOXEQHFmFIy+/dmkk+TVtYxnu32jWA8z8ux6wkppZS7\n3aGqCmNMQhBS7IYhIizzou/7l88uH5wv73Yv72756bpOKSnrdru7e/cfPnhw0XTdbndDaPzgg/fP\njte7u9vLq1cJo9XJUcazn//sF0oZQssISMpaZsW+7bTWWSX7vq+qyjm32WxOj1ac4tevX7/z8F4m\nmNWKEKYms9ysIfgiY16HTLAYTNtqZQ2jxb5pfUh5Xl5fX19fXypjnXNZyYUQRVFmWYEwzYqiLMuE\nyAx5oRBSREVRUSq6ronJjTMGkueLxUIrNU0TI4hi5IJlgm+OjttuQIRbqxFm9WIDlJWFvDg5tlrH\nqIZpiMlySs7OTmL01ijwJgmR5zkqMmt1NEYsMiIEIRihhCDOCbLOuSwrZoMKhEleld57NQ0ztbu9\nvc0zUWQ5YCCEeu+9dUpNhCKrFSKcYHTY7wophq5HCCmrCCf1shJCWOM4pTwrT9e8XpSjGvftbpqm\nlFBR1TYmIcSkWoZdVRVFkUWfOBeASELEmuQJMsYDolmRqcmNevTeOxcYYwloSGlS46SMnvqj9abp\nWiEyzrkZB8oFgmj0xBjTZtKTwpT03UAIAhxDCPumSTHGCJRS7MMwdIdD8/idB1rru13LuWSCMkZ9\njNppSZj13vsoKEsQUgrIm+Vm+emnn//23/jr/9v/3f/+6tWzw93t7fXd7/3+H15eXj965x3OhR41\nYKqtPTTd5eWrDz/88Hvf/W6WZ0qNRVGMU59lmfOq6wBTxqiwwZZluV5vnj7Z303DbrdTSkkpGcWH\nfUAILRbVdrtt25ahBecpy4S3LoXgjAnexBA4Iwgio7SuS9q0Y1nUVzfXhKP+9RORF7vD5XZ/9+nT\nl4/und87XUdLu/0BeZjsxDkHTKvF4vp2a4xhjFFMOGMpRsnps6efn1/cD94dpq6uy+3uum1bntFV\nvrTWXl9f53mOACs1TdNkJ1/mVcFERliiImjbdVM7DonSpOLj+w+efPz5+fm96+sXNureOMd8TObZ\n9bMQ4nqzcQhRnqvJ5XmhRq3NqKNnubTJaT2ZNFmv67rkiKUIN7sbJoTFISFsrBWl9Npc3V4ZO56t\nj5bFgjny/d//xdWLfcWl0UOeZ+PYl/XSOItSFrX7r//hP/+b/5O/cf/+0d51TdfXdV3mkgdOPCmL\n6uOPnrdNs8LHCCEHFmNMgIQQZ4x1TqOeg7IQAgQIAaSUUEoY4+AD53wW5M7+JIt6c3V59Tu/88/+\nyl/5i5gEKYpXr18675erGmOcrKeMOeeUUoyKGL33jnDwHs152YLxGDyFNJtYSc6lYJJxSMEY40Pw\n3keMYjKzFw3+gpbC88Q2AUKRs8H7pKde62ka+xB8lmVlWY5dXxclZwIA8Kzih8QYG8eec045Qwmc\nc86FlILW48W9M8rQNPUhYSE5gFeTiQ6EzKTMjNF5Xmrjbm5uOJfdYb+s6tPjs9vrS1jX9+/fe335\nsiiqiMKgXJ5njDE1GTsOF+ennKr1qkRgs5x1h64s6rooX756vjk945KNWsXoCSHD1C9WdYin3dC8\nvnp9tDp59yvvG+27YayqRZ7XCaEY4fjoRLt4S2775kAWRYrCW70sN/fOLxaLRbCqXtTbu916sxmH\nblLjOAy3+0aN4zSom9v91d1u0p5x6XzyPlqrvfeIMM6oczqk6EKwLtSrtczzxWoj82yeGvPWORcY\n4fMEeQhuHNpp1EKIo6MjRvHLly+j823fIeveefxeQoAZDSlGQMaFsq69NwpcN0zJGcrg9PQ0kzQF\n+/Lly6999auCkr5rUywwigmBzJjAwhiVnKWMAYpKj7nM2sMh4iRy4IwHhJRSPpAYo8w4ZSxGb63V\naiyKIlkUkuIyA8B60hHi2A8xYRfZYd88f/58xn+dc1wKWeTOOZSSM5Ylv1mflIWcOtVPzYcffWid\ncyFZp8dpFBQJIUelCeOFLKz1VIoUiXYaMEsJMGUu4cGYObXdGCsjopQqY60LGOOqXiCE7t+/N/R9\nCH7s2q7rNkfrkMuyLHGC6FUCptVgvc/LUmnn/bzpnMqCIZQYRyfnp/cuHm23+/2+wRhicMOgtFaL\nxSKgAAkhgPm6LorcefvkybPj06P/4//h/3T14uZf/Xc/WC6K169vPv7FJ+f3Lj79+OeLxerswjsP\n/ahu7m5/+MMffvbZZ5kU3/nOdwAlQsGYKaUgpeSCMi4QIsEmxljXttq4ttkaqzabjXfGOYpQMpNa\nrVYnmyPnHMMsOt+qablZyYyH6Hyg1lqCsXN2HHtrLfWOtJ3iJD8+Wx36u27sg0mcsbPFGlmICsVI\nEMSs5CFC1/XX/eHexfmq666urkZnMEXPrq8xBsb40dHi9uaGc769uczEPZ1ClnNG6KtnL7z3hKBF\nlkGym0qsC/LZyzuZ8ZuurcsKBB/G/vr65v2vfqC0bm6343bkiV2+uGKVRJQ1k0qCCYJZIbwO+24k\nKa7LJQ3YR+e8dynYkDZlOXUNkVg5HQYFnLVeD8NIKJUUAKIbjZT5NPa5yKuqSCFA8Cebk+//3h+/\nfPKiKsswjgTFyYxE8G7oOZMMipiU6fR/9Y/+87/6H/wW1IxGEJSrwSDCvPWt6+xosac6Wp7IrEiZ\n++hZ0xZCmJGNOUsRodmQGlKIKQGldAbBsyzT2rrgXfDL5fr66u7v/p1/sFyV9x/eK0pprT7s948e\n3ROUSJGHiEIINnjjnQ02R5RSAoAYoZyy6AklwCjxLgrOCykFp7NmQGuttPYpfmE5iTBKCEFKIcYU\nffQ+pJRQcmM/qWnoujZ4q7UG78o8v76+yrJMZHlKKUQ/O6bmZTar+IUQc9Jj2zfduNPTQAiSeead\n2d7c1tXaKM05syFaa1NKjPKhV8rocdLjYIpcKqWGvqvL8ur6lgkeE3YeAGAaOpxlhApjTPDeWv3+\nw4t7Z+v750dPn35+2DblcvO93/iNn3704W53d3HvgbAupXR5fXW6WbFlKbMMMNT1Mpf5OKjlanF2\ndka52O0byiUhZLlcvnp1ebRZoLRI4EmKKUSUUpEVyadZrhpCIJgd+r1zbr9vbm+3EaH9Xbvdtc00\nOg85JtanYRhmJQbGIGSGMGeMcSZ9Aq3si1evr67vzs4u6vVms9ksVzVCBAO22oQQrNXr9bprm7Fr\ng7N1vXzvPdn3/ZOnT6UsnHPeO87py5fPV6sV55xzfv/dd3a3NxjjgBHnZFTK6FBIkcti7Ie0Piqr\nGhMEmBCGc8Sddv00SpkzQTFGxujgvPHu/PzchdgNI55n3bhQ0zD0U0pACOaM8VxyzoNPkzZWaRcR\npXxUQ1lW2qd+N1ZF7W0MIVgXYkKYMB+Sda4Q2dgPYBqKz2P0WZa9evWzo9OT3zi6ePj4wTB0wVuB\ncd/3MQRABIHI8xIo8gGokBEIZiwm1I2TTykCOBdjQpM2CNmU0jB2H3/88Z/7jT8rhEAIMCFFUeRC\nqtUyBT+NzfWrp8vl0nuf5yUlCYBiSIXMYkAIYa1V0zSYoJQAUsqLfN6sSCkJJtY7QmjX9ZzweVtD\nKUUI9Te352enjx+9/1f/2l/62//xf/K7/93vv3z5+mhVHx3VsqCDGiAFQtCzJ59nRfmH3//h1c0d\nQni93tze3u52Oy6ZtVrkmTGac45iAoBxHBkVxph+GlIK1jtMGEaRMoYxZFnGKRacLpdLKWXfjF3X\nYIyNUlJyikAIhnFOgISEhmF4+fIl5Xkq+ILR7OrFa8RJ8ghTu1nmSJGjzfFydbLrDs60B7WNAd59\n/33fu9dPn5/UNQ+grOnH4W53tz4+oqxo2p5gJhk/3Rwdr1aIQAxAKKIIj1qXWe6tl4zj5KdBV5yP\nQ5vXtUmOECKL/OjkrJT19m5f5dX+bg8RCy67buClDCpxG6Ukm83q1hxCimW10JNVxv369779hz/4\nA2UVePry5RQhFUIShHlWeBcI4DwrjbOUMO0mhBJNWLt4mHaQ4sXpSUpJjfqnP/y5nVSwRgACRI23\nDCXGOSEo+IEQmuVV2+z+8F/87Nf+0vcYsYfm1ap+MIx9xrhq9e3LW+o4I9iniTLqnAsxIYQwwfMM\ndIoRwxtl4lzoZ60kAABg7/1bRmueYZlhG+f8Z5+9evb88t69s6oS6015e3NzerzinBIqE+YhReO8\ncyFGAEAo4dm7KvmEAbnk5plsjDECQhEQxlNKmBBlnQveex+SBxox5ghjBDFF75yH4EMI09jrSXnn\nUIxOG2c1pTQ4Pw2jGkdUliH6mTebhzi8tzEWQLDW+tMnnxLvs5wXReW9p4RfXFzowSYfCGEFE8q6\ncVKc82kcCaUnp0fNvu379uRogxnGGOd5+eknT723X/3q1zHBq9Vm1zZtv12vj4xXVze3v/VnvvXu\nu18hoKSU733wlQCo7Zr7985eXt1243R6dn57c71entf18vLy1enp6QcPHiilovMUYcaIj1Zp48O4\nKFebo6O7ux1AtFpRRggKCJAg5LNPPt3Uy8eP7nMmpmnCGL+6vBrt9OzzFy6SlNjnnz+9vrojTDiE\nMKaHfRMRRkDmoeIwA2VUUi6ELHhCZVVTyodhurvb3dzur6vLR48fHB+dSllkZXWeF4fDAUHAmE7T\n1HVdkZWr9dHm+Lxan/7sxz+y1jpnIoLlcnFzcy25lHw1u4z1/e7saM053N1e3j87ZZgs66UQbDK6\nWtTWWgJ4Xa27rmvHxlgnM9K1Q0xea8cYLFfH3TDGAC5ERAKllHBIQMdpIhhLyfd9v9msvDUpoc3J\n8dCPQbkQ0jCaflT3HzyuFvLnv/gR59L7A8bUJ2CYKGuAEKS1MWaVJefH7c127KPSUWa5Uq5a8GBM\nzlldZILXXFBMCOd58AlROjsD+OCDDRGSUhohMurgrCWAnDOMUsbINAw//+lP751ffPXrXx3HUWQZ\noYLxTGR5mYsXn0+XfZ9x4pxDKW73rSwXu92uKMpeWW1ciCYEF50nNMuy/MWry1cvX89NmFYjF8JM\nRsp8Fi7PKmdjzGKxyPJqc3TyX/yjf/zi1ZUQBUJo3zavr579+p/71aOj9dTzvCqzsrIuLpfL69td\nDDjjdQhRKcUEbZqmCqEsFgwLrTxJinNBCG771jmzb5tuGJw3peRzSo/VE8ZIazUNhGK0397d3F0f\nnxwp5TAGpSYbvNaWYQYYD8MwaU2FEEYbb7wxZlFnfiLReT1NR6vi0eMHu9a2yk3eI8IrUWSkauw2\n2OARmcaxrKqI4TuPLoDgtrclEAieQNwsV4fbrcyzYRgGP56d3/Nj0j4JVuybhqQoeVFImhflarNu\nhv76+iqldHJyent33Xb7IHLlx9Oj07yu9c6uszpNTvejlPXdy0suuMzFzcsX1EHNs/3zl2tZdG1T\nV3mjxnq5MoOCRHAlQwoQEXZJIKamadD9yb3T7XVzdnYWQghOX15eHlWbD69/1m877CNBzNvZOTNL\nCPmgQ4gY4xDBR1uX5dVn2w8Xn3z7N94ZfSyKIgQ3Tg047yYnUMYwsXFHUvGm0GLyxoQgpbk3Rwgl\nSJBigoRnITxCc1YAQsj7NyG7gFEIMUWgVGYZQgg9/fw1F/DdX33/3v3HQ7NnjGUlyusl53yOTIKQ\nOBUpzp5Ns8NjwhhXZT7LY+ZXwRgDwRlCaRiT0QjZFKN3DiAgTBFCEFOMEQOe+TelFErJO2e0noZm\nGkYA6Pse3dxsYsQExejHcej7njCqFNfOSikBo34cjstKMElISggTxhjmTz99ricjCkDYJ0BCMu8d\n5xhw8t5IyYp8HaOnGEFMJycnm83m+cvXnz598eDefaU1ogw5f3N9G9zw8Py42fe/96//gBFTFuLk\n9CIhjHDQevzq176xOzTeR0LZq5eXGaPW+h//+KeM8JOTo0ZtpRQPHt7zEZqupRSc9/v9/vmr51lW\nLFeL26tL55UtZL87EEzBpdVyoTTc3F4LWdze7J+9eml1JCx/eXe4uW1CImoyRPAYjfORc4YQSgmV\nZU4FL4uaykIIkWV5DBAhCZEdH50bYwTnh3b/9PMnz56+ePDg0cnZPSZkvdnYcazKcrVYXr16SjGa\nJp1X8uj4rKqqYRiqutg3zcnZaVnlVrsY4/Onz46Pls65m9urshLn5+d91wrKUNLVomY2Q6MCTGki\nr693QmRC5ikahIhSA2OkKhfWO+M8xdRGQynDlFnv9ruWEEyFdONoUOJCdEOfZYIQ1vW9UpqTwnpn\nfdTWfvTZU++Qc745dAgIxkhrLeuaECql9MpUVdXsnlblNxAi1gSj0dXl3eLiBOM0tu3y7DTFKBjL\nZTaboSMUfUjGuHFQCWFtfUjR+ai1RTTzIQSA4L2zWmu13iz/g//5/8wa/+rVi/P7Dw5NS5BDETk7\nTZN4cO/+/XsX1uqyzK9ubpuuh+ClENqMapx6pTmnzo4IkYjSeNd477/7a7/6X/+T/zoGV1UVRkgw\nSTGbpp4xhjEGgCzLlFJzuCONcH5yPmgTk59UKzKaUEQE5/ViuVqXZf1P/sl/9eOf/TxF6mwC5JrO\nPrg/rI82xpjd7nByfL5eouOjU55JITII0VLb9h1h+N133319+XJo9nkuZZGN4wgxLuu6aZrb65tM\nlnpSz549u3//Yr/f5lVJEc4y4rRLMRHGzs/PaTIi9kZSWdi8ezkUy6IshMTMJ/nhh88CSQ7HGFHN\n64zydhwYAqut9oQjvqzXh+vnH3/6Ec7oqigXIkMmTF2XVdVd37dTd++dR6jBelJ3V68pFYLJ4NPR\nep2wKOqj5XI9aTX2EKJkEm6H3b65q9d5JjmOMKWeBXRyXAMGG2wCaNv2ZLVJxt18+OzR+cX5w9Pg\nfBxN8/pmXVWbzUV/+TLPl1ajvCzHg+LVQpmx2e+16s8uznCE4eZALO0OHa+kit5jPg6heXZ7uNyB\nw4AQJpBSpAilmCAhQBQn4dyUBE3Aa7LYfnTXPjg5ebfuh22K6Whz+tnrz0wAG2J0kSAxh/C8kT++\n6ahRjBFiIpQ4F+YQRETeBHFgjOcOb2ZcMY7zVB4G4tM8ohHyUvhgXr28/s53voMQapseA4nVChcs\nIdZ1A8e4rtaCMWMVxSST1KnJx8hYyXCSgs0+YoCAMoYQkTIMamJSOKWTCz6mED3GOKQIPhrnmsPO\nGN2NDcUoheCjm6bp0Hej1ZgSBAGcMtpTTigGpbTkZfC+3e2NlCkl048hF4BlikjKHMU0juNkbAxw\nsjnr+7bd7aTkCKFRm6pcTFqZ0S4WlXaqGQdMwCZz/8H5A7x+/frw4uXlanmspjFFtKwXRX5Cifv8\nsr+9evHN9x+/eHpz9Wr4c7/1a2PXZaW8ud2C9f3d7WzZdjgcDodtvSg//ugzqydJ48nJsmTgQ5yQ\n//oHj/oh3txtUTRq9FlRuRgo5YDIoWtSiMv3lq+vXjXtXhlTr9a7Q3d3aBnPu6F5eb09jJpQPn/B\nNhEqOOGyKIqqXPBMzq6ZXOSUMcoyXvC+G1NElHMmBGB6VtY4wevLl/v9Xuspz/OT8wtrY99OhWT3\n7787qaHv+9vbLRfZg8fvbG9uu1aV2eLl88vNZkM4ub28PT4/Ohza5H2+qoy2w2gW9ZJgaA930YQs\nMa1CtVqaftw1zWazkRJi8j5oQpALniRufaQcISFSCMoYZG1IsRtGwCgBpgiWmUAEM4oBiNZuQmYc\nJ8yDJAxFOD+96JV+8uz1HEGDfXQpxQhCCIYxSSmk5JyDmK1Wp9qGF1evex237d27335fcJrXHDMQ\nJUeUxAg4UoKocn03mbvDAUjmIrYeZfmSlzIMI0PgnJ2mySWQMltmxTAMRk9ESM7ZOI4IkmCoPTQE\n4bE3erTnp6fTpLtu6Iexrtfl6kiW5e7mpuufLlcFo7lWdQoQwQfUUmz/8l/83qOLNcPZ/QeP/+7f\n+/tPX71YrY9Ylhtnk/eU4uiCFKzvWwSJZlmvu5SSMc44bz38q9//4V/4y3/t8aN3AcW///f//r/4\nl3+4XJxaF4wbMNYh+UmPL1++9N4v6+Vhv40+yFwcrU4BYsLIaCcwn6yvyzx/952f/LSzTo+Ta3Z7\nKfnZ+QkhZOfV9d3lvYf3nDMAQLj47POnRb2QUiZI49BPShtjKPYxp3xq2yLLlnXZqEM/6NYrjMzp\n8cm2b5q2WdaVb1WkAQcSIExORcZSxm7a/eb0rLeTyHg3Dc64i9WR2u8XeVZtVtvmMKopUTn043p5\nVInMDBNQH4fWKgyVHbHT2i7LQlIcIBCGXe9FQDSwpmlWi/UwqocXR9vt9qSqq5PNs8+fTc6odoiY\nyKwIId3ebimDyeijzXJ7dVNSfvP0hRkNXVinAgreTpMMTI/p5sUtE5QyqkMMk952TSKJBuzAf/r5\nM0xFdA7+tJtzhlLsnCOUCZHd7dsPf/L5f//9v3izfU4xz6G4fHZAkWQygg/Rywgz4I7mwv0WeU+Q\nQgjzkdm+cZ4yRV8kX8+PfOv741NEKHhvOZeMVX6Eq8uh79Tp2fHdzZXz3hhTxJgVMhhtvY/RRyAI\noZQCQqyqCoySd04SFkKY42BSSiECEEwIy/N81AYAfIwpoRkvCjH0/YAxGKOVHgWjSikMMUbfj0op\nFUOaP4Jx1jnjI4UUgrcIJU6ZtbZvWqWUZNwoR5dMa22tV2q8urrxISaMtB5CmI39pHMuE3nbtpRS\nWeCm33sXpSydsbc3TVUUq2Utv5K9enHwzjKOBMV9d/fo3tdyibWZru/uPnj39Nu/9q3msLs7dO04\n2Ov9tumVUpt6+b1f+VbOye/+899559HFr777rZ/9/IcFqh4/fGAm9eSTX3zla18/WtY/+MPfW9bH\nytjm7jUQ1neHjGHO+f6wW1RHFCPvo7ZKCJEIPhwOPqZBRduNz17faYet5RJJay1IhkjglOVSCMEo\nwwARgCCE8qwGAIIZAsI5Z4wrpTiTq1Uxe8G/8/i9tjtst3fToLqmPzk6i9G/eHUoigITtNycIsL0\nNCRE7t27f319zRjVWkspbTJ3d3dHxyvv3TQNmMTlopydRNfVIkPRKB0jzJI+KvhyscAIUUwZod6G\n4L11ASFDELLW9uOYZRmmFAD05JwLMiu6ruOCDpMiCJaLat93nHMhaCaLtu9G5711Bcabo5Pnr7dt\n22JAiXGrdfqCXLLGIYQO2yZ020Ozm4BMSv3whx9e3V2VeUERruuyrgouKPhojY8IYxf70Y7TiBGl\nXKBACKWCyYCIFPnUH5yzMUbGBCZkVKodJ+89cVNdl0bbEEKKVhtn9EQwygX9+NPPgzMY42nUoijV\nNBnn2r7nsjg6OY5Ap85gjBGOVB5RhIILf/2v//V3Hr73z/7b3332+ZPzexfaOu89JzTGaLSms6ce\nJMa5CzZGsNaOSgshmqb55q988+GDd58+ufwv/8v//Bcf/VzwMgYUQsizMkQDAY2jCiG0zaH8IH/w\nzjve++Q1BZScHUajpgEg1nV9c3Pz2WefEIzKMm+bPcaYU5F8KMuqfvjomX/+/T/4/V/59jetjd77\nqiz7rvfGMsYIYEEoopHiGBDgIpd5me3VQU329OI8RnBjQIgVmHkmTouFiUpgHqbEaulj72LKq+x2\newcMJOPJB2pxomi0YXH/vqGon0yw/vrzV4vjk/HQlzKzXl1dXa3Wi2JZiUIOh8aZKUU8tk0mC6N1\nvVr/1nf/fK/aUavkGSRMKf3Fx59cHJ8CpDTYo3KhjF6sV2FR/9HHPx+G4eHDh9h4vq63Q0uELOpK\nUueSOdxtH54+ePLyVZZlDJFFvkCCqWCn0VOecSnVaNQ4Pj5/OFwPlEjrRjzX8pgAzVKWtwUXZv/e\nlJI1Ls8q3cXnn2zLcylYplsz3DnkSJYlb2JAmXdTmsXCX9zSGzOCN/66c62fAZmZbsUYz/OZc7//\nBRyPfLBCUkhp6FVRrDRu/+iPfv43/92/cHp67r0NIUBMeZ4nIUiMb2nbmW8s66osJAIQ7E2sNmNs\ntumILlrn3hK8s9t1cukLBH2ai461lhEMKAb/Jo03RsAYuxhmaYfMMwAYB+W9n89474zRE0Q43hwV\nuSSIpBD7vh+n6W67NTpmWdH1jZpMWdYYE2d9nuV5nocYfQzaxKKutXacy4DAWcWJWG+Wd6+2xrus\nLCLyAUw7bDEqY3R/6a/8uZNVTgv66OT9l69vX7zeXt1uMSN1Ud664Qc/+tk33n308P6jsWv0MH7n\n23/mX/7Lf/nZZ5effPJZDOg7v3ooq+qPf/iLZ8//8Ve/+lUPaLU+7vrOushENg7T2Ya+fPkS0ul6\nveyGPoGMiFxeXT95saNMNr0F4P2kEk4Ix5h8xgpMICYPEBGazxxMGY8xFUWR5zkAMMZTSuOknR29\ncwmAMSFluaiPCfCY/OWrl0ErnhftML263X7jG19T1oUQBGPdoaUYyrI0Zjo93Vg7UcpFxu/u7pbL\nerlchmgQwVmeQ0QAcPHwgbUeYlLRG2eXuZBCTNPktY8RGGOZLGIYvXVlXQFADEQrP3cVmLB6sSGE\n5XltnJ7GoSxE0/bLemGM6dpBCEEwxJQ459o4DMYYN42ac6m08yFGSIQzGwJBhCGKYjo9Ox6Vujn0\nh4MhgiMMq0VVMMYwLvN8tsASonA2Wg8JKEIZZ+AitjZYH8bBaGvnaY627bS1QgjKGcaYZbkZBkmF\nUgYhNI5jjLEuypBicHG9Xq5WG2t1c9gRGYuiOnS9NnayARDRFiijLliIgTGkhokzvKwW19eXza75\nz/7e323apipzrfXJ6XmAZJzNZa2sGcc+48JaGyDMbbuUou8HjOn/6H/w7w2t/r/8n//27faGUkwp\n994RggF547T38cWLV5vNAkJ48snHlaBZlgWvL+7fT4BR8DgBRmjUelT9dnfH6Wz7RAUh6+XSGLPb\n3uZ5/rWvfuXDn/94v7179/33mqYz1ucye4OwUeoB2Zjo0XIRTTjs9pe32yGpxcVJo8eQ0JKttzd3\ni0JcrFcY/JR8a1I/qMf1Y4ZkhmXJsq2LJEVGcVbkWb5S/ZBUPCqq67vbksjFaX23u83rHBEAn7wL\npJDV0dHsVugj2pS1tdYYM05tXpXN/vaTj372+MF7wMi9i0ej0caYosZ5VoOzZtR6UMa7iEmvp/rB\n2Vfvn9/e3ppdl0KUPJNCRuOG3YEkvKyXg5kwhtVqJalURndussbURUEI6ZqGZbiUudE6BWiaRojM\nuuFNLU7pTxCeCSAlhJD3FkVCGO12w0c/+vzr6OzB194dTUo2IR+0H4TIQphTLxIApBTePuFcdufG\nfKZHGGNvA1Pm428f/EWz7+ekFQAMGEJwnMvPPn3+i3fO/8Kf/41hbANghIERQpiMwfkUQwg+uhS9\n1m4gieAkONUhUUopAoaR8lGpSTvvgnfeO+fn9SbGN5XdWue97/suREcxMlYxjDs99H03TTpCYoIj\nhGY9JUpgvJm9D8dpYpz7EISUsydBN3RlWZZ14bzJQJycnN3dNjHgGDDnEiGEMciMTaoHwNZaxgWj\nWdv3UpS79sDAhlhYEytRVFnuvdfWepI2pxc0zy1Jqjucnj5kufj48yff/Oa3e+0+e36VCFO7KRxL\nydnl9cvX14c6583+9tOrf7pv9dXVTS7yXJR5lv3ej/7JerlA4Isqb/s06WmYEBOyHyaRxaPjs0Nz\n7YOSBd0ddvumOTl/9Pr5zfVte73VzipjQwA/p/zkkiSKY/SCiiyXcs5kAMCEZFmFgHgflVJ5nhdF\nrq1ZZ0tK6dXVFUZ0fXzCZZYS0spoNZ2cnI39/nA4nN+/f0ZYlmXR6qZrJSVSSu+tHoeilEr3wSXK\n0PHJOoTQ930KfLko+7bBwZx/7Ssn98533W52Es/znDobEoxGE0L0OClrMlms10WEZKwjjMcYEfLO\nOcLZNBhMSVXm0zgiwAnPaV/EO9d1nRDCOeeMkVICA0To5ELX78fJuICMcSkl7yynjBPKGEMYYwBK\nECVcWweIckmPTnBnD4uqrKssGgIJk9mzjnHnzTQaHwCT2hozKJUAW+/GcbTOiTybXAKAqqoAsDKa\nUkqpoNQZ5yglStuUkh4nFFMMwWjVN63h1Hsv88wl6MbJOo8xJZSU9SIi7APCjEGKiAAG5r1t294a\n8/D+g7/87/zW8WbBmCCE/OCPf1JWNRA8KW2MFiJLCFkfrLWM0bd78fV6/YsPP/47/7f/7Pnzz4+O\n1z4EjGNMVms9g6uCVfvtLhNccKqtsz5ySLd3d8ZaF1NMIPJM7ZRSY9s0x8fHVpuuPTACoswBIqMU\nYujbRhD0ve98GyEUgz89PT40XdMMRhkIEQhJmHDA9EV/V2WygSHKuCqX7WHnQwJAOqfKaiCBuaSd\nxZRgAllOsXOny2VW5JNSDJHrV7dcMoaTMVMhM4qwUgYAL9eboqpub2/R5M83pzYGbQ1f1IvVahrG\nUWuay8HaTPJc8kPbAIXji5OH7zzsOkMBq5sDp3RVL+5/9Vs/+9nP1uuVdcmlPmLSjH29XnRDe7u9\n2XeHinIT/OFwEEK89+5Xjo4CQmRZL568fL462Tx8eD/59Pmzp/Vy4SnKJHfObjYLzOGw3UXnm/2e\nEzo0PUdf9NQJ0FyeZ/8vAIgAEBjhlBPAwCzW3eT7XG/h+ZOXzkwFlxiJ4AFQeNukv+3c57L+9uDc\nm8/HZ4hjLvFvdg5fAPGYQEo8JsQY5RxbPUqWI0Q++fjz3/zNP4spxxjhBBQTTEiKnlI+G4oxKQUl\nlCTnHEYp4UgIMt74NI+e6FFphJDzMOM/MSbvg3POGOOcd85apxFKlJNJeZfSOE673d55DwkTggkh\nmIBxGgfso3feMs5ijMa72b4YCIaIUYohWW0DJYhzLrlACbfNIGhRL0qte0KT97YoKkhUaz30nSxy\nQI5KVKXaTuPt1kZvfbrb93rUQYWgfcTYMkxJRc5OTxBCzqd2NP/tv/i9ptdE8phQUVST9qNyAPS6\n1TeHUcrq1csGobS+/37y9OXldaGJFHXr8TSoD04efvpy74Ndr9FmI4FyZfShadwUiuLod/4/vw8E\nnz94ePPh06cvrpp2sF734wSJjsoKIXKRZ5KtFhWiVko5m/XHRGSe53lZ5FUIEEIYBhVSMI4zNkdN\n0Hv37gGmlHMXPMGCy7LvOimlBTQZ8/zps3v3Lu7G/uGDe1/9+jf7vq8y+erVC0Kxnjpr9Wa9VpMm\nBCnnnJnAEzM0i0URc7bvD7IT1pi77i4X8uLiAgCstd76nAsqM5ogQhqmMcREBY+QuqF3OhpnOYKs\nkNOkD80OA3HWy4yVZTnv/Jx9kz1trYuAjPPB+NGCCURbQIhorYssT8FJwRAApdRqI4Tc7W7Xstys\nT67UtUvh1eXl8ekRwokQkhWrEIDLLETXT6N1IUKKGEleWADQlossWguTYYwgoD4aRIhx3ntPEEUJ\nxxBzlu3GIepQSIFRyrKMYKxHQxFO0ccEu/0dYYIwDogynkfAZU5DAiAEADOZ1UUecbB2Au+LPCeA\njLP//v/0f/y3/tZ/uKzr1Wr1v/xf/Ud/5+/8p4BIvT4CwGoysxcbYzzElCDOPmX7/fb//v/4h5Dw\n0fF6nmHUWs9bJa0tJSL6UJZlCKnrxxT97b55cX2zWC73fVtUiwgQQwSClTLe+8NuzxjJJA3BhuCG\noUtRMkqKomiapiiy+/fv79tGKXO02XAuCSEvLi+1tZRSkUmqoraTVUmfn561bYsx9eNwfnqWSEAx\nbdVYliXiWfQau75GSCLD8vzF1Sua55vTEzFMfdvZzmUCUYIshIM6DHYK1zt4Yd2kQYbquHAsjGoK\nyR+G/dh3mZBY0HEYXbLW2nK59JHs2/HsKE/RC5atN6tFUUaMSEgA8OrV63cePOjGbuyb84uTfX9I\nKTV9s1jWoTWEMp5np2dnU3Akl9q6F3fXVum6rrkgH3/2cYh+am1WZDhB9JqLRTe2RZEXfNGy3jnH\nGEH+T0Dtb8GTN1Qk4JB8dJ5xngveNf32edvffXi3vcklBu9jxJMeMcYo4ZTiF817evtsABBCmIMy\nCCFzxt7c5M6RSV9+8PzqAJhiGmO0diIYJXAIoX7QzqWqqoZpnMaeIowxMRFCCInMGpxEKCKUIoAY\nI5c8IVBKzR9nbvABI4QoJDTbwqQYfQzO+dkoWAhhrZ6FN33fa22nSXsfKSUIwaz4BqCEkISRMooT\nQQiOkBIC6531Ls9zH2AymqCUCWmM6bouWJcLGSPquxFIrBblNKEE2AfPuEhAtHLeusuXL87P74nl\n4nC7bftxq3pI2CAwIWrlK1lOrfbjRI7Loiz7QQ+D0zYAJlIKJqgeHefCODv2xjmQUloTKS4AJmes\n0aaqKmttO6ltb4uiuGl6QlBVrS0id83ovNLTWNV5RhayWB06t286E8umm4DIYaIR4bwsKeWMjUIy\nIcH7DjATUnrvAySZFUxkQkjOJSFUcAko+igBkrU6z+UMeRXV0nsfgsNIWG2EyN559/222S3iMUY0\nBnv5+mWRiVvBlqvNYr1BzominLTyEQuWO+ONMZTyqqpwnk1ta63hfAUA1rmrm+tKyOZu18QYrVut\nVlVRJk4pwiTjTHDOufd+7DoIjjlrvU8pVlUxqMmpGCF5H2d4R+uAkkQ4xRg5Y6NSCAjGRJtgbOwm\ndegMsKIflPYeYRKSTylxSjHGzseESJZlCVyMsW87pcyLF5fWu5Ozd84vHnJRcFwBRggz75M2KqaU\nEKZEKjdZbyJGmFIKNC/wzAeEtHUuMIwFz0II1phgDUKoqApr7agnQRlnzGpLuVBqTEMvnCBMcJk5\nH5W1PmLOBEMYYxIAM84YY8a5GIMsyqBtjDSm4L1/dXklOdvlxck4/m/+o//1f/i3/he/80//+X/8\nt/8TwGQu3PM/CqEEgCgn3ntMSUYJJdxqBxh54zDmCCWtbYooK3KlW8pZ27aLxaJpph/99MO8LL97\nepEIvd3eZbJKMQ7TeLu9C84SQg+HvcnYosr7vk8+xOCcc4uF0Uqdnh4DwXVdh9gppfq+V0pxjI1z\n0XtEKS1NlLnAhDvtQiTAmKduO+l+t9scHy2rklFqvTHRMRQ94Mvd1aBNVi8pQ9t2r7UGFDGh183N\neXZutEUpRqtiiomGkCMt48511tpx7KUQ2MQs4hKxyDEv86EdMKEzWkcJ2e/3FWK3d9dbeieqkgjO\n98wZk7S621+dnR1xSbw1i6zIvOumcSHLqQ+ZkMvjs2EYrq9fU0qtC5DScrkMIfz0pz9GAJMzQwy1\npE5pylA7tMqoIi8JE8v1UYCPIgoE0beYzNvKPhOqGNO51CIMITqCecHzdtsAiRE5azxKGMeUy8w6\nPWPmbzGWL7fwb28Y4znqYf7rW6zmrWgSADDiQoD3HlKkhGCMvYuZkMb4fhg3J2dt3/V9r/XEJZ5z\nxTCmGNEQvbOBU0I5owSFhAhBBHOIwThvrfXeE8r/zaqDAWOM58T3lDABiqhSwRhtnVOT0dZ7F7XW\nVVUApNnnNgQeo7HBC8YhQkqJZWxeq8ZxtNbShBAGxIhSihBW17VWqW0mrdWcHnNz3RBGh3Gw2lDK\nfeLOBc5yzqVRmhCy3NRKjSGh4MFoTzCuSrmsSpS0EBnlxfXtbhg7bU1Z1MH5lBIkLHKKUFzkpRA0\nBbDKpISwDwDCTIEzGSBQSRNGhOb9OLQ9Ojk5cgkddgMjVI19im6x2Eyub0a+OT1qJ/Xi8krmtZoG\nZew40BB8nuN6eZxLgnGMCWmrmWA+RvEmSpthIjiTeZ57B3Pq4bx59z6GELIsN5NKEEIIUqTV4ngc\nVUpktVkjggWmGIVxKo1Rz58/H4bhwaOHGMiDh++uVscf/vQnWgWISPJi0gpiKLO8LMu289oHifAw\nTFKstHUyz0mEFCGG5JxPKQKhdtJNe2CMVVUlpbTeW2sxIUSww+EQEVDKtdKEMISxn/FThGbvsF0z\nzN65wYZxmBJEbXw/qIDBh6SMDQgGrQKCLMu5yCPhPCMppdWiqqvi9u4mGCiLOt3qr3zw9cX6NEaM\nhWSMuRCsRxFx66zzyYWgjB600T6ZMELCPkbkIcaIMDVWMSakJD6GhCLiFKEUjPPeMy59jN54jAnj\nFCOCKGDOEph+MiLLKWJ61EyQlJLxOgLCGMcYrLWEUNMMjHCtlHd2s14iynhe5lV9fbP/b37nn97d\n7katuRRaa0yQcZoyDInEmCilRjtjDCaAEZ3MxLlMKYWQvDcpzVPoSU3DfPknBG3fMcZCCKvV6tNP\nP714cPH48btXV1co4evXlwhIhLRYLheL8pOPfyE5QxAdDXxZYGzatlNGlVXVDX3TNGVZAgBCiVIs\nywIxjDHOyowiTgej+km1vaY8L7NKZBtnrCXl7nqfjCozmq8W2hsFhGY1wSmk2CuNueAUYoa6cQyM\n1VVu9JhxDlQCSSKTk1Z932qs2mmrtU4JGCtiTFTKyYfkbDC2Khb1YjEYpbWGFDgXZFG/e+9C96Nx\n9tB3h8nF5Kek+k6xWrCMgg7g4tFysyR5xavDEb+7vZ45w7Kumq7jQgohClFMemynoaqqEBERbK/a\noH0FZBomKtm2bSFIkefVoj5MdyhBQvDl+g4AKAHgmWrFhJCUQooIYgohGT3Um0qbN2JH7ycfIsUs\nxrdbAPyWRJ3xlrdq97f336z/X4SXz83ym1UhEkAekwiAvKPeRSE4pNAOQ9t3PhzPX6dWCmOeUrLW\nCxEIxrNIg1IqpSQYMMYpeIQBCE3WQcIIEYRImNH8+bXQm9A+zrnSdt5MOOe0tvMzW+sxnnczcbaT\nnxOKEUYE3rzhWS0TQpjnYHHiKQWrDSCf53kEzCUDnJTutSZcZj5EzjHC4DxMqkd5ZqxmmESf1ovC\nOTdZHYG019dS1AQxYIkwOPS3RZEVWSFkYexknI0oGW8wJkLmjLEQjXVOmQlhwgVLCGKMiULyPLlo\nvGcEGAGZMeft6uIoRaoGk5c8k/U4qLvtRCH8aP9pvVoVObYeMN3cXV5/81c+ePHyQ2Mc5gJSwCRy\nQQgnhJIiy7Se+qknmHGRA2CMmBCCEKqUYTQjBBJCCOGiKJTShFBnA0IRQcQIDV2vBldViwApppQL\nnnw2qoELyYVIKTXNHiW3WJ8bG2KMJyfn++vbm+vt+195j1C+e/16N06Uk6wqR6trKFMArxzbFMt8\nAzF5a9tpcBAZIZM1FJEiL7NcppSU1iklTCmjVCs7m8wo6yTPRCadC4QyjDEhuB8HGzwAqFHPPUeI\nCWLwEaiQwaFquSKXN5hR7VXAUC0WQITMy2DU5fXraZq+8c1fi67dj73SI8b4vfe+wkRpR0OYTAhZ\n5zARGMUUEyRQk+4n1w6jBxSiIoSEFG2wKSWKsFJqmnQ3DjHGEBxA5JSmEBnjIXjCGKPCxTD7BXvv\nHTBRZNofDm1PKEcET2YKg2MiY0Le7e8EY2VRY4wB8/bQhhCON6tffPSpUfr85PRf/u7v/jf/79/p\n+pYxSpmglCJKUvQhWvAIIYIQts7HAAihGFIEjxCyVs99G0IoRGvnSWsEEbCU0sfACHXOeet2d3f9\nOH78s4/+/J/9C9dX2+vra4zx/UcPf/7THyOELs5PpMytD1WRT9peXd3M06ohwYtXL7VVGONhHJUy\nRnvOucgzSjdS8qLI6DC1MQIhSClV5DkBDwA+hM2yVobawJjkd0OPMamkHMbuDepK0agG732CkGFK\nIgIgxnrn42IhFlJut7c4Y4tl4WNU1gQf67KinATn26mLya9ZXdbLdbWMEWRGnay0Nc6FQR32tzer\nfIUx8doADYTjYlWsN4tXd7de2dNyWWByWixeDYHSUm87gvJ9ryhnKIWsyGNwEPXtYUopsJzr6BPh\nY9vVZa5BEcQWRYFFGpQefFtVD2RZBH+LSAreI0x9SJSxEB0kiMkjhCABoGStnSOQfExzdXOTZ5gk\nCM7ZN104TW9lMjOhOg8rfpksne+8ERQaM/vnzcjM/OA3OpY3ihtCCGIseY9CCJTy6OHq9eW3v/2V\ns7Mzq5F1gYUQwRuvlqT0kDhhjGDCOKYsxCglRYlZ7cykYsQpoQQEEokQQ4ouQYjRpxggAgYphbUm\nhGmGDt6EX4+Dtw4TGmPEKCU0v8+orOGc25QgAGNsHEdCCEEUYURw8uCcsdF5b8M8W08IQzhaZT2k\nQGiMAOCrorYmTFqLmKyKOGcY425Sq+VyURbjOCKfKPV5IbiQiFGE/TB2IaVxGkJKPFvMrZAxxltH\nEEYEpfCGukAJpwTe+uAjjSkiR5GO3gKhebZCSDTdoaqPQ0jb6ztAhHPJWKFMWq6O2mn645/+nDE2\nc8jb5kAk2axKQsI42rJORQUYpxAcppRIktKckIV9jIxjgGidEoJjirKsdM5FHxgRIHAKEQAmZeq6\nJoTc3T377JNPv/GNb5RlOUvZUkoUIxuhaZrFss7L7Pr6MkQuZM+FWJ8clUfHl7d3h6Y9PlrpBY8u\nKKUWx8eJApOVx7FXFuu8WBRqHKwL8/lGGLvZ3grMhOA2eUqpCyHPSsrwMPTBpbGfuBScycGNY3Mg\nBAVITHA7OD1Ogsmyqh0JhHITYlVIAEhoYhlWHu0PHc2Y73BIPmhd5JUNod9vowsIoZzF/e2lMa0U\n1c1V54LYnDxAlIkyp7jo9Tg6573Xk4sRQoLRmabvhqEH/CYU1Fo7z3LH6CmlVPBko/POW5dSioxJ\nKbWyxjhKqWPWWoMx9jE4bQCgrKosy7pxoigYYxAQKuQ4GDx5IbLo8WefPn/9+mW9KB+cPRzH8f/7\nO7/zR9//QdseUkohuqOjzcXqoVLKOhdSQjF6HzAWwUcEfp4BjDEiRBAhMfp5xoXgeaMbGaXWBUoQ\nAGASMQaWCEoQI2BM+27EGCMh/ot/8v88PztbVrVzzlp/c323XJUffPDBen32+sXTqZjm86os692h\ni9a2faOtOz49fr3dEkCUiiLDKACluCzzTHCqESCUZJ5hIIVgzqi+Gznn/TCOTrFcpBjONid2UpNS\neV0lDM4HBEhgghjGEDlFQggg0DSN88EZmzGeYVHny0RSM4woJOc9BywIvd3tMSJHm+Ms4ZyJfuy7\nrlfOBwyTMkIIYEiNWubF3dUthrQu67Y9rI7XayR4uZpgisoAFV3TU0zKori7u6vXqyJbJIKcc87o\n4IJVlgrqvfPGaxOq1dHJ5hhQmoYxMlMVVaLR+YgpdlGd3F9fv3gBhsQUKEKUIGc1ISTECBEhjBHB\nMYS5BFNKAWBOaXDOAcD8c6bL3/KiX6ZPfwl8f0uuvtXPfJlunQ9ijEOIMUaEUgj/RlUZYxSSvHjx\nKgZECUE4GKPKRc0QnZcEgjAmBGM0G08zgvtu7LtO8qzM8lGP3kdKKaaUBpSQJz56RKJz0QUApK19\nc14ShDCE4Kehm1EjjHAIAWGACEopxghFeO7xpZQIERe80hYAowRWO4hWa4sSWBtS8CEEH2yKuDgu\nrXEhWY9gu9suzBAgKTuqZGUup6CcdsH5UY+vUyIIHy/XF/c3nOFu6BHGMmPLRYYBm3EclUKEjNNE\nCMmk0FYpPSKMrfWEkKIotTbRJ2uNmVSWFRCD4CQmVtYrmtVPnj6LEbV6z1nugKaY+nHaNy1ChNl8\nVGPAIASLCDhnr169Ojs/8dF5p8u6EEIQShFEABJjxAkoZkLImaExxgiZMcYIoc65ef1GCAWfYgCM\nEGMMYzqHqS7q1Te/9e3gvTGuqmpK8VzOlusV56w57KqqWC2Xr55/KvLs0cN3drvd8fEx/dY37dRv\nD3s0E9xKGTUBI+NIV1XZ9UOW57GKBGPJ+KSGF8+el3UphKCEcM4xSlYb4xwkzAX13nsX60U5TtM0\nTQkjAim6wDkfdk3wqahKSjmCxAAXQkhMEcGzIZJLKCPZ1eWt0wYFHz3CmI5TT4rCuhF5LGaJDCTE\npHfx9vb64r1vSZlzLrXywzR2Q+fSLNPqtXXa2qZrt/t+7PoQnLEqheC8YYxhDJISzyizdI6eT9GF\nEJAlV3tDKSWIRos9pt57gBi9H42lnN/dXSWEq6qKAUKIQmRNMxhtnQtFUbRt//3vf/+jjz4SQggm\n55TKGGOe15RiDMhpp6cDQij4OEcQA4D3FgAQejMBPu/Ig4sQESSMUPQuCi4SAOecyWitzqQMITjn\nUowEM4AoRKa1jin90e//YFLD/Yt7v/3bvz11/bPb25QSp+L6+naz2Xzy6UcB3IKVKYVxatU4GQ27\nQ+sh9eMkssx7n4swjTbLBOBiv98ThKgjwCkFnIqc62lMIVg3yoxEY5NzOPJMCNVP3kUbk+m7zXod\nA7q5uRNULOrSG02qfD90733lXRTT2E9t03ieFVnlJmedQ5ToaYjRzzHHapw++OBrGOPD5VUfwPtw\ndHSk9odxHIBgkQtrIpXZlKyshGs70+xqSn7l8cPtoQHvOOfLzZEZTZTMY//hs88Wm1WEFGK0zhOC\njfOMSaW7UgqESFnmzrbT0K02x+M4bjYbjEdKqU/RGc8Rmfz+6HyVrTN/FQkhEBMlyKcEAAkwwpBS\nfNON4wQxppSiDwHIvOeab2877n8bZJ9//XLhflum5xMC/oT8Mc3H8RssaP7TG1Oa+VdK6fZuv71p\nzs43CCUAG6xhLIsuOucgBYQAUQgOO28TgqKo6nJhtdVGYUwp98Z6glJCEAPECCihGGPwKUF64zaD\nE2PM2DfnKxeUC6qUEkSEECEhByGlRAiKCBCQFFFMCVMWnA3WpgDWWgooOgQp4US9S5Ny1juESCGE\nyGWMgCn3JqQEBOGMZghQjoWxOHpEiDQ6GatkLraHbbnAX//a+4tl4aMbxkNdVmYyQwgYE6Ws1r6q\nMuti8IYzEgPEgFJEMVBKqA+OUURKUZSizLOua6Ijl7uGNM7DYtc2CBtAUcosIdQ0nVK6LMuru9t9\ncxCM18uFELw9NICiUv3Y93mVrVZHEQEQFEOgnFKKCeEU8xmUY4jN+irOuZSy68cYPefcx2isAgDA\nbE7CjCnFGCmldV1rrfM8l0IYaymPWZYNXbtcLBZF/uz5Ewzp4YOzpus//uQXjx+9f3x05oPTkrTd\n3mpN4gz7oOBdcD4l1E1maUxz6OoiD+AoJpGQ2+ubLMsWVQUxEoJcSITQ4O0UrFKKEo4wBhQxiQgh\nH2KRZ0Jky7xU3gopO6VsDCjOMF5UygBACNHZkNelU1qPgxkmQgilvOmGhciWi7Uf1d2LVxcLslqs\npcx//LOPs7KqFiuCpTN4zoQBjBhmjLFp0uO+vb67ffn6pXbaKh2MHYcuBU8QYIYRSs6F+eKIyROC\nAMB7hxAigIFQghmlnHOOMJ2vo0Sx1Y5iQITs7rYIaFFUP/nFj3//93/Uti1+A91EQgjFBCU4HHZC\nCEIIIQwh5Iyf63hEnlERoo8pvcm5BKCUhkTwm+s+QowQI04YgLho67o+P78nMum9PXRt1zWYEBJI\nCCEBJAiSi2kaQghlWU7KlCJ78snH/wyje/cejONICVJK2aAEY6MajaM+4UVZOJ8EyhzxejL7cLCT\n2mw2PsURTzLPIWVqGgQjkgt6XK/GYdCTmrz32mZcnN87izGGkJZlqSctMI6JHdq7vC68s2PTMSZW\n5XKatFXWO2MYjtaMuwacW1Wl12acJiozxPmh7/JlTXMJMTx4dP/28mqRFTWTdzd3zaGnmPkY4t1h\nNNq5QBC21gaXAgp9f1iJ7PGDi3urNSE4BdfZ4eeff1gulteHG05FDebQD/uhW1errm1RROenZ2oy\nyMdIkqeUiMK61PWKSwEYTapJ4Cc9VFW2a1opqs3yZL+/QywxSY7ON09evpYYM5SSfys8xwkwApgt\ny2OKlNLoIyAyC2ze1vFZpf62jr/B698oXuDL979czd/+6ct35sZ51ufMLPyfXBgio+Jw6J48eXF2\nfpqiAYQQRK11nsu56UcIEYLZnHcNMfoAOAEGhFBIPgHMip0Yow0+pYQBUUwQTj4kRAigSCn2BM38\nTJ5nALhHw/w/ic4zRjIuCCaEoBSjzPKEYkSYfhHiE31CMbngY4zWOsaYD3FyBgFJkO52LU4IYpJS\nZiI31oYQUUTB2US9wAIwiQgSCYAYYxiloNRo3ViUBQBHYK6vLwkR06RiQv2gQ4BhdCmEzXqBUMIp\nBe/GQU/TgXPubaAMxxi78ZDJsSiFsrZpFOP06Pje9V13aFWe41GZCIGzzHnVtv3JydF6VYcQ8lws\n6pLROA09xenkZAMMySIPMcbkE0qEvPnGZzP0ECPnlAtKyUzSIM6YmiZrzEyrAIBHPkGgmAAgKeVc\njKTMQwghAiJYiMx7m2WZUVPwPqM8xpgwrQviXbp6/TKEcHJ2Oqkyr+q2vZuaJmJ9c3OzXC04pcM0\nuRBmW6TdYW/0VEiBMWaYopTu7u6qqpodh4pqMbP6KAHBuDnsvHdKqcVisVxVIcQQXCTIeGN1FIIz\nLodhavXojK3rWitrnN01Q6/8zKJLwXUcAaLMCiDSO+R91KrfvHMmc3G3a0YXeC5sGLXWPqRpbNpG\nx+iNs9M03dzcvb66mqZpu7/TY7u7uRuaNmqTc8I45AWVBV8UknPKGAOCueQ8k4wVXMgYeAjBWOcB\nRYRiitYbB1DQpU/grbdWtfv29/71Hy6X693u4KxdLZdaT5RSSlJKSWSlc64oRUqJc+yd8z7M22jB\nuHEYMMGUYXijYI4QY0IJgvceE0iQEk4Ig7MOAYmzViLFIpP9YJyacALnHJ0vZUh1Xa/X68vX1/O/\njgBGMQDEX/zi54tFRSl3zoTACOFXlzdauaqSV6+v7GKxqSocnRD4V7/19fcfPxq6Zpomwtm+64Oz\n/W66d34WfXj92RPavr4LKe7a/cXFxfroxBjTDOpos1lEyggTiGPEH5yeJxWquur6ZlRDlVdGqwgh\nq1YYZSj5zfG6a5oQwtfuPRxHNejdze6GZVJknKS4yArnFAkJQnx0cd8r8+Lz5+cPHu4PLWF8VMY4\n56xfrVaPHj26eX1119xQIk5PjmpgF0fHn7986gXyYM/vHSeEp0FRxvpuNw19LYUQabMoOKLrSvYp\nYJIjTpUdBz2JTPjkx2kgHBEgDx48uLm5adoxRSo56w4KB2qsBQkP33l49cnWdEPGMzM4IDghhBFO\nCSFACP5Ef40xEETfiuDhT0rXv1zfv3z7Jezl3+7u38rev3i29PZRX14kYozRw9XlDSQkhBiG3lpD\naDbLbwgG7z0lJKWEUgCUEE7WaQQEEfDae+8DIHDOpzcvZJydaV43j60SPI8pvTmthRwGpY2BhO0b\nhIFobUKgPOMIYa0nLsUX+qJEKY0QjE3zRJULzkPS1ilnMaYhJoQhBo8RODsRwT3yPoUIkdaicWN0\n7XqxxCilBFjDssqdURcXZ7MtqrLGhYiJ2O4apRRGHGNmXOi3vdUaI352euyj9ZMbjfPexICcc5xz\naz1AfPR4RWl2tFnFcLfdtR99/LMsKwRj1po8JylEStBmWULyGU+LvGaMUQreqmVd5BnJcxkgAULe\nW0wYo4xKBtF66zBmAEApxTH6YJ1WQRZG6anXM3zBOfceWWvncC4AwFJi/MWOnuAU0zRNjDEuWXto\nuvawqIrgHMWQy4JxMo4uYXW24dvm7vXLJz7os4uHWVFzLp8048W9R83u6nA4DFO/OtrUi4X1sel7\nnBLCdFAapwgIG22bpjXGUIoZE9ZHQuZ3RFJK0zQhBGWVa6vAEMbFOA6YkrzI1Ki1NZG5lBKhXGEY\nptEaD4QIKftB+RjGccwYs8aLPKvXm0gZiUlb54IHggc/PXn14rbpIk6bo2UIznu/P2z3+ymEsN1u\nP3/6fL/fd13Xt7vt7tZuNaP0uK5Pzk/OjhbLpcwLxiSUi1OZ51JmLgUXUiKUCi7yIljPZe5DighH\nSJgwY6z1Xo1DjAlTPg6GkVfvvXf44z/+0ThMVHDnjHM2yzJCSEpg3RRSnE/7mXPKszKlpJSilBIq\ngw8ICCCUYEZTcQwxpeC9o4CttSEFRjlgnBeZDwZwsmYMvlBto9oGc8EImWfRy7xYLpfb7dZYJTOu\ntU6A1agxgXfeeVfmYrfbIYJ4RoPBH/7sY9W2JNpvf/39e2ebVSVuLl9kLPvet78DKX1yuAMCkGIY\nO8Dou9/5blVVzf5wUi1pmLQsi81y0/bDoZ8k4xjw/tDRGJVuIKKMZOzq7jSr3WQPV7f5+WLf7qvF\nkkg6mDGXojkcPKSLo83Qdnfbm7oub7Y3q/XKObde1szGtm+Wec4SWYhSMOZtePTwXkgoQWjbcble\n5XmOUPLO/vwnP6QAp0eLd995qPeHjz75tMoyEPTTV0/W9zbhYCDB5qhgQCGi4Anl+NHp0fX19WpV\n9V2XGM4Zn7TaLMpiXfdtr40rVwUVbBzHcZwoFc7Fql55G1GEMltMYzt0vZDZO996/OEf/MhGDwQj\nzMlMe6IEKVJMQoqEMO/D3H9hAvHfqulfLutf5k5/qTF/azgDX2JW/7TlIc79+i/hPJQQhEApVdXl\n/nCdAFGGZ19hhBClxHs3h3Z6jilGIVlKmbV2HEcfQkQ4uEBZ5o2OEUKM2toQwvxxYgrzviH4WfOD\nU0pzZxEjJIwiSskEgkFNJrSdyMTpyRFjFMXkjUdxdm1ACRMftE+AKLEuuJAS4MmYGAAlHGOUghGM\nUEhVVljvXYhaByk4wgljvV7WlGT7w+QcnWz3/OUrxkkKMUICCDIvVonCbq+USQlbazkXjPGbm7ux\nnx6/d48xJgSrKmmsnyZNCN1sNk07Pn3yYllnv/q977x8+UqrMROiyDAh2TB2dQkApKqE5CUCjzHo\nyRGIVqlqUQuOMeE+eYTQTIMwLiEFCB4BcM4p5ZRSxhggFJMHAEYIQcmH4HyUIpNchBCMCd7HeasX\nYySYUUpDUPOXLqWMMQ5db7RWw+i1yqVAjCOErPFSloxwY4d1tSAoDE3zwsTzi0fHR2cvnj7jeX6W\nPWA3hAvWDZ0PIRQlatF6vcwkG4YehcQIopjwLHfBa2uLgqQ388nRGE8IRQjtdtvVasWl4Jz74H0M\nNc1MP3ptyiz3zgYbcUFJSqNSABgBIYy7oGc8BGEcAylXS8aJSSEm13YHBAxj+fNfPPvxzz6vVycJ\nU4JyirK2HyVfUR6vX7x49uLVZ599vt/v99u7vrmrc/ndb7z3+OGjxxf3kQtmmAiKmERvvTsoPEWU\nJ0AEEKICEyQIoW3weQRjPGAcA2CY+2rMWQEEcyY3m+L07MHXvvat3/7tvxF8/PizT169etV13c3N\nTdO1jLFpnCilnGXOuRhgtlYHgCzLjHHejiEkhObpY5j9muZzPRP5clUDQiGEhCCllGUZxtbZkDFS\nc1ycrta5uNrtr/ddVVXz9b7f7+dr1lqb57nz0QX77uOvnJ2dbbd7Ze1yWWNKJff/vd/81uF2WUii\nx9627q7zOPp3Ht0jUX/0yefPnr0iXIxGY0oynn3yyWevX7+OIZ2f36MJMxuisa5eVhHSvfP7elT7\n/d5p242DmdRRfRRGfbRaD11HUIrOMUrVOBhnI+BgJgzIjCpUNUE0+RC8KwS1U3d+dpK8LvLCGkYp\nnfrp86fP18s2yzLOWbtvLi5ODsOglDLa4hil5KdHi0WR+2hfv3jy6Pzet3/te0nw67utif5mt2WS\nSU45Jd76kGB1Ug/TmKLlAl9dv5J5NQyqGUbKBKIEK5IV2TSNTIoYPUJJa3V+dL7d7qd+CCHgRIBz\na32e54j6i3dOXz6t+td9hvOESQgBxUhQQLPCHaEYUYoooRRT8tEhRN5W5F+q6f92xYc37o9/4sG/\ndPv/h9e/BXnmWwypqvK222k9zbpGHwJjNAaXYkSIzqeOtdYYFDDKZZFCxIgyngVrUUiYcAACiUAK\nCQhgGuI8a8esTckl72OKMAsljXf9qIwPMQGKSGmDEpys14ix4bALKSYE0SdKCcEYCDp0bdcPWmuC\nMKXUR9A2IiAAEENICdFIvTcaQs4ZjkAwoAQYYxpdwfJc5ghHjHg36GbQLmDrfF6iu/2wLKsQnMz4\n8fFRVS63dzfbXdt2g3G3fd/VRYlyMoz7y1eJciY5WR9XQojtdt80HeU+L9g4BoTT85cvAAATkjA6\nOT8zxuCtW9bZzDRaaxN4QgkhaJoGzrm1GmMIKWJGOWchWYIZAojOW68wiXmec04RAR/fcKdzDFtK\nAaFUyjyEMKkxyzLJhTHGWj1jXBh5IQQhzHvvva+KEiGUnM04O3733ejsNA4hhCwrjDEIR5fcNIwU\np4JmniXrXbO9jd59/etff/bkk+BVQNj6wJlMCTXdsFwu+0lFBC6h7nAgGEsuFlXmTQgpIYRiTDO/\np7Wy1kkpT05OUUx6UnVZFVKulst2u6cYq+APXVsvVoD89vaaiczFiDGdhs45Yozr+zEGMNZSRI3S\napxIljnt1KCzrGiaYRjH9eqUirJpx3tnj8qsaNrp8mr7Bz/4gydPnmzv9tv9rm1b07ff+ODR3/ir\nf+XBaWaUCdoZZyIkghnCjKYUqVHeI46DKQABAABJREFURkMoE4RxIQQXHGFCnURBWGMZoyHEAAhj\nRhkPXhljhqGrqtQOI8Y4r3Kt9a/+2ne/853vzPYn+/3+9evXL189N8ZkLJ9TQrW1/dAqpeatMBds\nvoTnk3kOWQshEoKEoBgDpRgYRggRihijVZFTTNd1ff9oTSBOSsfPsElYazPL3uaaPgsujLXWhwcP\nHlVVNfR6Gu2u2cfoV6tlcLvHD1b2oL75+F01Vt//wx8Ok/qt3/pNQvDHn35ytx+izCefEq9kkW2b\n3TDu+16VVf2Tz59TsVwYNXLOz09Or6+u9rc3CCE1jpmUbqtyxi7Oj7ko+r6Xq/IkJ+3UL5dVNw6q\n7TabI6N0XZTehstnrxZVeVydPH/1/Ox046Ib+8OiqjUyvR/TaGq8Pr1/X1Dm1PT555+2fZcv8u9+\n75sff/yxt8ZO42pRHB9vrNLtthGCuRSl5M00uZSOj04Pw91mvZrGlmMo63J36Lfb7eP339PeMclQ\nj4a2nYxZLFbZqr7dH5qmy0QWY9rv92fn63sXj69evsLYowTnZ0fW2u7Qe6OllD45O+m62tx/eP7x\nzZgiSiHFlATDyLkEKCafAHsfCCGQgBD0Ron+RXH/Uyv1l+vyl4//UmV/awv89shbZvULrAN9mYlN\nKSVI2+1t0zRlmfeHCQB88iSxt9pJgtEbAAeQ954QBgDexRASJJoi+IAhYOchxJkI9SnEhPCsyJyf\nxFmTEgSfrLXehYhhVvJShDGlRZYBgMi4mgyjFGMPIVprm0OrrYuAQ4iccz2OZrJUSK18cAghFFmk\nGSccUUxwSt2wtwSq4/Xx44WgIhqnR3VzaCfl+mkETIkonr+6TiE8+o3HzphXr59wSoMLZVnKrBC7\nfb1a7vf7qR+yvEYJokcheYyjd2NV0s1xTlnw3q5WFaVHGWfTNE7KLNabfhhGYylgjEhKyRiTIsKY\nIETbpiGEAEaYkpTSvjkwJrKiGMzEChJC0OMkCEYJ5uEpznkC8oZWi5FiAjEF74KPnhBCiPeh73tj\nDCWMcjaXBsreTEIwxlACpRQX1BnLBYXgMaDFYjFHVhljrO9DDIuq0tMIhFMEMdjbm9eMMSGXx6en\n++1NJhjEsD9sKcYyy27ubssy99EZpYGSGJLSZo5NRxj5GPbNgWICADEGmecIITOps7MzxtjhcKAY\nT9aVZdkN/en9i0PT3DZ7n0BkWVXWh7b1IYz9GBJDER92DYqIYWaTykSFEx7bSTVNs2uXNXGBSkEe\nPLiYdJimIQb14uWnP/vo0z/+yU8/+fh5Skkp62wsy/q9B/f+nT/367/ywdfGftChA/BZngfmIYb5\nquCs8N7jRHEkyGNwCNGUfFD7O7FZIzMFFIzzDmJCJOkkSR4TCiHsmtY513WdlNxaS4A4FyhhVPDV\nar1ard5599HhsOv2u77vq5KFEKyv3mgKOKeYEUKnafLez8MT8zj3nAXunCMkMUIJwVkuUkrRGJYT\nlgJFASc3jV3XNm9ieZSmhArGm6ZRSq3X67brtAnNoXvx/DLPc0LoYXsgKImvMU745fOXNMb27q7O\nqm998LWb3Z4i3it12/aDR8+v97teAcbe6rzgMi/7EF48e8llRoH4iIJSSmutlGoPDSfUW/v1b3yj\n4LxTqlHqtFz5EJ69enrvwb2z+kQpZYZhXdb3jk/VZLqmyTNBgANFH372ydC3m8XiuK4P3jNGXhxu\n8kWdybrvVJ6V0zD++q/9ej+Oq9XKjt32xTOZdLkoUp3t77YHH26b5vzhSWSp9QOK2au7u5v99uhs\n7VKMCS3qTXAGAE5Pj5kU46hU2yfAx/fOJ21vP/kU2dHvwoLJUCCrrDZms9ogQ7xKUz+Z5VRUICRe\nLU4ky9ru4NRgEtYJyujvP3rw5BfPsWFBIRxD9AkRhBKOISQAjBKCOA+XEoK+bNf+S/X6lyr126L8\nZuVH6K03ZPxS/B58AdrMPuDOuRAS5zylEJMlmEDCAIwwOgy6qgvGBIYQvBrGrlqeJmSt1zJyAKCU\nMk4RShFQiC6lhAjlghofQooRYeNVQDEh0NYzwQWzo528Myl4AEAo+eCMdftD2/dqGo31jlAJEIRk\nGOP90HlI1WKJIOrhbvCeM6mUcc73owFE8ywXHOxggw4YiB61cw4xwoXAiGScJj1REhND8rio11l9\ntnDSyyqnEeNrkq4ijmnJj5yNWVZMBN1e3/3kxx+enZxiEJ89eSILvKhXQmR1WZ2Xm/cenplJ7/f7\nw24fMumDHYcmOKInGyGul3XTNwzFjDOtXYqUzGFPmbh88VSITFDmXCSIKKWFEFIKNbkso5zlb+RQ\nLuYSUxQohZIWIYSEo3UqOMs4mYluiCnFGGJ0zhFErfVaHVJCRREYE23bJgAhMi4yhDAiNDGB8Mx+\nI4QQ51wwVogcu2Ct7pRhFEspdT9prY0xhOPkoshyYCkEgRmOaVqWaKd2YW/Wq6PdgVkbfTdkVHqW\nEOM8z5V2IfWCkqB9clYKgagYh5YSTwj23vNMHp1sYvQ4eo4xorQ7NHW1LLPcGRdjmCY1adVN0zzK\nYEwoFjgrIRlwISCCvQNCSPCRcNZ0jVVjdbwpZGacGqYRZ4RgX2YM4XR2tuwH1Q9sv3/1gx/863/1\nBz/4+NMnx0cXxyfHV7dm0mZZlw/uHz949LC3uFGRZ2tMopkUgKUkWD3kkjpECKWAcIw+RMs8goSG\nYeqHA5MsAfLaaGuV1jyTMcbAIYRkjAs+xRgp4d5HSrlxYL233vpxgBikpIxDVUtCV8Wy6Lpmu90S\nSBglAsmaxiTKCEERoRBxAgRIIIw5BUq0mTBOjGGEA8aYAAoxMheHuz0JYVlJo4dhmiilwY0JyGT0\nSVE8eHDvJx/+vKprrSz4xBkZhyZGQzAP1nJCU4CuHd326i/82rdhc/IP/t4/+vpX7ueF2BwtXx9u\nm49uFuvzq8u7ly9uZbVuhz4kL/PF1U3jQsrypTKWIh+DdZLxq8tLxlhV5IdmJwrauQEXhEQUccKE\nVOVawM725CsPH370ycdfefdr19fXWllMIK9E027rk826LIWMpw9WI3aWDmTNPXH3V8dCZM1hIMb0\nbb9cLJrrVx88uvf55fN8UeOSAmIHN7Zte3bvxBhzWp+Wq9LqsS5rCmR7ffXonUc2WWzjO2eb588+\n4yxf5ic+ieGwL6usKKoEGCWccXlxcRF8yvNaKyMMPDp50Mh20tP13eusujelZm/Ixdm925vbUyGr\no8VkxqR88g5Hn8sjZ1NGc6eAU6SDBZgVdSkCwvjflOB5WD+l8G835m878S8X9zdwyheLwdvW+C2D\n+kst/xcwDqQEcxzrG1NJQBgj7y0haFFVUz8ImnmrvTUpuhTjvMUWgs/eL5TSlIJ3kdJICSEEGGPg\nY4qzyWWcFxrvfYwAMaEIjPGhb53x0QdrtLdujhaTXHAiMAalxoRxcP626f16xSkmJMuEUGqcRhMg\nzdvSmFxIxKagokeYOwiUcwyIRcywt1qRUtT3T8/evd+qYXQdW1WTnhofTQroJIeKP1oc3z27PLy6\nHm3vsck2y49fvnx2s31w8UCite/JblQRG4e6xWbKq9Ibe9h2waaaJO89o5lWUU8jwCzQ53mROJdt\nM8UI3nsMrK5yDCEkQBQBxphgkYkQQtt3XIosywDAh4gQZowIITBGUsosp32vtDEpIQQYEo2Bpshm\nzH2aJoTwjKhyll1f31bVIsZIKH3w4BEQ3PY9Y0xKadVEswxRrJQqyzLF6JzrfR+cnk8Day3Db4Yn\nCMIVzwNP/TBMRlMMYbAEovARTZYY2vtdXVZN64rVom22R5vjYd8UTDiMp2lAGbdel0XuQuy64eR4\nE+zUt/vjzdGyWrCA6mJxPY6tVbnIgLG7blfXdZbJTIjdbkcQQpQopU6Oj61LLsEwDDynatSYAvGO\nEIpR7NsdIQlTEkIIzhFAmZCWMucMw+T8tMBhxOBOjpbPnz/98NOnn7+46tRETEdMFhgBIrN89ZX3\nv86l3O4uhaeLotTBRAKYUO8sE9REiyzDjAVvfQqUU+/9MI0+oozmXrteKeWDKEqKWfIJEqS+RwiZ\nvqNccEpHp9yb5AZEUgoRM0IjIdpHhmUiGAPGYDarus6Pt9tbNQ0oRW8oxxYBAQwEASCMMfIxAEbY\nhDT60+NjQkgIXsrMOYc9oLqwE1qdnu66IQbbTXoyhjDmu+7e0dHp+bmo8nvvPf7oF5/QSMFCvcpH\nowmV2oRM5ICHoiC77fOPP3r2/je+VksWS3LTHd4RmyMuHmwWH1qyazurh/PzlUfEBwJEjIMyekII\nGafyLKPBpUwUWuvVetN2Dc5ZvVicnp+iBBSTk5PNsyfPNuuFBofKmK3E3c68vNxq7wbdOuaFlMM0\nTDGsWOGAOsySj6MZl4SVRQ7O7fsDVxOlPC/YerPIMvH08gkX9PTo+MHjRy9evha0zAUp8lUKvi5z\nTuG4ql/e3v3N3/73fuXbf+Zvo//r7f4mA7K6+ICzbLdvvvvdd1Mkty9fnq1zStLHz1+vj469J4BJ\nCrYqqqKQgrJpGH/x8UdCZAghEkhU4ZvvfP315XO/iF9994NnT182u6bKi0Vetu3h3tEZw+njz55E\nBynEED1nKITAWe4g4DfmvREAAeC5Sr8hVr5UkecK/qdW/Lmav23M0xc2kH8qbvPFE8YY39CtBDOM\n8Az9E4RtjMEZKViwZhr6zfFpsAYwNkpXRRVCwBQghRgRI4RzAYABzeEhgFAK0VurjfFzwKpzDmJC\niFjjnbUpRGfsNE3DMFhrjVGA0vyeXYwhJWstp1QIHmNERDDGhmlSSgPmBFDEkWAaPNwMI5ciYTYZ\nTSmN0WNM1ieLAfenpxer+6eNmVoaXIatCW3bLbLcTA7FiAhJLq2qOp75e48eH24Pd88uQ6vOF4vJ\nmpevngguzzbnQOIwTKNWt7d7xghARDgKwXDSlGJMgGPctl3TdHlWEoYnhYWQWmshRJYJ503fd0WR\nGWN8coBIgOStjzESjDAmzhsAyGWW51KbKZNcGT0MPWMMgFAiACWKEaHIh6kf/LI6ioCSDwAYEt7u\ntkdHJw8f3lfKTUohhNqhRwjlRUk58zGkGLz3KUTnXIo+z3OMAGGEEnBOieDReYKRFJwCGv3oUnLO\n4ZiIcwliCi4SBAyjxFurLuqzTk8R4RhCVSzb27asMqUmzsiQPEqUMUYIlkXOsLAhHppWctb2HcY4\neGsWFatqyhjmlDI+K7UwxJury4cPHxtnb/e7wKjkAoFPIVjnxtm0nSBGqNW2a/ZZllmnIqCiqrz3\nXdtYpa02EA3hjFGsxtEa2Kwvfvrxj55e7rHIIQnBad+0HAs/mtMPjpZltbu5hZjEZrELtlzkMTkz\nDAITChEF5lHCMaSYIqQYozIW+egBtf0Q+z4grJyfrANKgYBzDkLMyiIxsu0PQubzYhlCSAnNVhkJ\nUEqJINo3DWM8z7M8z1JKCiXOeQwipUgp1ao3k+WcM0nHccSISCkRQqIQmLNEMMtkRqm1drLm+vYm\nII8JU84Xgj84P6M6GXPrrT8/3WyOT5qhfe/b3/itv/ZX/t5/+g+a6x0HqidttXPJRDIO+nC0WnXt\noAb1vV/56sc/+aNlRv7yb/4aqO43v/PNYWy3ze7xw3P32fStDx6O2idM0fsPtfX7/eH2zgsh1uv1\nvt3TbuiLrIRAhnYKNgabHj1+z0ejxkbpgYvV8fFxPw6Q8PJoiXhq+lvKog/q3XcfI4RciCkhQtiw\n34ecLddLHEPJ2Olyo8beeL9erihlThtEQal2ezdwycex+/Vf+42ryxsGZH/XEISPNquqrIeufef9\ne08/+mgF/C/+yq/+6+9//3xTpdDtDy3Lq0Dcw3ffSxzvD7ebizJ5RBHPd2SxlAiBMdM7j8+rqt5t\n29EPyZlCMK3M+x987VoIwbPlqtodGjARhVjV+aSGRBLChPCsn4wQRZFX66OwVQfv7RxN56yBxAHS\nPJaC3uQcIfg3rsB/ChH6SxD5l3/+qSJI+JJI5peOxxhhphvjDNokHywh6Pb2brvd3n9wmhKapikr\n65SQ1jrLpJqGMssQQjF6JgsEM26QCEIEpZTSrACLMQJERHCIzlqdgkMQKaWAUQjBWje7vaN5Ao9S\nDNjHVIrSWptnWZGXwVnGqTa67Q4YUcIYAoIxWBOUMkDkOBhAPjhTL+TieLU+O8IU///Y+o8m2bY8\nuxPbeh/t2j3kjbj6PpmVoipLogRQaABtTXLcA3JCM474nWg0Tmk0I0GQ1mg0UCg0SmRWiievvqE8\nwvXxI/fZmoN4+ZAo8Iw8hJtFhMX5n73XXuu30ngsZLdutrPjk6quq7oGmDVdl/RJUe2pQ974Xm/w\nD7/+IhmPI06TXj97nq3fX5mmgFJxh7SS22LuPG+rFjiIOIkySigMEx7GXHadd54QJKUMeZQc97uu\na0UNEZKyZRzzgHjvsygGABir7vfdGMMkidu2lVIjzJqmCTgPw1CIRqomSZL7pXQQ8E5WCFOCoDEe\nIUIJM862jeFEJDGJ43S93oKQhGGslHKRTbPMWA8JNsbc2w67rrtH41bdPmCMUiqlYIxAbL0zwOpO\n6JAxCICRCiPEw1BL6RsBwXdkKIxhUxXAuulgdJVvZS1vrq+fffyRbBsaQKNVXZYppxFJpeoIZl3T\ncUYSHnais96gmFsHoiSD3rIoLCs5366Csjl5cIqc79rmvsA0Y8N+EOxWy/HBDDkbMq5Vt9uVLAi1\nddoignldlPu8ORgfWwMJRdoCQJD1DhM8mUzuZOccoCyomuaOaO9QWWu9uWkau7zbj6bho6dPPnx4\nNRtPBqMkC7hTXa/Xe/XqTduIj7NhkqRGaWchwRxaA523StMQK6UQQoQS7YwzHjgvpKqkcMAjwoSR\nTkvEKWPMOmehV00tpYQQira1nQ5ZKBvljA2i0HfKM2+Bl65DFCDqMIIh48Yq0RptOtHVzhnO+Wg4\nkbEWTYsxHgwGSimpVcA55zSKB0bpfb6BEFrvtDWYI1mZLI1lqxgkiIR1vbzfH7uAS+hOHz56+PCh\nVe4Pf/r7Nx+uv/rFr9b5XRiHlETKOAxhvqvTJPAQrtaLEujJJ8+Pjs8284ubxZoyrAGRQBdtFbgY\nQ2qdQ1aqaq+b/R/86NOiKAAA4/SAxFnQlEU/GZhOGi1DPnJGt21TK0+jYdnYyeh0s9qulnecgtrJ\n6Sj80Q8eEBxZQ6qyDRkfDmOpGo8RZlDK9uD4MEvSJElE0wDgLm+uy7Jsyurk6Hi5Wkgpj44PrXPb\n3aKVZdYPpWVW6SAm0laQmOV2u89LFsX/t//r/wVwutstt+t5kgYxBNCCfhKLpgkiLrX0hPIsePHi\nubbGWR/HfDDof/31t0ezB87ytZSz8cHhwemHDx+aOs/zm8n002E/bG0xz3WcDX1Fw6Sfb7Y4RkoJ\n40nZCoBRGEXSA+C9NYIQYg2E8F4r/86zCCH+3voCfuvs9P767Wn+jyb+vRRzHxu5D7Xa35Tt/bdv\ngRBDaO8L8Lz77hswxtq4MA45C9fb1dn5EeNhJxXG2FvbSY0QYuw7sDvnBCHkf1OMB7y31mrV3dvh\nMQFlWQAAjDFSds4ZrZXVVnbaAQ8Roox1UgMEMSGUM+ohQtQ6nQQpAEALQShSbdMI4x1CnNxbtpum\n6rTx0BMHw4B0SmXj5NGn5yDEKCEsYu+vrgPGI56V2yKNYkdUv9/f7XbWkDAcZEl6d3fXWMvjKI3D\ncrcdHj1wsfcqYz6BRQ46ZWsrCoU9ZklqALQQ7Nq2bva9LD47PU5SZpUE0EaExVGaJP226aqmJtQh\nhPb7smuFNYYlQX/YQwgZLauqaoXs2hp6D5yBmEwno/tWwkJJY/Q9WwJjjNB3DDBjnFaGIOI9UFJr\nrW1krLVa2/l8Tlhwfv4oDMNWCOeY9x54TwjhQeC9s9Z474ySTdOAMAJRGASB1QoYZKT2zlJMGIEY\nIiEa71wSxVHIg5CWbSOMstpI6az1nPLdbh9jThOyXK/q1XqUZPuqDINkOgSdaCGElLCjg+MiX0Nr\ngAOdEBRgH9DRYIg8oARpKTmhRqosy4DzUkpnLIYeErzbbIdZysPw+upCGjsc9/KiOD46WKx30MMA\nUyGa/W5Tld24P9NGesIt8AZ4QChAsCra5WbddmKYppRFnIdv33+AJDQOrfM9Cdhiu3QBMN4q6Kuu\nQRxvy93F/LLumtvlst/vn55SIQSnhGBkRQsQ4STRplFKEc4oRNpa6523TnRdK2tMOTLOG0N5AIGX\nTW2M0UBiwpRS3gMEMEKkKHfQQQSBNt446yRkAZfKYExVpwPKZCsBANAjghjwGAKIEVfG8jBwzmmp\nrNJWa4wQ9G67W99b7zjnSZJ0Sjrgk14Gp4gQgjHtOrXdV8td0SqJKIt7/ReffDI7OESMffn1N8vl\n8uXXX212y7SfOQcCHhGknXPD6aCsi7SfQkDnm1t+V311+4uUU2a2AWWj8WyrViYeFNr10161K1IW\nstgz5eZ3y7qu+/1+lmXEeMU4NKrp2mYyHh8fTT/cfBhPJ5tCdE0TB+lmswvjgCeorjYPHkyzNKir\nvdd1P50ao9I0RgiOR9N9l0uvS10PZMsh3i9W8+UizKJWyLapIITr7VprHUcJwTQM+H69Nd5764KQ\ndNBsinVd197Y0Kre8VRV9U1+NzuY5vW2U835+Kg/PLqeX1tvnFIWocFoShmr2ybNeu/evYvjGBN0\nT1t8++6Nd2iQZOenB199+cXdcnt0dFRW8OLDzaefvSi68m69WixuOOWMYiP0s0eP59c3dSuqqgpJ\ngijxHlAeeG+1lhBjD7zTDkKPELp3nvy29/G3rYq/vTb/3ujy/fiG32kj6HsJ/nvSwH/7SPgeFekc\ngNh7763RWgvOycnpwaOHJycnR/fBJXgfq3FIqa6uin4/07ojmFAcKWUCzPF3ha6AIIQxRN/tQjwA\n3hijtVS6pZRC5O9tZ4hgyllow7ZtCSGYIoyh0YZh4j30yBvjjDMEhsIoaQSmlGBAEGq7rmzqMEow\nxiF1i93qo598Ek36892SEIYKAGv04PBYKG0NnI4mQoi2bAZxhrUvy3I2mxHCnj5/MZ/P83wHNPj4\n2fOi27+9uBwOh84hYKPJ0VG+2pCh9bUWrTRCQeetURwTZGFTdghwykLoNQ9DbcDNfA4AoAHvtEqS\npN/PdMwJxkrr/X7X6/XiOMYYh6G8l86sSQEAhwcHlLHNZmNN9H1mOIxCQsh9mZSzAEMPARZCNE3t\ngG/agPHAezgejwEiWuswvKe6syRJqra5p18ZYxCEnRAGSgyRtdZb57331hlngPdWG6tVUxUUgixJ\nw4Bq2dR1DbIYYUgt7JSKo9BRZozTCLi2AQQNetn19fWTj18gKQjlaYy2exFFgVFSyDaNM+dVZ1V/\nMih2+e120R8MoDX9OIgYAwh2GNdtm2QpxuieWNdpFfEgbyrcdYTRvKwOOBkNhtc3t1YbQvl6eXs9\nv+mPhoyi1XoeZ2HZ1gADhgIIoQO+Fq3WthVdI1jaGwGljERaaocMYOzxJ48W+aaWLfCi87LZ1KcH\nR50Q/8u//Z8pQcij3dGs3w1V1/kggNYAKB30jZXEeY+J8c5opYEz1ipttIPVPg+CIAhjKzUwBhLi\nLQDWQudKsSOMW+cgoXVXeggYY9AD0zQYYIqJ945j2pR7Y9zeOgjhfQyVMTYeDAkhPAqEEPvdrmsF\n9KCua9FUQRBISiFlEaMBDwnGAEIeEBpwKSUhpFPSOL+pimZ5t8o3iJLTk9mPP/ud84cP7/b566+/\nvl0vMYJBGrpb23UoCJnzMAgYDxAiYDo80M7FSQoT0ABX1mJTQag6bzyY52GAkyTyWq+2OwzRcDLe\nFYXSMBetEJL28N3VkjSlCGmQZb1B3JvNZuv1el+UkDNMpelk07SEho4owCkHPY2o8EQC1HSVJWgj\nSkk6reyDBw/2zdZhN571jRW69R89fIycuVjePnz0+N27d01Th5Qezg5k20HtqzynEfPOKqXCOATA\nSykDypRXzuhokJEQJ6MEp5jHdJoc1Vqvb15ZbRDAWZqtNzlzVDcu5T0DuuFoQAgRopnfXs0OxlHU\nIsgODw/3u3yTrz//+CPkUbNenc2OwxbvKh154qz0TjFnsyBSpSYuUF714kTuvDeWMdzJEmOMPLXW\nYIzBfeYTIvgd1cvegwH+kWj+j2b9b6/ov2/qQL9B5t5zRcD/v8t7771FCHtgnHOEMEKQ80Lq6tPP\nf3B0ODFKaCWskpQggpGSHSNMS5Xn2+EoM8rTey6888ar+8NVzjlExHrfiE4ppbS9f4QYY9q25Zxa\n7znnDngAnCHSUoMQIgQFnEMIDQAOAcypNR4gyIPIAOAhpgFNwgR6pJU1SmdZFme9RsgKbZ/93gvY\nYx1VfBgZYxjnSZTGlOtaew+qqjHeoJCuqj2NGBFqPb/jiPT7wxTx3um5FurVVy+zaT+B3NdKCIEQ\n5oN+RP1yNQcUwyQcwUGzrdu6Ea0OWdK02kEdBDQMSC1qAJyFVsguYTGlSdsoRu53RSCKQ2Oo83Zf\n7jllURT6+4gKg1Irqbu6aYQQ1rl7VeoebZ+mzAPtLJBSGmWt9cBBozEmpCxrhEiSJMPxmLFASg0B\nYoxZbSzGTivj3f3xOAbQKukA6Pf7DOMgZN4ZBz1wDgHIGPHei6qsu9YZHUehkaptWw68NJrEcZDF\nEKIqL4H2EePSQx5ERVvCTn71q18++vzTztimUVnWq6pSd814kECv66plDGGPsixShVbWDNIEANcq\n6Zw7OX+YJGlR7GMaUxqmaYqg98ZSSo1UbScG49F6vU7iXhAEu/2mKKqLiwttjVLKepcGwXQ6XX2z\nxpT0Bpm11lhZ13XTtoQwCMh2tWnzEgLsvdtXZZQmhNHJbHZ1czk7PDqYHNx8uFxt7z599uzDmzfv\n3l6nUeKUO5scEQjr3d5aDb1OkxAR1HUSYui8V6rz0BtntTKIsvXirt8f9vv9+wio7jrnoQWeGaJK\n4wgwwHui267Mxn1thXdONAI6SAmHkDjnPIQOQKCtMcYaxTCZTMe93lRrud/v27rmlBmi8+0OQh/G\nMaIwjqMsHjjneklqjG1lhxDyDsQsUNBBCD0GZbn3CI/H4/Pz82fPng17o6KuVqvV7fxWI5CX+/Xd\nmhCMUNd1mgVx06nIMRI479reoFfBCnPrlA6xZwAHOCrL0ljrPamLmjIkO8EJ/XB5sVysBoMBDZJa\n6Kv5EmJEDkcPe2niOxUGbLXcopBOZ6etFrXx3qGIMY+BMaaf9n0cTQZD0VWU+H4vbNuOcuaA642j\nfbNkcX+7XIC2+NFnP7y8vE4bdfT4470EjhMXkiTuj6bTrpX9XgYh//DmfTaOZ4cTymjTVcNJP99K\n4ECW9hfXCxdHk4NRnIaX15ck5BBR6UGaRr/6hy9ODk7PP3mk7TeNWcW9wa4ooDWjUV90DSQMEqt0\nHUYsDKJmvhJVPU3icnunjRwfxMPDgEXmgAffvL749LNP53db2UmH3Fdvf/3s2bNPZ0/Lq3q3kxh2\nkAJ9351lMSE+ikJvwXcUXOd+czxIfnuyf6+8f79gB7/pz7sf6DwM7stju66z3kGMgHfGWQwR+K+F\ne//dB9YDb62BCCZpkKZp2KCua7xTQUhrXWHoIXDAOm+1UZIgbJ0WQtwH7gMeWWvCIMAA/mav4O9H\n+f2FMfHW3Qfi77ORnZDfJbOcAwBYY4zWRmkEIASQAeK0gRAgAJ3HXlmtFfKQ8gECRIjaKg0hDELa\nyUp7OXz+iPQS6ZTTQhtlrTUeSd3eWRllPWahkJJiOBuOi6JIg0i1hmC33eVFI/rDPiOOxNALKVoz\nHR3d3d11GoW9vrBMKSIrg+IGYsTGGZsMZy8O7i6XXtq2alGHnXO7zY5zHsepsdQYuDfImV3IGSOQ\ncYSwU6LhnEsjnEWcw7ZtjdKEEAiR1Eobo5VqmgYjel+eByGWUkLYEhw44Ouq64TIsiSOAkIAQNpa\nv93niBIvJACA0tADCDHhNFCqu5fsrbUUYQcAZ+weWcUZxwAqZ502URAapT1CCIM0TV3IMQDAmSSN\nBv2sbAWELN9srbVRFHd1FbDQOAciLkyHtRsgXt7NF/Td6bOnHmCFnEOQhtx6h4xmyIuySOkwpYxl\nfUTDLEmcEpySfVnudjl2MAnC/S4nFO03W0LQbDZTSjlrs15PO6+NufxwVTfyzbsPRVX3s1maMdnp\nqhSzSZzFfdm6JKNxEFJMyqIqy1JKDa0DFohWStiRgHipwoS3hezaXBqtxP7k9IeLxZ3FxgV4LdaD\ns+m6qYQGF/vdz1+9fHh2DrXF1kaMNfsm5Nxo6xEEwEmtHHQAOI8QxlBZ4yAAGJVtgzhvpRRSE8ox\nJBXQHAKhxHA4iOLgYv32L//FX1irv/z1N9Tw1XyThsOuNRhxiBFlDiOUDUYYeGc9AjAOoyLfIwfa\ntrXaIITiNILIG2vDNLLERFEirMKUIsaklPd3U7upmqahlEY8SPuDn/zkJ1EUhYzbiG1Xm/l8vlus\nlDXL5VI1LQZIi44EXKhqMB7EWVgUuW71bNJjqmOQ3WxuAaSV7Ka9jIaZsz7f75MkE42N42HdtJty\nG8ZR503K0LCfRFG03m2J0u2ukFqqs8GZrP0oy4qq6Mc90liNkFIyTnoYEdmJrq3SmAQMeQOarsvS\nWFCFMW7bjlLsymacDRMertdbB4GE6usvvip2uUGTLAikdnXRedBJgjSypx9NlRC9Ye/2dqENIMRt\n900chHE/Gyu3L9rhOMYaGBoI3UHUMRrGwejZi4+apnl5+WZb7REBo9kBLkvGKfC23O2iJGWExUkG\nLPDWd8wdHx3+5PMfbNbLb998G8ecptGX795//unzR/SZUHIwTG/nC4RQHKdNs5yvISBBrQoSka52\niPAA9wiqOm+UE9BgoyEAAJH7BTv+R2vt7yUXhJC1XkvDGFNSTKajKAkOD2fDUXb+8Omb1xf/8T/9\nrZSCUzwejoQQQjT3aAsA6f1uQMmOUOSgAw4bDcOQJ0nsvADAxnGy3RYYXw8HsdZSqgYjZ5R0RlnP\nCIFatrJtpfchZZwRTigBUDtrrOqMFZ0SUlsDCaTK+nt4zfcxGaMlxtiarusa2XVCCGfvUcbeOeCs\nuo+q/yYV5d19mRSEkFLKWde0WRw1WmpkHn/2cctFWRfGO8Y5wSEPEEKoEp3rEB0Eoq4RQJZxrXwU\npZPJzCGc5zmLAgwB9NAbUMvOAOxV+f5mEYbxMEuFaOrtAkBtQHc+Pb29XSjttIIHDx/83h/+03cv\n3/zH//DXB5PpfruTnkjpNsUmDqNqX2CEnAWjQdobBBA4axzl1AHEWaK0b1qjNcA4aNruXryCncOM\nUeaN0lp7azUE2GjQWoUYskpbCwIeQYhFZzzAwELjbVM2nEvKMOfcOpfnOwA860dSSq11QJkHFgLH\nCeWcOwgAcJ3umqaKokRLxQjVTgWEAwCV0b04ttowxgjGQoiAMsZY13aNbOqy4pSFMZeyU0ITB5QQ\nEIPhaDB/9y4Ng/hgSixsEbKAaOCzkHNsOAYQwlK1FJOUQWo14FxKmWU95AHAKMl6QRRvNmtGKCF4\nu9kQQop9paQxzjvrKeWXl28xZgez481ue/Lw00Z1wt5J17IoruomG2Yek1Zo2XktDHAeMxyk4WA6\nNh3o99JO6jfXG60tYFhBOz08+vrbX58/fOBpT8j29WIx7o2D4Wi33m/y/K/+7q+ta4+nY+wN5gni\naO+FZcApxRliLFBKYh4WZWk6FR8O9109Vi0ieLlYIUI9AHVdc84BBG3Xta1o2rY/6eWr4tc/+1rg\nZjSYzt/fbvOt7hxnoUXGIh9hPxmODyeHUprF9TxfrrKYSyON1Erpom4cgwB01ulOdgzEFAe7ukzT\ndH53RRBNkqwom7quQxL0eoPVavHJDz7+6AefvHz9xuzwIJu0drVcLm9X66qpy3wPjU3jpCr3qB9M\nZrPJZMQY2+12GCLCI60kQGhd1tpj22mCceeBMopTRgEVZVO1DUIIM+oVsZ5Ig9rtXmstF2spBemM\ntEKnaVq3VVEVjWyDgNV1mWV9DOz89m2SDo+PTt69e+cBazu3LTYI4igKWtHEccwYk2sx7I+ltM2+\n/PjFR3Vdkgha18YZdYAB6nrpMN+XhOIsO7ROGiO1USwOpe6UU4wHHz58QBBCA+AYD8bDpq6V80Kb\npJesL1fO6/EoiNJghoYra2Ma9Q7OS9FcvLkK4myxXg57/VF/EsaRUgpCXNZVP+k5bpbL+enh9JOP\nnh4dTwhnf/+LXxDZXa3mSRpAAFTb9bMIiK43HhGiIIIs4AAAznmxM8B7xABDYdcK3UlvMHAMYXS/\ns/5eh/ltY8xvTOvOWhPFrOva8TT78U8+PjicUI4YC4ajjAbPy6a8u7t13vwP/+pfrJeb169fJ0m2\nWm/m8ztrYNd1WZZhBBAlGFN871Y0wjmNEEqSpGvlN1+/OZgNJqPxZDIxzg6y1DiEjXEONJ24D0AJ\nJY2WVpuAYA8ADThC3pjvhH5tvbYGAEAI0VoaYygmlpD71eX9kS9C6L7qXilzf94AAHAQOAiAtc5Y\n7z0jFDN6rzhlvbQsS5aGZ8+eg4istiuEUMAZAjhkoQPAGh9AbJgryyKgTGuthcmyvtTq9vZmMBhV\n+T6kfL1e313fHB4ejscjLTrp9pSTKADWCAy9NzZOopj3tvNtRBPi+CbfDn40Wq7WrZZBEu2V/OjH\nP/rw/j205uriMt/cHYwnshEBAtZ1ymLICEEYQ+IN0Ea1rVJSxlHqnHMWGu1a1SIAgyB2DnuPlAKQ\n4FaIrusQIgTfw78YgLaTmhDinLUeWu/CKFVKt60IAj0ajbI01Urt8gXGmHMuREMIQZAYrR0gSrdR\nFFhrKaK73Q44r40kBAGjIIQYecpQJ1rvJWQcYocxJoRMD2ZG6aqqlNHOeWMMhHBf5sgBwjDF6PTg\n6Ntff/knB//MYIoJ6w9S2ewdUgBhwoP7s/8kSQPKjDH7dR7E4dnpSZHvndHO6DAMDw8PAQBpFiMP\nCCG9fn1fx9yIrmnbIIqCKEYQ39O19vuSEAIh5hyKrmWMGGN4HBTVMi8L4BywLgxoXe2GAR9EkeXq\njhnKxPmnP/wPf/eLw5PjAdPCCBoG+6pLo4P5fGuVSEPuLPzok4ef/PApgSbfbWwoEKVOa0coT7Ao\nilYYRLDoqov9MhwOWgpGw9ns+ChffdNjYd0KgJFp265pAUCiVRhjQFFVNXGcLhYLGuHXX/7ns9OH\nCloBuyAIszQwWgb91Fj7tz//Xwmjk/7QU1N3TmrrsNfeRL14vl6YWo2no/HRg7eX18ezcdN2nbFJ\nbyqE2O6KV99+i6Cfjmazw8Nnn3+St9X1evH66uJwfExF8eHDh6+//CaOY4aJ1ypJEu+tR3A8nVhv\n9nUppaCUjg+mF+8/QAyOT2ZdB4ajtKoqAhENQRCFAADv47quCSP7ohgMBmmabrdbghEn8WR4eH15\nGbMesUBHvchYXbRFmEWT4SjPc8bJfD5njEwnI2vlYn2LKGCEK2c1QJxQ7a3DDmJvrQ4j3rZt23aY\ngldvvvns80+++Pri4fCsbkvl5Lg3gQBJ1SRx3xjTH6T7uivXddYb550sOx15ko1H2CHg/fToZL28\noWHQdtpDxwL3yccf5Zvtbld8++plFqaya6n3WZYhaQ5Gs7woN7uyKNsffPaph9hjku/3lJJWd/E4\nrAT99vJlvtn++Z/9k14vefHR47u7JY5C2bXD4aBh9d/8za8Ppo9HvQkjcF+LosiVUsB7hJCSQluL\n7sefVN7eN0n7709Ef3uy//ZBqPeeEKKMRAg+eHACoAVQZ1mPBqHzXZzwP/rjn0jVcYLHo8FwGIxn\ngdb6aJ8GkYOQKGkIhpwzAGBZ1gghAFzdFEEQBDyBkHit21JfNIuHZ9tH5ycWWMpDY5GW2lp7L0wT\nAhhjDBMeME6JUgoAQCknzPpGWQ8gRsB+h6+6F44I/i8q072Tx3t/jzJGCDgHEULO+3tApnYWWIsA\n5JR1xjjn7puGeBwMpxPI0GKzlkoOBgPGAiGkp0Arra3LskxZVVVdkCVNW7AgssCcnj549/pNUdWD\nXn+/y09PT9+/eWuUbus25IEsOSZkMc8JoXEQ0xAB7bIo3RTrcT9abVfjyXi9nF+8/zAbTo0oOu8M\nfDA96WtrolkMoP/42YvX376sV1vnXNm1TFFX6YjxQZyqRjSigxDWrlHapsP+3XJtrQ2CQDXKOdcp\nCQAIoggABBB1ABjrRddaawOOoygAzkupGQugAdooo7S2RkrJOTdxRCklAKzX6+FwyBjzHkDkMSFS\nd85qq5FSyiAFHMQYWw2cBcQB51xAaVU23mNnAcSUU4QguX8YO+cgJgT4uq7rukGUcM6d0R6COAhl\nK0KIf/4f/9OLP/6jYX/kgemPxrbZA+c58m1ZUcaSMDFa5nmOMdaiW9zOHz96JLrOexsn4Wab93o9\nY71ROuSQhyELgt5gkPT9ZpsLIYzznAUY4+uLS+mch+hgRjxQLKCIIgdB3ba7bW6kiiICvfJWlPv8\n7MnDg8no7m4OnVVtwwj4/T/86eVyudoUmHjjVKeV1hYic/pg+uzxg08enRJCynzrnXPGeodkZ7wH\nuqtwELROKWiMBcs8dwRjbfeb7Y8/+XxTbOe7ZRb2KlFjRqXqHAr3+z1GPAioaLrbzergZNwf9t+8\neXM6O/eVORkf5PtStK3T6pOPnveno3/z//rX/TS7/HDRDMpHJw+aum5l3VhggD8+PvzPX/7i48+e\nx4NefzL8+s0bg+m+3a2q8uHDh3eb2yqvHEKPzh//+Z/9ydMXz//Xn/9sNun9f/7dvz06OuJp+O3r\nlzfXt9PTmayFbMVoNCiKoj8azCI+mAzX67X1XhrdHw0vLy8Pjw8o5cvlMkniuq6t10EYlF3ZS3pl\nWfbjXpgMgzC+vr5uuraXpqPxsGuFVV4pk2R9bywZjXpFUShlhv2RtXY+vyOEeOuUFBjxR0dPIEHX\n8xsHQBRF1lqjkZRNFNI4ZEIJ2co4yjAl/UHStq3D/m9+9neE4bYzDmCpALCgqHYYeALA/PI9hqcE\n81F/vC3q4+PeZNTL8yJg4cNHD16/fPXFV78yWiBPHp6dAy9vbubTTvb7favw25t5wboA007UcdLb\n51WnLKY4i1MMYLEpqqY6Oj3KkrQo8861SX86mPX2u/3p8wffXnw7HU92+T4dxge90buLDzevr4I0\n/rM//WdNpza7fdQfu73ZbtYEEtkIhrBD0BkNMYbOIwA9JN55az1C/j6t+o8E999SaAillMHIGPXm\n9Yfr68t/9S//KUOhsyaMUtFpTlEUpJSAps6NVZSY3XaFMT4+HBrjvYNaa+eNaDVn95ZeNxpmCBLr\nkLOwamScDop8u1xsPcQ8DBgn2LO6EJTSpmnLsuxnPYQQJNhBBBAECEptvHYQYu281MYD5BH0ENr7\nHjDnLLDWWoSAvX/l3L1MLIT4DqFjrQfIOquUMcYQDxlllFLjoZRSawkAGI7GloLlbqOgCZKoMwYR\nCyDclwXnQRRFZV0jDJxRm9USYoAJ5CG7urrEjBweHm1X67SX7Hb7ycGEYrzNt4wxKWyQRN40mOAi\n32OIjg4Pb3c3jZCTMZ3NDqMoopQ4o6syPziYKKUuL98rI3uTUec0C+iXF99mkxSnfDG/DaJBRLio\nau18C2GLAIi5c25XlADhdpcbD4zxsDMCKIyxMspaW7VlGsUIQsaYAdAjiBABCECMMMXQaG0MRNB5\nywlnGDjnNpstKyvGGEY8iqKuU13XYYwYYwGnzjkEEABAqc5bEEVRFESEYuQdBjDgAUFYtC0jFCCk\nlIGcNqLBAN7/o3VdW9d1VVVBHGEAOKcSOABc3VZe6mE/u17effGzn332g8/vOxh4nOKQB8AiAFtR\nl2XZ6/WyLIvjyGjJGJFtY6zq9dP9fo8QKJs6i1PrfdvJuq6yrAcAKKtmt9tDCM9OH6xWq+FoPB5P\nF5vt3XqrpZlMhv1B0rT1aHx0OZ+3TQMhhs7GIUdAD3rB2fl0OOi/evled8xrvr3LBUH7u2sacERw\nL+w11RwTmPWC3oA9fHwAnX776m0cJpTSYt+URZtlmXMuwf5udbNp68YazNlkMpNCdWUzHg1/8cUv\nm6ahMb0pVohiBH0NOgccGwaikghjzMioN5yvrgeHycOnDze3i0k2cA5oYJq2GPb6PI3/9mc/s87z\nOJ4cH0EIfvXqK4j8cDw4OHz86tUrg+0f/9kfXtx8WH1YDovV42enb16+c1r1suTy7Uun7V/+kz9/\n8ezjo4Pj6dHk3/3H//CzX/zD2bNnZ+eP1+tlHO3W+5WB2kK3KTYUszBIKYg67MNBcnRw0LXtvizH\n40kcxI/OHllrq6JMwh4CAAGUJCkAACJg7m/h1GNMqrZIhxmngZQy5nGSJJ2Qdb2P08h7QoA3lOA0\njLx1yELgAIbUATvqT8I4vL1Z8pD1kgEAoBHt6enZhw9vrMWz6WFR7igPOCSdtsYpChHwCGH64Pz8\n+vr64uIKQoQwb2qDCMx6vU4rFmKpjLW0bfzp5IAhgANWWJlF2W57R5kviuX08FgK9erDu6rcnz84\nrDutdhXw0Hlc1B3qB6Lt9q/e95IU4TDi0eNRWJbl+v3NYDy4fvmeMEw4HAwG3HtAmA6CIAj6/Swv\ndovd3bPBM4VUNh5bHC9W+aNHR1134XUJDFvebpVQEQ0ANEJogrF3hjDSCmethZ5ACJGH34dLvyf3\n/rbl0XvPWKCkUUoGQaB0W9fVu/e3Zw8eU+aMMhxTj2Bd154jirHqjNMgi/vr9RY6iAGqmxZj7C1E\nwAWUEOQoxZSSuhbeUy1N27YIEUz5ZrfrOpWmKaXUaWikiqIYQlgURS9OgLaUB8A6pQFEBGGvjDXO\nWmsBhA76+x2GNvduS6etM0bd/wpN0xhjKOEAgK7r7tE00HrvjTL6ftwTFiCCAYLQfUdW4lEIMQAY\nccqsQ1VTcM4ttYwTqQRwDjgjm4oxpjoZRjQKIwDhZrUuiupwOqvy7fLujlHKMI3CyFpDMUkC3ktY\n17VHx6P9rggjZrRs2xZBNotn3IXDbFyKZrOrpMcxC9frXUBwFqeyBtagg4PTPM+lVHlXZmk0nIxV\nqzvtsgenhDHrjdrnccjSONm/fBXRgCMGy5Z1FhhnkHfOME6cQ6pzkGCCMCZEys57SyklHCGKIfKM\nUe8BYNg7aIxmmHhny30xHY+B9i0SUEGPPMUwChMIfdM0BAEjPaXYA0soRQhBBJToCEFBgDmDzpmA\nYwBcEBDRFaID0NL7AJRSSimNEErThFJqtNRad12rnfVaQQO01uPx8OLq5o3zH//OZ2E/Nk73+wPb\n1Vh1PYwtsPPF3aOzB+PR8M3rl7JtxoM+RXi1WkBEeJxEaeS911rXZSWEEKJzzr19+76pRZYkupPD\n4bCpBUDQGBPxoKqKw+Oj2WzadhI4sN8VVjuCsGybg+E4Cej50UHEfFuXddO10rOop5RarzZH/b6g\nLcHcOQZBNBqNsNe7fT5fbOaXF9PxuOtqmbcIOM5wvdtqI9vaeu+VMsPx6Ha13G42zz7+SALsWby4\nvqQYZcMR5sFml+fVfnI6W6/Xw0EqiU77SVnuq64KM/Jh/uYP/uSPXn34dcyDwezQoXaSjVMe/vXP\n/xbh4OTpo7xcRwfhq7evWYxPTx68u7waPXzomVOgU15J3aVpPB6OvPeHB9mLJy8W13f/w3/3r37y\nw59s17tff/FFvoNvbj9cz28BQO9fvTPOAgvevn6zLfY//sHvxGGSb9fW2rgX0zSIemln9OWHC9G0\nomp9z60Wa+D8fr/LsmzY72+322rfsJAxxqBHGNMoSoTs+v2AeJomcVM22hqAAacUAINQ0HWtUZaE\nnHPCt6tNxCJGQ+2kFC1hPE65tfq+FEhXHSGkKYomS7Mozkt9d7dEBDoArHZd03EaIBxn/aF2crcv\nhRBBwHvDAYCw0T6m1CGirSNRVHcyCFIaQhKmLKReNkHau1qsAhYyxoJ0MF/chHGEGH/x+ecU+9cv\nX4VREsVBI9csDEjsjw5m+Wo/nIyd1NvtFjnbNe1oOEniqD8Y5HUxGGday8ur+fTgCBA2Xy6DiPUH\nWTYe7mWtHa0b6TB0UH24eDkYJsgD4uL1bQktAM4wQg1mzncQofvbGHjlHIAQIoyd+06P/l6E+e0D\nVQCAlA2EmAUUEchJ4Lx6+fLlH/3BT+MowZTkeR7HcS9Ji6IQTjLGtSyXdytCiHdOS00JklIp1Tnn\njHEQQmV10zRa2ziJV8u1ss7pDgK/We+uLue/+3u/wwj3znRakbZpmhp4t9tsVN2cnJyESeygM8YY\nD4zzjZCtENZ6q7X31lvrtMEYE4uNURABD74r/4MQYnTfNIa9d8YYRqiSUmvrrOeUsSBwAJRtc58C\nD8OQMeIgyHrJvmtU2/lWAwel9TAMZd12dTUejyfDrG47DFGAuZFWd+bxo6dd1zVVXW1z24ksyQa9\nwfX1NXAupLSXpBb4tjFagTjOtFbO+VevX5+dnhdFVTV11E+ury8nB7MkjDBEURCOsrSu60Ece++c\nkv1+mqZpGATv3nyrlfWMJONhpy1nqGlkZ9R6fvfk0eODB0feuUF/pIX0yjVVW96slVJxlHjnBCTW\ngSAOCWMpxphR5wzCPg65Uh2ALo4ShqBzzhLrIDDeoYjrgCmMsoS3tfDaEZoobSgmnARSSim7Tgjv\nPYTeA9t1nTcaQu4cEEIShBnjEEKMKPCmqirgGs5CSkiaJEII5wzExFoLrNFKOmuBNxDCVlQEMynl\n4WC0v739omv/9F/+8xZ65bzzXnnfbNdHpydhFF3e3tRN9cmnn5ZFvtysTk5OsA86KSEAdVHmeU4I\ndc4Rggkh8/n83bt3Vdn85Pd+en19TSmlPKpEdT1fjidHshWDXjabji8ubqu6rapGax1yLrUPKIvD\nIGAUSkMpNEpD4gF3u2o3mgzLovaQH8zOr64XcZTtdrss4ftdjr5+uy+X0pnTg6OqqbM0Lpp2l2+s\ntbkl2CHs0fz11WAwIAH55t3Fj37/d7/+4ksLwXg2eXd186Mf/LiwOt8ujrMs6kyUDapGGQCGk2lV\n8awXPTg7nt9d94YDQPFuWzAcSmlW88uQsphIHvXFqopR9OmnH68Wi+Gk31o5v/3gfLdczoWQ/7v/\n/n8rpfz7v//7p0+fCicPzo8hBu9u3i/Wy9vbu02+v7y6efrxp0KIpqmqSgRBwDknCB0dHrAkurm7\nBRw/PDrHABKL85sFISRJkiAIxmN2c3MzGgyFEFmSJFFQ7nPnTBCwbZ4zRjjnaRr1eknXdVJrHga7\n3a5t20E2YAHf7XIOYciDkARKKZLE2fu3753SrW6cqzwAhLNOy4T3uqI2zsYs1EZApEfjlFBvCoGA\nI4RXoomSyW69iHlQ7rYmUIQDQGFd7r13VhsMYLkve/0g4Olut6GUxvFwu93l+8vxcHJ9d+uBGU/6\njDGt7PMnjxaLlTdqmEaDUU8Iv1uvPvn4Rfw7v3t5fS1UFQ/COI57/UjU5Xa7BEYbIZ0znKXpoN8f\njFarldTi5MGxsrJqhIFktS8Z502na9UlWWqdu7m5Yb4ZTw82+TXmRrmmbGzdmqBCxU56B53XjEYo\nyZpWQ4KMk5Bg7AnwGNjvy5IQhsjD/2qmf6/PEIogQMY5pTuMMQ+CuhHbPD88mCzXC86p1pKH8WA8\n2u93ZVMihDinRZkraSDE2hjOmfXQa8I4llIqKSGBiDAhu7KuPCIeQOS9lP71t+8///RTQrwzynsP\n8XfM3pgH6/ldzII0ThzBWluttDLfKewQeAQ9sE5r5YwlGOvfHBVoLSGCYRi2baelstZCiCGE3t7b\nKJ1zjlPKGIMQKmM6pQL2HTMLIUQ5r+u6bCvCSBxwxrmBHjM6OZgJIbyDFDPkO4bgerkZDMdambv5\nMgo49mBdFIwGVVmXRVUV9Wg8qJsa5mgwPnSmrjoZJ2GvP2raMu0ltSgsc57ZxfbOAt1LQ+b9erEk\n2mPndNsejE88hZDauB/iwN2uL5WXlWwp5WqnKWX9JDaQQuUfP3gEnQ/DcLlZOgYp5bVon372dA69\nFh3zBDkfhlwISTHpuk5W1cHBgfuOJOSCILDaAe9DyBHH2tmya7U1yWjAerEGYNsUAeWO4cubayvt\n08ePZd3eY0mapgHIG2Ks9Zz6iAeUUtkZBCAOqTGeQKiMpogFNHRWYQScM7JV3mrKmbW2rSsCkdWG\nUwIQLfcF8ZhgbD3w2mZhfHs9/9UvfvGDP/79oipSTjFhSZIgjGtRP//oo6v376/nNwGnT549Z4xh\njDGiddsIIbMkzfPcAc/iBEL46tWrruuG41GappSHEMLlajudTpVxRVn3ej3RVA8fPry+3uZFI5S2\nzmlnEULGm/u+6c0WaN0WVX3f2js6GG/yuhI6RQPVQtVphD2jNBsPLUR51wFMRwdHgLDOANL5urbb\nvY3jGAcBpSyJM+fA7PBgs1lN0/CLL9/NesOrO/Hlty8fPDj7+1/8MiTBn/z0n/zslz+7u1xPp9PJ\ncMQgRw61lRC1yHdVp6s07q8u9tgzo4G2NskS0XTFenE8HjrpTQ09hsVNdStvd/utNXg8Hu+2W2f9\n5YdrrWWe729vbx3Dv/j6VydHh9/MX+eb3GksBehNDhbrVdVUo+OZnN95609Ojrb7jVTN3/3873u9\nPosCGof79RYol0XxerkiDCMCKSaT6TSJY21VEAcOuiRJUIeltv0epJQC6NI0WyzuhsNR3TaEOePs\ncDzKkh7DBMJ+tc3vlosgCJyxRAiFIQHAeaP7vZ7DQBgFrC3K2lrAg9g4aA2UsgvDEENCEEAIBEGQ\nV4VSKk1TIPUgTbTpmjavZRuGPGC866RRLgkzAryXGFjaaSlqg5HnyKxur8IEUwJ0rbGHR4Ok2SyL\nm5telvyf/0//x19/84t//W/+LaW97d26bWQ/yfKqFT7pWjAvV03RIktka6uqDULSFAVBbNGthv3+\nzV394d2FNgJCAKPAF2I0GlFIAYDlZp+EYTI+1IS3oirrajabzed3lLh+b7yY3263DfSQUIQRshZC\nRLz3xlutHUEQIWSNh9+pMQh48NtSzG9ZZQD0AEAEvCcscM5QjGTX/M3f/N2TR2fGGBoQ5yyxljDO\nglAX+7psAKTAM2MM8M5YYJ0GAEMCv+OoU+ahg4gATyBl2BJnJKPcdvbqcv7m5cXZo6O83K3XmzhN\ntNab5er3P/vh9Zv3++1uNpuRJAwYl9p0SlnvvPfGGKuNNgohxDhRynRdC6BnjNzn2u/nltbWWm/M\nd43AbSe0MhgghIjRzmjpoMOUQIgoJQghSiljbLVdoJB55w8ODvZVyThFjDRCUB5gTK5u7yKGkQdR\nFFFMC9mW+0pRQQk6ODnVWu93+2pfD8bj3ngIOXXeA9QAKsuyKFswNIPRYAAhHI8my83aKD0cTSjl\nTS3fv786OzrVUgHOa7VYbHajyUDX6vW71ywkg8Eg64X9XiJKsc/rrD+ZX1w9evZ8k+82ZYEQPDo+\nCJLIWqtU44376le/4lEYRzHTnnvsms5rRaBTWjNKm7p2wA4GmXU6DhMfwN16J/shwUgoGYRRI6UW\nHSHEAc/j3sF09vbbV7PZgZWdtRpz1Ioq5AF00HsXBIEQgmJ2f3TBIGWc1K0OCPWM3cMkopgDTe41\neiGFc66T7X3Y1XlHKfbWVmWNPSCEYoAc8Bp7oEEUhr/6xa9f/O6PrYECaCOV6pqD8NDhuG6bkwen\nH968Vkr1BwNMSF21YRgyQlGMxuNhmsUAwvn17cXFhdRqPJk8ePBISMmCEGOMCOw6gRAaDvtp2mua\n6uz0nOEvLm4WnVKIYKkU9lpKqbXZ70trrXfBalu7eKClg4AhzNMsgKBzvvGg6w/7SZYtVneQM+Pa\n4fjk4m7rtFpdX2MMMca98XBwfFzf3ilpDQJJ1n87vzg6OFws5hiB99uSJfEA416UaSjOJqcBpCkM\n2Ww8GPQ4xzED6/VykEXvPrzNsuzR+WOhdI5aRAMjm0GvJ7oqiYNVTTd5s7jbpP1JVYi3r5afP//p\n5k4fzWbAuYQ6EIByXwFkrVVSVREJdCXvrm9v7zYEEOBAFoXr66u7fPtP/umfrou8PxuNssF+l9fl\nHmH30YNHypiGdFEvLrvWGZ83rY3D3rBXFAXnQX63arpm0EvrpkqTGJGgbksPcJIOoyjI97vbu2Un\nO7VcY4zjOOac53kOAIiCuCpLhz1LgiTLjNIkz3MHrCeeRfzz3//BxdVlOb8JE6Y84QF1xlVdWzfC\nOZeYTuo7I4x02peC0WC/34cMEwKscYWoI+gpCh4cPdpsFwHFdddY5AFAhJhBFkiB1tulh+3ZwxOh\n5PL2ztHg7MEDDF0Xybaxja7/+Ce//6//6t++e/f+2fOPqr0Qldhtd5OjA2gDVylLdJjwsl0kQYYx\nAgCm2fDJ6ePXr1+ePXn81VdfAQDXu61Q8gc//IGx3Wp+l9Ho0emT+eLSW0sI4zxQXkGF0jBYLi+b\n2jw4eYhsuLi+NbVKg8RbjDD2UHqPjZXWA+igs8Q5B7CHGENIvPfAg+8tJR4CCCFA8PvmXIiRN5oQ\nZC323nIevn795t3btw8fnm3zHeXccqCFoJykvWSzXu52O3jvUNTaWuO9BxgrjRDEzklnnPUuSFnU\nD19MzppGWGBV17jaJQi++vbvOvlwV5f7vE6igCBQ7HcYw4Ojw1YI773TxiFknNfWaeMQwcAajx0B\nqGmEMcZb5BzquhZ46B2yzgAEMSXWC4hQJyRCxBtrwXfGGgidc8AYFUT3NzkGFMKYagIgMlEaRP2s\nkd2mKCFGaRI3opVCaNABB5XoDsaHyujAe0bpo96RNX51txTOJUHoOo084XE2PTlpykKUdRKGEU6T\n2JRV24+SmEQ3F/NeNrh+c8URk0p2WPT6PYIwEZoKFTgQw2D08BNt1PJ6dfr4DGZIGikWIpoG+7LY\nl+VgMBoMe1prp4XTSumGx6GQsjMaY9yIhoUBZExJBaQBjF5/uHx4fJbQnhW6hylFMIijoi0cdMP+\ngEDUdWo0nSAPvbUBIXlV0oA/eP5ksy/aTrSlnJuNhvSri6temqAw5N5zyqxRTdeykPnahjQ2QrZK\nUYoDxiCIGKFKdcYo70MLLEAQCOMR7LrOaeOdAc4jAIxTRivkoVLKdBI6H8dpVVXee4C8U3KaDr3b\nv/vi2yc/eFE3e4TCVe2jTfHodFLm606xJ0+eGaWBQbJwhAYsCFe7dS1aI81+t8/ibN90V7erQX8C\nIby9vXn48LG3blcU/TS7XS6S4ZiRlADYVeLh0zMI7Ha3ABZjSqUUWRAgjxxA67JDKNJWdx5bA1sJ\nomi4q7qq3B4eTpDXXrZesLtif/LwjCK822yrpt6t1rPh+OT4Ydu2WuvNojw5egxpgK0PSZTfbsMg\nWl4uGtmmvWR3cZf2B1lv0DVOK7C5WyeM9T0EQaYqyVnYlXUvS9quydL42dPHCLL1rnAA7ovi0YNT\nLdt9Wc8O+k8f/k6+yX/8yaddI0PC/vB3f/T6/avhuMeIv7m51Vr3h0NRC4ctQmR+t3QMn5+d5WWX\nxAOjAUUEIviHf/knX776erNfOWubfRl4tNts+8NhK7tOqfF0mhjdNV2AiKceEXJ0NoEJk3UFvH1w\nflrvC855JxpjLHAGQliVBWMcAscp152PSIooUkrt85pSzFlYlY33ft8Uj58+FkJI0TVKoCAI4jgO\no1hI9c03r7d5gTD1kDrntTbOuaZpMET9rBcE0X5fNarzABqpRdGkLNat6WpZlI3VXArSSw/Wq9JY\nbhQlOGE4yevdrtqU9QqQKojVo2cHo4Nss9vAMOX9wV//7G8XxSZvy7/75T/84Cc/vbzdvP7m20Ga\nnp4cinZ/e/uBILy8Xq1vd5PRQDSdbM3xwXnbth7Y09MTRtjPvvrl7Xb19ZtXT54/I5wdTA/Pjh5c\nvn7vjD9/cFblu69+/Yt+FM36I2jcar6sym6f12GQjvuTSW8UoSBGkalkgEPgIIT/hceLIcHgPnxO\nKKWEkO/16O/VGPBfPgF/89p763hAnXPQ3Y97iBBumkYpwxijlJb74j4NdO+6wxg7563zzgPvEQAY\neEQhrJqq7loHPEZQd8IYE4/6pMd7B+nR42nvgCcDtC1uX73+anF7vVzNb24usiyp26pq6idPn0JK\ntLPGO22NAwhA/JsWbuQRtgAihAGAAECM6L3UCwAyynqLMCSUcGNs13VtWwsljDEYkfveSGs1QPD+\nzxJQRjELCSMAWm1IEKIw3IkWR9QSv9xujHNRkkwmEwg9Y2xzt9ONxZYmUeosyLfbMAqct9t83bRl\nsd2EAMtd1e5qTqM4ztrNSu33McB3by8Os/FhNJmyQWZjI4xvTf7htrleM2ESSJ1QSRSHKMGOByDJ\nSH/zfpua7DA55Sa9eLO1kg+zWcjial8Vu72olRLm0ekTCmlIWRLwKt8Nk6zZlSEMppMD40FZNZOj\nA+kUDiiJqKdeOlPX5SjJQsogRlXXGu+8MrJtnbXWO+Usz5LruwUJedrvdV7crq83xbpo90EaVlLu\nhQBRoDyEmCNPrHZKKW0NhJ4gZK2uqqJuK+ONlCIv87Is8+1GmK5RrfLaQKuMllJLqdtWGWm9hxSz\nMOQ8oE1beKA90NbaMAwxhsN+7/LdOy26kHEI4enpqbPAWTwaHnqLgQOPHp0734FAhxlpmzzhZNrr\n9XspIFhh0JY5Q74qd4zig4ODsiyjKI6jTEmjlBn2hlHA+mkyv70+mM6cc7ISCQ9NZzClmAfCo9aC\nxkCt0Gq1L2qxbxuNPGYkTWMIvRbi0dnZ8ezw5OAwpCyi/KuvvgIAEA0YpCEJqqJuqnYyPnz27OOb\n64UuSmTsdr0KAta09WJ+M41Ttc5nvTG1gDhnpSyK/Ho134hq2dadt08/fn6f6sg329lw+vT8ye3l\nfLWeN83GO4GQIsyKrhgN4j/+w9/zrZz1R95qgP1wMlisLvsJP5r0tpvV+YMHzx49YQiHhJ8ePPjs\n4x+myfhoeMZceDSaPTw5keXeax0xfne1IBBdvHtPMP7oo4+0s0m/BxgNe2kl2ov37999+c0Xf/W3\nxXw5YFGWZVd385u72/F0RCmtqoYQVtftZDwDEDrnlsslAEBpvdvvgjgEHK3yddM0951fxrgoSgBA\n+22VRn1goKi6tmgpYiQM+Xy3iaJoPJliztuy5FFaN03bts5aY1QcxBAhY4xxDiMa97OmrETVOmVB\n55AhhHIDEQKaUuyR3263aS9uRGmdnE0PlQkH2cCZ9uzo5Isvf1ms1fJ2vpjLF08O27IDgjc7U5XF\nP//Tfz4ej//h539rOpiejj+8u+NBP6R4v8u11qMsGSaJ6E1vF3fnj897vQEPAgf8mw8XFENjdFkX\nZVM753pZX4oO9YZ11Va7nVNy0O/3+sn17WUYRwDSuuoAoLe389MHBwj7ME6bnbq5vo1odk9xksBJ\npTwAEGKCkAMWge+6rf1vRjr0wN3jAcE/vrxzHgCMiNMOQowgAR4lcTYZz4y1QRBIKa3VbVu3bS26\nFgKMEbXQQuiBB8Ab7Tyw3mvprIUQUEoYwjgg0shNua9dqw2LcRCkE73dZ4O4rStEcBDx7X5btCXQ\nflPuHxw/4EG4LYrj7KRp6qbp6rqR2mitAUT3qdKuEc454D0hNE361hrR1s5476DRjhBaFMW96EQI\nIYQYY6TUALggCCBGjDFMCaIMQuA9pIyWSmgHbNsWZfXk4aMwjN5+eA8sVkKzJIpZDIlXlepqVZcC\nQ+KAD3iolRz0sohGoukwA7YUdaU4IzTA3Ln+8ED59fNnJ1+YX2upTNftawkNgMY8e/DQWr3dbpmn\n2KBqJ5BlN9UNDfh+X05H46rIDw8H63Je6y2hAmM0nR7mxR46wmmQRunHzz+1upO1BNo2eUE9JA6E\ngKUsqda5LJokjhEL8rrcGhEHIQqwWgrTCOdtFidlUQdBgIxTtfAMQAvzPIcEy6bbdOWy3sW9rNcP\nOINJdOC0LYoir0UWxYgSihD1WLQaWONDBCzAEIScIuiVVkp3xobeWwQg5xwhJN13+hiASLfeWUMw\nhhACj1QnAQBtW1tnCCEAe4Ix9jCigWxNXRYgpMvr68Oz47qqAsYOhuO/+c//8OT8bDYdd10zv70e\n9GNOIcGuVrqqVZb10jA7HMnZbGaraphl8/mcYBBHwd1itd1u3r17f3R89uD0vNwXz599DJ1n16xp\nqxcvXvy7v/m5ct54QBHplGuBLvc6i/Aeg+WuJWG2aRsd8qyfzhdXGMN8twPWEQBF0yEAt5vN86fP\n1uu1MSZLUmn0cDq5vVv+7IsvfvTDHxeNMFg7ozohDyfTarUeR7GuGlOLaDo4PJxd3lzvi8XTj55e\nXFw2xIcH4+3t8u3VRbUvTo6PT48f7HdFmqYRT4q6piSG0EOni12tFQyi+K//48+vL2+8sZTwKIqK\n8urk+GFdl+v1djKafnj/Pt/soij6vd///bvlAgR4mA7armm9Nkq0bTsc9cuiJYTc3t5CZp8/f0YI\nDcOwaZqmbvvj4Xg2JRC/f/327OhomA7mizt3c9U5kwyzg/G4n/SuVvv19YIjMhgM8uUWY7ir106I\n0fGpcdYCD6z5+Pkzb7TRQAgxHI4Bgm9fv/nhD3+Y53lTVnfdsq5rRnCYRWhX7RwGpWz3ogGUaQgL\nIQohGOGEEOQBhD7k1GrtjFfKiFYqZSDAlPJi3xjlISAEMS0EBDbfLcKYGq8s1JSjot5YDWRrX339\nvsrFqD+yWlT1bjSOyrv9br4bxNnhaOK1AUarun384NF4PJ3P51XXxr0sSGJlvbGIs+Rvf/GLkwen\nhAXffvNqu9xdX86v3l10RTUK4pPxBBn38uXLphOLzdpCL2TX7KtHD86mkzHynlLadmKxWkOAbN25\nrpsMBpvVGgIQ0OBXv/yq6xSwCHoEIEYIEc4YYx4A774T1r9vv/uOMIDQb6/if9vtDqHHGDtz3+8B\n7rP7iBCpNcZUSnmPll6vFmVZ1nW93W67rvO/AQIjRAimBFMljfeeYsIZgwRnw0GU9RhjyXgCgrjV\nkMfj0/NPpCIYRQxHPE2FtQYhTzFkJN/v71bL3W7nvVNKdV2rtTRKWq2M1fd9BVEac861NYQwAFDb\nNPcBXYIhRggA0DQNxCQMY4zpfdUgAA5jTBhljBFGOGeIExwQDS3kFDFivdOiizF78+1rYMAwHgIJ\nukJu5xukEfWYx3QyHSVJVFQlI7TIS6ttgIPr9zcPDk/TJMEO2taaRkcoLDc5CVg2GpA4OD57cHU3\nF1o/ePjoxcefzLLDLBqcnT/DYbwu8qu7+Xa7fvXty/e3iyAbv/j8J7X0/eE0yWIW4ihFOOrCHtRA\nDvqjKEohxGEQAKvmNze9pPf29XuncRYOFtfLNIzrfaFLUa33xONhf5TEvU6aRioD4Gg2ibK0Eu06\n31lr83xf1nUjO9sZUbWE8PF4eng4m4xHZ6dHh7Nx2e6VbWYHgzAi+2LrsCt1U/sOJZxEAcbYGCeE\nkEY65+qy6oRCCBlrWyGUtm0nmkbUdVtXbVuLtu06oTRwDjkHLEJASbHf7+u6ZIxxzhkj9/gjxphz\nlnE07MUxpa+/+krV9dHBobb2cn6bV9VysyWMCiGklHGShSwyQmMAz08OD8ZDqCSWXbm4SznvxdGT\nx2dxGHRtxSjOt+s//dN/EoXp4eHxdDQOKGubKksSKcWf/skfGQms9UEQAYC01gAgrfw+b/fCbBsp\nra/brshL5xyk5PHHz0kY3q42kLK2bXe7XZ7nxhjRNZ3tDLYSml1bsTT6kz/7072oJ0cHQZwNJpMf\n/uTHd3d3g/FosV5d3s1pGlkA66o11g8mYxxyFrAgCAIaOITKtp0cHFjnm1olcW9f1I1Q+72ZTR52\nLTAa1ZVsaqUNUR3sDU6bFigBVGubUjAeSYgbD5quOTqZffb5i/Ozg2K/yLe3ris5sSywECkhGkpZ\np5y2XhrZG6affPKJ1lqJ7uLNO6hMl9d63+Y3i3ZfTkajWnSaosPzBzyOjo6OkINGqtVisVtuKUCD\nrN+UNQZYKWO8mx0d9obZ2fnpdDyUSlxdXRljzh897A8HbSfiOH76/NnJyUnTtG0rGGbeeCNdXbTk\n0Wiao2K53rq22Xe3zHnRyXEQG+wIYhTBJI6scgkPrXYWEGgBp4FzjmHivRetCIIojTOxb3RjFZS6\nqh0Ao9GoE65pqsziNxcfDkejwzAZYjAK6C5od7kYP35IcO/XX75pxYwyfbtxV3fXjx7ObudrRwxo\n13cbiwCBiOb7xgPiOf/q3cvRbJAXu4Qn2EJRFx+fP961+4CGrZanD87X2x327v3FxdHBQRYEd9c3\nTV1Y5/BrhhG/uLmCKCIep2lvs10ix6yCl28XYmdS0nfaeQiN1gA6gKBH0HiAEUSQ/ObU1AII4G/W\n5r9tlfmtdTvw3iMIIUTAQwDgvU2waapvX706OD7EHmMMvfec881mI7VsRW2dZYwBRBzU2lnnnLNe\new+sT+M44qH0RgHgIMAOoUUllVBKwijgswN80KvqVjt7NJoSTndVSz20xhto9kXe6/WEEPc/J8HQ\nQA+8RQ5CCJQ11lrvDWPUW6i1xoQg6CGyWnvOad00YRhrVSNMjZFSq3tNCWKIMeKcUcYQQhwD650G\nllLOwgiBsK3a49nMebO4uYrjTHUi4tx5s9rk49HAY5NXbZL1p3EaBNHidhmxxCqkfbfI73JVs17k\nG5BE/aptlcYXl692TQPQs81m4zwiJBTSUYD7w4PVcnezWG5329EgHQ57s9G4Fye/eHl9fXlTFkXA\nsWiKzR2+urqMB1GUHR8ffbRcbX/55bcxC3/8ox+W2+1/+o//Psp6lLPhYJyl2W679QY3tdjlm/Fw\n8ujJY4rZu5dvZ7NZHyfdvg5hsGKiBN3zT56uPlznZckNsNZ5Y8oAS4TYMLvTe7/fxQnPhrypqmTY\nL7fFN69f7jbbbNBL+oOqafg47vX75d0WOEsZM8Y0ooU0AJjU9T6OQwc8Qg5CY62V0FprvQKQYEQg\npijgFEFvjcYQREkQxVxrfY+dgBAGQeQ9aNuKAkIQSeMkgL5c3n548/6z5PM06a1X7Y9++rub27l2\n2jpXN/LD9V2c9IZZcjAcYu+LfDMZZXWzv7y60UpsNps0TdOsZwDO0sHdMgcWJkkimjaO4+Xqbjoe\nN6Iqivyzz39vFFCkHGDAeUA4U14bDKVyF8uVRSQvSopoNu5vVtvJZHa7vvvq9dvjk/PlbgcA+NFP\nf7ftms1mHcdR1ZWNbCeTyXaTp1Ei2rLe77uymhHm2uLmMnd1NxhGZHbaVGUgACewTxMTGk/A6ub2\n9OCoyUvdql5vgADupK3LknMeBIFyIIgHoYaLxSLgfL/fHpydAOCAg2WZU0tPj2dVUSS9ABEooQx6\nrD8Z5Vfzyfio3OUHk8P9fv/x848u5ldQO4hYUVQHBwdx0l+vN1mUSNntdrvDyTij4fu3H3Sne8mg\nHyWqbJAxGJIg5BLYoqwwJUkUn4wO3udvFuu1lfbBo4cf3n7IuyYbZDwKgBLj48OrDxeVVcMsKXeb\nOEudc8a71WbJAvro0SOlFETob/7ubyEAURTy+4sy7z1ptQaECqOTtNd0yhgXpjFjTDdN07SEgjRK\nFrvVqB+3WgQsIJCQkG+2Wx4H1hpjrJIaewQRX+92o8kwjiMWcCXN7XJJKYbIoyDqHR9+2G6227so\nTh3ss2i230aUcYxH17e5NlZvt5y6xWL14PhwvV+wHl9t7h4/fLJZ5FLtGwHHk9PL128fP3l4PJs6\nizfrHQ2T11c3NkC2Kp03eVNDiB+dPb4BBDlwvb7t9aNsPFputjBKyyqPh4Na6+Xd4tmT5PDhk6+/\nevXo5Oz9N7f7rYMmglAD6JVSHlgM0XdVqBh5Z61zCEIIMfyurf6/ql76L25IDyCCxgPvPWHESnNf\n4UQpWa3bq5tra3VRVc4orbXUilKqtaaUeO+cc4yRKAow1k0jWtE4AMIwTMKoFa2PmEXOGLO+W4cR\nLari6Oio1+tdzm+Pj48fP//om5ffNtb3aFgJ2e7ytm2ff/L4L//in3797cu8KMI4/p4HCT2wzkLo\nIYTOmygOvMP7vIIQJkkiugoCyDixVhtjKMXOm7ZtgfeU3q/mYRgwHvJ7F4f3DitPOQYIaO/KThye\nPqhEQzkr29pZgC2xQDWixBjvql06TOOAewQh8jd3c4rIaDRaXN/NxtPTwwe3t3c0jPLtVlc2eZBe\nX15JUX529AJLvd9Xh8dH+3WxWm7/+m//Kg0SZBUhCEM4Ggxmae98PLu4uHhzc9uXZpDCzcXF4edP\nC9Bc3m0/+uyj7W5/uSjffPvvkiwZ9bJxv3d3fXVzefP45PHBg6P3l1eD3kh1WrY6DhJKycF01krz\n7vLqo+cvpPcawvHR0c2HD+u8BMDIuqpHbdgf1n7ngO+kwIRN+0MF/NMffP7F26+bbs89fffll4xw\nQOIk6mnRHh+f5sXOex+G4WqxbNdFj8VplvhWa62RdsJITxyngbUQIKC1FVJaazmlstPIeMIZIghp\nbwGnGELnQkqs0UopBAkGgBKmlLLWMcY44c55TMl9Z1DCgny5LnZF0E+TJAUQS2MXm23I6IOzsw8f\nPtyuitFoMuj1KcZagP/5P/376WSY9ntZPDg4HGZZ/3a+8Mphj4+mx7t1kQ77nRJdK+4WC+9df5xN\nZyME7e//wU/+3X/4u3TIEALeW61d13XE2cZa4BHlQSdEHMSDXm9d52EYjibjuJ/d/epXZ48eaufL\nqimqMuRByHgWxfv1tlrnowfp7buL85MHwMFGtQFlzANKqWjbyWgc8kBKudsUWkEaBevttj/K1quV\nEYp4rJVJk3gymnTNlbEgr5qyLrQx/V6vyPdxGBxNZ/l2QzmVUp0cHedlsy2L5CAVBBgpM8jyTc4x\nm87O3727eHT6+Msv3wVBtLjb5bmlHPMgSmiUz9scVsvlkjHGGIMGv/75q/F0Alofs6QthAOecBZn\nPQJYUVeMMS1UQDhD9OZqbi30yvXiJF9vxqPRdrvNi5wKfPbwIaWYRzyJE601xXi73jVVHcfxycnJ\nZrN58+4dpbTI8+lktlosoffOGUqxh04pSepKCCUfnJ5XTbvdlYxxq8x2X/b7fUMUgiDf1FqYBjTO\nuappvMf9fp862tWqbVtCcCfMer3tDfpZr7febDKVeQ85DR8dPwQA7Lf7w8Px63fX40nKAvfm+iXF\nyenxi+vFu3fvF8+ef2R8y2jTT9Fu9QGlg+n05MsvXh6enfXZ4MM3c6v8IB3tNpvj/pQ7WyzW2qOj\ns0dJf/DXf/WfsjhxGk1GfYyA2MtmX76v7cPj07auFt6HURTEiVzuXr677I97wJPtdssA2Czmk+EI\nOkRwuFqVWmFnIQIGQUQwJJB5743zFEHv7D0V6/4k8vvh/t+2YAP3m3EPMUDwPrIPIbDW1k1LKTg7\nO3PAp1ncdUjtlZKmKhuttVLKGAuAxRgzxu73s23beuMAABZ5ElJPULXPPUHT2TDtpfrKxklPCM/D\nflEpvis8Yruy2JdFLwxff/VV07RlWWHKBqPh67fvP/n0cw+RdeC+2cMa65yzxkOERSsBQGEYQohF\nW2CMEUQQEdEZCGHXCe+tdZogHAQxhAATmEQhJvC+JRhjHGJSiioaZsGwX2+Xd8tFpwxISSc1QmS9\n3mKMgUfPn744/YvTly9fNmWFMbXGPzo/t9peX944b2TXIQtPJg+u727bvMh4lq9ukwCcnZ4QG3Kr\nm624+uri937yo9XdTZyCp49n67ubk6MTjok3XraFqvcJRz/6sz9ibWu9QcmLu2pLxrPHsykigaM0\nDPk17oQWUBkjULUXzx8+Lovq1z/71ceffDYejotd0RAm6kZUloXMI5QkWV7seRxsq+1eliCmFAQ9\nyvqDSScUj+KlaDCBP/jhp01V9EeDn//yV+T2YpjFqlpP0iwh1FhgJFNVu77bzA6mDEZQQVHVSZIm\nUWw17CxCmAZR7KXs2tbp78JiCAHjrDPGea+MU94CYwnyBCBrnYQmJCTAGCCirQeIMMq01AAATmmr\nrDfeW+8caHUHnMeIpkFyvV2t7lZjiJQ2/bNZ1W9323LUi41Ug142ItR5JDp9uVv1s+yP/+JfNvnK\nqg4ibVsjajHo9fZ59er11y8+/R0PvFGt1RpikvZ60qlxNEjSwJjuL/7Fn/2bf/83PUqAM1pbxrCR\nxugOIEICVnYVpGyb70TT3l5dfvzZR+XRrN7n4/E4y7Ivv/xSWzubjJa3c8rpZDSeDWfM0/XdihL+\n/vX7o6NjndG7+e3Z+GA8m4qqhhgVsmu7jqSxY3yfN7tl7p158fEzAMDb12/7cU+04u32TZr2AIK9\nIEiSaF8Wk9GYjshmuRokg7btbq5ux6NpyNLrbocYD9N+We6DIHMKPTp+fvHmw5XaOIveisVm02Vp\nNBlNyKTvnIHIV9XeA9e0ZRJlAY+2mw3nvJN2v20Jjvd5eXhwXBRFGCSikjzCsjNtKQIUjNLRcrO+\npwcTZQHQztrBwUCLOogjhHG+XoEt1E272VfXtSAI95Je2eS9Yao6iQAkCOlOH86OVosl8iAMwsV6\nmUQRQjgIAsRoREm439ed0EmS1lW7z0trvFE2y3oI0XJfNlWXb0qrgNOO46ApWq98syspIJxwjCkm\njEXxo2cvsqzfz4bIUuL47cXy6vX1MO3VZc1wHAb91XLf1tVsnJouB1SePhzl9XUYm+3mZnFzfTw5\nm7/bXX07/+T8c2b43fuFb+3R+IgDkvDYED2ejkajyYPT83dvX+8WC+5wnw+JRq5x42gk9+LB6MjW\nGgjzyaPnR/0R9xBKhxWypQKlMvv2tDc+gHgMINqXqBJf/+zn5XJDIaYQQOiht9gDBCF03juHEQK/\nqdD7rjIJIQih9d7/122o35Pcvf2OTKC1vk8nMU6klKenJz/9g59yTrUxEEILvvOSS226Tt6/t226\noqjatjPGKKmBMTwKhJXCdGHATg4PCAbr9er04eM/+bM/d9hZLB1Sg/EgL+owyFhAIfQIgTiO6roK\ngsBDcHR8+uHiRjlPKAcAKW2dBQj+JnNEiPceIQwhVkopYzDG1iFjvmsRMcZgjLIsjWJOKeEBDQJG\nGUYIEYooRsD51juD0MHRISeUQXx3dduLUtF0SThkOOknI1EbCrjrgCqtF6irrBTuYHSw2+ZVVb54\n+uTJk0fW61a30qmT04Of/PiHB9PZ06dPf/TjH7M4BPk+tqAPMO9sPV99dv4EtN3u9rafjbpOdc7N\nNwuFxOGDwbNn02r7Lj5N96D55ZtvXRTSQZbMhl+++uXN3deTGL04O/qDH3w+iNMAMgJgV1Vea+bZ\n7cXN//Sv/83XX/y6a2ojVRRE5a6xnTZCOqk5gkArXVUBhNTq+XazbyoPEQ4YjiM+yFb59vr6srEt\nidi377+9uruumvL1y5cfPX0RkeDuerle5daDVijKwvntUmmglb+7XH378s1ymztEjAP35EjtbKek\n1loI0VT1/WarEa00WgLTqFZopazRxniIvANamU4qiLCy9p4pJqW0RlljnANt2wKIjfXWWqN0HITz\nq2vViKqob65X1iDgmTd+uViMBv0kCk+PRodT+uJRRlHOmXr20Yvh7LTrWMCGqoPAQdFWnHuE2sGI\nYAzXy7s8z/v9/un52eRgKrVM4+APf/LDhAIthfcQE6o9cATjOEUWJlFiPWyNcRju9tuYM1VVAUTz\nDx+SgHdNe3R48uLFx73e4PDgdDI9PDk9D5PUOZT1RgCSII7LppW70ksZpdHl5rZh7te3H0wvjE6n\ndNjblOWHtxfNtly+vQ4MgK3SjXDaZHESBUHXtbPJdLNZ6U5GjDVFvt+tlWjz7W46GMVBLNuuKmu/\nKmYo5IVkpYa7jmhaF22vP5V167UKGIvjACK1K2+u59+8ef8Pm/1llKHxdDAaT7NsEgTJZHoUJ9n4\n8AGL+5glWTYxBgwGE6CharoERUQD15mubK/fXaaYBRb7SiZR6oyrqqqsi/545JEHCArZRVGgtZZS\nnp+fDwdj43zSy/K8+OU//Koum0FvuFouLy8vOaFWm6aqAsYwxk1dG2OQdOri+soC0AqNQeANAYYk\nQX+92Vf71ko7G88oJ4BC4ywAxHldVvm+2Gqt+/1+GMbr9Va02nV+u9qGcXK7Xqx3C9HurWqVbAAg\nb1++367WX/3DVzIH0+wFgVPCM6rj89nJOEyvvr44CB7oLRE5GA/Ov37zwRn0ZPrQ5eZ09lB1MM5m\nDx99enNV7Pf2Zr7d7wrXqXKz/fzzjx3Q3b4o83XblMZoB0in4Lrs3s5XXQ0W86Yt/FFvEhi3Wqz7\nvdFsfGR92h8+qBt9eHBCEd+tN/vVnWlr3WklDUTIOncfvYcQEkIIROC+c8M5b6231nsPELqffd+D\nFa13HgKHAKTEI2iBxQQq3WmpgoD/s7/8s8PpBENCEHUegftODA/hPcELYIwoY4wxUlV5nq89UCQI\njDERjwLMWyHKto6jhHj0N3/9V0Z2FIXOUsIzqTxHLPAopUnAOAv59Hi02N9KJ5RREPnxbHxzfa2l\nQh5wQoUQ1mmMMWEYQJhlfUppVRVKdQQziDgmDCLiASAMByEhFBAKCMMOWIgBxMB5DyC0DhiENEPa\nA+X8zXJ9MV96yAb9KXR8dbMDFSGKTrJxL04IRi9fvv5//uv/d1V3WS+WUqy3K+nkptpcr253efXo\n7OPTZw/X+yUJzGb/oWxu9uXd5eUl9rTDZr9bWy0H0+GXb19ND46m01khZUD5ertStnnw+IgElEVB\n3MuW+eZnP/vlcDp7/NGLD5fXv/q7L/6//4//aZwMh71Ja8V41s/3i9PDSRbxw/5A1zUH7sXz034S\nRoibWnphkPVVUWPIMp48OXtktPTeRlEUhYl3dLMVHHMn7Pz91eZ6NQ17gfCH2Wi3KQLPpsGsW7YJ\niKf984PDxxiHbQ23i23AkoPpGQuzPK8GvfFsfLjf1r1BdnRyrh1maa9FoCNAMsQHPeBhU7dKW4iR\ntlZq0ymtlbMeEBZ6SBAOMImMQ9L4upPGuK5TSvtGGu2R9EhjWhsjnUckMMbxMMKce0oZC7xyxb4N\ngiDfLa5v3p+eHW3r+mKxqqxt6/b2drG4vTVCEuPv3l3M319iDwajfhBlkMS327owrn901J8ddxK/\nfvOtB8Y5c18GAIA7OZgVu/zpowf/3V/+RZHvwiRUquYShjQUQvAs6ozUWj559PCTJ8/3t3dqs9+8\nft/cbUNM8+Va7ZvyctXON+Xd2sj6KBy8++Ll3Ydb25lyuSvmy4NkaMt2udj009Hd1WJ3t2u3zY8+\n+Z3z4weDbJSGPGDhk8efnZw8efL0+fuLdzfzq4+ePR/MyNFZL+oBD8Wr118ZYyiPW+GpD3fbAlI8\nn9/dXK5CmMyGB+W+6qzf7Krlqljf1Uk4bvay3IhiUw6H008/+wGPSF7v8nLlgJ3OxtPxtJ9knGBv\nuzhE+f56s702TrRd09WVqIWRZjAYWW8oRxjDgIX5ds9pEPIAON82lda6rsuua5USCMHpeBzxlAAs\nKkkRPphMpVCMMQRJ13VFUThtsigOOD07OoHGLa/mKQv7YRKHMWM8SlIAgJQSYiikIMa4xw+fSKlq\n3yjVIQySNO6UoA46pct90VZ1EASEsGJfMRYQzCkJBoMBDfhqszo4PsgGoVQqL1ew9pTA/Hb+9OET\nq926WM+ODvOiSHpZJ2tOCCWh7/wXf/erwWAgVBEHkmDz6OxgmPZct2ua9YMHR+NB9PbLn//5//i/\n/zDMMqUxYVfbog58lj0SXWGtKmudZocAoIvLhTHq8cdPZduITloAYEj6R6O71VKYdjgb716/v/5w\ndXJ0xEnsoRGd+/Llm7ZWrGkwgEbB7apQwgCDpJOA+PuKZ2vt/QodY+yccxh9z8V1wCKEKMZaa/ed\np/27VTyGCCFkjLHGeoQYJr8pQbWHh9MXL160bS1E64BXyjgHlLnvPjUQY0LIPUXdGHP/VUo5p4RT\nQiAAFAOOyqo8e/RQGoHD8MOHD2EY99IMYcIorfNCKO28gQCcnZ39w+21kLJqagqY9/74+PibL7/6\n6R/+gbEWUWKsMgIwxhCEmJC26bS1PKDGKq01pdRaWNf1PS/s3iFz30xyv7RECAFnkfOIYIygtA4g\nkA0H/cnIibLsuslwtLtdBwBYUNZFTZHEVlKvj84P8zwPIpvEGYSeICq7rhclnFOY4K3YHA6SEINe\nmkBj9q6cHY6//fp1wLlPhl0t4SAJKYxAe727ffH55//wi1+t6u358/OqqxujDk9Pr5arw9Ho/MVn\nd4uLdxff/vCHP9rdRIAnRVWSfbXOF+MXz611EQ/K9fLs6GGFpZYG0iAwQTjqr5Z7Y1Q/TULOG6HX\nmzw8Cu7u7g7PH1wtbxjyw/5A1ioI8eMH5z//27/P0n5IgrZqurr55tdfQw+tdkkYyUauFytGox2x\nGGOHcJpFGIMvvvzVH/7JH0VxuF6v379910t677++xoj2h4N8tTFGrfZrZsG4P7CIsF4m9ntCiLJW\nKnW/ceyUs9YzxjxEyFjkgVWKIogB1Fob9V2B330ZtzOmVTJkIUZYSIkQYnEordFa33x485M/+d3a\naWLQze31dDQBDt6833z8O5+u12vvog/X64NRlm9ud9vbg+NJ1YaDweD8+RN0Gz8bDVerFaFpGDsh\nMSYkC+KmqAMaMBBYA7SWaZz85Z/98f/93/wv3FqgSHSYeuOBM8BQZyz2iDmrmoY6HIXRqNdf3XwT\n2PDZ7Mm7ywtjuxQiYGSv11+8u9wsbqU10+nB6cOHh7Ojd+/eFUUVpKHTkCBinHv5+lV/PKzr+ub2\n9nT2CHfWqj0Gssrl4clB1ZTlvvDI35a3QRjMjoKb68Wjs/PZ6Oj1y3dVuev3ekHACCDWwDAMpVDz\nuyuA0XB8sF7v+uPDprPz5YoTjAkMSXB9czm/u+OcW2+Md8Ne33mYRWOEAKHAuo4ClGQJxigN4rKy\nTVNiTK+vSs5xWWyDIHDGt0LeI7in0/G9OW00GXLOCcFt2/aHg7dv3zoAOi2WXYcoStLUex8nIaU0\n6yVplN7O76aTiXXOG4cwoohorduqRh40TcM5u7etZ2mKKCDr1erudi5EUzd7ymBVFVIKnvY9Ckth\nT06fjwcnyLCM92KSCKVZGGWD4b2xr2kqIRseIBBqg8SjJ2cnJw+6xtSlxiixmm3mF76pQdWOWRxL\nf5yMnh48kHnJCbi5fieqHQZdsV95YDmL3rz58OlHf3x6/oO//ebN5KMXYNRf1m3V2kdnH08PwvEk\ntr6t6m2cBJ2sohh62NS360nUp5Zo7S83i5aZCkkX0t3drp/2j04f1RaBKPOWNbs2oT0N8auLq5fv\nrm7uNvPbVdspabQBzliljfTAMk5YQAHy1v+XkgqEEMTgfv5+53HUxmqjpfLW3RvhfxMQAhjgeyQL\nQbiqy3/6z/48jiOI7xsOiLVWa621VkYro41xhDDOQ0q5UkZK6ZyLeIACgkMusQUh8SE1HJa+VdRD\n6KM4rKqirfd1sbu5uKirEgEwwBQR+M3Nh8abrhIxYHVdV1ZGUVDvc1HVEAPtdMA4hkjI1hhz/zDD\nEFFMMEQIQOiBcwYAZ63HmDIechbenzHcJ3IRgJRSCKHV2ihNIbDIbcvdcreCGCnVUQSHSRZiykh6\nfvxUC8xhr9rq/aptK7Oa50VXsYBq1fXidDqZnJ8d94fhvlpcbXaaxzUiyflheN5f4tyP4Rbura+z\nCGJRxLr5vRdn+d1bKVYHx9Fut8IIjNKeFh1wDkO03+7m83mnKUlmd61Nz58dPPsk7B9dXuZNSdad\nu9lLkh06HC5ubjhof/zZWRaqD8VCRuh/83/4H89/8GlycLDr5FYKMh4AjE4fnedNs62K04fnNAzK\nOn/+4jH0/uTg4Oz4JF+up/0pA0RWwghp/n9c/VmM7Gma3od9239fY4/IfTv7VmtXL9Xd1dXTzemZ\nISlSooYyJFuWBNqCCRi6sAHDN4YNA7qyDAEEbMiwbFkLLNIkOOJweprT00tVd9dedU6d/ZzcMyNj\nj/++fKsvsqY4dl4kEhGBQCaQeL8vnvd5fg+nnm/1um2okG1Z09GsyKudvW1awSIXph40vX7D7hZL\n4Rkd22g32p17r941TBIny9l8SWvJS9G2gk0nBNPE4zpP2SLOp7SeKjphJRUgSou8qrlQdcUUAFAj\nNWcF56UQBaclrXNa5VVdC1lQRiCpqirP87quOee0rKqyxBCBGh4fjg2ro1ntJKPHR/uNBoR4fnb8\nOYHJoOuvrq6mqeiu3XBae5q9qbN0cvyEZhMoqlajc/eV7/i9bae7tXvlCpdCyDp0TVMjinHBa9uF\nT559+pOffPfOtfUkHnuuUYrcsIBhgo6He662EVhNzLcCfcM39pp+W5Ovv7ZD4zMf5B2Hb696Jl9u\nhZYv68DD169s/J2/9ZObV7bWOs2VMHQg3Oy0123SM2G+GKXJ0g/Co+OL07OZ4JoFMK8qqajjOPNl\neno6DcL2wdGhYeKas4KK0+EcEauu66dPH7BqiRASjFJK+/0+hlBy7rte6DcGrZ5NDFdzZcloVlgA\nu7oJKM+yYjGPPC/44Y9+3Outxknx5cOnuulanotNcjEbnQzPg2YLaTohJgR6lkcIqrJI6iqbTcdZ\nkrKalmWplCAEmaae57mu61VVVVWVpilnKlqmy1ls6madlzf2riOFDWJghAxdbzeacRy7rhsEgWkZ\neZmncVZkpWkYgnND1zljCEICoJSq1+uvr28ABVFd0cVkXpYlgkBKQXRsu5ZuagJWuovuvnqdiiJJ\n59FyUlUJBrVj6ASC06Pj+WTcajSzJEmXiRKgyiSr8dlFtL5zE2hOUXLX8qus4ApnadWwm9Wi1JXx\n6adfPj85lbYZNvrdbr+q80bDXyynWV5Op1mWkfsvziYppVKbTaNWEIQ2Weva2eKgylidEcRag9aN\nIlKiAgSY7WCAEMrTqtnoNcI2UOj8/Nw1nHg0X9a1gnocFVlKaQ4Q0+pURGnl6TZgAELCOIiywjAt\nomtSfmVLv3Svf91TATFSUEogJBAQQgSg5ILVFEh1ebXXNO0ytFlV1aXO7lguVEBywSm7uDj/23/7\nb165sluU2aVDvK5rzmRVUikA55wQYlnWZXH2ZeUFxtg0TcuybMO0dIMomMWZFKLT6VBKg8BDGsmy\nBCOIESiyVMNIxygvUqghx7GRkoZhHI/OgUWEYILWREPNRmN4ekIMHRGsE2SbOpOiKIqyLCFSGCMp\nhWHolmVijKSUhmFomqYUMAwTAJBnZVmWjFZAKkIIBBhCrGkYIcQEV0r4vosQlJxvra37nlfSsr/e\n51Kcjs50RxvsrBq+cTo62drevnH71sbmdlxkVNamR3QTbe9s7O1uGET6WPQd+/jh4/Ri0vcDQ6l+\nq+fojlYb+YwD5iaJlpW2Zg4mi+r1N7537803zydTYlrt/mASz3XP6G2vrF/d3NkdtLrm8fnz0+nB\ni/Hzs+yi0Nmb73wzicZO6C7LCtpBLuHLs7NpthQGyMoLILLnD744fPD0xccPX95/Iupq78r6rdfv\nQIPYrnP96g3bdA73913H3tnZns2HW7sbRFMIgyRa+q5nGNrG5rrf8UbR+TQeb6ytxLPFen+t4QbD\n81PdEbYL33jj1vvv/8WLF18CkWXpOE+mUTU7On1OWUYQFEIRqDmG2bDc9qDrh55m6Ysil5bhtFqU\niVbQcLst7Fjn8/loOS/qahFFEgKJsMKkpHVRlUwKIUFZ0apmSqLLf0+loFJISEgplwJAAJZJenh4\nFC+WtmWEzQaV4OR81mqtsSU/engwPDjWADNMcHS63xl0909Pa6jPFul8NInOj08efXb08JOmSbqB\nv7W13mg1szx3G167F1ZlHi2npo4tA65sb/zNd96OUmHqukUCCYBObGZBs9eAnp1weTJdclOPYb2U\nVavp/P67b7zzrWuv3t4YtP1bu3v3dnZ1ljc97fru6vz8UFYJL9Ozw2dnh88Hbf/GlXu+03IM5+bO\nlT/68btdXy9npz5iyKCdlSaH5HS2XNu5yiAczWZOEFKuu14zS3MElBC1H7iUsZxWSRbrphE2GwAj\nwzGhRubLhYJI1/2SMje0Baqm0TCtkla/22h1IMC27bYbHV7LZtC+fuXmK7decUxXqqrba4ZhwDn3\nfL+sKBNyNJ2VZcFYRQiitLosNVsu46IoXNc1DCMMQwDApWO9yKuD/aPT8zMhRJHnQELfDWajqUF0\nA+lIQEe3kyjFgMSL+PHjx5yJeBlDAIIgoDVfW91wXbfZbHqet7G2bunGcjafT6ZSSnIxmTq+hzFG\nBM1ms57vZVmulPJNUtNiViZFliMBoAG8hkM0Eo9mWVa0mp21tY00zwxNq4o6maau17Asq1zQ/fGR\nqVth0K7q4nw8uX5lL/T88+dHhoSjallUNPAbEGunByd+w0ECaghvrW6cHE/irA7CFtBJUbCnTw4s\nCDV+fPfOrc8e33/54snmlbeqci4Ek5LNFmdER4soNgzL0e1lmqeVDAftPJtZpsdqydJKaQJJQnSb\nSqmq2kRIUFAtSsfTEMCUS43Asq5NZRAJJa0pho7jfCXFSHm55LxsUr+M/GCMEYSXUrtSCmN8ue+6\n/Gx1yfm7pDUIITzPS9P0G2+98a1vv4kxqqkQQkkpi6K4bNS8bMq+TH5e6vsQQsaYUsoxLdu2lYK2\nYS+jRLfM9bWtZRUjoEko43gOFUJCua7faoZ1zTzbiRYxlczxHcmBF3qAwPF0lCZJzxnkjHqek2Zx\nS1AEFRPCMnRGFJeA0goh8jX47GuJ6TKxpZQkBF/CxSCEnuNijXzV9w0gIhoHnAuhaYZp6JppLpN4\nGMeuHxBHL7GApO6shlxVk+p05VprIDqDtfbTh8+XB8kb37iXFPOLyfFWY+sf//N/vNJZpYIbjtYL\ne5atZUWqdRqu637w289tK+CUISnn6QLZxmJ4ZFlGq9NY1Ckg+Jtvf3+5XD5+/NgLfEXU8vjMMUy6\niMJmg6VM8x0jcJuGfnEyfPbiZX915fPP7+uat9Joe37oucbJaCIMcuPeLYS1/RcHdsMqILt37RWn\nGyz5vC3bB6f7GJKtra39x88NoFmG895773fa4Xg+xFjrDJoE6XWeW5aRlUmzH3BU2/YbiGHH1Q0I\ns0Vke2a372gaRKSmddQIB64Fh2dDAFDfD3lJo3k0plNFcMv1LhbTrXd/kJ+fexhHkBeg6u/tjcpM\nt9rt9e3nT180eiHTVLFcVtPC0QgCwPMdThUXkDOhFCQIAYikQlKBrCgtyxIAKwUUZQBKKaWqGHS1\n2XJ6cXx69cZ1ww2CjqJQHZ5EPI2kqDEBz589XBusGIovjo74dHmi6jQqlZzWeTqffzmdLYBkzf4K\nUmB9bfvpy5cZ5Q4XUPCW3uY1sHQ8n57+J//rf/iP/sv/jlY1xPoiY13TNoQUaSar2nAdJkVUZESg\nkpZJNLs2WHn85JnZCDEVUbTwbfuNb7z+qw9+K2thGSbRTEHBo5cvsGWYDf/Zi4PJZCQkdQh59MHv\n1jZWb/zhD8+Gp1ERFTnFuq3behRFvusDUa9vbCyXy7XVQbnINNvmnLOsTOLl1vbuyfFxRYut9s7p\nydkinva6Az/sIERmk5mu6xIIL3QNk3DKz8+OOOeNZnu5XB4ejIoi3drcHPS6h/v7L5+9aHleNpma\ntgkYffbooWVZ0Wzq2o7T71Ql9Tyfc17RuigKzIQQajKZNBqNNM2zrOBcFkUlpfS8wDRNWtVlURME\nDMOQEriWzQQvk4JzbppWu9kSQiCIB/0+xjiNs9lsZlrW8fGx7ZgIIdu2l3HEqlrX9YpVhm4QN/Ah\nhFkaAwFW19eyLGOMQYLTItctk7I6aDd5URGFtra2njx92uo0tnY2Tk7Ox9NhmuYAIN/xIYQ8SwnE\njgRPnj7f2b3WHvReHEdBrznod4BSgCjTcoplsjboZ+Uyj9Pda1d1g6RxMjpIeS2jURHnWZnURug4\nppXU1O2tnCzVoz/9aDAYuJYFANBNgWk6ms8RQUUpLTOkQsGcCSGs0DoZDTmWSZLwtF5pdJGQk/ki\naBOkGwireJGUadpst2zf40Uex/EgdELfKycZEhgrUHNxeVu/HOuXU+zyCn9ZDC2EAJe6i1JKSMbY\n5Wi+PAMub9+Xg76qqiiKiAZ+8ge/p+skz/PLEispKQCACwqRqml5eTBYhnn55pfJpssPBHVdA0x0\nKbKigECnUiV5xSGXikOMCSSUlcvl0vcDqVRWFo1WaOuk0iWHqtlvetiaXJxpWEvzpGaiEpRyXiYJ\nAEhyFtVlJVkzbDImlFJCAKKhIqeXnxMBQJePaxrWNGx7BoaWUsowNS7EZUILQMil4EAAhKSUZVnW\ngldVpRl6nudUCo4kB4zJCmmA8moSxbbhPXr6hHHB8+p0/6C70ZBIMCjttp/y2u+0ZmUaDrpOy//N\nzz6ZxvN/73/yP35xdLKxsbWy0j998lwTAhLIoGo0253+4JMvvtAxefny+fVrd65c1+bLhUDaIikS\nWdHE2D8d5yyxu+VOy/vk8ccrrRbUSCUGve4GYRwUWZQmu3vbfrf7cng+HGe7VwcFeBkOgrVbK55j\nH56dWJ59Pj67em3v7PA0msxoWqwMBkKyKq9w3yhYjQSzLLcdtA+fLZ8+Pfo7f//3B4PB/v7zw/P9\nm7t31jZ7zx48A7Dd7a8Ru/fpxw82VrTV/vb5yazTaq2ubtZF6Vv+6cVZvCi//e23P/jgt1SCu1ev\nOrZVIp0LxYEQUD56fH+wu2N77v1PP7MbQcHKze2NqtU8fb6PIZlOF5wLN2xAbACd1EKWjFecF1mu\nFOBCkKquKoo1cgk8wgQBqRCBSuAHX+5fu/4a4zDOq1bLWsYzA2hB6B8fj+ezCRLK1AmSeicg+8O5\nbbuno0Wn1fJDpzFYY5KeHh86gU+wUIArJIgBaSoc27ZNwnmi6NLbWvnf/C/+/f/9//n/sRZqkqlm\np+Vo3v7JgdNyiUGistR1Z15Unc7g9PCQg/Tq3pWf/fYXN+5cNRv2Qb40BEVeS2hWmlJT5zo0up1V\nN2zUFOzsdEyDmppOKbXdBgHWxvrNKJEI8911ryizPCuRNJCAntNajMaDrl9MZn0rVFwtq1jG5ZXV\ntTyLHIMoTE6PDqWUge/Mp6OtzW3OaT90ojSzLadmwvUbkjNqljpBizxHiIahmaXjh/cvxo2w1Wje\nuLIimRyORignQgiFMBVSQcwUoEVRFnWj0TQMQ0FFCOEs8gKH05oxNpvNNY0YhqGUcF1HSgmB9Dyv\nrioN4csZIoRyLNs1nKwsDEufz2au50kpi6qYT2dAAgBUUWZYQ2VVXdJbbcdpN1uLxcK2bYwxsXzX\nNi2sa+PhhYoyiJRpmr7vx0ViOBYyEQEwi3KHWCcnx2kSa5ZOpOBYJWXqhv4lqlQKELQGzWZ4dHRk\n+XYtciqysGlotnMxGxZpcfP1u0fPDmsEL+bzoGG0gl4Sl7Pp9Oa1m3Vel3HqWk0ETYFklRSubu+u\nbx7sn/heq86qNCld31NFDmqqSYCg4YbN+TKXHNd1hR3NCb1RNPYbIeeS6BgF0oAaRYIY5jJedsJW\nlRcVr5BnlVDms6iWVAhBKQ2CILuIOcISKQTQJQ73cqBzzhFCl0CVr2pFpZJSfrVohRCySyc7vLzF\nW5Z1ec2vKmpZVlnm/UEvCNyaFkJIShmtRVnUX+9mAQCmaWKkXXpyLg3vl8Hxy+y4BokOiY7I2dlF\no9N2AnsaTfor/TiLk2Xkex5GGoDIMkgWZxdxQgxsdT2J2fHxidVaKctUavZ8PMoVSMusyAtRU9M0\niWHkUV7TujIrTdMgRJxTjL9i9mqazrm4nAUQKaIByzKgApyxoiw1TdN17fIIxBABhThQGGMGJNaJ\nqKGuEVvXQVHwqqYsMxWaDpeu5a631gnR4zSjiO7d2T2/OMCRRAjzmiFISk6jolxb7Xx5cH99ZfUP\n/t7vz+fxP/mTf7G2sfXWW2/d//i9QTfI89TpeMQ2nz9/fjbeJwrqRrOo85//+hcr69um7y6Xsem6\nh8/2CXc827Q1ubO6wtLs9du3szRRmFycnG1vrBbzhWVqpXDGcV0XMq5Jb2N1/+yk0W3VdT6OJsej\namtrx3fc86PzltNY6Q8ODo50y5xHS4iUlHI+WeiaGaVJnFaOFvzwnR/Sqjx+eWI1TEkZIWSw2k+M\nxcrmIPBdx9d0ANc2Oqv97m/f+wQB4tnuweF+r9dprzTnyaJja/vnz/dubsTjkeG773/0BeJSt+zD\ns4Otna1gqz/Lszop+p02R4BV9d0btz781W/7ja6ikiJOazBPU6gAQUDTNA5RJvgiz3XDKvMaIFpW\n9eU2yDB1DSMhGUGaUiyJ5s9Onn7rm2+ZmQmkwWptd3c1dL3z40M3aEnN3Lh69fzsaLmYbV+9NV0s\nNdfzLLvfaTUC6/jkgLFSAOoEjVbLMogILBsQm3MuIdCILSWjafI/+4f/4D//L/4rUpWDwaofepP5\nJJERMY2LYgwNTbBUARnF07gCa9u9n3/+wOluGI3VIs+ePXvW6nSdRoA0cx6N9KpQZWxq+tnpud3w\nhacBQ9csWyLCOFiejU+PLgBArU73+YOnREfrayuy5L7rlWVqQllGOS2rUkohmGXadZ4IBW3LcRpG\nXpRCSMdxmo0gjTMCIVWAIyAEOzk5Gqxv6CbRiLmYFBWj3UarEzaJrhVFMRlfaBqejIftdjNshpa/\nPV0u7UbDMO2jo+O9zfUkScoqsw1zMZsyxtq9NtSJPug0Gs3D/QPfDzAClmWZpokQKorCcW2ikyxJ\nMMYAY66kYVtRFF2aILMsM22jrKq8LjGBcQaRgXVF8rIo66rd7c6Xi72re7PZ7Gw8bLq+YRhQgbqm\nRDfNOC8uRhOEyWU+0zSNuq5hrUsEa6oSWmBinY/nK6tuUoHRi/12u91ttUfjYRnRQa/PCkopbfW7\nS5rBprPauapDbb6IttY2DvZfRoulqEQelqOXM0e3/XagYy3Jk5JOpOAvjp4ZSHdNJ40TrxlmRd63\nNzUNnZ6e6xoGori2tw4Jfvjoi15jVdNMxLrEwLJQoBJhw6NF5gDHRigHqkpjBI3QCWbjCZM15gI6\nBtK1rC6E4qWgOjZ8XZ8lUVpkpmlmSeo5riSoBkAgiHIODAUhvLxEo78yO2IMKeUIIYK+YvxevuZS\nwPnrgSbOuZQSIlxVFdEQJjDN4iDwKsWllGVZF0VJay45Y3V1id/CSMMIXFp06rq+nLCEEMMwqJAa\ngYsk0h1rdWtjkUUVZwWtMcaW61wWk/p+sIgjLJHv+6ZBgG+fJBeSKB1In2gKwcP5SErS6nU0LcEQ\nScoo57qup0ValLmv+QgSxhgh8LKrgTEOITYMM01jrjghWNNsWtdKCscLKOPy8u+VSgmpoDQMnStl\nek5U5V6rUVdVtFggCXzXbjTXJANRnTbCHou53/Eba/1HTx8VGvUHrUUSCcEOnh91ewPd1qBj1xml\nZb2/v99fXcXE1AkOHPLy4YcuMl+9/srnH3/Sd9aOpuev3v3G3pWdL7+8r+WI1nKM4mg6BoZmmVqW\nRtv9BqxS5IEEytzKvMBtuP1nD17yCoXtzv7JUJRFw/FarTZl4sWLZ93VnsQ1lPWVze3hybCWAiFi\nQevw6VE7bLx8+rKoyv7KgLH6/PRMI8TzvH5nNc2WWZa7vr//4oCU4Ce/95N/9i//6fkLu73ebN5p\n/8mf/smVrZ1br976i7/4mTLX2p0gSaeHlTIt3SDOxWiIMTw5OfJb2uZu9+xiomna9s7G2SE8zJbP\nHh1YkPT6LSN0w43e/vA47Lb1wDSwWUzjv/HjH5y8PLKxJnQ7zWMNaYtFbFDd0AgDgMkKIGwgDQlI\ni7qsawgwgAQgJKSsqOBQYAQVprWgZqvx3seffuMb37x143Zdxq6jRUUlFGgOBtdaQZYlnzy4v5zM\nMEIQHfiB21vrTMezaMZNbRWbrtlpyVpCCPvtVjNoaMrQDZdWJbOk65rLKEXn+87Ve/+H/93/8j//\nT/+zH7x5/dP9l2fJ3Oh0CqjrrseVzJNUU1DWdcMGaXrqhqrdtJ4+/DKO0ruv33Mc+3A8LhmvJK9L\nvtrpTy5Gk3jZC0w+LnVdz1JaM8ZE5TgOZLIRNKPpxXQ0XV3ZnJwtPBsnLBGCfe/tt93A/vWv3+92\nVpIkVxJyWj1//nzr3oqpa0stlRASQniaOwg7plVIuswKC+CW79J0WUWLZrMtCqG4zGgmgSppzTkH\nimRZZeqmlJCXMomz85NRbzAYjk7bfrAYnbVajdDvCKGixZJixOuKMVYxniVpv9+bz+e+7zHGIASO\na+oGdhwnSRLTNFzfy7Ica6jIMsuyMICEEN3UFADbV3ZLWkwmI8ezHcfKF6XtOkzJi/Go2WlLCFrd\njkKQMOn7/rNnzwzDJPloYhjG99/8xnS+HE8ualYaOprOzpmSRLimERjQzuJZy/YMDgLN3OytB37j\n/HwU6ht1XUYRhQTlsj453zexIUvOKSNe0G2EVMjVjSsKnaz0VvK8UgS4voUJqbhotlcL2r6YjIXj\nAcvAttMOGlVVBZZFYZXF1NRcW4NlPK6W9drK+r3NPrHsZcqlwAayaJG4xKjr0g6Ds2gMStUZdKMo\nCi0bY8wFrKoaYE6o0JGWV6UGNA3pmqZpjgkriGuMAVpMF72w73lBnVQONBKUUimIEEJKpBBQX7WM\nykvtQQABAERECialxAgI+RWEQNM0zi+rTRFCCCPFGDN14+x0dDGchUGL0oLxuqoKBQXldVnxsqZC\nUoyUrulSIsaEaTlYI2m6RFgpAmrJORNKknhW9VZ6LtZP5xMLK1lXOiZxkpUS+K5ncECpqjhtdbrY\nhCbU13BQGxDaXmxqhCldYcFrE4qKyJKmOtHiJCWEOJaFhUBSCCl0A3NGESZQ1wpBS1YJybmSRVER\nolVVRbAGDCCkxBhxxjACAGKIdCZEzUlzs3U2PqO4omValyXn0oYuFQhUKssyEtilViVlxNJqYHUI\nqlQiAQcrwWYcx37DpXU9WBlMp9Oz5Xx371oczWYX436nj5majxMg4PZK+09//Zvbb9yZF/OC1ctZ\nMoSnKmZn08QK/CnP0rLYbq5bRFce5VBgsDLote/evXZwcEArFp+kjtQggYTkXKZmw82U0jU4jZYF\nZMCAsBBIgS+ffRmE7c3VK599+PnF8SmsShC0BGWcMsswz05ObctqhYGu6x989mnLa/i2L6tyd7Oz\n//zLqlr86Efff3HxbLZMW53e7touoKpmRWet6bdDv9m6fueakhq0xu129+T0HAmy0dyJoXSFtDQz\njaMiLoDSypTapKFoNl+kq/7qhx89KkHpBy0AZSHSBZ0tinEUDW0hEWMQy9NyaK0HutusKu42nFF0\n2g9X8rOaC8QhZUqaWINMSMY0XeNMSAIBxpVgbc3xAVku4idPHvbe/o5j+r4VhI5WsPRkfBqfp223\nYxu90gG2Z01nEcDu7t7g5HgMQBank8V8Zpdeo9MTlPXDwHPMZXLc8RoawJrW1f2GknK2jM2k+v0/\n/vsffvrRfLEoErm2tpIbKoIVDoAN0HQ5W++vaaY1mSdWtwuynEtmmuyV776ysX3zp3/xfs3FeHjx\n9re+3fLD0ekFE9jXw+I8m1C6t7fnOOZo/2Wj0VAQEwInk5mUcGdnT8PENHUIxHgxtmz9i2dP33nn\nG7tXdpaL3DKd6WieJenm+tbhwZHlhZZlSCCZRIu0FFx2iaGQErjEBuiG3RcHx16jOV6mhm1amp5R\nnsRZSZVhmELWTAoA9dkwEuxisNL3e22pIc3WJFaG7ztB0/L8eBmV9bgsqnS6vHZlxywTz9F7a01e\nRpaucQJMQ3dNI6YlzSLfsHSPCF57ocmY+Pbb3/r0swcQwkKWOsCu686GIz9o+0aXVTKqY69jhn74\n7OFzz9I9YqbjSCk8Hy0GvZXp+dLTXYNgUnNW0jp98rgqqd/wiK5Fy6VhBKoqTGxryChpjpGBIOZc\nra1ujqaTuq4BZEVZtjtNKlhR1QbSNWJlecXzstvuRmkMdAJYrSTc3t3Kkjwtsq3drSopJvNJ2Glp\nmvb0wX3NNK5evzKbTUbJWEnRa7eysqCK24F38uJ4rdvXnBYTgjEMFEmjNE4rLnFBUz+wQQ2RgBbW\nW36TAV4sU8RhSjMzcNbWNp4+fWqYJsKQS0AFtx2nLirGWJqmkCqioIYx57ykVX+lNwWLdJFoGBua\nJjkXnAOMheQQXu6plBISKKiUQvArHQZCqC6JkX8tp3r5FOccIfIVyoXJuq6/JhZwxhilUiqEEAb4\n8vVfCTJKSUUvZR8hBIK6puvLRSyhnCSLL589Ag6wDL816KdxUgPpeF5j0IviBABDRVkaLRkWQeB1\nO+0Egfl0obiazRasqBzHKcuSEBLH8SUzhxCkacQy7Mtf29B0jKSUgDIOpCJE55VUEmGkVbyWUkII\nCCEIk7quEcQSCEJIlCyzqu6vrz5/9pgj2V3vc8kUxQDUmqZBJPO4NDSdS+SZDlEIKHl8eIKR5jmN\nZrvx3nvvWYbtOC6B9micImIN2t1kltBKWMSdDCc6woajD1Y60NAkgg8fPUmyyLGCfDrPLoqqqgRE\nlawwJLZtVlWFDAA1Pc/Tjh8enZyfn19cv3719t17P/+LXzJh+l6gAF1f3TVd8+mzZ4cHzwBA62uD\nG9euP3t+mOdlI2iwggIulKQQWkmZZyf7ju9hk1Ba1XXpOR0vaL189tw1HCjVycnJtevbyzRttDtn\no6Ey4bd+7+1/+md/8uTF82+/9iZWcmW1Y3g3uCiLOrr3yu3//r/959eu3CPYfvedm1hDDx8+WE4n\ngxsD3A8ODmoI2O0be88fvswWOTSNJE9Kmq6stSpRaTqUAPGKeg332csX1SxuYpuytEJUb1hhrxGz\nyna9RTLd2lvtOK2zbBbHehynGtLSLEYASild04FEVXXh6I4HiQZBzdgiib64/9krt67bRK/SvDDw\nyehwe3e9ruvFbNJpt/qDtkIy99PD/YPHj55ubmwfHr0YT+e27bRaLY0YQqkyl6vddpSzo5cnr9y7\nB5SolkXDakIdCq66g63v//Bv/d/+0X/m9Du0pTGWV0VGFGi1O2u7qwYxCdHszC4WGatko9sWNsoF\n+qf/w596QRtWwtD0s7OTJ/EDxzJ3b23kaVbXzC9Ky4dAUcOExycvKOWh54dh2GkHkkmgFBQ8z3Mo\nyIvHR+1gEI/54y8OgsAzdK0q5raJdMy//+1vjObjyWRGkFEVFYsSy7Xi0fGVva0bW7d+/pf/Spf1\nO9+8NY8TCfUsLVnNrq615iYazyMIVZTkhm44GIXdVkHTaDnd2NioqgorW9M023bLpMjTYnQ+LLOs\n0W6vrG/oOsnTBGv2y8cvPS9wXR9rxDTsNE3b7TXGWCVKwzHrGtGazqNoOB0TS3McR8USQEmQWlkL\npvMLP/SjOCtrgZEZn48GjTUNwyRJXM/yGk2/41RJLiEkpl2kGdF1vWZ0ES0dxzF0a7aYI2zqmp7M\nS8+xCTQxYJ6rVVkuFS5rIYSQkuumjggq6rQoCgCAbbuY6LkobS8klt31nLwqmmEYRdH+wYtm2Mjr\n1PY70EQdfwAhnM/nYRjuXr1y8PKQ0qrVCNI8XSyXTuC4gZuWxWBnk1ZSSk0IcTJc6gienF1wKNur\nXd01Gt1OenZeF8zTNcdyMYEX4yGEuMzL/dnh6trGYH2NCVrUhW4QoSTUka4MznmR5WWat9utmlEu\naspL2/WRDitFYcl1ctkOqqCSQAolIURIqsvNqoTgX9elKgAv2Vv/P+yBy9cpSDCBAHQ6Xdu2q6r6\nGtr1FbrrK7qvpqQQQgnBKK0451wy9hV5EUMIFUGjybiqWX+lZdv2/sXLzqDru060WPq+b9u2HfqU\nwGo2QzZRire6zTiOy0qvywpBqGuaY1lZzZaLxdr6pmFbRV7VZclYXWQJwCBc8ZgQGCPd0BATSgEh\nFIGIEF2pmnPOmKjrWimplNSxBqS63DoopeJkCSE0bAwQx1gFQUNQhLFjm2aVTAUHgog6WYa9noBk\nfjHWTKPZblU1xQQdHpytrA1+/w//xnu//NXx8QEhBgWit9b9zjde/8Vf/DwwA0E5gajd9HVTJeks\nLyZBoxElmQBqdDHxkOPrdlkDBaCp65oOsWEKBb54+HB778re7o2XTx+alr6Ml2cXw7wW8zhvNFeC\nRmcev9jc2sIEzdM4T3JdM2zTOT2ZaIZTpMNsOfY8bzoam6YpIPJbHSGrbr89nS+evXwSJ9mdO/dc\ny88zutINNKyTXnueRo7lZFkaNruzRfzJZ/evXb0dpxHlohW4B8dHH336/h/84e91O/0//7OfNQK/\nHfrHR2fPnz8YrK8ASH1fdzy92+sUPDWhqWns5p318eTFZJ50VtvtQYhNpBN3ODy5bIlpD3rJML3/\nxbP1VrfVdJYsba32l1VODP3k7LDdaQLBP/74fa30dE0nChKJLNMpRHn39deIBuo0K2ZzTULMMCaw\nUnTr+pZAfDg+2e6vT6ZD5flEweV0ghFquOHF6cnaxlrFq62trXaz9f6vfx2Ezsb21mIxDxohIZph\naKzmum1hpHXaPRXlL148e+t731oOx7po2homUNCi+Lf+3t//s3/5z07iMRMG1uDe1jpX1HfNyjPK\nvCqWcV2Upt/vt7sYkiyvhl8+no1nW9Dot/0r29cXy0lRFMQEy3Jk+64GTCcuk+jEMj3HAsH2CoQ4\njeKN1e7p4XGapndv344WyzSJbdve29kTTPy//u//TbfTbDe8aH4W+sgytB+8886jLx87it1YHxCs\nS4CDRvPi4rzfCe/dvfnwwcdvXOkqpH7ye6+9/8EHaUZnrCp4JVJhI9X19EazQ4ytFy8P0iTyvVBJ\nbFv+Yp5UtNaJlqZFlpWddu9idGZZluNapu1KIFldhc2GYds9bBDdKBlN4vhi+AhjjADWdd1r+l7Q\nFqWMs8Jv9H/1q98FoW9ZxpXtjcVy2us1IJZbe92HT1+s7w4oQy+f7e9ubEnGIcRh6HOo4mSe5onl\nu4CgquLbr9xCUZJWFb2UFKJ4IaU0TZvW0rF9DIlBNNu2k7zIqpKYBuUsjpetTku3dK54URSXQnOe\npxgBiIBhG1TQ8Xy6iOaUFlkWtZqBaRpB4BmuDgxcSXZ4fsIxXFlZKdJMUB56jbJgpuHmFWVc5XEF\nIV5Ei4v5eLSMnh6cHZ5NkwoMtvYGaxtKwrKoz6Yz3Q3Nhq+5JmMsz0oNmRrUVlZW3IYnkOyvD/Kq\nNG3r1p3bK2urEKOaUca4hkgQBELJWtB2v9MctOzA0n0jaAe+71+6AAXjjDGCNAAABhgABAC49L5f\n2me+DvVcmuIvjYPor0Ktum4qpaIocRyn0WhhrJVlyRhjvOacXg73y0NC/pWwgzGGUEkuIACE6JeL\nTVqwLCs0g7imJSkLdKtYROPDE5bkqqKLi/HR85dFkgIpCAHQhEHTRZqqaIUxXBn0gsAjhEAIECSX\nZ5NOCCHE0HQElW0aAHCEAQBSJ8jQsKnpOtEgkILWkleCUVoWSimCsFKKUQ6UkkIwSjWETdMMmw0/\nbMyXi3ZnALHRanaTuNh/fhL4ndX17SStBM0mo7NoPqvrKsuyJM0XSVpJIBH41a9+Nej23v3hO1gX\ng83m5nazP7CKMr529UrD8y/OLpaT2HPbw2m8zAVGhqxkw2w1/Z7rtTEyKYNUYcO0j07O47wqmYqy\nYmPnytbaznw0awSrjh36gf3mN185PH7stfTBllvB4dnyJXTo+fyEIWaFblaXaUmXUbqYzt94/a12\nZ4VxZXu+E/olp4BoEqjxdDKbTRBC169fnUwmSZJcvXpV1/Unzx4LCGogclpxAGtGIcTHL0+21jY1\noKdRfnI8xMT4B//gH/7m/Y+/+OjxzSu3B71OHF8EIeoN3Cg5txyATfh4/9n/8NOfma6X53Gr7R6d\nH5DA3LqxcvONG81B03DtijJCdMMwTMtYLnLJNSH1cVQcLyPSDGJalZSWec1K6WlhOqv6/c3Xv/la\nt+kbjFkQCVpiosJekNWZkLWr6z3HXW+1HcdclIsbr17Zu7n12Zcf+w272Q6XaeKHQRiGgeucnRxP\nxsPlfLGYzQ8PD3Z3d/7e3/+36rrmnJm2oZRYWVtxPasVuKarE03u7Ky+eveGYEU6n2BMk+WZZJFO\nSl3FCKb/7v/o75ZZNDCDjbBTzJYWJDRLk/kUCtpphf21humpl6dfUj6XfGmj8ntv3my7cmPV3lxz\nVgf2vdvrg54fBIZuQKmoa2jXNjZXOk1XJ7eu7t26uvPNb7xqYrG1sbK+1jVNubXZunNn7ebNwTfe\n2suL03d/+OatO1tYo6+8cWvnygbA6pe/+PnFxfl4PJ3NJkKWjVA3Tb42CM/Pjn773nusqv+j/+l/\n8P1vvzs/X+rSGrRXsFCK1VvraxoEvm0QDCilSinbdaBOALapIHkl/LBFJaiFRLqxzBKvEQJDA4Zm\nB45hG2kaJ0k0Ho8nUbRMk8lsWtclk1whYHomAzzLsiRJLMvNsuLsbNjpdPI8bTa850+//O7bb/U7\n7WfPXjx9elLV8nh4fO3O2r/zD35/XO1HavL49GEpq5OTE8QQpmR2MpmfjTtukM8XiFEVBm3DMC5V\ni8vUZRLFhJCiKOqq4KIq62xtcy1oevNk5rf8mjNKOYAawgalnHNuWjqnhRJ1Es2rOgeQ9/vdxXJW\nl3ld5HWZA6UgRq1ex2p64aAtCQAYCSFCP7jstai5aLe6EGBdGmWS0zo3TGTYemd10FxZy5hUkECg\nFUmtSTOdpIZuCggW+RzpiHJmuw7lrBbMDmwzMEtZeoGdJNHh4aHrunVdO76jGXqj0QI6TmnRWek2\nus15NE+L2Pb0oO0KrCpR15JCTDDWECIYawIoAOTXN/Sv/ZF/3TH5dfTpckwLIRAihmGkSf7w4cPL\nNqy6riUXnHMhmJTir78DQoAQZJqmaemWZRmG9lUV3yJjNROMS8lrzqCmF2XJgfIbvu25frNBFFR5\n0bRtyzY0V3ux/wwRALB0XOPp04e9fgtAXhQZwiBeRlAJAABUUgompYAKIAg0BIESGIHLXTFCiDNZ\nVgmlJeMlv2TqXhr/hRCCI4Qs3RBCEKwnSQaR3l/Z7A62DNP78uFjQsj6+vq9u6/YTrhMSuh0S2AR\nt0FMt2Ly6OjI0PVBr6NbsNfr/as/+4vD/aPX3npV4LrbD65tb5RxXORxo+cRDxawEiZYZhmDmJa0\nSKrZeJbGWVqk2CJBv5GyfJRNdm5cIYQABkK7aRDr4cOHR6cnQWivrDWu3Vh/9OgTAOT1a9cePvzi\n4PBJlJ6tb7aX0YSx+vhkf3//+fB8HyLaanqLeJbVid9vnM2HSZXqJkFYSgGzrLBdPwzDqi4prRTg\nVZ0Pp8OtKzvEMpCuu4GvIEiSxLKM3c21D3/z/vMnj3lVV1V9ejZ6/vKo211DQHvxZB8K3Gq0j4+P\nLctaX19HBEKMVlb6SvI8jlpBeHp83Fvr3XrzjhboNaAcKi6g77cHKxu6abi+0221L0nRaZUBA3hN\n13FsKBUWylSknBX5vHr+7FA3tV7HefvWld2e1zLBzlob8kLyHCKOCeC8BkCNF6Pmip+xKK5mdlP7\nxYe/DDq+FXgFrZ++eDmPYgWBYZkYY17z09PT/cMDz/M2ttajJK7rutVpK6UEE57nWZZeiRIAUdYl\nhPiTDz/7/PNHk/GFaaAqncv4nE+ffOPm2qodkLi8vrH92it3X71z8/zF8+1WY6vTgPVS5oWBVRgS\n31WbPWs1wNe3mjf3ugYUo5N9TdQ8zW7vbBfTeTWNeJxr0OM1Pj+aFEl9dnR+fHD84PMvAJC7u6v3\n7l1phLrtwu3dnu2CRsvYubq2utl1AlNCkFe0YgBhs+KCCX7tlTudjVW/0yxEPU9jpxk0+x1ka0le\n/faDzz7/4hHSrZKqo+Ozoqze+sY3L46Pey3fJEKWMc+WoaNZOsijka3x29c27t3cpsl8d31wbXvd\nswyT4HajVeWl7/gEIkFZb2WAdaMSkth2wTlGOmfKs92N1XXDMBzPQQQUVbGM54toTnSclknQckue\nr+1tbF3d+/CL+47XK3KRJ/QnP/zDgycHX9z/7D/6j//Db77zJnClN/B2b+51+/3FNIaU2NiZnA0h\nY8R1Ag3rggKEoGf7i8UCSAwBoJQihJJ4wSWzHaPmJU95t9taLpdplgVewCjPk9TUdYiUbdh1WSkh\nHddlnPYH3UYjmE0vOp2OopJWdZaVG5u7axsbH372kSISGoorWrJc10mr002L/NInPh5eEIfoutv2\nGnmV64YDBEmWqULAcuzh2TyNMwQI0TTIuIZVUmRIc5CupVmuWRaHSkE5XUzkQnmm63nuxfnw5PgQ\nY+i6LitpapjYxqJmp+cnnDECNYmwgsLxjapjJUuWlbln+BrWq8uOC3ipwkDwV4ABABCEQIJ/zXP/\n/7PGcy4uvYyj0eh3v/tdqx3YtiGEEIIpyRFCEGADGUIAJSX4azh4jDFA4BIvDBAsswIBADDYvrZr\ntu39iwPP75rtcHh+TghphI0yymmRx7OFIrKoeVaVrmdrGCjBu+1GXZaL6Ww6nTaCZqfTQQhRWpRl\naZl6y2pCDBirCdGhVEgBKRWtKOdKKYUwkIozVislgMQVLzljmqZdptgvG1p0jBEkdc00Bx0dD2te\nNxqN8+Hpzes3DFN/9tEzz230t/c0TXNNDSg+Oj863n9+fWdncnGBkZrPp3XNGOIccUs3IEd5wjSp\nNA3Ni8Xm3a0nT5+hAGzsDdb6vbODI855VdW6Y1+7sZtF8TQb276mNF1igSUQJcVQn8yn2CQ37twY\nL/ap0q9e2T49PfXs5s9/+v7O1auT+ejGpmtKv0oAgtpad9PXvWbYKLKyphmEcHO7H+dZkaWu6/Ky\ndgy9gljXLIKRZVmL+azf71BWQMQa/cbWxk4l6heHL7OyWllbm16MdFtXgE5nw82NVVM3asqSIp9O\nF1tbe8loPOgN0rhwNzpJJOPseHt3y/Ssi7PTuqx2NlZEWU+jutMb1LIez4YcKk03CDae3X/SbLZ1\nA5smYVRCVPmBuXNttSiS67d2ChoTAl0NbYb9DJez8Xy1103m4+HBgZPXK67VBraBG7RpDicHFCvb\ncnmREtNUGFSy+uYrd7DL8rLUvPB8dvrwmX196w5UzDD1ZDHXNF2quqJ1VVVJknDOP/v880bo9vv9\n/cOXAIDj4+Ob11/VMSqKuDFYoSWbJ8Vkmhqa5gUNTpFkcDwerve7dT6ZzOLvv/mNP/vot++996vB\n9fXpchjYZs+3fNfrenrD6Tx68nRteyWbJ6tBc7B3exFnBwdnLb+5nMWWrudZkvvxm1dvffHFQ8d0\nzk6nVVW5rtvtrozHF4zVmk6Wy3g+HrWaTSFYksSUUsOy8gQu4vzFi9+sr20KZf7FX36yOuhvrPYs\nsx6Phmk8NzULKVyklFJaxnm76dVV3e34usZaLf3o4IvX7l1P0lyIPcnVm6/eAEBGkSElOB9edDyL\n6MZ0DrEml+cPdnZ2whv9mtXTNOrY3vnFbJGnLkJ1nExOln7oKUZsQxdSQgVafoNToRScTqeUcl23\nhOKO27q4uJhPF74fFjllnLa6rS++fP6/+t/+z3/10UdBoz8dTyYXF3/8x3/v4199+PzZfn977f/4\ni//Tu3/w3T/4yY/TNAce+fT9z4O2ny9yzkWWL69e2SSe49KatcJWkkRplBdpbWB3d/3KMouixUwp\njhCSEBCEpZRZmgKABeNpHDFaWRrutDvTxTxPC6BQI+xQVpmmGUWLk7Mj3/W44hCisqp1zfztb3/b\nPzpa2RxkZeT5xmwaJdlypdfPaJRW+Up/5eDloe85uk4s1+KSJYvMdGS33+eqNnQrKpcpz5WrRSzz\nDLumqe4QG3rE0B3PqqkIGw1ikaRMa143g+Dk4Cz0g6YfSikk5FwxDuhkPrRCS0keBr6pG8kymU+n\njuk0u0HYaUyHs7P985pWSCF+aXaEEgEJkAIKQwUg/GqyIwCVUgjjy2s8xAgAIDgXgksgKRecc9M0\nPc8jhFRVRVnNBQVAaQRBhKWEClCE0OUZoZSSikspL0m8AAAhRMnrijPd0wpWXJyNdd8wXH2ezMoy\n1wApJcnTwjC1oipDP8iKtNvoEEBmkymmVd9rKMZ3trc1aNS0HAz6WV5cWvtNw7jsceWMXS4PGGNK\nYiGEEEpBgJEmuKKUQwi5YJxzCAGEAGONcy4VJxgzVpmWUUK0jOMaAirqRtPrdzuK0ZPj/WbDb7Xa\nUQ44rfZHR2WR9NvN733vexenJ8OzYW+lZTcs7BGiQcfRdICu7V6pGX3v178YrK1evXWDmMZsMT85\nOR6fn9E6YTVYRmW3O3jlzVf3z07maa5hXJdKF8Jo6FWZtsMGp2VJk7fe+FZW5Lbb2NjaOjsdRYtq\n0NeW0Whv791Hjz517I3T4zkCVqfbTrPIdGzHcw3DztOU8mp9baXOiq3BdpFXJUCsFkmSdbvtoiiW\n86goyvl0FgS+bVtlkR4c7Wum4dq2oRtZkXdW2tBQeZ20+wOIdQXw4fHRm9/5Vr/fvf/Zx5AXu7t7\nz18c6oZ9984rw9F5mVfz6cyxQyURl4hLqSA5GS0oqIXSRS2ztJK8bLeaAMiqoOOLeG9vTyP4eHb+\nylu3EOAEAyUtIGXoB8UolSYKfCOZT5uGd/zswIdo6+bd5eyY6BAQTefcdrymHcymBcJGDZhAfL4Y\n3t7Zzgpu2eZaf/Xoy0NSGzdvXOt3VqCCgjK9Z8+iCChQUfby4DDwXMoqXUdKwe3t3f2XPycact0g\nzkqrMxh+9riSkHNl22av3Tk7PcySfGt758GHH6fRdFFUNWeMsa7btqRW1fTKxh7m7OTlQbvdvnZ1\n8OLzz0PZunf79ccPnyYgs223Hw6QkmutfrxcrLcHLcv2vVC/ffPg4DCF2ZUbW3meG4Zo7q5CCOu6\nVhC4du/gxcvt7e3ruzcePHx87cbN58+fR3F+897dw8NjrOkEG0+ePDeJ1mv7a6sbebwcLk5W+qu+\nH8qK3r51zbUNXYO6hqRQg76IoqRMin6nVxVllqR5NCYafO32pk408PoNBcnRyWl/8EazFT569IhS\nCgF2g5AKOIuWP3rnlYvhFGH96PTMMTcYY77vO37j+cFhmuZpFnMBmIKGpZumWVWFBkGdZavtzka7\nl0Sx74cSSyaLd7//VsMN/5uf/7ft1iCOln/4kx+dnx4Ph8N+f6VjtGRA77//ebvnfevtb/7ug4+j\ndOiaQQpEWZUr6/1nwyNycX7uOI5hGLbtsVr1O6tCqNlsGadLKaXnOozXs8mkFbbiKGo2WwBbWbqk\nZaIjFcdLCLjjBLblLZK8rnnNmGtqjmMzUZu2NZ3OHD0Im02LOP3+2sHJ8Ww28xxbCEZlpYhkoLqY\nTAVXSolOp1XEeS3p8iIhRPe9Fjbgy5cvNrc33MBOlpl0kQLQJBjrGBqqZNRyXMtxZC0t14nSxFRG\nlmcKqDLLCSHz6bzb7CjFK5kTHbW7zaosq7oOfB8DMDw5tS13d3szL+uSlspgXtvt1b3leaSYwjq+\nvJFLBRQAUAEFkPqqE1tculwuoecAgL8CQKpLXAz7am6Cs7Oz4XC4vr5SlNlXwX2EhJRCsEsxCkIo\n5VeJ/0tTimboSsKasVLWgoC11a7CquH5FFJdAd92NJsns4iytCorDk2oE0gwAgoqbBCNKYAUyOMk\njWJOBRAKY5ymqVRAKVWVZVWWCHU1jVxiZJSCjDFd03TTqIpaCMGprGtGa06QxqTQNIwARBhgRDDG\nGEmCkeSMsspttmsFdaLW1vaIBi7Oz5fzeTSbh41WvJwAibM8afpm7/oNSzdYzb589sxz/MBoU6ee\n0vPt1YHNZcv282TS3Vj9G3/3jz74zW/nk4XveD946537X35Ja0EFtgLdVdDtBAen+6fDi5JRThHL\nhSv9xfkoL1Kv5UAbfOv7by1G83gZ79679ujRoWvZ7c7qZDp0fLCYn169tm0FHgOsVnlUylk88Vy7\nkCUhumWGDuBPHzzvd1bqpdSwU1K+jONG4NumlUSxEKLd7BRFNplMbl2/0d7ovni8jwFUGJdlWSd1\nTsnaTj/OoEL6ZJZAgXrdDdtqnB9PCLRzVpydj2teD9Zap6en/X4ohBB1YQRhnKTDSWaY7ptvvvVf\n/1f/9at3X82WiU40DPXnLx78G//G33rw4OFslm2sbQgKS8GLohovJqzKdQg3+itKsA/f/6DbW7N8\nx7TC8iJiS1owUAnxxWjCIVtG8eLkPGz3kEcSDdpua7KMoskkHARrKz1aZJaNncAslnmzGd7/9Ite\nu7O+Mmg22tPpdGNzI/rivunoTd49PT1Xa2vFMLYd/cqV7fksWl1dX0YTzmmj0WBcKol/+hc/F2n6\ngx98/+T0cZkUz57VRLvuuuGjhy8fHuxjv7HSGtQJ8wdOYFhVnbWabddw0zSZTdMb23fT6fLjX/5u\nZWPT1FEWTXZXW0lcGLqzvdIZnQ9PXj4PgoZhGH/443cny/Hm5uZ0Ms/zXAh1fjYWuiYFqEWxt7eW\nJPPf/e7p2vp6UUwsR/YGKxDIK1e2Hcf7wfe/9+LZU8Vonse9VuvmrW+9fPYUKF7DAlpyliwXqSIQ\nCVjbuguU4Trtl2cvJvEpRrwskne/+02oqBT18Oyk21nZ2d5ezsaPPvv0yrVrq50epaVlGyWjBa2/\n+/a9je2tz+5/9vFHn//Bj98kgBSLFCo4XySrJrJXNkaL+Ke/+HVrdctr+A3fRdJSgjsmTOK46TVS\nzHUTaYY+XCx+77s/GL08gmVlKH77+pU4Sj/+7PMf/eTHXzz4PIrOOw336tU7Dx59/i//8b949/d+\noErKBP873/6RAuDX7//mD37yR4RJkhVVnCW2oUMILFuLF6niYq3fg5o+n0U6dnoNIKrYc83+ysbk\nYpgn6WQ88R03CAYCyDjPqBSAiel0tr65gZBe1IpY7bCzZlkDAjRZUd8MqqjSaqwJOUunW1f3uhBx\nv0mI7pbANC3BuNCgt9LMJ7HfCpChEdscjs7ufueNIsuZAv6gUSha5HXFhASIVbVmKEJZGuVlXmAI\nCEHpLC6r0vECANDuYO3F/n6WxUEjNJU7nU8cx3c9n8nlIo40rBmO6zi+FzRMW/i+P57PRpORF/gt\np3X44ogAAi6R60hxzoUSACgFiJSSXCb9CPmr6SwvkWGXRkZOGUYIIRRnqe2Yl3VLUnKhLgcvlpIL\nxoW4DEAxnSAItYoC09IxglAhQDRBaygxAKDVa3c6zaiOy4pLhCWjmuW6LWxblpblcZG0Ox3TNNI4\nIYRkaRk2uixbukR7vv88mabLcXzjxi2iUFykVZmZti4Yp7RmojaVIRQ3DVswDjWpeGlg5DneJdtd\nI4gxJoSAUGFNQxhzLnTDVFJyAJiUkkCJVVZlthOajv348cPlbG5bVl1Wo/SMINxteBaA8biQDCqC\nkmxx95t3DB2l8ZRntKW7ZoqCbui3mw8ePFjb2YqWybMXh997+0f7+/tno/Gde3dN2xJC0ToNWmi0\neNJsNlsNXJVGVQqdkEU2lzX3Q5so7FihadgXy/u27T158Klksu3tGmYYTedIEQnVPLoIQ36yKKPi\n3G30X3t123f8aFEf7Y+StEScG4RE+XI0jnXLFZJpGsIc07ggTLZbLY5AUVeGaYwXMzoDJeMlyxzX\nrWURrDWIZs0yNc7oq3fvHOy/yJYxYOXnn35EWQaAAG3Lb9qbzvVf/+aTm1duLOMUGdYkkW2LYWUE\nuo0JTGZnf/xv/1GZ08nFkGOhgETY3H95VuTM90KpasGrbJRuNLsu18fTheFY41GUs3KYlZPk5Pqd\nG0+Ong921mELbwd74/2Lj/ZPPKcTdK5kcCQxaQA4m5x2Qi/omHajtdLtrLqrnoFPj14wLZIcv/na\ntzCzHz9/gAnvNhuWDo+ePmkYBhSqd2VnMBh88MFvlsm8KICJhSjK2zdulkooApy2h7NSs82DR/uG\nBh89fNru2lm9NGo1nU5N0w0bngXh/GJ8b+vGF48effbeA7Ph37578+jwdH293e14j568XF9ZZRra\nuLY3PD7f27u6Mmgu0/Txi2dvvvkm40xqyDbDnDKn0fj4iy8lIy+ejrIyMh0chC60ZLvZnE6nXa85\nHC/8/iDorGdRlkeyLsmj87Nmv+v74QcfPyRIs3Wt0/KlFI8OX+pIW1wsLkbnV2/cTkv58vhZnMwt\ng7SarmmagedhiAyMkUA6Im4QnA3PHcvstpt5IT+//7iswcpg/eDg7Nn+y29965uoRmvrqwDB46NT\nWbD3//wXi2nyg1ffXsbJ4+ePJEBQM4qyPp0Me1C8fvd2mS2SNCcGq6IhInoQBK3AJTzTtfT67abl\nmA8efrm10bl9Y+9X/+q/+L23vwUh3Nnd+OLL+3d2gpYRt/UYOHh1zaP16Dtv3xaKPz94+Hf/+Efz\n5eLTT35FiN7sgM+++AWBgiOkrfa3GK/Hwwvflc2WxWiRxEUtE6LrSIEgCICqmGCnxy8FxACTW7fv\nrq1tCMEuLi6KOpNAlWJRYZqJ3CEoLfNubyAZdS3b1U2zYwAuFvGosepgGxvKFEI1W70kiquSOp5f\nFIWmaZbjlmUpm/q1O7eXy+j506cN36vzfLmcY6yxGDKhnNAHQNV1CTCcLRPX9R3XRggVWSmYBIqY\nuiFYrWFIBXVci2CdEMLKmiBcZHnQ8JVStmmVeWnpFlRgPp8LKiTjnFau69C81HXieNZyHhNEEMBQ\nKYQu/Y5IKaEUvOzHvhzrXwvul60dAAAlgabhPM9d1zcM7fz8ot0JDZMori4Xk5wLLsVfQQigUhAh\nqOuEYHj5CUBKIJisy8JrWrpLalFjpGGlGbozHY5835dAmaZOCBCIllm+nC1t06ICTCZzIXlgGhjr\ns/ly/+mBrbmWq2EDmIpUNcRIs/0AAEkp5bRAGjYMaOjYtkjNpW0aRDeT1MEIXNo3CSGMfZVfRwQi\nCBEirKaIIKCReTSPiky3jeHwZDmfKik1BBu9XpUXZV7E+ZIJpVkugYLWJWAVK4AGDMNE0/EEN0IB\nXCr4519+mZf1n/z0Z+t7dze3bv2rv/zd3s5ukS/LsixpWZRZu9suC6qbTd/biKKEi5TSEkLY7oXb\nm5tJsmS1mkyGAGRX9zaePzsQVK6ubJ6fnxOit7qtSua+72ua5mIRTxeOEdQl1kjn4PDM1uyTg8Pd\n7Zt5lvQH/SfPn4e9fllWDctrh95kmu4fHjU8z9Ht0WLhOmEFWExFx/NoWVVVZWBSCLCYTInmQoju\nXL9VZbUohKqVZmqeY1zEsUZAFwVgUl7Z2Fu9Gn758Ck09AxGuu2mGVNCpFnRbIbsfBK2+GS8MDyn\n6zhJFG+trp8eHAWeJyk3NYsyihwz42J8MfQc1+8Pzs7O0jx97dVvHixOqIW8Xnf7ytVkGUEmknS5\nsdmrSuU3zLNZvb61s5zMKCQXy8zjivjueVy//PNftRt2qxusrDQh5E+fPAote1aSX/7qkx+8893A\nsWaToW57hhmarjWPF/3VlTiaGRp+/ujZ9GwsCvrat76jAUuzwqefPXr65eNut9cI3EUcJdm427Ze\n7j+rKLu2d2c8Xp4NJ4YbcMSxbaiEAGbsPz579uxBdWNrZ3cdZOrsxfnO5k4WpaLENAWz0UQ3jOsb\ndz78xaeGob399tvE1A9Pz46G0Z1XXv3kww9c10+oNo7rnrSm06kAaaPRWOZ8EanDLx4Ymt5v9Yan\nZwoTDoDp1FlyurnWwZKZWPmmCMMOY2GUnSKj3rm63h94aDZltHjljZtFVrbaPSWkAmI+n2PbbrRa\nZ6fHmqYdHh/dvn07Sy9WVnf6A6Fp+tPnz958801IIK1rx3J/+Ze/6nQ6t2/frmtGy0o3YLPlHx0f\nvPrqvadPn16Mx+cXZ0IKR++ZkH/vrbuO49R1XZa54NwwDC6dt167e3j0jIpCU+LmlZ3dKzcefv7x\nznpPcdFptxcXw5UwWFm59vzFs9//7g8tiV4eH65sbd178/XRfKxhFE8nrm/8+Hs/2N8/HA5H167s\nEsskQvCL0UmSJFJKPmZlWUkpw6CNCGSctbuDPE6KghuGFjhuSqv19YGO9YcP7sdx3F/p2aa5TCLd\nd7cboWNapqFxVuaTMYOLYllADb/+2htn4+GiHvcGnSzLDcMan42wYUop67I0NF0AVqSFH/oIoX6j\n9+LRkyLONK4IA/EiLsu62fUxlbzmGGDbNgVlSZTYuo0lzOOozGpFgWvbmo6zitVVoZk4iiLTsjiX\nQgjHcZqdZpJGSkiCMGPc9/0qr8qy9B2fGERKILmIk6Vt2LqNdUeza7MqqGDCgAaEl0NcKiUBREpB\npSC8fAD860Gvvpr1iDF2Sc2dTueUlXfuXqOUCiEEB5x/5XlX8qsMlIIYKGHqhpAMQii5iJLibDhJ\no7Ldac7T5SgZeW5D063zk1PH1oOmW+TpLJ7zmkKICcGsoFzpWZoAiRXHBnbKPPOcoN/u+aZfZant\n6IHnspqmSakkUApyLpuNwA99AICSEEjKaJHFWV3DNI2llABIzjnRsK6bpmkhhCpaEl0XTBqWWSWJ\ngkpBYViaQqxihYSq2+uKii+WS1rXvuMyJWldgqpejidlWXJZ81ITnt3daGxvbwZe6PrO05cvsGG2\neuu263/wuw91QhzD+vL+p65jf/HZ/d29K/MoHvR3Dl4cV1liDBqDVlNTYyTgaHy2tbnqBm6axnGy\nlFx8+Lvf/O0/+pGnm0bbPzzdFxJ0+71JMX/lW6+PojGxdY9YF9Gi4/ZG0+jZo7PVQW9yPu51dhbz\nVNewEHJ1ddXy/CRJFKNpGmECLVeDDuSm8js+k2I6HBuGVmDs+75gXMOEl6ysyrXVbpKkoOTDo5My\nyQAT8+FEhUGge1zUPWKPzkZfnn0SeGHX8ydpIgVd29kaTU4ghBxxjPlKZ3U+nzdsnEXLJaWrK31d\n18eTs6zinU7n6OjlYDDouuvv//b9nZ0tN/SRQSpRrG31V9da83yRjBe3dq8v9ueHL56vdNsuQAZn\n/UHr6PRlwyCBoU2zTORUN6wiYVVakZbfbK4xkVaCPDw45XUFKb22tuOZYWiZzx8+3r66BQ0vS4s6\nq73QevHiRb/b6bRavmm+evN2nmYPHj1urm32V9cWDx+Pp7NGp8sRGCfza9f3pufHmNiGERQVGw6H\nlOWWY0ZZWvIqaPqA4LIQmysDVaQOcasFUzlAmv7l5y91wzH8/pOjUcWF6TqsrLqb13SMP390qJTS\nbfu3H3wZZTBncLiMfL+5rKLnH72wbVcp8eGnX2ALQwgbjcDQzMcv9judDjIMyw3TYlFlsefoVbK4\nubXeCbznT59sbW8gQgYb6xJhQ4MdW9+9vttu9QQkGEApAWdya2XtyZPHhgY3Nvucs1bbq+sSWdYs\nWkjFW62GbuHHLz5/69VvD4eLaDq/e+POeDp575fvXSK7NzdXG6HXaoS9duv63/6bh4f7B0cHr732\n2vPHz/JyuVgsEkIu0WB7Ozv9Tne8mIxGp6KYX93dtXz348++7If9X/z5bzZWur2VflVknW6z2Wym\naXpv72o+XeYQ3Lp55/hi+OH7v0vKrN3pmJ5RsLLdbj959rTRb0idEZpVWZZIoILAD0Pftm2ISVlU\nEomK5lRw2zeU8nTTxgRyIBt+yJl8+vjFchbduX3v6rW9p08fywpJJSRgV9f2ltGUl7UCcnt3NXdT\nJHCVF0kUZ0UippIKZJkedh1WJqZpakSvqspxbde1J5PJtSvXMDFfPjkKbLeucy0wsjztNtqGZs2z\nWasRFjk/OR6xurJsDQBFaa0p5BsOxxIBZTsWBRV2/KDT5DkviooYOtF123FMUxdCJHnMuZBclVkp\nuQp9z7KsumZ1WZmO5Yde4DegwtjEWEOGYRRlqTAECgohEAIQIqjgJfzrax3m62TTX+nvHGMNAJCm\nqW2bzWZTKcUY54JxLjn7iv0LgEIAQCSFEABIyiohBJRKIDwajU5Ph44daLrltxpEh5ICCFGz4VkO\n4jJO0mWW1q3GQEq1jBKCdS/wszRtNgMFJXZtwUVGOdR1qBPMIcsYgZyWlFVUcaCZWs14FlXL2Vwz\njcBvJDLLi8J2QiUAgkojiBDies6lZVNKSbBmGFpdUyAhrRkhWi0lxljwUncsAkm31yvTPEty33EB\nlFEeAwTa7V4R51mUBb4rsS0Bc9zGxWiOIXEdHDT6K6tyOJ6NximeVYgbYRBMLo6+/dZrfmBPZ4vJ\neKjp1vHBBasZr7K6GF8MT4bD81dfvXdt77W8Rh9/dF9xwWpBoLHa34CStL3Owwef9QYrHCiWpW7D\nefzl50Hgr3RaYTPY2pBZXIF6CplqNjdPjsqKlpzKpt9cTqera2uCwBTJRRa7tuMErgv8kpYRy3Ri\nTM/HUHAH2Zd47jhNbNvudrvxMnEtW3ExOjnRETQRSspSCUkwBoA7jjcaXaxtrX30wUdX713XdX3x\n+aeekITGVVVBDd26c1vD+oPPnzi6WfPCD1zGK1YtCbRcl2xublmmPR6PTcMdHTzf7XUcAEBRSkNb\nW9syLP34ZGRipZtauZyFltUKLSmL1791bzoc0bIKQqegoqpy33exRBomhmWNo3lJse+2J8P58cuD\n733vjQU7aqy5ylEJpMF6f3h24SXJ7//onfPz8/Oz0Rcff7a6ulqlVZ6VUCjGLgBCuWTReBp64T//\n0z89Ox29/e3v6lJQVl+K4/GSG0b7xbMDsU2v3loP2v6Dx6ez0Ugz0Y/efe03v36v2+Cb332V1urJ\n45cTqZaTSRi0RmdDx3JpWRND40kmKOtvbMymk+HFWa+/ks3m3mD10dGJ64YQqsXwzLZNt2nqOtJ1\nm4IWxhhpBClgGMbq+prju2ejUQ1kb73H6iAuCoTdUcTTNNLc7jyVSnOjSWkRnXpwZfvqv/lv/p1/\n/t//s2y6nAwvEFabW33brdfXTCBj13J8rxslpZDA9bzxeGwY+nKRWZYnJYiiCGNCiKyqmiDSbLYs\ny6S0Kku2v3+IEHr88EGapq1OxzWd5XSBNdLx+gog3bIDv3Fxfv7Rx59vbm7aNrp6ZW99MJhOx5Cx\nd779lhT0tds3OI32NrvHh4Vna7IqDKyNZ9Nvfvs7989ePjrZ39haf+WVu1988cVkOa8ES4ryxdNf\nx0n87e9/5/GLp8SzFQG2Y4eNZruqKgx1z3F4RZM6K6vSCV2u6qRMTNMpqvzw6OW1qzsYGWHLGQx6\nuoWfvnh0MbkwLT0Zpb1+J56lVIBGp59W2UcPH167fvPetZvj0UJ3nabR45wbmtFpdpIk5kQDXCRJ\nHAShbdtVzlqNVpJk8XzUCJvNZjPP0oIVSgM5zaJpBA3tYj7ViNPotGuaJ+my5XplWZUx7XT9MkuT\nNKYgq1klEBqdjxzHqxnVNTMvSt0w6ySTCnAmg6BBoDYcDiXnEMLjs9MizVZXVzXNjLIU6ZqtOYZl\nzvhCV4aOtK8DqABACCFQ4GucwNeazF+3ukMIyzK3bduyDMqqosiE4AB+lUDlTEgpIcQAQCkvk0wC\nY1hX1eW2EgCQZYWUym5aN+7enLERq3i3sbJYREKKyWQGEXVs3zCIhEIosExTk+hrpqOnaZUlGkYY\ntADE09E0xEadp7FpYMso5tMsy6uyxBgj6GhQCMbjJDaYZVuu67q2bdp+cziO67ouy7IscgUBIQQi\nLIWiinJBOZfwsnVPyTAMkumFoZmQoaIqTg6O1nqrbssGSiV11WiEaVkQXSM69gNXKsWFdELfb7YW\n50lRVs/SIy5RXhYa1iaTGYL6le0tTYfx7LyuayHt0/MLzQoYFVk6bYTe2kb7YnKIdeB6+jKaCyXv\n338Rhk3btnUMFZVb166dnZwny9w3m44ZVJzVotxY3Ti7OFtf27p//8vPP/+02+y8+fprNc+TIp+M\njvNszmvlmV5dJLZtRPHi6cHLzd0913UNzUhYDQ3jxrU9WlSTiykhesaLtK55ToNABYEHMTBNs9DK\n8/NTWlYYIQKBZVmdvU3P8xQAxycHQTf0g+aiqro7G49OXu5sbdotF2OoadB1LSYZBOL89AwwYZqa\nklhnkKXx2fDshz/6sQXwlw+fY2y/du+bk/HCMGMNYFpU8/MhxUh37Wu3bgrOeY2+/dY3f/ub96o8\n63ZalNLjk3Neq1eu3hyOR1QqQvRCRoqWxLRAXay3gyAIkmW0OViFnYGHnZW9O1zFKa2KKgUKN1vB\nxWj653/+i+98+xsb397oNbtxHM/n8/OLmWPp/V4LANDp9Yezxen0d5SJyWz+8Wef2ZZJpURCMi4N\njPZfnsyWs0ZocpqtrG7rxvn46bEXWte2BivtH41H05Pji90rr86XEVGkv6qiJL/SaCdx5jnWbDaT\nJe9trDw/fu7atu6YBc1Ny+6ZRiPwp5MZJohAweqSC+Zb4e7uRhACS3OzrLg4G7MC6LquhFhZHVS0\nnCWLPM4NTEyFnp9OW37Iaa3r3NRtlmc6FoZBhrPik4//01t7O0lSPTs+fuXeDWzoRVleu3ZlfHGh\na8Z8fIY0PwgbmGhlUWvEAAi2241Op1OVtWW7s/lpTXm73V7EC0iwZbq8FkURnZ2d3Ll1Yzhktmk4\ntv/Jx5+9+tabruv+/Je/+r0f/zDPs85K88rN7S8f3mfSvuLsGYbGWK0QXM7nlMnX7t6ZT6fLWRp4\nDcZqDgXWyMZe32+bQaTdvPkWp/U/+e/+n9euXeuG3vOjw6QojYbzjXvX//Gf/JP++oA4A+QjK46S\nw9mFVMqRDtNarfW2HlvP91/qNa/rQrPkfHmh66S3EiCDQiScJlrpN/KsSIqoM3AghO1mazQattqD\nKBHz+cwzDeA7NFq+9+GHeV7dvHZzMZtUZY6xtphOpZTqckpyLCgqBJtN5+vr23UldMakUrIuCeJR\nlQDCIYOIQEFJkZWWBXRdAVEEjrmczHy3Galymad1nUMD1qwiGjaxlmVFhSui60CBr+0rXHAuVZ6V\nAJRCMiYY1gDWQKvfdEIb6rjRChmnoyht2k3TNJHCFFIlFUSKIKyAhArIv2q0uPz+dY3q12eArusI\nobIsDcMQQlRVRSkVsiQahhCCr6AFCACgoFRKYaykFAgSCIhhebP5MqcV0IDf000XylnNGAO+5Eww\noQzsCWG5RkBgARBVoOqv2FKISs5Cg1DKBaeqrOooP16MMtNe7/XUCtAcUhWVpgMN6lAqVSUEAd2x\nt7Y2kUZc14MYQYyLKqvr3CAEY4QIzrJM03Wd6IQQSmmWpoRoGGkScEQwrRilNAhaiEvMVD9slXFa\nKTCdjhutZmd1VWI1W0ygVK5lL5fLoB06obtIl3lZNYKQAHV8fOz6DiTYsY1Bp68IFYBcvXH3+Hxc\nMiNobEyXS98zJIzjjNVl5ZhWkuW37n27LOvPPv1iY7230lt3PXs6nl2cXrS6jaKcW9xW0JslFEKl\nMH7/vQ+//b3v6IabpFW/sbo+WH/45b7hthziJhlNl/HWYH21PcjKLK9Lqtite3dXNzYffPSZYrWp\nA6DB588eSaWyrBh0VlfW+qPRKCSu7VqLxYJxenx6AhXSCNra3ljMphhCjJGCEiC1f3DgeA6xDGz7\n88kSKGJCvH9want2Cdk4idrNIAxDJFEyntGitlttA9mmrt949V2I0ccffTaeza9cvTqdzz/6+OPV\n1fX2+k40mflOAxhOlMcAYSBAMlsggX/3lx+nixwFzorfGMVjkSoNaPE4poVIi7yqKkHZem/QajSz\nOImKApW8YRh1Md/Y3rr//ImO4M725v7B2e7mWsvTy4qGjcGnn315cnz8o3e+ybCv+0HP9ZwgfPj5\nZ0eH551Wa7FY2B2xXC4RwsTz9y9Gtm1jBEZPX75x7/bgxqAt2CxdPH1+truxUpYnVVX02q0kix9+\n9hRA/uzFPtHMn/75v7S95kowmCyWfDYLeh3N1jhghqEGK+t5lWs68HyrHXqT0dRUCkO0yFOkxN2b\nd09OTmaLeV2KeR1DfkRplSXHBNtQIVbLqsoAUpWgQTNgnLY8e7FYXLl+rYrKxTQCgIzGkeMwgLlh\nIFBmk18/un312oF2UrDsyt1rQDeoMMaTdD49nE3P/9Yf/UjT8AefPYbHqNdfG16c1bTheU5exN1u\nx/SYhgwrwO1Gd3SxqClUkgilAIw5Z+12E2lwY2MVABj43vff+XacpUXGyjTqNMJWIzw8PJSe++47\nP3zvV//qpz/7s1s3bq+trD569CTP8/ki/uSjT99++3t1XWd50myGu1d2x7MpNsn5+GT2Yj8/H8Vx\nfGvlyuR46jQCHSDF6GRermxvXr9zi+gYXUzI05fxPFVuq9PoN3Vfi6vovU9+c3B66Li+ZTq0Lrud\nEEF+5861nZ01jPUiK6PFcjKejodjANCgt7bSX1dC3968rmOfpQBVulnZG+F21xzouTRrBlmlABNE\nFCodLs8rLPqd/qV4zRibzidEJ2WVxMl0tBwdnh8cHx0cvnzJ89zFug2gA4mpQL/Z1BQcHR6zPCeC\nEVZrgvXaIZACAGBYJtAwBwpqSLc1jQBGCyW5aeiM1rSuhBBACqwhy9ZanWbY8GpRmK62d31TwCqK\n591eSwGhaVq32+WcMykkggB+lUpVAgCAvg6pXo71r0NMX1PaBYeaZmCsQYgRJI1GAyEEALpsUP36\nCwKMEIEIYQKE5AghoHBRsuPzi6wqrdBcvbJyeLIvGA8tHyMEoNI0DSG903Nn8/MoGhMMyrxwbb/f\n3rBIqLBwW57bDiVBkySpARAYA0OjVb1YLCTjCCGlgFQAEd1yvMtaqKqqKFN5Vl/S5BUQX7eOXP5w\nWeZrGIbr+ZZtM0EhhBWjmkGIrkmgKK+ZokcnR0ket7vNwcaa5btpXS2XSwih5TppWVScGaZ9MZos\n5oltuUVenQ8npmlJCVzXdV23pHW6qERNogXb3rypETtPUx3w5fSkTGadhuc5Jmc153yxmM1mkxvX\ndtdX12hdvnjy+HD/2Wh8FmfLtCpmeQYgsU13en4xOTp9/dqN79y6R8fLjbDDy1pxthhPizjVdX08\nvmi2vKJcPnl6//GTh0KIOI4JxsvppIwTxCXIMk8nN29dEZhhA6ysNgUviKKN0L+6uyM4pZT2ep1m\nM4QQ2ra5vr6JCEmShFLKmcyyAkjw4smLeDoPLK+Ki+UkyRM6ulgUuXC93mhRzSLx+f0DqPu9rSuf\nvXwxK+uTafKzX330/Hii2U2/3c8Zb/U6V25ekYQm2ZjJPKGRGVobezvYMNM4szVnpduIFiM/sE6O\nD9I0lpRaGvEt4+xiOo1S4voFgIOdq8BxR8t4kmQJq5aViCpYQ/dkFCNsEmyVKXesth1uHE3YNJez\neP6d774hEfzy4EwoqRlmXvOnL4/cRsfx20nOKEOL0XxydlFESdP1fdtHQIuWmWWGv/zNh//vf/on\nL0/OSwq+fHwIsK1b7vbVvbXNjdF0WVbo/DxTwvHdXpHXUbQYzk50U7RbFs2XuigcUW+GDRgn9GLa\ns9xsPFdM7uzstXq9rat7YbfNa/7owcOyrGjJ93avacSezQoAXMtpnw4nVS3c0G0PWrqtuY6hWGUL\nxdKs4dhpFFU8L1lMRdLomGFbCx3cMUyVpq/cu0lF2vBtXFMp8PnZ5GD/JM/L4WiaFvxf/Oz94bRs\nt9d2dm9MZzFnKmz2oqQaTuZUAikaJ8dxs7lW1jTOFlym9x/9BqDkzW98Mwhbq2vbEJgSaEyoRTLT\nbcRpduPGFUbLPM10pJ0dniez7OJ4/J1vvNtwu08evlgsolYrCFv2G9+4vrbp1+xsYzvsdN1uv/3R\nh5/+83/20/ODxXrnuk3sQXOwNdjZWd/d27x2dnLhmOFKf/2V3ZtyWdTjhI1zYmJJbDvP8zopvEBX\ngPZbzU7oZJXm2Y2tzfUnjz4r02Rrcx0BaOpmJatXbtydTCanR6dKwNt3bkquxqNpGRUmNo/3j6Xi\nG1ubWZmdjc+DRqe9slLL/GRyaHuuBoGDcdfdRFxPsziNlwrCmiuiAdtBWOeyzqGGIUKXtUi64TCF\nTC/gSvKywAAahmG7geeZBCtqlLaj0arydY0ZOtCgHThJFmWsFIA1iOXaDgZ4dDFuNBpxHCMNEQxr\nWlIGdA0DJLIibrYa49n58enJ+tpOliVASqXAfD6vKfVNqy5qIKRSl7g0ibEGAALgX9d0XP4gv1JY\nJMZYiEufiQkhqGvmOB5jnGjkX0vzEH19KCBEEBIYQ8Ghho2Ls8lstgAYbG5vVopiokeLud22iiJz\nfcswDF7VZVmaph0vS1owLLFFdFqmFCisE0RgWfGSU900ZMalgo7rBbozPZ8HrQARogBREAIE40o0\nHBtApRtunlEvDBAGuqZrOqsY/RqYwzi3TZsQctnIWZalaVt5ngsE/NAPeZkJWou63+sEi4atG5RI\nr9NIsnKcxM1Gp6oqylWalZpmEt2KFhdXrl69mFy0Go2ru9cpK7zQi9NkMr3I0uLdb709HE4mF+No\nNu51O4gqj9hpvEjjUnRVvsiiKHIcJ1ks42Wk9XpHywQrLJUanl74fqgg5gB2+qtEWY6h5/lMl9W9\nG1cffPrBe3/5l3tXbiigPbj/RIe4jstFHGtIF0IYtjlYbdVFPZstoIKqZs+fvzQNzbJMpVs1Z/E0\nLubZK3de0aU2GY6DIOi3Wi+fP5WctVtdCNF0OQsDL0lijExNM+qKDc9HOra213bSNO63+vHFqNvt\n9tuds+FFr9djgrOaNkOvtthKfy0ax6Zp/vCH76xvrzx58NgynYvRWZy40/nMsKzFLB8MBukytgxT\nMmHZblaVEgmv66yY7fnZeTdsEsUcnVzfvdLr9EzT0LHB8rpMCqJpmoIIkf7KepIW+Ty2DZsL5BiN\nOKVMASFrSSsgqGU5wgqqknzwyRNTJ3Eye+31O+fj6fbGNqvK2WjcaHVCzw/CZr/XIQrOptOjjz9J\nZpN7r9w9ONrXda3dCY/PzoWStmUjw44zNhxlYRhygA6PD15p3uJczNJ0tCgPz4adVnfV7woh7tx8\nZTQbQUOkVdwddIEAo+EEKFRltR82kyQJgsZ8mb88OF7fgDVnP/v5X968dp0xhnTwyt2bRyeHcT4E\npLZtTyHlN1bCuHAbAdBUSVOMQbvTTOOk2+gI2KgoJzrO0sQL7W6vWdU5oXx7exdQGera7tXN+eLC\n8o2nv37xdq999/bN+XRBizKK83a72RsMcirW1lfG4ykXNVesKNKKpWHDZ6J+9Hjo2k6WFZzVu7vb\nVVUhAk1L/+WvP1jO5s1mK/A9pRjnhZCl61qLOHry7Okf/zv/9v/l//qPXn/99Xd/+O7h/kGZlw8+\nPnj1zu1lHE2n0263OTmcVFVx787dSyjIvXuvlgUriy92t9ZsDV6cvtRC/yKZEQR++os/JYbe7ffP\nFvONvb2PPv6AS/nOuz+4f/8+/Lv/yZt5IjXQagV9qImDo4dQp91e0wyck4PRa7deffL4oeMbHLKC\nc6RZi8mcYK0TthHAnu3laT6bJrpuYlmXFVUIVqrSbBy2w0UcGboFAKnyDEjq6dr1K1eHx+eQaUqi\n0WxOOYuKTA9ct9OsqkJWJWYC5Hgyn7d6baAJu2ExKaBmKImrvKo5cxyHQCCFcDVzMjxf6w8YlyWt\ng0ZIpVhmkRO6URJBjNqWAxXmtUIKcVbnZeEGLkJoFo0hhJZlCaAwhhhjx7XGw4tBY00AFUURBBpg\nKB1ndcJEwUWtEISM1X99oH/NDrv0C16GOy+fRVBDCDJeSkWFFN/5zusrK626rrgUUijOv3IZKiUu\naX8KcM4UgeZkHB8enMZ50thq7t3ZyfmEYKMsGcE6V9J2Hd00KkqhUmWa13nm2qamaXG8lAh6YdD2\nXQEBlcrWzPRsalLVs/0377zi2VpSpG7o1iU1THuaJKZtKUYty8mKcmtrR9cJVDJoNCDRx/PoN7/9\nZBnNoygqikJDWDMNomlCySQvijRzHAcQXIiqOehWvJpHcyHR2trK/tGhpmnNdiuN8rpmrVanLPMq\nL3SEGa045woAiXC71xWKCc51rJV55bpus9WSiudp6nrmtd0tRuv33/+NrrmtZjeO0yxOomXSG/ia\njrlE49F0da1HEGg3evPlrCpKQ9Pqurx57+at1250t3pPD58/+fisHQbpdJLN59949c333/tQ0x1N\n915enFoIrfc7NacFL7BJOt1WHsct22u2O+PJgjJFKVskKYfCtCxI8Pj0QpeaErKsi51ru8PphWGa\nlyWIkivbdXRdz7KM0co2rbXBWhJnjUZrPp0JxhzDuv/5p57nhQ20ubZ2ZWf3V3/5Cy8MdMcrGc/K\nSiOIV7WtGZBAp2H1++3jw5d1Xuxu7xmm82z/aLbMXKdh6k6RlHlaYI1ubu0wIHNW67Y1HA47jaZg\nslomvm1JypMoGgwGeVYiCQ1ijPP5PM+7WxsVZWVSXVnfHh6fQgizIiOIEKLneappJAi9PMlN3VQc\nMV44JoFSNIPgzrXtMjkPHKDroWVZhmHohhW2e3/6Zz/9wQ9+sJzPyjTRDfTp55+3Ot2r1+589Oln\nk/nMsizPbZ+cnkOFPMtmrCxp/Mbr1zuunlTFfBabhscZ0g13NJlhrG1sbTYcyw79g6N9xqskXrKa\nYt1QujE/H9mev0yzRrPjBf6L/X3L0C8uLn7w7TcwQdPpxcbGBhM8K+jZxTSJC4L0ZbywLMux7Gaz\nuVgsJJCM1Y7hS4LmaYwM3Ot1DQzqeOnZ9t9++3sffPaZaRicyc8fPd5e25qdTxREJ0cnP/7RO52m\nt1jMsIami6nvewDyXnf1+OjJSq+pYbK+sTMcTXf2ts5GZ4vxOJ4Xjt1o97qGCX/8N374T/7x/ydP\nyqOjg2+8+Xa72f3Zv/wX7/7+24ZvgRrGw+RierZ7ZcdvBffvf/Ef/If//p//+Z9pGmaMdXo+ysBs\nGq9cu36xWNRJ4hkW0PCg1xcVzdOYK9FoBuP5jEkFNS3Py9PTU0KIUDCty4Lzves3Ds9OomR5SSoc\nDAbw3f/4pqrxdndveTF3HPNsfFQTFQ66VVqEvq9Encbz73737cdPn9RUAEVWtnrPXx5kZXXZ3QM4\nAgwAjmy3gRTKq3wZz1Y3+0gDy/lydWV9dHzsuw3AgBKgTJO1tVXT0BirGQcY42iZVlyYlpdXVRrF\nSimFwGw+whoKmwExDYBJWVdlUeueyTlnQjQaLV7TPMsc3VRCFlXt+y7ljHPKBW02G5e4K85VVdQY\n6EDIoijChp8VRVbkdV032y0hhG3bYegv5vMg8IQQvKzn0dKwbNtyq5SqEp08PcGK8JReUiG/yihx\n/termr5WZqSUl3Z4jI26Ll3P7A9ag0F3ZbULFM+yrKqpUpCxy5i/YIy5rkspJ1gXSmUpffH8IC9r\nZcit2xtm0yhVAhT2rSBeJqyqG2F4CeBkShIEDE0vyxxCaFg6MbWaUkfToE6IZji6VU6XMKp8Rd56\n9fVBP5wlEdaxopJoxslw1Op2dIirWjx+/FS3zHe++7au6wCjoNk6vRh/8PFHZVlOptOqLJECnucB\nRChnZV4wwbGpa45VcAo06PtekacJTaUEjuPomsmYXF/ZGo2mWVpACJM0wkp4rl0UmYJqsLL6/2Xq\nv590W9PzPOxNK8cvd3+dd++899knzTlnMDNnkIMwAAiKFE1SWQ4yLUtWKFt2FYuusqsk2S7bLFqi\nREuiSMEgKJCgAJAAZ4aYwWDynDk57Njdu8OX08rpjf5hQyr9Eave9Tz3/VxXXpWe28mTlDNGCLEd\nN87SLEtfe+XB5fNnTVW8dO/+xcWFpmntdpc27PTZMyN0DRMWeUqIZxpOkka97sC1g2hzadv2ZDJ5\n5dUHACvbtUxb2yTRyWfPIVRHBwcv3XtQlfQH33m3rqSle6vNPLTMNFrcenAL+uanTx/rCIuqgVXN\nhZII27YbJ5npWQojO/DWi7WB9a3OII1S09Et38nL7Go80nVzf3dvtVpXdX10dNRw5jsubRopUJIk\nGJLAdoGUeZzSunQs2zXFdDp98/XPxXF8cXEBId7e2pvPF5ZrPrh75+njh1G26u/0NNMwDSP0WnWl\nLsZXTKKg1eUCXl2MQi+glJc0itPs9v17uu2cX40RwKyst7qDPIl1iMs0GfR7Csq6rgETCOC8rmsg\n9m/fenLyTNS8G7ZoWdV1bbpOleUt2/NcVyllmOZmsxFCDAbbEPCiTDGAVxeXv/6rvyiaSEMNo6Wp\nk3bYQogIDk9Oz9964/Or1cq2glYrfPjo45o2gd+ZLdbr9VJIbjuOAtp0sjk/HXV6Xa9t6aR6+dYB\nEE3dSIDt8SxabYokLnYPDhnlAAEqOMa4yuKX798qiswO2xeTWdjrRFFku24SRYv5pO07h3tbW/1e\nSGrDMsfTBSa61+pGaVELESdJVsumFmXZ7A53gORlWUCIzs4vnU6Y5znn3DJMjSANoNB1PdcGAFnE\n0BDWLPujTz8pqvL46Nrpp492d7YIENuDTq/fLcvSsox2y8vTNEuSwaDX67dG01Gn1wUALGYzxTj0\ntSanoFG9sI0ReOutt/74j/+k3el0Wj6xnCwrfNNstX0qeJaWX//at6gSx8fHlqGv1gvO6Z0b17d7\nvfl4hGzsKHM8nt168MBvhQ8/+qTVDhrBN6t5q9UBGJ2en1q24TiW6/qu6xZVo2kaQuRPvve9OMt1\nz3vzS1+Kk6zY5N127+zJ6Xq2JHFcCibj9L397W0Y4JbZmS43tuU00MxVdbjTQrj44P3vS6VJonHB\nposNJjqG1DYtwzCeP79wnUAhTNOEEMIaeuv4eqvtTidXD45vYoBIMNSxPVusfbc1Hs89o3IPfMpE\nCFSn1c+J9+TZhQ4UZci2wpIzDctWu6tAgyECXBmazlQjZc1rbpo2VlIHwjSNOi8cz02SxA8DKXld\nl7alY4xZXQiEdEygHmKIpBBVUUEIKOdcCsMyLctRAtiG59leFhWCgibjUkpKq/2d/bwqESSeY86W\nc9u2ackgwFJxjIkQDYQQIQAAVOpPgb0vMJAASAgBwhBCxBkzLfLyK7eHOz2iQQglp4oQgvmLPqWS\nkhOMECQIQAQgAoRSdnb6vGkYa+rOsG85ZkVLhjhSoKYMAKTrJuccKUkwAkICBaIoMizd9m3KqWmQ\nwU6vzmmaZRKy3a1tXLEmp9EiitebwbCTZJnnO0CC5XRuWY6kYLCzXTHeanU+++zRN7/5rS996QsS\nIiZhvIk4ZxK8mC3UC8g7EExJaWiarutK0xhXXElWUSG4oekYa1IIVkvFWSfs1XmVR0mWpIPd7u72\n9UePnixmkePaECpW1zoCk4tRr9uCvGrKSsMEK7U37I6uTnYG+4LJ9378KM8zTATRjCxNg1YnKfMw\naJd5RevGtV3f9cLA22w2muE8PT0NWm5W5d/7/g/eeuP1veEOT/gv/9xPRptks9kMh8P/8m/9nb3d\na6tlmuW5qZWaQTSbbOK4721hKYCgBlH93i4XoqB1I3ivGzLAtw/2ZoupZeh3b9+rs3K5nGOpEIdx\ntr5561qyyaNorWlECPLs2bPrt266rnu5XgNFut0upwICGMWxZWlYcwGEChLLDtdRJpjstPq9do81\nbG+wY2l49Oj01u7e1t7rj86e9LaHp2dXm/EIt9puZzvOi5g1ZdXg0Ep4UzVF6IZ77UHdyLRKXdtT\nAtRJvVlFtmksl0vL0NOq0jQtr6jjOHGS+G6wu9WvhQg9H3rAt61pHl+/cyy4WgKhE4gkWy6i/tY2\nQghAeXX+5OBgL0vWnd7A9JyCscH29uTqJF6urx8ctDu99XKTJuXNG3fffe/js9NzQsytra6Uta7r\nLb/rmsa8qHr9bs3yklZh4F67du1yukhoqaHG1c1OO7waLcygdzFPiWmTtpkISgUlCtO6ck2z3+1e\nO7z++NHT5ycXrcGgqUBV8tHlk0En6HnWwVbfI3p0OQIhOTo8zja554dlUlq6Gccri1glKoqsSOKa\n1RMFBaW1Ybl+uGsGiBASmF4RJViBQa9PeTMbLQXSjQa0g5Cj4v7NB9LBJxfPSGD6bZ/W1Xi+enJy\nGrieY5nk2kG6WS2jeGfrYDnK/sk/+vov/eovFHXhh8FsObOpuz0YaBq+en5++8bt5yejYWeIlGyK\n3HLMrX4wubokSKRFmSTJW6/erbG8fH4OXPfOvZv/8Pd//yd/8ec+/eDD9Wx2/ehYEuZ1uyfnz+4Y\nxw+fvGu71t0HL20NcVktu+HOay/d/eiTR6JGOsBZKRRs/K4bpVF/0OFAHN+6dv7o4XA4/Ozpidyh\nvaBtUkJQAw7D3r/8y79y82jvb//m39nMZnVRVE1fnC0jkbS8owRR4MPQD0Ynl5KCHa/95ptf+PTD\nD7IkDgzj1tHRbLraRHHLbR/s7ZRpVkRxvpndv3NHcjmbzH03rPLa8zSo8sNrPapyAVvzzYL2dyXG\nF6tVxrlKS17VmCBfI5lCCFpCQqCIoRtEx1mUQE0R5ciGtJw2pPjs5HkYhuWKAkbypPYCNzBJWRdE\ndxDSKaXYdETJAACCSwmlUqKqCyFUq9PmnGZZZhGzrNKyLAxNq6tCKUUAkpSZWDMMm9fK0LQGUksn\n1KAN/VN0DHihHFd/erj0p5hfjby4+gEQSaW4qFrt9s7ulh8YRZEpBYQQlDIpkOQKAYgR0DTiui6j\nyrIM3rDxxXldlApgbGjtMBRMuo67SBPftU2iu6FdliWEKgjD5XqthPB9X0E5GA7SPEUKGKbGOZUK\nWI6tadqzZ88MDkLL1AO13ETw2Sk2yWK5Hva2dd3QbXc8nn/88cNf+sovmI7Z7oXrZH529dzx/ADw\nvEqFkEBBjLHSDAKghhEAgBDEFCrLmmAoBTcIcvyg5o3fDlvaVrze6LoOIV4ul57j+oG1ieYQCIg4\ngLTd8wEAlPLNurAsK8sKjFQ7dKbTiW6Zhom5qBCqnzz/bH/3WqfXMjzNdnBn6O0e9fOsFs/GRVJC\ngX3H8Uy7QfXo4sK2HSbU9vb2rTvX1pvFV77yc4cHB0VSFUX54cef3rt95+Gnj04fPsk260smy4b7\nYYsYvQpA4RkRQz3pB7i/iVZa4GatYO9gt4/gbDrmtKbRJilTvxXubPsAgEW0IpaOdA0RyCSr65Lx\nBkil6XoD4c7OTtM0T548q6rKNd1Vs36hPJYY1kqUTTno9rRSBJrf0QLOSom0+cllEIbbw+1NFoft\n9vlo+uzieWerlxfUMAPGGg/rx0c3Z4v5w4cP8yTe3d1Ns/ja3g5F/pOnj3b393Uo5qtl4DmdllPl\nRVnVtmfYtlPXteF5gPKL8cKyLJegxWY9XS22hoMsSes82z88sCxzPJpJJYSUSdNATZ8vN77v6Ibh\n6xhJYWKt12oTSC4uLnaGn9ve2tttD7d67X6r3fO3fvzuh5Px0gv7D14bLCZjy7KCoB3H8XQ63dnZ\nRQgxyge9ncvZoigK3bSC0DZ8B4tmvsjTgjPJt3uG0+k2nLc7O1dX6yRTBAg/DEwdWcj4jf/ut3yv\nvTXcXm+WLdfVeP7gxvD6tQPe1LPRWAfuaBY9PYsbZXGIg0674TxJIiBkUzV92xZ6yZGoooUdeFIw\nyyAYq3S67oYtnmaBYRgagYJWZR4EXlrXuWLMZnovBB6Yj05vHgxe+fLnf/TVP9GxFoRdhclVvE7m\nl6mLMFHIgWfR+NU79/7Cv/gXDI0c2btZGveOrysTDfd6FS+msXC2jOfPTjqBH7rucry89dLRN7/9\nja3hHve03u614ulJP2gjurnWuZ/npenYRZJ944++89r9+wayIUOSoKzJCGJPHn904+buK6+9rNn6\nP/hH35ASfLl7SwmeRunnv3w/KXNNB4tL/vDZ+5si6uz2to73Ktk4rnn1/MyEkW133Za9YRl6c7jz\nL//8L3z+wYOvf+tbU9bQwHF6/SIrpKve/qm3VSnK8aYldL1hrdDTLHzz1t7DR+8VPA23vFk80Qjd\nH7Zu7/deune9yqMkXitJIYST+fx8NM4ruozz2WaT07JQVWfYTpv8w0ePTC+gjfwnf/DVk8srYFtP\nxhezLEpZWfCKZbnIG1RjVorQb+k6MXS7rATUIMSgomVTF6Fn8SoHrKqziFYxgVTwita5aWBKay5F\n2G69wLxQSglEQjJN0xhv6rpWWCINKcCyIiUGpoICDSoobd8raUO5qOqac045V1DVrJZSKglfNNn/\nJ4Bf+GLtzgTHGAMAIMRKQSklpXKw1SEENE2j6zoAiHOhJAYSIIQQAv+jBRshRLCxTtJVnFHBqaBu\n2y3qrCpTXleeYROFWUmjKH6R2TZMcM4RwfPlghj6cHe4iVaMNW+98bkyy+uaSi7TOGmayvM83bEa\nIYuyrivGqEySIoqSoNVx/WC+Wj569uxr3/hn4+mk1QmPrh8j3RAQLFbry9GoLGpKuZSIMSaUQgQR\nDQLIsiKTgFNBbc9erBdREu3s7Dx8+GmZZL7rSS4uLy83mw0DvNXvNpJqmj9fr3UX6H7THmh+YCyW\nGyUszxvEMYXI6W8daJrDKETQmM82CBrnz0etsG9obprSi+eL7377vd//B3/0xluv256/inMOtPUm\nn82S+SyRynAcpx2E273e4e52t+tjTSXN5unoSWu7/+npCTSMtKi8oEOZbPmtaB1jiJTkrkuUzKCI\nOoFuE9JkzfSTkw//6AfLk5GPLUORftj1rWB/Z3+9id9598dBELY67aAVLteRFGATp7RupASO4Ria\n0QpD3vA8z4MgCNqd7qB/OR6dnj+vmhogzBhjUlyVRYTB02i1wmJJ+EbjG40/iiaPx88/u3heY80Z\n7OVcOxuvp5vkbDKOq+bZxcXpxaXlhdeObkKAA7+lJD578hhQfnl6shiPXNNwLGu1nPmBs9Xvmqap\nGbpuGk+ePDEMY3d/B2KwLpOMFrv7O5eXl4yxTre7Wq2+973vp5vk6OCw3R9sskxpZPdg37Yd3/Gj\nJLPd0HG8p09O0jStysb3/avRlHN+cXHBGC2rrMijzz57L9mMpcxdR7u8PCEESaXWUbRaJ07QXmXF\n5XjRUKkAppRCCOPNGiLw0z/59o3jgW+gXT/4n/3sV/78l3+pB4zjINzWiKOjeLXM0uLh6eNwELz8\nxh3dhq3Qa8qo3w5CN/j4/c+yqDaNgFIAkb6zd5jm9SbOi4oLiZ4+eT4Zz7O0ihvANHJ878bweF/z\nvKDfL0V9PjmJ4zguklm2znXBWvr7k8dLXBSB3HppH2/bpkP6EImryTWgDRUYnzyarGbAQJss2dvb\n+9xLL905OJRx6ku4bwWzJ4//+Kv/eDYbjaeTd959P8uyXiuQUXH6/me/8Nrbrwzv3G1d12P9R1/7\nANbW48ebf/a1d+/f/wJX5unVfFU0T6bjcbl5+PRUSFBTgbD+hbd/9sNPHiclLRr26eX0b//WPzq9\nXBwc3s1zcH6ZKGv4t/7e175/dp654bdPz/7W7/1+bJp/79vf/Majjx9Hy/b1a698+e2d4+tMwaIW\nk2VaE7uAxs7B/es3X26EKuqG3B207+4Pf/zOD7/94x9NoaKmwRnAtO5ZcL1YKqUF3WFOhWOAfm+7\n01bPzp8uo3Wr1Wp3W5Izw7bqotZck5ios9WpeC2ECMIwofVkvhh0t+qqXkWp5wY0rxqQKeweH+2v\n48jV6eHBbl7UTLFwu1/lxXITaRruBU6cZLbTCsOWbGSWFy2ny2tSUuZYmlAwThLAFcGES0mIxiWr\nGa1pjRBpagYB6re6VVYLxjHGrGk4ZzduXkvyBCpA6wYJRRCSAAmhyqqBEEIEasZZlUEIWy03TXID\n2RxIYhmsEQIKgBRACmMohBRCQIghBP9jT+YFIVLXCYQKY7i3375954brumWVIaSVZS4FkFIqoDQN\nKwWAkFgjjEuEtbJoxtMkq7nCmmahweFAs0FeJ9hEZSGrqhBCSS4HvV5d17Zm1ZojgbBtGwC5Xq00\njNphazaZ375192v/9Nue7/iB43mBhKDmIilqTephA+Iqnc6mQCCk2bamh91OJ06yorm4HO3sbiNi\nmpYjABhPL8fjWctvlZQ1lFLKEYAAAAkUhMrSjbwssEFKycyWqxtGGkeqYbu7/UePHhmmjZDsdFpx\nHLfaXcsL11Ey3O2UVVRm5Rc//8Uf//ADyXIEGkEprZv1ItrZ31ltlmmWQOgHfp831Na158+fDAaD\nqhSipL/0Uz//35z+t5Tjn/zZX3vjS3x8dRG6LqP108ePTEfP4qmSNIl748kZ1kHQaa8267e//OZm\nmWZ12tvdPZmPD+/d+fH339d0NezuEsJhDR3gsqq4Ol9mWSKZdG0PQ7G1O1wuF/O5cBy71Q4gxL/3\nO793eHz96OioruumaaoGaUhLmQg9FxIomdhsIoTIbLqCEAZeaOrWdLPuhK3jW7eaouRNU2dFYLqY\nqulkbli63/IrIqXiWstflRlBGJiG6QT33viJJ0+eTpcr13VK2qziRKGZYUS26Ywuz3udLhBSJ9p6\nmUBWd30/ThOs1OT8omi1BFNFVLSH7UzVq8Xasu2DgwNNh5Q2mMida0eXl5edfhdC0FSN4zjL+Srw\nwixJP/v0cW/QDXs903DzpijjdNlUkpDL2TyJYoBgU5Y2NJgCbth6Ppu4uvZ7f/BPWFmYpnmwO+BV\n1hn22wdD3yOajpRSummP54uqaiAmmzRptftRGhdpafsBMnBRJCennx0cDm3HyNLV00fvW4Zpo2J4\n1DscBgWTlhVcTaZx4Ny4NaSslHne7g6nmNZF8/STxxaxp2ezQT84vrFz99rW2XQUR/n13WsPP37m\nh93B4LC/vTUej/NUiFLGdG0ZZqs1iONYa6r93aPrO/tJUWZ1eXJ5dvvo6BwRXpbCIJPJiHKONDtd\nbVRVJ3l6Mp8yxP/5f+lfePrsbPbwWXX13HaN1z//6uj8LI02Wy8fv/1rX9AIjJP0x+989N7zj7X+\n56xmMU9Od/Z2/+jHf/x4dPbBZ6fJprC73Y9PTn/4zg9v18dWoBEpMQXTzUc9SCaPH4dmgLBZ1Bu7\nYT/1sz+dNNW7D38cuEY47FzLhvduHwLWTEZjqFl/+PXvrhtd6p0ffnZy584dHgZz2dSaYphfbCYP\nP346CEMWp6Zpv/r5Vz58evbuuycnZ1cHO8MPLtZ1k+omIeHO4PufffjpyZk0rI5lK9Mqi3qyvOp7\ng4zyq8UI6drh4WGd5jLPA8fL01KTuiHM8bOllKLK0v72FoD4yfk5gRpAeLFcxUWJdc20nU2aQYXC\nXlhXVBJYirri5TKaAwCiqDANnTGRJBEhenenP4esyUvTtTqWIRVyQjdKYqzpgRNCARIWIchoLSCS\nWztb8+k8zUrLNg2E8zw1bcO23TRNsWYgyGazGSFGkVemafY6XaQ0VrNBdxAlSZJnnudBwF/QvoIg\nqOvasMxaMc44W80VRyWt8jQzoW0ZZk0ZhEoBoSAQQgghEPpTETaEkBDCmtp1zRs3r5mmLhXv98LB\noMM4VUpRygEAXNC6rhAiCAGEAMJYcAkAkkot16s0zRGAXAnTNcOel9NYU6Smjee2XhBvmqZpqoo2\nTa/ViTgs66qqC9vVQs99AbN+8uTZ/fsPWl7YaQdJGnmem2a5qXRsGFezZdkoYiIAUBC2a0Z7jnPr\n1i1GKSFEAcFp4zkOk4Bxnuc5IcRxrLKuhRAQIawRYhiUVgJAIQRlPDDMqMgc1233Ouv5zLbtxWJG\naS0l73VbQas9mkyzLHFMq9shi9lVYLfTOP3a7/5Jv9f9qS99/vnZyU6vywoKebleXDmBs4mLskKO\n7QV+h9bl1dUTz3MQwKPRxHee/NzP/rTveIoBzoFu2oZtvPODbzs2KdJ1U8S97e5qPcMaaZqCVWU/\n8AmjL90+Gg7aH3z4qWF6i+Vlp+eGtuUY+sPLk5986+e+/fUfpEkRtL2KFvv7fcskx/7haDaHivuB\nm5bVZpJyIR58/o10vplNpludvqOby/VSQhDYIYZEAZylGwgAgNz2CNG1oihZwwkiWZSypm4FoaAc\nSPDCbuZpmuN4GtF4wxlrkKbzgvW2Or7vzxerH77zTlGWR0dHRZ6fnJx6btjvbh8dHV2cPb994060\nXmdZarTbgd9arRY7O7tJkhKFeu3uYrFQAmyFvc1yRZu6LuoXaFINwaIu/cC9Ojs3dH0zX1JKGWNR\nFOma1un1m5DqmJyfnzu+51ruZrMqk2y4tb29t8+apqyY5zlRtPb8lhe2ieFGcV5CdfPgoM6z1WLR\n7/Usy9xsNt1euLu3pRHj9OSyLjgTsNvtzudTCZRu6bap04ot5zMrtFu+v0kzbZ1P1yWxOxefPD86\n3AVK8CqybF1j8uLZx/3+QJfaTjuwnd4FwE1dff7VO5tVJK/ta1i3DK3T9a8uT+Mou7yav/X5L8yX\n8fUbh1TAhtGLy2eDwaADtfk4393tCyGQjm9cvzafjA93hudPzinjQsGjg2uj0XR75/D0/DnSBGtW\ne4dHvBam7ypTbw/7jgmvLs9+/IPvZ2l18/Dw+eXzRTL7iCbXr+2/fvfNuo6q1ezk6rxm9Cd/4sEv\n/tJPYEPLypzw/Nqtm9/50buXs8Wgu/f22z8/mYyuJlf/5l/989sHO89Onty+dj/Uu//V3/y7n3/1\nTT8cPj0/YVRxJquifvit74K6mY7Ov/gv/KqOqMFbo9N3W+797rbmeq2E1xhURZJSAuu6nk2mr752\nX/M7va1uvliboey4tul6SsFvf/s781zMowob4cNJwc5WYeCamiB/8M6PGyFrzonhiKrJ55uaVqZk\neUIt07EEtKA+ezZWEre6PsPEocjzu1izVkVKdGwb9moWLRYLKkVT0cBtEaxrhLiWV2aV57qbdSpZ\nQzStoRVjqt/vz+dzTTOgVGUet8NOU9eZLAzX6A87dWFJ08JINWU5jRa+H9Z1XZSp4LnJEJeKCOzo\nHq1AGAwylCEFMBAlzXXb1ohrWFDT9TirJMIvIkHLsPv9rU8++UjXNQiwQYwGF4JRQohtm5RSQpBm\narqua0CXXMzncyzJzd1juaEslxbSK0W5kkJwBABAf1oA51xqmvGiDcl41etvv/nWa45j5kVKm7Kh\nNWMMY60oCgBA0zSWbUgBAJAYawhCxpim22Vaz+dLwEoNKYygjlGeJUqDEGgY6KoRtmNXoiIIKaWK\nqrqcTCnjtGqAlGEQVGVuaFgpZVjmBx9+ZBvmbDyzPGO5XLb8kCgzKxdlwxwmEJC9ro91bTabKU3z\nw6DbClu9QMdovVoqKP12r45rpbhOoBRcSCoVhxADiA3Tbpq6KClVEumGbTrjyWyTxJZlSQBv3r1D\nkEZwVBSJBEoB0Q4dJqpux5cy5jRnivTC/o+++07f710+v9Sh1g+M2MRKsiwqAWTdTmsyXTh2S7OR\nIuj2K0eGjnGlU+A9PfvscH/3Lr7eVJuv/tNvVLTY6gRt1/6pL//E1//Z7x8eDi+nV1wFg+Ggoweu\naYiqhnkZz2eb5XKvGxwdXn/y5PS982c2oVzpv/zzb//oOz/cLEfb7a1Ah7rjDVuuaWsZrxxfYwUH\nUnQCX9NwHMctw9TaIS0aU9erqsII9btd27ZHo3FWlFICDWuWZRFE1suNYRi2bxMKZ4t5EATJehNF\nUbvbmSwWg8Fga2crSuL5+dRx3aPDg/HV6OX7LxNCnnz8kd9q9/pbAqn1er1aLF3DOji49ujRo9Vs\nKhm3DJOyuqzSapIRgg0jwMjy3E5WpJZrOJYtObMMgiW4Gi+IadmGnSXp8OCAT6dVRp3Q7ba7o/HY\ndiyiaXEcs7oxNSIYkEgeH13fbDaTi4utnS1DI+99/OFwtjR0PfB8grTXX/3cJl5vlonrhvfv3BZN\n1WkF3LGDINjeGY7Ho3DQvrq6CILA6jjD4fDiYl4mRV0WSom6plmWLZcz1/YHW920yRfr+Mb+/mi8\njIp619baW1vc0RSDGwpQ1ZgYOl33fPykHXYuL1e6aZU1sG07i5hpeJqLGaOX09FkQxzPjeMKGL2L\nabaJ0/V6GYbtKIqCoLU/vObYsu/ik5Ont+7fgja5HF2kdfrwedbZ6aqiefTZiRN045K+/OabznDv\n/Q/fN0wdQaIUl0C12+0oX33w8NnLd26CRi7SXGrgS1/+UhzPDCKnVxdt0+yZoVyhV44/v3uw81v/\n4DcXi8Xd2/dMbB3t3dox979823uuX3Z6/fe++w50SSnq3/vux68w8m/97/7a3/qv//Zv/b3/ykLu\nkeFUFH4arb/1u/9QMv72l34m7G5zbP7irZs1U6ejq5dvvjJfjb/97Gm73zs5uQDQWZfFq6/dfXp1\nPh+f3drfqdabZ+fzV43PzRer8nK88/ogiqLe3n65WX308KS/dd004PzkvNfr6aaZFhX8xX/15XYv\ntE3c893Z8xFneBVXi7QgpuPqyDfwVruT5YnXadVE5qLOqrXgynZbuubGSUopTYvYdc0GQZhLU1g1\nF34YsKIydSsrG8dw83iDNAGBCEN/Q+tKcFdoVcWEEIETjMcTTdOCIJAQUM66A7dpWJZWTc07ve2i\nyhvZEEPZlkE5ayoqKgAYsoitIGh4lSSJ7dle4HLecCVtwxScF0VRVlW73eZceo4nGW/qStOwkKyq\na2LoSNcaXhuOXZalZTmmaSpGhZS26awW0at3Xl5cLB5+8Lhlecm6UkhVtFJAAAGAhEoJgP4UJcZF\nA6H43BuvvvravYaljmM2FcNIS9OcUi6FyrLsBWKsqWuCdcMwpOIAapzi6XT6+OkjS+o5o93drd5B\nD9pQs3FaFYIrVLPB1vY6ygQV3U5rtZ5ZllnTSvD63kt3AUZREm2SmAvZ7Xbn83mgBWm26XRCAUQc\np67mJeOo2hTtYMsk4GC3t90PN8na8dym5q7rX7uxjwAcjydEM2zXX65X0+m0qio/sDdxHicFF8C1\nnXbYquu6LOusqRzPHU/nWCMAgFbHT8rkzoO7ZRnNFwvDsEzbqqqq0+nMp7PBYNA9tLMsGT2/AoJU\nqahSqWtu01ATG4HrQSijfGm2HCd0N+tUh3rSrL785c/RKqZltb9z/Uc/+ghglGXpyy8dIOB8+1vv\nBU67025Hy4VjuS2nfeutg2fPHzKZYRvuXj9arjacKke32qGlARAY5gc/fvfurbtNzR3D/9yDN/7g\n619fj2cPrl0HdSkow6aj+Z15kk7W2elk3BluF3FOqJCsObp9sMgWm2Uplcqreri/t1yudNNIkoQx\nFlhtmhaci872YBNHmEPB+dbW1uJ84nguV3K5XrT67d3D/bOr5woCAkS2yXutLZYyx3KXq3l70M7L\nrOB5v9eBSu4Pd3jVWJpe5gXjlCCf0nq5XimI9/YP4zjmUrRarel4jjC2bHO9XmMMfd9tmkYj6GBn\nJ0kSx3EuLi5dv02ZRBgjhLI4bpuygPoAAQAASURBVLWDqsmTJHG9gAoetlvz1bw92F1NZsUmHnQ7\nCoCmaTzPa5rGdYPRaKRh0pTVzVs39va27z64VZRxvJo7BGTzSa/VqikL252mqm3DBADUTQkhnC/X\nWd6sNqlUsNvtLtcrJaRlOVVRWpaNAeCiVpL6rgEJHB7sIss+u5quo+z64bGtaatFFPqm5aDFemH7\nQRynO1vbbd8r82o2mTZNc+fmnbJo1lFhmN7z88tRsul0enGSCKAwlHfu3CrSTZFlimbXDg9ns9nB\ntUPFalpWRDcfnp71t7fKsrx147pju6fnF1Qhv9NbxjEg2HTcy9Ek9N18vVxcnt6+fe3oeD+PY9fs\nBa41v3q002kjzr/4xbdHl8u//jf/8yDs/vRP/9myoFk2+uyTd958/cHN4906ZlG6CjstJYHrtLkg\naSPG68W7j0+I79177Y3/5//9P+1aoWsaRgB/9td/clZf3bh1jZflR3/yoZ4bDnG5rqCLdNs8uYw0\nzXj5F7baYfcbv/nNvAJbraAV7K6mF5Knb//UF6Mq/9FHH2mBBQkcmv3jg8PnJydRmhDPPp+MfD8A\nEpabRjKJAE5WCfEChAFLFxmIxdHe/ZOTE8Wy3W6LAZJn2bPxDGDXcbubil27fvD8/Gm1qW7cvnVy\ndUVstopjz3Z2h3vr+ayOMt8OFFJSA6PNFDK2199q6hjpGnf0dZZ0LQ80JipYVZaKKNt1XNedTydu\n23ZdM2x5UbLRAMirEiEY50vHcRTOdEc2RcW55AUUjDnEuPvS3XSdx1FGlaiTqtPuBaGXV7lSUEMY\nI8Ql5A0PHL/ttbvtHmdsMZ1VXHIMNkmsGbptW2VZIkyAAAQSx7SKIuOsgRAamskYK8u6LGvDMAHS\nhchfpKmMMyABVEBKqYSCECvBdaIrxW3TFoxDiZSUhJCyqF4UacqylFLqul7XtWWZGBNCMOeyqZuy\nBIvFCgJQa0hC7HZ8w7UEqMs4jxdL23YMw0yjVEdE6jCO1pKLqihN2xIEJUlm2MZyuWx44/oe0aDn\n25rkXTMwDD1NU98JQI0EVabhGRi5tu4YJqes224rCJUCCsrxaLLV33bcsGHicjSezGYIAMswWQ0A\nx4IDz3Uty6ibjOioTmLLdhRgva02FyrP8xcp4uNPHnmu3XI6SZJEs6jdDjuOf7p5eG1319CQNAw/\ncFglfSeMcNYJu+vFqoaCkYoxZoR20PUbRoss8bo723Br/HSxzCa7Bzvf/OH3aNHcvHY87PrX9t98\n9OjR3sH+7Xt3v/Od7wx2e7ZtX47O4+9Gt+/ealgutUYk/E5/V+NkcT41QA6EtDvk/sFR4DjMRA8f\nn3AFLi5Hr999gKFhup08TyvBPv304yovOjv7HYtkV1e3b9+fzxaRoMuilIbrdbSGMy10p+vlnZfu\nzWfLy/HccRzRUCBlpxWmUTybz+5evxlvoobVURMLQ2JMsK7ZhqdqBHK0Xq38Vuto/04WrVp9p8yy\nrZ12UTHfaw+dI8rq1WLhXetPVlOGIFRWGPS6fnh1ddXr9Efj6UcffHx4eASkXC2WlmHqpg4AuHXj\n+nw+Z5T6ngch9P3gxQGEH4ZNw9I0j9Ok3W5bgTlPFgCAuClLJRHW6CbqDrZYQ5uy2t7epnWDCHY8\nfzSZdFrtPM9939eJxk1nOpnZnr1cbVzPbHn+cnIJJDg9PWt3+6uz8zTN79+563tOWuSdTmc8XTY1\n0zWTS8EE397bX6/XRNchZ9jSfdesGwSAAQkRnL//4aM7r7x6eRVdzVbrGLbCcL4cmwbe3+tZnnV2\nduo7vpxtPvzo9OJ8dOPGsalr33n3kyROkaaXFTNMi9jGs/NntqHfuXNnE62yKp6spwiBwxuHXm/r\n+WRycXb+ubu3KSRcgevD4aenI00zHvGr4e5OmrOaVVLR5eRqcOPucjFBQC7na5aWu8NbValOniyB\naCiPsQ6EEMtilcWrRPOn43Sm9p9OrtJP/0nNFv/8r//qtc5r3/tgcbYKXNMqmCPj6uT81DCs6XRW\nU3584/q8Zpvx+fsfn712636xKTrd4DJ+/P6n3/z//le/8cnDk3/n3/7fb7eHA8+7nMzjotBs+8Hd\nV2QxPV1NnW0bGM15Rh3dvShWmazn0WLQ63/3g09aoXPz+ODhk88UlI/x+tPnH29vD7lL8roUuhNl\nUjG10x6mUTq+mtCKkp5ulGm9729tFtknqycCQ6vVcgNLV3qCCZFAATRL4na//fzianQ59gKfNRII\nqRg1NOjYphK81+vxipmmWeTUsE1kOVIXAOum60Fa1nHaNl1cssur5wIpyzUHoWsH9nq96vRcvx1k\nRZlLJjR9udrsdQ+4pEHYwToum1oIQRDJskzTTdt214vlGTjVgYkJcXSTmEbTNHXZcMoVUppm8oa3\nvKDthxox6rKZXox1iNPVxg7dGjHTdzWDCCgQwYZhMcYMzVRCCs7rugrDVlnltKoP9o/WV1FVMq9t\nWq7T8IYIJSRTUqH/CVIGIQIk50ysFuu93YFlEtlwJiBnjDMpGMcIAUIE5wgCoaRByAuRKUJEcJqn\nOQRaWdU71/YGw8Hl/MLxjaosMSaO6UAF5pOp3wpbrVaSFKxuTMeu65oJupiv2v0QAHlwsGfZxnQ2\ny7KsH7abspZcEKgLhjDE3W632GRKUNtwTd3AQHXa3flqcXx8rabN6GpqGGmRNxyAhklNMwwNAymk\nRIZhYIgghJZpIKwtFjMFxHCnv4zipqZpVeiGxhuqI1wnmaEZvqdLATmX63X0xput4+Pj/qD37kc/\nXi9XB7sHgEkvaI2zTRlfmqZp6WQ5nWKI2oNWmcRSqb2d3cVsVSwzYuHBXi9dl/fv3H/29PF8NX/t\n5de+/91vG4ZBi+rZJ09u7N5SkqerpSbZS7f3NpuZ3w3t0H5y8smw+8rX/unXf/ln/7lNNH/27OmN\n4wcEBJvx+rNPn1CuLL6+sXPz93/3a2Gna9l2msUQgoO9fQOSTZkpDA1bPzs/vX7zthHbo9nYDz0E\nVLGJB9s73sA/f3wquGpbPhTA97y4pkKITrtFNBzHsVJKckEMi3GVpbnvurxi54tnVVkOwrYEZDGe\ntlsOlEIqKqHRarUwMXRIRudTqcRitpzNZpZlAakq2rR6/ZogYgXbx3aSFbVSW9tb6+Wc5jWQwnIc\nwfntW7eePXsmGK+q6ofvvKtpuNvttlqt0+fn7XZ4eLhf1oXddo1Uz4pixw/KkgIA8jTJ0+z46Ojw\nYG8xnQkhCDCLqrIcRzfMOIowxrPJPAxDKWWS5qZtQ410O93l1UWRV1UjllH85Z/86fc//DBr6k6v\nP54/KqvGD1pRVIxGo972oKqqdZSGYWAaJvZkXZeMylbopFlECOiFoaNpMis8og27/aJpTs/Ot3vt\n9WZZtXtMNEHYIUgrSkm08OgoIMRcRxHl3Ai7UZYqwyCug3RMlbp//dZisVol65TVpuuVtN4sclku\n10k9X8zWWfnmS3c7YWB3O1FWXF6N79y5M5rMiqZmgJ8/Pi3KpH0kai64AIdHx08/fbyIMgV4lEY3\n792ar8/3dvYPtvY/+vBDTQ/+/tffKRu+e/No9Oj8ra986S/9K3/2d//hP542s3EdP/74ndtHe6vN\nCuvYDwPOVHd7+Npbb73/4Yde4ISh1w7d9WrlObhRyX/4V/+9R88++vVf+PNcwFfuvAqVmad1xXXT\n0pRg0eQypcXdO7duvbx1fPPor/zFP/Nv/Vv/nkGDtMVa4f4nz86/+MWfmMWLbSPYHt4p8mpZTryW\nX1EZtr12x7m6nKZl6mqmkNRxze2dPkEaoQXc7e62/a5vhd99/73htWs1p+tV2nctWaZ910aQJjTJ\nKlnT2u4Fuu2WlGkKq5y1dTc0nQbyqq41R3gBJgABLpCmF1UdjVZYNwyISMEtzjRM3E4LWciwddYU\ntu5R1yxYM5lMmIIIW4ZuG1glq1woanpezWqhpBDQ8zzBscJawSnHMKpyyxBY6rQsECIaQECAQa9f\n1gVCoOKiaRoN6+vF3NR0TcE4T23TMk1DYMiU0m1DUOHovmgErdlWL2CSvZBf27ZNKwFV2mm3fT8E\nCDIpdMss41IIAQSAECr5pzwZISTGGGNdCHFxcXV0sKv1/TrPJUSaptGGN02DMcZYa5pGCAERZlQw\n3jDGgQKbdUIbiQg2PdIbtCfLkYQUaZbrO5LLpmaK8V6nq9k6pbWUsmbURq4X+EkW9Xq9NE8tyznY\n3fvw0w9d162rijMMgU6wtVxtOOe8ag6Hu4ICTWhlXZV1xVnFoSjqXErp2lav010sFobluZ4vISAE\nF0kMlUKgLvKM0wookxBSljnRLMzBcrlMqirKy8FwJ9lEQejxutYgcCzLtu28LA6vH8fJpmEUQCVo\n42jB3S++NhtPNRePJ+syra7vH47OL0yit5CDLH3Y21llK2wRIMHu9nZqmGXd2JqjARjPky++8eV1\nHH/82Znv6HmW+6126PZabvf02ZPVfLMz7EgAzs6fqXM+2Bleu373D7/6XTfsbFS1c+/e9u17333n\no/nJyJWmrw90y6yXLONLCIwv/vwvPDt9CgmWTF7NYmRYBSv3DvckkJ9+8gm4POdVqVF+1Go/O78K\nDHd6dtXq9VAtsyjd29lZTBeVXjMlHc+7uLp0XRcB0O8PkiQJDJcQ4uq2qellmbVaHiZCymZvy69p\no2mIUWmbLQR1VvHJZukYmu/ZtmNiIgDkCAqkoen0Str6zdt38qr6/FtfOD89/8bXv7bZbHrdNmmR\nosgwxskm4g1dL5YQQqQRy3YUEFfj0cHBASEEItXttc/ONstRGnbaQJcAaZ1+1zGtPIvTJApNo6hK\njKRhmEXdbG1vuZa7Wq1M08QYSyDyMsuybJ2stvf7P/kzb1ezsQBk5+ja6bNnUZp9+uTRS688ePLk\nycOnjw3T3CRpt9OjgpqONhj0dvb3Hn70qCnyXsuvgNA1KAUt8vToYJ+XWZkXULC6zFxXt0I9TgvP\nIYNO0A5sAEWRFbZtllXmGm47aD169Hh/fz9sB0/OTrq+LU2DSrV7tLe8Wh5evztdJZdXV0mZ3h+8\nYofd1Xg0T9LaA6uU653hSsBvfvxkd6uf5Mnhlv/54y+0Wt1VtCJmsE6L7vCoHE++//33r9+6qemm\nYVs7h8Ovf+0Pt3d6GVutN97h8d56HW2eRoXI6wU2oLN34NldGlpQxPhPfv+j3/j//NMsyf7Vv/SX\n//iffXeVRtdv3aRVHcex47kQodnonNVZtokHu84qmnFd/C/+3X/9vXd/9KP3f3DxOPor/5t/8/t/\n8u50Ej15+tlwOHzlpdvnT0+Q0J+dP4ni6o03vzB/HmUr+dXzd/b7N2Bjnl896x9ZR7e2b7y8/cG7\nZ3FF87TKi5oKSBwL1NSm8OGH7zIpLN1CSNUlQAi5vq4kJFdNffL4YUt3htvbO4e7vKl5VnoS7/UH\nG4FoXWe0PjocVrp4PloEvQEmZHQ10hgkEtVFUetWRpNK1hLDtCm6/Z6qwWKyogwYhkWwUZSFwsTx\nbAWYwkq3dIjxJqtW9VhB0O13FKhN08ySvFktbYUWq6XlWo1AAoFWuyuUlIpaLlFAo5RqrsURLCSF\nnLGceaZTCsUkU7HgkpmmTggpisLQJZdMQr1idDwdbQ0HQGBgQEa5KAWUkHHOaw4lqGvKWMOoMA23\nLoSGNKQQUmhnZ+cD9FHV1BrAnHMl+J+qOV7AwhSACAkhAMAQkapssqIMpUMF1zSjqipKuaZhxsSL\nUg1CCEDMmACAIKgYA0JJiFHVVAe3r2FHK7Jse2+rqioskWvZgkndc01bI5aeJFHT1Ht7e5qh101T\n5tVmE3u+VbN6fDWjpVwXSRh2q7wRVESrpRTC9/1Sydli7Bq6gUzW1Os4ckxjMpm0uq14E3V7bc55\nXdcQ4EbXIQR1XabZxrMtITlEyrR033FoVSsFKeUAYoQNBWhvazvLc4yxpmlKim4r5EXu7e14rtVq\nB3kVPX38qBt4k+fPH7x8q+Z8tpzatlvUm1/9Mz9TLROeLpHABWUciowWqyQyas01PAIhRsDWjTpv\nGIHn53PfaVUVm5zNves3fMtP46yUxfNnp71+64233vru977zycPT7WFfN1Av3IYlu97bcn2tZ2s/\n+M6ffOELX4yTVdEUnufmtAps23T80cnjt3/uZ2bz+XK8MgBazeIGIL/nHG5d3x5s//ij97e3diEH\nspZbgy0ByNV02Wn3sGFFcU4pdX2vEdwOXGxoSZaVtN7b2R1fXTmWrROtynIEgBBQKbB7uAfhVtM0\nCgjXdXxLQcmSOA3bgyyva1qulpvBYKAZJMtTjUsItG6nn8Sxa9lH+0dFVk2enlHG/+t3/uYbr73R\ndfzF9DJbTMKgW1WVbbtAwul0HgStnZ2dsiyRrjHWYIwp5f3eFmNsNBr1er0iKwEFkCPG6HIza1yX\nVWXLtXUMNNdtWmFDqeu1eq1wsVhs1vN2qyulPDzcAwAx1s2K1LQMSmtFdK8/WK+XkmCs4+n0qtMJ\n6jq3bdf3Wxh2dF0/Oj5CBGs61DTc6flnZ2dB+ybOgRI6RGq9nl+OrgIzjDNeU2kEWgHrqs52Dob9\nbne0mEBAJFDZqGpyRSQwQ8331YNbu0zwoNURbBhneaCbDWBXnz4yvKCoG6lkf3+7jbeUgfKmqOsa\n6Np2t9NilAOoE03S6vl01UhaCI4nSWAvPvvk8csPXpESputkq92dUTk6u3zttVeeP314+/b1v/QX\nfy2rVqZ1e2ewdXLy+MZxd2d4UOXlalZ+9MFn89Hoz779FVDA0Wezv/s3/h7G6F/7N/78T//s/Q8+\n+cbpp5XrrSHEktgMafPp5LphmgphP9SFHLTaX/n1f65Ko66Hb7302t98/++bpvbv//t/5T/76//F\n6cNPdNE+e/yxTQgC4r/8z/7jr/7RH1zOnzVr54NHH6ZNcnzjbtysKMwEXr78+u3p6oNXX9lbXs5N\nqXiRKcOtq3TY267K0tJMB5JWq/P87ELhxvd9KTBCiGxEnde55nqpAHlRx6v1rYNroWXJhlVV0+pu\nVVmskLFaXLU8zzO107Pn/U63zqljeJQyjHHL8XqGN48iHRLImC6Ag5Tbcgop0nJjIeh46M7hYJGu\nZ02WytyVDqVUNQ0x9OVsBiHEADBaISSiTez5tu3ZcZYiUzctUlRlVdeS87oSu7v7dV1nWcY5t5Eu\npKB5CUyNcapL4ro2VzLarAGAUCMQg5LmaZwpDaZNqQNbcAGFhACamsmo0BD2PE9JWRSFQtAy3DLL\ndUjyOAdc3bh23dAtACBAyDRt1hSCcan+BzeeVAooohPJhVKwqFicJu3CARBQSquqklKahs15VZa1\nYRiEEMEV+lP1h1BQKgAY4G7L9R1zs5j2O51sk9a0abc6eZXlRR7iFpSgyPKsKLq9nm4aeZ5LIH3f\n3+oPAJRxHC/onFe02+3bmpuztC5qx3bKsoYQtlodVlS2bppENz0bSWGZRkMLHZO6rqWUECnLJJgo\njGTbcznNM4I0TWONgkALfM9xHMabIk40DTZVqVvdLd97fHpa1XW/3YEQ6LaVROVivYAWGR7snI/O\nZrNJpx0gLACnm2I1ny5cDWqs3g6dwDMfP/ykxGxr1/OVJgSQtH51/xAh8vGnjzOkKYxoLbZ6Ls2q\nB9df2sw2l+OxaZoX41kraDmmBxTO4lQJNpuMHNPqtLekgoKDf/ZH3/+X/tKvnT38SBf+zf7Ruh3/\no7/79zqdwZ/5tV8dn4+/+Y1vdzs5QkjbMqgorh5fiVJQCC3L6wchxrgp8m/84deY4J5lc4AsYiwX\n6dloahp+llW6aWKNuLY3nU59379545gLVVUVkMo1rZ7fqprms48/A0o5rqsRzDlbzOaaTuoiR0j1\nwn5dNtFmTjQDAWEasNPuIQA0Hd+6deuHP/qB4zhPT57Fm6QdtmhFpZQ6U8v11cuvvUYk+vY3v4UJ\n9ANXSj5frgghEsAsywAAlFI/DJumQZytViuEwNZg17Ksy8vL5WLmeQ6EWNd1ohlJkvZ6vbPTsyB0\nG1abpjmaT4muAwAl5ZPROEkSpdR0OrVt++bNm2ma6rrPRZ0nMeAsrxs/CGlVm06+3iy2hweMN2HL\nx0rLssR1fc8yWwRejS993xtdniMIDvaG0Wrx+uuvv/ujd5qm6YYt0yBSaKYpN9lGMplkhWaQyegc\n8YY3xXg+w5ZBpdI0zWsFpeTr+UXPaSsMgU72D/fUxdVqubFtC3AKZMaaAmGMdb2/u51W2enzh/2g\nDTmgVWrqOK2qSrBOEK4WJVBAcBIlxYOffvv9jy6fns2rujA0xBvuYOR43tnDTyzLOP3sUymqawdb\nh8Ptp08fOaDc72xX0Uxwdf24i+Awz/1oVTx++Ew0+PVX3rwYPftLf/kv/F/+k78a5Zv2MLz/0tGz\nh8+SLFsvs+3dQcOXTK5Yk1y79fK/9Bf+/CefflCyescdfv72bfyv/9z/7f/xn/zL/+Jf+H/9R//u\n3+wbV5eLwAvjzdy2cfzs8t7O1uyTh3cOW7/yE7/01W9899W3+1K2P7swsjq+1uso3v3x9z7yrZ7G\n7MPB1qpcYoCzKEaK+F7o22Ho+PahWSqZZVmZFQAjcutg71IirGsUwUyI1v7OtIgnyZKnSVHSgWmk\nrNIT1m216zItFqmtkA5gykrdMilkqhHb/TaGwGwBSzOqdexy0umG7f2dy3hDrK3l88Ve2L25MxgM\nAiOZTyazvmdmRHElEWQAap2tISDEsN2iapAT0oIChExXKaLKuuScE6zHWYmx1lR1U9SgUbQoiaXa\nnQ6veEErSmtYK2IhBSUysGFYnDIqmGYYg/3tugyrvMirEnMkBaeUEYdoiDDFIYRENwzDEkBRSiFE\nhmbSivKG7x9t7+7uTycLACTGmEn1P/UuAaQQUIJxzrmmaaZJHMu1LKusaJ6nmqZpmtY0DWNM1/UX\nviVMkJKS0kYIUTV0GS2AJg9u7GDBTIQgFaIWSuK65gIiQHBNK4W5kA2EyjCMxWwJgNRNYpvu1cVI\nKup4tmUZCOAiy+uy2e0PZ3xqWyaQPIrWba+lYb3ltX1LW04nt46ONYzW62kQursH+0IIx7HzPO92\nu0TTFIJEQxAjgBFnkgsFuZBSQQg1TUvTjevaaRm7fmhZuuNYRZo6hub4LjENr9vVXFsCxTnvdNoQ\nibPp+cHBjuTi/s3bzx8/j+dLLsSTJ496e8NY8ERyBxNYC1A0ngPzLLs+3GYAj5crzdAvn5298uCV\nfJ0/OT/zu6Fm69KAJ1dPb+zf0IARdLZ0nQy22h9+9E635//wR+++9vpbN2+8+v3vftzxt0dXm//m\n7/zTnaPeay9/ASH03rsfXr95694rDzSAWNm4A5vmmawqA+pe6GuWnSRJWZRFnrZarUGvV+c1rWiW\nZVIo321BBba2ttbrdRRFSAN9r6UZerZJl5N5JalhGDUgoev3ejZGhqGZVUkbWrmWvZpvtoe9Bw8e\nZHmUponnD5ygbJqqooWUgNLSckwI8ccffdjptJqmsizDO9gd9PoYIde1dU4Wq2VWlcc3bzAFpvNJ\nlOS2b20Nd15A510/eDF1XV5eIYJd122aZmdnJ8+LJ49PIISuEzR1w0W1v79vWhZCyDIdx/UPDo/m\n89kmqRfLtN3vurbLKdtslpqmuY5pdsw0SR4/euR5XhiGnmMXaUbrRgmpIDQMk2Cz2+rnSW4bdhiG\ny/nCccOiKG3PNUzjpZde8v1wdPlDJKXnOSbRouWq3+7UdSkFtXWDU8Y1FVrGerXsWLYfeoApkdY9\nM6hxZbf6iyjFhgkNu6gLqYcjhgbd/vefnRCMQ9/PDNDZ68STooni0G9lWcY5yDY5NoitWbZuVUme\n0XVJG2EYeV0JoY6Orj1/frqazpUCJ0+f0qbi3GFU6JjMpstWy5FpCqFIac2r6u2f+JxsMrbMdjVT\nd4J8uWGY7Bwc8roYhvov/upfPJtftZ03dMN5cnp675V7k8vPzj89NU3r3mvX3n7z7tm7PzwIPe9m\nO6Gbn/mFtxFW97a2v/DWT/3Ob/+j3/nt37Tczq/+yp978uETXcm//h/9tT/8x1/9a//hX/0P/4N/\nfzW9mo9H8arfCnppthaTyWG7+wtvvZYg96s/+I3D4/af+zO/fm3nsWU6UVycnk5C6W/39pKi/t4P\nf3j92p4QQgc4Wq8dy/34k/f2d/c6nY4FlebavZY3mk6ILmHg2FVNl+mKSmEoU2BYN6LV7pAu2rAM\naYqJOk/gVrenuPJsFxAEIUjy9eHBcRHnj5+eKMYf3Lp/NZ6Elrt9fP2zTz6LL6NNXm71XVNzVnk1\nSQrTMatVvqW5rxwc2wRN4hRirahZVVHLtcuq5AIBSCrOMBamYyjEsjxybA9jAiF2Aj/NM14wW7Mk\nMaI41YgjBMAIuL6DCMQayqtaAlXTCmNsmmaSZTWlUgKFgIV1jWCogDIIVkBKAQCIog2XUijFBUMI\nhY6naZqh6b3uwDJs3w8m4yWlDWesaRoIIcEYACCEwBA1FRVCvPi0mpqPx+Ot7daLPfuLpTyAEiEE\nIRJCEoI4Z0oKIUTDasYEInB7t69bMNrkDa3auuHZIYQIa6SKs8CyGBCU1tvDAcH6bLTcbOK94XZW\nphowijS79/K9JFlzxnrddlOzPM+rpLY1R0OoKkrL0LIkQgy0TEd3iGMaGoGmhi1LM03dcazRaLTe\nZMPhdlWUUbTRbTuKIsMwECJYQ0HoMKoobcqyrOrCttw0ycKdjpDN3s6grvhGCF3XGeeLzbq7vW0Q\no45SgyrTsQqavvH6a42su8RQZZUkEfHM2WSss7AFfMe0mkJolpGmkW+ZjydXoetuD7aahvbc46vp\nrDDSQjZpXXf6O51OazoZdTrtcHjgmTherRHXAMRFXlu2m7P83qu3hjv+9OIqX0aO7OzvHBqu/sHH\nHwtOd3Z2rt06/sZ3v/XGq6/xoo6rPDqdXr9+Ww5FTSXWyXg51RzPCQf1Ym3p9unJhUJQs+waS8fW\nvdBHTCEAXcNxBnZRV7brXI0vq7Lu+mHBmobReLmxdIPjYmtryCnzLGZo3fl82TQNbeTlaCkEEwLH\nxWg2HWOMLcOMkwwhzBm4c+/+crmilG4NB4ToRDejJD0/P/ddz3Fcx3Fmz0+zqv7Rj37U7/ePj6/N\n5mOtpZsYY43cOL7+3nvv9QZ9z/OSJBGMO5aj68ZysU7T/AWzKIpSBFi8Xm1v7ww6XYj13eGeFMi0\n3PPzMdZcIUkUF6Hn2paX57lhkSwrLNMBUDLGgJCe7a3mK14z0VDP84nfiuYLx3QQlNPxbL1Krh/t\nN1Q6jsOZgBAyJtI4bbU6mobjOFolU4VB6PvL2crQsSxE6Bi21O2CGu2BwLgs2bW9w4vnl48fnW5d\nO/740+durx04RpIWn372pNsd3L3z4Onj882m6fVbDQcAIwpZAxrFDCwswsVssdL0wG27XW8XcJnz\n7M7dW+PR6PTiEmrGdDVdLpe//Cv/3Hh88fCTT5s6bvvEJVS3cFEVnu0wgFvtVn/QWi1mgFLX9t55\n74ev3LuxvzuU3FDRbHdvSyh0drXY3+r/8R/8k/uv3d/24O61rS++dddvufOr5V/9t//1xw8/+qVf\n+ZnlxeL/+Ff+MlNw7/aR0uX+wfCbX//qoN37v/6f/1pV0uH27tbu4Y/eeefX/9yf+53f/t3RxX93\n595Lht1ep9W3/uT7d4+uzy9Xc7p5/bXbg3uvhweRpW+ffPDd/+DPvnnv2v3JyeXFk6u210mi7NXb\nd3zzIgXJJro4uBYUJS3zItskd27cLLJSw3rN+MV0bmHoOE4t+VarRSQhmuNwjdKGy7qZL+eW7qRZ\naXo2pbSpaatlKwlMU5+vV5blGLq7TiKEvarMV8tsOp4Ftm8Y5Or5pNdvP3nyhAJ4WRWYyWyTmlb4\n/NmV41gV45zTPE5ozbIabG1ve6G1SZNKMcl4ncR12TRNI6V0DY1oWEdaWlKijCwrbA+6LQdJ4TgW\n13RaUE3TbGyqmklKJYFKKgSQppkiL5QACCPFIQLQMYyqqpRSfhhWVSUEQYjkVU5MCSE0dJ3VlYY0\nJQFWREmNAJQtZ4FvDIaD6TR+enqlAEZMQCmwSaSUQigooRRAt3TMJdYI5QwRDYBqvY7quhZCEaIT\nDVVVxTmHGEkpIAZCCQqkFAxgJBrEFdNM0u23JQKm4fl+W0JZVLHpGhLBznZQ17TOheN7EGur1Qog\n2PbbGOo9r6NZZpqhZL2o8mJ7eztLCoUaQMo4oQTo89Fma68HdbReJUQHuoMZrx1XR0gKoXZ2dkwL\n12VWFxQoghBuWK0ZSAGKMSLYztMqynPfDTRNr0sKJIJA51w4juNhbTQfB92QVczSSF03xNS9TqfK\n4kHoZzkdBC3OatdwB4aNNZuVnEOeFNnuteM9xxlfTVghaNloCiFgxJu8acn93b5Oq6bYNAVF3L5z\nfAPoWsJT6ZLA9WBd6LQktd4e9Kqqmo/no+l6//atWlfE8Lv9Trpaja7OvMAJejuyqpSsbm/tpsst\nqVRG2dNnz48PbySLxMYaNszQ356nTRVRZRpp0TimN16s+vvWg1ufOzt75JhGUcbXd3YvR2MkuKSN\nbXsXVxdlXUuAqrwa9Pqe3U6SZFVWvm1tFkvf9YihQyXzLKoYNxGJ49i0ze3tnclsHmW5BArr2CSw\n2xlomgYhZFw5jhdtkuVyTjQDKJElxWa1Nk3z4Ojg6eMn9tZWnpaL2bKqqtHl2PecuirKIvMcryoK\nz3GIBLSsdIRlIxbF0nFdTdOEkoyxuimIpsKWk2WZ41m3r9/nnC8Wi36/f3r6WcP43t4Ba7jrBZTW\nVZY3TcVpQwgxHVcphQEBSiMEZWnteCFl1eVoPJ7Oh1v9pIg9R0OGqmvQCtq6YedFmmbV1nZX8Kau\nC1Ejx/YlJL2d7Yo2w9Cvy2o1m1VVI4Rqt3rtMKA0sV0davBsFD85WQmgX00zW8eFbn70+BQgrUmq\nEgIJeWiTtkPOnn5QFfWDW3cuz89PztaDQWfzfNNzBt6d1nQ0ibIECegI8tn33jM9y7AMp22N1wvP\nbx/v4sVywhU/ODoaTSafPH0uAEG2t72/H63mdVOGnZAQHTk6sjOnt5WUdhOL9z58Z++aH/ScKEt9\na3Bt9y7Pc6Cavtnu+ruXz2fZOgvsrR9976M7L917+OHT3f4WKdlxZ89i4OV7t0+fnrua+e43vrVY\nrPygFUXR6Q+ni9Nkshz/H/7q/4kj8P/+T//GwVH/zt1rr73xYNBvK8WRyY9euvPODz8kFHzp1deX\nyYTY5Wuv3f+d3/4Ho4vRX/oLf/Hk7LymCunWp89OBt3B2dkZxVxBGa1LIwy7/faCswILP7A0He2q\n3UdPTjv97X6nn6fZfDq9ffMmOZtcOI6XNZVBdAGUaxomIUGvVxUlrxvJeDyPb904iuPINTxbc07P\nz7FuMCmwxOtFXKXl9eE1CMD8+dlXfuHnAaXPJyOJkd/yTdNFpDjYHhAEW15o+u6mm52Nrs7j1ULU\nuuNuoti0LYxIU9a+5cY1NS2nRLyhrGRcAGhbvihTk1gCqHgZOY7DalrXtWiYY7sQqprVum40dWVr\nbhJFBCIF8Wa1CYIAaAZQUEmAMcEQsqYhhGACCMI6wkwIxpjtOoJxyzRqyizdBZJVVXN8dL3d7n77\n2+8nSRS6AYMgTVM/sE3TzPNScCUkK4rC0HQhBGNM0wAhSEqZZYVlE4wxo5wzyZhABCCEXng8MEcE\n4aKooFSS8cBxDaIJKSvZrFYrSKBu4tANkyJRQLKGdtpt17fjeG3oukm0ZbxKk6Tbbfdc538wJWnx\nJmOCuqHFlWx4w6UgBjItLc2TwHOwgPPxpLW3oxGEgASKYSDavieBtAxiWG6eZkqpdqfLhJrPk80m\n1zSzyQVyMASA8dp1bYXQYr0a7m4PhsOirhQVFtaytNAshBUnijr9tuVbF+MTxx9qusa59v0fPNnZ\n2YvyWdhpS2Bv1qVGjL2t6/EySqP61Xs3n3z2xOLlrfa2TtWgu9Nr9y5HU0iM6WwSaAaNorAfTMZT\nx7UrTQWmWWFwGUdMJ367Vda1b2C/19/QOmrYzvYWA+BiPhFNXSl8/p0f3dg5DH0vTlZUcK0mNOfL\nrHp6PtG28zjPBlbI6oILNfQ7sCLLy3WbOJoOKINhGGoQfflzr2dpkkYbG7BUsoPtgZRgo8XXD/af\nnp7ky4kROmbL2zk4pA0vucjTsts1IRPj9aodtoqi6nW6nFPbcxVS6ziSXLa6Pdf30jS5ceMGpdQw\njHa7PZmsyqJZzGa+7x8fHTWMddsdA2sVLCFUnU7Ldd04joMgoJxFUVTm+f7+vuc4T54+Pb+42Ds8\nStPUtCxW1XVZ7Q53hq9sj0ZXeZ4ThImOa0Yl457nzWazmzdvKoja7e75xUW72wFSTcZXStJ2K4AQ\nVk3dNI1UwrC0ON4w1vR6XaKh6Xw0mU0PDwZ5UdWMb+10R6IBmK+TRVVk7Y6XZQkEoKlFUzeuM9Sw\nFhcrIWheFVv9DoFdRuvD/ZtJGq2ilW2ieBNtstLoBJ4ycgan62Vo2oNu167oeL6KNkuibVm61nY6\nw+6wLhMVqCaKNSrvHh4FgSclL8o8j5fDQefa3vb580tESstl1453G85832/q8rNnT7cGvXv3ry+X\ny9noMp3M8CazbAtLdDZbMc4t224ATbL1veHxdLWsk5aBGt01bt+83m2beVI1MbuIrlrtSDPk3sHW\njf2d1WzpW2TQHt6+d/fxh8+i55vAaT3+0cl2p6dh52/8J7/xq7/2i1wUW1vtl+/e/FTgqkQH/fuz\nxfzll39i/Z0/+u3f/G0p67du3Tx5/517h30La5989uj6jbvvf/e9L375iz/81vcGbv+Tx8+2+16T\nNx+889FLd1+/fnBvE9U1BZfTifQIaRnUlGWdYSgwInpR+pYnZbHT6WxG44/eff/VV191D3fKJgNI\nHlzfHY0mEKPL8YxoCjZJThomFXUgFLKRmo4s4go32gjTsDRMLqZrDaHleq1p6Wad97ZcU7Nok2lE\nNzV3tdiUWa4q+bf/7t93HDtrRCEbx5CgAbXgaZmZpr2ezLJnle06ptmqeBrnnK4mSCOcS6UUgYjy\nyO+1KWdV2UildExYwxkrhVCcCgAAArDJa8EkVMqyLEJQXVWGoRENa4YXhOF8tVBKEaLZpuXaDhCS\nUaprGgKwqRpD03WC6qZxLRtgQptCIk40HWDV0FpIVRW5AkAJdePabduwPv34U8cydB0VTSUV55z7\nvk+I/qI01jQVY+KFaLRpGgThi3awlBIRzJr6xWYGQ0IwEUIigCCGZVlSwWtGJVZcyU2SYk0zTbMo\nc6QQQZquaUio2WR6eHCk6+ZsNAFQGrqFoeScm6bp+eF0OgnDEALMqEBSQIBpodKs7La6SgCNAACk\nbVplThdX814r7He6TZEaBEGlaEWrPDEs29IINszxdAUJbqo6KSqCjLKIsyypisbUStczHcfiohay\nCTwHSfX85HS1XLSCVhLlWOmabhZRA6BhYT9Paijhcjm7c/tmlZa2Jn0Ta9zbjBc77W7FmFR0tYma\nsjk83GeafudzL8m6QJRRys8Wi2XNsrxAhFcAQEi89gAjHTOUztb9MJjMF31dW2wSGxDPwP1eL02S\nKN3s7G1Jz6rrOs3LVnebVdV4MesH/tn0snqSf/7NNzertUVMojWbat0NLA07/a22b9qj6WR3e+AD\nY6ZYmVaT0anbCvYOh5PRuGmqxXzSFLHn29PJ5HB/uL29czmaINRep5uclVtH+4yxLC/8oMMkY03p\n+S1GQRKXruvqup6nKSFkOBymaSyU9CyTKKyEmIzGjucopUajkW3beZ4LzjBGtm2ncfzs2bM4jjud\nDpASQnh4eGia5nq9tixLQeC6bthqzSZXm2jFGGu1WvtHh0rJMAylEAAAQsj5+fne3t5gsMXY6IUp\nrKqqOzdvXV5eNk3TbrclAGWZ50U6m449zzM0dHDnpqZplFLd6k/GMy7qosg6nU5uVg8fPz46Orx+\n/aZGyGpduF4nzdYa0hy/k8eJ53fKolnMV9EmgRJeP74BJLt4fnV0/cbdW3cn40tmV2URKcAdX8uq\n9XCnV5YlYKBexYvZSmisLGTQ6W9fu7GajTVGWp6tgO4ee0Thy+dnXuCcT859y6iLWgoYZ7HtuZuL\nKz9wg8DbjMfxPLUdUzeIkM0rL78khPCIs15kq/UGQy3LmtNmNNzub2O0WCxu/8Qdx/Ymo5lk1Dc9\nUyeeQ/ReyzR73Y62XFREw5ej558+evzgpXt7+0dV1ZyeXv3s8IsXz59GcUJv7DZpsx7H4DXwh3/4\n+wBKDeGLi4t22NtkeVPXdUl/++//zp271yG47h63bly/+bv//VeVPFe6bKH24fHe5159MAhbi/Fl\n23Cfjy6ZoR/sDIHi3/ijP3rplVc//ewRuQ2G3Q7EGsGI6LiqojwrKmoqjb/0uTvd/cE3v/3dpiiL\nOvN1/WAw6H3pSx98/OliHXdanfvXrxGkRavZ1t7wtVduGpb++OnZ6GLi2S3L8ogHbM64oTsAAEgw\nsPRFHK/TRSv0s6oyDEBM5+J0fOPGjaLJ89XGdR0FyCYqsG5wCYNWe7lc+ZaTcWKa5rooLRz0NSI3\nLOx30yo3vXZc1UzAVncoyrqOa9f2N01hGcBxnCiJiUFs17V9L8qSRnKAgRJKKYARkZzvbu+WTZkk\nkQaJkILWtWu7ju1Fm02RFo7jNEXl+X4cRQgApGkIoa1+T0rZcGYYOq2pgoAg3DSNlMB3fCFEVVWS\nAwihNACEuGkKjDUoIWMsT6sb127H6+LycqTrOm1Kxhrf9RpGq6oxDAMAoJQgBDVMKqV0nSillOR1\nXUsJgiCkvJZSKogIwQhhpQBQiDPJmarqumSNAEJCYAcOY0IqLiR0Xffq6mpo9FfzBYbI1gyTaKvl\nJl2nxzePN6sVkyL0QtO20zRvtdp1XeW8NjSLNRxKiCBoMuHttafTaRyt/MAM/aCIah2aDvEEk7Zp\nEaBMg9h6KHnTVCDP6mg8qSl1Qr8oClrxLCs2mxhBzTCMKEkgBh6xGAd1JaUEwkAY657ZFRRiaAOg\nQWiJhhFdA1RTCPZah4aNhdDiNHE9bBiFpQJfc5SQUdVsXzuSO+if/OFXXduhTdLpd3zbjssNsp3D\n41s/fv+TycUUEry/sxevMw1pdRF5jht2urypCSmjzeZgaxiPVpauOYYOgAK0eP7pp0qCW7fuFTRv\n4qIqcqLwdDR55ZWXLaf66NnTvf3t9nZncX7Z7pK3bt+rMvnx06dlHmm8VqwxOmF3b1g21LVM3SRI\ntzTdtBx3Nh37gbmhNRU1F3VVpmUeu53eMo5130rLYjg8chyrzvNosynTGDlBU4vBoAck22w2eVl/\n+vhRf9Dd3t5ezWd5kgwHe2VRtlodiFFZNcPhbpZlFxcXvtNiDSWEmIala8bhtWOMEYRQQFBV5Wq1\n3NvbMwyjruu6bgTjt64fz5YrwzD2Dvb9JBldjqqqohQmSUIIqaoqjmPDMFzXRYREUVSW5RN4Kjnv\ndHqj0ai/tfXo0UNEcKcVNk1lO05V5hRjSunZ2ZlSqtvfNnQ3SRJNN3XNfvTwxA/sIHAxsjmHShkK\n4U7Xf/rw+aDX9vyujiBQrK7LQa+nbxuj8bwuEhl6rcCvGXY8FIRmXsQYQddyLMOazRaB3+pXahU3\nJpfbutNy3N0hTorE9W0k6d7h7sX5BOuaZpOmEkVNGyY8LwgQyWnttVqz1bTkdejvzBdjKfVuJ1wu\nF0XSIICurq4gFsPBtmkHSV4QS1vXdamaX/5X/nxl1N//428f3drhZbzbG/BG1ay4c/P2R49PuURC\n6OP5yLQ90+6ez7J3H/7xzcPr1OQPLz+EqH72aBkMdhwCSkRn8XJdxlGdfO54eDEb7QTbnNHhTvvt\nn/pXf/jDH1JKETGfnpwDAMK+BgDAhmG54K0v/kyRlatogwxbQnNn/wYSsKqKb37nW7/6q1+BUP2v\n/7f/y51euJmPQcZb7XbTNEqB/Z3d8WLW8sOCVaZJWoH9U7/2a+9//0ezs4vzp09fevVzt25d38pq\nQsh8vmy1XLvCdZpu0ihstwaeXTt6WUS723vwV/6N15Msdf2gYQ0TXDCuAWxhI+eScyEFQEhnFUcI\nYYiAFNIgmqHHeWa5TlnminHJeDtsAVEVDfe9dp2VmsKmbhVliU3d0lBWM4WwhjCvK9vRhUFWVUYQ\nqurC87x22FpOJ/s7u9PFkhBCpZBSsppxLqqiHA63syJVQGCJAECCcYINhIhOjGgTh2GY5SnWCKUl\n0THCUNdJ0zQaJlVTl3nR7fZN3SyKgjKhaVqr0244K7McY62pSsc1y7qilCoJTN1TZZMuo9/4b3/7\nhz/+5D//L/5ry9CrMmuSNUIEY6wAcj27rss4jglBShDOOeccQqUkp5S/8tr1+y/dLOu8rimnDCGs\nJHyBCBZCNGWVN5VmEAa4BEAChbHW1CxK0jAMEYBB6EwmI8FZr9unlEdRYtn2YDCYz+dZVti2Y7qO\nbuqarsqyVEK6pqOozNMCa8TxHQkRxriuS6koFBBWAFRc1tXrrx1tDwJN1a5jYwxN2wDEmIyX51cz\n3bG29/ZNy1ut48ePzpabzPGDpqwEUJqmvfglpJRqCAIAsk3VCBp22o1oAEJCiN29nbrIn16d7+0d\nNEJ0et04i8o8btmG4rWhrMDzsiS9nE2CYb8SrOZsMBjMLy5Mw9YEHnZ77X54tpwWVY0lLnNxdP3G\n+cVVELSyLEFQtdtBXsSuaUBEVpNVsljv7e1tXRtyJEeT0XI6b4WdTmcQxWW72xOMi6acjy4NRDpt\nXzPhbHn18r2XZMU6rf5kvkK6RQxzczo6eX7W3t0GCLrt0NSNWghC4HAQugaiWcYZdVrexWRkNPpr\n91768Q9+/Orrn3t2fnm5Ws6S2Gu1AABQcQODTujTsqAVt21HSWxgs2a8VqpmlEvQ8vyd3mB8eUUs\nYzQadXq9VieUUq7X66Io8izTkFZXzXA4zKuSMuF6NoCQMdbQctDrN3VdF2WR5RBCXTeLNPM7nq7r\nxNCzrOh2u1XZXF2NPNvRHSuOYyklISSKoi984QubeIMx3ixWURT1Op0XZvOqaYIgCFohFBwhlGVJ\nVZbdbrfIKyY4YwJrpuM4jus2DRNCZFkCkcRE/dIv/bymq4aWpqnHmySL4iJeO6bhGg5GSsdC18j1\no2PbaS9X0Wg66291hKRC1giKXq+zmM4kh54XNLIsszpJ6eVsc+fBmz/40Y95Xe0NBlU5unfvXl40\ncaUen47KRkSbleeYbtCXUhmGkaeFlPzOndsnp48JQS1nEKXrsBO6vlUV5fPT04Phfhpny3hFeVPx\nyg4shuqd462sTv7n/6t/7ev/+OtNRQMnXM/TZ4/Ou51+uxNsooVpmkkii6psd5wvfOH13/udf7y3\ney1KIw3C23f60ar45a/8ym/8nd89e3r1Z7/yus7r0DYePLj///ut37x3796w2zckunt4bTNfMg90\nu93lcul53ouahh+4geefnJzFcdwK2zdu3RYQffTpJz/3Cz/71a99LZRumubj+Sxh2Rtfeu2XvvIL\n73zvB+vF2gV2WZZ5Gvu+/1M/+TPrPHp09nSTRkcP7n7w7vvXdg9xLedno363fzmfc43MFxGt606n\nc3BwcH4xEgo/fPTUdFzH9pRSVV1YukG0boAUKzkVQBZNYRmm7wbZKrI1lwk43cx9r91pd68uR0DK\n7cHgYr1oddvb24O0SB3P5pRhBZbrlavBu8d3gCCPFyfKhMiQZVlrNYXIBIwhgHVXL1DVyELUwHPs\nnPJG0tBEFc05p0kcw7qRkCuoDMtseA2kdBybc84oRQgBITFGjuPGUcqYaIcdTdPqmhq6ySRrGha0\n/CSNsyxxHct2XISQY9lSCqHEOtpsb+0QoqdxVjEKBeCqUQrUJa2qSsOEMcEUzaL14c7+oNf//ne/\nL6WUihdlBiWt67rb3eJCFXmFCXph7bAso2kAxriuaw3rFPA8zyltdKIBHVZCKgVeZLCIKC7FJk+h\nBoFCEkMuBSJkudm0221X2JqGOWW2be9sD7M8HQwGm+UGt7Dp2JxzXTcBKAjBkjNT9/IqCYIWaygU\nsKyKPM/b7XadNyWrPT9IslIJbmCzXBWootv9QNc1y9DKJG6A3N0dSihr1rR9p9nqMakQIlleXF1O\nl8uV7YZSSmKgXqctJYg3CW0YQprreJPJJE3WSCOz2STohI+enr7++r27925+/N57N3a3AeCcNYv5\nhAOogJnnwNVaoypa5PXAD472b3DA+x1PAnlxcXG0d+RpXrZIWcJxm+y0B0mZz6cLwPhH7/3IctxU\nNoah0aYqUhqGnobJZp3028F+p8ck2x72P/7sU1lTN/B6/bZtmZ7jzqbLJN4MwuDB3RssXSsprx0d\ne5aZxM1qFp1cpg3E2zf9i4vz1cn521/6UiKa+WYRtJwkigjRsWQs5+Px6nOvvNLpdNOqXsznjDVn\np88+/7nXy7qu83S7324k1THiXOq63eu2EVBY4mt7/TxKZtMpVbXuWOPLK6/TI7pxevY8j1IIwHI6\naZqGCXl+fu553ovB0bZtHWtSqMl8RojOOJeKV3XtOI5tG/1e57OPPwkDD0lr0OsDgBYQGrYhhKBl\n0WuFkgsg5Z1bN1erFdF13/cNw8CEaIbW6XVeFIjzsgiCIE7TQa/n+75O6auvvlo19XK+KKs8CFq6\nbqZZsVyuO+0uZ5TLirEmyeIgCAaDQUNTx7UXy+nl5bMHr9xnSZ5nkWVo0DXLRPb6bSg4ULzOU9sO\nLy+fD3fBweH+4fH16WK6Xi0I1k0DNmXl2Ga73c7znFfYtb3VepHG2d7e3pOTZzQn24Pua3feAlJ9\n9NEn0XgauvZqM+l0erZm5FmpmdZiuo7jeLDVOz8/tyxL01HZpOPZuGQFXqOqbBAibtjq9ofBosNR\nLbTq+P5eu+e22h6vy/f+6Os4TV6/++AH73ykmcHe9eHB8T7lBWl7VdpoUtouvpqf1+rutZt7La+F\ncSNw4wbuhz8+ffe7H75x/65V111Df/XVNw/6re9879t/9pe+4oXBVq8/vxqvs0hpoO2GHa+lGmFZ\n1maz+sIXvvD48aN0E905PF7MFoyxeDYXGLcDHyF0dHi429/frFfOyAm6YVpm7/zg3fU83u7uPLjz\nyj/+vd+tSjadPDu8dn3v8OB3fue///wX3pJFLfNKxIWouG1a56OrBgIquUFQZ6tbZvnk8rlne6cn\nl9udXl40g16Pc6qA8/TpE1LWQMOBZ5pllQuIlsuNrrUqYldxGrRb7W67YXK6mnntoEizq8V4ONyL\n002CBJeNQlBxUVU8CLzlvJyPS72Ufm1UrEpo2t3pGra5HqedTmc6GtuerjSlNAWE5EWpQ6gpYWgY\nAAA0aFi6ErZksq5q3dUNw2gYRQBKKTHAiknKJCGQsxJjbJp2ksW6bja8agdtm9iWZWAEpJRh2HZd\nlzEGIWGMSiCUpJZvhe2ANXy9XOmmARVgDdUNogCAEL7YjzuWVhP0uTdeH49H48klIUBKIUSjQaVp\nmlQQIVQUhQJMKcW5qkTRNEzTDIw0ITjGgBCilOJcKMGQApwLKYFSqq7rumENlC2/rRn6ZD6DCIFG\nUKkUJgD/6WtR13Ucx1ywJ48edTv9VttL8xJpeqfXbncDjFAUrU0DOG5f182ERVVVUkohVI7jzOaL\n1sCTiiOCa0oV5RhpQpVhy71544jXUS0bW7cMDLlSbuBVJl/nOSE60bSiajiDtAGaLhXmFS0dx3Ec\nx9AU0DBQsKxyz/MAalpBW9O01Tp6/f6dn/jc5//ZH/yR6ziv3L45W0yvzi/aw4Hf8tdxIgQQAOtt\nGQBNq+M377zEWDNZz0fT0av7W9eHO2VUrmy4ff3u+09PcikBxFLZWsj3ei3IhKMZvm3lFUlonhWx\nATXHcyBACEADaqdPn+lEM207i+cnz0/e/sLbSZRU+fqlG8edwEs2C2+7pevm49FlZ2d/cTlZsdoP\njf52f1FfeYdup/uAdENUV4PQNy2TC7SlKyyZb6KOPXx6dl4+fua4AWcQocoxPdeWtM5uHve0wAeo\njJJUYcexzGy9XMxmvVbvo9Hs+tH1ulb97Vbd0Kaudy2npJQQfZ0lQggFVMOZCWRd14QQx3FexKT9\nwWA6nTYZwxh6XtDtdhBCZZVrEFw9Pwsce2cwiOPYc+3ZbKZpuNdpH+4f/Mm3vl3DQjcNDIGu64Zh\nGKZFKV0s5kEQGJo+HA6/9rWvDYdD0zQppbpulEXFOXd87/T0dDqdtrtdSjmAtKqapuF7B9cM3Wpm\nM8PEhmEIJQkhT58+3d7uN3Ve5oXgSgmgqDSJIajAkPR6W1XV7O62izRZzHNNM4DE7OrccGxsaATD\nfq9b5RlrSiWkppOS1QUtXKs9nayIIgYy/uZf/xt7uwct15pfjr55uRh0e61w+1d+/uWT6RWl9WKV\nNBIAjIoiE0owxZI8MZxOVZYucnjNdneHq806j5pbt245jlPyepPHpsPLbHPt+iEhum2Ev/Obv3d8\nsM8rlJfp+fn5tYND2/W9tjteXB4c7Tx5VlSs2Op2Glkv8tlssxkMd599MiriFBA96bKf+el7pixf\nu310q3//6HAvjq8MK0iS6auv3dwe7iRJRnnT29nBGF8+e2JoehoVggLFybMnZ8kqOjw60In22muv\nXlxe1XUtAJyt03/43/52u9+fbxKMeH+vd3BwOF8kv/Ubv7nTHXSt4A//6W8FoXH33g0u6Do9OXYH\nf+Xf+cur9RqUzU+/8fnVeB4M2mF38O6nn2S0cr3Ax0bTNMb+/tOnJ65pvPn6g6fPzrYG7ZItmrp2\nXbfbtYmqC0fX49VMKN7rtYKOzWrmGrhEZLlchu2QGAqUTDNIq9e6vDznTaOk1JGCCNd1KSVgTd0A\nuOWBp49/rAmz0+0H3bYoknxWGi3TBPpkNK9rLiCez5f9vT7SNAANlScGhmWRarr5Iv+BQgEmoihW\nEBDT0IDWNI2NsYY1Ibntu1EUKSV0Xdc0DKGKouXu7q5uaEWV13WpSaxrBmciiVOMMa0FE5SKRjPI\nnTt3zk6e13mJgU4ULKocCMCBdCy7YVgppWm4aarhcOvBy3d/8MPvrNdLrFtVlWECdaybhqcArKpa\nAIUxBkAApWhTQ0jqipqmxai0bWt/f18pUWQZ51xJyLmSAAklkzTPqzJsB0rK5XSJFAz8gDHmWG4W\nxZZlvDh6SpJECAEA6PR6hmnUdeW6dtnQ5Wbpu7ZtmoRgz3HG8zXnawxgnudAKd/3EcG6oWk60C0n\nzrNWpy0r0BsEhHc9nzR1oQFhmcag25aMEgJNXeOUmZZWMimlpI1sGqER0zTtRnD0wmcomWNrnPOy\nrARHUsC04LapABW7neHe0d6H77yLEXJd99vf+sHO3u7+3nVmwKyq7dBnVZkWubnk4U5/Ek+fFHRR\nbIQChWa9dfeVq6dTxerrb9y/SKLU5PEykTXlTW0gc96sj46vBaEfem4z4w6BpmedXV5Ivaoaen17\nzyXadDZimLS6PZ7Hmo5PR1ctN7Q9f75YmQQXefPh1dR0nUUR8XRlGIbZ0df5ulk027uHz5eLjt6q\nSgobjnij/f9Z+vNfTdP0vg+712ff3v3sp07t1dVdXd0909Ozz5Ac0aQp0VoiS7IFQ4gk21QsBA5s\nIECQBDCQ5JcETgAHcYDEtiiGVixRFElxSM5wNs4+zV6raz9VZz/v/uzLveeHzj9x3xe+1/X9fCAf\nUq27s14Yvnb7lhP6f/HBXxaLUkjNELv9yussL//kL35y8/qtdds0aamwK5EwvLQopkbu3t2L/N4H\nDx5jSgUEQRxfPH52+9otx/F6cU9Kmbf1jbt3XUqfPHo87g8sQo1SjmVhjLMsa1kjhNjZ2dnb25td\nXmrOmGS+7UjOynV2cGW/zAuKyXq9CoIglVldVi9fvtzb3W3btmnZcrWWUkutpsdHURT14iQMw/ly\nMb24pJiEfsA7prXuJ33XdZuyKpsaAIMxPj463d7ZNAb0h8Oz04uyamrEMbWMlJ3hWZ77figlmF2u\njJGBE1NKedc4NgVKp9kaGkAoSsI+14ZY3s7utaqoMIR5VXz48N2w52/2R03ZsFaKToRhKCQ4Pzoe\njge+Z1mez3NGwmBsu9qm2qU7422WL0tTHh8et5+Un//8O7/21XeUsv/kWz/4+PB5kvQRJtevHazX\nK0opJm5VVaMoaloWhv54a+LFblFmCIOizURWOa7Vduqnf/yDra3xtas39q4MHj354O233xYc/OjH\n74ZJeMu66loocRPY0s/d++Ljly87WRxc2QSGXTnYl2tBtsaKNfUyvf/aq4NgR2icsRc5p+8+f765\ns3vrjVc0UC4mF/P1yEvWF8svfOELVAPbcZ48fY4p6g/6eVF8+OCTR0+f/dIvf+PPf/8PR5PxK7dv\nAaasfWtnZy/o9T56+Isbt17d3T34V7/3exLIX/t3vtFl9WK+tnGyu7mrJP/4o8f9ycbP331yuZhd\nu3Hj0ccfP/vok3//3/sbLw6PP3ryJIh7++PN+cW0tuloOG5bFgUhq6vQd99++9XlerFaStPp9ayc\n9HZJ0bSNKLE2Nibz6SJMYt4xbEDRpJEbNnllR1EUWMvzyyTp93oDxthw2Hc8erGYUtuhxCKQllnD\nJdnYPQDC8I5ly4WGOupHnFXFIveccPtge14sJ+NtY0y5LpOAWJYlmDRKQiSoAw0GXEslNaEuQFQI\ngSihmIZeBCVmgFVljjXqJWPOJWfScaOaqY3tq2k2T/Ns2B9oqYTWTVtBrXpxslzlSZJQiD3HW14u\nJRPaQABkK7nn+wRRqZWBlGJLcQa00ox/6Z0vsuVicXLkQhkEzmWZayacIHr1tVuLZXl0coGUBgq6\nyBWyBoRoaQiFWnWMN5PNgeVgJiSXhnMluGpbxrjEGDMhPNcXyoiuRQgTYimhtNR1WSRJAhCoinpz\ne8NxHCGYkjzPM0JxkCSrZU6IZWMyPzu/du1gECfz6TLNGmhQrx8HERK8MkZn5brjomqJq1qXWlVR\nTja2ZsspKNJBtEc0cxAklGqgwjAWTIqWIwQSCyONWsYxAkAbI5HmAEBxZXszCLy6LW3Xa9PC84Om\nYpxxXnI0wNT1BDIvTo+1NrtbO03XJdsT5ZCsWCkN7dhjoivLInS8KzdvEgurPD+erxQFLnUng/33\nf/rQELg93nzvwVGjVTWvPOJcFMu436uLda8fNc2S83XDok5LZWDk98cjMM1WjkPysrpc534YMMHz\ndeo64bjfm07n24OteccLyT55lk7C6DNXry+rDGOhHDJbre2kRzEu8nyAOW0rB9nIuEFApufTnST5\nzJ1rVDufeeON9z54/0/+5E/j/etpXWvoVGlFbzkX69PpfK6UOjw+Qb515+4rr9y+sh0mF8+fAQTf\n/vw7ec0+eXiYr3PHCWaXRddxYFZ1l/u9gaH4yvaNvb2rh88feZ7nWI6NKefy5ORk92DPEKAY5412\nobq9t1sv1s8PDwHUw0GMLXr//v3Z9NImtKur0Wjw6NGja9euaa3LdJX0e8bFluO3bV2sF1tbO3Ec\nl2U5nS+EUltb23VZKSEvT08AtR3HrevKdR1E8fnl+fWr15XS165de/z0kRP6LnFEK2zktLpVUIeU\nrtO01++/8vpry+VsnS7TVera9tn09PV7N1ezzBgTDeKqqmxCQtdGjqxl5QdB25rlcq6UGdJhOsvy\ny3RzNKTI9DfitOnm66JsG5qT4WDi+KEUqWyFbaN+z/Md2os9P7mS18vJThjFw66Ql8/Prt289U/+\n0d//5ne+9/zouGQdxKq30cu7xnaddcN8j0MIN+JhmReNWDh9XKnszV+6e/zsWT9IbuxMKL/q+344\n8AfD5Ba5DQCI4+j11++6duC79pOnD4xQd+/s//yjn13bP+iP986X85/99N16uhg7o414gpD99OHR\n7NGLM3N05+qtdZahs4d3Dw7quoQSlPP8Fxd/iSzbIOyH/mK1zNIC4mrv4MpkMpnP5x1Xd159K1/n\nDz46cnCvK+S7P3u/N0yiKHjx8nmcJmePz37ynZ+NJ5P79+97rgtb9f3vfu8f/uN/ND87y4uqruvV\nupFmORxOurT93r/989V89drde340aPjzza2do5NjP45qIBenebpqGGM3r19lkmGCzo7PLmcLrpE2\neLEuluuaIEQopQhK4ti8a4JkQO0uXa4oopRa2kDWtsJotx97vahbZ01VB9Gm7RIzN7blMCaUhBBi\nKyBcckIxRZaUMogSDgwllhOEnhe5XlDPz6M4FEDs7Oyl87XlOgBKx42EEMBQIdSnVGjXQVwIjRQ2\nGgGQpmnbsrZutNae43POP7VzZHk6GAx925kyiSDtal5WhVLKsmyCzHqR7WxtQ2TiXlQ25eVsNhgM\njAJt0ziuCyVomyYIglWWdZxRCCgmV3a3r97YP358GIZ+EARCKEptSlyhVc04l1JIyaXAEEmuCSXE\nQAWN5dp1XToePbh23fOC9XrOuOYMQEgNkAgj4tiAaESwUOxT26pmIudFXddciF5/iAmoqqrISq2l\n1toAtb276zhOmRcGAmJRTFwZhZxzShEhlucqC1uKi6oubQuEfth1MklcDIFHHOxAo9q2LDire4Ft\nuaThKun3LEy0IVxo13ERQbzKLctxoE6zHBHE5MxyTRCH3CCpWm0wgJJzWTelY/uYUM6ryXbY6apr\nxHhjB0LYVXNU1F1bM7v1HJJY4XqVmkIQg8sFo4PorNcCDcjmQGot65ZgnXIOtZn0xg8eP2ta5kXR\nYDBs24Zajms7N1+/73ku5918NU/Lyg+iWbpgUtYtsyyCEGqq9pW7r3mB/+jJs7auhRbYi11uPv7p\nex6xoIPTrrx582ao23fefuPs4vzZ+dn+7kGhdCPF1mRb8IoC7Vq4KlZM1p996067ml0sLvcGMeNU\nmiDu7dnO6JW745fPjn1/cvHi8Auffeszt26WeTrshVeuX2lYZ1h9fLqCnVLK/I///A+h4yvjzrOS\nIyzrfHt7UlQrL3LO5kdukvTH7tHFo/MXz23LypXq6lpD4Pv+bDbTGPbjqCzLuQI//PGPxhubxoJX\n9q5GgXN4eAi2tgi16q4TyuQN/+wXvvL48WPbwsKAs+kiDCImJLHcjf5Iaj29vJxOpzt7u23bDkaD\n+WIBKbaCwEIUGRDE8YvnzxUEfhCeXV6Mx2MI6dbGrjEKAjCKe1oq2PGOdwqbjfGgZezRR+8dnx1/\n7qtfePurn/n44Sdtm5esdcOgqWuCrcD1sFKcsS3qUkO5Yb6PmfIYNy3jWiigzblcHexuaY2kAIHr\njwej9WpZpzlFXoCQjQzCSHfduNe/Mdyq0sWVm3cq0fy7v/7X3/v5u48ROD99Hob+X/uVX/75B+/9\n8L2/XDVZNBwKYYaBNwkPLi4yJSSAnIaWwfzm3RvvPvzpJw/f/1v/3l/DjD9976NXbo2PT48OXz71\nNu5xXD16cvblL33drkar+cKJnb2Dm/PZy3xNfeTs98eR7z968PEv/8rXNgZbJx8duhQPneGbb/7P\nynzhUR8Qev/mdQdCA4CH7Le+9vWPPnnouv4vfvKLPM1vXruZxEMmm2dPDnf39159/d57H36EIA28\n+Ic//vlv/LVfU0qdnhxBCNMiO9jb7UU9yfl//p//r777/e/HveRTYjMAZn9v79/+4R/de+21tm2F\nEFeuXAUQJvGw6z4ZDTfu3X39/Pz8m3/yreVy6V3Ogij5+ONPhuONy3xqVa1tux89OzIIzherdVoc\nXL8hOpkW1bIUQeAiYCBEGGFrtcwocbJ1lq8LLQGC1KLeZLRFIC3ryh/GLVDD8WA0GT568lBo5Qeh\nAoZLzZXEGGuogYVaLRQ1VuQaCgUyApqol8T9XtGW1LYQIXmef1rd5BLYls86wzoAgU2wR6jjur4X\nhhhT27ZtmxpjGtY4jmU5dhz3MCKMt8AopDVr2utXrgSey7taK65kw9oSAdk1xad9h+VyefXq1dt3\nX9HAKKU+5W77jjufzbjoer2eMUZKbds2tV1CLD9wz89PpeFSCaVFnuf93nAwmACNXzx9fvjkqepa\nJCVvWi2VlgoZhDBo21oZ2RvEfhAIroQwxlCpQFG2ed1VDSfU3drbp7ZblHVZ1qEXJmGUhFGv19vZ\n2WGCl2UphEhXa9ZyLU2elem6PHz+Uhs4mUyyosDEunpwjRBbcEWJ7VILAl0Wme96FrG1BpTYCJHV\n+SKfZ7zsAupArePQ90KnYuW6SCWQQRwooNd5qozARIU9pz8KOG891w6C2KI+RHZetsCgus7brgwC\nD0ITBN6n+wCpVWAlmkPbsqo6O3zxqGxS4mBEQG80CZJ+1bDtnSubky3XcYajEXasy9WsA4p4TlEU\nhBmQddnFui67xSK3op4VRkXdzKaLdVGEvUQIUdbs6fOX82WaV+26bGqpnCCqpQxDX0nZFCUy4L33\nPvj4k8dFUcpOJU44Pbukttsfj0fbWwai0AnS2VJr/fDxo1WetUK0rFNMIG4i6NR50Tbs9OLyytX9\nzc2R7dF1W3/w4ugPP3j4D/93/6f/7o+/lwH3ZLruWpl48SgaZg3/42999+XFzFge9cOHT1+uVwWQ\nyNkaTmVXWk5r+dOqu/fOO8syXaUznKg1X0sbIMe6cftW6IUf/eJ9KsG1vZ02z6dnp3VTLhYLiPHm\n5na/N4yi5Ktf/8ZgND49P/vLBx/tHlz57o/+4vs/+nHVNpfzGfW8vGmw63/07PmHj55F/cnTkxM3\n7ieDjePz+XSeUsdfpNnL0zNMSRCFlmVFUaClattWSd1x1baN49pCiK2dnSiKfN8fj8eLxerBkw+4\nqgAUtovjYTzYGkIMjZJuP5RI16xseNUf9zABZyenDx482NnaCHwXGPVpxA8JBhgy0UmEwjiKPCew\ngUeRg2ldt0UtOwWZRufz9aPDo6ptqe02Hb+Yz2vBiIWdwMI2wh7tj/oYw441uSpOl5dMqAcPPto/\n2EvG4d7BFmvLusn6if+1z7/96sF+t1wC1pVlZqDxbMt3cJZeAsgnkyQJwtv7t9mK/fhbP3z8/uP7\nd+8/e/6iUpIEbsdZleZXd8Y/+4sfPHrys+cnTy5WF3/ynX+bFqzlfKe32RWVbNsvffatkeOtXrwc\nRzZjq7rLjs6eC9DcfPXKW2+/prGWUMbD3mwx/cFPfvj85AUNvNfe/swXfunrGWu++/MfUy/a2b+6\nXhX//X//z+q6fvT00db+5nh/tE5nXDSTzfGtO7ffuP8motadu6997vNf/osf/ChNS9bKo6MzDPDO\n5vbf+/f/DiXIcCma7v7d11zLcan9g299/3P337aAdX60uHblFd8b3H/jc3duv460tTXcnZ/M9ra3\nwtCXRkJMj0/OxpOtze398WhndpllaRNHQ8YVQY6zWK0D6jBjbIirsuEtV1z0wl7RtFwYhzpxHDeS\nQ6XTi8s47hmj5vN523XYsTrROo4tkUCYxkkiGVdKdV1HLKq1LrsCWIg32XK9ciOPWmQ47CsjIYFC\nyDjuSaUINkroqmyxQU3LhIQIQK1V11Se4wOAPcety6YuaqVU4LlxHDHeaiUcxyqbHAFDgPFdB5rY\ntm2tQZmVhFivvv765XT+5OVhI9rBZKOuKq2B4tKxvbZhniPbhiklMLUdx3EsgiB5+vR5Eviug7Ii\nBTAsy7LrGETQcWybsqbpENZGSwk4wJCpDiFELRw4/miYCN51rWSd6Jiu61oI0THRtu14Y5IkCRN8\nz7lycXaOECqy3A+DrcFGx1lRlpRSyzJ1WSEDd3Z2eNe1ZUstp+s4om0QBFVV5dnappaRZrmexnFE\nCG2qOvR9y3Y45wQgDJDvRBRbQjBqA486WVFiS4db46pqmqYZhAlAeDga9sOeULytS8fxoyhxkb8u\nRF0rjDyg0fnZfH9/EIVJ09WEWBAKrbVWwHUdTZy0XCqMQVPuTCaQ8xjg/c29T9Jl2xbACTuEyiJV\nQF25vX+2mF03A0Tdk/U8rUtoeTItXECoBGnZ1KxDCAGpXN9Jhr3zs9NhGJ6eXZyfn+/u7wwnw2I+\nXa2z0I8opKEXZlnlu4GRxmCe1mU/7FEDeVP3ot6qyim2hv1RGIgiX8/OplU79ofJipW1EA7GknFq\nwNOjh9vX73btWVPVD1+cCFZ/63s/2ru68+Zn3vrxw4/Bzg2rP3lRZllx3g+snhVVmRatdqi7qhnT\n5fHFMgiCdSkW6+kS5C3jiOfEtxmUP//kx+984dWj58/yorh37/6TZ4edQMWiJpbjOsmzpycjz0qS\nvm3bH370wLbdpmlQmnm+X+b1s+cvXdu599nPSikvLy+/+MUvVk1NEWyFpEKNNrcgoVeu3jg+Olot\nM2NFJ9O1lgpQ23X9rOksP7Y1ahsRuAlrhZFicTHbHm6wmjMuLcfsX93/8MMPlVJNyxhjbVXf2N8f\n7QyXi1mRZ5aNqI2IbRmir97YT4b9n7/7s629rau3rj548ODBJ+87tntrf7dcLJenZ5EfsI5rCqhl\ncSM11Bkrtocjka2i2FeQ6LRJcK+oKwOVFTiWazvYBYhoqNzIu3HrxnA0lq1SGGpKq6ZOZAB6wfPl\ny5HrL84vbl674QD6u7/zL3qTIWNyYxDmWS5bNgh7n3vzs4PRxnmaHV6cHR09/+yNG0cns5Jnt7du\nSCN++pNfxKG/Pku/fP9zROqff+fDfrwVTHq/9+3fJ5Y92e5NVxfAbj/z5utPnz1jpLzyyk0LuV/8\n6q/LVfHo4fvIrjaSye0rt07AYc8Pv/Odb//Gb/3t3/nn/8+zeX3rM/fbOj1v1ot08dlxpD3n/PTi\n8299/uWjw7piGNN8ng/i5OJkejmdRkm4s7cPEGQvj46PX95/9e7zx8+vXTvww+D09Igx1hv0nzx9\n7nleUVTz+fwnP/3pr//arz158uTy4qztql/++lerspNavf/hB5RaZVEfH5+GYe/K3pXHz1783r/+\nfUjQL/3KL9+8c2u+XuVVvrk16brutTt3OiE++PDD0bC/Xiyall8C4nnEAJEMoo7ZaD6fCsUV0tGo\nx6EkvmNHgbGJgGZdVWeXFy1nw8G4axqEkGPbbdtiSAI3CMNQCEFtAi2AbAggJwQw2a6ylUFm/+oB\n55IxoZFaFXNiA4BkVWWUoK6tuWgclzDW+p6HADRSdQ1DAH+awEjOiYE2tULPX6+W69XKdz3etARB\njCHjLQDadq1FPl+XKy0hJa6RWLYgX9b5qmEdeP21d5qOL9J0tc4s6jiONxyM67qt685zwzKvF9MF\nQghC6PtunPh5nmZpzbhWBpd167puWeYQGd/3lIVboKzIBRaSyNDQGe9vbV/fx6FlqNrZn7x259bW\naNAU2Wq1alnHWV1XBcbQsVCvH/cHSZYvy2INACAUfdowNEqWWa6U6lhLHZcL5bq+UYDXLHKD2Asd\nbNV1na7zruuipF/kFTCk6fh4PDbGZFn6/z/CaTkEBABkWZaEhvruxs5W3bKu4xTa4/6WFgQDPwmG\nbdW4lu07vu/HZ+fp88MZ52R356qR0pjaC6DBHbaMH9hGk7pmXaPalgmuEEJSSs9zNnb7O5uDLTfe\ntydmrYQkD+YX3z97djE7tz0bIPPy+KQsGoLp6clFVbYgto9OXqKm23ADJJTAoA0o2OxZllVVVZZl\nAIDJ1qZQElvUYKI0vHrt+v7e1brhSkIbOf2wRw1uS1blFUbUclyJALIpAwJQ2NnIHvckIZri09WS\n+5T1PbM7Kh22lhn2LeL4BrnQGYJgc//el9bLLs1bJwizsi5qvbFzW4JgUfARCSPQXL78Oc/nB4NX\nAnODl2HXqg7BTPKTIvvo/OSSMx4GleU8mS+L1kdg1MzE+tF8z5msL3NOnM3X7heGPp+lbn+rlejZ\n48PbuwftYm0zzgXMq266SK9ev5kMh9S2CSHA6OnF7MXL40eHLz746JPzk/MqLQWTSX/EpEHQKsty\nPp8/+uSB4Gxva2tjONhL/IlP9vrWX/v6W1cG2JP5po/GLu66teepWzc2rl3pDXvQtZpXb443BsAw\n8fG7765mUy04MGIw6CW9UAG9mlaz4zXRznqZzlfLvMwmm4P+KO7y5fW9LQvJ0CWbW73PvP36q2/c\nkVgQBLI0rcsCGEUQ0FpTSim1ddM0aQ4h1ghTx3UC33HpZDjY3RpIWQlRjIbRzsZoEMXbw9F4NKjn\nayS1UYA3DDATUU/KblovnoLTaX/1iX6Mt43Tx+vsEqAmTMzBQe/evb1BH4S0+7v/7td+481XfutX\nf/nvvfF6z3V9iDfjvkornVbbrh9w9b/5T/7To+eHP333Fylq7/7ql96dPR/d2n3jnc8sZvO/+Vf/\n+o3dKx/+9Geff/0+Kpu7W7seM2Pq/um//Dcffu+nJx89JYYCz1WDMHMg3h5f5Iu7n3ljmWaPPvgE\nl+J/+ff+gZc25GLpYXHjYHNnu0cw397tc1Vcv7sncGMZ9cqdGzdu34gGvfPZ/D/+T/7p/HRdTJvh\n5p7C9IMHH2OKbt655jqW0fqD9z46Pjve29u5fefmv/7X/2q+mEIIGGuz9ao37gMKsW29+fZnN/d2\nbty5HcZxXpav3f8ipr3v/+jZ7//Rt3/7d//NKmNlozqB6qr75p9+++x8FsYDAKmBYGNrczq/HIyi\nwSQiDoz7PtnwQtd1i7IsmxRSqqUIowhoWdWdHwa9rViw9uLiwo08CyABMQTQ9YK6ZVKLpukwhtTG\nFsFB7NVNhi00GPWNxudnl8W63tzcJkQhBLjqVCuIhTFwQ89XtgMhrsvK6Q8apUXb9ZNECc3ajhKr\nKqsgHPR6g9ViSRBJkkQb47qOgTqvc952d+/ejdukaCrkIuqAwPF41cmWtVxYthvGUVrknzx/FMeh\n4zi+73eMrRbrfph0utVCK2W6ltmusCwLY8wEl1JcXMx3tkdB2CuLT4tNEmDk+i5HHetqYyCxaMe6\nwHPHk36erzVWu1d2drY2geCcd8YYSmnV1LxjlkUg0EqLOAgQMFVVQ2gAAAiSpmmklF3XEEIcBLXU\nTVkpIQM/MEivVqswDOuqaNsWepbWHbXtqqoGg5FQEiHsBT4AAADoeb7neUIIQohtu4vFAjmkYvW6\nTGfzxdZkI/FDgqyqaIs6m47jG3t9CHQY+kKINM0hIovFZW8EXMdSqWKMaU0453Vd9+I+Z6prBeed\nUJrz1nb9hnVnz0+UBiTE0yo3CFZlbZB0kdu/trvM14JLqgBW6vLFqZdE42H/o48+Cv0AYCOUxgT7\n/cTCtMmK5eXCGB16Ydd1xy+OkYVjP2nKSjAZjKPZbFG1VeSHFNPTw5dJEDZdzZlYpKkxhtqEc0Yg\n1IQ2WWFNtoZB0DWsWq5t5krVScaG+5sWxFSCOiuD8Qb1gqbpisVcNJ1PabVcDIcjN4jrlrue/fLR\n4ST0gfYdoCNnQCGRkmlALG8UKM2VFEI0NbdQkM5qrcCVvTvTk7NCVA61JWVuHE7Q5Pj42LLtg90d\ng3DsR4ume/P+64y3fuhZhHIN6rb1PI8Jsbe3d3l56XnuYrEYDAbSgKwojIHrLL+yt/vy9OT0/fdc\nSi0E37z3mksJ1IrVRauUA4nthRpq2/eOzqen00UU9rKync3XsZ9Y2J9frCRrOe9eu3vn5Pzs6pWr\nW4l8+PDB2/fvcyWx5yCCp9Pp6dlhEm/uXduv2/r05Lk3HFDbP3rxYrbIRF2PxsNBL3n3R+87vmtN\nglq0y7TavT4cbk2oAlLKrmlt14HaeJZXVmuYlaHv+K4XxlHfVy1nTcsAZJC7QHHd1EVWY+qu22aV\nprEVMMTc2H948tQi9u1b+89OTnFipQ1yhv4Ry3/7j35/IOOkN7zz2itxP0xPL4uiHveGzJcPPvqk\n6rqqZnfuvX6RrseD3unp8eZklKfrrqq2t8anh4cBdP3J5PGjj3j2Nq3XUeA2s1VMw9/+f/xzwcx/\n+V/+F/+3/8t/MxqNPIrf/uzrf/bd/+nD82df/sJn/MQXNl1m6Z9+889s5Ny9+9p/+9u/80u/9tW3\nvvFLdcUfpdMP/+3jz/7yV373f/oXf/c//idVw388W8S3Xk2gEwWb2eUUdBjtBBKB9XL505/8/Nat\nW11V5nXeael6A99yolHfDrytra0uqHYne7f3bvzwL3+qjLx168bVq1ek4KHn2w797vd+ePfuXSHU\n1tbWz3/8kywtXrt77/Jy5nh2tj7+lV96e2MzWOXpxdlzNZkkgX/08lILs7Oz1xuMzs4vLNvxw6Br\n2XAQC84500Dq5XJJjFFScmphrnAQ+GVRER9STCxbx14ElPbjSJWaGGi4NhBYXiDrOi+qfr+/OQ6z\n9VJ12g88jCghoKxqaVg/7pdFSSlmbcOFieM4r0rGWq1BgxgAmgluuIYQdnUHlSIYxoGfrnNKsYUx\nQmCxWCCEPC+QiRFS2q4TJWHRloEVVhCmRV7Whdv3PMtDWFiEII6SIHC42tzbqbm4mJ7GcUgICqOg\nq+qmq2XX5hLIjvX6w34/mQxHDWtZlSGEbMsVWjdFyXk3HA6NwFXDgyDiTHJRFMUyinwIyLJYIChi\n32vyYnZ+EsVBP0k6wXlTa62l0hBgiqnCklLMGLOoE/d7TdcWdVVVVRITCCGmtu8HnEvLsvpxfzlb\nAqpd6jRV61DLtm0IYdu2XhDkTVWu1rv7u5LzruuggbZtF2WJICzrKooirTWEWAi1Wp1hjJXS1PKc\nwL0eX1OdhBC0VW14E7p4Or+8vj90Pdd1fWjQeNKzAs9AYNnuKmVF3mpFMXKV1q7jl2WOUAwAsCxH\nsc5zg05IrYFHo1Wxvli/5JBPdjbswGWMEd9mQkqhWMMoIZZjx1ailKqydeCFkkuIADSgrZvQC5zA\nXS2nUisLk7asgiiqsmo8HnfzsulaY9RyvqK2FYYxY+xyet6P48D1jk/PgjgEDgXGeI5bVRUGsK0b\nh1pVVVZ1vZyvQtdTSjmEeoQMgmB6cSGF2NzYmOzun5xeNIt0vs6QYw2TEHGSzxb2psOKEgnHkshO\n3DKtHejZiqCKjb3Iom5RVOti5fj+xmSYl9np6WnWlmHcazpx89VX5tlacN4y/cnTo/2bVwdJsJwv\nzhYvB/0JMOj45fOvvfPFoydPuqJoDSyF6H/aa4Xw+PjIcRwhJOMCgHLQH9uYztfLO/duX7lza81K\nBUHfczb7/Ww2tz03oARZZNDrp/MV8WhZlm1HLy7nENlcGg1AmIQ2sQPfbaoyK3LLIllVP3v+AmE6\n8JLt7W3JWFHnr994My+zFZB/92/+5k9+/rONDef4crWx2dvbGC3mOeCgKGsI4fMX56sk0IoLCaIE\nSK41MwAhJmSepb24Ty2ktUYQagArDXUjNsYDG0LNGbYsAzAmPjAukKos1vPZquvkeLTBKr1apdFe\nLKDITW2G+Oord7oA/+UPH7/xhc9i121Et7+x56b6YLQ7n840aEWHmqbQii2nZ5PR1jh0h1F0fH5O\noOpbaGd742v37x4+e8o8z7bd9Sqv0zY09mRnb7TRf/n0xd5gEkfR3c0b13q7Pzhr/s5/9NedJfjS\njbsAgfOT2TC0ru5P/tN/+h/cunXnfDa3Pffy5HR1fn6wd/vxo5f33/wKcaPJOIk89+jwBY3I1bfu\nXT168mwx3djaGQ03Nvzhj/7o2/NnL3hV3bt3L9oedkU1v7y4//prV69e/da3v5k2mUckZM5qxbtW\nHq5P6qy6un9lfvm+77h3795tujbNU4yxZVlamxs37/QH46Io1uv5y5dHrBO2bT98/KitO9fx8650\nXH84HPpxMh5t93qDdLnamPQMBrP56umPftEKGccxANoo4dhUcXh8MrXcYJ1WJEWSQiiBJJ6lbaIp\nmq4WyACllOBdnhZxv6e1bstmuDHJ25az1nYdBRFjcjAYKE8V67VuQMGZ63mWAzVryqZUkveHPgIg\nzzlnQhuluLE94lpu03WKA4e6tmUt5wujdBAEXV21XS0Vp9SOokhDWRRFv9/P8hxj3KdD7JByWW31\ntyzHztJMar6RTIoux8bUddus69BKdrfGndAIUdeP3YDEUdjVVaUYa9rxcFRnVcd429VJkjDeNU1j\nWVZR1VLqKOxzWWvJp9P5oLchhCaEdB1zfc/2nLTM+/GQuJRQ0p+M8jzfO9hzIMEaaK01wlwqo0FV\n5AhgYtGm6RDCvh/6fli3DcFW0hu4tseYqKqKCSWFtiInW+dAQyxN27YAgFYqCD1s6d5gUNc1b3ng\n+ZxzQohF7bqqbMdRWp6fzwkhWZYBg7RSw+Fwf39/vV53Xec4Tl5mHFPZCctzsUM9J7AtVNQsr8TG\n1o5FQ6P09sbWolxJ4dq2/fzZM6205+O64ZRYeV4Fo4HnOU3TMcYQJEoZBLHrWGu9mrXz4WgymWx3\nXXdxccJ403e95frStl2lZdIbjDY3tNZdVZ++fGERil0bEaKEYIxzxlAQe7ZHHdvSuMxKYvD2eLPO\nqvViOZyMsQuH43HTtQBj6CLHcQihJ+dnHaupFxpAHMvq6kYzUTedTSxIUJZlSZJQAwFA0sWlbFsl\nwHTddqJTLIbwYnr54sWL/nDQu7IJGdNSEoDX2RrAWVHWBOLA9k+6SyllFHhAqrrJdccRIhBbV3Z3\nLMfueHfjYP/a/u5yOT+7vGir1V+ePHF7/SQeDEebezu7HRQPnx5OL873d7dnpyvXquMgOXrxVInW\nj2wmhVUhwdq6rruus10/DMPFcmXbNtdtuphTYN24dl1AM6vWyCGuR4Fgu+PRwLK54vNsHSVxU9Wn\npydbV/ZfeeWVquGYenlWaqAZa3Z2t2xE3n///b0ru3v7Vxbrpe0HW1euZE3DmTJAG6M833nx9MlX\nvvRFXVTP3v+wh5Qu0zt7W/euHRSrcntn8ylrg3CyLEov9JgWTLXEtzvTbuwMd65thgCVeR65btNW\nEmI/iBC1FMWjYJStlmcXF0FoQeL7To+EjmqBFtpPhti2Li8uwl4kECa2fWfv3uzkIkqi9z75xRd/\n7UtvfvadxdOLo9OavP/4q5+5N9kab4sIyqa9vMSg2xv3ZoenllYbuxvAQD+M9g/2iqwahMFyse4M\n6qoS9MN7d28CgLKc2VYAoX128awsy+2drc2t0cMPPqjPs3pS0sD+4pc+d/3g+ne++Qe/9rUvP3z4\nAMhyfnQ+2h7t7Ce/+PNvH5/N/tF/9lvf+uM//LXf/I2HH75os/aH3/rpL33jzRM9//LXPo+N2r+6\nv2TVX/n1v3p6celI8dM/+ub1zf2L5082RsMn89M0nzp9/PDJA2NAbzDMZHfnjTfUR4/Wi+XGQfDt\nb33HcZy9vSuIuC+OTgkG73zusy8Oj2vWDoeDuq79IEhX6fTBo7QojUsmuzur1aoC7c7VW/PLue24\nR0fHnVae1GXLT8+nSW9yeJERbGFM/cSaNfrnD54R4tteFofBoB+rVtTN8nKxCntovL1PIAZtV0uh\nMYQOob7rZW06SHrZPGOm8R23qzpsQTuyWtnZxBPQaAOVUqtsQQ2wLdt23FJyx3IVRAZjiBEhCBDY\n8taybUhly4TrBBYkEGNi2R7Cq9Va2VprLaUiCGuhBIVREtrMahtWV/VgMDBUBX5oe04QhY3oXGJ7\nsVe3NYYoiAMheZ23hNhCdHVbF12uKdjf3K8vZrPplHPZS252ddNyFvnBejH3XRsbEISe7FTbNtrw\nhpW+HQ7COM0KxkTYi9sqT8tiNNwkBLKuHG1tKKNjP4RAA6Mtl2ztbVeq01D2kyHvKgVFxYTjuq3U\ny9UiCiIMSMdaACGhdhjGsZ+sVzkXglIqEHNtnBdMQwIsFQ3C50+fEQsPhvHFRRtHvbJrFAVpW7mu\nixwnQsa2HWo5bdsGoS04z7MsieLBcKPtSoQAwVgrgBByXXcyGq7yHBEcRZGFrE5XAy9GkvNOyI4N\nQw8oagFCEVQIBkkMXEsI9ejps6quDY6QcTgvAOC+70rOuGC+7366GJdSK6Q7ZThTo8m4PxzUrFjM\nZ2Hk93FECeK1wMQhjms7Xr7KuqYuy5wpabvh5vZmUxXPnx5OJhOgAIAw6IVNK5AGbqAX63mjuo29\nTRgj3jaKAyabwah3Or0AAES9JF0sfdezCNZCOZZBQjRtB5SxCZWMxV4PADNfLhRQAADcWr5jG2gB\nivuj8Ww+L/LGttD2xl4vDvM8bYQWXDAue6OxbduUINumnzoR4yCWXOW8tQgFUIaRTQhcZZee51Fq\nX55fSKmjKNiZbCulXOSenJ3pgo+3Nw9Pn2dZCiG8feUqsmEUhM+fPbMJvXb9nuyas6OXceAPE0Ic\n9+Ry6gK3q4Vj2ZTgsi5Hm5usrIRsLczPTxZQS4c40vXy9cknDz++c+3a6csTGHhPj455q7Z3r+9c\nuyYJQS4hWjfrtWfTalU9f/KUWigZ9eJhPyuq0eY2spyu6Wzb3tjbWMxXWsO67owSL1+c9vr9o6PD\nq3sjzyUXpy+uHVyPXARBt7s3RpZFY3eRrxrTNKrdi4dVVc8u0qZj16+MksBfZZlDCEGGlbUiFofG\ndW3gUIVwJxBSzFGCEB+4CiLt0ggRJx6AjfGQSWEAYtzYflA03c7gyvRk/oH1/sQJb9wb1vP1w6fP\n3Pb2xoZrgOsNrb7lTp/PNw621+vm9Phoa2vzYnaRt+3zl6c7e/trsd7YHh3sXjk7PP7ooweffefz\nw/3hg+Oji4vp1es3fV6xJs9fLobR1hkr1tKcP35clKtcNofPnnzjG79KFPnSvS92QF3kq+rJ/Md/\n8LNbr7/y5BfvNdPqu0+/8xu//ld3Nw7+j//7/+qP/sXxb/7tb4C03t3Y/c73vzXoTzwQb/SS7/3Z\nH+8Ndnpj7+rGdm/ovXH/b/3wJ++C81kQx9ii02x1cj71LPutt+8dH7+omu7qrRthHA2Hw6OTE6nN\n8enpx5fzm3s7Lx8f7oy39vf3f/ijnzdKCAnmy+XO/rWj2ROEDULgg6dPbOKVWXN0kW5dvX62TAvG\nOU5wODo/OVvOLwLPJwu/qtveZL8TfLFaDTa353kjWOf50Y1XdoVW83RG+l6wqBcuom3bohAiCBzH\ngRB6w95yvkhChyuttLQhEaxx/RALXqQlAdimVClV1xUgxqZUwLos1hoA17YBQBBZgqusrJLAd2xK\nKe26kjHdG/TqttYICiFsQnu93tnJqQ5DxFHS780XC2qR3iBBGACAjdab442433t5fFQ3RRwFxhij\noUNtB3hCCct1j+fHcRRF44HvBh88fDDojzTCk72N5XIZBEFTtaxhFvbXy5RS7HnecrH2PK836CFM\nDTKO4xiwimJHdwpj3HZ8sVxFUVTV3PO8y9mFkM3e3l66WkeR5zskzzOL4un8fDQccsmk5FWloNaj\n0UAJ3TUtEtAi9mgwbur22cujoq5WeVq37eYwmYxGrKk3J8PA83jXxXFMKSXYCYNYatUf9tIqU5pD\nZEMACCGL1SKOY8/zsixrmgYAwATf2zhYprRuSsd2KKWKixdPnx4c7PuhX5Z5kiQUYZ5XlFIt+Ggw\nzLKLrFw9fPYJRs148x1Cke5a2zZNqym1B4PBulEd7xBCfhjUdc05E1wSrBACWmtCEecKUeIFTtxL\n8irHiIZhSAkhCJ2enjuO67s+cdx0ufBsr0hT27UqqQhBZVlqKeq2YiyJwmS+XEgpJVf9pBfGkUYQ\nWcjxbM8bzafTuqxXq1XNurZhSqkk6oVR3ygdem5R5p7nzWdLIYRDbQDAeGOSF2Uy6BfzmnOeJInn\neYvFYnt7R3YNImp7MmbCuLblOuHx8fHs8vzuwZVlUYmuNbZSSMVx6Lputk5ZKpSr0mWGIXRtx/d9\npRTGuG3ZelX3er2qbHzfr6vu0/3Ntet3Pb+/WMzOX5wy0fk93xB9sTrf2tjKl7PE98uyfPL0YRB4\nVug4vXBCfU1IVpVSmHHkXpyfr/MUUQKbwqOEG3hxMZ1sbRJjNG8DCkY3rrOiXpQ1cryL6dIgurm9\ndWXnyul0URQVRKQT0g97y+klpLZlW9sbPWXMarXKikpKmYTRaDTxbGt3ODjY3n765MWsaYaT4U/f\nfXc87r/9la+kxbIjIBWqNgZixItiOp0biFeM16wjnjPe2Dk/nRljwgi2ban1AGMMIUiSpC5rpRSE\nomFMA2VZlu1SC+ooiizLdYmlRceFVJojoIdJT0uFlGlZy4UaRsPLs/NNuzedHb2on/i3X3F6EQmj\n3Hf/4OMfXH2y95nXroEgsv3Rux/99Or6pkdR4npcdP44/s73f/Ho8jQ2s6Isb10Mfu1Xf9VIfTK9\neO/Jx5fr9YcffXL/3hvLtGmrIgb4vEgfnL649bW3f3Z8VtdNEO/86Djb2Xvtf/ijHywfPvnqm77n\nO4vnl29/4etvvb7khFEIv/rOm4jYkMiPHr+7+/Y1FLplYP23v/Nv/vHf+Cf+ejM7V1P+Ut7Ys52Y\nBsG6XaflOs3mJ4dntkSeFUte3bt///j0pErLjeHEi2LL9o5nJ71xL12Xjsd3t/bbpiLApEX6/oef\nXN3bna1XrZTny+piuRpMNnobV7qOI0MlB0yaR49eYmrHybAj8cvL6tnh8SJdu2FAonhZFd4optRi\nVbtaz13ftyzLda2O1el6MRoOwxjPlodcyqZrCeTGBlQbEHp+Vea+HyKENASCccfxPl0AQoiV0NSF\nbb2mCCMgfScw2DRVjW0cRGHeFF1XWZZlWy4wpspKoDEmtm8HgktCCGMMIWjZVAjm+F5sTOJFjLGi\nLG3XKaoyjKKmbcMkkqorihQAsLezDwAwBpZlPegNBVdFmWlttBa+40klLBsiwMebW70oXs6X89Uy\nCmKA0cb21qc9fmNMnhZd1/V6sRJaamG7Vn/Yy/MyKyvbthljq9UqjiPOO9d2HctC2ghtlnnGmey3\nNQSad4wxRiwcOm66WFgWwRj6w4RrleY5ta2iSJOk73h2VTaN6GI/9EMvbdK6rMI4IlgNe2Hku67n\nQwiNVkp2THRZUXlutFzmS5klSVI3ZeQlAQ0M1HXVSiEc5I1GIym5UkJrbVFPSc47tiymYRJ2qhZQ\n+X5PEikMeHZ0Rj0HAK0VVELb1K6KMsCkLuu6NIP+6PwizbNHG1sHN25eaQrddDWwHM/3/TCYZjOA\nEUBQcNU2TCthIJJa1W2jtQQAY0iKvKKRv1jMGtGGYThbzWIv8hxXStnr+6JjXccJIcV6FXgeoiiK\nQ6316emxa9s7OztS6PPzc8uygjAoViVjTAnRsibwwrwq8jwFSlu2bQBABmGEKLayrPAdl3HVssoY\nQxH1PK+umyiKlFJMcMcPiqJoui5JYoxxkWUutap1RixiUYdaOE/nTVGN+oAXxfWdfQJdIzFWVpnW\n440JBNYnD54CbRzLFVwJIbjUQAPHcZbLNcbQtb0gCDCElEDP/xT1DNJsRXDZi6PIs43ZvZhdZE2p\nAUYEZVVdNo3Rsj8ZGCg5VYigpajnWa0YJwYyzZPNoWeFr/kbVZb2aG8+X/XGm/FggB2rY+X8YuHa\n+PKyAgrUQiZJP+nhpN/zPO9yOS2rmhBaliUXysJIGY0QEEZzw7qWl037qTz96OhoPBoIzg4Pjwf9\nEee8aWsxY65LV9kqzfPlxWq8NfnC57/2yaOHSqmiKJLxCGBEZ9Pt8abtBdeu33748OE6X3o+/fwX\nvwqFyJYzDD9VUlsYUWOM67rIIkVWthXb2RzPp4udXQ9pwKqmqiotte+HSkhMoBCCta3WesnrwSQ+\nfPqMGLazc/DJg59HkfX6W2/MT/J/+aNPzvkz5nnR5dHQt964drutm6WajsYbER1hyx6Md/HlqqvE\n+fn0Zi/6/ne/d7FafbI807FbOkxsBnxg88uLcdLrLtNSNw4xQZbrfOaMPC/WZFGbp0tIghuj/Zcn\nM0Np19n/9f/7fziazifXNpJVPqAhzJnuitdG21/5zbe2va06e+l7L/dGS/61+Ox8+srNr1KWPPW9\npk65zDfHg53x9cPHZ/Ny/fjZ8faVrT/4wz9++/Ofi4JE1PLjB48vz6dNxe69cl11ZxB6Hz54gi3U\nG8UOxeOtEGHPHyRFVy/acvfuARNgxYWpBIJksVrblofsvoLobFloBaRKIbWITQRvlqtLxivPt84v\nz5DCju8UReF4Lpciz/Oo14cILRdlVojBYDAYuvCzf+uVtm0xRbbnMsERJJZltW1nOkWII7jC0CBI\njYFuTBUqqWU3OeOFsojT8Q47yI7cqil7Xq8ui7arPdsxSmNMlQYIkVYZBEDXtbZFLItQyyG2U1Zt\nnRWbGxvGmLrIGWOIYkqp7/udKLOsQAA61LEsZ3d39/j0zPO88WgHYnB09EIK4fuu73tZvrRtqgXq\nus73gjwtCKIHe/ur2bwoCuK4SsiyLDGEHefUwpgQ6tiu72VZEUVRXddaa4tgADWEkBqrqiqMST8e\nPn/2UgkdBB61UJHlysjheOBQqrlQSnlRKBFoqoJ3jFoYAZgkyXKVhnEklJFSCsY2xpOuqm1qGQ14\n13luAB1fiM52AZctE4xz4diB5MqGvu/7dVNaLulkWzYlpbaRqm0kBCrpBUbDImsocafTi8Bz/Njy\nAr+omTLGoh6E2LUd3jXYJlm+phBa2kSWtT8cE6PKvDAAQwQQMMiw11+98fZbr1pUN225qtq0rLNK\nfvLspKjkcl2GUQ8YVJRpEHjEJulqASFUEhqEuZB235daVKzu9/urRbY53Ag8H0K4LPLFYkEs2gsi\nJWVd114UQIeyhmmjCERGGd5yYyBB+NPXRHLhum4QhdBCSa/35PHD0WgkmeQd8zzPcbw0TcuynEwm\nZdVQC/b7CURASmkgMsbMZjPf96KoJ4SomtKyLKA1a1vPcnY2t6eL+Wg0MkYLxYuism0nCmIIYV5r\nC8H1bNHU5cHe/suTYzvw7r766sNPHuTrTAk5GY4451op13UIIUqpKAriJJRSurbz6Ym6bbmEkK7r\ngDKEWI7vKWCevjhMhsk8WwWe43kWdaymLZqmmkwmeZpyJgNgsbKGlu1vDC7X83EQx4iUDU/nadNw\naFktUldu7IuuXk+nHnYsxxkONpQwNrKkYFxyYhPXRgBAwU1eNqenp8SiXHKt5bAffvELX/rTP/tO\nHPegAZ7jUIwAAFJqz7Hm8+nmxsgPbIsi33chhF7gcq0eHR7GSV8Iybn0PG+2WLV1NhhvlEWNsNW0\ntQLKC+x3Pv9ZVdVdXVFoAs+rqyYIAoRI29bYsov1vM6We5vjjdE47g0AwpgQxpiUirXcGFMUxdWD\n/fV6xdo6GI5ms9l6sXzZpldfv/Xiwcdvvf5a1TZgreumefDJtNEKYQEkGgf+9d2De1e35vPpZHMj\n6Md//tMfAh+Pr0x6G73FtJtdziBGi6aAgT1bLdu82kwGeF3/8ud+aXWZTss8ciy5WgaTGPb9z7/1\nVjtfskVGBDo7n2LXS/NCCKEV4wSjxJ+mq8+88trs8ZM3bt2YbAwWRbqb9MuMfe1vfZGO9/78x79d\nFfUw3Hnjzud/8eFfzvILJVm17GTpzM9zafTWjd7JyYnW+vbNW7yRh09erBfr+Xw5DHuD0fjpi5c3\nbt+aruc713ZRgGrRbTgjwciffvP7fmR/9kuvfu9H342TSZrK/a2DpirbuqKYIITStBgOxqdnl4To\nyeYoTVeOa1nUWazTsmg8N+JcKKMBAEJq1nZxEgJtbNuOoujTsNFyLKKMhhgR2yHUblomNPvUKTNn\nCwOVIYBQW3ItlApdT2oolKCUSgS1Bq7vAWq4EF4QsUZZlmekUUoVRe55geU4AGnPDQTjiWMDoKVg\nge+n60Iy4bpuxxhnzHGdsqktDLXWbdtyozQAw+GAc+4F7jpf7l/Zuri4+Okvvre5udlL+hoA1ql1\nWgHgFHnn2xRD3NS1bVme5X3w/vtxELq2U7PWtmkY2W3bAsGjZOwFSVnVeVFRm3S89n27bduiqimx\nPMdnsqU2QYjWrDm4fjVbrTvWWJbjeV4rWuq4VVnwjm2ON7Hjnp2eSNGEvm804oyvVdG2DNLOD4Ou\n7CRXSpiyaNYsAwC4frDKp73BSKiukoabzvFsJjWr8tAJ2rqoshUmsMgl9azJYNi1vJXMcZCQXGtt\nNKQUUwQDzws8FwvoAN+OQ6lU09UUA9GutVIC2XEcQSHSy7Od/V3XNbJlEDQQRxoo6nmu5Z4vFt/+\n3ne//IW3PN8pL6e27TsCF1nqeMPQ01gjYyCltOu6xO8jYikhXNfNq9rzfMv119nC8zwAEEJIa911\nbJD0mFhMtre6phFaCcYwIU3X1mUmGR/1B57jaqHKdcHqrhcnnm3Pu86yLEqp74fr9XrN1jcP7tRl\n1bYpRsS3vSxd+7ZtW/F8dh4l8fXrtw4Pn1GLDAaDPCsa1mGM/TCoi5JJNh6P27at64oQsru/Z5SO\nvWQ1T22PaqAV0sCCNLRPzy8oCaI4GZFBmcLp8rxpc+pg37MtTAaDfuAF0+mUNa0feFwKoaRRpm05\nQq3neRBZ6zTX2igNPWoDgG3PvpxOraocT4bX9/eiKHQwZaxbXMyl4VorG6OrNyfH8wojlzFRlswO\nrfqyQMwADIRNVJdvxXEwcpBrX7SpZNUg7kfQBgDUDW+ZxBq1ql0t547nuMjd2xhVVSOa+mtfeOeT\nR72PP3mgmLh247rvB3kutjb3Ly9nQBvpw9D3JWcSKqHkcDLuD/uPH33cT+LNe/c61jaym6+WTVO1\nbQshfvP+m/PL6cD3L7g6PZ4aA3uDxHP9vCq0hE8fHclyORkOwmFfax1FUVZWAADJeLdKJ6Pk2t62\n7BpsOxpAgKAyapmnoR/UvOFMAgTPp5dNXTgEi7ZeredhEvZ9Ywh45c6tZw8/CQLn87fv3b2yZ36T\n/Hd/+EfR1YM//qMf/PjD81XBJbf6g95PHjwtm9XmwZhTybHIWDkValHkYzv4xp23jk6OPnNr94MH\nn/T8Xjy+fjxbrtKad9KKeh9lhzeIFWfyxxc/Op1dIt/yHC+mfnV60eR54Pvpcnn99lWg8OF0+VH7\nl2/cvrZza1PDjha04dW1u6//49/6r2b16pe/cfNXv/KbGFr/7Ld/5+CVG/fefueTpx+dHn3imujK\n/X0M1Wufv+v9zGmWdX5ZvPbK/XbNfTu5fu3u4+fPjuaXw93xu5/8/M3Pvvn08MHW1d2T87NTs2RM\nLdhageHZoswqiC3EFLxI5zYlHOiiWA+SXtKPqjYfT3qrLK3bbrSx6bqu1vpivqaWb9leUc3atpNK\nQQiNgUVeAQBgWRtjmqb2fZ/zjmxubtZV07ata/upyIPAb5vG87zA9zomMbVbLlTHEYFNU1qRvbxc\n2sbpJaO6rI1RBFOpDNZkni16USiNptSirscBBBq6xALaAABc1yvLrO04YwwAEPtR0ZQIg463ykjL\nsYA2HWuwxFEUOdRRBhoIF6uVRYhlES15GASR5/Oumy2W48m2lNKxbGUAE3y5WAFjrh5cNwpEcUwp\nNhhc3dl78uRJEPqAAWRTy3M1UABB4iBKcVtXAKowDjGmgmti2QJ2GFFj4NHx0bA3rKpSSml7NnXp\ncHvMOT+fzXtRLAm5uLygtuv5loPp5cWFBfF20udSNk0bxrEXOnUpe72YQLBapVVVEYLC0NeQAazz\nuj64fZCXOTGw4xVx6TxdWZi4ju+4blbn1LDB9uDy0VMKURSFWqoszRzLFaoFQHLJ+smgrCs/Clfr\nudRiPB5yCbww6ATSwmCNeKNGvUnk2ZUESUzqDi7SDNlEtlJJOOwPqxYoqDc3dy/nq/liCQESQkAI\nm6r0fd+iuGNSCCWE0Rq1XGhj2rbBgZNlRTIc5FmppOFcAKHXel2WJcDQ99wiy4si932/48L1PD+I\nlVKL2awqKgqIazuiY77jeq4dRz3Oede0WxtbVV5UabGYLYfjfte0vGNd0/Ku7Y/6d27dbLqu6zoI\ngBISQqi1TpIEICi07I/6WmvOGQCm3+87lpWmKWNMaOyHPkBIq64X9Tjvpmenk/7QIfHR8UtEIIDG\n7UWeEpbjtHWNECqKosjyruuCIGi6zhhj2YQzafsusXBWpHVd+n4oJVuvVyVBW1tbfuDxM0EpRZD4\nQZAt1pblbG5u3rx9O68y1tbLi4vnjw5Dy93d2Tl88UICVZdrYpMgCbLiwkRBYCNVZBD6n/38q0/m\nJ5+8fIFBRBz78PB0vLFJMcmLoiyKOPCTJNZafvjBw83N7a7jz58/397e/sv33mdM5llVFOXp6clo\nNAojixCyXCyIpTCmse9YlBKCpFAdU1ktfvCz9wRXPd/vuAjCMcL4fHq+XFZMoqxstzY217Y1n8+b\nuoh70c7WuNfrXV5c1Kt0azTRQipjgqhnc7FYLBhjG8PBp15JiEiWlxoRRDCxLD+MHMd59ux5lMS2\nbTMltdauGyjZxT2PYKB5N9ga8HWe8doOwp9//D3f+eK6OPvKX/n89Xtf/PgXT5+/u3788shssK1g\n52h1Mh5vhHb4/oN3B2n8K7/6tc3jRbPmk4k7/eDp9mCwOFqAnK2qxdKuqaZKw2ZVtVWbeH1ZqbNs\nzU2pXYqxV3fiaHoyDvvECucNa4YJGwdpkW7dvXZtc8tuRX6ZeT6Ntoee9OKo/z//h//gG3/zv/i1\nv/uND54/f/CT95SU/Th5OFv4vnPgDm9dv5Omadu2hy8eOzYlXmTbzvHTo0HU393cny0Xr71+Xxit\noHjtM28sFvPhYLPOuG8lUtIXJy96454f2yfnz4ZD3yJQa6p4mZU69KK2NVNRScmjOMAumAxHmEDR\nscPDw6tXryZxYFvOdL7oD2OM+0VRSSkRIloqQshqscR4HIQJJjBNU9LmOVAQG2RabSOHAsJFazj3\nMAZICc497JCAMlHZGAVWVNJKVgo4hhBskEJQEQ10K5t1MfBj2Sqtwadju2SyyHPDjef7wDO27RJi\ntR03BnacQ6CbptFaO46NIUIIKcGMMb7lRUl8uZgbTCeTnhayKRugYewkVVYLIe69cneRZmHgYai1\nMHXb2ZY1Go3yLGurOgzD7d2druvKPIvj2EAU9kY8Xc+Xi9Fo5HpIM912rRd6NqFC8KYrMSSWHRhE\nyrKyiN3rJ8TGfbsnhbYdZ50uQxBdTM9Hm2PbdYANFJKjfhL6vmi6g4MDzQTn3LUdGwJCCPGttoXY\nJtixAEbYwi1v8zy/+sr1y8tLJnhbtVXRBIHXWYQG9s6NnbbpLGKvs1U86TWydUC7c3NblKXnxg52\nxpsb0Kg8TZOhbwwGEBvANFLcCEKRQoD4fs1UW1VAKsPYvbuvJkHcFHlbsSwtgEWJBcumEILFNtFm\ntEgLUmnP949OplzBwWhzscwg0pYDpW4l51VZFVXLmKKUNl05Hg8gBkqpjY0tA2HXlRa2q6JOwkgJ\n6RDSFlVoOUbIwHF3t7azqpLAyK7DCEkuPMdFBlFqU0zKpt4cT6QGtm1vbGyJjhnfr6qqN0iUkL1e\nj4uu3+8rox3brZq2aRqDSJIkWZZaluV6DuMc2URKWagqCSMpRRIFCKHlfOE4TtvWAlsHG1cdyz4/\nPeYd78W9Is1Dy1MCIoCgMVIrY0wYhm3dLRdrztqqzIMo9Kjb8RYSaFu21trxaVos02wVBIFr2QYC\ni1DPc5Rmi9V8Pp/34wgh8vz5i8lkojVYlfOyLsIwbNs2DIMgGRBgmq49nR87facH+gaCV2/f2hz2\n3/3xD68fXHl+9mLr5s6TR09/+P7PWsMJRPPLKWuUMUgwIRivmwJTGMSh1vr69ev4xp0nT59KgE9m\nl5VgfhKizkrzTIpuMOgZwHr9oGmrrd3hfLYMglAKxLqOEMK53NzeM5icnJ5XdUOs0LYTxgxjzLF7\nNk3KgrMO2JRSgGMv2Nja5IprJbFSpmkJop4XNE0zGo3m83lR1mXVJFEMIWyapnMogZBzYaSCiAIF\nHOqtFvN8vQ7DwLbtOIx4VXdFmraMY4QUGPc2u0KdPLm4tnvHif1rV+5Ee+PnH61nLx+Xxeqv/fK9\nL3zhYMErACDT+MFxO478w8XSCfuvvfL6X3z7B9fIZtyPaxs+Pnwpnj3uuAh6w0WVi0B5xHIxbUQn\nVuWkP740HHseRW4DxXKZTaKBG/QUdTjSpdLI8eZ1aifeg0cver1eYAdn89SJqbxcp3n+v/0//19h\nHP+H//Rrf/Dt7/yDv/V3nSD69S9//c/++E9uXDvoJZvBQfivfu93v/zlLwe+f3a+/ML9z6/PstPn\nJ5yVEPmCY8+iHrFPLi7Pp5dhr3cxm0ZJbCPIeCWa5pUbr0ILZfks8B0KwcXZUgpqWy5SoCmZELrr\nas9zpZT9fm8YJUenJ4Dg/StXyqY2yGAbUQt8KlV2XVcIYVkO75jn+RgTL3DX6xXg4JVX7hBVtZg6\nsuZ5lSMIoYYOtZUQkrOu7fxgaDgEWkWRI4zIs7LMCw95TVUQgjBBwBjNGdQmtOLEibEATLM6LyUX\nvm1Ro+qGG9upixJaBBKEEOas410XhE7T1ITgTycyTCClVHLBq6YCcNgfNIIJIYq0IAAaro1pEDSb\n442rVw60OTo7u7BcBymEDYz7/cB2VSOqju/f2knTzHXt4bDPp4uiEVGvR+rW8+yG1VxUlmV5ngMA\nkBpACMMoKMu8aha2F7mBCxToDZKmqj0vSJJeU3dFVyAEkyT24lACpYjc3BmIrqtrYEG8XC49aruu\n67vOfLXUUvGi0a3KFiWx7Mnm3sViKoweXR1oooYbQyCBakTix5eLqTLycjUfhiHgQiktum6Y7Ahj\nPXv+yc7ODvXws+ePN0Z7RkiLAkxVXdbDwYSgMF0XlawoBHHg9UJ/scosYhtXxF5YrpjnIa0rbTpj\nRBi5ecMARsTCANA0L9Iiv3J9p26y4ycvT04vvHgwW6wQpk1VWxaxLKI1cl2XKySVrJtWSK6MRAgN\nev2zi3NhNMUWUKBtWqTyXi/2LKfjjHctkGJjMHaJxak9T1dd0yRJEvoBhMgYqKRZF3kQBAjgy/OT\nja2toijW6zWE5lP5+CCIECUXFxdCaQPhYp0CALTWCSZB6AnBu6ZtmqZsm90r+xqorMgb0Rojm0Z2\nTSultCjFGF/b2r54+jSIep7tXUzPy6rqj8YfPnnW1rXnOaNhb71Kyywfj8dKNpgox7GSJAIIOo7T\ndUhoZbs2IaQqO4CITW3JUdYywZHnQAiNMpqzwkaWi32m6qrOuovmtfuvesxBAK7ni+V81cVBf9gP\nYs+2x/Wiywy3d3rdejl/eXny43d3t4e/8s7nLv/gbF3mO7dvHr48Xi6Xn33z7aLiHdEXl8uiKDCE\no9HA8VzXdbWQT548q2pBbYII7uoyazJkG89yEUKQjywLda3mogoCz7Zd22EQOVUrhBC+C1gnpFbY\noqPRyPVr4OqsXsVepJCsqurx00cQQkzo8jKP4wk2oWgp46qqK7aeaY6Gw1FXN9TCRVF0LY+iyBgI\nAKCUIqi11gbhrmlZyzmXjudBjDRTm+MJ1MYiZDmbAy4i17UYT/PMQJTnHIpOTVMGiw6Dd5n4H1eH\n97/+xXtvvfr4wYc39m5vRL2waR3fXtXV17/+zgcfP5nEm9PHlz88X1MD0wOrVhoiyRysgG2IUyEc\n7V5Zq+4yX95Otpaz5TrP3cGgxXro2ccXZ0MnuOqNRas6Cpcso0jLqnltPOGrxZPHz4qis18BaTOl\nITjm68mVOz/63sMPl/OrvqHq3g9+//JvfmWxN9z7+IPj5yfLf/XdHxzcv/0f/Wf/YfiZfTmxRKvf\n2nrr8mh28fKcUjoY96bzmeMSzVnXlsiwwPe1hIEdI0Gm04umq21n6AXuo2cPR5PBwdaND999ICpH\ncL2o11cO9mazqevanhvYNp1PL+dn6ASf+2HEhSqrzvO8cDBcrRYMUd3KMKSDQVgWFQAoq4v1qtRS\nfZrPhJH/7Nlz4iXD1WrFFW/btt/vG63bVgKMlYaA0Ljvnjw/Gvn9GA0PT0+xC2LTV0oDSlomfGQj\nBLQ0xJL9rTBvV27gs0YA4FZMAIi9MLEdDQCQSvS8SAOT5wVGIPQsJaRrOQAAzUXXdWEYaq0hwr3B\nqOUizWohBNIqtD2gdFa1iRc1Qh5drKruvWGSGNZyF5QOc2xSV3m5XA/i/t7OfhgP5uvc0uTF2TxN\n893dXS4EaxoEVNQLlFJVWm1uRkLJxWJGCAr9KAmjMstd37YJKeuCutRI07COrReMsdDxKCbD/rBt\n234YzpezOI61sSFB09WSA+F63nk665n+YDwCANkTDyV0WSySsFcUVddWURIgyMuy6/f708u51iCJ\n4qGXMMYCyyOALopFGIauR9NslYwSLw6NBb3ADRJ7YyM5fXneNKKf9JRms8vpYBPGIz8vM78XNIzZ\nTBAvENJg4HqBszHcDQkJI2c1vVDGeEEgqurmwX4Q9l5eXJzlK87R+UkxX12uVqntREVWMtZy3SFM\nkjgGWo2TpOa8Yryom/PzLI5813KVUqyogJRhFACEjYRKaOLaHAAhtJZAcjDojxvOu/UaAEAQCpII\nU8KzwrFcjHCvH3Ud94JQaGW7LgL67Ohwb3sHAlDVLYWoqKvQ8z3bo0SNRqPHh8+kFlprKVjTQmE0\nsIgfRpRYbVoaoAPohlawaBYdkMONwfJ8TjS5uX39+ckL13UZa3nHBnE/r3LRsTDx+pMBBYSVrWDE\nD4Z5xZTSTdMIbkInKvK0ZaUEyljYQG0AsEO3WOei6/pJz6OOUGJdNxBCz7J93+Mdu1xOe4Ne2IsB\nxSVr5+s09D1m6eHBqCnKuisphev5QnvW7vZO17Ci43XdMq/3IlO/+/t/sdZ+23WqWE62dgbjjUbK\ndZ5R20OogwRmRQ4t6fmbH73/nlaoaVpBxGQycgP/7v1Xy7x5/vi4LIrhYOzE5vJsFjihjRzZNE4g\nKEFCsNiP1+t11dSDwbCoqohgCqRrQSiNT2mWL1knLMeuq9LzvK5pheMBWFRVYzQn2HNpwHW6s7+/\nOfG6prIpWS9X2zs7ZV1RKLe2N+dZBgT2A8ePraqta9lGUU9T3Ig2b2sv6VFsdZWwqWeIWlUFoMaz\nKMJUL2Vg8DwjV+/dzfLlSfrgi1/+pY5XV7c2fvidPzt88Gzib97cu8vdHPJu33GbQYyoeuWV3VEy\nqdLyw8fPkySOob2zcW16vv75D9999dXr+fGLwcGBJe2uXF+9PplPZxcXpwfXri8ulrARTLLDeRHH\n8fR8Smw0GfeHk/GqKHDfSq7sm2n2ze99/+Dqdna4vHF3ny9nJEw6F1z93L3f+7N/+w//11/7/l++\nPz9dBNg62L96f+x+fPHk//WHv/vW5+7NZMdXGU/x//2//v/8/b//VyyDe1Fwdf/zh6fna3EKaY8p\n7lLU1E2dlXYQIzu0MFm3bTbl/eHB+eU0zZ9pTeN+P0+rjTisyqZYVSAC0CAmumSrj11yYzjJs3o5\nXYRRvx/EFxcnVZF6vrXgRXWRRX4Ux3E/jpu2tB1KKe14RxCGEBijUVXnTVsO+kGceGk2b3kuTEUd\nFQ/6QRRLYYChYTDI0hJrgKQ0CCijEcFN03zqgSO2AwhVwAit6rZSSkBoXMf61N0uBOu6BkKDMFBK\nMNaxtkEIEUJsx4IIGGPiOP7UUee6btUU6XrR5rmo68DzAUBpUcZxjwvh+35TlgiCoigMthhXDgkw\ncAVHedmcXU7TKvvo8YeLfDrPLgDmtgcbljesGE+GUZg0ZVeua0woQLhtGQAIIUsIhSBBkFR5Nb2Y\nQQmG8SB0/LaoZctdYmup87xqWma7joEAEsykyOo8K4vJ5sZwc2J77nhzCxHcdC0T3brImRRe7NuB\nnVfrssyU7CTvvMBjnDuOo7Wm1I6iJE3TdVYAgAaDYZZlACCjNMVkf3dvNVssluvheHJ6cWkHvkG4\n7DplILGd9XLetjWEsN/vJ/04q1aWqyu+ypq86tijj5/Z0uvWAkkrCPpcm17fHw57aZHWVdMbjvK6\neu+jD06n50Kg5TKryo4gWzM96g0xoIHtR8NAYymhIJ412tiIg6he5R6grO0kF6ztFBdd0xpjGGNZ\nkTOjJAJF1wiCp+tlIbpCdBJB6Fhl23RKKKMl64iBfd+nxgjJgtCzLGtjYywkK4osDDwCgRayqKsw\nCb3QvVxOEdA2RqNegikRkq/X665pIYRSSoyQUZqLbjGfQwUcYCOBjIFpVZzOzou6inr9sqnrtgJa\nebYDDbAIVUpBCFvWKCWU0WEYQoifvXjp+Zbj2dSytIEA0bZhlu1qYJqiDF2HQtQ1DVBGctk1nVGm\na9lisTQG2LadpSVvBYF4ejbTWkMIW8Y6ziAlWZ2nVVZ0FSl0drpanS6NJltXridXr7Neb+7Y63U3\nnZUdg1KToqjKMr9684plQwCQYgobNOwPpTLYcqltW7br+E406EkDfvKLDz588KSTKhkPepuJE6Cg\nbwU95A7AZL8XJjQJvIDYtkcGo75lWaenp0JIyRVrGAb0U6s7xdZ4NIIKdk2brVOltFRsubqsm6xl\nbcu6jrM0XXguRFhqzZu2arsuLSsFkR8nWVUpxi2COGu1Er04jD3fApDXZdvWSS8KQq9t68v5bDqb\nXc6m6zzL1rljB3E0NsZ/8Gi6rq2ff3j24HkebV3NOQVk8Ae//6MqRdevvC46+OCjj8+Oc5tG69WK\nUHXt+rbbc/ZvXPvk8OXJUc2E9cEnH/sDMt4Lr7+2Q2zn+fPLYrqAEhy+OInGG1//jb+CfLxcz1hX\nvbw4P51dOn5wfHrhub1hsnP4+KzOxMdnLw6X51/7q79sArT76o2GkF88OD05rZpp8/Nv/yXiwID1\nP/pf/O2bn7nxvDzmYzZ+dXDlM5u/+fd/6avfuL+cvvjTP/zm0dGyFdHhycXpbL4o1tJiz45f/vhn\nPwamC504X6VAIaMxtq1g4EvctKq0PDrs2VIUvKs3xhOLYttBAHduqAjR/X5wZX8riUPfdblQwBA/\n6B1dLKernDhuVVWnxy8ty4r7PYPJZLi5NdmBEF9ezlZZKrRANkpGyXg87g8HfhiEcUTafGkB3Qu9\n/e3J1u7Ok8Pnz14eCl5DQlnTYgmU0LPVEkHYnwyqqlAKQAOA0IHtKaXW8zWyKbJo09We67K2cxxH\nC84Yo36gCRKdsC3Lcdy2qpkUvucYaaAxddeoSlkWYYz1ejHnHGPYNE3ZpB7xrmzvTS9nbVmNtzYh\nwJdnlxujOPSsQeDVeeZFIcQIQiSF5K20Hc8ZOYy3Ne8oJL1BT2ihdecGqFMVIlZZrS1qe7bFHSKF\n7KrWIhbFdDyaYIxXq5Um2MZmOIgd2yu7qlPcdR2HWKxlBuEwCouiUEBZgBCH2J4N29K2KQAAANS2\nnZE6iaLFYkEIwT6h2IIYlG0eDjwSIE2N61q2bddVozUAGtrE4kpEvX7dVmXd+oGbDAZctFJqyYRQ\nzMLEcbx+0n/5/P2tjQ0JWgKQQgDbTlM0UMqk3zubnt24cWBHhOl279pAMVTMU0ps2/Ky2aJpOid0\n/cDxXKpBXRRrgCC1PS1hJ4CSgADmuB5CCDSd73oXF2fA6MB1rABbDjVCdC1fVDlSECkoqxoiZYwh\nCANj2ra1bRtjLDUgCFdN63keEEoJzRrmOJZWCiFkWRYMAo+4omNNXRqle0FkGEzX69rowPMhAMPh\nEGNcFAWlVl7VTPCqaYLQS5Joa2NilHp8/KI/7O/v73POoTYYIYQg57zX6+VpFvqxTWiWFUmUtKxz\n4+Baf1DV9WKx2NncWK0WYRguF+soiZ0oeP7k8e1rt9q2ZYw1TZMkidb69Pxkb2fXT7zsMqPEjaJo\nMtl88eIFlND1feoToKEUoi5KSmkShQihdLWu6yoKgrqqvMBnLQcQgrYC2MFMlnnRH/agRdd5SghZ\nsGXPMq7nlkUxV1IIRRWMLH/79ftpmp5fnl9ezCHSDkBNK2ar9JU7rz94/0NoSD+e5G1TC7O8XIRO\noIR8/MkLy7bH4w1gI2Pg5ubEsoloOu1paqG6bV6cvhwNhucvzjb6e1mRDgZDKaXv+0Ab1nSt1kEA\nueZSSodaGOBPgy/HcTAmVVVhCAAAlmVJyaWox0Pva1+6d3F53OQLywosxwYIu37kenQ+v9jamFR5\nR4yGUgOp3YBaFlYCUMcWQigllRaOYwVBUFZ53I+ogZgiQq1VPgUEuK6DqKnK5vKZc/7kEhNLGk3s\nwXJeRf7IKM2Y89Evnn79G2879ez8/JzV1cOP33vz1Vs7/fnm3mRr245C90+++a3JaKepV298/ppt\n96Glwer84ZMPr928+uo7+7xrXHfIP2hd6jPRGhelTUE9e3Nz82c/e/9v/Ae/wsjyx9//g40J9lyG\nkXXv1Q3Vpl3r37i+i6B9cXjyxXe+4TjdwdUtqfgrb11fzi+Pf/YEWfgbX/7a/tadj372/Pe+/c2v\n3/5sELgA0qblfmSfnyyOfnZ87fptJStKXIxpP+nj9QI1THPCWQeI3tseCqPdwDbIOTk5qRvue+Gw\nP66K2k+CLC1ty7JFyEu47HIOtJSm6ZrdK/tNUz15/mQw7IVhMAom6/Xa8wIIsW3bvu8KIYRgrBFa\n63WWQWTQvZu3u6zIZ4vL49N3f/Sz1cVsa7DZ8/rEQGIMVhJD0arKTiwaWXbiQKVtTGTHqIFYGVY2\nWENkoE0dxZUS2vdDz/EppcYY23Y9NzAatm37KeUcGIQhAgAEnu84TpIkURRMpxed6BQwZVP2BsOy\nLM+PTodJD2P47PD5aHNCPUtDgyHc29mMPMt2sOMQ0TYszwFkrofskHqxF/eipNczGlnIVZxmayYZ\nkEK7gYuwKaqsbgpioOEy8cMkSTjnFWtJ6HmjnusRP3SJjyVVOKSKqLxeC95iDLQR1CW9cTJdzVrZ\nEccebkwsRLqmtSCps7Ira6QBhQgpSTlq85pCZLu0ZhUHwk78eZkJIcIg8C0n8cM0TbUyvV4vSRJM\nUceYF/i9/rDfG6Zpvl6kFrSrtIQQ3rl7teGpHwLqqOG4L42GmGDHakRXVOl8dbG7N/F82/UsKau2\nzjZ3Rxt7w6JbWY5KYupR41humVc2sR3HybJ0ma6p7SJqawxrxjSANe8kkBJq5BCvF3Qd/xQ+LGpR\nZw0hltCq7Jqqa7Oq4lICCIXiTHQA6F6chJ5PEUZSp4tl7Aee7WCAoYa8rI1QFCDFBUIEIkJcWxE4\nGoz7ceJYruu6TIisKrOqBAgihCyLxGHgWVQL2XVNUZWd4tdv3FisVhoYA0HbtlprKeVw2KcUE4o6\nVnMlADA7O9u+612cnOd5XlVV0o8BAJZNuWAbo7FNrWK9jsOA8XY46AnGLWJPRuPNjW2llALCC63x\nVs8N8PUbV18evlgt1ggSAgnBDmOsbZht2wrKlycvhW5HG0nHKim7YT9u6mI1u5Ss0cqkq5VDLQsT\n0XY2Ih6mloGAgrJJ6y6XsqmKtEhXbVVm83mVF0qpOIzCMO73BlKBtCyT8fjF+UsBxN3XXjk6efni\n9IjrDlNQ5Kt23ZiG+RYa9V0Lc9Hlvm0V6+LyaKZbwytJoEVtFzsoHIez4nJna3e5XEZRcv/e66PR\niCvZsE5DEMUxwZaBGCCU5zmEkFi0ZS2BTtdwDAmlFCHQ1pkR6d6mszXwb17Z8h24u7Xp2k6VF6vV\nikCilUEAdx3vug5C2LasriqHWAQYIIUR3LKo67oIIYCggQBZwHLstu0SPyHGcpGDpA4dh3oWoZRg\nx8Y+BQES3vyiMsqbXXZFSv7gX/7sp3/+4uKJrC6xLK3FRVHnfHGe9/zRT3/w3u721YbpoD/ub+8f\nXhy+OD1MkqSrawj4w6fv7t6c9Lej3evDd77y2vb1EYOFFYC0mm4fTIY7/rOHT29du/P4o+d3bt8/\nfLl8+mL57rvTl89qmjr3N++/vf9WUCT/7P/wOxt6/x/9td+6O3gzluNbm285em/2AqF09Of/358P\n4OZ+cvD+gyM/iabT8vxs/fEHjyhxLOpdzmdRlPCGISmb1XJ9dq7K6sb+/saoH3jhMO65ll1XBSaw\n6xixvDAezudLQm3L9ZDjVK2wrZAKyxGBo2wKSH80ksSg0D545db+1ZuCg5Pj87bhUKHQC7UANnG1\nAKwRo8FwPB6PBoM46sF/8FtflVJmRdl1/Hy6tGzPDSNEKIdcSxEGQZquqWP3R6OulVlWOJpobVjd\nKCG1NMrooJ8Qx3ZsulwuATCjyZgp2TSNEMKyLGpQWRZSK9t1EKFAaQQhMRjZqOs6pQTCACIEAMir\nejgYp1Uhy3bgxru7u5fpnBkVx718ncq6mgz6cRhR25qlC0TJYrFI/JBDCTFquq7reORHBFHWMgCQ\nbCGAmhvp+k7DGptgAIBW0sEUQkgdW0HDpYQYGAQhRj4gbds2TQcAtIitheSd8B1XIZmVxXAydnyv\naiqDIAZICqA77vthUzarxQJDNOz1EYZGSQhJ0zVebPc3B2eXZ03LxuON09PT/c0dpODyctHr9aQG\nlmO3vBVCeJFTVVUYBForpRRjbW+QaK3LcjUYDglFhKA0TYHGSiIpQJG3iBjPt30fp9nsy1/+kgHw\nhz/92bg/cqDVo+6GGxx+/NGNK3v9ftJxgXHc1nXVqmVVZ1XKW24Rv5NdyxmlNI57q/UaW7hsSwjh\nxsYGRThdl2ma33/1jY8+elAUhTQ66fWi7f5yuYyiSAGjtbYw6RrGug4A4HmelNLzPKVUUZZV1YzH\n447Xjm1TQKqiVFw5vieFLuuqP+obISnFlmVldRnHIcZYMi6Y9Gwn8H1CyOV0Sh1qLOz67mS8cXj0\nYp2lw+Ew8AIphZAMQmNBe52tMDFBELR141i+De0mbwU1jmcXWW5TEvqBUqpo6o6z0WScp5lRmiKy\nWmRJ3McEhnHAeME129nbns5mUZAAYy1mC4QQMsTCto2p4GqdpbPVklp472B/0PMvzs5DL/Rsr6m7\n1WoFEGy6dvfu7fVqOewnvG2IgUBLCjGEsDAMIexg6toeBriqGoyIAhBrAqFhorNcmlfL0dbIjcN5\numqz+s61G02RH758kYzHWhmiUd+LRSeyOo0GAbVJHMdl3ixX6/l8mS/aMHCM0sro8cbQDnHLW8fx\nenYihfbdIAyj58+fX86mCKGNjQmmpG1bgrBtO+v1WgjBBLNtGyqEgHJ9HyBjJG2LyzdeCX/rH/6d\ny/llFPePjmfHp8u0FpYbFHUhJbewY2GXNeuDvbHnuk3VxHEQBAHEqKoqAIA2sOtEUVVcdMrorXFf\nCiA4Pjxcnl8W0iBgactFHHNWdUnQE22nuLIsS2vguUElOIRYScNbbluW1lp0LaUYxWHXFAgbzrv+\naNhpqTDWGMoqFUxWRRn1fOIigEwQBNeu3fjggw8iP8lWxcXJzKIeMkAJ+aUvf+Ev/uIvOpB/5u3P\nXM6Wl4vl+jIdxOOvvPX5gbbzZaFF6YdGaPt8fjEcD+qu8pNgsc6j3hgRu8zKi+PTpml6vZ5yoU2g\nrNN/5ytfYGXLeA1ss0wL2/YTz0NMEoOLutnY319VKSDw5GIGEb1257XL+WK6Wvm+X5UNhkiJFkGI\nINnbuzKbLruOr5c5UkYAziHfOti9WF6MNibIoC5vXeK0ZYMxZm1j27YUwnGcT39ZY5QX+ErrumvI\ns+PTKEqaRg6HE6asmnHPT9Z5UfEuCgIhEMGu5kbWsskbXgkcEDfwFDCYy67ulJIKKKAFb1UQBGVT\nV11LbUsDw7kghAotXd8HAECEpNHaQK1BWdXjraHkQvCOUOq6dlHWQGnXtvMC7+1e7QXRar2Ok37e\nFFm21gBg11kVVVHWCAFIIIQwtBzfdnjXur6HbQviCluQImMhq8wraLTnByGxzqeXjuf2xyOuxKfI\n8n6/L7WQUkktbELaprEplk5cFLVlSGD7i8tlyzovCkFsK9kFkUccfD4/397eLMu6aTrXChrOmpYh\nhHqj4XK5rCUPvaBYV8PhCEFBfXexXnHOCcYWQJN4YBRIV2vBO4QAtRDXXVUXomMQJ4EXSimWy2UY\nhr3eAEPoulZXrF8+OxpvbAZhzBpoU+R7FuOybhAhyLZty0JxmCzni2s3bhghs7zd7Hnzy0U4ALEf\ndHVTO54bR1VWQQItx5ZFRYiFbGpbge4wU5oLkKa1MBggC2CvY6xslJRsOl2my/La9Wa8OU6rLOwn\nduJzJR3fo46bzqeu61DfC4OgyMoyS21Elqu5TWhd17bluAOv1+udp62XhFBoUFW25xqppFSB5wME\nldGqU9S2qGUpALXUXCqLWEVRzaeLOIqkUFxJrO0ojl88f5n04k/T9qZrpJQQKYOMbbvciNDxsU09\nHLZ5W1dlW/7/ePqPn822LE8P237v41//fja+MPfGNZl501VWlu1idzXRLVE1ECVC6pEATTXQXJxo\nrJGgGQeSKBCQBBJgs9Fow2pf1eWzMm/mzevCR3z+9cduv7cGQeg/OIODdc5a67eeR2eLwhhAKX14\n8fD25lprzQjx3lttFouZHIbDpp6OxjGC7WoNgiFFPBy2351/qqO3yg91wxMag5Nd02lXpmNKBGb0\n/OEjkfIsy5qhthFJ7Zv9DgAglY0wnJyepATct3UHQtc10+nU+dAaBSGkOUMQGm99X3PCqjJ3xlOE\n67aHGAvBEIJCpPf3m9Ok0CY+/PA7u7bpO/3k4+8GCPab/bgoOWQuumm5TIq87bu3NzvBU15UU4x5\nMahuoB6O81kvG+cVFtQMdjfs0zR//vJFmZdN07zPHLd9V9f1aDRyEF9d36RpKhJureGU2agQiMMw\nMMG90/X+8MmHP85xmnGyqMoHPz37hXj+7/7jX8+nkyKdD2owFqS8jFEFCDGhHsR2kDzNMPDDMBDC\n2q6PETImKKXOua7VSslyPM4qSGqnDW6VIpDZRiIfd32TMJbked02TKSHrvPI972klDLKlJcAAJIx\nF4IaNqN0BC0s+cQfLCMwEKO8ip5Mk9GcTDebDcoookgPvqXtAk2pxjCIxYPHxrjZ4mhQen+3++jx\nB9eb18hCed8eJ9WDD8YsUtzvbjzoZD8dFdthODRdjOzmfg8h1ECDwO8ubxkRMcYsKwDnEgHqY4A4\ngPx//A8/C9HnE8bGxe/+4W/8/Od/s5PbNKAxm3znRz/6y5/9fNvsZouZg77v+y+++byVSjvrgaGc\nJYxt1ptZOcl50qxuZNdCzmERbQxlOWGU9m2TEdbebIq0NN2AaKCUSinTNNdSYUxjgAhTCKHWTisL\nIUx5hhgrry7vnYtdN1CCcsHlUHvdj/OkKkprg3dEAIEUADaMinIymYQQtttt3/cAhiLLBCFGykZ2\nJOVAkF3XdEra4GMMWg6EEUwx5RRR7L3vlbTWAgAyll6cnWciEYx7GyajaVWNtTKlyN+9u7rbbgPG\nh8PBKsswAx7sO6kRxFneaJdn42bf941a3+9QQAgR48JgpfVGGa2dxRQBqI1uqyz5yQ9/uJwvtJLe\nWgCDEAIAECCKCNpgjbOjUWmtHlRfVAXiWAdTTatqNmIZL0dFBIhy4UPIssQYE71lCOEYZD+AGMej\nUcLF+ekZ57yp2whRp2qAfVomNjrM2Xg8llL1TS8Hy5h4+OgRYvDQ7gGJAEXGiOm16TWHYj6akQhN\nL+vt7rBZE0CdMYQgjNzJ6fz4ZEY5PtRb2TVpkhhl+0YTLF6+fPXmzev5YmLUsLpdc5Kmohp65yMB\nAEePkpIQhnup2061vVJGBxAgCpBAIXgnO2OMUir6MHRyWs4enD0aj6dpwS5vr8rZyABXy1YUGfCB\nABiN44S+P3HWxiil1CC9t3maOOcwxkKIPM9vbm6KMhGCRehddDxhokiqSTleTDyOFx8+SsoUC6Kt\nul3deu8JRLLrtdY8y3WI48VssTia5CPfu2jdfrNdTOfOWDXIPE8hgcoonOKAY4DI6Kh6Fzx0IZST\n3EabZOnp+enrd2/rQ7PfbDFECacxghhhiDEt8qOjozIvppPRdrshJB/PF5t2O15mKnQso8enJ/PF\nyWy6ZDQ5HA5KKUyRNO32cO+BhAyaYBCn0pnVZk04CsiW02yRp1XKJmU6GY8IxUmeAIL3fS88oi5C\n42Dww9C6YHrdmKgjMVREQmGMEXhMYJonk+8+/bGz+NnzS55WRTXb3O2tdFdvrp89e26idyBe3d2v\nd63xyEMsjU+K0emDo6efPMxGolW7bJSIgtmgPXSRo1Z19dBc3Vy9l8uDAEAAZVkKISKCy5NjjLHV\nBoLgtfIh2BARZsZZSOJ0Uf3g+5/KrgYuru5utve3Hz1+cH40M0ObCj4dT4qiMMZwzjElAYK0yIUQ\nMUaEaZoVSZoaF3qptbbWB8J4gCDNWFkl80UJgbVaE5AinyNIHMAAcw3g7XZHRKKUUta0ddccaueM\ncr1Fg6ZSc9Wg2g3Dfrduml2va++t7pQ62BKOde+cDj/63g+Bjaox+3XtlH329dfLDP+nv/uD7z2Z\nPjkVH5wmQV5z0kKwTxL45IMH+93myaPHZ4sjRnhZjdeHZt/fkMJt1X5j7NablrmWm17gWg2dbgEJ\n0tS9aQEL00UFkTPdsFutfYA3u+bDH35H4vinf/PrrdydfnhuBXz02ffe1fs//eJvXty+TUelA9HC\n6Bio5bacsUi6yUIMavf89VfWWqkHF/z6sLPB8pQvlpM0Y9YM69WNIJgHKABOKRmaJkZvtYs+QAgH\n1dOEAo50tNLrcjp2MGrrMCQEB7YYL/M8JQjks+lkMv7qmy8F4RBG19ckUutAXhTz2bicFu/ub1I+\nbza75WS2nM66ptVy0INajEufJUmZTs6Xby/fqa4XjEFPovMe+GEY3lOHfPQxesbSvEzu7u6m07H3\nXiB2s14j3GBM+7ZPSeatiwBIpZr6MJ/OjLMEs2o6K8vSDBJiHgEr8mnfNjzLhqELxIsqxYqYGKOx\nKU0G4zM6Gga128quCS5GIlLlhn3dnU6mh309mk0a5/LRKEYvg5XBJUFqgEBCIMYAIB6wIFSqA6NJ\n07eTZKKtC11HEKqqSraDQEQgatqh6zqMcZpm0TqCMcOw12q9vi/Hxb4+mOCllBGjGACjVBq5qzdJ\nVdhgR5NRvT2Msknf9xa7tu0YQyRhq/ttUWYZyx8/fBSwNUElNE3SSpo4mU5JaAUmOEn7vhvaYZCq\nG+of/uQ7X/3Vs9t3947lnTGsrKwLWZJabbsIooP7vep6C2kwqhlN6AeP5og+rA/9t8+lCzFJ+Xq9\nfvzg7Gg6ent5G61JKPFKASUnIh2PxrTRg7NGqt51FjhG5l3foAiV1pGTIVgxKowPSVF2gxIcJ5OK\nIROszFLRpaxX3WyxICJ58fKliXZ5NFdWQQLzqhRZyghOkqTRgDCBCB5NJ9vtdne/PlksE0qA9cbZ\n/WZbpjkTbJBDRLEosn2350LEgJ0BVsMsKdI07brWeFOOS6MsACBNc04pw+jy6nZ2/hBTsjvsi6S8\nW6+gA1yI5cmxC9mjpw8O+iqpCgMaRsXl9YqgLIVJU+tg/WzKBzdwAZKcI64EZtoPxqWYxaRgpw+W\n0vS9PjT7Q8wRLMhkPLXahQCLosCQ3K2bYlRpHUaT6tCt9a4JIWwOq8moul/vi7yiiOhBPfzwCYzx\n7euX766vnn70wcOHFy+ff4uR7/sDcB5jNMjaKW9jwJRwUTTNCkHS1jKlJYg+SyfednWvEPdK6UTQ\nPCG9G5JMVOloe78RVMQIVCsRR3w8brr+vT9kGORsVAnGV3WTiCICgqhJE4IEffTk5Ku//LOj80ec\nMgywlv0Pv/+9v/3i6+hDiIAgTEnoemMMLvMCAACgxxxb7yOCytrF0VJK++b1W5HwxWJGUgQBqLct\ng4nrrR+UyMzQXQOWEASlcYQyQFCnJEHIGdsOynpoDcpwqnv56MG50Upjfhe2mGAFXefqoswMMqpX\nm3Xd7xvVNn8W7NrI2dEpC64+bIGSL5+/WUymD88utuu7w+Hw4eMnL6/vu7aLBmgor27vHpxwiiOi\nZN+3QggYx7s6HHbb8aSgBBAPh96G0AXBrPUxRoCRSBKpZdu2CSUtsr0B3vbZVLx+/fZ3f++3vCSv\nfvaraMd/9RfPvsnXWZEyIYvl2BbwZn3b1ENRjT769PtN12I6+ACk7tIMU8ghZXeHOh1Puq578fwN\nxyQVCUT+ydFZXdfOBuecB1EZGaKNDjrj9/t9mmeb/QZxUk3GLBFOBusCRWi73aMPpqOHo/Gn5xe3\nb66tsphzWhYyBJKmoEjYUWkS4FBw1staQgO316tC5MfzI6UUxIgXOUtEXlRem/t3N4fbVQZISbOM\nZYJniKbOR+e9j4YJCLHiAmSjfNcOGtivXryoO9ur6AMWIp2OJ86Yrm/OThbAGGzDLKkywLC0bl+n\n0hce6P0uKiWHLoQwns60cdZF9F7JHpFUBmIOIuaUg4QRTpzRt3dXnWk00JChLBMexVYOHuKyrGL0\nCDpgbUIEhRkCNONptEb3TbQGBI8AhiRiAIMLQye19yzNpDbeQYSQdRqgCCgEFFpvCcHee9VIBhjW\nUASW4hRY0A9qfnqaVYWlZG+1xBglCcLUR0A4iyQmGVdGBuxZlRoKR0dLXk5CysbTUbc7QAv7Pt6s\na8HTUcJFzvIpE7nPKnh8Pvvxb3yGUWj326zkRSnKSlCGOee7pru+2+7rwQxge9C16gB03objs0e/\n8dM/ODr5mFORpWmWMGtljHGxOCKEfvXNs8F0y/NjPilWzV778OjDD4boWuiCoAc9QEryrHTWo4h8\nMCencwyFURFGAnzIRGLNYGUHvYEBYERtBADR8Wxxe3O/vro/n59cLI6dMTSlpCDFNEsznmQJFmxx\nOp0uytm8dH7o+h1KgeXOZcRBTxI+DKrvpFGGEwp8wJDQwCZ5SYCV6qB1r63prT776NHp42lj1mt5\nT3ImyryV5na3O1hjmNNQdV3X7LvootRDq4YAGQQqTcXlqw2D/Ox0+c27t3fD7ae/s/z09598/+9+\nZ/l0udMdoimlI+DLu2ut93DMZthDjtB8Mk6oqMQodLBeNYf7enW5abdtd2iHrrdOp6XIjota18qp\nrhtIZKY347TMeWakSigZ53xQe1LSzbD9xed/3R82CSdnR0fvXr28v74xzgdCFIZr2VvgECTdvg3S\nMYSno4pTDKO/ffvq3bu3q/0mqTihgAaU0wzFqHs91F2ZF0WRFVXhoMMCnj48Tsfp4BofBmNMACTL\n8kHZuu5iCG3fWXDIMtDsNtOqcD44imOM9+uNDV4O+w8ezv7u7/3AqhoikPAcUGoBloPzxjhnOeej\nLBuXFcUQEwCBZwQ+fnIxm00YIxRzSnheVT5CTFnwxAyQwpzhzA0BOkggsnLQRvZ9P0iFYKQEWCel\naSP0OthNs1PB8SS33htpaUBh8FGGjInz46OiKpSzDsBpVf72Dz59tJxSTKrF2b6Nz99tiuPjv/ef\n/8+/Wb0aP6jmx9nJWZHNSF6lJ0fzMqOYwKbtQwD1/WG32nEGTo6nVvaqP/g4QOL60LroAvQIR0ai\nMZ33Li8ryBMz+KLkPgYixDcvnwsK/o//+3/wQSJ+82H2X/4f/uh/94/+4OQI//qLt13dXL9aMyB2\nd023U4fV8LO//PUonb15fRtjNhk/goCsN/WzV28DAKv9/fR8DCakTWz6cLoO3VW/hWUyxGAjHFXz\ntlHGyYAc4rBVLSIIRk9DONzctvfXOcda95gCcvX2qpPD26vrNE33df38T1/PTpaQwPJoATt1e7Xy\ng8mOqtc3N8PQsUS4EChEq91+c79ijMUYQwgg0k43aVW8ffNmMhkJKozqGWHDMHCR5kUqZeuABTjk\nRe6j7MzueHYcImRMSG2yvAwxSK2r8ZhBemibGKDTBgIg9aC1fB/Purm58d7F6PumhRGt7+8Wy1mW\nFT4GKaUcdFmOgAXeBdWrXu0F5hQgIZjWGihSjgohhO4Os/nYB9O2A0IAIuKcTZKCYN513W57gBgI\nzry1Xee8c1ykWskSjqajcSQgS9K63THGAYTKSJJQkTCEULQRYgR90MYspiOSsCTJ1tsdDDglwjY6\n2OCcThORMh60IxAhCAlE1rsIokdgPJv3qquyMkmS9tCmIrlZrSEVk+lxAHC92gSOLm/XBU1phFlR\nKkHeXr778fmPqeAewFHJXjXvUIVAiAihoioihofukOaLq+vbXpv5cqFNv16vV+u19/75s2fGWuP9\nxcUFT9LdoXn98vVoNBqPZ9erW2X0+cPzCIEcZADRGUUEPz09tVIhSLQ0gicgRjWYvGD7/R5iJ4QA\nGCVJxjnnLIFmSKq8lZIkvDcDSSjGcbe9FRiPq7SJdlCOpfQgD7ScxmjrwZR5kVdld3ObZWlRFC54\nLog4nvkQlDLOuOAcQjg4PwyD9UaMZz4CEPH7jEfdrJ0t//4//MP/x3/9X8+mx6rWR4uTk6NTRENv\nmmxWyUP79IMPb99upTaTeaVcP5idtnjRH92sNqxg+9f1Zz/6+Dd/8Nm/+qf/vN2EVGSz8QxIF51d\n326qcRWs2miTCkYIoRRnWXa7XU8mk13XUZ4jgPrOFCkUjLd9gzHcHNZHH37IE9HuGu/sfr/LWbJf\n71IuumCP5rOm6wljkCKEQAgmAhu1efXs26Y5DF17vFy07b6TLRecJYXWmlI+dCroTUKYMx5EuDw+\nUtasNusYY5kXsm+TJAkAtPWBEEIpbesGISSEgBjVbYNwODladvs6xoAxIwhH7Jzx2mqRVIQSY0y9\nX3/373/nzavXqRgDQrWzeVlo2VMIfvcnP9luuq9fXFocYrAIBK2tEIkbFPQkegyQp5hYbTAhmJME\nEYmkMnqUJxijiGAI0jinrWIUG62BtwFEbzUYQgRwaNqEp9EFAECe50opKZUQfLVaWas5581uAyEM\nMYIQrPc+WI5FWhUjJRPjIgwehS+//rIoCht8b4bx0cVXLy/Hf/XzL34d/vD3foe7ocL2ez94+ovP\nX9SYxAR0vQYuJJiCgMaTqTaDUW0Mbjorx+OLzfbQ1HKwA0qi0rp3LssyjHGMjlI6DIOBPonwNB0n\nkSaz0z/5s7+++/FFPxcf/ubH65vN0wePr26u/+0//j/99//kjz//+tve+jxJE8q+/OXnx5Oxahpk\nLYLx8tULj0TXD2cXF8oZqVSAIc/T+ckRiHa9uX/w8Mz0xjqZJUlHDwhSDAkncFsf5idHeZ7Jvu37\n3ik5qmYueAihUgOSnJQPzul0LJYzSwlMEukdEqI/DHbX08GNiFhd3+93NYxkd72Cxq3u71frNU4F\nSvi+bSKCu/qAAIEuPjw9D8Z27V6rYbtdK92rQQULMeYY0zzPKWeH/rA4m3OeJEmCCJkvl4Szoqic\nj4O0BNFRNXHBRwIgQ1iQB08eQUZIlQWGUZGQPEEJb1QXCIqCRhg7ObgQsizLkpQgHELgnJdpOS4L\nkTAqKKaIEATe59IR8F5XI15VmfcRAgoi1coZHZS2lHNCWIwQYxyiC8ERDFORwBgYI87Yoe2stUoN\n2utqNhpPK0QAYTigAAAoioKOcsfxQQ21kTbGTmln4+HQ7FZbHJFsBoYJ9CFYC0LkhDKAorZ2UKof\nqiw3nTrcbLr1AXaBakoMPRudmbsh7szLn7+IHTzs9hynKORvn+9JnP71n3/57TdvBE11bQVkFBCv\nDIz+5OSEpQnNc5oQiBzjSGvZNv1mW++2PYLp8uh0OjmCgN5eryhmMMTJYoQYsMEyQWezSVlVq+1q\nPJ1oa8fjcYyAYWKt5YwYY9q6S3jqXMjzjHJalPlkPuOcUoo3m9X+sL66uRmG4e76psyL3W4HIcSU\naO8Axe9viEII0YcsSbuhTdI0m5Svrt5oqyjDmEAu6G6/qtsd5kC7gXKU5qLt6q7r+l5mWS6V39c1\nISgveJrDzfY6Rv/Vt9+cPziaTUqv1cXJyWG7+fXnvzhdHq1ubveHm9dvv97vVicnJ7PjpcdweXJc\nVPkkHa3fbMZpwmBcLmavnj3/J/+ff8GaKfHISZ0xcTKblilOSCgY+fDscZkmFCNndIRgULLt5aAM\nYhxE7B0QPKvrtjv03b5NiPj0w0/MoXZNt6iqs5NTpdS2rVeH3V71s/myHWTbDYSwoii6uqlGpdZq\nnGWH1coM0jvTD838aDFbTFjGICMRAhM8TzjnVGuNIBzl2XZ3b50cjfLRqCzLnDC22mxijDFGa20m\nkl6qEML7SPswKGXMrtmNZ2MhRPQeY9x1nZTSxoA4hgy19WaSg9/87NMqy0NALvgPPvywaZqyLPM0\n2d7d/PSHn10cTXSnooXegK6VEWKKYX1Yq2GPgmUoZilLORMEZwkPISzns8lkjAnUg8QMpwVvZLvr\nDrVsN7u1MtIG3/Rdc2i8DQigTCQYYwAARtRYGyJYb7b7ullttiBAqw1njFI6KIkYhZTcru8iRnmV\nT5aTxfH8zfXrtzfviknVqo4njAn+s599/vnf/MpL+Nvf/+0Ho+MKZRPKQz0AqXJCJ2k2TZIMR296\nORgASIh41zRX97eI42pWAeaGobPeJ0kSIYAYQ4z39aHtu8iIDEZF2xkFCL2+2Z0cPV3fyP/mv/on\nX//q6r/9b//pl89e/1//q//b27urDz95SBn86e/89LPPvlcVxdD1VZZShGH0hKBxVVIE+qa5v76d\nlaP9zbrd7L74y59fvryZZbNf/+2X3/z6Gfb03etL1VoSuPWm63uRJgCAEKJ3MTpPCbfeQQgZp8dH\nS9KCUB+2GNMMQcZESgOxqK+7NjmMyvHApfYBUUTzRCszGo+j6r1RhNO7zc3R6cnsdJYnqWw6FGlw\n8fbdDWLgwcPzQUlYd8fTmVHYGJXwgkLgvFK9pYC7wVtkYERD1zGEg3UOIIpZ79TqfgsxJAwXVdW1\nbd21VPDRdLKVA83FbrebVKOUJYOSi3Hlo4sYFDyLGJV5cfnm7dH0qKwKq3S9b5r2kCQJYXSUZDr6\nzX6LIC4YwgRutvdJXs5ms+2qBhFNR9V6f3j/s2Ct0VoyyhjhBGMAQDVmxlmE6WI6a5rGe59myZRO\nAggRhoAj5dh7rKxVRkUefQwiSwCEg1JGuaPpkepU7xrCcDGZBmitsiBEwqiyOhplrUUQ6KG/uDi7\nvb40gwTWUoo5F33r2+2mO6zPT48JsvOjZTGZXV9fH5rXMfpHDx/s91slm3dfP3969JQ+fEItrDfr\n+XRSluX66tqGaPYtQjQVvOtl03Tjalrmo7bpXz67dN4DjPpOvXj+6vj0qFPddr+hWXJyclSWZZmV\n//zXX01H41Qw2XdFXmIAh2EYV6NRVRwOB86plD0VI0qY1CaP4e7+Okn4+YOj/XadzVKWUak6hhAD\nqKs7NB7RooS5uNrsTo+WuOl0o1CEjGWD8ZvDajIdQQgxxlmWxejH0xHEWDnLs4QgIjuJCaGcedP7\nALKcVUXppOuafjQagb5enM970379/Nny5PT27f1XX3+Z4fLJ00dffvPlersOhZiMTmvTeuBpTgap\nV207qG6WX9holpOJM3p5MiXZ24yOtm+HiO1v/dbv3L67u725EozkRVIUVbNvY7DzxUJZs91uRZoc\nL5eECcaS1WaVFEIwHpyHEEEghtah2DmjGSIMYuDsp5989Ob1O+/9eDy6vr4euv7kaGGMw52SnQwh\nDG2DUuicKafj7WF7t7o/fXBaVnndtUp3EYe04N6F1gyIIJ7Rne4D9G178DFG4E/Pltr0hI7zPGEc\ntm1nfIgxKqUBADGG6XR6vbk0QJ2fnN7cXnOYMAoFJyGEJJ86YLu+Ac58/+OnyPihbkPUu4MfjcaH\ntpldXCg9YEQh8j/+/nde3/yHb7/8Mi3Hg2x7qSbFmGGCAGYUkyKz3nXt0HeKaJ0l1Fs9BF1kOQS4\n120AIatykqbSGSiV1IYT2A19miQhhM1mQyn1AQjhEEIJT70N3vs0TaWUOBIIcYwRQRxjVEohArMi\nvb9d8YR1qpOyn8wnetBFmSlrb282IGIImQbkn/3bP+uMi97tXr1KkyrPR3ZXC0yNt54jlqRSm832\n3mmGiBik3rru5ISHoIPzyhjvPRMCAUgZiwAcDgcIQIEJTmhLVLmYQAj9i/1/+H//64vJYt2adIUS\nUuani2u9O6jdz/7qm6fnj/+Hf/Evk0R899NPrTaDsZQnAMVqkSplQtRGxVRkm5vVqJronRGM11f3\nYgmgsilPonc+giRNNts7Fdxyuez7fnV9LwSDIRqrkyRRXTcdj7VUwzCQwLBzUGrdSq0HOR6P01Rg\nknCGV5u1thZgilzIReoxJoRUyYTUhwDBfL7olXTabJpVluRSG+xQVU06Vfe9DDGOpjMESYyu7/uK\nFpvVgRHMGHPGAwgtUKpXqu8pQJBC5zWIqD80AosAA4qkAjjP87quY4wRgGiNNn42qryy3oOUkL5u\nCEGGeOfMfDlTSjNKIQJt2wjKIAYxQCywsgpKnZUV56V2HlgXQ2iaxmhfVoQRrJRare9xKjhhvRqc\ncwTiEAClDCO8Xq8Iw4BizgjGlCDKGBuGQYhEa20Dk3ogBPkYIAmcc06Btz5YE0OY5LklnmGogh0v\np4OXeVqsV+vJZGSMMd6hhCAGU5pDhHxwrWwDgvmoqrc7FIlpZUWFauqPP3747urNcpH++LOnb273\nm9vr6Wx+u1kBa1Ew4zIxQz1O0vFZ8uarVyTCcVXd3dypTrXS6J5FkAaEKIF5aru+rpu7JEu0CU3X\nD0o6Z9p+oJw9uHiwPqy3222aZd989e3x0VGe51dXV9VsUndtXowYpwBEpSQXNDg9yPri4cm+76tp\nGQHY7jdZllGGlRwwxpYilqenD86VUsvlcr3ZFEUWIRjNJzdXl86bJOHRe5Fkm902A3E6Gtf7Q4ye\ncuLce8hUUMacjR+1bUugo4wnZXDOJXnGBDWWFEWx6jd13/BMHD88ERUbZ+Nn766/ePYipQWtiqYd\n6jisdys+KsbjqZPagr2Kqt/2g2urcYXIiPIsWvD1r66fPrkoT/lsOuYBmUrCYnpTr3ZqR/Jku+3m\n1WJfDyGEYlrdHdbz+TzUqBl6QphtuzzNKcUgwEPbjIoqhAgi3m4arQJ1WrmOBzw9Wlhrj07nSZFj\nSnhP8tnksKsnk8nLb17lZVkU5TgZdbJjPGuaBiLCKAcRaSWDCSxjbd+maQYhJoTe395FpeaTufc+\nxiFlDAH87t27ruvm0+nNzY3xnlOx3m5CCDFGEKIxJhWJlu707Gi1WuV5ihwBwCs3YIyq0bTrpWAl\nDO7s+GhUZof9KkRzPD8behUiaPsO54mxnjCUlgkBcTg0QuSU0jeX7+DJSbAyz0YhhGEYRpMxoyLA\nQ9upKquU1k3fp6koy3Lfyhh9UeYW4ZRzxrm11tuAHcYUU8iGYQggEMSC92VZYoxvb2+zPLHGIICU\nNQAAP/gUo/fF3QVvjEEEUsGbvonOJ4znafbi2fMsLSLDl5fv0lSEbMJF/se/+IpzqpSa0M1nTz4C\nXTMqhbS47hUT3HZqXk66wfSDAhFmIql3B2stAQgI8b71987ttlvnnHM2hGAQzjGwTde0Q1VVGaEP\nP/6wrRuxSLrE3F9vR0WZSox9HI8eJeXsN3/rp/v9frvZjasRglSrXllFuDDenT04Vcp45cfzBSfc\nhSi1JYGv7+rp5AgSfLe675W8uLjogHPenJ6f/fWf/YV37uzsrBxVTdsGAIwdNntbJkXb1CiPrAg0\nsxgcVAaYbVV/6IzS6/1OGokxLhgLdeualhEKKVlbezAOAra92aptTywFFseACaOUs7IsvQNdq46P\nz1Wv6v2+a7eCQxh8LsQoL6GPsml121LM0iRJk4QxhiLAGLZdXZX5dDFN83Q2nsiuj8ZRhAfVa6sA\nioggxihEMSLYywEhAAlCESiliqwcV6O+76WUg5LSqazMaUK1d5Qx76MxBkEYrGGCpzydjuZVWkJr\nUXTGSu8155hSSBgmBBFCCOMQwmFQMcbJbE4oBQAppYZBxgC6oY8xcM4RQhhjiBFiGCCAWSyK4v1j\nUExijD46FyygMJJYjIr79W2AISuzQQ+EM0KpC77vu+C9M7Y51HmWIQgnk+lA1ABV46Wi5NXq8Hpr\n7mrxP/zLLz7/ixc5GT++OMGwo0KenC4P2wH6UbCm3R1AjJwKZzyGBAKQpWlaDiyTAMlh6BBKrRG/\n/PzNrz5/05sap7B3PU7pyYPzy5vru/v7ajQuytFus7fWb+43jIliVE0mo7LMtRlCCABBnghjzHw+\n7bomyfjxyYQwMF2OecbXuy0EOEacZ6MsGVkb09FIAq+CLidZVYhJJVyzH6WsKAXk0NHoiUvKJEkJ\nI1QI8fbqLWIYJzQp0rIsMYTQgWbXDL1K8wQRjCkBKKZp2tayadrRpBpMC6ht+4P3MUtHstFDrYu0\nGI2qJx8+HkxfVAUTtO/bt1cvO7ObLOnpBf/kO/Mf/ujB93/j4U34ip7Vf++/+LHhfe+6k4fnt80+\nFsX0LD2Ydz/+vUckVVmRTGZTXkBayEPXegAHZ4rJSDrjQAwxAowwpPWhc8o747XWUvZUYETBwdra\nmjdX13/xF3/R7ndQmyxC3A6L6eTk6HixWORpNhtNvTRBhyofZ3lZFiPKk9PTU4JosJ4AigJsml5r\nBwDumsH0NhqU4tS0eui8IBn0JBFFDDgGSFnSdf0wqLIsd7tdDKDrOu89pYQQgizQnQIxUkqbvjv0\nbTIqFo+OleoJwgJm9aYrihQQa70pi+m7d+82m52zwAUobQAU6+D29UFk5vy8UsOeMAIi/fnPvn32\nzd2/+tc/39XSQ6KkCQGMqsnx8qht2xDCYjHTWgsh5vN5miTeW2c8ApjzhFKq3ZAWKeEEYHh6cU4E\nd8EShiGK1lqIotbaOWet7ZVEFL0fOgnGq7wSjGttQwAwxCzLrPWb9aHvNIoIQ0i5nsx4XrHtfm1D\ndIECkBrDMD399tVh3ZNV51b7wTu0W7fGxf0QIktQnpARU8Q0rh+cMREghBihQ9ftVnf7+zuvOhLd\nw9Oj46Q4Tsdn0xNg0OW7m/OHF+mIVUvR7+65lR+cn5qg9tAdf/YRSfPD9arZ1rNi8uDsAgN8/e52\naBWBzHSGAJ6nIyddW3cpTaw2qeCnJ1NAbSQ2n/J8xn70O9+dn1cgsecfLk9Pj1+/eWGjMU5JOWz3\n2/Vue3V1IxvU7sLh4DCqSA983zeFyNNxbp0rJuXgdVbl9dB4Fwhi7WAw50KIXddOj5e71SrGSBmb\nzmdd02tjkixzwQcYoA/NoWaYCZFcX90MXZ9wob1TxsIIY4yd6/IkdXkOATLW1nVbljkgoN7VjFFI\noMi4DRZgkGZsu7kTgqV5ZqLz0KVlHmPctw1H1FgbMUKMY4ZhxFRqpx0h7Gh2bK0VaaK0RoTSNOu6\njiFMCIMBql51XSsIzvNS7hQkQSQk4vjo4vTudiXN4F1MkgRG6o31Hnnnu64TIsEYO+eSJDPKdPt2\nsZyBWHjrrHeQwGo8dc6wBFOCAIpXq3tlDBdMWxcAIJyKIhFlrvuBE0wxYZgYaRKWRBOapsu4KLOs\na3rGiGDCNAo6aLUb6rvxKB9Mnzv84ccn6cjt11sdBxfINMulNU8//vSDDz7+43/xr8Yi/+TxRdcO\nfTdIZQShfd/noyI3woYIcam7/tDJ1bbJ0pIKcru6/GBy9kd/9Pe+evYyvo55Pvrw0YeD6yJBMDCj\nHEIoRlC3XZ4mp+dnd+u7CENwSkpwenoqe6kGHUIgjN/vNi7ooqiapi6KbL1ee++dcyiCQbpba/M8\nL0fV5eVbrTpC4XK5fPfmzQ9+8sOrm+u6PWR5ThmGkBurmOBJJixyGpjx0eTdy7fT8WLopGqaUZa+\nT5Q6ZxhjQfrtZrM8miitymJ0dHzWtXIyGzklg5Jm355MZhdHR5eX18EbDEEqeMaT69vb8XgKATo5\nfaK65u7m3a8uXyNenI0/Am44WZ789Dc//X/+v/7viweP5vOcg3yRT06Kxa/+/NnNs/rR+fcuX2/G\n07Q57Mo8QQTfvr1++OhRwjjHpFhM6/2hP3Rlmu33+9168+DBmTM6TQWIPhNJkkwCcMYqgKAL/sWb\nV0qpo8WxJGoYhsnZBQaoLEsIYT+0BEYl+yLLQgjeOaMsY6ytW5GnR0dHMYL7+hATlyWCE9q3nezb\n3WqIMSCCzx8/IIxqrZ88eXJ5eb2+XU1Hs5vL6yLPA4hSSpGn3SCvbm5PH50Gh5Uy8/k0Rnt5eX08\nPxkac2j2RtlynGgvi/E0OHi8PNnuD13TemfylFdV4R3opDlZnL/4dlXvt45wwYvJZOKtaVTzH//8\nb3/zJz+u60PXNm3bnT94oJUZT7Pb+zuMsQ/IepSn2d3VrwDJTh48dCHsdrvpbDR0PQDRh2i8pinD\nEIYYldZ931PGnLXWGoTQuCz2+733PsuyACMTnHDW9YNeb/R0FEBMksyHEAFOisIGX+DyaDF+9vwb\nIZgZ9KBbw7jW+hebNYdwlKd210NnnpyfDnBYD7vOUmP8vm1+6/d+BwL09a9fJunIDt7qXa/kpMw+\nPPsgT8X3v//9tm0vr6/jOAqRIML2bSdCfPXy7f3q+sH5Ubq8KOdzPUhGxfnp8vXl6/v11hlzMT3/\n4vNfVlW1WBwhRKqqatvaIj1ORrNi0rJDrep6XzttiMAiIel4DADQ3lOEnAkCC4F41OHsaCllX5Yp\n4fTV85cfPfp4v9+j4L1tjLP7+uro9ASRskB51jo9Wsxmx3MdNMuwQ1q1EtjY1u0gpfZutVpNktxs\n64VIc4h3+812qEnFccmQgBFYkTAQfcJ4KhIQoncuOC+7Pk+LLMtBRDAirU3bds4HJpKsrDyIjeyb\ntvXRM8Epp5iSiD0VyAOfJJwQAt9j8qzCMRAQgfVWKqe014YhzBlzOjDCxtX0sK+NcYgybV03DFJr\niFGEEBM+msxBhF3XpTxtu9paizGLHjCCvTV5nmNGvYsYY6UUIlgIoY2M0VOGBBUUU4KolgoDHFxs\n6w6EyBgrikIOummapukQQgBFbXoMCQaYIRqtRy54bXU/rG5uYYgQAOB8tA443x3aaP04H2kflPMI\n016q1WarrXcA2hATOFUDU0q8eb2/v5Gn00+now8AOIJV2gdwv2sgKv79v/nrcbL86We/q9fDF19+\n2XYDTwTEuB+G7Xar1UBQoJxgQihjWZFvdlsiyHSRz8+qd/fPgdCjo0yDYVWvWCIwYZiSXiofwXqz\nSfPs0DSr7UakPMLonMUETmazxfJYa1sfuhCh0X4+OwaIKKWdj7PZzNjh6Gg2mRY0gSEYo3sn5XIy\nEyIlSdY7KzHASYopz1kxSkZBRQzJYn4cYLjd3He6VVEhDolA+/0uWnM8mWScEQTKPGOMtW378OHD\nPM0u393td41I+fJokmb04vSk3beVmMh+SAV/+/Y1QP7y5k3bNz4EH8NsVB4OO0jwixev/t0f/1sY\nordGDf33H37c3Q3/+L/7p7/4+Rez6WlXdydnFUlCStzrr54dLrsUlq4dkNfNfkdR2t3vu/ttSUXo\n1SQt+n29v7nXTVckPFp9NJueHC8hAJxyb4NWHiGktfLeT6ZTRNh4Omcinc6XRVG8t5LtdjuE4Xg8\nogzNZuMyL97jjw67rdOGUdo2jbfB2U4Oex9UNc2RACSBjT7QAj+4WC6W1fnZfDYt2mYXgQvRrrf3\nR/OjUVkhABBCEYCu7w91TxNRHS9HR/NiOn5/PuKkF4BDFdf3nZYKBfvJxw+Xx8tWKkL5eDy+vb1F\nCI3H43fvrr789VevXryWUj/7+puXL66jw97Bvpda60PTAIR5nt6vDz//5Vf7Q1c3/S8+/9UXX3y5\n3e4Z47/61a+GYeCcU0oRQlVePf3go+1qK7thOT/q+94HG6Ifj6s0FYQimggs6PawU9Z4EBFBlDPK\nGSU4Ebwqi6IoGOPtMNRNSxkv89xZqwa9mB8RyhsppTXK27rTm33NRDFenE5mJ6IcWUhtJF5qHlh3\n13W3Jo1j3xDmku88/GxaJtMie3rx6O7t9dWrd6pp97fXw249dC2OYToqf/L9754tp6vrt6++/XJz\nc7lt788fHRWl0LLmlAJAtluz3Qdp6TeX6zfNbgNiD+Tl9d358niRzm5Xt0enJ1e3d4NWWVF0g3Qx\nbPe1dvKLr35Zd/XJg3NIKGBCOnC/a2/v7hDGZV5Ny8nN66v167vN6zu7ll/+4hfOaIcMzemDDy88\nChSj0/kiT9PTk6OTkyMmMIEbi/tAELi7vQIUdn0/m8187SqRWhNEMvYuOG8diZiidt+I2TyvSi97\n5bWKBsDQdV1CGLCeE6q1hhgRQmAMnAsUwXvoQdvUWZYhQrqmizEmRARk5ovxdr/x0ZfTKstzKaWx\nysbgpAsqAgRhAhTukyx11hNo5eAJxNoYH3QicJ6xpukwwibAfhiMdyLjzjmE46jMXQAIoFFWDMMQ\ns1QkHLMJgKHrgwORJET13TBALd3l2ytBaBwgI6y3vQ2DgzDGiAmlBOporXMY4+h9VvD5YnQ0Xahe\niVF2e39XFIX1Zt/UqRCAp/vdLkmSLBVaK2Uk4RBgmJf5IHWvJGYYIcS5UIPxOqCEEoxh8FLKJMlo\nABh44FFTN0YHDFHKqvPz77x69+zrX98/J+sPnjxejtLtoZsvykE2rdfEeEFi6mPou1k1jTg6BLwz\n2FioPSKUEOJhBNHGKDMGJYqxVwUvqU+++fzrpKgwFfOi2N6+hgEimEYDIAqckqqqinKknGUJA9Fx\nAmezk2+fv+BJ0Tc9IkGI1FqfsPx2s55NpgjH6OR8XFxeXvc8NdbnaRFC0Fb1vuOUjCdpmREQTVFQ\nNQyEcMy0A4oVsMyK/f5QFuMzer49bLtukH2fcCqEOBrNRrOJxXF/2aw2W5qISHGEoBqPkoSFiNab\nFaTm9PHJ3Wav2nj16m51tUvz9OLxo+fPn4/ymbbGRiBSUVTpEB1jlEHy8OETNeB2qydHlY7m+vpS\nMPqv//gvfvCT72A4pLy0qfyb//jrzU1XiaPpfLzZ3ooMbw77ohohiDa7bjRm6YPc1nsAQPDROQM5\nS9M0T7O273f7PcBoVBZRA+SBiT6hTAezPqxpzkjGymK0P+wjCowR66RSuGv7q+vL8WycFnkvB+fc\n8ng5DEOwpiiypjnIYAyObb8fjyeqt0Y6TEk1nUCI++BHxWgyGb1885Jz5rzfbvdH0yNnUNvJx08u\nrNVSSg8VoeDi4WSz651hWZGmDOtGtwcHfbq5vn304IxNEEnNpx98cH/zuu5rE6KNmAH81dff4Bi8\ncze3m+223+zazf3h0IVD0yYEZdVEUwU5D9t2tKx2bUtv+aycnC4/lM5dv3q1XC4//d5nmUi89wlL\nq6oYT6fXl5d5WngYVNcjCwlJAAD7tiOEYMSTjFtrKWUQQoRgCDDAYKyRvQQAGOsIZQnj1lohBIgx\nny6stRjj/W4XoY9I90onXDSqN+8dI1btdj0CwHuFacwFSQveu0Cg2O7c3fY+oDiqw6ELhBAtD8Fb\n3fcAAMKSgNFgHRDpRrs/++q5QOT1i9cQovOzi30t//E//g+EQogThJAPgDD2/O3b0/OTKs+cRlyw\nN2/uHj5+aAfXdUN0kWHyGz/8QdvVTV8vl8cQVoe6HY1KAtHd3SoCb4ASI+EHzbiY5seHQ0chwQEd\nHZ3k2UgQRjHrB3d7s1s+Wr548SpJknE2nc1PRsnEeEMYPMi6kTW6v7/dbtYxxsO+bvftycnZbLbY\nrPdKkxBxt1u5fpcSkDHRdKqYL5uu9t7H4MosL7J8OpuIVGDBCAcBWUIjpwBGxxkuMpHlwmkDQ+Sc\nbzZbZ5ygAkdktLZOIwTG49F0MeacDqrXWlJBU5pGj1iSUpEobSOAhDMPIgSJd0iQPMgQdJhUU+fB\nrh607ZOUIBbTDCPqqQghqnwkgtOy74xW0flmf4ARpkIYad5XJaU1wCRCwBgzSr+Xz/bdwKjwDmrl\n0yT33ltvg9Lb1Yoh3NaN1rqXw912tW22t2/e2n5gAFVJlhG2vdvIps4ojTAYZxEhSZYDiG0ELgRp\nJCEkTVMIkXOOIDqfz7XWzoZEcB9slgoAnQ86Ri/lAEGA2FAeXr/+EiM59HdJotVwk6d+McHf/3T+\nk+9Nf/BJ9Q//k08++fD4/u46zcqHp+cwRIwxQogmAidcArvuDneyw1XhGHl5d3X65BErsm1b327X\nR8tHbWMxEoedVCqWowlAwcL+yQcf0IQdn524aOfzGRXJZrcrxzOrdNQ+KANCHE8niGMoCEoo57zt\nuywvlTW9NtPZfLXewohSQqB3KMaUswg84UxFMz09Wi7nvew4p1fXb8tRAWF89fbFeFrmBW+bHQDO\nO5WVWdM3N6tbFfXdbkso45zTGEvGCi4267vgzcUHp+NZUWQpcvFkvHz15bdPzi9efPWNoOnl2+vo\nwGQynY7GRZaboXdq2G63J6czFzrrdTmZRoqLebru3oIizI4mP/zuD8ZpPh4Xv/zlz8+PTraXG+fJ\n0cmZdcPtzSvV7yjBF2ePKM5xWo6PZzFBz9+8EkX2+MMH43l+dHSUFWVRFBCiNE3f89eGYQAAAA55\nLkSREIqFEMHbDx4+ZASORqP3fOPNfrdvG48ApGR5dMQYw4zmVS6EkHrwIMYY5/P5+fn56fFpjABE\n5LTBGBOI7u7uLq+uMMaEsZv7u/V6naZpXdez2azTw6Fvy2nFEtErWY7LswfnCCFvtB56o3oEA2WA\ncIBEoBkcHU1EzowdfuPH37dGbTebqqjaupvP51pZ7yJGlBLedMPt/UZqtx3cEFBECYIU+OCNiqaP\nZhjTObDx7nB/2ax9KZ7dXt8dDr/65tndTb26q2+v74dBjcfTo+NFr3rjdN+2BBJOuOl1dIhEgjxR\njdlsdlJqxgQhLEbgfYAAE8zSLEvLIkDQK+kRyMuCMBoJdlqrfujqZrPaJEJo9T/N9BOWFflYS6e1\nv7te971KaMowS0bjfbdXscbpQHMLqN8dtvv9Vvb1/eraxlBNZ9lolJalD8E5s5guIER131+t1l++\nfj3/4CFdjl/Wq1e3r2HKlw/OKeOMJhQLHAjxeLVa7erDartBhJ4vjw9363ev31TjcVpWg7WD1fPj\nk6br2757+PjRMAxXl+urm3U1nr6PaxNCMpEJLFLConJvX7z56otfb7frQbffvvr6/nCzPF3Ol8tE\nZOdnDznLlbEkS1b99m5/9+b60hj78METggmaTsfjUeGDiRhJqQCAaZqzyPphZ6wMERHHQ4Qxxvvb\n27Rg2ioI4enJ8e3t7b7VnAuEEIIBhPj+Kwog7LuOMLrb7fK8pIQ75/O0CDZY7YIPNGPO6GACz0WA\nfrAySZKEs64bOEryPAcAMM5FxbfNZr3ZZlnWDVprCxBOOGdUOOfaYaim4xh0kiVd10TgI3DGmhiD\nMUZwjDGCETEoxuOJ8a45NMEFD60NPkaPIui9z5jY7+vKeMZ50zQYU4o5BcEb937UjlxgiHvrE5HX\nh25UjqQcvDcUIAjh21evzy4eXJw/bNu6PuwgjFk5DSAYbVGgPkJCKRM0KzJOOIwoeAAi0Fq/5zGM\np5PLq1dKybvVzXw6a/YWRBeDG4+mwMZ2Uys1TJfZZJRr2flc7Hf73/vo0Skr6tbut02NDowlmKCk\nZCKfSiP3fT9fzrL3bMX15tW7Sx4hIYxX5eknTw/GRhx9DAKL1f0mTdPxaKoNhIDta4MZTPJsp1tl\nB9+10fnJeNw0MksLqz2ilHOuBwkhBgR5D0ZlaZWGFCWZgAhBOSBK+6YnhGltAmAQAoIABrAaTwCK\ndd+1cihH1fXVfZYVScGVHc4vTiAGjz44f/7rZ0NfjyczYwgOSPC0qPK+H5IE5XmOGMWMmOB4xqtk\nxBMGgp+gkmNUpPP20D19+nS2mNOX9MHpCUJgs1+fPTgN0F4fLotJxTKaeLKvtzxhsumVNT66k0dL\ntLMWDxdPz4ZDd+hrSvl4PBta1Ry6fTOcLSdUcEEJI6lzioQkREdzUVYj61TX+WbYl3myPay9pgTi\nqizPT88AQNe3V0VROG+9ddm0xBiXWbparRLOZdOpvM1StlodJtNxWVQQ4r4d5KBnx/NDX1NKhWDd\n0N9uVp0cSMIhRpSzuzfvTifLEU3k9mBbCQk3ET54cPb8xeu26ZEO1upxVmAfS5EKxi2MlBNAIBIE\nUOwRoJQ6Z+p9k7DkcL9LMsQYggwVeZZk6aHub2+vMu5+96c/GZq6TLLrd9eCF+9XlxDiQ9OmghsL\npPJtr2hatHvpI2ob2bcdCtEbP5vNul1XZnljemW0Nn05zb7z9Ke3L+5+/rdfGNU9enj++39Qre8v\nu36/PJpc39wnfOI0kFJzkYAArLGcI0GoMs4qjTEOISCECCQxRu/toAbGWJFmSZ4ZYwYpIwSc8+12\nyynHGMMQ7+9W08mUMeadGwbfNk2WpnrwCS0zVjX7hjG2mLDpfDRK4t/5rR9cLGdvX7z2Cmjl/v3P\nflFOPzzIePrw6V///OfKqJPTeZpnejMcz8+k0dqaMh/bdgDGZJR88Hd+/Oybb1/fvGGYtUNPMEsE\n1UMMjXr86XfvN2u5OUTGJzyfnIxubldnDy9C8MYqo/Tp8cl+v//y88/Pjpa/+vLFZFq+fPPio4+e\ncE/KPHE61JuGcTQt8/zkaJAy4Igx/OQH32nbRss9pXR9s6/Go4xS6522tUGKV/hovJhNZrv1jhRF\nhhDQ1hDOeJZ2Q5/leTUulR4G2QnAS5pxmK713mJNK2oCyLIcW72+Xx92ByEEwKDvpHMhaNvXJuWM\nMeJcKMtiZXeDVgIC7SzECCIStE3StGmarEh71WV5EhAGzkcP8ixRvQIIpDm31pOEMkGEThEGIMAI\nLSQBYssyDJxr28bGGGNkjHGatHUrTZ/nqQcxeOB1tNamad41PQpIKXlzf1dUJcbIRu+sjRBgRKEP\njKcI0mgBRogRPnSyqsYRBDUMacYQjDjhh7Y7H88JDt7YjCUFE8PQ74a6qioLo7S6v7stsiRA0A8d\nwhwgDCE0xvR9l5dZknJIIoRwv99b6znFxpk8z/uhtVYXRcE59zFoq0wwGUsxIe3QE0WcBiQSEOBo\nNIkQzuaL/W7z77+4Sr+9SRDCAcyq9LSaffvVV8vF7KIChBNba22SutuWozFLx3mpoNEc4oqIVnV3\nt5ssy8RofNe0zpuj6fjQHgbVZ0l1/Xp9dDpXQ2jWN8fLI5jF9XblgsYJ37cdyxnxkZelC8AYKapU\n9u28LBkhXbAQYBc94anxIUlz4AbkwQBMUiZdbQ+7/cnR8Xp9D6wZdvVoWqaZYAn56NOnN1evHlws\nv/fZx998/esiHSUiO+xaBIkbIg7EKg8C9EbV3UFUCS8yKbWWdlaMlFLPv/12vpgunzy+vL5KRNp5\nebO7nZ4ebcLBjwEaoXe7d0UuFscjNQzAgsnpyeqblQcQIGSDVFLWW3g0Prt6cZ1mfP7p0ZvV9bur\ney/R1189+94Pv7uYH/arLnKSJOMio9YNMcb5uBBZCkkEkE1n5WG7o4ydnJzdvNuMxhPZdpvNxhjX\ndq1zjnOWZZmUcmi7DSL77W46HXNKm7rjgs5n06ZplFJCpIDg+dEMwvh+HV2WZa+kMpInDGPsQwgx\ntt3Q9b2NwIcAKbPWE0IQwSxhCBEmBKIIOoQ5HYw2zhVpmbCcEOZcQARu91vOea+GrjeL6ax3squ7\nxfFkd6h9Z4955q3BKEzLNGN4d3mPMR4GNag4KPf1198qZYQQzaB3hzZJi155HxtGWJllxjtjjLUW\nFRUMEWfBOEcdwxIezdN137X7Zug8giXFiOAk5SUE9PrtjfR4PF6W2Xy32xFEBUvato4xUCIQQgBS\nazwi2FprjIEQQggp5RRh7713LhgLnKcIa6219RHGJEmMMTHGGEDXDZz7ruuKMkXEUhaAdZwhrWsA\nnfO23uBRnm3q/pefvyE/iP/FP/rP//if/5svPn92Wj2ljI8z+M0v/+o0ZxePPhNi9OzF23u9Agkj\njMDoIYR923Syo5z8xu/+L1bbq9vLu+88+RgBvFmvHzw4fvNGU5S/ffV637ff+9FnQvBf/vxzDJkJ\nrhu6xfGRSBeHZj+flWJecs6t8Y8/eZRnyXgoqllVztKmPgBkJ7NkOikP+07JzjiX5aOI0SDtbH7k\noo0uHK7utcHHJyeIo/vd3bzMKp5CH1999eb+6p5ASpwzchhmi6lylnLUDw0AwLrBe68tVN6DqI6P\nZm9uLqtZ1UlXt924Koe+rfIiSbK6rk2vp/MTRtDN1RUIOkKAIBqGoSgzxKi13nqbJZkxzgbPQSyr\nqhoV5t727QAxSFiW0gQE6IzHuYvYxRis16ruZdsJIYQQ0g1JmcMAjbKYMI5JgZlzAWM2dBL42B86\nb6wQgjGRJKnWuh8UoRRGFCAQCQMgRBgZRUY5RCjnPBjnfQSRtI1MS6H7werAx3Sz2xACUQQoIBgx\nDMRq513QUmmptOkfXZyjjEmpIcJK6hAChjHLsiTlCU9328b7UJQjiQYQo/dWDR0TjDHGCE/T9Nnz\nb5KEl1Uupby7X3HOLy4umrb2ISRpWs088KiWO5oJp8PseHp+sTw03bu3N7ofMlZOxrOUg9XtTTmb\nIJYoCS/fHi5Xq06qJM+07wlnzd190w7GheWktMZVSdELCadQOTuej+93q8n8wb5v8wLs2/1+X8/m\nozzNmnY/Hy+sNAC4xWzO8gRwMngLUGza/uziQX23BQAwTGaTaVPXOROQo77v87IYgpKdHBdjowyF\nCDmsgvEuvs+oEYBHWbXZbBjHk8no5v72gw8fMnr+7u3rH/3oR2/evvzk0x8VsyruOqVMp3vE6e3t\n3XQ8qfvDqJhrY3VrN/f7zz75QbtpGeFYE68cwoFyEEnUpo0+PZpNtnqdlWML3KQqd7ud0RJFcPbg\ngXJeauVc+OGn3//ml19DB0IXv3r24ns/+Kjp+nev7/7BP/jPnj/7ymp1vBwxHHdkALg/fXLeNioK\nHnQY2j1y5uMPP/4f/9W/LkclgKZp6uPF+dXb1yKjN7eXs/Hs8vqSIBIhEEJgjKWUymuGOUH0wckF\nwlAaWZajpjlgJOfz+a+//EqINCJo7JAw/p5LtdlvrHfvm1cIoeo6CMBksYyYDEoywjPOtvebivPd\nbocBJAjf3t5GGE7PT1arVVEUzliBk83hAANqhyZAl2TpeFxpawIM1ruE8Tyl3oXJZNbUw+27mzzB\nBaXf/+SjX/3sZ67d5UXhCV/drTCmg9QREh+gtR6zxAPiEBraIUabpunu9gqTyEWa56VUDU8BB2Iv\nNQMkGtf38t3bL6rs+MkH50Y2k1ESvCoz9p1PP/rm9R1lGU8JaYMoM6NUmiZKDz7Y8XRev7vyPmCA\nKcEIkizLrLUQQucgcNA51w8DpZQx9t4l0Mi+bhsIYZ7ngzJt23LOY4Rq6Ksil3KI3kOK3zthAADa\nDIcOkIg//9XN559//fzFBkfk0YSXwTllhn45pr/9u7+rHfr2+XVd7x2wEYfBqTxPt5vN2ekR63AI\n/k/+7b87Ozk/nhwNnRSCPvnwofcOsRgiBBBDTLaHGnEcBe22zSwbma4zbbvb3FXz8aCGclwpo5VS\npxfLvpfMJ/frjXPqg0cPn3311e/85k8Tkf7zf/4vBS+WR2dXd/eRgIuL8xcvn+WjEgMyq2ayUaur\nu127q1XNc/r9j773y7/9ots0p7Nz4oDb7tajqtxsNvvusFguKcXOORrx8ewIeBK87U2dYZ4mXEAu\nMfRWJ1naD+3dalXl1aisMCRDV8eE85RgCFwwGENrJecUYi5lAwAACPjoIAO9GRYnxwThNE2NMcF5\nDChOKIgAxOiiCcYzJpSSQfsyKRCBKRdN1xIXQoTKehoQDThYl4qkbneEUYAh55wS8v6GgnPKs1xJ\niSIQLBmUpIwRQrqhRR5xyiCmRmsjNXYQIVTXdSIII9QaJWWHUGSMY0yNsRUvaMHa3eHk5OTF6n48\nm4JA91JGaxPKNbDayKqq5DDMxpObm6uYQGdsBBhDRDE2cnBWT8bV/r5GkEaPnHPjccUY3ey20+ls\nNJoopeq65YyV5ch4N1lOh3Y4KFhV4ypLB9X8xV/9TULScT7GGAqAbl9dl6MyyxeNAb/6xd9YZCCM\ncg+VMqkjiOrJfBRhcNESijyn13crjOl8cXSz/8ZY432+mExigoxSIi2ZIFZbbSUhM87y3khjJI4u\nMiiCUO2AelVUWFlbbzer+7vj4+OyqqSRhvMQI4LRey/7gUEKWUQRjMpC9jIOGgsBfGCc99pIa+yg\nmRCy65MsXSxmbVtv71d/7+/+wd3d6sc//FHjrUWGFGQ0SnhJkRC4BlF4D/DN5n5UlNSBp0cn99+8\nur/bjcZzihmE8PLybTUZr1abo/nkxRdf/sM//J+hndw1NUIxAIcsEiS3MawPQ5YW3oYqJ/vD/cnJ\nSY3bm9c3KULN9fbT7376T/78n/2t9r/7939K4OH3f+uH/9//5r978PRDxtioqj7/+c1egqvXl4Kl\n3/n4O9cv712Ljh4+uNm8axtz9e5mNptYPbx9V//B7//2m1dv37257Hr5wYdPD4dDkecPj46sdTfX\nd15EKmjTtfMwQYw/e/H800+/K4So6/14PGYEBxid98aoJEn6doAQYmOsMd779xcVb9+8SdLUKS0E\nE5gyQpEHHJPoY4KIR6HZH0aTUXC+7Q8jNiYIWq0558q6Ms9ms5mUEnPQD4fFeNkPe+fc8WQkMFWM\nYO+avr84PVGqgwHtWr0b2u3mQDFjItXK7ZsBQogxXe0OjGfKot2hLnPey+H0dBps6HYHQfywayzw\nhFVDMI2WErByMVVts2/6o1m13bxZrVJC8MXF4mazNd6JBGYlt9owQSHEEUII8Hp1YIwhhBDC71H+\njLH3/YHHwKMoysz7QCnFGActe2+893meE4QTkWBGM5+1dUMpDQZCyjLOQ3CUkBhj13XGGMRRFDCl\n3KFKteSf/duvHz88ffzwAYbvMpEGmz/MTpCHv/zFLwDJLh4dgXcmpYTniXeRj6fDvs5ycXx28vbu\nlpb85cs3RmrG8fnDcybovuuYyCbV5LgqtFTzcjbwJMvCPMvHy/mg1fb6JuEsgACouX39RhsLpQsO\nNocWIcAFfvPy3SdPP23q/m/+5tdFMTfK3tzcJUkyW46vr94+ODnarneYMDVI1etu65Iyefrxp5HE\n1f39uCrOFycEYJRy9vjx48lkQjE7P32wXe9AwBSLgKm05v7uWrb1OMutdoyJQcmM0oTy1d29UirC\nqJ0Owemh18Oh6w9ZmSWj3AQfEUaI7Pd1s69TKhbzKYSREEg5LaeVA+5md3/o+rpuCeTAAy110zTG\n6TwpQYB9L4P2VVGmadp1XURwNl1EF6GDGcuhQwlPCGOEYUKxMdo5J0QaAUKUZWXhgXfeKDVkWQYA\n2K43RlljHAgwOsipIJDIblCDNFaVuUhS2nXDZDJJM2aCYiljKYsIWg+1soQQbWTT7o5P5giH8XR0\nf7/uO40g44hwxLwywdhC5GVS9J3MioIQ0rQH7y1E0SrltB6PqzQTEEbZ9QwTTKAQzDkbfaCQDs3Q\nt0PCxSA7iILyank8H3S72qwRQsfH52U16TvT1FJFDFlmXQQAPX/+XCntfAged8ZYCAdn09Fo17WR\nsfPHD8tR1QXoEZWDMb0cF8V0PvbYBg6a7r4apT6GGONoMlJB0pTXTQOcGxd5WZZN0zRd731AlDb9\nkBGWMl6NRgjjy8vL9XotnXEIcc4hhM1uLxChATCAnLHWGmh9LpLJZIIFu1xdBwrKafXk6eMyzTgi\nVZENbees5YhxQqti1Kx3ueApZyH6ZmhdsJP5pBgVosjG00mAoGn2guOHD47zgp+ezyIL7bAvR6W1\n/u52gwj56DtPa1X30DsC664jhHJI5L4FrcWDhzrMy3EmktevXztgq0l++nBy9mC0WGYE93/0D37r\n+08f3bz4tmDi7Ztr45HgOcdk2Kz+4e/+5CdPn/ynv/NbJcNRq6++/Hy5GL98+Yyz5PT07NAcqlGu\nnf7gw9OiFOfnJx9/+tFHH30IYJzP5xGAV69ebDZrQIGDzgKrnV7vNpThgOP9ej2eTYUQmCAXXdd1\nEEPn7GgyyvI0y9P34vgsSaMPJBOQU56nu74FGCdludnt922DKW2HPhIACG76jiaCpcLGAImdH40J\nDdNxUea5EMIZv9/XnJHxeEwx8t4pqwD2u/16MZ/stjf/6H/7v6xG+b5tOu1vV832IBkvB+373huP\npfKHuuu1hYhp59vBRoDavgsgViNBgBEUjPMk51XwuO6HXb8p50U1mq1XdS445WI8mn/w5NPzkw8S\nVuzXLYrs0YOnaZqPx9PRaDKbLeq6sdaWZSm1whiHEKWUSinvvdZaa/1ePJCKZD6dIQCkHP4n73nX\nRx9SyhkmQ9vJptut7r1WBEQC/NDsdd94rVTfDW1TZmnKWQEz3w59s9WmXT5YPv7Ox01w/+Znf/H8\nFv71r9f3HW0M/eKbl1U5KbMcG3+0XMynk5OToyxPkpSfnp/HAL/+6tkkH+3v1ikTZVEURfFeC/47\nf+fvnD15VMt+PJ8tFkdlUTRNXS6nNsUr2fbQZ8s5TERejVbrHSUiFZmXlgGUQkS9P9yultWsTEe/\n+OvPR8U0S8pxNSWIGKWsdtH41fVtkc1CZOePP+idA2mCktRirj2zCh4aGRBieUqGYaiKsmsaZ0xZ\nVQ8fPF6tNhjj6WicTEWdpPvt7jBIAXiZZG1XI0g5RvtuYCkXnlNCjTMABhDC0XKx61qjLE2TLCma\npgkeT0Zj481+s81GuQ9QNzLPi67vBz3whCspOU8oxZCBvu+zPKeIBzswxiGCbd2JhCVJYr1JeN6F\nXvVtxotgjIShG2qUTLlIACQsEXXXBggWk/L9WxujfL9O8CCkaXo41Iyx5XJpvAMRe+8E4wlhMMYY\nAxcEeLI7bDEjDx5efPXN1wCDLCkxZQ4AQCETVOq+4uX2+m5xdMwR0TYo60KEECOAICbkzdu3ZVlS\na4UQ1njjHMaYMZQkSYDA9G6/31MkirywbgAgABgIw8xSLrj3vmtrDEJVVavNPSFENp2VLs1KhEA3\ntBgJViQ2hmrMP/7giVO6OdTAxxipCUAqZ6KZTqfeW8pJexh09M4DrXy/2yo5QAjf3l2PF+Ou2cIY\nRukohNDWPUXZ2fnDpt0++uD00N2MlzzLxtvNhkAUAOgGmef5fDRz2rloXbDlqFrfr/I8Z4Lu246O\nRAgBhpgQxhEJmGg1xOjzPF0cjzb1XnuXVoUPPDhrjIExFFmhjbl+ddUP7Y8++6zZN69fvkGY7K/W\nx6dnAjFjjHNyNJuN0tIYY4BDFBsIQ5nctZv15f3pyYWC6se//YNO7tq+HWQcz49v97sf/vB7L168\n4lmRiapzqh264+PlbDw+HA5yaDmGplMUZ5PJLCBTLVJtfE6TKoW8lBdny/Xt7urrrcirL756zSfL\nv/6rX4befvbkY66D0Ob4ePbB2R/W/eBj1w39xXIeMb+9bYqS7+s1E3xaTV6/e1UmJQBhPp9bH3qp\nojYARR1MNR61clBGHp0sJtOSIPjg4qLvtRAir0pKSVnmG7stqlJb8/9XxSY8oZRyRIa2y/Jkvjja\n73Yswn5f5zwrRSoI91KPswJTMhjNKL58+frRxUXBk861k8kMM9gOvfMGggwAgCHmND07Od/d7xZH\nxzIOWV4eHaE3L1/lGXv69Mnrt1/dre6n5WIwQZoACMAksz5ChAKgLpj60Is0a7tBS4VwACAQCpxX\nxbhgEDrbtoNmrMzK6iDvcoH3WxkHs5d98fjk1as3f/QP/xBG8Pz5S2lpnuR9P3RDqPdD3ewJgloq\nRHDT7seTUktNKaaEAwCMMVJKjHFZlk2zD8aaQXaHmhASIIbWZ5SLJEMQNof6+PjIBd8w+uTJk89/\n/nn074FRAVF8fHw8DINSitPcWzOaVNaqvBAADBCi+XiS8/z2bs/T5PPn19Nxs9/ff/D4AmOngNrv\nDmmWS226bqj3h+Xi+Hh2AsKt0UOepdvNJsJgQyxnJ06G29vb3e1mVo70oV3d3lVFsizH1jtS5MYC\nnnLkTUSw72XfDlaqSVHpfkgzaIcmelsw8JPPvvsnf/LnHNFRVTw4fXB/v04YX+23wMFPP/ruy+cv\nZN+maaq9ysYJ5dxCp4y8X69nozFA1a5bbdtIWJVdr+4SwpIkWd3cnj44z7KkV1I7e/v2knhUVaUm\nIRlVqlMEpmawaS5wjN7IyTTXPvRexYpUSemJt6anlEcIDrIGMBaJgMHrvg/ReW/TLLMOGGVRIBSn\nCAMowFquR3TkO8sJhygebg8hxmh9nudpmRmjvLV2cImAPjoqWIQOIgtCcNJGDQkCguAYIgJQpLzp\nOhc8IghzijHVPgSEMGOT+QxhaIJ13qU8a3fd+yleczhgTgPCqtM2qqP5tDeNyJOkKPfNnmSwP9Q2\n9rPZ1Fntgnbeyl5hzPq+1QN3zuVFCkAwRrsYDm0LbEA+yKElhCapiFgSCogBjWyn4wn0FECntQ6m\nSElGINg3yiF9drzIcTDeJIR6KhhjFuSVQEZrH0nEpG72CaTf+/A7p0fJbCaybPrVMyua0fYg26FP\nGJ/MpiLjJEnX21tGKHBIdlYpdbO+n8/n6+0KYzQJJQgRE2qCT/MxhHDf11lZdMaNacYzovphvV7P\n5/P1ek3SlHHujG4OuzzNEAUYo2jsbFRlSblvm4uH550Z1nf3wYaqGLV9Jxh/n6RyznV1xyB1OGJC\nrFWU4b5rf/7znydJ9vGnT1t1eP1mq6Pfm0F6JzBmk/K+PRydnp2fLp49e9bf36ScUYIef3ze1U3T\n2Ek5aaUzOXu+vV/MUfPr7W/8/vdW9dpt9xHLRTJRrd6vN6ciB8ZN00Irc/3ulnKWpHkwsjby4UdP\nW6XarrteNUZDZUA1qZR3kYx3e7ipHS3GNMm1D8CYR4uTw+b+4cPZoizfvv6Vvms++ezHDsbf/oOf\nvHz19vL6XvVNMMNscf7Rkyfn52ff/urX31w+/+h3nlYzc3+5KhM2qSY7AZsSNk1DUzJKilYNpBB9\ndOOqcqZv13smaa+HdKA2cDtEtRnm5aLtWgSQYLzr2iJJMiaCMqOi4KlY3Wsh0v12XyyL6AFjLAIh\n9QApJgTNpkf7wzpQOzkt9aD3h818PheZ6Fo1LqZS6vloQUaTvt3xFEprPUDOapZAmsUfP/14vb+7\nur3CWXGnBg8wYmjfrlNSijxT1ulgRV4qYzd152Lota6mi93q/vR4cnp6fPXqWfB0uzfXq/3ybNH1\n9w70KZ1myD96dPT25o2P9jvffVoP7euXL/phj/lEG313dQ+rxFrPOSUEOZBX4/lsPHFW9rRhjHkf\nYoxWm7quj46WDx8+vH73/OLi4Xg8berOOP+nf/qni8kEU+odabq9SBNlzNCrGOHN1Y0QnAlqrffB\nAGOMaSbTyoXUO9C2ddM1VVWFQIdO1vsDiBaiYAHIeeb7sK27AJJvXt/UbX12dsZYerfZQ9whhO52\nO4PQecKSotxe3ZpJLMejyXL+4vWL+5v7k8XS92Y5Hl9e3fkIqqrSIY7zgmIkD0O7bhUn1WzU3G7b\nTs7n8x62EcGA8GDBxcMPExLKDq77AACvS0lEQVSW09T22+WsAiEa495e3263XYh+u99ygW4v1Wxy\n1O1Wy1H55vKeAlQmoe9lc71iwRJjj0fTW6V8jMQ3kgIcEQIJK5Lp5f3tZDQ+bLeN9TDlo+mUIuzr\nA3FOR/vpj743L+d/87d/TQnLx/m+3hGGcQQxhr5pu9ggiDlP+r53zkcTQoT1ds8zITLhnANIARAi\nBAEGjL1IRF4unPFD3zdNm6YphDBYGxEShEgjnbdFUUCApDVw6EWWAx8EZkPXT0ejtu8JQRYDKTXF\nIMmEsdp7nyScE7rt6ywjjPFedgCC98C5pmkwJe+hP3XXJEmCKSlHo3q/115nhTh7cHJ1ezMelTCE\nlLDtdss4OT8/8946K0fjUdN0h2Zf5GMSUXAh4YIRDqF3ImGMGR+cdqvVilCqlJFaBjhcXJyDSFah\nHlUlJelmfZeVpfEeYiSVKyc5BahuO07pxfmDuj24dodRQBVotAwpIQyjOoxA/P7jR4sq5Yhevb72\nGN7va4SAUb0zg6gynibb/XaezBNRtHXfdx0oKaU8Sbi2iiecp3y13cyXM48iQFG1Q5qmSZJwTHKR\nvfr21YPTM0Gyxq4G1ad50rYOYUwwOewOwGMXLE8BQqjuDwCjBxdnL9+8jARUaQkDxBAxzpKUG6t8\n0B4AazVLhJWWEkRoagdFSdLbwSE1KYu7u3B6MhOMrzZbzMWubYdBzedLxljXdJzyvm2wSBlld5td\nWZZRG4Ug5HS5XCIDcQTXu/XXL14+fPrwbrPllCAIOaGq73brdVnlRVl1/R0mNCC4bxtEYCs7utsh\ngKM0zAc9DKfnZ6v7OwoCYui73/3um6t3g9E8L0MIUspyWlTLY+UhF8VicvT0ww8X8+W7Z1/tb6Me\n+k8++vDy7n4w8ub+5vz05MWLl2lZjufz9f4wriYXFw/LpNhu9109LMf5pJpZ73qtonG6H84vTrar\ndXeoHzy8EHl1f/eVl/awq5NxHligKTGNBhBu7neEENMbkxrj7KFtcgSMcYILUlbGGK1120NC+aAV\nLTghvJcaYr7Z1VmWVFVV1/XQy/V6y0nSItb3PYQRUazqDkbEi8w6J5UZ9luByJNH5/vtGiAYIaA8\ngQh6E7UBjMN66JxzmKIIAqckEUQqk6dJvV+PyszKPfT00cWn//S//2NjuTZ4te55xiNjjrB1vT9b\nPJ5UH8S+O6pSgczu7joYOJqOn1++qOV+xHA0DkKUZsJ5KPt9jb1WUohESuVdDCEYY0KEwyCd84yX\nL15eQvju0DYAABddp3pkiPc2RJ+JwnuvpSnL0WF7YJw5rTFm49EcYdpL7UNDCHbOWaUmVYkQLIpc\nS0MIhpApPUxnGUY+TREMAWPMkiRNkJL1ZH7cNIeqyLquO1rMJpPRfns/9P2kGs3n46wa3a/vltUk\nTVPvjMgz4yymKGFsOim7pgbBM8JWuz7P0313oDLZ7xsA6WHbSykFIwFC7+wvf/Wz/9V/9vur+zuS\nlVe7WggyG+W7bTur8m9fvy7G49nRUneHV8//dlLNELBRd4RQGJKizK7u1tOjkQbusL1NyiwCT3BE\nk9G0ke3d/SqvSkyJtsYGLxCkKZfRrLcHZANLKBb0q9ffjsVt71VaVVIpjDiCSKueMowJRwT3vez7\ngURCINVeYsqzAptgESKIwCQRIBIptbY6IQBBL5jQEVhrAYKUCe99NU3boTfRFGkxHPpeD0mS6K6F\nIWprQwjGWERJJIhyZkHAggcjtTPBOUYo4wyD6LRikGKAcQQYxMPhwCLinFNMkixzzlFKIcGEkDzP\ni6Lo25Yn+PzhyeFQG2OM7K30BNAUi0dPL7TWq/s7hIFx+XQx77tLo+V8PKGUeu93610IhiUiTRkl\nuN5tZvMJQGQ0Qt//4fd++cVfKqW0thHF3WHLuRIpl6ojjFrnIAJpgoGNznoX8P16zRKaFcUg2wqz\nbFrd7g8REGfU0w8efe97nz7/5luvk8Do5fqWclFU2Skgt3d3o1lBEzGmsG769f0GRToMOst8BKCV\n3bxcFjn3IDro06rY1nvvA0DgcNhXeVmluW6kH6zpLCEkzRJpVF6kWJO2b+aT+Xx5Cnz0CgJAIgSQ\nEh291IPqh+VyudnWCRd1Wx+fzBGIMXrt7Hw+zxN0c3drnEERxRAxJIPsxuW4aVaCkuV4Oh1XapCH\nw0E57yCkIokxRhua3b5Ms6PZvOtaKfWw7/Ns1LcDT4QxTlACQXS9vvjgQ+X0t89eCsFPF0c3l+tv\nXnzz0fc+UcpYFw59q5zlmBFMEPGJYIPsCcYEosE7ThmjuG3rAPy2riNG8dtnq3qfZyWipNsfKKV1\nu9NSEQBpwPfb/XR8wBBDEH/7xz+VRv7HX/1t74fZ2XxY19fX19aHxWIRKd3sD12nFtU0qvjkweMn\nDx7/7MsvjOlX9+tHTx8XZfry1bfDoZZ1e7pcQkqTIn/w+FF7tUXes1GSjJJuaHrZQ4AIo2VeUUqD\nD1AIZQ11Ns9z2QxHiwXHzNoyTdP1fheUd8GPRuXtesXTROTF2+t3Z0cLythmt1+tNqfLM6WUEGx+\ntPjFV79Uu54Gel6Mt9v7o+Nlp22O8cnJ8S+//EUIgTLR9G7oPQh4PFlcr26KosAEqmEgCAcbnDJZ\nIrxzQLrJuLh8fWM0DBEpGW9W91m5rBuZIQwg8DiBnF9evv30yWM51PfXL773yYefffLkT/7818+/\necYwL8uyb7s0LfQgDwflUSiLidHaW7cf6veJxyzLMKaUwqaVP/vbX2CUWCcjsEr1AMWyLJ88+fD2\n9n7oa4w5RigVqR6ctTbLMmPV+1oEIcyLVPYh+rBeryejccYFBUgpbZieTEdDr/b7WmvVNvs8z5ez\nKcEQAMAYc3laFMV+V89ms8ePH9eHQ9+3KIJZtVRKDcMwLoub68ssywuR8jztZffl11+XZfnh0ycg\nBK+VVf1qfzg7flClpcNmlGfdvq6y4rDvbBhOF/PXL56PJ6V28n/zv/6jH3/8+L/8P/9fyrMeMtKr\nfXITTk8eBI/vBL3ebC/RbZGgByfHjCfehnE6fvDg4b5fewbBycLhGCgEiKsQsixHMEtbrcfj6cXx\nqRtkKpIA/OR4VkxzwWhGcFXk6Szf2W7VrqXq1/1GBb3va2N9BJizlGKBAWOQcioIphQzEjGyAEes\nBuUhgpgIniKAgcdD12upijylCG9X67auq6oiFBGC0zxJstSDmBZ5kqYiSRjnMQQhRJnlVhoGcZ6k\n3jpKqdRqNJ9iSvp9Da1PKIMRCCEIo50xniIMqGw6pw0l5PRo6Z0J3jNMrbbBeooJgUDLllHYNTsQ\n9cnprG+7t29uoyWCFhjR4PyjBxe79eb+5rYf2nJUIsqSNM3KXBvTD4NzbhgGZyzFjCFsel0k+XQ2\nBiBYLTln/+FP/t2jR48+++y7hCBtJGXIWumDms1HWiuIAELAGAVAcF4TDOrDVg0dx6TKSy5xIuER\nyjMHR6NJH8G/+Juf/dXLVy93u10ILs0DE7erewDC7GiCBBZZakLsBoOJEEl+fHLChVBG5+NMlBwK\njBiaLub7w+FwqCllqUii93IYgrfR27OzMx+DcTZCWFVVPwwQg6zMfQiDkr3SPE8AhO3QC5EeDk3w\nYLE4ag91kadllT98cLLfb5u2nk4np8fLLCt8QC4gRlM1aBhRcHFcTQBAPsRhUE7baTXtmgYhRDmL\nACQJt1Y7paosa/f7zd2N1RJjmKcZshZpN00LqLQZhqxIAUf14bBcLIzS9WFHBT1//CAKXJ3M7zZr\nD2Inh2o8Dx51tcSBNNu6EGm920uje6uhIM3QD8P/j6b/7NkuO9MzsZV3Dnd+8vPmWIkspiJZDM1m\narbUSepxC57xeDDwyAZseGB7MIZh+IswMGDMF4eBrWipZ5SlHrXYrc5sNnORVcWq4ltvDk++873z\n3iv7Q8HrT6xrres8j6O5fOnSYDyWxsxXq7OLedk0eVn4vk8ZXs3Phr3Q8en5anqRF9r1OXFXrZ7O\nFu+883MIobGyN4h7g/6j50+XWf7o2VHLdVN3eZ43XZsVm+//+K+ePH30ymuv3Lp7azQZAqDjOHzl\nlVdc13MY41w4joOhJRQOdwfBKGl5pyRoWx7HcZLGw2F/NBkShrHnsCDclBUXAkKYpimldL5YIIyF\nlEKINE0ZY9JIzjljpBNtb5Biz0WEul6wt3vImLter5nnUoYD10nSuD/sWaB7cUStxUa98clPPDt6\n0XbCIGoRllJDC6CxbduJttNCqo6nSUSATQL3s298cthLL1/ax8S0XZGkEQDo2bOjy1euAGSlaZlH\nlvn6fLp4970H+5euF1zee3JUth1xvXTQf+nl259/45NpiJlVf+NXv+WEaJUvietxbRF0ulYqbjlX\njLkQ4o+OMYYQ0u/3k6TnhmHcH0x2d/qTwfbe9uGVy2XdFlXNSA8Yz/dTIXWUhP1h0okWE+L7PYhp\nXWV1scZYQ2sO9w9jv2csWK1zxws2m81yuRRCAAB2d/cp8X0v4lyvV9VmXZYFz1bN6fFCa+v74cOH\nD1+8eMEwCQNfSxF47qAfV/kGATg9O5/NFsDYfFNcv3oVW4AtdBFpy+bVWy9TgByKGYUewtd2D/ph\n6GGyM+rtjHpalDuT1IHtVoS/8InX/8Hf+2eXLt0BGngYffFzn/3rv/GroYcmPf/aeMAaDhu4WQtB\nkqqGxyfncUrX6+PNfFnON/3AVeWyW84d2XnInj1/htLt8WAy1sZUVeUSGoU+AIDLrjMCYWCVdh3a\n8s6L/cDzkTIYamCElZJiMuqNkERd2alazs8v2qIe9vpd3RRZ7jLWNA2E0PNDLrXQVivAq85BLHR8\nwJVW0HMjYInsJMZYKVE3lTaianjHlbKg6wSjFBpbboq27mTVWi67qvYd9yPPOiakrMvEDbECou4Q\nQEJIoQxlbtTr93oDhAgAyHEcpVSe50IIyQVBtJf0EQBaKQyB59Oy2mACkji6OJs3uRz29upKaG3c\nKMjq8ujknLnBzs6O7zNESSN52k88z6u7ppUcEYQx1EYihIzS56dnRV53rTIarpaFkejdd95fL8vI\n7yENjbLIAoxQts6tttgiDInWVilltRr1wit7OxhYYjHRpBNEaowIJp4jjF43zbpudq/e4Aj+8Gfv\ntp1UXPaj5PzsRFrDCXh++gIgqLRFjIVxQB3CZZcO0uHOWCGggHUDXwhRljU0VncCWzgZjR1Km6ZG\nFBIfA2qjYQQhKctqvdy4jhN4HmXYIguxBUy3slYt78qWV918vmy7jrq0bou8XC/WC9d1x+Nx13UX\nZ+fHz190EvT6IwiJ5HK9XCkujLWt4P3x9vMXJ7wVLnWqoqKIKiH7SZokiRJS8NYo6RKoJA8Cp6w2\nFkhpJGHY8R3H91rRFkXBGBn3E1k2gBuk1O6gPwxiJMHpsxe3Ll/nVacaBTQwygyHoyhKpLDWWjfw\nO86Z5wKEpTYtl+tNXtacOC51vclk2/OCqmw8N6jyCgLsuH6neCV5xpvvvPXjH71/r8Xev/qD339y\ndkwovXp4iZc1MDaK06yqBZdCyLIsmesenb44X556sVeL8tHTD8tmY6CWVs4W07KqpNQO8yHATVHq\nMt/Mz9OtZJEvvSC0ylR5Y7XRUmBiltnFMl+2qpMQ7h7saq3X63UQBOtss1ivECVe6BFGb9261e+n\niovxpM9Fq43AFBZl6YZB0dTrPMvLGmI6mUxOjs885lCKo34MoVZ1hZV4+fYNC9TZ+axouk4aoYG1\noGkao7QSMo6itioP9nevX7o0GvRu3by5vb3d76dxGn2Efd7d3dZaS6Mcl966fRVAFSShMF2SJNgQ\nh7rpuP9kPl8J/eB4+eOfP/3RW+/ffenmr37jC7o7+9YvfeyVG1sB1QhqBBkEtOtU07VKayHERxQ/\nqRWmxA8DTAlzPOpiP3Rmi1kY+nfv3mXMffr0GaO+NaTI2/lyxWXXitoNWNJL87Jqga4lb4XMikIp\nVHf6fJFlnVhnlcWsbmTbySKvOOcAmLIsEXbGk93Aj30/kNIsFxtCPaOJMsBaiDGNwmRTlEobY5FS\nZpgMpmfT1WYdJvFivXry5NlqsfSQw8v67NkL1apr+1fronn15Vc32TKI8c7O+PT0BGM8mYy8wK+a\n0nGcVkiG2ZXdq7//b7+9zDeYmC+//trnb94kebefDnd2tv7y7e/PeO70YqmUUfbJo8cNyK68cuW1\nX3pl72PDa5/eMVFzvny6tbNPsdNWQgvrUx/d/8UHmEDskkZz4ruUMQhMkxVcyVryRgkNrGo5lTDx\nAmwAUKDJKlG3HsaiLLf6w14QNUWNMQHGAml52xVFUfOGOgxiiDHWWitpMKZFXXcdB8ZSSoXQVdVK\nYQRXaRQ7jGAIEIDQ4LbuurqFEFLiIESCIAg8D2GglKrLyiHEY45R2mitlakVd6MgSZLt8aQtqqao\nPOLIiiupESJSWwtQ3XHPDymlQglKKcKgaT4SqNo8z4TgruuWZRlHqesEGNC93W1lOzd0Ctl4YTSd\nLXqDXtwLpe6ark4HUTJMDdHURZhBP/T29nZ835VaCMUp8qGlCHoMBWk4Yjh692f3ZueZ4shzAqss\nr7lPfIZchnykEe8Ub1oEwMnpUVFmDBOXeYv5puSddkkBFXehdpGfxuOdLeY7pusmaRpT9/jJs816\nPRyNIEaj8URKGad9PwqLuiQe00gjF1gkOedSSkqp63nL5TL0g0Hakx1HADLCKKUAGuZSZVRnOQsc\niqhL3WHad7FT5kVVlGWVB3EAgB2k6d7OlkvJ3u626zJMEWIEIDgcTajjIkLXm0xr43guxlBYi5hT\nlCVjLAgCriR2sBf7EtqqaxfLNbAo8iKjrEd8Iw0GOIoSpcxyPtfaDgaD3Z2dJIw6LSW00dbw3Ucf\n0iS8fONaXZREGpegYpMNkjTE7KWrN3bTcTcvXvz8sci7nhv6hJlOMMY2m7xoGjcODcNFWaZJMu6N\nsEEIICHNum4JJEChKmsY8YyChLjn5+dSaxr0T+dZZwiirBE8jOPDw0PeNH6a7l+/vtxkq5M54oBA\n4sfJcDi0CHLeOS7dZKuPTJ7rfG0JqNvs6dOHANnLly+PtraNAVXZYEzHw4nP3Cu7+x60ZZVt7Y2j\nwNVKvnT3FgAGEzvZGjZtCaASonv46J4xxnEpxlBq4UZBMuxndTlbzJeb9b0H9wkhSomuaTGGvu8G\ngdeKLoj8qBctN6u6rfrD3vHxaVGULnaklJACgNXe/mh3Mmjacr6ZQcqEgY0ynTRZVa/X67qurbWb\nzSbppdeuXUvT9LXXXtve2Tk6Pj45v/iL737fYtrrj5VBq80GALNeL7uuE9wURWWU3hoP+lH09NH9\nKA2CJF42HfR6x9PiRz/98OGjFx0vXn35Ei9PXNVFwIoiR1pI0VAKleFuwCxUBsimKYRogsALQz9J\novH2uD8ItO2uXtu/dfvmxcXF8ydP+0maLRd5thgMU89zMEEAqOPnT6rNKqS4bebZ5uLw8HB7+8p8\n1QTxCLteAzrXdzjnZVlXVZNlWVnlRZltNisvYFpLrri22nGYMlJo4Ud+kvSp4xqAietJZYqqI25w\nPlvM19m1W7eUBUpb3/d3Jlu7453HD58kfthPB5KrqmzKoj67OPc8x48DiazC4OqtGxCTsq6LqpnO\nVsbiz3z+6ydn1Z9/50evv/Hy3/qdr792+WBMQrVufvSjH/zZ97/71b/xG2/+9a89X59oVp3Pn772\nib3/5H/x15Nd8Qd/8fbf/fvfufGZV37p17+5Kn2BTFYYxx8IidvGkNhzF9OLqJ8Md7fPjo9a1fSi\neDIaSquF0o7n1h1Pkh5vRaM5oVRww6XxHaeqS2Ch27rYIZCSJImCIFrNF5PJxG6BpmkG/QFvOyk6\niuEmW8VJghlllGbrTYrRaLJdZjlCaDFbBKHrMY8A2LWdaAxzqbFWctG0ldY6TCPeCY2h65KQhJxz\ninSVF4yxMAg0tISxpm4QQqEfOI6DAXrx9EVvMvL8IAiC1WqJCUNGQYR838cUUgcTB4Vx0HVN27Zx\nFLmeXxSFUKrXT2fTF5/+/CtZdSRMw42c7B5o3o3H/VV+hglxfJrVmTTK9x3qUsUFpggyjCAJ0jCv\nal5zF7HlYtZLR9pYKcW1KzcWq43neQwTQ0lerBmlrhN2vGUO8h23KQqHuZQgrUklVL2ZdUZtD/rF\nagMclFVZ1OsXXZMtjyiCO70tFtHZanrj9s31+QxT7DC2ODp1mTOfnm/t7CmgSp5BaxFBRZ33+yNl\njUUQI8QY+8gmY611CK3ywkDrYddAEAQ+1zrLsqrIfc+jECENsAKu70iphZK6k15EADTMgVWXE+Z4\nXtCUFSXebLaKwtgC03ERpRGkpKyrTnFuOkSgF3hFkfmhtylyaTTGNk3H1mG+71uLBRfUc7pGrBdL\n32GyE5cv3aAUTxez46Nzxnxdd23daWt8L8zX+aXbL5NL5v2fvbN/9dLu7t7Z+Tlz2P2HTxantdFk\nZ3v/5OwUY+x4gRSd58fcCmCMUip0STAcLhdrSilCJAp7SileK4ZgXXd1WUEIQz9wfYcwx0BU153t\nuMPC+SY/3LncFs1yNu0lHnH3iroh1Bv4adt0lRacS80FYWiTryeTCRet0AoSWucFAIhRSwCEAFZF\n7WL38v6VMs6sNqdHz6I06sqWWOwCqoGiVDOHHJ091EA5zC/qKvDDsqwpslv9Hm/rfpqkaaysQRgl\n/cRz3cVs7nhMGbXONllZREkcRcnR6dF4MtraHub1WpluMI578cBxaZlX/X4fADCZbDsUAwavXD2Q\nTZU3BWN9LhqIiLAgLwppDfF9zci8yCuloEPf+cX7O+PRpD/82U9+UpTtxXwlDNzk7SjplVUthFyt\nNr4bVR1EkNZZubs1np2fTba2njx59Fu/9VvFQgLQtF2FKbz9yk3AyLvv/aLfn8yXXVsboSAmTqNl\n13aOEhDhIIp423LRaa2TNA5CVxldtVXZlDVfB0GwvTV5+uhxVVS9NPYcP1+vd7f7k+3toqiqKu90\nF/jkc5/8xOc++elHT+/94R//uSwXTjDC0M4uTseT1PWYQqauCiWk7/sYQ611miZN0yrNN9nSoUxK\n2bUtxnizWSEEuOzCMMSUGABqLqqOc20UomfLDHnRpcMrR0dHN65cnc/nUZTs7x8SBI6PX3xUUwiC\niBDPWLlYbpJ0OB5Nnj1+YqBhUEFRXLly9Utf+MJbb/8cu/Tjb3yaYB9p8tO33lrMN9E4evfhI8/z\n3vnhd3nLv/z6lf6k99f+b//LZBL++b//s5/84Ec3b9/80i9988bh7r13H1/bjX3phpzb5XI87Ps+\nIduTyWK1LLI8HiRBHJR5TiAKAw8ryDDQQslO0phtimwwGAkutUTJcKJlm3V1EoV5VyhrhvtjqFFZ\nlq7rJklUihZb2qpuurgYxWkchyzwwih6fnwUJrEnhMK2ruvlct3v9zGmxoA4jBzXz/PCcuX7vkHG\nAuP5PmVYWGkZjv0Bb1qttZUyjkMMkZGKee6y2DiUKiXrsnJdV2uthQg9jxAilEwdxphTtZxRYiAo\n6iochG7ALDRlUwIE3SC0AJ2czaqqSoK+sWK1Pp8v0pt3Lr/98/sWOqs8CyidLaaE6fFkvC7q+fSC\nK8scopQUgg+GPYiBtcBx/IQxRcrNZu24WOk2Dn2p1Wp9gSACUBfFJon9yfal1WojVcNFayFpG6G5\nIIDG6aiochb6ge+6IAEQb45W272R0URhTUPW7/eBaNyBJ7Whhl8Uy9FWf3k+9YRnjG1EQz2/6WrH\ndyRvKEVd04ZRwCAGAHQdb7iYTCZNXTLmamtEx621zGHW2rZt/TBO416e55hAhABFJPL8cpMZZcMg\nllKrUirmUmqkaaiHtBEIBRAAq3DghwBgRimXqqhKgIEX+ooRLUUQugbIuik93/dCzzRdGNKT0+Ot\nJK7r9vj0jIax0LzX6+dZAxgd9NOT44sbN675XtR0tRIyYiHfdAhDxyDXpS8eP3UI3b18KKW8mM6D\nJL2YPf3w2dMXj1ctxEGYbKXB9OIMMYQtAlYbKTCwqq4BCzBmru9lRZUkPQAgsZY3bQON7/u93iBb\nb5RSWjNtFaIEIzsZ71wcT5kmxHEIJc8eP8EYlq3whwNrYVcLZPAmrx3HEZ0ELum7PWUkpdQaOJsu\nkjDONiUybZCkyOJnD5/5UXj7xs31xSwKgpdu3Hp2+uL87GJ7uJeVdeCzqljiiGEm+5Oh4KYqaymt\nS12XYIm0EhxCCACoqiJNhtQhF+cXvudBjZJeSl0KAIKYCqnTdPjsxcloHCZJ0h8lSkrPY3mZf1Ty\nhIiURUag2j/cfvD0PrQ2Dfw8z5lLa6UMZY2Q/eHoopv5UUydQBX2ItuAJUcIuJ43HE1WxQvquDyv\n+45/djGnWrw4OiMGGoS0wATDftxPIqfoNKUUQryZb1Blb7569dnT9w+uXn7zjc8+uX9yPi1XKzyb\nv3O8FtrpQRZAWSeRvzUez2erYW90Uj9L0zhNU631xfzC930IsJSyaFa3b1+/uDg7OjoK/cAIee1j\nl4GSCKEnjx7yTqVpbLm4eX376nYgsqc3Y2/4zS//4IMPn04XexPf82NkJAR60RaX93c3WYko6/Wj\nzWYNAAjCMPC9fJNThCkhWput8bbUinnuerPZbDYAWQhh2zXXrl178fzoypUrQpuLxaKrKqDU/Pyi\nN+g/fvp8//BAGXtw+dLJyQthhYuMlgZDqDWss6ZtWwSNR0Dd5b/917886qX/9l/9I+3Q3b1L2sAn\n9y4uHma8Lb2Bu66X/VH8t//z//zf/Zt/6blJf5DE/XCU4D/+g3+3OTNvfuzzX3zz0/PZ7A/+/r8+\nejRj1ql5/c3PfQES+OH991vREr0o9nqjxyfPSZoe7h2+UC+0tR3XSGJpjReHplNKwtAJYSfHgb+u\nszyrsOdgFhjsKQ1cRi0XhLrCSg6Ao7tGNm7gIwsHg1HVtqQVIXVUWY0mYwSAFMIhgbKdE0GJSoVV\nHA0d4p6fX7R1F7Co2BTDg3FeF9ShndQ+wUBxpblDiGokpW5Zl/1hXxqNKb60tYUAto30Av9iPoUY\nsMDzRz1JrGjFYrNSWhHHrau2kzYruF+1KC8U1HEStU2DkNVKH+zuzU/mbogcXx5cv0EY2ju4+uTp\nHFjSVBvXcYFJeaf6YyjyzKyg3/mqq/bvDpdiUdisUE7M+vn5StdNmPgucxGgWkvIu54XYoMkMJxz\n6JBOIZULz4/DwMk2OHCDPJQYU4ypABZ4ZJUtIz/AmLSyS8ajUhoL1CRytDWbRmEanJ2fUkP6Qb8t\ns8HIHVy7ejpdNo1grqukKuYrPwgCLynqYtDfmk6nheX9fl8p5cX+piwAAZRA0WrLrMNCXjeYkpar\no7PZzmTMiIaMAgRI4Gy6mobhR+gSzjmnnVJBI2ApQwwRUYIYQDHqurJQDXN8gwl2mUVgtZjduXVt\nVndSq7xux5i0sjNSk4hQ34RRpJoOO/7zk2Pq0CT1AYAUSRfrbHGR+IeEgsVmZgHgXDuur0xLGO6a\nlgCAKVBQYQS2tnucc6HNaJRAc1CtkO/H+wdxp3RXtjvjvbzYYAI32Wo8HmNEIcEIw6Lh1CGjfgyV\nLNZ5FCaUYkRh3a6jKPB8YjqDCSSUpGE8r7vsYj5O+ycvzjDAo+FwPZ+vVqutG5cEsI3oFm2uhByN\nJlILxXylBCLUcd3FdOYyh0UucOnZdPqxW69Nz2ZpjLDVsigePfyFsJqRAAfhnY9/OvaSD955X2wq\nF9NawHq+SXujzYYDADTWOuFd1yESGYaBlEYp0bRVUVMFB6MtxhgL/Sgmx8fHbuAf3DlYL+auz1ab\n5Sc/9nI0TI5OTspGOW6wyUvPC7qmG4f947Nzq7vBzgBBCBXyHFdZXSmBWuMznwG2Kde2H1c2T4NB\nxqvlkrvMafOS588G/W3A2LOTM4uc4faEi2qdZ/0kLivOMGauU8spZYAGKmsL33NMU6V0+NO3nk/2\nDn/63nvXDvbffONXDnd3//l//2cvZlmrRFFPaYicADnObLs/qTegq7MXL453L4+iUfTs4bPjFydW\nytE4AQ6oBZ/s7sNNFXvRv/2zP+4nXmv0ui5+8v23tsejddv1hsnh9gjVtW97SRq1G/Wzn3+wKBsW\n+js7O4c7g9nx48986o4Tb/34nQfL8/XepHe4Pzg+njac70zS5XLFaMKw7/saY6CNNEplzZIxF0gd\n+G7kO11TK6V29/brzeby3t54MFwsVghjFnnD3nZbN+v1cjIcL6YrTIDv+4P+DiEkjuMsWz9+/vzq\ntcsCSkj5ZnFx88a13/j1//TnP3/wf/9//5M7t255vtsbXHvw4T1L8YIXi/XMaZA1vOHhg4cPk9SH\nvJbT5fr58oMntTktPvaJm+W6+uN/8ke6I0IA0BDJrKby5w9/Megl61V2uHNAqrapNe+l6fT8Ygwn\nURRdnJ/juNdLw7wotNZNXWsuEICzfKH7A4ZZHEYKQOY6ruN2XQMhyoo6SUjgelzJrmkZJQgYrQzG\n0CXUIpCtlgaadNCDEPqhr5QOAtfzhk1bMcbqum5NSwhJ0xQqRAkQbUMxNkI1dSWbWms5GAyqqkIE\na6swobP1Mo5jqRUlqG1aCUybZ///xQtVRiMNHcogAIHnrutVEDgOdfd3dzbVpsiywPN7SZ8gup4t\nJ6MdY5Ck1neppYZGbpLG9599CFzFu4bGAXVJwTca6KiRrt8T/FgWbW88kNBSSnm+iRIfyIZBuakz\nzKDve1qDgPlKdoySg8uXTmdnYZJKoahLBe/K9ZqyMSZwsV7t7V86P58SQjDGm+USY0wI0Vr7hCGG\nm6apjMibIkgC4NlaNAmLVauyvFGtevb0eO9gP/B82RkFoOsRCRT2oNAtpAY7SCgRBkHXdYJz3EDV\ndQghBXEUhdrIMsspJlJyRABjjrGq7lrdmcFgQAhp2w5AwNwAaAM4UBYQRg2X2FrfZS5yNUQCwXQ8\nrIoaQuBRgimZrRdXb14XwHZ1mxfZ9mTHGhgEiTGqybqkl/KuI4QkSTKfTwE0VVVrbXPdNE032tqu\nqkpKLTsZRJFykeN4eWssQlEcGCkMsF3XLlfZmpEvfvbLDx8/Oj+9mM/nYRABhCFlnZZtw6fT+c7O\nlud5CNCulrwrPc+jlnElO9F6voMsCjz/Yy+/9LN331GCeCzB0FWogUzTgACgN8VmUZSBF7oERqP+\nYrkJ+6n13OH+XtHUCaUUUaV55ATlfBWlScK8zmPGmMGghw3Y2945fnGyXCxi5j58cn/UH5RNqUQ3\nnIyKquwNB53gQsi6qIfXx1/8wi+tFsvZ5qJ4UUsNz86PLh1cdbBTdDmvuiCKiXYlVwiihuvtK5fP\nT04lgK1suGgi664X2aDfxxjrTvss9Emwmucem7PN7HNfekObjjfZ+cns3Xc+PBhfr9uSuY7DXDfw\nsyyTWqRpmi0XEKDA7Rtj1lnlRHFe15OtLdU05Xx1uL9/fHxaNu3+5cPv/PAnBwd7FW+3JgPfZ1LC\nuBdvbW0h3CJogSmu7A1XWcRBV3Tl3ta4KzmkKvZQsTmqa1EW3fd/8s53zY/Osnk48tdnaydwd/eu\ncd40TXu6uJAddvwWALu1N1meLNtGURqm4wEXzfFRnm8K0CX/s//jf/rt3/+Dr/yNrzx6/2h2soiT\nQQPpjz88oR4f1UgsH18Zb116+WNFJfK6mWcbiAKf9U6el3mWffGNr7/z7mPrZqu6uvnSJULY6fFp\nU22ow1zkvXzj5dOTi9HIGUN3vV57XlQ1/mqZEwwBoQbILN+M+oN+HA17aZnlRukU2ct3rr7383cm\nO1svvfTS7/3e71Hm7u0OzXGHEEnjiDG2zlbr5XS1ySmlbSNjn57PV2++8bm7L938B//o757PNl/+\n2uuc863JzsNHv1itF2kUY62/+JlPWs1funsjX53/3v/zH371y1+W0m068dnPf/4H3/ve/uXD4sEK\nMDcJJr+Ynp6vc8cPl2cL5pCr+25eL7/xq29mmwWxBLZtu91P6rYqVpsgih3XV0ZLaIjHNutV5HuB\nG3R1o12/LGsDKt8NMIDNqti+OioMKJuqEiLU1vMCVZZaat93q6Y2ykIIATDIwjjwIUHWKGlNnMRV\n2SijrbVV3SIAB/0+BPhwOM7W+Wq6jNOk4jUiyGUO9SOtFWQOAMhaqIHFjAolqedSz0UIrTcbzwu4\nFFrrXi+tmnpvMqnrZp1tjNHj3e35fM4cQglarebWqK2didCiasrp+TRwPc8J66ySRIGOHj+aUtfy\nSrJr7ux4boxhEDWyg4iOR4PpdNrUnceC0WjU0MYaMT8/27kyqWuPKDCdz4lGV27daHnXNtz1veVy\nyQghLqqaGkAYRLHW2nVdqZq6LSAZU89VWbW6mGbzeV23ewe7LqFpGjOXTadTwdw4SpzIBz6kDBot\nsNWp73i0l1WbvKxCz0UOni1WLnWAUYEXII8UqlSQl6p0fKeRNaAwGfQ17zzfKbNNyFxIsZTcYrje\nLF3q94f9xWoqJN/e21/O5lEU1bLGGIdhqJReLpdKaM/zDLCYsLqrCUSKN7IDyXDIhQCuiwLfNK1H\nKYRAijZNY67VcrMOGTUeUaLuiPB8nK8LQBgvSwsBL8vo2rUXx622FkIglNFCU+ZCgJUEWtv1YhNH\nacD8uu3qSnAj9/a3lFAOIUYJ1/W17N56/6fXrt16/OjZoL8lm66pKuKQfhRo5kEI21YWWY0Qghb0\nop4xhtdtVVb9yfDs5GTc7+1vb52dnMqOt1xeuXl9nRcWIC9ytYVdZyBg49EOQqhqO0Axi72MN4Pd\nLdEI1lWybOIwkQY5iLSqvri4oC69euXSZrPhRXXpYG96MZdaeEmklMqnM7M2t27cevH02WA0fPD4\nAbeaMff1l16LoqQuqq5U29t7QS8pTdfISiuQryrGRNSPNNau6xarlovKxjh2jAFq2O9ZAVouwrSP\nwngA/enZ+aVLlxbn0+n57NqN63evv7LJsycnT4PADVN/Mup//s0vdZIcPz7Z7e0sNrnLQqkVxphL\nU5al1Nbz3HyzTvoDGrmFqLfHO7zqjp4dpV6PETIaDTotaezn+TQXPAjT7a2d58dP/RAKvfb8XdN5\nlIZQsrJdKdMqZLb3d7wk+cUHb3kkKDe5koZ60U9+cm+6qKIkPN+YTd68/NonN5uct9WgN/AI1NVq\nPOkbvJotu0sH2z/7/n3Zwq3dUbZc+gFBUCQDXMnp0/c++OA7P+/50ac+/9mzneSnb70TQDxy0WAS\nv3bt+t4g3qwvji8eBXFSdwIGfrDd29RlQet413t08p7v4jsvXXv49Nkqz6n2Hrz/5PNffAMQ+P0f\n/3SyK7gSxb0zhFB/1J+d5UHoMUwjP0AYDvqT6Oatn/7kLS2Vy5xW8Loo8jK/bA52tyff+953V/Oz\nz3/2k2VZrfNsaxRfnE2fPTq/ceOmg2lT1b0kEsJxPTI9OXrj9dd96v+L3/03cTC8/ZVPL5Yrz+9b\naWIvHF3rJ0mSbzab5aYps4uj49dfubs/ueyQQAlVls2H9x5tTfaNhm+//wT5vqT00emxGyaqroBW\nO/2JR1jgYmhEFDK0f7i3f7CLEXIQqbPqI19iI8TFYt5JEUVhGPhKcQO1H3k0dCLXxxhyxQ2yD58+\nYoyFrhcSx0DQti1CSAiR57m1FlNiITDQQgibpm7aCmPIGNlsVgAaabRFcDAeBVEojZVaX8xnkJG0\nn5R1kWUbDFHg+b7rOZSFfoQt8ZhnrbUAtF0XRL4xpm06C0GUxIwxQkjbtpKLxWyGAbRCiaa9OD+X\nogPaSK4opoqrqmyhRl3DdWdEpxUXGCEMgK3kpeHhrb1b7ZzPj3Oq/c00Z9CLSRSA2Ac9D0fZcq5t\nGfVR1CdhRD2XEAtjL3Go37W65roVUFgJGcEO5VLOFgujgcscqI2DST9OHEY9l23vbPmhZ4AOexHG\nOE3TXq+nhOwlKbB2OZt7zBuEqWiarq3rus6LqqxqC4kBaDlfUcd1wwA61E/jrC5bxRFFZdfkReFg\nR3FlpTHaFnW1d7ALHVt2FaXY8zzf8RCA1kILsev6hKDNZuUw1kvSptj4nmMk8DxPKdV1Xa/Xu3Tp\nUn/YcxxnMB7t7u47rssVjyLPKjE9O+WtaMqmbrp00JdA5eUaYhDGQVVV/X7fSqglaGqOsQMs873U\nSNyUitdyMV0z1/PCoOnaNE0hhFJrAOByufI8HxrMsEsBk1w2eU1QG4UAQA6hVcp4NI7D7e3BjXIh\nFsez1GPZ7Fkc2uvXDotNYTWTXbu7vZNEMSHU83zOxcV8zjlvmubSpUtaa98PMaZV0x2dnEJMKfOT\neAgspq4HMGi6EkONLeh7qW7UaraExm5vbRV5zqhbVZVRuipqhlnXtKvVBjNKHBYPerXkqzJvpbhY\nzIq6QBSlUcgw6Q0HkJLZcjHYGp9cnM+WiyiKojR69PTJ7GLatu1yuZxOp7003d/agcZ+8mMft9og\nYNerVVXUcdxHxFEAQQWNsQbB1gjjgvlmZrFQqgqCIM/zcp1VRT0eTqCGLiN1Xe7t7RMcLGbN//C7\nf7xamTje2j+4UtalRtLxiOOzwaivlNpsNn4QMSfyw6hs6qqpsyxrmmaVbSBGXCgNkcGw5WVWzvf2\nJ/1hDxDSSuD4HgT01bsf94i/mq3W63VZNdzAs3lhUUhp/92fPcU2sZIR6Plu1HIeROmzZ+enF9np\nxboV9mw2z8uM83qzWUNNRr3+1rj/yp1b3/rap/Ll2bXD4JOv7x7swRs3/KuX6K989dZrt8P/3f/q\nW9t19R9/6e43Xt9Hyyd/80uv/tqXbt7cd//Wb/3Kf/TZr9C6MUDu3LqmXH+ZtYCRZLcHkC80k8rT\nNlhu6icvXvzFX37X9f3Owtlm9fLHX4nT4dHJea83OD89RUajEMMAF6IOh4lABnkYebDg2Xx2Phz2\nv/LVX969dLDI8/P1gkX+cHdcl/n29uTmjavGiDQJHIaB1oe7O3/tW1975eXbSsmdnZ3tyZbVajLu\nQdNe2t1iCL71g5/y1uxtXb58cLMXj5tMGNEwChC2SvP7T+4rojWz21f2SZSqMJp23VlWDgfjs6Nj\nz3GcIKyD8PFi9v6DD/e3hte3+inqbm3Hf+Nrn/NBMwyIKtYBBOT0/AQAYDUghKRJooRsBQ/D0Fqj\ntaYEdIIjZCG1CiiALcfAo4RBYzqhrHp0/4Ph1iTqx5xLh3lx4qlME4a8MFgtN8CYMI2VUgoaAAxE\nFhPcdR2lDheCEBJGkRS65ZwRIrVdrJYuJGm/F/WTtm03m7WUSiiZokRyqa356PJAGABrpZQIAIRI\n27bMcQgjnuP6vptlBQKIUaIkEm03mUyqqvEcz3dDBAkCWAgFNECIWKUJxhjDolh7IcNMP37xsDdM\niUcRUcEgrnQTMYYovlicYoosdFbLgkGPOtGiPhW8Y5WDEMEIHuxsTadTTAyGBGjo+N5kMhFRSgC1\nwlSr4tZLH3v48GFZVXdeuYEZfPj4QRjEzHeklIDgtNdTUloLkqQHAd7k+Upv/CgIHK+Ylxgwh4TG\nACShkEXHK0JIWTWUgd3Lh7PzC0YoDRyEkJJAGzROd56dPL124yrA6PTiglG2yteyFQgRzKhQmljr\nUtbWHbRAa2xagSlCiIhORVGEMRJCGGCtthDCtm3W6zXU2GINscUIIgMBRGkY2U5lq7UJ/LPZ2cGl\n/bwuBQYe89pNJZsWQhiFSdvJxWKxt7PnMds2jUNwmvYtJFlefkTqN8a4HkuDlLcCQ2KkQRgu54ud\nvT3FVVVLjFmxyYo8j8Mo7ffatuBKfuGNN//sT759/epBPwi2er0wSYZx7CMktMLWdG0NgDXWGgiw\nQyxBiJEXZ8fEdRCjXBsuTNwbfaT/XmYrpSV1sbEqz/M0GIzSZHWxaHlzde9Aar1ernzff/b8CcFs\n01ZtV1eiSwbDk5OTfuB81LTKuhI4eLy/fX561t8enRydWAh6w14qURQlWZZ5nvdRWLAVHBJcZiXQ\nYHoy293adxz8/vvzZ6ePmAcDsjtKx5giCfjZ8mw2XYRhcOnqwXo1Ywh1TdXyhjGSjtIwDi8uLjBy\n3MB3Az8MudVgtpjuhbu9SaSUangTp146oB/ce2t7Z//B+xchdgCUk+0RRbAuc8d3PDfqhMo29dWD\n64+ePs6bdTwINov5aGtsVMfb5oNH73/i9Y89O7JR6O9sby/ma8dhXHaEwclwcHn/4Pm9Z8N0IJWt\nlI4GIeVotDeczuZVttnujVUrDQLciLISCEBG3DbnVw+utqp1fJKVZeQEURTxis9mUwj0YrV85ZVX\nBoHfMWR74dbW+Nbtq8fT59DR/5v/7f/02//h2+Ne0C3R5Ss7l6/vvvPwg8uT6NU7X7p//4Nf+62/\nDXH19qP3/Xbox2lZLYmEs9ni4vk9iNyDS1exbD2iX/3Yx54+vag2uFxIDdo3PvuJoqgmPWeYeKPU\nL8omCd2uExhZ25R3r16zVj95/GhnMKhV+yd/+gfb2ztxHGNktkcjK2VAaSfVcp3dufvaYjblrbYa\nxkH487ffHm1NvDAMgqBuMkbt4d6ka+vYdX0WcoWI6yVBUPPi9OS+NtVq/cz3r1oFHT88PrvY2j9s\nuGyEuVgWRXHf98K8tE1L2M5oP+6fLGcQmy98/hVr7lJorBTZeg2v91559c69ex/0I7bVj6EFty5d\nJ5TizSbHGPs4NAAIJX3fbznPi7I/6NV5Jtrm0uWD2WLRdjxJEgAdWdd1WcSun8Q9s9RaybpWrhu4\nrquUclwXMbjJsqqqBmm/E7KrmySOmIvLpsRW9ftp1wkAgOd5ACAIoed5GMLFYhFHUT9KW9FZpTrB\nEYCO5wIOyrqy0niB53tuKzhzCASQOcQhjhKyKApGHW20UHyz2VBMPjLtQQgFV7wVGGIpdNM0hDDQ\n5m3b+qHf6/fatrZCt7zBDGOoS7EK+/5ga7Aq1pZANw6VVZIBP6WqFnleDaKtLheCW8d3fD90mdOL\ne3VXV13Rm6QdcIaHnpDh6dEZV80mz1zEXNd1qEsJ2SzO+3FAIKjy6vj8xWR3XNZtk+e7k0O1zrU0\nFoOWd92sRQgjSCotNEejpLd3sF+XjeZGcsUwiSJfa91Wda+XSinbtg2TWCllMVTGdq3AGCthfCcE\nlpydnnWSR70oL/PQD8M4MQAw3gBkoTXAcxhzrUFFuQmDAFgUBaxt26ZpmMsCFOSbTAkFNCCEAGCk\nEhqaTplROhBCZaslBqDnh4ig4XiQ11XSS60GQBnQcIxAy7m1DiN0OBwKwVXHgbVFVgmhLmbTsmmC\nOFRKEULydU4NYZhZZa0xAKKyrDBE/UGar3NAQNJPgVAORvlq3sl2Mhrcf/Lzm7ev61YC7tiO+b0g\noGQQUWuD9WphAYIQCMnTXtLr9Z49exYFvqnauq57ccpbsZEVJgQwBzpmk80Yc0XHIQDAsqbmGWou\nZtPtnR0I4YvjIz8K/TBQnRxvbwWNN+Oac44hgQ41BDVctobzrt3f3avrsmpKwrACGrnsfDXtk4Hk\nK6WU1no0HvbHnw2CQCmVLfPJzqTa5Hmx/tm7C8xgK8q4F84v1mk0xA6MhyHx6Hw5a6RyHCcI3KrJ\nA9+Po6CtO4JIx5UfpxaaKI6TXvr8yfM07jGXdrKJUvfJ86d7N7dHg+TRIzCdHX/6jc/8afnH4WCn\n3x8SjOuqrprOGNMJ3lZ82Bufnp4Yoy4fHkap/+z4GW+6gyuXHz995g9cS/Te3g5B9OTZCQR4MT93\nXCz1ZjAcnJ19UDfVMNle550CnZKNQA3AndKN5yCgBEMAeV61yYLQiYLQKltUTb5abe/vZXVe5i0O\nUMVqYulkZxJHgev656cXL9+5+oNnL+o8v/KNr1DBJ24wPJjcf++hbM3jsr5x50Ys1NMffjga9Kab\nIwFYpZw/++mPDg8vf8olq3raG+NvfeGLurPv/OSDVTCZr+ZvfvLKcIDPTu699tqlYWqfPDuzxery\n5SFfH68vVjd3DzZVYXr08tXXXryY5nluIVbKZNOz/f39z7z22rtvv+OHwYB47XyjNlXS61utAHLK\nddUfBMCouuKbDX/09GfjySRJg8He5WHkffjgQ2XkK6+8cnFx4fjRpd39umwkokEYBVFIKOj1fQ2a\n69f2XGreff94a7xtiy7Pmt6gN+4NUQqWiwVy3MX5koBVW1eJ7165urd6vurHsRNkZVnuXT5EyNsa\nRGmaOg4F1rz66qsHB3svnj2fTRfEZc7W1ni5XCtoISZZnnvGJL2eUcoqPRyN8mxdNR2yxEG2zprt\n2FsLYwkqgRSqTUYDKHW1zlRKNm1nEYx7MVdys9kQgLu29b2Qm7aqatcwa63WGiFSVZVLfWyR5kK0\n3PWcpm1DPxCiAwYiC7OqgBi4nk8IqeuqE20a9+I0UVa5CH7UwwYASCOZw9bZRrmGMNqqzo/8tuXa\nKoOgUSBOUsYcCKHjOIv1bGdnpyqb/jBWSlVVgRDgnAsh4jAiBEdeFKWJkEpJQyDV3Bhr4+FeXZVZ\n3hituWj6g/TsxXGUYI+4s0WWu2Wruko3SFLBlHDtej4fbvUYcpdzXOfVleTSarNcrhedqi9fuub5\n4fHZKbCItwIYRSlBDtRWBEHUVTVvOoSQxyhSwEcORXC1mHeCe15AXR8TVEtRrjKHMqAMlIZzzqt2\nvDVRVld5rqxlzIUEYYq8ILAWilYNhmMjje+Hk61dANB6vey6BmNkNddaY8u6RlDKPM9BCE2nGef8\nI2bORy55SKEyyqGs6zpIcOB6UJjVfGUg2N6e8LpWSnmul7jpyewsTVOo7Xq18LErpM5WFUGB4NB1\nPSH4all4LnMpDOJknWWe72sN8lXZVi1B1EhFmR/4bl3QMPQ73j58+ODm7du9Act547hhGPm8FHE8\n9ow5Pp4S0e1tTeZnJ/1+usoWq6YQkCxKWRe16zpx2j+ZTge9Ief8xZPnCECEkOu6zIDFfM4g7fV6\nrRDSKNfEQnCfMs5bac3Ozk5Tl+tyGg163KhmtRkNhgbYSX+ohBC8ubZ7+P6P3otdn1DHD4PWSBo4\n6yLvtGis8hkz0DRVHTJWzZd74y3H+nlZeK6ztbMVJeFsNuvFPUqYFVa03cHBgeTq8dMnQENEKQBE\ngWrvcO/5ixfVaa41jLw+AGA9W4d+xLzIS7y8LivbOABFGMmq6SC4dHk/L3NIsOO500XmpI5L/HTg\njyf9k+dn26MDrcH9D59cvn7j7PnRJNw6PV4U+cb1WdPWo1FIiC6KglKAhJayIySVwraNVra0kAaR\nuy43TuhusjwK4qasGCaad4d7L23m5uJIMxC37dpAy0iwnjUApZRuuwx0DBJCCYbIgCSKsnolhQn8\nqJqv6o6no0Rz0fd7jJK6rHrhYDafFYX3uc9+Ynp2/NMfv333kzeSJEi3k/2X97qy95Pv/OT1lz9+\nE+/em50/OZ0PtwecuKjobl565ecPH+xGYWaKn/7J9775pc/tbF2eLZbT5wuHONSYL7x5uWt3J5MR\nb7thePntHz/N27Zsi1/7m1/c3Zo8e/L8Ey99XAq7XCyS1L9+89ry0gBAfHoxbVu92ZTvv/fuL3/l\na/ralXv379dl+ZVf/tqTo+dJwLTGFpqLi4tnc3L75tX50aPtYXxlb5uXm4R1t16+Pivs1f0v//hn\nb7/39nvb2zsHu/vHz19cv3Z1ma14sTBddvnSVWXEep2pMPIBvrzjJyGu6+wzH782nU+HKWyKanfk\naIRGV3baLGucbjF96uBqHEcHu/ue7xiB60phRMMwqjL5wdP7n3ntzapdXVw8PzwcLVdz0jRN0kuV\nMQTBjnfUcQjCBCFgbJZljA0JYVXVNHntMjdygk3T1HXdjxPPYVprJZW0psPWAxBCqIDN89yLgzRJ\n6qwySluusQFtWSvFiYcJwtbaMPSxomVeGGN93wcGREEoeFuV7cHd3bwuirZyXMYY831fCa4yATGQ\nRpZlSRkzxhgAAADQGNlJRIjjuVxx3rVh5ANkFbCEMc/z4yDmXVPXNWPY86g07XCYNl07mPTWq8zz\n/LblGFlCHQWlAKaoq6PTU2vg9u4OZrisywhDA6EDHezArqn3b94pNtlyWUkhiO/nLScOxdYt1k1/\nNF5ebLTqVqtmZ7LfG8TnZcsCl3N96foVyuwqX0PrUuYOYr/lVW/YU0oJ3iZplK/yXpwer5Zpmkqj\nLYRuEjCGpEJd1lpohGjCMNaVoMx3GE1inzetg1wpZVO1hOHA9/OiKOt8vDvZNOs47c/n8zjqQW13\ntvfaRi4Wq6qpo8jjvNuejPJKMMaqugm8OIo8qctslWEW+hgDADBGxhjJhUOYAbbKC42M6wcIIcE7\nrS1ycKcF8bFtYF3XFa8jP5AdX81X43hQb0rqeQ7BcegDhDrZYWTSxKcMq66mzGOMJUmPC7VeZwQ7\nw9Eom88JAlVVJUniOXQ2nwopN5t11wHqRLyzm2WxM9nJqlICAzFEvtcoFfcGnu9ri8qsrDtuNhUE\nqhPS8QJkAW/aruMUIACQ1QBDYpRM/BgbUBUldokxynEc6lCjBMUMKK0kXGVlFHlGQGMUAMAqSxBQ\nXUcA9Ak5nV5cv3npzq07z18cLzZr4lGXurHrC+h6iBw/ex6Ffi9J26qFFlGHdauC1+Xe7lZT5/c+\nfG84GoVh/Pj4GTR21Szm5xe+F3pR3GnpuF5RtAIYg3BWVgghx2MWICn5ZJiu6lZzQy3TSvnUjb2o\nbbhSxMUwCLz5dDYaDTarTRzHCBJKGQAgDMM8z13szWfzS1dxfzA+enLEiF9V1WpZjLf7/f6w3+8/\nnD6OvQQZOh5v53VxfjHT2gIAEAZx6E7Pamsa16GW2OnyYnu0E1eth/2qyItybQEueKOlCIIgdp2y\nWVLmlPnKC2lTYMm5VibblI4XNRuImcUQel5iCW9qEXlRNsuBAaLjXSkm24PFsnz2/Mx3qNaqLujZ\nyQmE9Ifl2y+ePP7WV3/l7MX88YePL1+++uTp80cf3tva2U37w2cni3XJ23V9c7j3xlf/5n/3D//x\nnb093RWDnf7V61f27t66f3JGsX18fnLr4IbrJOPU+e3f+jxx7R//xV/wusvXxeLibYRQkdeeHz4/\nOT7Y2b589crx8xc3bt1xPbaz96WLi5PPffnj6Y5vjJEiU3rx/NnTK5cOPM+b3N1578c//1tf+tXt\n7U85jirz1eXDK4rbn79z753333n2bPqNX/nt5aa7/+BxnfPpxelqfvSlz316zvNP3b10+87VVtRd\nN67K7rUrr04XF1KY+WJzdvHs9Y+9TBg+P29Hg+3z0+f7h9vJK1eQts+f3CfYfvwTLwmjnz86JoQc\nHz//8he/OBgMlvOZMWPiqJcO7krVtV1utSBcVJSlQcQA0RTYtpMAsrOTEwWA5/mz2TIIAj+ILABA\n2flqPkwGLvOEUFJK4iDqOwGknutbiLiVzCFWG1t1pNW+JbLlCEf9fn9VQQUgoQ5jsBOCOKEBEnAA\nDbAcYBcI0Uljk974vUf3g8CDEDVNJ4RSSillhv2RstZoSDATQnyk17IaSCl9z8GU1nWtrQp8x0hF\nMWEUa2Fd6hZ1BbQZjAZ1lVklZVlevrxf1/XJ6Tm0QEO8M9k6nc5mWeZ4hqh2PN7iRvq+38qGQYag\nnW8WUkoILW8lr7offf/HL7/86rvvvach3L20U7etNtLBvrGSIbxaZ4nrDnqDyWhojMmbYnJ1/Pbb\nbzuOAzGudelgG3qk4a0TennXMIwE16LtnMAtZOkNY5ZG1GF1XXPAi4YPh0PQthYjzcViOrtx5eZ5\nc4ogrrlolPZZgCgjiDoQ+o5TrFdWNUh3kUN5VlbrfDjYOphczbPy9OwFcUzg0qYuDJT9rZgU6vR4\nmiQjn3lSiNWqDMMIACC1NcAQgjC2BliupAVQGoutUTXHPvJ6scTFOs/uXHnl9OJcdJUxACMKAMIu\nDdMAGBB6cabWw52UBnC6nHte4LpuUWdR0udGW4hXmzV2XEiZF8XEEiFUo2GEnaLMe6FzfnwWpwMN\n7HS57I+TUqvSCGV0uynWs+mlO7eCMBJVvSjWROsgiob9YTWdc8V7yUCozlprMeuPJ8vlSiiBXSql\nTH1HaVtVtQtZHCZFnjss0F1lgRKdrNcZAbjhYshY4PnD4eDxw2eh41ENJVejnR1jDLLGGAUtGE0G\ns3xZG56Oen7gWqV5y3u9kanV6dOTK9evbmwFIXTjcJatVKkHg0EjZFm3nhttT/am51NKUFMXHec3\n7txlGA0maVHlWdEEQQAxsBJs1oW1Nk0TRgBQKgic2bJ0Iw9bxdsy8lNroeK6a5STJhgSreqylvEg\nKouNrLre3pbrR0rg1bJ69ZXr58tlVWehHzihs6o3QZA6cbqp6q2DbUTdomyzvN7b2a9Xq62tftc1\nVy8dYkbPFxfMY7HvUeJQwhw/2KyfUdcTVsbD6PzoZGt3WwpkJfA9BgDgRmmKMCNlWwNrpdEYgEES\nQguPFxl1iR+GzHVtWTrEaet6ezJRgHvEA0h0usVse2s7uf/46ZWDg8fzc1FvfuOvfev5wxef+Nid\nncH+/Z/fcxDrJ+Hl3SBJDzncVxb87KfvXr5yy48P+1tbp1V+fvLo5Zd3r24Nvvr5v5mt2//XP/x7\ne7cOJrsHjPkWcSGUrquurH/wve+3UpX5OtqhL9/ed6LoL7/zg1/+0heYx955+IHU4gc//I4R+S99\n9pWnT5/PF+uD1+7O14s71w6mZ+ef/qU3j29fu3y4WxSbzWYWRcF/+R9/8+mz5/k00wp96tOfk1x9\n+9v/49nJ8cev3/z0q692avno4Q8uXz4M/eozv/ONp48eW1XfuLZz+861f/ZP/8mv//qvP3m8uHnp\n8Pr1K3/5Fy8cil5983Wp4fn0YpNlt/f3CMM3Dj7bVHVdrjQAHkV+5D+5/5BSemlv5+jo5PqV6z/+\n4U8uzs57SfDyK7f/8k/+7L/4L/72H//xdznnk8kYEequNoXSoMgbRn3H8YAGruulYSibjkGMANBK\nyLYjAO1ubQeB57oupRggoIHtuk5oxVzH910Eoag7LRQAkFEPItJJK3UnZGu1FnULpTZcU4iGaY8h\nLEXnui5kSAGDKWnbNgpChFDbcik0BhQa3JRdU/Ouk5RgqLXnOHEU9Xs9rTXAujeMIcEGaG0VZTiO\nY8/zmq5umgZYbC0EFlkLjTHWWtd1IcTvvH8vq9pXX/9kkqQQwrqqNBdJEAZBRAgDAERhPB5NojCu\nylopU5ddXbfQosgPPM/ruu70/Hxra8dxnPlsqZRymEcgkp2sysbzfMdxmqahBIm2OdzeOnn+vMqy\nMsvavLbaYIxbJUjgaGt83zdaR56HIAw8ByFEKYXGBp5fFaXttI9dD3nYEI+4BDpNyxvedUY0svUD\nN/JcaCTUWhmprC7KUmkdRonj+sbirMijOL169aqU8vjFc6O0g1mZFwQhDNHJ0YvtnYkf+o5Dj4+P\nl8tlFEVSCIcxzjuMoTEGIeR4rtZaCelSFiU90UkGaeIFuu1i37VAugHmXAAAMMa9JOVtp5TKysxC\n43lRkvTqsjk/uqizSpQdNUQ1osjqOIg9LxBtJxUPAo84pKjywGect3VbLcu1GwYWE8dxfDfw3EjV\nHHZ6vLPr747c3dG6zEVR9xz/+mg/YfHZfPPh6fm8LOM48X3fcRyldL7OqqIJ/cghvjUUWGYNKrLK\nKqSUaVteN816swmicLPK67rhXGgLDARCK24EcnAQBLzrwjAMw3C1WmGIfTdwidM1fLFY1mWhJQ99\ndzVfLBaL9Xp9dnYCkNXAZkWulHJdV0rZCWGQLZrqfD4FBEtrzqcXWZF5gbcz2XIYBUYwitbzhYcp\nNaYfecQYLWRXVYxRL/AXRWFddrbJJltbh5cP8nzT76dJFKxXCwzhqN/r6g2ktpN2kGztTC69/LHX\nEbVVMdcaHj164kEim/rwYIfzuixLBnGc+FrLNE3TNC2rvChz5jqO44m62xpv3/vwwZOjU8hcxFwI\nKG/keGtXQUB9lxsR9qKyKeu22Tu4dHh4GVnYVvV8Pp/OzjFFXuB6vo+RrKqFUZXiRZLQ8Tg+2BtF\nPkVMxAMcJBax1g0hwEpZMd7agRDGURoGadtIoXSc9C4WK0i83b1rs0V25fIt3wk//ODh/v5h13V1\n256eHZ1fHP3sZ98/Prr/xc9/fNwnTfbi7Ok7CX+xF9bf/Pyd7R49mPQvjk5+6c2v1LkQLb/34EEt\n1OHt2/O6/td/+kcVME8vTueaf/KzX2DWK1eZE5AaFI0p93dG/Z3+rZfufvwTX/je996798Gza1eu\nF+uzr3/pYzf2t77yhc8gyweD3v0PH2br4srezfnx5jt/8dZs2Q62b2469o/+2bena/Gpz/zS/v5N\ngcyrr9355S996utvvnZ1J7p2uLXcLC9dv3Ht+qUwik5OZsPR4R/90V95fvLgyeN/+Xv/cjLceuWl\nl1fF+pu/+Q2JeM3LnfEkJh4DqCuqfpjube1dPrxy7fD6ztb+5cMbXSeCIPjCFz97eHnv1p3rt16+\n/f4vPvzK17/pRu6nP//prM6wi5DFblkqAF0hrRCat7xtOoaJtsZAaxEgjNa8sxgRl3Gj2rbVWgIA\nlFIIIYhQy7t1ni0Xc6M0gYhAwlultSXMx8wRSFkCHI8lSdLUHTAWISREB4Gx1mKKHM8ljLWCp2la\nlBnCVGnLuW5bGXgxxa4Sum24bLq2bkTHu7rLsgxAo6zKq01R5W7gJv0eImSdZxZZxhhzKaVOXddN\n2VBKldSbdd7rDbwgUpAenc6ePj+5cu2W43hG2X7awwYwSMa9oebGSLOYLjbLDQZYdRooyAADFlPi\nWgsIIbPZLIhCypgQoq3apqqqonYxHfZHUZgoaaC1+WrVVWWZLfe2RtuTsUvZ1minnw4d1yu7GmFs\nkQXaQGM1Fy4hnuNCC1yPGWPKLNdCpn5MBJo9P9/rbyNDRCfDMJRascClLsMYBq5DsFW6U0q4vgMA\nBABR15MKLNfFJq8ODw8ppe+8/RbFEGnrETYZDB1MA8+pm1JZDaGdz+e+77uu29Yto661FgBjjKra\nSgMrhGCMfZRHApb04h4yNl+sCLCM4qrKyrbaP7gEIAwjvyrzS3v7cRhJZaBDCaCreWYlvLR7OEpH\nbdHIRoROGHkxRU5bd0opJaSSPC/WUexjAjteEYalFpZBoVVZNVVeVHm9v71Xl3WWZXlbp1uj4c6W\nwXBZZNCAgAUdN1yifm8MLamLUintOJ4QajVdbha5FoZAhhFTyiBIKHWMhkJILwg1sG7gWwm7VnXC\nLJZLbY3UCkL40ZLGc/2iquu6jaKEYbaaLTzici5GgyG2ACgJrbHa9Pv9IIqzIu+kuHr16uHhoeO5\ni+UKY7K/v+/1/HWdF7wtqlIouVyvi6Ko6/Ls7KwoMilqa1Q/StKgN+kNqNXAKgzN7u52Xeanp8eu\n72HmtcLUdTO9mPcHKcFgNj8rNiuEzXxxEYfR6cUUEapV94v3383L/Bu/8ivbo/Fivry0d8kDeHF8\n4mB85erlJ08ebW+NszIjDsvzvOPNYNCD0Fpt4jAd9fp5Xu4dXN49vNwI/ezF+SZvgqjPpXj69ElW\nrItufXLxIkq91z7+6ibPVovlfDqLw2g0HCKEzufndVdv7Y40MkHktbJyAzQYxxaqssqTJGKu2+v1\nxpPB/sGW6+Gbd64yl1IXhZEzngwchz58eP/KlYNGNqtsVXTi+fnsj/78+//hj/5cSfjbv/07739w\n7/6TR5Vsnr6oHWfv7s03B/GVs+drJv29ePfG+Gpxrs4fb/KZuH35tX/1u//mD//H32/W61euXENC\nvHbn9sH25Pj4+WR3/NVf/erR4ujOp+7C0P/hO+/tX7lxdr7BjpOMBpsse/CLh8dP52Um86yZzuZ3\nX36l2BRpkD6//+zk+bM6Ly7t7GKtRdtgg85PZnfvvNbZQAJUtnMvqgfb4O0H3380P/b2doui+D/9\n1/+Xv/N//m+v775+devjkbMd+4P5fLXJ2qysRluTb37zm3dfvvPg0cOXX3316tXbHz56vMiyRw+f\n/Ff/5f/h2cPnm/m6LMvT8+lmvYRWd12zWa2klKPx1oujk8lk8vrLLw/j8Gdv/cB34Ze//MbWZPj6\n6x8ry/LB/aevvvKJr331Wzeuv0xabgxA2CJKmbX2I8+6krIR9Ue1SQAApZQibCEUgiOuGGOY0pa3\nxhgLgDEAAQQtNNKITmKgrDbAIQiCOPBLWUABpdSB79naYooMspsqw9JQShGEsuMAA0qclvOOc9cY\nCLHrsrblVVMrpZTRDFPICJDKAogpBcC2bYcYgNAChIQQQklldNPWEFrMsOM4QNg834RhLCXvOsmY\nu8kqhzrAEsro6cl0Nl0FoSeE+GhGsxJCja0Q2CANrMuCruswZLwSBpogotk610JDiCFAx8fHnudh\nhqMwaOsqDQOpxGI2E0YPfEdygSx45fadH7/11mqxPjy83HFxfnxWNHVdl5cvHZZ1VZZ5sLXlOb5q\npUOd9XLT8c5H4WK+3N3djYNYNp2VOlvkl3Yvr4olRURZM5vNoiRqRaOsRgA0XW21cV1GEO0Ex5RB\nQOqqY8zp9Qae592790E/jhh1Oi1dxhrRLVbLyd7QT9z5fNHrDcpsSl0qufrINF8WNWWYc+5HPsY4\niiLVaS/xO0I1F1VVEYJG4x6mWFNDEG3LBo0AJjAJg6dPL176+tfPXpzEcbrYZGVRxHGYkGS5XHVN\nF8dx1jVFWVpkW951Xef6DgCgzguXOB/ZdrTWWvAgCKzSaRSXeVaWVTeXJHK8wLOdrGcr6DDVTw9e\nun16dPbkdIq4Gg2GFqLsYun7vgEg7gV1WYmOM0w26+VkvC1FK7VqGui4blvVDLKqqoIwTMLEcF2V\nZS+JobFtW6dxojUA0har0iiDMSUIa2AAoS9OLxD1pAZZVnQN393drsuqq2rfZb7rMcbWWcE77QcR\nsPji7CQIgiiKiqKglDLGGHO0NpPRBANYFvn+7t53H/wloxARaKHJy2a2WHPRBLFjGbBIx0mI8FZV\nFV2W+5BQhVQrHYc5iCVJqBrev9rnjRyNBnESLDfrMi/TyWA0YU8ePTm9ePLVr37uU/AT1sK2EwM/\nbfJqeX6+nC8/+bHXihXvqjrwmROgxeacOXF/Z9fDyfn6PM9WV65cSv3w9GwaRCHEaFlkkcOu37gc\npz4gxnN3AZFAg7rqPnoQLxaLMIyuXr9CfXaxmGmggySteCME3xlNEHNUKyVCx+czodj9e8euT8u6\nZB57/vTF1evXKENHx8eTV4bzxdloq9ep8tLV3YePxXgyCrzw6b33R7u7P/rpz0IP7e4OXtl57fad\nm9/9t985PzlJBsnO/pbo2Nn8nLns0vVDFQauy/q95O/+7j/9wue+8MbXvrTabNbTTQuklnI1nV++\ndOk3f/M3P3xw7+2f//Tp44fXD67/4X/4o7d6ozfeeMMP3Iuj00cPThiNtkaXzs9PHz39MK8yEjtt\n1RGIJ+Nxna/eevv9X/3G18dROnj1tfFk64//4s+Gu2PC6Ox8SQ0d9kaUxst8ZWGBMfjGF7/02s07\nP/3Zu8ez8x/86CeI4I+9+sruIJ0uF37gvv2TH29vb924dq3M8z/499/+5je/+YX/7He+91c/9Byf\nN1ZrPRmPTk7OPvPZTx89fvjk0cOvfe1rz58/98MgW5xTIP/8j//w8v5OURQ7+7vXrl85Oz0Lw/Do\n0SMAwPT05MmD+3XVRlGEfN/HGNdNo7W21koptVYuYw7EsJMuIkjo1PFl3TarLGKeNRBYRDGmlLqu\n67r+RzT9KOpFftqUDTDAoawsMikaoHnsR4ETOJiWWc4oLfK8LHNCkSFEWyObrlpuiLKj3sDxPIMg\nZgRRFER+lPhFtdFWEAaZR6SFzA+o6+V5SYjj+2HoxsgSxpgxoG1527aO4yCCXdcVWhV1HiZBEHtS\n8iAIjLGBHyfxwGU+AsRjLrIwz8q24VrrruusBovZsswryRVUwCqLATbCNjVHlmhpAEBJ3MOIUoSN\n0q7LADR5lUOrwyDYm2wThJuqbus2zwvecs8LrcHz2er5s+PHT15wYw+uXKaUWqGL1QYqcHE2dV2/\nbbvZ+SzPS0YcSpy6qozWgiupDGHucDiuyyaNe3uTXYbJoNcnAAEAIMatEYOdye7hgbU2zyrqeF4Q\nEuoYA3w/fOn2nedPn0kpkzBazGaMsbwqlpt1FCdBFCPmZMvKIR40sK07jFAQRIvFwloQhOFg2AvD\ncLNcFUXRtq3gKkl6wNher+cnkXFYreRovKs5Ah3OylxrtVrPt8f90GEOYmEYeVG6s7O1u7sLEJhM\nJq7vIYKiXtqqjosOMUgYBgBILnzqGWV5y421WioPEVU2oO3KYtMf9v3IbbtisZ5y1aquHXoRbMS7\nP/7ZvV/cj/vDS6/chT2v7UpRZ6N+IpQijOWbrCxLhgnGEEOd5XPHhRRriIzWwmEkDHyXOW3TFFnh\nEbfXS1zfEaYLIp8xhg2wnUESIkOk1JQ6ru8bCxBjZds9ePri1o3bcRxXVUUplVIyxpqmmU0XaTKw\nBhHiNk1HMGPUlVKenZy2ZcsbvlmuEcBa6HxTVEW1WayVsf3xJEx7jdB7V65UQgGXQgcjaLRRy+nF\nOE2/8tnPuxC2myIkTLbaclUucwezwA2yLIMYQoZWa16s2l4a5d1FwS8OdyeT3vj+hy8gsKtss67r\n44s5NOT8xenWJO5k9cVf/xSnLXJ9QsYe29WcItXNLn7hWeD7/vuPH5xW+Ua2VVVtTs72/dhBlFjs\nUjY7PR/2UgcT0XHO5WA47PV6cRS1bVvXZVGXzHUIQQ6lbVG1RaU6rqXK85xRt9frUUS2R3ttZX2n\nF9AeMvTs5PylO7cd3wui4Ctf+1JvFL/9wdu7l3aHk56CSun61u2r8/k5AGZ7e/v1j3+yqpp/8o//\n+63h8O6NW0rI8/NpOt7eSPl4trh3dq6RULp5/uzh//6//q82unvli58cHI7DKPq1r//a7Vsv9Xf2\nX/3s5//VH/3J2TpvBSo2bT5dR2n49V/72r0Hv/iH/59/9OjBUSvMPFu/9YvvSdpdvXMdB8GDo9Oz\nPHvr/r3CiNc+9ZlXP/7JqpMnF9MXp6cvzk4uFsuL6fz6jZvS6pPlycPTDwWprlzZGkZOPT17cfT4\n5Vdvfes3vt6Z4sbd/U995jaE+WRAr10a3bl+OXDcruyMMocHe2986tXz04eLkxf7O6P7D97jppoc\nbA3HfULQejG/deulz372C03ZNGXz4snTo6fPXrtz5699/asvvfaxRmjKoju3P8U5BoYmcX9/f/9X\nf+UrvcT/5rd+6fbdK2g1XyALfM8xSlNKkiSGEEotECSQ4K7jRVW2XARB5Pj+crnuOkGpE4UJtLAp\nGiWk1UZzfXJ81lZNP+0rISCEvu/Wdel5rgtoSJ1BmLgA93yfQQyldSGzGEGEgDa+42JDVtMlQdjx\nXISQMbpqK8YIY8RxKERAa13VdZaXruNjROu6NgqUeY0Bk52m1AEGQogJZpQ6CBHf9xG1xiouGs9n\nHa+VkovFIooi2XRQKdFxJWTger04YdTVygZeaDVI4jgMAt8PgbEU0zTu7W7v1VWzXmVJmGhtedcB\nAxlmdV0PBoM4DrXW07PzuqqQhkYpIW0U9hB2/vzPvjscTNK0X+XV5YNDTOB6uRz0hm1V72ztBEHo\nut5svuiEcn2/1+tR6jBKDw4OIISOSwFGeZlVbXV0ctwJfnR0VBVlVzeKi9AP4jQO00RafTa/wIRp\ngyBGfhQGQdDWDdL29PhEa62kzMoCESKNzvLc9b0k6ZVFu1nlTdaJ1jDCrDGe5/T7aRCFkGBIqOCq\nqzvP8QPHRwYdHR2ts3wwGnZGFKKNBj3i++tNWeYdFNh3vLSfcMUhtMv5oq1qAIDUIkrisq5ExwPP\nY4Q4jBCKALBaSy34R4TCXpx0Xef7QVU2SX8QB3HkBWkY9fu9NE1b2QIMoihihIZh+FEL13Gcy+M9\np5DPf/phgJ0333zzjS98zg197GBEsNVGcYEB/OhDeTIZjycjCDTBYNjrGyFl2ykhRdvVZTMZjo5f\nHFOKmUtv3r5JHLpeL5EFw14fKrBcLHzqaC541azmi8D1rl27FkUR5+29ew8ghP1+v9frWQOllLzr\nNptNXddaqs1qzShVHQdS725t11W1PdnyXZc39dOnTyGEq9VquVht7WyXVVPUTdV1R2fnTuRRzy26\nZjVdepBGLDh7drJerq9fuer6zibPKcbrdSY7na+rxXzDqNvwbr5Zej6JkxACvLtzeOP6S7LRtrNR\nEM5Pz0ejUdzrFW1DHfeLX/iStfDhk8dlbS5duXx69nS1OXV9mue5EvbS7qX9u1fTcT8KvKEfeBom\nzBuPh63kogJQ0qf3TxwUVGshasto8PzZadSPCaNREm5vb3Elq6qq61JKuTMcvHzr+q3Lly3nxXq1\nv7dDsRVtY0Cb5bMocK02GOIoSHtRXwoTJ/0//ovvtKo9nZ1EvcDxmB+y3b3h7OzxK3evMGwmWyPR\n8Yf3H9dZszc5NAl9vjyBPk2HvU2erVarb3z1ay/feunW4R1YI12Cez+5JzfdBz94a9eLFo9fbB48\nx2V7+/q1B0dPPjx/9off+w5gZDAcL9frr3zpyz/67nd5nt+8caXgxW//Z7/96V/+5Hg32uTnDOvX\n7959/e7dT7/66v/8d34nJOzs5HS1yf/xP//nD05PYZh8+0//6mJWrtbd7//ef/jg5w9/9Rt/c9C7\ntFrKrNYvZisQRpD5P/jJzwI/+q3f+M0b169CoF95+e5sOd0ebpXZBgIdx67nkDLfzOezGzdu/OLB\nAyHb/8lv/7XXXro86hELq+t3rnhJ8P/9F//yz3/0oz/6q+99/HOf/fqv/UYp5dPzs3/wu7/7/OS8\nP9r57/7uP/6//rf/j3/z7/7kb/+v/5vnF6tGknd/cfT+w5N/9q/+8K2fPyL5Zp1E4Wg0ttYWRQEA\nkFL2hwNIrcuYlDKKQ6klwtiPfAgoFAZCyLmUnLeSB9ZCi60xu9vbeZ4Hnu94DDuw15t4TbherxI/\nkVJKo6Mo8lxPA6XberPMie8nSU9syrbp6kY4kddllbZSAEIZ1hYAAMIkVly4jscIdX2nzPIiW2ve\n5asqTVMDrIamrus4TB3sdi1XWDuxq438aN40xnie07Y1JrA/iEUnN9nC993VapUkiQVGSTno97XW\nTVlBY13Kqqr6iHXedJ3DPMfxqqqK49QN3M0mL7INgtBzYNe0SGOLoOd5i3Y+GI+H6aAsKqhRJ8HB\n4cH0/MJxgyIrkyjdGqTMatN1qyKfDCdl2y3z3Osl1hguBHOY53lt3YVhqJRommq2mHqelyZ9IhgA\nCjFmkUUOHgzHZVlGsd80dSwjggBkKOnFy3nGkGsJEJt8NB4kcYwRWi4WrusyxlzHR8xZb+a+72CM\nZxdTSqkXehbY2dmUQmShlapb5/PhuD9fLcuqkkIkfvjR5edEfh6UbdtyAhQGe5cvN4J3nEMDm6Kp\nq2azyfu9eDqdfv5Xf6XOMy07CHTaC+uWz+dz3rZayigIDZdIq+3BKC82vBV+4KVxgiyYTCaWMFxV\nSRI+PT/vBxFCeFOXugVe4Aup88XGDyJCiAQAWhMwtysWRbm0hvzkD/7sk5//lB/5tRSNUA6mBAFD\nHMdzozQJs5S53nA4vPfBB2magNa0q8pzQg9R4fidVBhjIXjPiYsy71R76dqlpmjKdd7wZjgcbg0H\nDEKPua1tHOjwIgdG9qNQiGYwSqIk5ly2nfA8j1LaVrUXhxBaq/l42G/rxhhT5lWSJEu7Ach6gSu5\nYh6drqaXr12NomixnHuet1rn0CIAFtoqY3mvH87a9oN7DxM/8V3v0aNnkAGL4GR7XJa17waIUUwY\nBBhgNB6NFqtl19ae7xMKx6PBD/7yh7w0juPcvfv60cOjo8fPP/2pT11cnD97/uD63cu9/vD8/OLp\nTz989fZL9+xPAoKVUuPdQ2AUJvrp4w87JSeTETR23Bs8+PDhzTvXjTEIMaWMi3wggIR2fzJ++OAp\n75QlIBn2NrO81xt4jJ0vZ7v7O1yUq+X80mRrEidBEBWrTVGUZdsBiv3IYR4dj0ZHR2cPHz7wAj+M\nI8fxdvb37rxy88nzDz/xxstc6sXm/ODSyCrxyTdebmWxe3XvfDmnkD56dkwBQtDiXpptyq3x6Lf/\no//kv/k7f+elm6/wojt69KJtuQWqNxz+yZ/9VT+Jo8jZikZffPOXEZE0cB7Njh5eHM9Xy4+99OrV\n8c617cN/8U/+aS9Jr+xdCxz33pNHz188/N47b3FR/+a3fvuHf/lXgyBoqjZw3bxsfvLefYY9BaUf\nBpj657P12Tx7+uTk2rUbAjBkXcvx43tHZ09n2hgj2bsfPGpFm0bp1qgnpVwszra2xuP+wKMhgcnx\n0cVitSAE9YeJGzJI4P7hFUKjz3zxK2/96Ie6qV5+6a7USlr47Hx6sVj0t/qf+dSn8/Xq+OLk0ZOH\nb775psucoilEU0pZ7+2Nl6vpr/3mr73+qVOGyYPHz5mTfPLTvzxbzN/74APUSxKXMc9xoyjCmHie\nRx0mhAAGMEoxJMUmkw3XQtZFaZXmnM/ny6oo4yhN4lgrJTseuB4ClmIEocUUAYoXxYYbFfV7hsEW\nyEW+aq3KeZPXDXV8THyfeVVR5lUtpG66tswrRpxekHQlV9wS5LQthwaWZR36EQIYGzBIe4p3YeAl\ncai1Hg2GGBKXulXZUOo4xAnDuK7rpmnqonR8z3EcKaXj0mG/V9c5Y4gylPQSqQTCEFmQrzfZas0w\nif1ASlXXtUMopXQ+n3uOSyldLBYffVUZYyCEhBDP8/I8513HMDHScKGCIFosVlaDNErjIIaI/ezt\n9zBxgyCKo6jcrNsyz+bnfT9MHP/k5AQT1huNMWXK6LquDdB5WWirhOiapvJ9N4oC13eqqkIIMo8h\nB5dd1R8NhJKd4FILqcVsOjVSdHVFCAniSDM8GAz6w4Hv+6HnEggOdndkx5FBFiLHc6M49sOgbVsl\nNFQAtMohjpEGGOv5jtb85OT59t4EYtC2nDEGIVzNl08fP6vrmlJKGO1vjcf7u51oT09PP4rHhHFE\nCNESGGPbVn76059er5euQ2fnZ4I3WZYNBoNX7r7sEibbLqBOQL1svuxHvcgPVvOFEKKua4tgXhXJ\nMCUU9QZJzVsOdDDsC2AtRK4XDtNRFKVl3THqua6XrdaL2XIyHkOtKNfTh8dWAILdfL3ZLBez6WmW\nZWEYlmXtesEmq54/P4nCXpV3qtVQIaTR/GKllJlsbYVJ7HiuliaO45OTo6PTo6QXfxRlsQR6DmuK\nvMkzyzlUvB+G9XJVr5cY4zt37qRpn1AqpVyv1/1+v6qqq1f2PRczinyPrZfzbL3M15vFdOZ4rFOd\nF3nEx17sB2nYKl52jec5ddsYDeq6LooMKNGPQ2iBgoQGoSFsttzMF6um6ay11tpaNNhlH+V5ojQx\nVimlGCOhhyCxUun5+QoI6nm90+PFow8eIk2hAN/787/o9aPBzvBofgExS8Lhqsg1hrfu3miailcd\n1lBVbbNct1X+2su3fd/bFDlX2nX99SLb3TqYTy8oIUVR+G4ALXQcZzab7R3s5WUxW86oR13XLesK\nIWSNyfMcIvrB/Ufron33/fvLstaIQi/wegOEXcqcp0+fWisPDnf293dd1z06OfdDd7E+A7iDrtCw\nBkRA3L706qGw7YOjh34//t7bv9COq6jH4gHzB9W6u7p/0wH+P/x7/1gp++DRo5+887Of3/9F3UHt\nxn/69ntTqe+dT39xcvpgPRc7gx8UZ//+/tvOwValFbH4V7/yjWpaqEzc3r+0nm2eH02/99bPnTgl\nQfjBvUcfvP/8f/jn/+7sbHV8PK9r+eL47Lvf/7Gmzuly9fY79+pKffOrf52iYLMsqee//+jRX/70\nRz958UiNot//2XffWxzJnjstc4j8G4evHO4feG788P7ZaHDjxdPs7Dg/fj5FCr77/tsGgt29S0+f\nn52fr5arnLnOxez0D//9n0zGBwCH//xf/sHf/wf/9E//5Ds//eGPe37w6o1D22wmsffiwQe6KZ/d\n/4Xh9e2rV5YXR7rNf+dv/OpXvvypzfLkcH/rtY+9Mp8u8mL+F9/9oydP70EgkMVEWnB8cVY1lRd4\nzHEFl13TdVw2LZfaaIu5tIx4DLGmarXUDmWbPBNCeMxl1MOOK4xuuQCe2xEEAg8RBqT13YBSmhfV\nZt0QHGDiWkCiZBwEieu6ElrAiMYQuSzt9yEjBqJaGYMUwiAMfYKw4zhBEBBGMaOr5fzo6AhqbJX1\nPK/fS+qyaVvuuQxZEfnQIRpIfXY8JTbw3BQDIhtNsIs9f1lUSThG0L2YnYtOpEmvLioMcRLE2XJz\nenoGMTEaxWHa5I2DHYwxwlRy1eS1knZv5zD0QmAhIY6SNnLDrXSEFa6LDgCECQu96Pz47PTo2CiN\nFbEazlabeLxlXMdJk3VRHR2fl1mxv7N798YNLZWRUFYKKuJ6URSkWpqqKI1SnuO0VeuigFjXaJz0\nh8T3K9Eooxlz1stl6Puhlzos6KSSBmZ5WxUNElauC56VSJlssVovN1pbIVSYxAaCuqw2q+Xu9p5D\nPSss1CpwmO+ECJLBYGAo6oyJvD4Rzup8k/QGkeMRjXVjBuEg9iKKcRCFd19+eTY9Xk5PT588TH3m\nuawsy7KoHMdxPLRYTEMXGy7PT48RQp7j11m9O+r5jEFkNuUqnUQctV7iY8+VBGoAHeo3eeuygHdS\nSzk/P3/x9IVRlhBCGSYESymRRUADjfT52XQYDZGA04tlOhi+9Npr49HujSvXXS+Q2rzzo59e2znc\nHm8XZZ32Rmkvllxs5ksCcJ1X07OpUsZa1AhFoiCrcsdjru+0TWU67jg07YdtWw/SHrJICHX58jUX\n+8vjdZ11W6ODyXCXYbfjuhVy53DfDXyMcV1W2XpDIHIYS9LI89lwlJwdPQs8x2M0z4r9w6sv3f14\nv7cden0g4fTFGUVYKZHly53dLUTRZDIRWnFplFKU4q4T6zyzEAkOt0c7/WggOwUACOJIG1NVDULU\nY142W4/DEZaQN6KuWqnats2dkHrELs8vNIAGQd5U461Yu3yRTcO++/FPvPrOu+8GftiJNu+KZGuE\nsb+azZwBxj2X9T0IyhhAD9I7118aYFLMLjwHx4kTBYQZg6QUrZTKGEIy3uxevnzvw0dRkAziUVeJ\nsqzn69VFtlps1szxi1qdzZZVKYRGbtQ7n69+8NY7q1Yuq3JTL0Z744o3u4f7t+7chRC3TbXeXFy/\nvRN79OjoSCO0LkvAEG8bnvGLBxev3rj18s0blcivvLQdDD3sw7prsMsIosdnp0+ev7j/6EnLzXLT\nKRytSkMHvR9+cM8ZTc6LjBNWI/95If70F7+4IO7MomXZ9t30erLznX/273vAX57O/GjCUFAs6+tX\nb83WRWfIdN24bv+v3vnwR+8/mtbyg7OLt588i0bDZ9OzJaijQRL1o/fu/azh2eH1fa47TKyQTQVK\nt+8tyqmXstnqmLhm/8pu2AsC5msN/923v/Mv/s1/aIwzzcWLTfX2i+NouJOMxp22zPE/+ODDMhe/\n/+2//MFPPnxx9Gyx3nz8029+6vNfS0fXxtu3pHEhiVbT1cnz83fevr+3e/3alZfTePv995/8xV+9\nfeWll4FDJ9vjQZJ0Vfl7//Zff/uP/qC3uxWNxjsHh0GUeJ5DWOBUvK7but/vE0LKsgyDwBjDHEcJ\nbZSC2iilBJVIW4dSaDBziCw5sNZaSzFUSnUdt47BlnHOHccxWCihVSu1lrIRcZwaY5C2mFFESSe7\nPM9Z4PnU9cduW1QG6F4/angDMNrdvoQxFkqGUT/Pc4zdKu88z7ty5Uqel03RIIzrooShrasGQSal\nsdZwzpnnE0IH/RHGNAx7RZEpA5TS2KCmaYLQL7Nia3+LF91qtdrd3qaYUIgoxp0QHW/jge66zu1F\nQisMUOh6LZSTvZ3ValVkiDkkTZIMAKO1RxnG2CpJMa42+Xg0yqcLFNCDw8tnsykmyCoFjJlPZ1VV\nJZcOgWWDYU9ybi3kXcscZDVP/LAozGK1cSGjgDhu2FadkdZqAAGo86puOwQtcZjHHMZYJ3h/OKzr\nmkBklAbKYAuhMlAZXjdAq6oooySsizKIg81mhRm1FjLGhNKMsYvpGUV4PBwURQUZ4UbkTeFEQyGE\n7/tt3TBEZsen7iCC2PTTAa+6+XxOCIOUEITysjh7djYc9a8eXhVCQIw5FMShRqowCOoye/Wlu/PF\nbLlcuk68tXdlk1ezYjMebx3NZt6wv2priABl0AYORbismmyTu9TdGe+qLredCbDnGt0Vm7AXGWqd\nlLkV5bbOy9WdvdvrqsoWG8dxHMryPEfCug5clGvISBTH0+XiycMnr7/+epX//0p6j19b0+w+701f\nzt9OZ4eTz40VbldVd5PsbpJqNZNJNS3RoiEaFjzyyID+BU89MjywAQMC7KE8NExRgtSk2M1mx0pd\nVTffe+I+Z+e9vxzf5EHN13gB64dn/Z5cRYqm2bKVohENrE3THAyHmMBIprsyPjg4KlS9iDLGmGEY\nt4vbYNRbrjfj8fjT33x6enTMOY93kakYyXZLghBjtE22iql2AyPOUs6pZzsSYaQKAEBNG52gh+88\nfv78uYZ1AEmRt4aBLcu5ubm5aq9MTT88PIxiIQWq8tZU7fCoK1ox7A/md3dptFMRCENbUDG/i3RD\n2azmSbo+uf9gs10VZXO0f2I7et7kWdPMNitXNVSkROuNblu0aRFCvU4XI5nGma1749Eo3m7qugoc\nv26yyWQkFLbOdlzC73z/95NyJ1Dr1G7TVgXhsaxzIU2vm2RZaOtNnrO2+PiXX/2LP/9DQ3eblKo6\nRhC6upVto8fHY6ABL9gXmCOVM6U1+2bEE5hRW3URQp5lm6oCMDJN62T/zFT1+2cP0rwc7E1UzWIA\nhv0+1rSb2Rpw8fGnn58eHlmWsVzOv/Nb3yQYPnvzZa8/6oz7AuaSNQ72qmVxs1j9+sev3a7pDLTv\n//Hv/8d//zcfPHyyu4lfvHju9kwVq/v7+/P5EnEBDOvj33wRBJ1nX7zmJbCRczq57zkuxGi73cbT\ntKOZPE9S7vTNvqojwNgXFy8Hw/70enZ5cxMEnbPHx0Pfa8HB06sLxdNGD49BUW1peXl3+f6778mq\nejJ8oGC1KBJGizxPalq53A079sOHD/M8r+vaMO01QJLibVG8efO5qsBvffTRXRq9fPHqv/4f/mI0\nnBiKGq+3b56/fu/dd1vW7OK2LMuGtmnKTMN78GD0q1993O9bECuvz19BzAZDFxDhhf1tVE9vqu0m\nyvP86Bg8fvf+JsleXdyuo/T6tjg6/eavPjmPoqg3OB0f8sUq7gwCJFlRZFVRFFlKKKWIoIODAybE\nZrclhACIORVSSgm4QoiGSVnUX5fTu5bDJcvzCmPMWKtIAjHGmGmGqhDVUFT09dKBBBCYxRmGqOOE\nlFHXtk3HzPJ8l0ZVU+umySqaFa1l6lhVJKdlmUsIEEJ5uW0Z1VQDYpTlO98N8iwnGCyXMUIIAKBp\nGoSwKPIgCMuiLopSUTGlnCgaxthz/M1mp6um4zi8Fi2rYcukgE3TEkLqqjI13bXtpqqJYRZ5DoQ0\ndI1Sahh6sYuKJNsbjpSBEfPG9Jymatu2Xq2qQa9TVLRhtNfrTs8vXUVXTBXQNuiEVZq7frhL0uu7\nhaUbZZMM9/aIoiRRrOtGEucK0QjRq7wSlG03K9txdMOIo4xX1FZcLKGCtaZpEECsYayiAjFXtyHl\nrKiCIGC6XlZVmqau63IhyrKklCGEvj5rqqzQNcMz3awpLNcxHXOxWhqG0bZtnhajwZ7eCeJdFG+3\nuqq0daUoSlnmZdOajg0hZIwpWGW8KpJUNxQixN12RTAmWO2PB7SVkiCMkADSIEaVlj0/XKznNWWe\nGyDBNYWwqqZlLYQoisILA8EJ4MLQTAobXtcEYUuzKKs4Z9v1llKqEeXh+++vf/ozoep5K1TT0Vpe\n1pHjd5ezN6bmYoHyedrsaqjrSCpFWe+ihGgqR5rUFQHheruulMJSjPl219TUtdzNJt7sosdPnvzi\n17+cBHuKomCsVHkBFawoysvzV6PJUEoZVyljbZKmR/dOt/G2ZjWXQtcMKUA/HMzvlpPR2NKNKq96\nnS4hJMliATnWCDbIaroxbaMXdqJt2u93P/vNJx98+OT6dnr++o1koq4ZZHA83tvGW0LI2dnZdrtm\nbQMRG466RAWqhmzX2iWx1zU5r1SFeq7FKHadYH47tyxT02FdJ4YeAK5WVVO0FdS41OR2vYPQgEJL\nNjGlzfxudvrwrN/vn9+cLxaL3/nOt3/y03/wbdLv9a+m00432C13k/3BLtluF7sPP/zw8y+ere8+\n/91/8ju9of+//6f/Y7J39ODgMax5uogNzaS8tF3n+jIFpfzWN58oDtJs/Hhyfzlbnt27h2tpmiZx\njEa0wV5QsWa1Wj0+fvzBB98q0upnf/sTwzA0HTNGm4xqphaVu6pp3JHfNtLQ7cv0qhWiqunp6WlV\nNdl8Yetaz9b6gVGJ9g9++HtlnV1dn5+cHH76+avpfP7eBxND5bSMpODf/q0PotXuenZFJJK1MJDe\ncbud06DrhvN85ThuAQTX9CjNMCSD8f5osDc9v1YRjFerbBdHq60X+pqBfaI7RHc6puTqdBYhCZqm\nLqsUes7hu+9Q29aJcnl1Mx70o9naMozr9aKWDFdNp39qBU7aFnUS2ZhM+nvdwTAtUoLQk298WNTV\nZDg0FFzR2uL1ntOBjb5NstGgN9oLDI0oCv3ed759erzv+uHzZ6/m86WgYjyczHa75199OhqPsapB\nhOzQn98tlCT5/g9+sNndXdxcZ0nke05T04LKz56+2D/iRQu+urre39//8vr2N5fXbuAWdZ6l9H/+\n3/6v09PDw8n+Zruqyo8Ho3FR0i9uvmKsNS0dCum6LrJU3dJMUzcZ491uz/H8sqWNlHXdNjWFQgom\n26axbTPs+HEe1W1pWDqXTDF0JoQAkkshETZsK/B8RzMUiISQVEqkqo7jtG3bVLXvOm1V7rZryJnk\nDENo6waCsGmaLMs00zAMq60bBRIAqaqAusmKMnY9g/GKKFLBAjAQrSOEiBRYCqibbstE2dSapnEB\nCNZc143jeLmat21dFHkUJYxxAlTAgaIoLaNSSt5w2jApIKVc0wxNNXTdBAIqkDRlXacFT6tsmzRN\ngw3N7flAEaZtHBwcQIDbhvUG/VYIRdM6vZ5jOqZigFZIDjTDEBhhohiW3TRNXdecMc6Y51q0KU1D\ngZJqBHDWjgZ789lst91IwVSCDV1lbVvmBQDia3G1aRimqgLBVIR1ohIJadMKynRVIwh7tpPXDVE0\ngFCSZTXlABGiaIioB8cnq9WmrBu/0+VcAgFD1wMctHmJhOyGHc8LhsMhIYQ2re+4w05HERAzOL+5\n1RTddf26bsMwPJjsQwjTNA06IVbQdHpNWbtZr1RLx4RESQww+ToFhhAqCsYSCNbuTyY1rW9mM6yp\nl9MbJrihEALk8d4YNUzjig0MQyCNgfVm54ed/mjsd/q7ND2/vm55C6DIOFTsMK8ELeF6Gh0PzkQO\nfe1raVGt6ooTOG4QQohN0yrzQlDR9YK2pq7r93q9X376K8t3zI6Vs2YRrdIqK5t6ONgzFBUKaRpG\n0zS267aUq4apaAaEOPQ7z798bqiGghQgIKNCMpnnpa7rumkIIdKqoAhYgUdM3euEmmFdX0/bhr95\ne8WYFEBRiN42XNXtlvK2oev1+msCsiiKIAhs21EUpSjSsi24ZA2jpmkGQRgEAcZ4sVjEcSwhr1nG\nYdPSBiPVsXqz64S12mBydBdtclaWZY4pM1qJJVAgOj06lowjIBSEadNsliuCyOX5xeNHD/I863ZD\nxzERAUHgmURd3ix1ru6mm7//9z9avb15ODo87o6VmMdXW5MZJ95YpdKyrL3BPhGm5ZjIUfXQUnWt\nPxq2RFCEGioVy4Wq+cUXr1gNe84wWRTXX11vrjZNzVTFoi1XFMVxPNO0EUKO6Ua75IvffBWE3dvZ\nPIoSQ9OvLi5NRfuT3/udd072/+Wf/dHBuNvS/PL24te/+US1ze1s8cM/+YM/+qe/E0fr//5f/7dW\noJQgnecLYFbjo36/04/n+f2DJz/5Lx+/ent7s1wuV+ssr5OsivOypUhwEG2iu9tbAISUnLH2ZnrV\nNI2gfL3YbFbriLBSA5UiG4xeXd5ybNZcP5+mP/382dO31598+XKxzd5cLmy7r+mhBJpleq7TTaOS\n1nC9iguOrnbRTz79HKvWbBkntfji5cWry9kXT9+kWW1bwWazWywWnm+4nuJ7yvHh6M3zl47u/uLv\nf/zVL3+9ePNGZsnpeI+zOinT6XrR0IrKVjPxLt9R0Pg9x3K06c3r3Xrzy19+vNwUb64203UNtYAY\n7vn0Butg72iATVWxjEWSvDyflq0SZdzo9rc1e71YAtdLgPjV06eLNHF6oT86AIa/LfmXb26Qoht5\nXu62cZ7kgMoqrWUrMIMAqVJigIhuGBCDilaqpR0c7R+c7ismaWUbJbHAUCJMJTJMe7fbbTabuq4R\nQoggDiVUcVIViCDbtShvo3hr6mon8H3bAZxBCWzT0lXNcRwgiRSYAF2BBhJanlHOkIrNKudZXJVp\ns9tmCBHX9duWFlWdl42QyPYCoKpJlgsByqamlKqqouvKydFEJaApSkszJBUIIIwxpTTPS86FaTl1\n3RqOe7dY7pLUMG0IsG25nAJJNKvXFwSBtlUbKqrSdXSKwCaNi7a+//ARUfU4jl0viLJ8vd5Qyuqi\nMoiWpimCpD8cNQ213YBxwRjDGEbbdV3GqsKlqEwNd4NAUwxVMRBUIIRIAVw2uqEqKsYYf52QcE7b\ntqZNgwEkCLG6USU0ENEhbtK8SXNOBQJYJVpdNnVem5pdlw1CeDVdGEQHAipQQUQlupE3rJWg2iX5\nLmYNsyyrrBvOZdfvmEhJN3GdlrSoAAeqqmqWGXQ7aVUIBhHA0TaOtjvOWF0VgW83dc4wY1hkTaGZ\nBgeyrCtAsIBAMi5a0QnC2XypGppUsNcPtulum6cUsCiPVV0LO13LclRVxxh5qlHFGRJyen1ZZCkB\ngjflZK/vBpbds/We05qwhAwaSkNbhJCqkjDwIGdlmtuqQRjSuWIgvQGCEfz4G++rut62dZFlN9fn\nZ6dHBaywr1MiWkGTJCmTXEcqbJhjmEAIL+hYQXA7X2BCdKyKisbrKHRDQGXg+wgSy3UM2zIc07St\nIAgMy7xdLN9eXR+enb15c56l1W61rooKCC3dVvObXVuJPC4MwxCyWSxuqzoDQKxWG86hrtk31/Og\n0wnCHlYMTXe7vfHNdL3blNOrtQDAsPEunvb2vLKu5osdVozrm4uqLvwwyLIsy8rD/UNDUQJbPxyE\nDw6OD/ZGh8Phwd6ep5n3Do4O+xOb6H07PNobLad3vq47mvb+o4e2qibbrVA4Rywrs6DjBYE7W02H\n+303MF7fPCt4Gfb2ZnfrLK0YgJWo/Y47nyfrpEjz5vPPnpU16wz2Tk5O6rpdTq9EWegYvn35usxy\nXVc//+Lz5XphuHYreFrky816sV4lWZpX+S6J1+v1er1++eLFw/sPbNPo+l5oWbQopuvZbLMaHx4I\ngQ6HJ8uL1b3BfR/4LK9YvTk58O9N9n/2o19996PvDvqj7S6bRuU0yv72H396cTe9Wt7298f7D+4V\nEqqmB7BW1HSzjoUQ8/m8rRsCEYRYs2ypkYOzM8PytptM1ez9kwd24CVZ/PmnH6sIfPTk/SIt6hp8\n8fQNkyQMBq4TplS+uJsXEtl2h9XCRX4ZMVoR3x5i6HZ6hwxbUPP++u/+y5vZ3O7v7eq2EOhqsX75\ndnoz3xCnv0jqbdEgy75arf/Lz3+1iKrPn11qQdfwQ9O0Dyf78WweGtYg8CStHz540utMBFO+/0//\n8MGjd5+/Pi/rZjq9++D9bz28/wED5sVtNtvRv/nRLzZxnZXszfmirsjN3fbiesEk1m2nrOuyqRHE\nluVwLm+ns1538NFHH9V1fXszvbp4tV7eCkmPDidIYFUSrWkFwfrtzTxZR65iGoI0ZYUQYkxUbYNU\nhQuR5glHomhygOFof6LoWlk1o/2JZujbJFUUJUpirKkMyJYzpGAhJZNMt/TBaFCWZVnUCJIoShhj\nlm60VVlmaVmWGCuAiyLNORfL5QpIhQANUGQQqykp59LvdJkEeV40TSuEAAAhokGobLcR5wJKEASB\n6/plWRIFSU7jaBdt1k1VIyGxBIADCKFlWaZp1nW7jZKGC82yNcsmml5RllV1Wla8Aa7tE0Urq6qh\nrZBcQdA2rV28bSXvDPaiJJtPb23F4FRQDnt7E0WzFKJFUVKlJUYoz/OkzAHEhKiMcsmkY9nD4dB3\nvfFkKIAsirKlUgLVtDyiG2lZNKI1LSsIwyzJ25pCgAFAluUwwZuGOrZnaGa6i5EAvKE3l5e2aY67\nXR1CVjVNXqsIc8rqss7iZHZ5s1tuijhnLVcUTSLcAsEICrzQ0C2EyG6bciqyOBNMQgEhA0WcE4lZ\nS+M4tmw3TrOW8iwtXCfod3plVkrGjw8ONaKYmo4xtlwHq4rtuZ3eIOiEjLfF15W/hpFlxd3drKgb\nJmjZlJpFPM/1O0FD6/VufTO9LsuyLEvLsg3b2m63tm0iBBlvFEOJkigviiqNVCgm/X7f90+PD7Ms\nU23zcjUDhvq1szBOEwghb3ld1w1nTIKDk+N1Gl3PbiAGtm2/efNG043OqGsHJgOtampZlkGJQMPr\nog48f7veNbTN89yyjaousiTdH07aqpzPZt1ut67amraKqs43i6Ito2i73KzTrPC9UFX187fXVdkw\nxi9fXyMO412SJeV2taVVm8ZJvIvqptQtXddVQsjh4SFr2ram0+vbvCo4b4eTnu2pVZ1Mry+265Xn\n+aEbmppr6cH567ssonVOt4s1q6gTqA8fTlwTHg08A9B7h/vvv/vuo3ffG/YGJ5N9WlR7YahI6Cp6\ntUuKVdwxbNRIUDQqB55uEA4MrIi6xqrS7fe+853vPH78WLfMvCwgRuc3V1zQ0HeKdNvSYv90lFTb\nuNopgZJlS1Xnh4cDKdqizH7z2a8/+eXPKaVFHq9XM8lFrxOsFktN00zbTou85YxDbjl2UVZVUwoI\nDN1SNBwEQX/Q3W7XvU4Quu7s9rqpCykoNJUatfN0s452L58+P97bP+yPTaQHnU5LU4W0/+LP/uzl\n589ffPIlLzNZF6eHh++/++jJh4+wQTVb1DIu661pIOw4SVtzKCUBAvDeoO92ggfvvLtLE6ii0wcn\n+0fjXj84PjvWTU21NCCVTz5+CSRK4nhvr29bettmoW9vVsvQtR1LK3npTnpX67s42upcapwhyKer\nWVblSZ58/ptPs2Q37AcPHj84u3e0Xi8VTB4/ePhv/qd/0/E7UGIJcK8/yTL67NnlYpn4vfG999+N\n2nKZ1HEDFlFRMTA5PrN9f72LsK6mRR0neVrWf//jn/9///FHQbePVH18dPLll2+LSrQc9yf7rZBQ\n0SExbbsbpcXNclW01Ot1TNcWSCAVeYGHEEmTrKhaiDXTccuaAUQEwhzIlgmIcZYXBADguu7t9U2v\n2zU0vWkaznndNly0gDPL9wkhXDIJgWC8yKu6yrMsm0z29/b2JECbzebrl/S2aASCmmukadrQFgrE\naevYtu1aGOOsrKiQEiqKqnIgq4bXdW3btqZpaZr6vq/r2nq9VhS1KkqCkYSwKorAtYiitKJtWWVo\ndllVhqp5tsO5lAhOpwvDVMPQh1BKxgGAuqJWSKnLGkGV1XGy3YWdXgVKyjnRzRbQuqopz+3AS4vc\n9t1KIVGaAigtyyzzoqW17docAUhQVhR8CaSUnheYlsMh3s5mNtENpGW0VDUzK+o0yzWiMMpY07KW\nQow0Q82TDEJoGzqlDEF1s07jeHf/7CQt2jifD8YTyw1M1+N5oulmWVZtywlSTNPxHJ81LW+AQkzb\nEhUobdu9ubkqs9LQtCxPJRTTxe3B/jFSkONYZd0ggOuGOoGLEbF7oaKQbbSjgGm6DjABUuZpxgEu\nm0YHgDEGuUzjrMyrIAgghJZlq7pWbanneddXV3mVh4MeE6KqKk0zNqtbDPDDdx5nSUaQUiR5f9xd\nxyXXhW97WZY1ZWUZepbnvu93/E6Rld0gPNw/WG93umq0bV1GEWgbnWAMVNu0orQCAGR1bvOyPx68\nvT43VE1XVNt2oijGDJum+fTmc0r5/YcPVN3SxxZFABrWxfmFpiqGZSZF3nCWNKVlWfce3//1Z5+6\nYfD4g3dn19PhcNSfDNO4Gg/27u5uLctyVAfXsC5ax/GQRBAjIaWuatumrmtUZJk7GFi2v9jcXd1c\n9od7nudpmrbZrjDGdV1T0dRlm5eZ7blAwL1eT2mlIsD9x/fjIiOG0ojSDW2s49HeRKqwrktVVWez\nGcb4+7/3+//Pv/t33bB3enK0mN08+fCJorLp3a3v+5NJmEdZuk01VY1XqRz0VIFbTo9GXYJ4b3Lg\n+LrW0vujvuGorMpcz3768hVr1a5nVHWONGR4zrZI6rYlqrbZ7DRdJ4T4YbCNt64fPvvyKQP0G7/z\n7gN3H1Lyk7//B06FE6rH9/eapkmT3FCcNqshoQgy2uS+1en2gmi5/Yu/+uPPp79GWK153h13rhcX\nOiFJmSJDjkbj6ewOVmpDWZmVbdXkeWl3vTJPoihqqtrznLooTVPXVJJGMUJAV63lfL437F9fXydJ\nwjknGvnw29/6+5/9rOd3IQRxtBGS9kZ9XqCsqVTL+NkvfmbbNsEqIYQCNr14qmnaB48fFFVNsPrp\np59BxPyOeZfyhtaOirq+05bVeDy+ub79/LOvunvj29s7TSfRLmkbeXf3kiNxzzh+dXn16MHxh++/\nt7yb/eMvf4Uh5LwNfMuw9KZIVQ0DQoiOfNdxdcWAZh6tVQ2jRtzNrjth0Answ9Pxzd0NzcvJZMJ4\no2E8v7mdvrnKd/HBaNwgOp0tddPWVW+xXkXx2weP7gOMXjy/OjnaZ8T66WdfEoKDbqehPC+LSX+4\niSJE1GdvXmmOI5NMObRpUc+mm7ptwv4g3a6iKFY0Q9P1um0cT+VpqxnAMAnPa4wxlEAhSDWsqqq2\n2w1WCLrGeZ6f3jvLs2I5vbNtZzweX13dECJAVVUEIsZY2O1UdV3UhdCQxgkG0DZ1AQGVBgCgpAUh\nqm07EJK2ZXm+8XwfIslYC4AQQqqGnlVlzaih6ZQ1ClEsXQNCXl9Pm5p2wj4imAlRVaUAsm2oZck8\nz5u6ZNQgBEEoNY20basrqqIoEMimpRADAICEgksWBJ5r2VmW1AWtqsq1LQxFnOzGzkGSJAAIbJtt\nSyVDhqEL3eANS6NYDVWEUFEUEkJd1zlCo/F4l8TbJCYQKaaOJLAcJ9rdxU3eusTzHVnX25s5C/yC\n0nC8p2pGnueGZiarJfZcIMBut1NVVUgAMYGUKZiwujF9m0KpEwwhZC337BBIJYp2jOOr6aYsyr3h\naDZfQRVd3ly7rqtpOkZ6lla2SVwr3CzWGBIgyYunb6qqmOyPy7K0bffw8JALejO7JbqmWlpSJUVd\nd7tdI3DLsi6jpBDU0Ig37hOMB0fjeLvL0tRQNdQwxhptsp/XjaYadRkzSYMgDDudtCp0Tb+5vnZs\nc39/P47jXtiRW17EuaIrVVMbqq4oWp7kdVHvtkndNtlix/K2N+iKikZJPl8tbFMdD3qX8e7o6Kjb\n6c+ms3uPHvquezedru7mh4eHFWUScE0zaCsEAl4nzPPUtawsjkfDYeg6rKJNUjqqs0k3g36XAamY\nuopIVObTN8+9wH/w8OFqvYMc7g36RDdo3SIAbdscH40v1vMcsI++8Vgnar/fN4k6v1qmZeFNnLAb\n5HEa7xJR8CotJ4cTpMCataqhrpdLQ1P2er0yjyzPni6XDLBhf8w57/V6VV1IKQnCuq4qQAz2TIgU\nXVFZ0yZRrKqKKpFiGXfx5ujegaJiG1j7R+OK81eXlyyvDMNAiKxWy6qqwtD3POurL744PD0edAd/\n85//+s//4p8t5iuqE+Q4mCMNaN98f3+8H7x48Ww9y4e9AW2zMNAUqr56+mrvYKIpflFlCKGwG6jE\nWSdrRoDrGVFblJADFVt26NnWzfSqpZQh0NsfRVV+/8m7JS0XSexz2uZt0+b37t2PspnpkGcvX50+\neufuPBWKQhmvSilyuYeMcnu9XSyJ+U9aATzXrcVyl2eHZ0fx61kFgG/au2SnaCTNM4zwereFAAMM\nqry4uz03Tdc1vfViKYTo9AeINJvNpipzIPe73c7BwcH5xcV6t3307jsqMrZpa3i92WobdofjXm8d\nrdI8Z6TtDA//8VefL2/X5a4laidn1mw9n4Thbh6fHsJsk3/zW99abZLnF5cCIdfdi9Yrx1P2hwNa\nNFiAP/z+H/zjT39xu1gGnv36y/PRaM/yvTeX00eP7n/05P1vnN2f3s0QE/3eaLd6XbZN2O1M9ke0\nafM4klJalr1L0kB3aEW5YBjpHCLP7hjcGDgdMzAlUscP7u8PBr/6xc810yia1tLU3S6dLdZ5zQan\nx88uXo8mE003GdQ6YZDlYrurn7z/0bNnX/3sF79Osvz3fvfbLYMAYNrwu9U6z0sJ8WByXHGWFdXd\nKm6yChq45SLJYiJhLwiQQoJ+P6vLN2/eqAiXeUGb1jT1yWQym87SbaTrFYRw0AnLKi+SGCO0ni+L\nqrRCNwy7N/OpZqtEAC6hCLte1dR1W9RNRQCQEFAIBJN5VlLK86pEBGMIAOVUcoSQ53nr9TrLMkVR\nXNdnjKXpxvZsKnjFuYoha1sNkU6n9+zpawhhvz/cpjEBsCgzVHODKFwC3rQSgl6vxzkvykLTNFVV\noamkUawDRQCeZRkqwHC4dzKeJEXBOGslz+oCEcwgZQK2nPquhwFM89IPO1SQ7mB/Nbsry8xWTcUh\nLW+bMtcts2gL1lDfdgrJl6u5EIJWtROGgtO7u7ua5YqJ75+caZYuODfcADLg9zqHoS+wdnl+kcfJ\n0XhfNQ0KYN1WdZ5avX5FWVtXQHIIhYCyyDPDMCDSy7JkovXDTlk3ZVmahiEYH/QnRdMqnlXURV6X\nw/5gnWx1RU+KqirbaLfTsdYUueTCCfz9w6Omaa6vp5alYSImk9F73UeXs+vOoDtfbCAWqq7ttkma\nlKahl2UeJ2lVN67n5HnqWvb+eEhrwZq2AdDQCIICEklUbHk2JoRJQLCKAQx6vcFwEG13pm2lcRLl\nVXds1VWpKARg1B32RofjhrGS1nESQ4RaBm6uloqOw55vO7rvuw2QJa2QprRMZonYLNPAi8so3/Mc\nDYCWSyRJEHa3caJpeLdLqiIPQvf65vZgvD/wOxHdSQ1tohhDotsOpbRD8PXt1LANx3FYzfJtpgje\n3+tRKMsiz/OipNXR2ZFumPuj3sH9Y4Uon3z8may4q5vRbg2AcEMVNQzWtMxzAnWga5s8CVWXpxUQ\nsG2rrhuoWPGdMMsTVZH7h/caXnLevHz9xfHeqae6RMVOYMcQapqZxomm6ESAKsn63a5oqOmTJ998\nDyi4rsvFdnF4tq8pACNudULe1KEXBLbLBR0f9BAi/fEk6IRffPHFo5OH2aJ++sunhuITRdqu5Unp\nGDWjc8iW756NO24nipSLi3MvOLK9TpwUXMVSl/uj8cnwjKX01Uxd79YNbVrJs6rshOH0ejplPOg5\n2008nW2bkkONNAYABHaRXVb8vXc+3CzSwV7XDEnNgNft+z2H58r6KqYlj4qYGvrNhRJV7Yff+73/\n5X/9t//qX/3JaG/w0/Rj2ZRVWW+aFiHU3eunUZGtoqqs8zzXNOPk5GyxnEEIh8N9zw2S7W7cG3c6\nwXy7dLyebqp369Xk4dnt1cX59Pzg3kHR1kVcNSZHqhb2+oQrOgOb3XYZzd5/2N8kuMXg1cW86wfj\nsP9quvngt97b8XZd5MP+MM7azz9/keR0ulgixyl5azHq2nbTtExAxwtvLm7r6hkA4uxoqCjollde\nr0cpd0yD1uyzz189/+RLoqlfcx/f+ta3lsv55dV1UVJQNxIiAZCVCELIJo4UDLIkJr57fHa6XS5M\n2xCQ+d3Oq/ML2rRf/uar/clhtEnbBiXZTCEacJ23u42c9NzJ8Mu3r8/OztKmpdvEKdskKldxzDjc\n644eHKv//E//5PMvfjO9XW3ixlahH3Z2ZTqdXu8fH3tEzeLMMM08pXVDu93uveOH/+Vvf/Lu+48k\nhEXeYKnZjmUKrmlK27ZN2RBCJBQd1zItCyFUVbpuGlJKJkXoGRUVabxljGKMUJGnqko63aDf66gK\n5qylrGlpDQDKsiKOUwhhGHQIIU1Dt9vIMAzTNOM4DsOQC5pkcdvWTLIa81K0HApVVauiRFQe7I0u\nnr9ikt+7dy+OYyCkqeoIQF3XEUKT8b6um5ZuQYht2zUNQ1cNzwtY0zqOoxCtzBrfC1XFnM9XBGue\nHzLGkiT5+k10NBoRTcW6SlQ9TjIMsEqUOivTXeRYrqrqiqbqut40jRv4RFVc1/2aY/E4BlGBi9bX\nzGi7u53Pgr3+5P5p79GR2nOhrZdA3tXlrC7VXt/sDTBEX8OXu2grhCCq4jiO6dhACAVg33JNzRRM\nEqlICjSipkUlIA47fUQULiVWUM1Ky7M4rUTbmEizkelrfpO2GlQAA7bhdsMBkpoQgGBV0wxTM1eL\ndUO54/lJViVx/stffPqzf/hVndLl7UrFpOMHdV7WRVkXOZFYkZgm9VE4tASxsO6ZbpqXUFOsXlcY\nSlxkRFUaSi3LEkKslsubi3MCYFtTz3aAAK5tr5cb07THw2Ge5wDgNCmzqIg3sWM487vpcNDphm53\n33/w3rG/Z4/299q2ZRTkVZtUlS7Ro9PTt69fIQX4obvdLi0dKQjMpjPfDWzbffHiVZEWDeNJkhiW\n6er24Xjyyce/Ho1GeVHVTLZM5m2zWCzatk3T1HGcvEgdx3n4+MHd7LZIUoyhwNKytX4neOfBvU7X\nz9v04unz5eVlkySsKGhdmpZ2cnKkaKQqG8uwVUU3daPX6UIgbd20TFOhlFa5INzZC87Xd9i3n19c\nGI4PKb27mDYplY3c7XYAQYhRmqZSypvpVDcN23Fub2+7/Z6UMiuLrGDXV7PXr87Lutrb61NZDMah\nqlNMpKoZm13huAGXMOyNV7vo4GyUVdu82J6dHj3/zZe+7XU7AYYKEJI5OOdtmZR/9Du/90ff+06e\nrmtQr3lFfdgaopAlUuVsdvvxL37+f//b//Pq7RuJZEPrrMjqOvc6zu3seracEg2RlnQs39L0aBvH\n6YrDBOvS6+2//eruH/7Tr199frO+SWCl26D38uMrlFvDQe+r82erNlH7jj/sjk4m3/r979xmm67v\n/Og//MhUnX63m2QrgIqD047rGZxSgmEn8Id7g3cePxK8jnbLbuicHR73Q+/25nngi//ur37wp3/0\nwUfvDL/75Pj73/utJ4/v57voeHyY7coqZYvbZHGXzW8jAluNJFLsDNNOW4L7/V9efOGGmmWYvtJh\nCdSw4XrmZnN772Rs2EbaFJ8+/cLuBJs4OjjeVxWoSn53dUdrpqmGY3pZXjaMLlaLsq4wxrfzuWVZ\nru28fPnSMsw0jS/PXw/3+9/53W/vjbv3Hp60vKppdf/RPQ5YTVAJOLA0aaiZqKmCMiByDCRtp5dv\nA885OD0Y7o+iNIZYjg6GAJizWZzkzS5NkyLXHZ1oaHwwePPqReA7J6fHeZ4jQgzLvLqZQgizLMEq\nzqs87PZWm+10eicFHA8npm0BjAAA/X433m7zNEVCcsrKfLfbLn/z2SeuY+7tdbM0WcxnrK2JrTBI\nIZGtpEQju2Tn+c5kPDQMg7atlFJVVZUoBwcHoecHrtcNfI3g46MDx7HQZr1bLda7TURbzpmUAtKW\nMypow/q9gWGYlLK6rtuGCgkkgpv1TkqZJMl8sbBs27BNiQDEsOe5FiGiamzdsG2XI5CLGtrK6GA0\nW867vbAfdq7enrdFTVmLFMIYy7OCMVaVTVmWnMkwDMfDUVGUmqIJyl3L0RTDNG3HDlarjeN4Ydgl\nhLiuyxjjULqhTzTV9l1NN0fDoWgYrZomr5qyUhRFMdWSNpbvElVRNEIltz03TtOmbUf7EyFlFEUq\nJidHp4au79Y73lTlZru7XpSbrNiWbQXWs12+LhSk6EQJXBcBSAjZbrdJlgMJ67ru9fcERHGauWEX\nKqoApOXQdgzT0oo8LZK0zss8rZta5gWrWsAZLNJMtE2y3aRxZpudqgIIahAQVdWQxIqiqapaVVW/\n31d1rShrVdezoqUt0FTn7OR+vM2ZFLbnU0lNx3Q8V9d1glVTt6KyrCFwe1231y8orVvu2K6hGgBC\nzTQURZFSIgAVgHSsFFGUZ1mZV+v5Yr1cq6ompVRVYpl609RVVaVp6nlBXdeMiiKvDMNoiqYoiv2D\nIaf1ajYb+KFtqHkRha7T8fx0GzmGGdgdwBRD62pKAASs8hJJNB5O4jguy7LT6QghqrpueQsx2KZx\nZ7AHFa3T6SEJHMfJsowQYpo6pVQItljMEJHIMCsuGSRNzUPT31zOP//HX33+8081lXRCn9HaNHXd\n1LKqnEcbK/DSsoryAhAFGxpDwLCtsq3vlgtF08Iw7Pn+ZjEf+G62XZweTnzXrMuqzcquHXp2IBFs\nJJ2v5lXV2EFgB55AsJWcqDhKdlTQ0WQIMWhoretaWeZEw03TAAB03WxohRQSdPyoWDNUzzZ3hq+5\nfSN0tI/eewDKiu7ifbfTN8yB1WVZcfXyfHsX+c7g+OSRomm6rruG8+GD9+vFnBSJzBMsqO0Y2FVJ\n347VpqJbzQZJvlJ0JAA3HVsAxAVabHY1Lxfby7Bn+oE16g2SdXT+/LlC+MnZcHwUclm8ffNVnm58\nU1/dTC/fnP/Bt75TXMzo9Sp6ezN9+mY/HGyu5/2eE/rB82dfHRyMPDccT46EAI7tf/XFs5fPXs6m\nc42onu0M+4NO4ISBw3iVZes/+YPf+R//9T8vN1ew2QU6evviq9nVVbbeZfPN/O303vDU1wMD6m3R\nru6WaVzczRarZLOjm5PH+7ZJxt3uZG/w6U8/s4HbbkWblnkSvX32khXN6eEDSbGiOoTYttVJV3m7\nKT48fvRX//KfGZo4GHe3u0VZpZZjWr57cHJc1aKpJWfq06cXVSGkUAa90ZP3P+wNB6vNWkKo6tpm\nt1V1vaFUN01CVCGApRuStnmaQYgt0+6E/VbIsmzrlr04f/vp069evnyFAUII0VYsV9uW8rDTo5wt\n1yvP94uqPJoMF7NbFaMyzzRNC4LAtm3LcTgC9x49gIoa5/nf/fgf46yJkny3i4WC315d+kEwGoxs\n3ZBNY6o6FmDY8f7qL//y29/88PPffNzr+M+fP2VtDQX3HAtCqaqkyNLQd2xdL5LEta26aQzTfPXq\n1c3NDec82u42q/Xrl6+ury4YY+v1EiOAPLeLoFbmPIurJC4FxwQbthWYugERSIuMSZ7lKcLQsk1C\nSEtrxphhmgiDpmnCMMzLbJfsTEMTohWSx3G8W+/KupII7k32nr74UgAOAFgvlhpSHcNsmqblNK9K\niUBSpBIKoihJFs+Xs7zMdF3bbNZCCE6FrqhVUYVhaJnO7e3t19Vmbds6noMUTHTN8tyybVRDLYoi\niyJDUTCECECMccMZR0K3jUa0UCE1o5qha7aZK/L17EoNnNHpke44lmWpWK2yfH23SDaxjvVxb/zu\nw3d+8Hvf7/mduqgE4xhA2ramqbe8NWwLIKhouun7eVNd3N4UlEZF0QKIdG2X5qZu2LopKaV5RTjo\n+eFeb6QARWqqYpkCoM0mhgBzAHZ5XlDati2E0LLMwajbgloovDvq1jQv66JqSs/3a9runxz1hoOb\n2TwviyhNNsmWAdnbG/hhUBRlkeYAYGBpVEENAOsohhDncba+mXdNz7asoijm8/l2u1FVxff90Wik\nKEoQeHVVACE3m/Vqtby4eGvbpqEqjq0W+Y5guZjfKVg1dTvepYKiQdBXAbq9uJq+udoPhw40NIEP\n9vYkRqvVqirL08lhvI4I0VXTKRioy1oIoKqqbdtfk90ccIRgWpeL7RJpOEqi47NTwEWRZrambbfb\nr4ezvLQdB2LU0trzHaSQMAxd08IQv3j2sq5bXdE/ePKkKIrlcqkQjXPeVG2W5FmSMyYcx83zsqgr\nQogfuKalqirJk/Tt66lkWNMsyzIUFQxG/cGoIxDdJNHJ2UMI1CQrqQSGa5+cnfY7XSFEVhaKqmd5\n3tsbTCaTLM/nq+V0euV6FkTc9z3d0qMkub6e6poxGY+rIgGg+v4Pfovy6Pnrjx+9dxZnUZanf/mX\n/83ybrbX3SuT7OLNyyxJAGSnp8eOZ794+fKzp09/9NNfjI9PGECP33mPUG4ixdf09fQusJy9Xl9V\nyfPXX7VMlFX14PE7ACPTNu4/vJfmeZQkhq9zKWradoYdysFuQa9erYEkBw8OtdCYZ7vuUef9336y\nS7cQg9l6vk4SiYmqapRyKXC/P/n44y9Xy/huvp3sn84Xi5OTk8vz1cun0344TuOiiBqTuK7V2S6j\nxWw12hvXZZWnmWUrrK1u357fvrqoNgVoSZS0USbSikGsUyZc27uZXuV1qjkYqU0/MNqiDvzR5OTU\nGzsp2k7X04cPv3F3vrm9WWdNJTQ036x00wjC4WefvXz54jxOGybVtOIvX18v5hFsCCxgvFmLlhKE\noigqq8Zy3CwvlrsdICjodsJe13bdoNOxXTdJ8zwvNdVcruJ+bzyfbfKsURWbUQSlbhC9F4TL6R3m\n8nhvvLieLu8WeVTcrWKJjDcXd09fXs+XMaTk9vVtx+zdOzsVvK3qomkaXTMFx7fTdV3K1WKbRkWZ\nV6qqFUUhhDi9d2Y5TlLkz96+JaapOgFH+mIda5YHifbi9Zu4rH/5yWebzfbs5DR0PAUC27LqIku2\nO8nkyclJpxs4jhMG3baqVABtooS2PQy7dVbSsrF1CwloB4FqWWf3HwzHk4ay5XJdVc39h49Oz+5j\njOM4zssCFVWJFeL6nmaYjImvy83bts3ztKyLqsmJCi1X1Q2EsSQq7PV6TdvWda2oatnUECMqOEAy\nLzPPd3Sd5Hn6takAY1hWqWXrJ6cHRVEUReU5/tc0t5RS0XDNm22yDQedqNiNjoaWb++yqGYlJhBB\nYFp6lqYIwTIvyrpYLBYIgX6/2zRVFG+LIkvTuGFNVRVFmSXJVghGWSMk003N85yqaYumpVJolok0\nRUDBobRdp8hyx3GKolitNhChN5dXeV15/b5r+RBrVIL1ZsdbWudFUeRII2maxnFa5gWEkHIGMFJV\n3TCstm3btu10er4fdjqdbrdLiEoI4YwwirkgVdMG3aC71ynrSNGl7mimbd9O17PbWFWDloG7xRXW\nKYC0afOqTSlo7r17OjzaK1jqD1zb0YiOi7Zw+77uGteL25zmumc5pqUhEtpuW5b5Ns6jRFDG67ar\n27gWsmx2s3W6jtqiyaIUMlFnhQoxhlDTtLptFtvV3WouMNBNPeh4REW6QRzPDHsegOLlq+eMMYIQ\nFLIpCyDYwWQcb3dVXlRZdnF+jjg8GB02Jb98e3f+4np1vUMAMy5Xuy2xlBbXJYs1R3b7RhD4BEHW\n0rvbG01TCATXl5eapiEoR4M9yb9mcpS4SFRT2SW7IAj6/e7XgVtZFIJxz/MMTcdtXqxmsEzT7ZJo\nQAuN7v7gbj1rq9Z3/MXtDFLYJuXQ7ZhcUStY7TJZUZUjRULUNj3XCTT9vdN733r0hDesbhpv1EuJ\nwKGTCEZcR3MsxTIqIXTbOT47s11nvdoSojZldXc7L+qKaGoYhvP5XZrFmqEeHBwEQef163MJuOd5\ntmOuN3NNxYubBeTUc7Rhr58lSeDreyNvuZpzjdyuYuzYJ+++E7X5pkqMrnn/w4dWz1ADPHo4enb7\n5vXq7v/98d+ty+ST558KXW8hVgzb9zt74V6TlpjS73340fQ6ml7HN1fb87fT3W6XZtF3v/fR+0/u\nHY733rn33s3F7uJ83ba4qNsoyhkxDN+6XFz96V/8YHg0whq5/+jhP/vzHwII15sFN2H4jaOiq+gH\n3VKy5XYHVNIfTc6v7sb7x23bXp5fEQDjzS7dbHzHNzTTNS3Xsg2FRLtVWWSagusiHff33n/nQ0zc\nxar8+59+VjCUNK0w9WW6e/SNdwzPACpsRAU1fvx435mYw8MOwVK2rK3py2cvjvaPRSN0ofz2b//2\nyZODx999x+g6UFF1ywcqCQYdzbWdXiduamxZhutrlv3l0+ef/fxcR/3PPn6bRBQRK06LpCgZ5/Pt\nTTBwbmbneR0FPVcgCgg7v3r97NmLuq53u52CVdf1y6ICEq9Wm6JpWiHf//CDwWQU5WnY6/b6e7ss\n0TSjrlouUNDt6ZptGDYE5D/89d8gKSZ7gzxJpleXSRw7lttULaewLoTkOImKeycPm5K+fPH65cuX\nlFLDdrOi/uLFy59/8lnNIdKthsmK0r3JPlG03nCS5nWe5kWeE4TqIkcI390uTNO5vppyCcOw27Z0\nMNgLHT/0uq7lty3bJSkF4Ga+iot6l+Uv3rytKIuSzLTdhjKsqKvVZrZctVwEYVchGgJICMBaVkvA\nAOQAcspqymrbtVQdhz2faKiq8iyLNZ1oOsnLDEKoKIrneWEYlmXpuq7jeIZhqLratNV4PKSCTqdT\n0zACz+13/evrqyiNddNkgitE0zTNca3lZq3pysHR/iZaaYZWtzWTLUCSCaqbGgAiSxJVVSzDKKvU\nso3xaK9pKy6oaWu6pRumJqXklFLWFEWGMPA6juPZXuAqhtKK9mtFHIQoTpNttDMsU9W1qq4NRQWM\n61hxdNO1bENRec3qrIICq1B1TUsyOj0/v3jzCooWSHo7u1ssZoJLAFCn01MUtWV0s1mVae7o5sFw\nKOqaV02+3lS7yFFUjtj18mZTbM2eF7F6maWd8RjquqzF88+fVUk+7A1swzwcT/Y6PVVCLmiSRo5j\n+h2HI17wWvNMhkEj2u6wh3Ro+yZFVDGw5VtUNEwypCCi4t1uJyBACgYEIkOhtHFtk7atruuGZfph\nYId+XBeaouq6jjGWEBiWGfZ7bhjYob/crbCu2q4lkEyrNOx3JQIIIUN1JuOT8Xh/bzDYbhZS1I6j\nWJbieKFl+klW79JilSRWz9s/OVgu56xuNE0TKo5Eq3UDbNnrVbxbxBjjMAxNS1+v1/EuIoQMev0k\nijGHu9m27/ZvL28Xq/nocK+Gbf94rJuahEBRlDwtXMc/OjjWVWO72l5fXw+6vcD1PdsbjvdVVVMU\n1dat8f5BUdWz+Zxy/vDdd/O8LNIsjRLGWF3XmqZlWVI2uZBtUaR5nm7TNUTMsfV4ta2jgma07+5h\nbgz2JhVtOWT9UX+z2dxdzTAky/mqyMrx3tCyrGQXcU45Y5qmQCgXy2m0W4z2OpZhZnHS1JwATQWm\nThRBGeT46nzmmIHr+lCIeLt58uQbH3/y0vHM569eNaL9r374J0cPhptknaZpWdZF3vR7B4S4quZS\nAe4Wi4LDm812meU1VJ5f3Ly6vOn0BnlRuJadRIlkshP2HMcpiuz58+eO4+zSAmqcoRIoMAgCQ2eO\nB95/cjCbX2b5Js83//CTvyWi/fKTX/7sx397vN//4Z9+vx/quE3//I9//3Cvg3gz6rh/9L3vDvfd\ne48Pnr96to5W77y7Pxp2N/NtsskwEoBXpoERaglm05u3906PTEOlcTkZTi6m8//8j7/IMUja4u9/\n+mNV576J3n9w+O7p5KDnE06rOH54ePT46Hjod9L5ttmlm5tpqOshQr99ePKeHZpVgYroYM9TJK3j\nrNruFpdvHx4NeJsZCpsMgo5nhZ5dVzmUcjKZ6Lr+db9/pzcgWG1a1u12d7tdXpXPnj3zAreuq36/\nW1UVwkpvMDBsI+y4ALJuz/c9y7b0xfyW0qZqG03Tyrpar9e6rj98+HAymfzud77ragoGzFBQL/A7\nXQ8qSHf04WSUR/mH7334x7//AyyBIqWktetYabLr9Ye6ZnmWf3VxQ5AyHIxOT+/dzWdpknMuT88e\nvvP+B0XDiGZJCHVLJ0Q5OrnX709My317fo0x3m3WjDaD0RgqestRmlW7KAk7XYBI1dDLu/kmTV9d\nXhZc2p2e4vru3qCCIKsaRLRWAAnwZhNFSQ6xev/eI8GBphpnZ2d5WSDdMSSScZYyzl3XDsOw1+sF\ngSeALJuaAc5k6/mOphKEha6rUkpVIy2tMVbqus7zQtfN3WYLLK0Q1PBtoMD53e3A74SGOfRC1zI2\nmxWXoqFtnGSu62KMi6IYdHuEkCAIyrJEhMRpyoQgCnY8R9MUgGAYhpqi3t1NHz58+MMf/tlut2Ft\nKwCDBOm6yjmVgqkQu4Y16PZMy8KqwiGI84wL0bRtVdQqVpuqJkgxdcPQ9PVyVVeVomtVVTHGbNOq\n0lyFxLVsW9UFIWlZrFYLRKTmashAZVtF0VYztZOTk+FwaBqWkEA1dISQZZiDbi+O49VyqStqlWeG\nrvmuxZpaosbrmiePju2eZ4c+VPX5IqorKWpoadbD+6f7k1BR+d3smjYij9pkEy+md1mSA4l2cRan\nRcvg1fWMS9xyBhVCNKXldDQetlU93htyzEtaxVlKOXN9DxkqtrXhyTiqUq7CWrDuXlcgGFeZYus5\nrwEUREH9vT3H8yDGDW2RquqmBTVtvl41og36nYPTw3DQy4vS9UMMcVPVtK2lZEJSTcVHhwdA8DhK\nNWwgofjd/t7JOG52ArQnR/v7o3HDKAPA6+9xbGDFvb7cxCu62W3zssjyHEESht3ry1vBkaYYOlYv\nXl6BGo9645/8+MdEQ2f3T7OymC1nL9+83kZJ27bJLnn94vX8ehHY/vHZO0K1vnx90XC5mm/Lbc7z\npusEqqqkedobDcJxZx4vuSLdQcfteaOjAzv0WyCgjnd5HBWJFli678R1tktiQ9F5WvcUL7+Lkumu\nXuVvnr2yTbOlpRBclYSXzCAGENJS9dFwKCiDENZFaRiGShTGWLfjDfd67zy8bxnadhsVadkLR01O\npeBf27uur94mSeS7QV3WmMAmif/zX//d0eHk/O2b737v2w/un/3sZz86f/USKqqjBWppvP35m+R8\n02zrLGmAagldDUZ70tBeX98kVX1y+nA8Ovr4558kyWL/oO8HpudYCECMFQTIZ5981QLWsMzypGkL\nhBqapu892A9MGQbB73/vdxGA9w6OVrfzewcnHz35Bpai5YVsi76h8fXG4Gw3nz968DBP49n8UoBM\n05Fla1m+y4tKcMU0PCgBIYTT1jENTMD9s1OCYBzHgKPPP/tym8R5W997dO9PfviHf/CDb3705AEq\noolvNrvl9PWze5PhwWCwm62nry/v68MTfTBU/KHnHU2CH3z/m47Ot1cXRssCoC6fv06u5loDzsaT\n9+/dZ+nOhEKXbHtzpbdNV9cP+nu+7a7XO80Qo/2u7RvrzYyKGmNIKf/GNz58cPLe2ekjQ3O63cFq\ntXFsD0PCmex0AoSQoqkSiuV60bLm3oMz27EsTUcAXp9f7NY7AtHN+eUnP//54ubGwPj4YH803gOM\nhrbbtLUfem1dIoSi7c7Qte/99m/7rlPkqWMak8moquvBYLheb5e3CwXgxWI1u1tApO62WwRgGIaX\nl5dZlqkacXwTQsGoSLNqsdldXM+TtAj8ztHJ8f7+uKDszcX0arrcRNFutwMAFVW9jraaZUdZ3nC5\njqLpfL6OoyjPKJCGYaiq+nVMLYRQMeEt/fLLL6Pttm1bTdM+ePKN/x+rJpySLsn/ewAAAABJRU5E\nrkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "# captions on the validation set\n", + "rid = np.random.randint(0, len(img_name_val))\n", + "image = img_name_val[rid]\n", + "real_caption = ' '.join([tokenizer.index_word[i] for i in cap_val[rid] if i not in [0]])\n", + "result, attention_plot = evaluate(image)\n", + "\n", + "print ('Real Caption:', real_caption)\n", + "print ('Prediction Caption:', ' '.join(result))\n", + "plot_attention(image, result, attention_plot)\n", + "# opening the image\n", + "Image.open(img_name_val[rid])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "Rprk3HEvZuxb" + }, + "source": [ + "## Try it on your own images\n", + "For fun, below we've provided a method you can use to caption your own images with the model we've just trained. Keep in mind, it was trained on a relatively small amount of data, and your images may be different from the training data (so be prepared for weird results!)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 992 + }, + "colab_type": "code", + "id": "9Psd1quzaAWg", + "outputId": "9fb1aea3-d3ed-4d88-94bf-f9b19f221eb0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading data from https://tensorflow.org/images/surf.jpg\n", + "65536/64400 [==============================] - 0s 3us/step\n", + "Prediction Caption: a man riding a surfboard in the ocean \n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAscAAAHuCAYAAABzvaFNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9WYxlSXrf94uIs90196326qqu6p7h\n9MyQ0z0SYZqiLMECvAiyDIO0LcuCAdmESOvBMCz7hRzIMvxgGwZtA4YMS4Jsw5IGsADDJk1BsEnT\nXGbImeH0dNd0TS+1577dm/fes0aEH+LcmzezsraurK7bNedfyMrMc88SJ87vfBlfxBdfCGstlSpV\nqlSpUqVKlSpVAvmyC1CpUqVKlSpVqlSp0qSoahxXqlSpUqVKlSpVqlSqahxXqlSpUqVKlSpVqlSq\nahxXqlSpUqVKlSpVqlSqahxXqlSpUqVKlSpVqlSqahxXqlSpUqVKlSpVqlSqahxXqlSpUqUfGwkh\n3hdC/KlHfPanhBD3n2bfSpUqvbryXnYBKlWqVKlSpc9K1tovvoh9K1Wq9Oqo6jmuVKlSpUo/FhJC\nVB1ClSpVeqKqxvGESQjxN4QQHwshDoQQN4QQf+Fll6lSJQAhxG0hxH8ohHhXCNEXQvyPQoglIcRv\nlLz+UyHETLnvN4UQ60KIjhDi/xVCfHHsPH9PCPHfCSH+z/K4bwkhrry8O6v0Kqvk9j8SQrwL9IUQ\n94UQf6b8rFbyuCeEuAG8fcKxw31/VQjxj4QQf7/k9n0hxNfG9v1JIcT3ys++KYT4h0KI//SzvNdK\nlcZVtSc+varG8eTpY+BngCngG8D/LIRYeblFqlRppL8I/FngGvAvAb8B/CfAAs6e/Pvlfr8BvA4s\nAt8F/pdj5/l5HN8zwEfA33rRBa/0Y61fAP4FYBooxrb/CnCl/Prngb/8hPP8y8A/KM/zvwP/LYAQ\nIgD+MfD3gFngfwWqhkill62qPfEpVTWOJ0zW2m9aa1ettcZa+w+BD4F3Xna5KlUq9d9YazestQ+A\n3wG+Za39nrU2wTUOvgpgrf071toDa20K/CrwZSHE1Nh5/rG19tvW2gLXcP7KZ3sblX7M9GvW2nvW\n2vjY9n8N+FvW2l1r7T3g155wnv/PWvvr1loN/E/Al8vtfwI3h+fXrLW5tfZ/A759mjdQqdKzqmpP\nfHpVjeMJkxDi3xJC/LEQYl8IsQ/8BDD/sstVqVKpjbGf4xN+bwohlBDiPy+H87rA7fLzcY7Xx34e\nAM0XUdhKlUrde8T2M8c+u/OE8xznNirjmM8AD6y19imuWanSZ6KqPfHpVTWOJ0hCiIvA/wD8EjBn\nrZ0G3gPESy1YpUrPpn8d+PPAn8EN510qt1ccV3pZso/YvgacH/v9wqc8/xpwVggxzvj5R+1cqdKL\nVtWeeD5VjePJUgNnxLcAhBB/BefpVar0eVILSIEdoA78Zy+3OJUqPVL/CPiPhRAzQohzwC9/yvP8\nPqCBXxJCeEKIP081fF3p5apqTzyHqsbxBMlaewP4L3GGdgP4EvC7L7VQlSo9u/4+bnj6AXAD+IOX\nW5xKlR6pb+BYvQX8E1wc8TPLWpsB/wrw7wD7wL8J/B84J7FSpc9cVXvi+SSOhkhVqlSpUqVKlZ5X\nQohvAf+9tfbvvuyyVKpU6dlU9RxXqlSpUqVKzykhxM8KIZbLsIq/DLwF/F8vu1yVKlV6dr2QxrEQ\n4s8JIW4KIT4SQvyNF3GNSpVetCqOK33eVTH8meo68H1cWMV/APyr1tq1l1ukz78qhiu9DJ16WIUQ\nQgE/wi0UcB/4Q+AXyviXSpU+F6o4rvR5V8Vwpc+7KoYrvSy9iJ7jd4CPrLWflJMU/gEurVOlSp8n\nVRxX+ryrYrjS510Vw5Veil5E4/gsR5Of3y+3Var0eVLFcaXPuyqGK33eVTFc6aXIe1kXFkL8VeCv\nAkgpf6pWb5y8o+Voyurjv5fblJLHNyFO+D787FEy2jx8wPhBJ312UpkfpacpxOOOPem4k27wpOuc\ndD8vWqd8zX7/YNtau/D8Z3p+nTbDJ1+EZ4f4+HHHr1Ex/Gx6hRmGiuOK42dXmibkeTYxi0lUDD+h\nDI8r16O2v+IMw+Nt8YtoHD/g6MpA58ptR2St/dvA3wZottr2K195G2stRxcY4sRto89G3y3NRgt4\nUt2NE3nyXv1eb+y3h687LMt4rPZ4+U6K4RZCnLj9SbJYRFmG8XuVx8r1NO/Ok/Y7fl2sQEjA2vLd\n+HRUPq7GT3r3HnWO4ee//7v/z5OWdz0tPZHj02ZYWLfPyTwNLdaTGT6qiuGK4ZE+E1tccXyyXiWO\n3/3jP3rq6z6nKoZPOKZi+NHbTssWv4jG8R8CrwshLuMg/nnccrKPli1RE8CjHrq1cBz0xzR/j24z\nJ+4lEEf3t2DHIk2OfYoVh9c88nCeAOqnm/QojgAkxsr8LHr8lU8+l0BghcFTHnlRHHudyvsRQ+Nx\n9CLjjvXxchzfbgEphXth7GGJ7LF7lU+8jxeiZ+P4FBi2w5o+cvhw/5MZdhU2ZkyxiIrhimGnl2KL\nK44fce0nXONRV/4x57hi+KGiVwx/FgyfeuPYWlsIIX4J+E1AAX/HWvv+Yw8SR8E88pEQGFuiWt7x\nozy/k8vD492IZ9VL+Av3slTo4uSqO2HjcUifVlprB+2RZ3qaD+zT6Zk5fpEMj0z1KaliuGL4Uao4\nnkj9uHJcMfzq6PPG8AuJObbW/jrw689zjiGwBlvCfuT8o31s6SaOeoftUdjdj+KI9zA6RhxrOYvR\nFRECrD1WqRMG8vgwyUMaH2N45PGHHvBJwxTWPoyVqxsx8swe5cQe9eps+f/DgylCPDwndPj4xs/9\nMkz083L8rAwPeySG/A1ra1SXwxOUGywgjtW/O6ZiuGJ4eP3P3hZXHB9TxfFzqWL4s1HF8FG9tAl5\nT5Id6xc/3vk7ZOxxNzjuOT7r0MHhOY7q5fcFPYNe5Iv3HOcetykv4vyTpOdm+BT+IlUMn/65f5wY\nhorj51bF8UtXxfBz6seQ4clqHFsH6ni8yPh3jm234xuGxJdDKuNenBH25GPGTzp2LVFufihGiKdt\naD/La/CoJ/d0T9SO7ujh0lkOc/XZY9sfdTUxdq4n7Xt0izi2ZXzbw/c/OseRh328xh9f5onUczA8\n9KwP+TuUOV7FQ294/KSlpK0Yrhh+TlUcP8X243tVHE+UKoafYvvxvSqGh5qMxrHlxC73pz78CXd6\nPHriCUU5MoJw/OeTAuifVY+bMftpNRyaOKyKh4dIngaI4SvxmRlAMV7DR1+p0e92eH8TbJZfMMPA\nQ8N2jylKxXDF8KdTxfFz68eB44luIlcMP7d+HBh+ki1+EYuAfCqNe3NHHoE99v1Rxz6GDQFg3MMV\nCITl8OvY726m41FgjTEjv6fZbCAE+IGPlAIhhfM0Rz7X4yt85JfZQx9t/Faf5euhgzlaj09XomMn\nGJXxcT7e0/qNJ20vv6w9tg0OffVj1xfly3XKBuC09bwMP+7uXO+DHe33uK+K4Yrh51HFccXxEzl+\nrubci1fFcMXw89riiWocj39JxgE7AbpSw9s+3uB1UfSiHFaxgMAaS5nfBWs1YMAUrhKsRSkPqSRS\nCQpdoLV2ZSu9DGMhiRM85dEf9CkKgycVAk29VkMIgRDyBOCObSlvQhz/xNrDr6dR+eKNXtbhSzg8\n3tjRfoffx2EaO7b0CwXjXvHD0Iqx/4ExB2N4fcvDUI6fp6xLY47cpziy/9EnPTQuj5qBPCl6boaP\nfVlRfgHDtCvGuqdmMSOGrdFu/4rhiuFTUMUxFcdP4PjRDZbJUMUwFcPPaYsnI6yCw4cpylb9OLDH\n2/fjnw9BPLqDPfLz8NzGGKS0GKtLeBW+8tBaEwQhaZZR5AVCCDzlIaV0qUGEGM1kLXRBs9lAmwKj\nLWmWIoRhEA/cA5GSoVdph2Ubny75OG9l/LMhmMeThLtpr4f1UP5+BCHh4LLlSyhHnpL7b/iyOzzc\nv8cPE5XerwUrHPiHYIkjL6C1II4HJo1uf/gCCYw15Ysohlc4cr0jM4fF8Ntj6m4C9NwMD5/18LOR\nDSrrvqwzKSXGGoy1eErhe0OGA7Isdz0TFcMP1XjF8NOp4piK47HrncTxwyRMliqGqRgeu96nscUT\n0Ti21pClGRZX8W6be25Db0spVW4vvRshkVKgtWvopml65JxHV5lxOfaCwEcA/UEPYwSNZpOzy4v0\n+xn3H9xDSIUnJa1Wm8FggPA9Wq0m/X4fYzRRGDA9Pc2DBw8wFgqdMz87y+7uLkEQkWYZSiouX7mC\nEII0TQmCgDzPj5TNWIuS8kjcy/BlLgvPP/szP3NY/vKzcSdgBG/58oxDPqonIE0ShjFJYnhNjkJk\n9KHXNcwDOX6+b37zmwBHXmwppSuAsWPPRGCwKKnGXr4SwnGgLRhrkMKdQwpnYIRwvfvjL7CxBqxw\nyb0nWKfB8LiRtjA6D9YlydFFQRAGGAP9fg9tBc1mk4W5WXq9Hjs7uwil8JV6boal5yOkIEtTfD8g\nz9MjRtn9YVAjTNx3OzLegmEPyaiGjvI7xtv4H7Djxn/0fowzLMXh34XS3hmtjzA8PM/48VAx/CRV\nHFccPw3HxuhPi9gLV8VwxfBp2OKJaBwbYxgM+gCukjhs/A09L4RwHksJrhQCpRR5no8ewOjY4YOB\n8qlJwBAPMlrtJj/9ztv88IOP8QIPrQv29/dQUhGnCW9++Ut897vfZWlpidnZeW7c+CGNRp08L/BU\ni93dbebmZ9lY3yYKAnxPkSYpRaHxPA/lKQ4ODii0JvB98jwnz3OGPdXDl9Pz/RGAxpjRdiklUkoG\ng8HhvRxr+DK6Lyc5bNDahwPz0zRFa41SCoN1oSUlQMDI45KIow4FZUPZGJIkQUo58sZGHlcJ82GR\nBNoa5wlae7QRbo9CKqRACnnkxTTGjM47BBw7fOEnezLTaTDsRjaOMgxDR2/IcJ9mq8lPf/1tfvjD\nj1ChY7jT2UcqRZImfOErbz03w92DLlpr/CAgy3PyLMMCnlIUpfHzfX90n8YYdFGMDN34fTzK2B7N\nRy6OGMVxCSEeYnhoVBFgjTN6j2N4aB8qhh+viuOK46fh2JjJ5bhiuGL4NGzxxMQcw+ENGWOww6+y\n8Wi0psjzUWyJtdZBMvKQcDEq1mJwx2ljKLSmMDnGGoIwoHfQ46NPbrO3t8vO9hb37t1naWmZZrNB\ns17n3r17XL1yhZWlReJBnwvnz4GFleVl+v0BU9MNTJ5z5col4jjh5o8+Js81aZ7T7fXoDfpcunge\nX7lFCocASCEwuiCIQgqjKYocaw1a52R5ilQKLwicV2qMO7YcrjHWYrAURmOsG94AB5ylhIPhS3x0\nosBQ2hisdnUqLKN6lAiUcB7g8JrDoZFhg92Wx5uxL8vDL89oWGPswsYYB6WrBFcfAox256H05ofn\nG3qCSZKV+2isMKNQmEnX6TBsRkN1xhiKoqAwOXrIcO+Ajz65ze7+Hrvb29y9e4+lpWVap8jw5YsX\n8D0J1oB1E0ikAF3khGGANpq8yLEYdJGTZSnSU3i+j7F2ZLQtri502augtS6fu8DF640xPGLJUv79\nGvcBjzCMte67cbyrsufHvXNm9N5prRkOo1UMP70qjiuOH8fx50EVwxXDz2OLJ6JxPPQqhp7O0MOx\nlJ7f8DPlute11hRFMVqPxVpLYQy6bEhqUz5QKXBLbbtKS+KUqFZndWOdTOekRY4X1kiznCQecPH8\nOTY2NkmzjL29fQ66He7fu0O3s0cU+GRZShynbO/ucufOPYqiYG5+hvZUg+WlZZRSFHnBzZs38YOA\nQhcgINcFhXUAXz1/njOL8xiTY9AIKYnCgIXZNqbIkVguXbrA3NxsOTTgakgK6bwfY9CFRpcw6MK9\nSGmWo60lN4bMFGRGk+qCrCjQWNIiJ9e6zNEoS89tHFRLoQ0GGK4yo5RyMFuDLYcphp7o8MXS1n2N\nQjFGz0qilEJ6CiklylOuYT52DiEFnucGL4wpHYnSA/V8zz1/TyGFRAjpQkgmVKfCsB4yDNpYZMmw\nG7pyLCRxSi1qHGHYj+okWU4cD7h4/uypMPzBzQ/w/MAZViHITIG2hlznXLlwnpWlhZJhg1CSKPJZ\nmJ1C6wIh4PKli8zOzbqeBQmIwx4GUzqt2ujRz1lekGQZ2pQMa01uDGlRkOmTGRZSHWFYG2cHjD3K\nsOt5qBh+GlUcVxw/DcdHel4mTBXDFcOnYYsnxlKbsqdXm2HF4NwjGHl2w0rTxpQPwoJ0cSme8lhe\nXqFeb1AUuhxKsEglaTUbREGIUIpef8DMzCwXL11AIBj0e9RqNQpjWF1fJwhDPrl1i9t372IsXHvj\nDc6cPcf65iaLS4tsb+/ROeixtLRAGAZcv36dLMtYW1sru+wtnu+T5RnGWAaDmLm5WbCGWi3i/Zs3\n0Vbg+yG1WgOlFNPTs+TacvnSJaIoZPXBfdY31kdxTsaaMmY6QEiBH7gYJN/zSjBUGU/sGtBKekih\nyga1G4hw+yoQoqzj0q+zQ88Rdw7kyIgI6YaalFIjAIf17ikP3/MZxjtRpqAR0j1LWz5TKSVSHZ5z\nOMQjlURJhS40Uh1OahgHegive7mODtNMop6XYeU5hmv1BkVRuLqyFqUkrUaDMAgQStIb9JmZmeXS\npQtQMlyv1SiM5sHaxqkw7AcuJMhYyyAeMDc7izWGWhRx4+ZNjIXAj6hFdTzpGC6GDIcBD1bvsbGx\nPppMYY12E1XCACklge8jhcTz/JI1iRSqZFi5WDshUUK5IToEgX/IsDEWO86wLBkuDd84wyPDWjH8\nVKo4rjh+EseTrorhiuHntcUT0TgWgLEaT8nyRiSux9v9bBiuSiNACpTvYbBobcsHY9E6Z3X9AZ1e\nBzDk5VBDmmt6g4zXr1/DU5IgDIjjPo1axFS7RV6kfPLJRwzimH6aUqs3aDSaIBRho87G1g6bOzt0\n+gPW1zYQSALP4/69+9TrDW68/0POnjtPliWApdVuEtVqgEFKCP2Qvd0dBIK8KFC+x15nnzCK6Pf7\naK3pD/p0uwesrq6RZDmt9jSLC4sszM/x1be+CCZDSEGap1jhhipAkGUForyOEBZtirEUKKbsMRdQ\nIj0ECSiHl8AYyLWhHB1xwCHwlHR8WuteFqncc0GAlBiB8yKNHb0IQy8b4WKgi1xT5AV5oSm0Kb1N\n15turEBbd32sQEmJ7/l4noenFJ4nD22ZKbDGEBdHJzZOkk6DYVPkPFh/QLfXAWHITXHIcJxx7fp1\n1DjDUcR0yfDHn3xIPEgYZMnpMBzVsWikgMAP2d/dRQqc4+n77HU6hDXHcKELBv0BnW6X1dVV0jyn\n1Z5hYXGBhbk5vvqln8DaHKEEaZZihHUcC8jzHGkdw0iLNjmiHDrEuswyiDIxkB2LnysNcTmaR1EY\njBFYK0ZOYcXws6viuOL4aTg2ExweVDFcMXwatngiGseu11KVQ/riyAxTQxk7Ig5jZKx1wfLD7nFZ\n9pqK0vvx/QDP80ovRBAEPndu32F+fhZrDZ7nsb21je/7hIHHyvISyvM56PU5d2YZqwuKLCGNY3Se\nusamzl0MsymYX1igP+hTr9c4c2aFne1tFpeWuHDxPN1uhygKabdbgJsVKYQgCAPCIKTeaGCMwVOK\nRqMxKqdQkjTPUJ5ia3ubvW6H9vQU2hi+9lNfI4kH1GsRVmuSNMFYjfIkyvdG9++VPcnjQUKuEaxH\nNa2UQJXx0MYUCGld47r01IzVeL4iKwqSLKewLuRiGBsk7OHPSrnhkMD3y9ge5wdqrZGllyiUwhhL\nmiYo6VLdYC3aaLI8o7CaYjizlOE5YJinUABID+V7BL76jMl8ep0Kw+XvjuEQpTws4wzfZmF+zo1O\neB7b2yXDvseZ5WWU79PtDU6R4bbrcJEuy0kQhARhQKNkWA0Z9n0MzuhlWYZSiu2tLfY7jmFjDG//\n5NdIBgMatRpWF8RpgjHOy5e+h1TKGdEhw+D+ypUMa6NdLYuSYU+CKBl29hWhcNuswfMU6YhhWzH8\nlKo4rjh+Go5H2RsmUBXDFcOnYYsnonEMAovElsUZBpMrJVGeJIhC/MAnCHyCIBg9NNfl7irO8xTg\nuvelUCRJypkzZwCLLjKKImV1dZVWs0Wj0SCqRWxvb/PG9ev0+33qtRApBPv7+3zxi1+kFkUszMxQ\n5Dlzc9O8fvkSylNEUcR+Z5/Xrlzl3r17HHQ7XDh/jloYEAUBZ5aXift9mo0Gly6cZ7rddvfieXiB\nz2AwIApDsjwnTVPCWsQgjrHYUdo3KSVKStbW13n/xgesr21Si0KKLOPC2bOcO3sGiUZiKIwL49BG\nj156IcvYZDMMUh+GTbhGsMWgPBee4aAvh5OsoTCaOEtcbzKUccjDFCiGMHTPxfNkWWafLE9dB7U4\nHOqwxqI8RV7kGCxSKYxxXuVwwqHnKaQnkd5wQuBhzBJCIJWHRZAbQ5ylLuh/YnX6DKdpxpmVMYbz\njNUHqzSHDEcPM6wEp8LwoN+n1Whw6eIFptstdy++h+c7hsMwJMsysiwjiiIGscuu4oduRrVQEqUk\na+sbvPfDH7K+vkkUheRZWjK8gsSgRMmw55XDm7Z89nI0CWY4w3zY2TOM+1PqkGF7hOGiZFhXDD+z\nKo6h4hiewDGT23NcMVwxfBq2eCIax8OOTqzBijK9GLiGnrEowJOSIAgBF2ytlEJIQb3uVpKZmmoy\nNd3G+YYGT/lsbW0hBBhTMNVqMTs9w/37DwiCgL29PVqtFu9/8CN832d2eporF8/RPRjw8a1bXHrt\nMrWowflLl2hNTXP/wQPyokAbw9T0NGsb61y6fInZ2RkOuvvU63WMMaysrPCFL3yBg24Xi2VmdoYs\ny/A8jzTLWFxcdIHveU4UhvR7fYIwpCgKGo0GuS7wfI9IeWRJipWSOMsRyuPtr7/D9vYuRZryxtXX\nmZuewldeGTfl0qsMU6oEYeh+Vy4uSEhBoY0bkigMeWHIco21kjTTJElKnLogfK3BkwJfSTccUsYA\nRbWAKPRHgfzWmNKQeLhe6bGJfDgoVRkgrzxvNEkQ5ZX5CyUNP6Qd1ZHKeazCdWOjjUFIhZDluYSg\nMJPbW/EiGFYlwwBGF7TbTWamZ3hw//5Rhm+WDE9NceXi+VNh+Itf/ALdgw7WGmZmZkajGlmWsbiw\nMJq5HYYhvX6PMBgy3KTQ2vWiSI8sTUBKBllWMvz1kuGMN1+/eoThQmuk8kbOXBAGSO84w5a8MCXL\nhiw3JzAM2owzLCqGn1IVxxXHT8NxuerDRKpiuGL4NGzxROQ5HqZX0RaGMyktlC17icld2jOpBEJ6\npFmOLwo0AmMThICd7R2s1iwvL1NvzyCFJvIC7m9s0KzXMFoztzDP3sEB/UGfVrvN8uIyH35yi+5B\nF2s0KgiRSpBnOffur7pYmMJ5UF966y0e3L1DfzBAWFicm+Wg32NjK+ba1Ws8uH+P3d0dAt8nzQvC\nMGJnd5c4jsl1Qb/fY2Z2gf2DLjvdLkEQUYiC0BP8iXd+ij/41neRUjI7NU2Wp3QHA7IsB6XI9T6B\nH/LxJ3fIdYEfRqxtbXHx3FmWrOa7775HENQRQFJkBEqxsrhM96BLnqVumEUIavWIfpw6wE2OtS6B\ndxRFZRyZR2E0qdaE0kNai+9JokC5ek9z4iTD9wOk9MoZvJLAk2jjkeQFINHGZeHwpEBJxcAYVBgg\nTIoVEAQBhZZuNixuVaC0KEAIfKVAgjWSQZajTYGvfJpRONFxbi+CYSEKal5YMhxhtGF+YZ79Xtcx\nPDXGcLdk2A9OhWHlh4RRxPbuLkkSUxQF/X6f2Zl59nsH7HY6BEENLQoCJfmT73yN3//2d1BSMjM9\nRZZldAcxWZYhPEVWOIY/+eQ2udH4Qcja1hYXzp1jaUnznXd/QBjUERbSkuGFxXm6B136fTeycshw\ngpAemBysG+qLoghrDcZ4FMaQFdpNGsHiK0nkVww/jSqOK46fhuPtp1hE4WWpYrhi+DRs8UT0HANo\nC1leYKzr4UzTHGNF2UXvhgh833kZ3W6XIPRRCrI8ZXlpiRwfLX2m5+e5d+cWAtje2WZ5aZGNrU0Q\nsLW9zdLyEkrAwcEB7773Pp4SzC8sovwAYzSB52OBlTNnKLSmOd0m14Z3b3zA7Ow8b1x/k73dXfb3\nuyT9lCzN+eTWbTZ395lfOkNQbzIzO0en22F3b58wjLhw/jyzc/N0Ovs06g2UlAS+R5bG9OKM3/v2\nd+jnOYMkRgho1hucu3Cei5cvEAYewmg8odnb2WLlzBk6+7soJdnZ3ef27fu8fvUq51eWOHf2DDPT\n0ygEaRy7F0sqzi4scH5liVAqvvTGdUJPEtZqBIFHGHp4UmBMQRT5SCUIfdcD7ft+2ctdYApNzZPM\nt1uAwQgocLFZhTEuXV05UcPBLkG6JN61Wg0Pl7LO8xSDOMaNdEjSLMciCAMfT/lkRUFRuNQxSknq\nYeh6/7VmgsPcgFNg2Ppo6TmGb99CIsYY3nIM72wdYfj7I4YXUH6ANuZ0GJ6bo9Ppsru3T1AyPDc7\nT6fbKRlW+IFHmsT0kpTf/fZ3GGQ5g3iARNBq1Dl38RwXL18k9H2kMXhCs7uzzcrKCp39PaSS7O7u\ncev2fV6/+jrnzixx/uwKM9NTSAFpEhMEPkopzowYlnzpjetEJcN+4BGGPp4UWF1QiwKUgiDwEMJN\nyqgYfjZVHFccP4njSVfFcMXw89riieg5RgiCwENKgdEaJSXaapeuTOF6OI3Ls1doQ71eI0kG1OoN\n2s0ma2trhH5YvgyaVqPBD2/cZOXMCmma4ElBLYroHRxQ5B5ZVjAzM8eZlZA8z6g1Wnxw8yZnlpf4\n8ltf5ONbn5BmGefOnEUbw/z1BXq9hE5/QFCr8xNfeotBPMAUBVleENbrTCczNOp19vfhnXe+zvTM\nNN3OPhZI4oQwrIF0+Ypn5+bodDrESUy/n41CInxfIazl3NkzLC4vIYTi7a//NN3uAUJCI4oo8px6\n7W32dvdoT7VZXl5ia3MbT1mmpmf46NYdZtptiiwjzhJ+5Rt/kyuXL7O+vUM8GAAutMIP60jhMliI\nctJerV4nSTMK45Z19JXCk4pvqFcAACAASURBVIJGq4U1biJjnMSgfDwEylPUPA/fU3iez8b2LspT\neJ6HMRqBm2joMulIisGAPMtRQrn4JXATAaTEljOFPSlo1ut0+jFZXiA8D89TeMKtyDOxOgWGfc8j\nyw2FzmnUa7z/3g9ZObNCHA+QWMIgoNvpIJUiTTKmpmZYXnqY4cXlRT6+9Qn37t/DUz4HnS7tqSl6\nvZibH3/Cwvw884uLDAaOYVUanjAM3KhFt0OaZSwsLtLp7oOF7e0dwqhGEAYkccz169dKhhP6/ZSD\nQYpSin6aISycO7vCr3zjVxFC0Wq1TmA4emqG/9K//VeI6nXWt3YZJDEf/OgmeaEJwhpCeQjp0gxF\nkSCq1UEqtDZlz4HEiwKyMmRIeIrtToe8HGeVniKQHkopwlpEb3sXpbxygol2s6uVwhbaTeoQ4tVl\nGF45jpMkZW5hAb+zj7GwtbVNGNbwA594MODatdeP2OJuP0EpRS9JR7Z4e2cHKRTzS8t0uwdICc0y\n29Ds7Bx7u3v4XsBrr79WcgytVp3N7S0WFxYcx2lCUeTUm03HcZbyo48+JC8K/LDuehmlRFmLpxRR\nvYH0fAqtXcNCSTwVkcTJRHA80T7eK8awUh4XLl2k2+lggcEgJgwjpmemkULw1a9+hf1OhySJ6fdT\ntDaEtQCrFIW1rCwuU280EFJy7foX6B50S1tco8hz3rh2jb29PdpTLZaXl9na3EZJy/T0DB/ddrY4\nz1KSLOUX/o2/xNXXLjuG4z5YO2L4sD3hMkJEjQZJmlJoU7YnXFjFL/57vzgRDD/JFk9E49jNCTMI\noZHS4imXLkQYjZXuxgEC5eFLg1YuFMBYyPKMWr1GWKuRxRaT56jQ5/q1a/QHA4wVtNszbO/sMb+w\nxO7uDvVmkyBy+Qdn5xa4c++HhGHEfrfPhx99Ql5kZFmK9ix5njM7O8vm+jpZYUiyjC+8cR0lYb+f\noK1kfWuL69eukaYJvlLEWUy8EeN5HkWWcfbMWYRUbG5ucvHKJT76+CPq9TppllGr+TTq0+zs7RGn\nOZ6U3FtdZ352Fqs0G1vb6ELTCj0yKTAIekmGCgJqUcTc1DSm0Ny5fw+hAqSAuYUF0iShFqe8/eW3\neP/Dj/ECxcx0m6mZWXb39inyGCEUWVbgBwFGBCSpi2US2qWJMcKipSQrXCD+IE/Khq6gl6bUqJFm\nCZ5SCDtACkFuIc9yQk8QBZIkzhGewuJSwqhyOquxhkAqrAAlLUlm3LCK59GN3exZYTSg3AsQuRyG\nk6rTYNgLglNhuNN5FMNrRxj2BOwdZzhzDCdZwurGGr7vkacZ586cQ0jJ5tYWF1+7zMcff0it0SDN\n0kOG948ybLL8VBh+p2RY+Y7h6ek5dvf2yIsEgSTLC/wgxBCQpCme8hAUFFqXKX5UybBFZ4VjWAj6\naUpEjTRP8KUCO0AhyK0lTx3DtVASDzKEV85WF/4ryzC8ehyfZIulVGyM2+LG421xKMEozebWNsUj\nOa4xPz2NKQx37t9FKB9xjOM3rs4ctcUlxyNbnBf4fogRkGSps6uUtlgKtJUTw/EkRwe9igwP1gfO\nFmdDW1y2J15zDNca9dIWBzTqdXb29hmkOb6U3HuwzuuXL2CVZGP70BanQmIF9JIM6QdEUe2ILZae\njwTm5h3DaZI81J54als8YvjzY4sno3EswFOSmel5dnZ2sNYSRqFL6mw0wrh0LBJJHCeEUeRWewGy\nNCOMQvI0AysY9AaEXsDG5iYrZ1bY3N4mTxOKoiCOayjlEYUha6suBmh6qk2r1WB9Y5OiKPBDn6gW\n0tkvCKMIrTV37tyhXq9T9PoYY+h2OugiY3V1lbm5BWbabfZ3djACglrE8vw8O1vbhFJRn5tnbW3N\nBbcDN95/rwx9gGuXLnHrzh36B10klkBBoARKQb3ewGAJQ0vo+TSiiDhJGSQxiSmw1rDX7XJ/bY3N\nrW20Fezs7XP2zAr3792j0AZr4ePbdzmzssLSwhzbWxv4vsduljkPVcjyu4BhvuhC43nKpa5xmb2R\nlCvLGFGmczE0CNBFTiEspvQMhSwXoZQCsAwyi5V+eS4DJiEKfBfEXxTYQEKZNif0ZbmPxhOuVzqo\nufoXQqEkCG9iooAe0iQxXK9HT8lwzurqgzGGdzHCEtRqzNZqbG9tEwrFzNw8q2urZTojuPH+D5iZ\nnsbDcu3yJW7dPmQ4VAJfCZQSp8bwR7fvsrJyhqX5WXa2N/F9xU5+lOHhH0RrLUVRuN6BEcNuhSvp\nSaQFUFhrqEcBOs/R5aSdkxjulwx7I4bNK8swvHocz0QR21tbz2eLa47j4BEcYw173Q73Vo9yfO4Y\nxwf9A86cWWFp3tniwFfsDjlmaIsBa7HGUthDW8zQFk8KxxPcdfyqMbwwO8vO9jaB8JiZa7O6tlZO\nUhPHGL5c2uKD0haDrwSeB7V6A4slDCyh51GPIpI0YxDHJNbZ4v1uh/tra64zw+Js8dkV7t+/S6Fd\n5o6P79x9iOHjthhwkyGNpbDFMYY/P7Z4Qiy1mxi2ubmFFYosyynynCLP6B0ckKVutTltNI1mnaIM\ntlbKIwhDtDYkWY7nB2zv7tJotvBCn16/T5okGGMRQnJwcMD09BTWuPCGdrtNGASsr63SqNeRwH5n\nH601YVAj8H037DE/D8Dy8iJRGLC9tYXyA86tLPHmtSssLSww1W4S9/ts7+1y9dpVXrt6FXyPuxvr\n+GEAUpDlObVaDWEtgVLkScLlC+dYmp+jUa/RqkdcOHeGVqOG9BRFUdCsR7TrEWv7u9zZWCU2mjSN\nOXtmBaEU2519Zubm0NbQnmqzvrFBq9nk7Nmz9NOE1MLW5ibvvfsDWo0mc60W55YXWV5cYrrVxPcU\nSghqoUctDPD9coaqcevPa+3yHoehi8k2pgBsmWpG0fJDmkHEVKNBI4xcwL3nEQUBdQ+adZ+aLwhs\nQVpkSKmYaTeZbjUpdEFuLHGak+YpRZG7tDoCrC74ya98BYzBFAU6z8sM35OqF8Fw8BwMm0OGFx7F\nsD9ieHlhgekRwztcuXaF116/gvA97m5unMiwLxXFOMO1Gs1GxIXzZ2k1otNj2AjH8A/eo9loMNtu\ncW55iZXFRaabLXzlhlCjwB8xLMRhOkOtXSMjDAOM1qOQn1oQEIUezSCgGUZMNxo0opJh3yMKA+rK\nMRz5goBXnWF4JTl+ki2Wz2CLG0OO14iNJktjzpzI8RRrJcfnjnC8xXvvvker2Sw5XmR5YYnpVgtf\nlbY48KlFQ1sssSXHxSRxPNF6tRi+ev0ql69eRQQe9zY2CIIAhCTNc2r1CIElUNIxfPEci3Nz1GuO\n4YvnztCq15DqKMPrR2xxwpkzZxDKY7uzz+zcHNpaWlNTrG9s0HzIFp/E8KEtVvJzwvDnIZUb1jKI\nYzpxzHZnnzjL8KSiEQTMzs25NCLKedVpliKVR5xkdPs9LAIrBEYIVBBgheTe2hp5UZBmGcYYF+5Q\nTi47ODjg/uoDrHDpXO7dvUvgBxidu94mBJ1uF+tJdFGws71NFARIIOsPaLVaTM/OYnLNlcuX6fcO\n+OTWxxwcHNDd20MJj9/+rd8i6Q9I+jH1ulsi2mhNEAT0+wO2dvfY6uyztrPN7u4eQRjR68ds73e4\nc/8BW7t7vHb5NZTn0e8ndA76hJ7Pn/7Zn+O18xdZXlggSxPyLCNNMra3Nmi3GiTJABlGZFlBkaVY\nm1MUBfvdLrGBd29+THcQMzs3Q5an5FnGa5cuk+du2EeUSbvz3K2hXpTrnHe6PdY2Nun0+uwf9OkN\nYqanZyi0IbOaQRaTZalbYEVJtM6JQp+VxXmMhYM4I9WQFZZeP8ZaS+C5oZA4SYnjjH6SMkgzBkmK\n9HwQij/6zvcwViCUjxGKYpLbFS+E4fw5GO4cMry1TRQeY3juKMMf3/qY7kH3kOHfdgzH/ZhGvY6n\nlEvQfozh1e2dkuEavX7C9t4+d+6dMsM6Z7/TITbwgw9KhmdnyLKUIkt57fIlijwjz1IEbgQkz3My\nU7ik8Bwy3O312T/ocTBImJmeoSg0mTEM0oQsy8CUDBc5UeCzsriAAXpxRlqIV5thePU4/q3fIhk8\nry2+cshx13H8z/3sz/Ha+UssPZLj/ojjPMuwFBTFIcfvjjieJc9T8izltcuXyYuMPEtGHBd57myx\n0Uds8cvmeJLDKl5FhtP+gKRXMuy5HnDHcOwY3u+wurPN7s4uYRjRG8Rs7x0yfOW10hYPEvYPXG/4\nn/7Zn+PyBWeL82SM4U3HcJoMkMGQ4WF74tEMD21xfswWTyrDT7LFExFW4fLyBswGIVnuAOzFMbm1\nWKNpNJrs73fwBLx25TVW11ap1+vkRcr03Dz37tyl0Qhot1r0Dw4wOucL19/gBz/4ARcunMdqw/21\nVfwgYH19g+WlZQyW9a1N6lGI7/kcdAeEYURUi9zLEicYZZmfn2V3b4+0yLlw7hw7O7tE0zX29vbY\nf/8DZqbbNBsN+nFKe2YarKXZbFGrRygJzXrEYJBQK4dU6o06vh+QpglpVvDWW9f43ne/RyMM8T1F\nrVZjZqrJe3/8PbwoRCiPOC/Ii4Lf+9YfYI3l9fPnCIKAKPDJspxeEoOx1KM6eZGjjWZnb5crl17D\nU/Dlt36CJCv48ONbJNpiDvpMNRv0hcf6xpprxAJow50HqxjljVaUcSsASaKoidZu4mAtDFlbX6PQ\nmjwDhEXrhFazSeE20O2nrO91UWUCb6QcrUiz0+1RlOeKQoU1Gqxb4afb77Hb6YK1eCpHIJhqt0ni\nGD+YDFxP1CkwHEXqxTG8e4zhqMZe99EMB0FEreYYrtWGDNfQunAMBwFpkpLmOW+99SXHcBTge7Jk\nePHUGPYlXP/yl0izgh99fIu0sNhen6lmk57wWN9YZ2VxHu2WveLu6ipa+QhbMoxLSViLXN5PTymi\nKGS1ZLjIipJhQ6vZOIFhhTWmzDLzCjMMrxzHvt8acfzpbHGL977/XbzQcZzkBVlR8Lvf+n0wlqsj\njgOyPKMXx2A4xvEOVy5eZmNzs+Q450cflRyXtlgJj/X1Nc6McXxndRUj/dHkN4uZGI4nOaziVWN4\n1J5QJcP9hHoUoQuNatTwfRffm2UFr731Ft/77vdohiHZie0JRfIoWxz6pFlOP45BH9piYwy7Q1us\neCTDQ1t8MsNDWzw5DD/JFgs7AS5gWKvbq9e/QBS4ZQPDMAQEWhckWUrgB8SDAfOzs3S6+0xNT3PQ\nG6CLAuV5hEFAs9VgY2MTrQ1nz51j0O0ihGAwGFCLIvYPulgBrUaL3Z1dauVQgzEuSbZB4CnFwuyc\nG4LIc3SRMTc/T5rl3F9fZ6rZIE7cgh71ep08TVlaXGB/b4+llWU2tnbY73b5m9/4Bh/evMnMzAxb\n21t4SjnvJgyJgpD9TgcrhBsGKDQ6L4iiCOV5xEmKJ+Hn/+JfYG5hgfdv3GB9bZ1mu8n5s+eZbrWo\nNercvnWLoihotdts7uzi+z4HB12m2lMoT1HkBVIp/uv/6r8giiLurG4Agtl2CyUEWZFx/coV7j54\n4CaW9Pu06nXCMGJ1e5siy/DLROOr6xsuRqvsPczTDD8MSZIUIUEJSRB4aG2QnueGS7TGDW9ZZLli\nX+fgoFyiU7jlOW1RruAnwbok7W6FPo0cJga3FqE1fuAmuNz/6IPvWGu/9pKRfUinwXCtHp0Cwx5o\nfYTh+fkFkjzj/tpxhhvkacLS4iL7e7tHGP7Jr3yFD2/edJNHtjbxPIU17r6GDBspXJqcokAXBVEY\n4XkegyTFk4Lf/qe/eSoM//Vf/muEYcTdtQ2shdl2GyUhLzKuXbnKvQf30VbSG/Rp12sEYcTalmPY\n8zzXq2EYrTxZaE2RZnhhSJKmju2SYaM10vPQWmN1uXiAZcRwYfQryzC8ehx/9ctfdhzPzLB5zBbX\ngpC9p7DFb715nfnFBd57/wbr6+u0Wk3OnzvPVLNNrVEbcdxut9kY53hqCqU8ijxHlpl/oijk7uoG\ndmiL5dAWj3Hc79Oq1wijcY4VWZ6RF2YiON68f5ssiSeyifyqMfzP/PSf5MMPbjIzO8vW9iZeuVBH\n+DTtidgx/C/+uT97oi2earWon2iLPQ66ByXDirwoUErx137x3yUMQ+6ubmJ5dluc5Sm/9Mt/fSIY\nfpItnohuDGMM3TSlEw9oeD6DOCFNU6ampsgKg9YpQkq2dnaIopDdvX329w9oNptcWFpgMBgw225T\nZG698t2dXeZmZ1hbW3U9nbU6gyylVquhpGR+YR5rLVmW4YcReZEDktwU7PV6KOlWhpuZarO4uERU\ni9jZ3y1XoitoNdrsdw4QWHLthgHur67zpS+/xW/+k9/kW3/0R0Sex9LyIkoJavUa8WBAksQc9HtY\na/G9AN/z3OowUiCEochSojDEWs2PPrpF8aOPSNKEZqPO/Nwsg36Pu3fvUavXAJiZniZJUqbabeI4\nZmpqmjiOAbDGMjU9RZrmRFGEJywoRffggFazRW7g7oMHrCwvsL6xQ7PdZmdjnTeuX2djawtT9vhe\nf/111jY2yfIc8hysJYwiur2eW2KyXP/czz0C30NhUVI5Q2EthTYUunCJw3HLcworyPOMMwszDAYx\nGkmeZ66nB4ENnHdYbzZI4oTCKucxvnw/7pGaHIZzeoPBIcPTUywsLjqG944z3C0Z1o9mOPBQnqBe\nq7nJG0nshh8t+NIvGQYjBVIY8hfAcJK6ZVEVBjyP7kGXdqtFruHu/QesLC+ysbFDq91me32dN9+4\nzuaIYcP1q9e48eGHLgk+bknRMKqVDGssbrJTUCh8zzHsSYUtl00ttKYwBmsNAvHKMgyvMMfPY4s/\nvsWNIcf1OnNzswx6Pe7cOcpxnGSPt8VJ7Hqxx21xq0UxxvH6xg6tqRY76xu88cZ1Nja3RsvnXr/6\nOu/f/NFEcDzJevUY/o5juFxq+TjDxlgC3y2DLRDokuE8TcoFvjQ/+uiTo7Z4dqa0xXep1etghwyn\nTLXaDJKYqekp4kECuIVVpqbGbLEwoB5ni1tsDxneGjJsuH71dYQQE8Hwk2zxRMQcSyGYaTYRxhJr\nTQ5I3+Og10NnDuxenGIQdHoDssLQarcIw4D9bo+dvS731zcojMH3fXq9LmEUcvbcOdIs46O7tymM\nYWdvj91Oh6jRACmpNRpEtTpZXqB8DyEFU82GS/0ioN6e5b2bH/J//87vk+SWRquNxWNnd5dBv88g\njrl97y7be3usbWzx7T/4Q6Zb0yRJzvTSAquraxihGPT6bjEPa2g0msRJyuXXLrO9s43BYKzhzWtv\n4ClBXqRl3mPJzPQ09VqdJC/Y2t0Hz0P6Lt4oTjNWN7fI8nzUwyatQSnLVKuBkIJuvwcC+v2YS+fP\nYNOUIs8I6xEIt6zj+uauy2EYx8zPL7BX5m4MPI8gCLh97x4Hgz6ZLkBJpO/Rj3uEgY+vFI2aT71M\n9j3MJWmsS/1GOas5DHwi36cW+DSDgNCTtBo1enFKYV1uwoXFZaRUBIFHoBQXlpfwKLh25QKtWkQU\n+NTD4GWj+khNLMOtmaMMt5+B4eUFVtfWsCj6/T6R78GI4YTLlw8ZtmMMF6fOsKDXH3D5/FnIMnSR\nE9aiMik8rG/ukOUpySBmfmGevU4HIRW+548Y7g365EOGvSHDLkd3Iwqo13ykFCXDzhCPMxwFHpEf\nvNIMwyvM8fPYYvkwx/YkjovsBI6bhxwDvf6AS+fPYrMUnedEtQiEQFvL+uYOeZYccrzvbPGQ4zsT\nxLGUE9F0OFGvJMNj7Yn+MYaTtGR4u7TFxvDmtet4nnQMW42S6ijDe52SYdczG2cZq1ulLS57iaW1\nKM8w1S5t8eDQFo8zfGiL7ZgtTtwKgvsdpBxn+P7EMPwkWzwxhMdxzFR7CokFo/GVYmlxgbzQFLpA\nF25hivm5OdIkQRtDHMc0Gk0HXr3O7s4OG5ub1KKI1dVV9vf33VBBo4knFZ6U1KOIQc/NOi3SjP5B\nl8j3kbjAcWst8/PzSCnZXF+lf9Al8CW1KGB9fd2tJBeGRLWIKAppNhq0my2arYh+0ucgGSAF3L1z\nh5npaQb9PtJTbogucInjBZYbN96nVqujhERJRS/ugxAkcUye5aAkSZa6sISyJavzgjAI8aRidmaG\nMHCr8KRJgikyGrUa5Blpv4tvNa0opD01hZWKOMl4552vcenieSJf0YxC3nzzGlmW0mg0KLKcKApp\n1GtkaTLy0pI05dKlS/R6PaSU9AculqrVbDDTbjDVnqLRaKKRJLlh/6BHnOcMMhcUn2lNpjVxnpMb\njRcGKN8jzTIXJ5XnxEky8sqzvCAQkt5+l8vnLjLTmgKcwZvoODdeFsP5iQwvPIrhtadkWAru3r7D\nzNQ0/UEfqTwGSTLGMNy4ccP1ngiJVEOGJXESk+enx/DU1BRIRZxmvPO2Yzj0PRpRyBfeOGQ4zzJq\nUUS9ViNLUwxu6C3JUi5eukSv30NISX/QJwxDx3CrZLh+lOFBnh1hOC0McZ698gzDK8axwHF82ra4\nGON4tuRYn8Rx5wjHtuT462+/XXLsGgRvHuE4pzayxSnGmtIWZ5PD8Utm9El65Ri+U9riIwyH9Ps9\nsJb333+fet31ZCul6MUDEII4dstG40nictL8kGGTF4RBgFKHttgYQ5Ik6DyjXqtBlpH0uvi2cAy3\n2yAVyUMMh7z5xnXHcL1e2uKQev2YLU4/P7Z4IsIqEG4opNPt4Eu3koq1mvsP7uEHEcZYpNR0Oh38\ncglDTykuvnaZBw8eECcp29vbhFGE7/tMT0+zvr7Owvw8SRy79HrGEEU1PM9Ha00tihBALQpdcu+8\ncOuQ5xlpmlGr1znoHrC0tIAxhixJCdpT+L6i0AY/8PCV716oep166HPQj/GDkJXlRYzJWJiZ4c7q\nA/K8wPfcGu55UfD1t9/h+9//PiiFQiI9xSe37yCAVrvNoN8nyTKklKR5hkQwPzfP1tYWCwsLWJ1h\ny5yuWmtmp6bpdnf51u/9DjVf4XuSMKqx/9EAipzeoIdqtvjwww+Zn5uj3W5z++AWH9z4IUoI+oOY\nC+fP0ayHZFlOLfT5/9m70x/NsjvB699z7n7vs8eea+Ratsuuci9uG7p7ZiRAGmYQPc1IMEKCFkgz\nb0aaQfAG8UfwAiGBWgLRSICExEggJECjFhI9Mz3udrnbZZdrycp9iYzt2e997nIWXpwbkZnlLKdd\nmeXKtutKoYp6KiOyMvITvzjLbzFSslwWxHHC3r27nDt7lvliQRxFrFYrhNUEUlKWJbXSKG3bgQuW\nplgh2hxlLFzYvcytmzcp6xqlNVZYZHs1Z43BD3ywUDcNnu9jPIkIAiZFzgd372Ctm9b3Op9WfLGG\nO88YHk8mlPVnMRyyyAuCMHL55aZmY3RiuPmE4W/9hOGbd+4iaQ0vX63hRb5Edrt89PFHznC3x507\nt3n/fWe4KAouXjhHJ4mp65okCrBSsswLorbX7dkzZ1k8ZVhajX9iWGu0coaNdQU8AmdYWLh46TI3\nP76J1vqX1zD80jlGylcWi+umRiBYX3/Ksaqx5onjtcGA2WzMd//0T0j8Zx3/+rf/FZb5Eq/b5aMb\nHz03FherFRcvnCNLYrfAiPynHCevjePX+vklM5x1OxjdnMZi1bgWZWXtCuu+863f4i9/8AOEL5FI\npC+dYQu9Xo8iX1LWVRuLGySCtbU1jg6PWN9YB91grXadJbRmrd93hv/Fn5AGsjWcMr1RgFbPxuJR\na/jObT54/9MMn8Ti/LUy/KJY/NpEaiklURghvYAoTkmyLn4YI/0A3/Nc375ej9lsTpql1E3N7Tt3\n6PZ6DEdDmromDEP29vZQShGG7qQ3jCKCOEL4HkW5Qnjuh/VkNqHRivlyjh96IGE8HRMEIYdHh0xn\nU6wUjKczZrMFjdIkcUSv22E5mxFLD4ErjpgsFhwtclaqYbKYYVTN7rlz/OiH7+L7PlbX+J7A91wv\nxA/e+zFRGLm2QgKqyo0qRUiqqiKJI6R1rWGyTocgiTicjam1oigK+v0u5SrHk25uvO9LPvrgfdI4\nJAhDPF8yGPUw1vL+u39Bv5sS+j5eFHMwnnDrzh2GgyG7Fy8QxxFSSqSweAJUXdLr9djZ2OTqpUvo\nukZoS70qif2Ak/4ndWPIa43n+WRpSjcJyQLJIE0Y9bp0s4Q09OnEIfdv3yL2PaSQSCExyu1afSEJ\nPB9fOqjSk2hr+fZv/Aa9TpeDxweEfoi1Lthp9Xr31/xiDfvPGj78dMP93qcZXv6k4XffJWgNu/Gf\nJ4bfJ4oiPN9NJarKyo0NFZKqfNWGv8+gl7WGEw6PJ9y+c5fhcMTuhfMkcdwaBimhaSr6/R47mxtc\n3b2ErhqEcYYjP3D5REDVGIqnDHeSiE4g6aepM9xJSMOALI64d+tXwzD8kjp+BbE4PXE8HVMrRZE/\nx7HXOo5Cwuc57j7leDzh9p07DAcjdi9eeOIY8ETruNdnZ3OTK6+Z49ehkP+nPb9chht2z5/jh+++\nix94WNW44R7yieE4ik6HNFVVfVK5RllVxHGMtMK1s+t0COKIo9mEWitWRUG/16VcFXhSoLXB9z1u\nfPgBaRQShC7GD4Y9DJ+IxeGJ4bvO8NOxmKcNu1j8uhl+USx+LbpVhHFsty7s4nseqlJUTUPWyZAI\ngkAyGo6QwuW8rFYr0jihk3VoqorjyYz1jTWGgy5FXlDXDVVV0+v3QcBsMacqa9IkJokiyqJAG8Pa\nYMhkPiOO3PVaEAYEQYAfhCyLHKWak6FESCEo84LBoE+jNFXTELZTX6SUNI3ijWuX+fMf/JCds2dY\nTeYsVwvqpqHXG7j8ljilqFZUVYPnSYw2RFHYfq4A1TTgueKNIAxYFVX71XG7Ii0FxSqnqiv+jb/2\n2+w/3qcuXP4UdcN7H31IEAiunNlh//CIvCzRCAZpyu7Xv8naaI2He48I/IBytWJrYxOs4WA8oZNl\nNHXJoN8nSyPm0ylW5vwP0QAAIABJREFU+sRxitKK+w8fEEcpxaokjHyaRqGNcyOFcEny2rh56Zj2\n+hGCMMQKaLRGa4Vtp+wYY5CexPfdxYVSCikEQZvn7Lc5eAKB1QYlXPL92Y0N/u//6/98LSv9X4Xh\nNAkpioKmcoa7gz5CuL7bVVmRpglxGFIWBcZY1oZDxrMpSRyzzHOCMCQIAsIwJi+WND/FcN00bgCM\n5yOlR9M0TwyfO8u/92///ksb/vF7H5xO/JKehxGC/LmGa6jrTzX89//gD15geEonS3+q4d//u//O\nKzGsGw2tYeF5+L47sVBK40nwfd8VxwiBpjWsDFpYEHB2Y4M//qf/z2tpGL50/DzH08kcIdx6w/Mk\nWgjyMqeua/713/1tDh4/plqVVGXr+MaHhL7k8tkd9g+cY4Pg9/7W32T367/2E443NzbAWg7HkzbF\nrXWcRMxmUxA+cZKgtOZv/e2/TRSnrFYrgiigaRRGG0AgpetYoLRFGwMY970H+GEEQGPcKF+MfSnH\nD29+zHw+ey2zK14nw0EQkRc5SjcYY7ECJIKyWDHs96m1oq4VQSCdYeGGdbxx9RJ/9oMfcebcGfLj\nKflqSdXU9HtDojBwBdKl6wd8UuwWtq3rAj9Aqea0/icMQupatV+dl1tP9OKYS9/4JqPhemvY//RY\nPHCG57MZ9sSw0jx89JAoTimKFWEc0NRtlwkEQgqUUijT5hljwLipeqeGtUJpjVGfbyx+LdIqjIVV\n1aAbNz886aSsypIg8Bmtb3F4fIzR2v1hvYA4innw8CFaVbz99ts8uH+PmbXMF0uSJHGfr8jZ3jnD\n2toaH330EauiII0iatUQxjFFXVErRdnM6WQZvvQoVy5g+p4kSTMarV0xmjVYTzKeuwKJKIzI64Ys\nbdtE1TX37z2gn2VMj8fu10QR169e48GDPZbFilVZUdUVnSwDIahUQ2MNVmuMcQVs3cjNR0db4jBE\naYXnScDSUTVvZCkPH+1x83/+JxitSYOAkfRYdDM8CVWtufv4Mb4fIKRH7AeIIKTRhsf7h26co1IE\nYch4OsUPPITnsX90SBrFHI8nZOkZNja3WSxzprMpeV5w5fJlHjx4hFINQSBdz0KjieOEWjVul962\neQPJ9uYmSRQShQEf33LXGGEQoz3jApZRGHUyucwniCJ0u0AW1jIajTgcj0mzjKODA6ywxHHs+i++\nps+rMNxUkbtqihMMsMoLds7sMBqN+OijGxR5QdIajuKEvCqptaJazOlkHTwpKVclTe3cxFkHpRTz\nonCGfcl4Pkd6kiiKyCtnWDUlqjkx3GF6dEwj7CswHLWGXV1ypGquZ9lnNrz/ScOzKb7vIX3J/tEh\n2S/AcCPcOFTdTo98YjhEa4XkieGjyZg0fWI4SRLytvr7dX2+dPx8x1orZOs4UzXX04yHjx47x0aT\nBQFrQjLvnThW3H38mMBzjiPf/9RYPJlO8QMf4T3rOD27w+bmFotlwXQ2I88LLl+5xMMHe+30L3dC\np40ljiMarZBSEkqBMRprPXY2N1rH4aljl1pgXsqxeY0nPb5uhn0pidMMpdx6omnXE8fzGZ7nEUZu\nPdFJApRq1xP3H7briWOEcM6vXb3Kg4d7LIviJwyXTUPT2jXWYrSmk2VUVeVSQF7RekIGIbUy7O8f\nYI15cSw+e4aNzS2Wy5zpdMYyz53h+3to1WC1dBvPTxiOPNHGYmc4jlwv8Ru37mBwhpX8fGPxa7E4\n9qQgDgIIfIZrI4plTiNAacXBwQGdTofFfE4URq79CRaEYGNzm+V8zqXdXR4+3MMYxbJYEkYu12X/\n8R5VXZHGCXmeM5lOCZ/KMdrc2mTv4SMAl8ytFXVdEYU+dS0I4xjdKKQnuXr1Gj/64H1GvT5aNVy5\ndIk7t2+RpSmXdi9xsH8I1jAcDDg6PmbU7bJalfhxSJm73V0QRkxnUxqtSdIOWhv63Q6r1QpjDI0x\nLPPCFbg17lRjOZ1iVc3K1OhG0d8c0TQWL/DxpOfaYqmaTpYitaVY5URRQpS6PoHrgwF16QrskjgG\nYFWu8IOALExRpmB9fQOMIQoDDg6OiOMIYwxx5PKzalUThgHfePNrHBzsczyeIqWHAJcLJCXCWoQU\nWOsqdDtxRNrNsEZTlhVKGZIsY+/xHmVlMb4kDFPA7RC1dJ8n9APyPEdrzTJfEicJRis6aUqcpF8c\n0hc8r8LwrVt30U8bbmoeP96jqmtnuFgymU7cdW178r65ucneo9ZwXdFoN5ErCgJnOY7RbZ/Vq1eu\n8d4HH9Dr9T5hOOPS7iX29w+BiuHQXSu+rOGqKlvDi5czPHSGrXWbJICyLPEDn+gXbDhOEx7tPaas\nLb4QhGmKtSeGJVIKwiCgyAuUag2nCUYpsiQhSZIvDunP8Hzp+HmOKzxPkE/dQIhSV+hG098c0tTO\nsfQ87t57QNI0dNIUqaFYLQm7MVGaoI1hfTB8NhZby6oq21gcoYxm42nHh0ckcYzRTxw3TUMYBnz9\na29yeLjP0XiK57ler7SOaXvLW2PpdzpkSUTWyTBGUZY1Wru2Vi/j+HXOnX+tDFcVYRggG0EUxWil\nEFLyxtWrvPfBB/T7PVSjuHpplzu3b5OmKZcuXuLg4BAwDAZDjo6OGHU7lGVJEEeUS7c2CMOI6WyC\n0oY462C0odfrUBYrdJs/vMxzOp0OqqleyXpi7alYnMQxlpNYHBCFMcqexGJLFPocHByRJFFr2MXk\npmkIooCvX/wahwcHHE0meLI9sMClxAgswhNgODWcdtInhpUmztLPNRa/FotjKSRvfuU6nh9y88MP\nybIU07bQibwQ0zT0OxmLVUm/28OTHt1ej6auUVHEZDwjiEK6wNbmJlo3dHtdqlVFEiUcj6fEvusR\nWOYFnSQlb3dfF8+dYzyZkCYpcZyQr9yO0GhNGieouuHi7i4ffXSDbpJyfXeXxwd7xEpz5eoVDvYP\nuX+wz2o2JwwD1kYOcxDF3L53F6Qg6PbwhSBLu+zubLM3GVMbhe8LVnUNHoRxTFmu3NWDJ7G65sHH\nt7m2sY1nDL728MMY1ViOZnO0MYRJjBwNOCpX+I278uskCV6bKhNFIc3REdtb2xwVNQaNKkrSXhdT\nGwSWxA95fHRIGsfkS9d6KIxc3k5Z1YRRSLVc4UvJ4eEhfhCxtbPFbDpH64Y0TqjKwvUhJESoEg9J\nWdekOiEOXJ5QlnUAy6iT8e6HHyCDmKpWhJ7El5ZGB1RaU9UVnnC9JOuqpNEVHpIsCth/+OALdfrT\nnldhOIyd4e3NDZRWdHsd6rImDmPG4ylJ4K6Oy6Kgm6TkxYpyVXLx7Dkm0wlZnGEiS1GVJFHoTrSS\nhOYpw53W8P4nDN872Gc1nxMGAWsn08Ve1rCsufuU4UB7eM8x7L3I8OER25s/3fD+L8iwsZpRJ+MH\nH36A9FvDviSQUGvpDFcVnlBPDKsTwyGPX2PD8KXj5zuunOPNbTyjCbSHH8Wo2nI0d46jJMYb9jku\nV/jK5SjLJMXDIiyEUUBzdMTW5jbHq9bx6sSx/pRYnLWOJWXVEIYh5bLAF08cb29vMZ3O0bomixLK\nqsB6HhYfVIknBGVVk6UJSRCQxTGdTgeEfSnHTVN/0VQ/9XmdDOfliiQOsVqTJvGT9cSNj+jGKdcv\n7vL48DGxMp9YT8wIg5C14ZCjw0OCKObW3XsgBWHXDY/Jel12d7Z4NJlQW4XvCVZ1hfAgjCNWZUmc\npijPQ1I8s574tFj8wvXE4fFpLNZCo/LWcGOQGBIveDYW9zqu2FB6lHVDEDnDgZAcHh7hhxHb29s/\naVh4WBFiVfWU4biNxTGdToax5nONxa/H9k/AvYePKLVm99pV0k4H4ft0+322d7bR1hIkKWmaoq1h\nvpijtaYylukyZ5YXrK+v44eha11mYO/RPkEUM5nPKa0i1zWVMCSjPqVq0ALCNGZR12jfZ9nUKCld\n02xrSbOUTqdDGIXcuXOXMArxPcn+wQHFqiIeDLj/6BFVVYLWDEdDsk6H/YMDeqM+y7KAwCfpD1B1\nzfrmBsPRiPuzY0qjSfyY7e46nTTi1956C1W7aTAXNtcZlTmjw5w3O+uUR1OKxYqHyxm3jg+4dXzI\nuF4xaUr2ZhMeTcasTIPygMjHD0M3jcnzyOKYarVic7ZklIZowItCkiBCeLDIlyRpSjdNXQsY6dHp\ndOj3XZXtuXPnyNKkbW/jrj98TyK04a2vv8mF8+f56rVLnD2zyebaANusOH/+PHXjWsaA+4aKY7dD\nK4oCaw1Xr1wh8gS+dJP5GmPJi5y6rgikZD6fMTk64tu/+RusFjl+FNFoy6/9+q9/cUZf9LwKw2vr\nbpPX72ONZW9vHz+MmMznrE4MS0M67FEqhRKWME1YNDXK91k0FcqTJHGEtZYsS8k6HcIoesqwYP/g\nkPzE8N4j6rpyhofO8MHh4SsxPPyE4QefYvjhz2Q4f8pwRBxE4MEiz0nSlE6auTz2z9tw7k4Wr11+\nyvAypzaGvMhp6orAaw0fH/Gdb/0G5TIniCKUNq+3YfjS8XNjccGb3Q2qwyex+OaRczypSqZ163g6\npjANSgqIAvwwQEoPz/fJIud4a/5sLI6DCOGJNhYnPxmLe33Gk+mp406n6zoBSfA9Acbw9tff5ML5\nC3zl+mXO7bSO6xXnz52namqwLvc4jCKSxJ1Yv6zjNM2+aKmf/rxWhk/WE1lrOOTO3TsEUYTnSfYP\nDylWJVG/z/1HD6mqEms0w9GIrNvh4PCA7rDPolxB4JMO+qimZmPDGb7XGk69iJ3eOt004ptPGb64\nsc5otfyJ9cSnxeIXrycKtmY5a1mItk9isevl/WmxeMB4MuHs2bOu2C5rDYvWsNat4fN85dplzraG\nTV1yvu0tjTVYC1EUtV/Tzz8WvxYFeXGW2ctvvk2jNU1T47d/GWEYoVY5RV0ThDFohQHiJEYYS6Mt\nnidQqmF7tEbZ1KimJg1Ctjc3qVXDweERG+vrNFozXy5cXz880k7G/sEhfhhSVRVB4K4NNtdGzJYL\nlDZU5Yr1tXXGk2lbDGKJopjLly/zL995hzCO2N0+w4e3byCFyxkbdvv0+z2qoiSIY+7cu0fke3ie\nIEozjFIYz8dYg65KRNOwmQbUyylerahrzbzSzGZjjHHtTECghXXjE3m2x6Sxll63g5ScJrVL30NY\nQ+L5nO8OsOMxSdJl3O+yjAO6nT5GGDfu2cLaYECjFctFjh/4aKPYGI04Pj6m3+9zcHBE1skoVwW9\nXpdep4fShgf7+8yWObXWSM9n9/x5Es9VqYaexPfcpDxXtNi4MY9CoI0lDDzKWnHnwSPwA4oiR0qP\ntdGQ2WJB5AdsbWxw585tZJxSLBckYch3//n/91oWM70Kw8NOh6quaVRN6odsb21SN4qDoyM219Zp\ntGK2XBCHEZ6QpFnG/uEhXuAMh0GA0ZqtjTVn2Biq1RPD4AyHccKVS5f403e+TxiH7G6f4aPbHyOF\nB55k2Ovzj//RP3ppw3/5l++8EsP/6X/89z9hOKTb6WGEwWiD+BkM/72/9++TdTKqckW32/nMhq21\nzxpuFHce7CF83/UglR7royHTTxpOUlaLJXEY8P0/+9PX0jB86fh5jg8O9jAGDCCsQMmTeZ9tlV77\nGFrHQrg2hYD03TCF2PP5D/6t38OMx6SfjMUYtHGxeDQYoJ7j+OjoiMFgwN/5/b9LJ8soSxeLu1kP\nbQwPHj9mlhdUSuH5AbvnnGMpbPtndm9SCBrVtBvFz+74zkfvk+fL17Ig73UyvLmxxmyxcL3cVyvW\n1tYZTyYgxJP1xKXL/Ok77xDFIbs7Z/jw1scu5cvzGHZ7dLtdqlVJGDnDYWs4zjJ0ozB+gDUaVVWI\npj417NeKujbMa8VyOX8lsfhs1sNOxiRxj3G/84lY7L4r1vp9F4uXOb7vY4xi/alYfHg0fq7h+48f\nM18WVFrheUEbi10x3hPDEiGk6yENn2ssfuHJsRDivBDi/xVC/FgI8Z4Q4h+3r4+EEP9UCHGj/eew\nfV0IIf4rIcTHQoh3hRAvPCrxPM/lk6kGzw8QSKIgRkhJnHbxfZ8kDDAWjICiqvA8n36WEvk+a4Mh\nVV1TlCVWSPwg4uDoMZ6A65cvsVgsUEafFtgtdcWtR/cZFwuWqyUXL11EW8Xu5YsIAY3SxGmK53ns\n7T9GGc3m9hbLVYUXBBTLBf00pSlKHjx4RF4pkAKF5WhyzHv37nFz/xF7R/sIz/DV3UsIpUEZhC+Y\nTMcUsxnUDWtqgV8sWc4LHi5X7C8LFtUKZUABxgMrLAIXhAUWLYx7Q2OFwUqB6z4k8V2Lb4IowgrJ\nUd3w/jRnJg3JjTv04oCiqaiK0rVAwXX0iALfJbcbQxCE1HXTzqUPubB7nk4nI00yPBFgjGaZz1mW\nK6QwbWNxQycO+fGP3kMbRegHmPYHh7WGwPcJwsjNQMcihUfkSy6eP8OVSxfJywr8kMPJjLyqOJ7N\n+cFHHzFTitliQWOhPxy+iNJfacN11VBUznAQRhwcPsaXcP3SJeatYWU08yJnqWpuPnrAcbFkucq5\neLk1fOXCcwzvu3zG7S0WKzfj3hlOnOGHj1jWCntieDx+rQwf/4Rh/9Sw/jkNJ3H6UobDU8M4w57k\n4rkdruy2hoOQg+lzDM+X1C9h+EvHX5xjbUBhMRKMbJfF1i0tjGzfaCvrhWzbakgCK10buDACITiq\naz6Y5MykJn46Fq9KjNIYLPPFnPA5jgGiMOTi7jk63bSNxT7GKhbLOctqhRAaMAgMWRLw4/feQxtN\n6AfYtoDOWIvvBy/t2PM/W6/jX0nDWhGlKdKT7O0/RhvD5tZmu57wKZZzZ3hVcv+BM4yQKCyH4zHv\n3bvPrcd7PDreB9/y1Uut4cYgfcl0cuwMNzXreklQLFkuCh4sSx4vC+Zl+epicdPw/iRnLvWT9YSq\nqIoK3RqeLeZEoY/v+2hj8D8Riy/unqPTcYYlJ4Zn5NUKIXU7GtqQxQHvtYYDPzgtArXW4gcvb/hF\nsfhnSatQwH9mrf0a8B3gHwohvgb858AfW2uvAX/c/jvAvwlca9/+AfDfvOg3MO3EoUopYqCTxlTN\nCtPU1E1NFMTuD58kZElG5Idu6lpZuh3cdILFcuHsWfq9LkEcUlaK4+MJH358g7W1NebzOcpY5mXN\ncrEiCRN6WUaWdLl57w51XvGn7/wFHz/awwY+H358i/E8Z300IpCCo8MxfuAjheS9Dz+iqGuiOGJt\ne51eEhOnGUL4xFHEb3/jbfppRlXVaAUfP7xP1O2xyGds94cIC4MQ4nyfShnuHR4xX62wRiEkNFWN\nafd1EpBeWyzUTrfxrERaidFgDBSrlRsDaQ1KumIMrTSPDg+49/ghlWi4Pxlz0A0Y1JZaaXddIgVS\nCLq9PtYKvMDHD9zc8c2tbVe4KD2K5YKmLtnYGNHtJvi+x7Df4+1rV/jGlSt8/foVsAZlIe100I1m\ntpgDLpVCawNCYI1GANLzqOqKVVmRRRGsCna2N1B1g+97WGuotEZ4HlYbut0ukf9S6fF/JQwbYbhw\n9iyDbg8/CilrzdHRmA9v3mB9fcR8vkAZWJQVi0VBGsX00oxO2uHW3bvURcm/+N5fcvPE8I3W8NqQ\nUAqOj8YEoY8Qkh99dINVXRMlEWtbG/TimDjtIKRPHIevleG7n9Xw9qs3bIxGIpCefMawLQvObG+i\nqwbfaw2bpw13iAMPeKnDti8df2GOXQsu76RwE4u0II1EGOFO5QzkqwIReK7wSFqE52GU4tHBAff2\nHlHJhvvjCYdd/4njIGz7dEu6vT5YgQw8PP9JLJbSnZoVyyVNVbGxPqTbTfG9J47funKFr1+7Alaj\nDaSd7CnHgiIv3E0LX6jjXy3DDx+B7/PhjZtMWsOBhKOjyZP1xEc3WDU1YRyzvrVBP46JswwhPJI4\n5LffcobrqkEry8cPHhB1e8zzOVv9IVjoh4J4eUCpDHePnGFMg/Qsqn6FsXjvJBZP2lhsqBvTphAJ\nJG0sNgLP9/ADH0/6bSx2dSDFYkldl2ysD+n1ktZwn7euOsPfuH4F0C4WZy4Wz+cuFud50Xax4HM3\n/MLFsbV2z1r7/fb9BfA+cBb4PeCP2l/2R8Dfad//PeB/tO75l8BACLHzU/8nhKCTxIz6I7zAjT5c\nljXHyxWFrqmtYtVUGK1RTeN6jgporNupN9YihKQsK7IkZT6bozyfQhtEGHP77h3e/NrXGA0GeMYw\nGvSYzWcUqxV7jx9iG4XC0EsT3v7Kdc5vrLO9NiRLY+b5ktncFe4YVTObz0jSlDhyoxrz2Yw3r1/D\nFAVfuXiBrbV13n3vXaQ1RFKShgGd/gDCkG5/yFx7yGZOJ8+pjORgPqfUBi0kfhyjpUeUhBjhYYSP\nET5Zb4CXdV2SutUIKVxwlq4y1zYKq12ahAHmyyWT6cxdmUgPGQYUSpELw8G77zHAkBcL+oM+TVMz\nnU4oyxV1VSKFpK4q7j94QBhGzOZzBALf8wmD4LQa1PN81xw9Cul3Onzr195menjAxfNnwVq2trZO\nm8Wrxs1qr6oKpZQbLWxdVaq7/pBcObvDpTMbrBYTBt2uOwUUgtDzaNqr8IOjwxdx/SUwXJMmKfPZ\nAiU9VsYgwojbd1rD/T7SGkbDPrNZa3jPGW6w9NKEt776hjO8PiRLE9fSbL5AqQbdVK3hhChyI3Od\n4auYIucrFy+w/WmGg79ihu+/esN1Vbs+nI3rG/qs4e1nDfvPGu50PrvhLx1/cY618DDSwwiPtD/A\nSzsY3NQ1KUEI93WTUjrHxqCNxgCLxZLxrHXstY51w1LYJ45XC/qD3lOOC5qqwpNuEMn9B/cJo+h0\ngeD5HkEYYK1pHXut44h+p8NvffObTI8OuHj+HILWsTVYLI1q8PyXd9x8xmE2v2qG3/7qG5zb3GB7\nfUSaOcOzxQKtanRTM53PidPUGZaSfD7jzTdO1hMX2Vpb54c/+gECTSgFaRjQHQwQYURvMGShJbKZ\n082XVEZwOJs5w0j8OEFLj/BVxuLWcK4bcmE5+OF7DNHkxcL1Hm9qptOpi8V1hRSCuirbWBy6jZpw\nPYiDIGg3lU8ZDiN6J4YPD9i9cA4wbG1vucEz1s1F8D3/c4/FP1dBnhBiF/g14LvAlrV2r/1Pj4Gt\n9v2zwP2nPuxB+9onP9c/EEJ8TwjxPaUU+B6NrkiT1M0tF4IsDCjLklVV0VhDUZWUqkF6kmW+JEwT\nNJZKa1aqZrKY8+DxY2pjkL5HFIbEUUTgB7z/4/eZHB3y62+/hdCabhwz7A/odjPObe0QpDE+8N67\nP2R6dIwUgqyTodprW2uU28mlMZtrQ4xuTvPN0iSl3+sitOHxwSFBEDIcjCjKkpVqWM0XTI+P6Scp\nfpUzbAwLFEXVuNMqAVffept4Y4dkY5vR9hm8TgcTRXQ2NlgBNWADD+v5WKMJAp+2lzUAs9mMfLkk\nXyyx2tLtdJG46xHXrsaQL2uqSDC/c5/OoMt4fIzne8RJzKoo8D2POHJFMIvl0uVaeo6IxbJcLk/z\nhsXJDwNriYMAvSrpJDFZGrt2MmVJkiRuOo/n8jWDIGhbDrndaxzH+L6P9CRGKTphwJvXr5HFEYFw\n7XjOnz1DXa5YLhZu/NlLPq+14aZhPJ/xcP8xjdV4bRPzJIzxg5Afv/9jxsdH/PpbbyG0ohMnjPp9\nOr0OZ7d3CJMYH8t7P/gh06MxEkGnk9Jo3RrWTwyPhhjdTlLCtoZ7SGXY2/8Uw+PWcPl8w1e+IMP+\nL9CwH/gu1RSLJ71Tw550J4SdyBnuxDGBFCRPG14uEPLVpGl+6fgX59jvdrBRTHdzk5WFRghs4GN9\nH2MMoe8Dlja0MZvNyRdLikWOMYZe1kUi202ZRVtL8bTjfpfxeIznOU+rosBr++ljTetYIk/GNlvI\nlzknrdtO3k772ZYr5ziJ6XafOI4iNwnwVTh+yRuQXx3DJ+sJoNPJ3PAK6049hfRIE7eesKpBWAMW\nkiSl3+0itObx/iFBGDHsj1itSlaNopjPmR4f0UsSvKpgpAwLNEWtsFiUEFx9+5tEG9vE6682FruZ\nHM5wvqyoQsnszn26gx7HbSxOTmKxlC4WY93I6adHNltY5vlpDD55M9aQhCFqtaKTOsO9btcZjhOi\nuDWsPv9Y/DPfVQshOsD/Bvwn1tr5ySIHwFprhRA/V2WftfYPgT8EiNLUllVFv22hFgpL2k0RwieR\nAuF71HVFJ0kIohDVKDqdHqYsCYylH6cEwkMgiEJXHdooRa0auuka5792nvt37rKzucns+BghBFEY\n0pQrttbXOTzYY2O0zkFzxPUrl/ClZGdnm0Y13Fou6IzW2Dhzhlt3bkKjaKqa3qDH4aOHqCbgYD5l\nsphzOJ2glCLxe+zs7HB4eEg26CE9n3KVM59PEZMjrDTMJkvqICBe26YRkg8eHYAMCYSr0k5CjyLP\nkTJAmArf88nLEukJrLGgFYEn0R5YZdzccU+AlWitmc3neMHJX68AKxAIjoxirVhhhceZnXWm8ylp\nmhB6kGVd9h4fID2PwIM4dsUFaRJTlRVxkmCtRSvFarVysD2P6XRKFEd0Tpqtez5GGcIwIApDyrpC\nW1c8dXJqZ5WbcgNumpMQgiAKsarB1DVnN4ZUVcUwDUkunQchKVbFz0Psr5xhly8o8IIILDSqodaG\nXppx7mtf4f7tu+xsbjE7HrfWA+pyxdbaGof7e2ysrXPQHHLt2hV8T7Ljb9E0DbduLumM1tg8c4ab\ndz4+Ndwf9Dg4NTxjuphxOB2jtEJbnjUsX2z4w8/LsHh5w1EcvRLDSqmnDDdI4xbvymiEEPhhiFEN\npq44u/58wz96KcVfOv6FOw488mWBEG4B4UmPyrhRv8Yo51hKjCcw2uBJiZQBWPGJWPzk7+kZx9Lj\nzM4ak9nMOfZ/0nESR1TtKOCyLIkS93POKO2uwYVAhh6T6YQ4iulkKUVVEno+VhuCwCeKIqrnxuKf\n3/HdD9//0vAJA2wBAAAgAElEQVTPaNhr1xOqabi1WJCtOcO37tzEKkVTVvSGbj3RNBWHp+uJMUpr\nIq/DmZ0djo6OyPpdt54ocuYzZ9gIw2y6pPZD4tEWSko+fLgPXogvJGn46mKxNRaB66X9tGEjJGd2\ndpjOZyRpTOi5lAhn2CeQkMQhZVWRRgllVRK3hrXSFKsCISSe5zGZTIjjmG6WUpQrQt/Hak0QBERR\nRFlVaKNRSn+usfhnWhwLIYIW8v9krf0n7cv7Qogda+1ee81x0L7+EDj/1Iefa1/7KZ9ftjsqgUay\nUoZB4qMbRWUVPoJOr4dRmqZ2DbBp52qruibrZAzWhty4cYMgCFwMapT7Qk0tk+UUqxTj8Zis26Fp\nmtPJLnVVMxiOGI/HBGHE8WTO3sOHXDh/jv3DIySWXhzx4M5N6umC3u4as/mc4foG8fYZDg4OeXz3\nAYHv05Q1a/0+k/EEaS1pkqCritlkn0iVVLNH+NpjbhWlHxON1pnmFbEv8T0DKuf82bOoYsWg1+P4\n6Jjx8SHaQCdzTavrukJGEeVqRSQ9rHJIlXL5vCd11MYarDFu6lxbkWowSKPJpaQnHY6Dg0MC6btr\nytmC0do6q6IkiVNWeU4Ux5TFiiiKmE6nhEHgTimAMAxQjWuqP5/NybKUMOpQFgVpllEUBYvlAun5\n+IFP4Aen4y79p3KIpWwrp7UCIZgvl/T7fa5/5av82Z//OcPRBlrVLJeffULe524YQVnXJNJHW0le\n1vTDEN1U5E2FT0CWZmilKIuVG6cs3elloxVZN2Vtfc0ZDgP3SduF2Difs7xTYJXi/sOHzrBqUEYT\nRC54b25tMZ5MSTtd8lX9rOEgYDjocfj4AbJs2Nw+y2w+Z219g/5uxMHBIdP9QzqdDsWyYGu4xh/9\n4X/Lt7/9HT76+CYaw3IyAVWS1Tme8VgYRUFAtLbGoqiI/eC0Lc+5s2fQRUm9mnHz1m2CuIMxlixN\naJqauqmQAurVilh6mJPRnqeV/wIEGOMs37t959QwCKTQDGTEzu9+h8gPePjoEWe2ttFNRVXVzvCq\nJIkCVKOI44i6rIjjiMV8TtAaltJNnlJK4fs++XJJmmbEiTPf6XQoipy8KFz+XGu2aZr249vCFQHg\nRqMrpTDWMJ7N6PcHXLt2nT/78+8xHK2jlWa5XH5mw79qjmtluXvvHhfPn2f/8JAoTdlYW2NyfECk\n4ezmFrP5nM21DdYz17otn0wZDoes8oJ+r8f/8j/899x6KccrTF3w8a3bhHGGNq61nGpq6rpESEFT\nrIg8D4sBpCsosmDb2GuMAQF/9t3vcjJ0RiCQQjEQMdt/7TvEXsCDRw85s72DqUuquma0tsGqWJFE\nIY1qiOOYpm7IkpR8uSRoc5V9350yK6WIwoiiKEjTlDTLWBUF3U6XoihYLhZI38NvT+9exrHSn31C\n3q+S4fly9Wws9jz63Q77D+9h85L1je3T9UT3/EUODg45frRPmiYUy4L1tSHj4zFxGDDo953hw0M6\nqsQeHeMZj9KASXp01tZZFBWpDAgCgdWK82ecYW8wYDyeMJ0cnxrOsswZTnzqdj2BsQjpudhrwQp3\ncGVt292KJ1s8hcFoTSkNwyCgqivG42PiIEQ3DYv9fdbXT2Jxxx1OxBFN49JV8sWSIHSx2Pf801gc\nReGnGM5ZLBZ4vof0gpc2/KJY/LN0qxDAfwe8b639L5/6T/8H8Aft+38A/O9Pvf4ftlWm3wFmT12X\nPPfRxqCjkPvjI46nE6znczSbs7OzQ922AGuahkYpuh3Xr7QxirpRKAApeXD7HqNOj6vnL3L9/EV2\nNrcQEoo8Z5Xn7pvBWuZ57lq0NA3j4zGL5ZL9g0OEcDukZVEQRBE3b9+m0+uB53F4eMD5nR06gx61\n1VRWsXfwGOtLeusjhO/R7XQZDYfoRvHNt77OX3z/HdQqR+YLvnFmjatb62xtnAFPMi0bvv07fx2B\nZKuX8pvXLvJbX73G9YvnsGVB4HlYIen3uzRVQRiHpwuHoO3lHCYJWgi0BSMExtrTtizGGjzp8eQV\nh8Z4Aik9ak8wnUwxWLr9HkfHR4xGI5IkpiwKfA86aeraplhLmqZEUYQU4pn8oCIvsMbiSUm/18P3\nfIxylaWL5RIQZGl2it6N7g3QRlPXNW7OuyQIXP6cEG5HGsURddPw3XfeYbSxyfqwRxz5fOPNN17E\n9YszbA0mDHgwPuZ4NsH4PsfTGdvb266NnRTUTY3Sik6361oqGU3VaFQ7oenB7but4Qtcv3CRnc1N\nhBDkRWs4a/ty5rmbwNQ0TI6PneH9Q3hVhpXim299g+9//x1UscTLF7y1s8a1zXU2N3cQJ4Z/968j\nhMdmL+U3ru7yra9e5frFs1CuCHwJePR7PZrS9ZY8WfuGwYnhFCWEq/MXAmNda6GThbHXbsJOw7EQ\n2NZw40mm0ykG6PS6HB8fnxquVgW+FHTSFL9NqciyjCiM2tM+g+c7w3mRY4077et1e/ie1xr2WSwX\nCCHcx0YRjVJuUx0EaGNaw7QLlOC0zZu1liiOqVXDd7//fUYbG6yPesSR95kN/yo7/vjWLbJuH3yP\ng8MDLuzs0B30aKymQvFov3W8NkK2joensfhlHbtYPOh3aaqcMI7cfGIgCKInsRiBtgJ74viphbH0\nPHjqHFTgugZI6VP7gtlJLO71OD4+YrS2RpIklEWO7wk6WYrfFgJmp7HYpVH4J7G4KMBYPOFiceC7\n1qShH7SpRJBmGVEUo04Oh17CcZLEXxr+RcTiRvHNt53hplgil249cW1rna1TwzXf/p2/gRCSzV7K\nb17d5VtfucobP4/h+MQwrWGLFW6jYaxBSg+eWU98WizuuQnBz4nFnucm32VpRhyFp6lAJ7UfeVG0\nB3qSfrfnbu+0en4sfgWGXxSLX9jnWAjxO8CfAD/EtXoE+C9weUL/K3ABuAv8u9bacYv/vwb+JlAA\n/5G19ns/7fcIk8Se/cqbyMZQ6hI8nzhKSKRHP0s5mk0I44imbkjC0FWjBpKqaAhjN/Gm0g3dJCEN\nQ0xVkaUZYRKTzxcEgcdymbN75Rrvffghb1y9zMH+AcN+n7uPHrG+ts7xZEKlGs5tb1GtCjbWN7hx\n+xbb29uEnke9LAijkCSK8cMArSzaKu4/eECSZOwfH7G2vobSmrou6Xf7PHj/PdY8EEnG9vqA+eSY\njw8nvPmv/g6DMMGqirLRSN9jmVcEgaApa5CS6WwBTcH0+IBHx3PCIGYwHGCNpqkqrHCFGbodsyrc\nZQe2UbidU5voLqSbMS5c0IikjwxDBtcu0VQ1g8GAAEkcBaRJQuD7aKWIwxBrIY6ik+0YTdNQ1zVp\nJ2OxWNLtdKjLEiEkSRLjeT51Xbm8OvPkJDtsFxZYCMPwGdguCT883Z3WWhMlMcfjMXsHR/T6A6qy\nRrUtcf78j//45+4R+4swHMSJ3b72BrKxVKbESp84ikk8n36WcDSdEMYxqqmJgwhjNNr3qFc1Yex2\n2soaZzhoDWefMLzI2b36AsNNw+75sy9tuKlL+r0B93/8I9Z9EHHG9vqQ+fSIG4fT1nAMqqJsjMvb\nK2p8X6CqCqTHYrkCVTA92mdvPCfwE4bDPsZqmvLTDdO43DlrXa/NM1tb7qxNCLQ1xNJDhBGD67s0\nVcOg3ycQkjgMyJKEwA/QqnE5m7heovfu3Ts13NRNa3hBp9uhXlVIKYjj5LRYyVqD0tqdaLeGlVZU\nZUkQPDEchgFN87RhS6MVYRJzPBnzeN8ZLqvWsNL88J//s8/U5/hXzfG1y7tuAMzGOjdu3WZ7Z4tA\netT5ijAKXP5nGKB16/j+A9LUOR6tr6G1pqmrl3ZclDWiKZgcH7B3PCMMEgaDvotXVQW4fsbGKHcz\nhutsYdvCY4vFaMPaaMTJkFzNc2Jxf+Ac/5RYfOv2bee4bqibmjTLWCwXdDvdZ2Kx9HzqqnLX1loj\nhGuBFcYuFtdV9VKO3//eOxTLxc+dePyrZvj8me2XjsVVtWLQHXD//R+x5oOM2/XE9JgbBxPe/O3f\nfWK41gjfY1lUBL6kqSqE9BhP5y9v2LjuFvLTYnHZrifaWJwmCaEfoFRDHEanB1+edDdwdeMOKdPs\nJBZ3qVclsh3G5vlPDCut3OGcfRKLy9Xqc43FL0yrsNb+Mz49+/5fe86vt8A/fNHnffYRXNje4v6j\nxwg/wROQ5wty4TGvVmysjVB1Tb8fg7Es5guiOOPS7hbT2RTTViHfuXeHrV6fqN/nxx/fJOtkbnzo\nynD2/Hlu3rnJ9s4GoSfRVcVwc53JZMLDe3cYra+TJCGPHtynUYr5PCeMUqp8xSRfcOHCRY6Pj7BS\ncvfmDeK0iyfh6vWrWK2JIp9er8fj/X2qqoFwRSeKOK6WpIuC49RHioAzb7zJ+NE+ups5KH7gApUH\n1gik7+P7rlemwqfRhq2OT43g8PCQ0doQI+xpIjv4RN0YozV1VRPHCVcvXcaPQu6N90mNZP/uXRrt\nCgCEAB15FKuCOM6YTCZ85fJl1gZDjo6PXOCsa8IgBAGN1vhSupMI6ZHECRIY9Honf99I6a4wqvab\nzFrXF9bzfYy1NHVDHLmehNoYlFaujY0nQeMqu43F8z3CIOD46IiN0Rqb/SFKa7Juh9sPHzJdLH4+\nVk9M/gIMw8Wdbe4/2kMQO8PFghyPRVmwvraGrmuyXg+MZb5YEEchl3fPMZnOMGFIfzDi9v07bG31\niQZ93rtxk04nAwz+ynL23Hk+vnOT7W1nWFUlw80rTCZjHpwYjoNXZFhBWdCJI47KnHRZcJwFCBFw\n9vqbTB7tY54yXNU1vucah0rfd6lP1qKtT6Mtmx2f2sLB4SGjtRFWuBMaKSUCn7gbo7WhrmqiOOHa\npcv4ccjd4wPOrW9zcPcutVZtCg7oSFIUK+IkYzqZ8sbly6wNBxwfHVMrt4kLwtClHGkFxuAHrt+r\nn3gIoN/rIQRU1gBukV5VZUvFuluRti2XamqiKEZYdzOjtHaGpQTRGrYW3/MJwvCJ4d4QbTRp58Tw\nZ0+r+JVz/PABTdMwXywJwoQyXzFZLjh/4SLH4yOskNy9+TFJ1sUTcO36NXdaGgXO8ePHr8ZxYVH4\nKGXY6gRtLD5itDZ0PWNF2+JN+HS7MbqNxUmc8P+z915dkl3Xtea3zbFh01ZlGQIFGoASKYotgtJV\n979v6eqObt0eQyJ5KZCgAVA+XZjjt+uHfTIqCyiQEAFQ0WjuF+QYAKoyI76csc7aa835nbcfofOM\nj69ecG9+GLXYjlrMp7R49SktNobBmNe0OHgfgxWUpFD5LS2OdnJaRy22Xb97P733cXkpeMxgYud5\n7Aj+qRyL/3RZvGPy/18MfwVa3PUW0sjwZVdFhkuNIOH+uz/Y1RN5lqJ0GrVPxWBEqcZ6wr+B4YsL\nDg+/AMOPHqGzyHDhBC8++hgzajE7LW7I8+moxY84Wh5weflKiyPDAmMdUkt0otE+hrMIRoaFGLVY\nvlGLRaKQ3mNNZBgfvlYt/lLmsV/VEQI+vnhJWuYkPtA1NWWWIaTGCrhcrVBac1VVyABKCEQ/YAgo\nFBerC7qu5/j4iDRN6E3P4fERq6trPJ4HJ3f5/UefoNOM8xeXuN6wbhv+r3/9nzGiVEqyNENrzUZu\nODo+YD6f09QVxhqKyYyPHz/lwf27XF1ecbBYsm17tm3D7z96zJ07p5zcOeXj331EW1XcPT7GDi3e\nGBIPjRtY//YT7n3nuxzMZkxPS6SEuqmjkDlHURRsN1u8DyS6ZLGYcXH+kizN6UyHVoFJoqivVrz9\nvW9zfn6Oc44QoK1bhJQkWYZxhsH09KbnJz/+Cf/6f/7zLukGEXPn33rwLR5++ztYa4AA3kdbpLzA\n+Tjk3g0DWmnM0JGmGhfbeHHLn9E7sIsLIn58sgMRfxHSdPe1Gje5m3EOOYxjGoIo4oz2LN47NLEQ\nydMMNxh0kqATjWk7Hp7exbb9H8Lov/RIIfj4/CVJkaM9dE3NJM1AaqyEq9U1SidcVRWCgCIyPEBk\n+PoCMxhOjo9I0oTO9BydHLG6usIReHhyl48+/gSdZJy/vMQOA5u23TGMlGRpSqI0TdN+DsNPeHD/\njKvLK5aLJdUbGP5oZPjs5BgztARjSAK01rD57cfc+873WM5nzIoiji01DdZanHMUecFmsyUETzmZ\nsFjOuHj5kjzLaavbDF+/xjBAU8f5zSRLY4fW9HRm4P0f/x0f/+rX402EiFd9QvLoFsMCCMGxWW/I\nixznPRDo+hgUMQyGzgwko8jK0akihEA3Lul57zHWIuAVwyIwDDFhy4f4s2ql8f7TDBMZdh4UBOfJ\nswxnDFonaD0yfOcurv3ov4zRL3L2ieNrYzk6PmE+n9PWdZy7nUYtfvjgLpcXVxwsFmy7gW3b8LuP\nP+Hu6Sknp6d8/Lvf01Y1Z6fHmP5P49gHz2QyYbmcRy3Ocrq6Q8vAJJHU1yve+u63ubg43+lm1GIR\nb8ucYbA9XTXwkx//hA9/9ovd/DGAlOINWuxe12K4pcUt3TCQhLDbJ4n+8eHWglNcGkW80mIh49da\nxwK5aZoxVOFP51j9qdXxn+HsE8PbbfWl64mz46OoxYMh8YLWDax/98lnGK6bOAvtrKMocjabCh88\nif4chvUXZNj09GYY64l/ik4boxZ/up640eL1Zv1Ki2/qCa0xgyHkgQT/mhb7EOi7Li5M32ixeKXF\nN19rrQg+1hNqnI3+urR4L4rjLMsIg2fwA7gw2nEIrI1+kfNJgbExv9MLUEqQJJqPnj7FWovQmtXQ\n4S5qWDjs0IPWHB8c8vT8JVVb47zHj8Xa+fkFUicQAumkJCjFpmtZr9ec3blL33dcXV9TaM3QDazq\na/63v/0bPvztbwhC4Jzn+99+h4vzc8rJhM3lFU/amjsnJxAC5aSkuHOM7XvaruXdH/4NT//jV6yV\noFqvUMHTdC3LwwP6NnoB9n1P8J7pZEoIcL2+InjH0A0gFM56Egk6lcxmccFiGIbYFchzuqbG9S0p\ncP/4kGcvXrA6v4gWQTcvtA+QCN5+9Iim7cjzlMEMbDdb8qJgYEBIyfX1NZ0xHB4cErwn85oyJ25h\nI7DOxSWmJMF6xzAYpBQkSYrSGiElfdeRJsk4Z5yiUxk3/YkQi3GutCgKlNJjl2RgNp8TRm9Z76Jl\nE8TlgrcefMbBZ29OlqX4wWE8Y3dHoaXA2LgZPi1zBhsFIcjIcJokfPTkSVym1OoNDCuOD45eZ9jc\nMHy5YzgpS0ql2HYd6/Wah/cffHmGywnFnWNcP9B2Dd/74Y949ssPWGtJtb5GjwwvDg4Y2h4hBP3Q\nE4LbMbxaX4F39F0PUuJsiAxnI8PtK4aLG4aHljSI1xi+vHzFsPAgEsHb7zyibTvyIqYvbUaGwxBu\nMWxjZ8R5mq6jEAIl4gyycxZj4iKedXaMN5ekaYIKAaTA9JY00Zjxyk7KKO6esGM4hEBR5LsifDCG\n+XyO947gR8smoVAIgrV8a48Zhv3i+J1H79B3HVerawqVMHQD65HjX//mNwQRb6K+/84jLi4uKMuS\n9Y7j09c5Hj6f47prWb6B49nI8dUmanHf9VGLnSdRoJVkNn+d4zJXtE2N6xsSBPePjnj28kaLL19p\ncQgg5ajFbVwaNQObTUVe5K+0+OqKzloODw7xPv7OlYLdPL5zbtRYHcehzKjFOvmsFhtDkqakUmKM\n/VIcp0nyX0jpHz77xPC9u2dfQT0xobgbtbjpG94dGV5p8QaGY5Oh74edFnOrnviyDH9aixm1+FU9\nYV7VE8PwRi32eApRoKUkhJFhY0j0DcNxaT8yHOLPMwykyauxCSklwxjQ83Vp8Zc3jv0KTt/HmT98\nQEuJkvEq1uJRStAbizUDhdZkSpElGSEIXDeQBsHxYo5wDhUEj1crnvcDm6rmqtown07wzuNDfFN6\n2+OVwjoX32QLfTvgXODO6V3qasu0jNnbV9fX5GnCj3/0Q643a85OT/jBe+9xcnQEOMrFlMvNivvv\nvM1isUCXBcEZmqGjaRp6IfnrH/8dz1+84OEP/go9evdOywl3T07BOrIkQciYWKSEoGprVttrFlnK\n88cfE4JFSo3UmiLNKCYlKk05OTtjupxhrKFZX6KDAWvwpuP3v/mQCYbVi6cEb3HGIkTABItAcbHd\nUA0Nq82aNE05PDzgYLnkzukdnLHcv3vGfDrharPCSokTgoCg6/povyZiKs2mruK2r5Q0Xce63tIN\nA946ysmENEtROsE6S0CglSJRmiLLKPKcLE0RAczQU+Y506Kkb5r49CnAEzDDwGAtg3nlK72Pp+sH\npIqb6lrKOH/tA5aAkq8YLrUmV5oszaLfZTeQAseLBcLZyPD19chww1W1Zj6d4JyPiyY3DMv4sKEA\n3FfLMCPDdd3SI/irH/+EFy9e8PCHf40GCp0yLUvuHp9EhtMEKQTOO5SQVE3N9WbFIk15/uQTgnco\nqVFaxfe+vMXwYo4xhmZ1ifYG8SmGr188Be9w1sZObjCA4mKzYTs0XK/XpGnC4eFhZPjOHZy1PDi7\nx3w64Xpk2MrIcD/aAL3G8Djn1nQtq2pL2/d46ygmE5I0jbcX1oEApSSpvmG4IE3S2G3uh5Hhgm7H\ncBjHiv6/wTDsG8cbZmVBu6m4WkWO//ZvfsjVZs3ZnRN+8P13OT0cOZ5PudyuefDtR8yXC1RZELz9\nIxwnTMuSszdxjGR7w/GoxQQXtVgp8jSnmJToJOH07C7TxQxrBpr1JUkwYG3k+Le3tNi5UYv5XC0+\nOjzgcHnwSotHjq82K5yQOCnwOy2OqY1CKjZVRddGLa67llVV0fUDzrziWCWjFgvx5Tne47NfDH81\n9URdt3RC8Nc3DP/gr9CIHcNRi8fCUQictyhuafEfZDjl9OzsizH8KS0Woxa/YviWFp/eaPHZa1rs\n5K16wkddFUqNWnyb4W20bTP+NS22zv5ZtHgvimOALElQQmCcwXmLlpKD6YxFOSERgnk54XC5GOHu\n2bY15WRKZyydsaRCM8tLpmmOdgGVpGzrhqbrmcwXZEWJ0BrnA4RAkWfkZYHpWzIt8bZHjS7Yq9U1\ni+WCt95+G5VoHj99wrPnz8mnMz558pgkUWw3FcFGn96f/+Ln1Hbgg19/yGAdB4sl5y9ecnx0RNe2\nfOv+A3CeO8cnnJ2dkWXpzp3BGINzLi6PeI93lnZb8ZsPf006zuX64FEEvBLcffiQ1WaDJ5AXcXNZ\nKAVCxDCE2YLz6zXPz8+ZTUoIAp2kBCEpVUJxuKDpOzIhOVguKcoS6xyr9ZpNXREkdENPlqS88/Bb\npDI+SDx78YLODGybmvVmw/nlJd55emtjxnxVobRGCnDe7nxkb5YDq2o7Cnm8+TBjqo0f/RL7foiu\nJX60jJES5zwhgE6S8dp7f0VZwC7Vz1iDcxYtIsPzyYRESOaTKQcHy2hjNjJcTKZ0xv0Bhluarmc6\nX5AXJUJpnIu/1HmRk5c59oZh8xUyvFyMDB/vGA7WcefklLN7Z6Rphg8BKQXDaww7vLN01ZYPP/yQ\nRCukGrf2RSDIzzKcZxlCaZACpTTFfM759ZoX5+fMpiUE0DojCMlEJZSHy1cMHxyQlyXOO1abNZuq\nIgjo+p4sSXj04C0yqbDW8ezFc7qhZ9vUrDYbzq+u8N7T25iStakqtI4xqM47vDW0bTfO0Ae22yrO\ngAkxMhx59D7srv3cmI72aYaTHcP2v4zRL3L2imPger1iuVzw9ltvobTm8bOnPH/2nGIy45MnT0hS\nSbWtCM5C8Pzs5z+jNoYPPvw1g7V/hON7n89xeMXxZ7RYQLjR4u0WDxRlSZbnr2lx8WktZtRiJKV8\npcUp6o1a7MWoxTqJWqyi5enzF89HLY7prRdXl3Fj31qMd2yrCp1ohATvLd4auu6zWvxlOP5ji/z/\nlWevGP5K6okF5y9ecHKrngjOc/fklLOze6RpOu7+SMzowuG8f8Xw9o8xHLX4CzF8S4s/r55wzkYt\nrm+0eBi1+FtRi92btDgy3FuD8X5kODYO3chwrCcip1X19WvxXhTHEkEiYDEpKfMMrSRaguk7pIdM\nJSgZt8jnszlaKvJxCxIpuF5tsFpQmwETHCjJYC15WTKZTnny7OmuLa9ktBMBmM+nCBGY5CknBwfI\nMTRgPp9RFjnn5+cEKTg4PuLgYMkv/tcvqdqW2XLB1XaN946urjg6WJBIjQrw6NEjTNfx8P59jg4O\nyJIE2w+0Vc20KEl0Ql03aJ3Qde1ue946F+d465YXTz7B+9jt3R2lODg7w+kEtKbpe7Ki5ODwiIOj\nY9x4fdQPHUFKOuvp+h479OgszgArBG9999soqZhMJlxcXvLhhx/ivefg8IDnz5/R9z1KKY4Pj/CD\nIZXQti2zeUypabuW2gw0xtAOA1lRcr5a0RrDk8dPsQReXkUD/hDCaKkSfY37YcBYS9t1r5LJxpnl\nwQwIefPOMM5Jh3EutBtnU/d3zk0ISBDMy5KyyEmUjFd5fYvygVRptIzbw4v5IjKcpDhnEUKwWm+w\nSkaG8aDEK4YnU548e0I/9CRpglISOfpZz+czEJ4yTzk5XP4nGV79AYZ7Hj64z9HhAXmSYLqetqqZ\n5AVaa5qmJkk0bduN3sUDztrIcNPy/PHjMVUyvqMBQCqW9z7NcMHy8IjDoyOc82gt6W4z3PWYoScZ\nGZZIvvXdd0aGp1xcXvDhbz7Eec/BwQ3DA1IrTo6OCGYgUYK2bZjP5nR9T9N1NIOhGQa63pAVJRer\nNa21PH7yFIfn/PoSY18xLKW4xbCh6z/FsA/jNeJthscBOALtjuH9PvvH8ZSyzHl5ETk+PDpieXDA\nz//XL6mbhtliyeVmjXeerq45OliSKoXy8M6jd74Ux8PI8We1WN7SYrXj+ODwcKfFSkUt9iPHbddj\nhy5qsYh7M29999soIZlOP6vFz549YxhGLT46HrVYjFo8p+s6mq6LWjwYusGQFiUXqxWtsTx5/BRH\n4OX15cYS74sAACAASURBVC645rNa/M3keP8Y/nL1xNDfMHxIrj/FcKLHGfKR4cHEhtttht9YT7yJ\n4fIPMtx1sZ5IdvWEfL2euLp8sxYryclRrCcSJWia9g1abG5pcWT48cjwjRZDTJj8c2nxXswcK6WY\nT6Z0fU+CoMwLuqEHIUjThMEM6EQxdD1DPVDqhHk5YdNsOFjOqetuNKj2HC8PgMD59RV939E4y+nJ\n0dipFRSLOUJKijxnMANn9+/TbWuMMfTe8t233+b68pJJEeNKi0nJYA1pmvHo7W8hk5QPfvt7wHPn\nzh2mRYEXgUU+ZVWUhKFjuTyA0Uqta1pkoknzDGss22pLmias1+vxaScWfMF7Ntcrzp8/RYo4CxSI\nwRhplvOdv/oRn1xdMNi4eR9CoDeG//jgAxZlQZ6m4B0CS17OaNZrvEo4OJgCkkylSCGZzmfkVccg\nAoHAYrGgHwYuXp5z9/QOgzE0VR0dJtIUrTWLyZRpOSFYi5CCx1fXJFmKBJ6fn9OYnr4buH96h1Xd\nkI9P4NI7JpMYumKM320453m2u8ru+w4hBFmes91ucN6TaB2TrLo+LpEIQAq6fn8X8rRSLKYxqjUJ\nkBRl/H5FnGfrjUFphel7hrqiUJHhbRsZrpoWAogQOD48QITbDJuR4dhlLxfznWXTYHru3X9Au62x\nI8Pf/863vyDD4fMZHufNQwiRYa3JihxjDFVVkaYp69Uaa80rAQqe7fWK82fPkDJEhgUjwwXf+au/\n4ZPrCwbrYAyp6Y3hP371AYuioEhTgvcjw3Pq9QqvUg4OZoAgU2ksJuZz8qplEPH7W8wX9H3P5fk5\nd+/cxQwDzbbC9ANFlqK1YjGZ7RhGjQynKYrA85fnNGZg6Hvund7huooM98Yjg2U6nWCMwXsTWRx5\n7ceRor6Ps6pJnrOttpFhpZBS0/f2NYb7PWYY9ovjH33/21yNHA/W7zjO0pRHj76F1Ckf/PZ3BAJ3\n754yK3M8MM+nnOQTQt+xPPwTOPavc5yMWmxHLf7ujRab2K32IdAPhl9+8CuWZR6t17yDYCnKGfV6\nTVDJyLEkU9kf1eKzOzdaXDEMA8W4MP4mLdY3WvzynNb29F3P/dO7XN9osfVIb5lMJhhjMcbvum5/\nKsd+jzvH+8Tw9x59+XriYLmM89E+0LbN6wxvYxjMaldPxHPD8Mtnz5CSON/7Rxke+I8PfsXicxj2\nO4bfpMXhlRYPw+taPNYTRRq1eDm9xbASfDLWEwp4/vKCxvQM/esM32jxcjkZLWUNQvK1avFeFMcQ\nOD05omkaXp6/pMgznHNoqQjGoEQgkRKRpiSjL5+THq0SgnXMJyWr6ysGZ9lWG/IsY5JnFGmCThPs\nuMF7s/GulMIHh1aS66vrmGUvJcvlgu31NRIwZmBexD+n6zpW9RY/mfLsyScczpYcHy0JISbETMsJ\nLjhm8ynG2J0htfc+Gjm6+Pcba8mShOv1GkfAhgDBY8fC/uL8CTpRiBAISiODA6U5e/f7PK/XBCxD\nb0myhDQIfv+zn7HIEnAdMUcQlMqoNmtkkrBcHvAxkmEwlHlCa0X01pxE26zlfBF/wYsidtbTFNMP\nHB4e0A493dAzm814/vvfY5eW3hgW0xnzouS6rpAejPfIJCHXCdu+o+1i/vvKeU6nJdu6it6ESjNY\ny8vLCw4PjklUnHtrmnYshuXO5SIQdktQeVEAsFqv9/oqL4TAyckhTdNw/vKcIkvx1o457wYlPImS\niDRDe88wdDjpUTLBW8diUsYHJmupqjV5ljMpMorshuGANXY3L6uVwhNt9r42hkfbMjdu0Vtrom+k\nTrlaxeCCyHDAWIfCc/HyKTqVMeVAaVRwiFRz9t57PK83rzMsJb//2c9YpgnB9cSpPYFWGdVmhUoS\nlgdLXtTb0VYopbOCXCmGSY53geV8gRSCIi8YTGR40/ccHh7SDT1tHxm+ujzHurj0Oc/mzPNiZDhg\nfEAmCVmSsO062j4yvHaBk2kZRzVCINUJ3dBzfnnJ4cERWglSFW2MktFK6MZ26ybCPklTijwGJlzv\nOcOwbxyvUIiR45RJETleN1scU549fszhfMHx4ZLgPd56ppNXHNvRRuqLchxCwFoXtfgWx0ElSO8g\n0dx79z2e12s8FjtYdJaQBcHvfv5zlpkG19/S4vSVFh8csLm+ZOgNZfFFtThy3A497dAzn824urjA\nLGNxsJiNWlxtkQ5suKXFtzm228hxXUeOlaY3wzeW4/1i+KvQYrPr/HtA+HGccWT4eh0ZdnyW4SSR\nEBRBqS/E8OKPMPyRkONMb0pnIZdv1uIdw13P4eEB3TDQjvXER598HBk2hkU+Y1EUXFcV0gVMCMg0\nIR+1uOlb2sGydrcY9p5UJ7R997UyvBdjFQjBtqupmorj42NW2xXlwYwBhyw0944OybUAEUAEJssZ\nV5s1AxaZJRhnODo+Is9zEq1YzuakiY4Px8Qf8ujgAEncZBVJig0SPzgOp1NODw54695Z7F5lOYv5\nHGtGHz/YmVLnacJb9+8zLQskgmZbxVkW7+P2rw9kWYYSEmssIoDWmm7oaLqWru9Ybbdx2Wz0rPTe\n46zh/Pmz+DDgPUJKlLd4BNM7Z7zcbGjbAVQa54GqLRePPyaVjBunGomgLEvwgTTN+Yd//Ef++b//\nE01To7Wi7Qbe/f57tF2L857Naj2mDhqkih3c+O8cznuqbYWQEjMMTKdThqEnK3Kuqg3WO7Isw3lP\nAHoTZza3bYNMNM3QI7SmMZZN2/H4+XO2bYtOUw4PjnBmwI0znr2zWAJ129IPhtVmjTHRjsY5j/fR\n9Bux390KhGDbNtR1zfHxEavtmvJgzoBD5Qn3jw4plIgrvjIwWdwwHP+9sYbj4yPyPHaIlrMZqb5h\nOESGDyPD+S2GnXmd4Xn+VTIcDeATpWn7nqZrafue9XYDUsSN7XFO3DvLy+fP44Oni2EK0lucEEzv\nnvFyvaFte4QcGa63XDz+iFSBVrHbI4SgLIsdw3//j//IP//zP1HXFUor2q7ne99/l6aNDK9XK4yN\n14hSSbq+p+06rHM472J0uYxz/dPJNHooFwVX1RrrXbT4CXEucLADxlmqsTPTmh4SRWsM267j8YsX\nbEaGDw4PsSbOtG2qisFZbAg0bUtvBlabTfzwtA5no4d3kmU7y6K9PnvEcZ5nLOZznLGoG46FiIEO\nacLb9+8zKwsUgrqqEFLsHBtC8P8Jjl1sZIwcn3+KY+UtXtxo8TZyrFKQClFtOX/8EakcnVikGovc\nEjwkac4//LdRi+sancjI8Xvv7fR2vVozvFGL/U6L5ajFk+kkclzmXG43WOfI8hwfPqXFXYNMFO0w\ncmwt27Z9TYu/DMd7ffaI4a9Ki52x4MPIcPc6w0Lg3CuGnbOcP38WGfZfNcPVWE/0fO/779F0t7R4\n9OWWStIPPd2temJbbWM9YUysJ/ohhn1t1xjnyfI8ajEwGBMbnV39KS0eGf4zafFedI6D9xRJyuQg\n4/z6CpUmrDYrhqajqSET8Sns5LhAasW//+IXHCyXtGYgSROGrmM+n+PwJFKhJJwsDui9xfQD3jmU\nDzw4vUvX91zXFYODw8M5IsRrMzP08euipG1ayiK+WUoqhmHgYLGk7VpSrdGZRgRIsxQzDPR9P9qH\n9DRNQyCglEIJFb3/lCI4RxDxjZdC7GzN3OhX2Vbb0WokJsWFAF5phIpXvy56YSN9YHtxQXAOpSVK\nCFwIHB8fs91sSLKUn/79/0EQkCca6aMbeJYVHB4fs16vmU2nHB4est5uyNMsehGPG7fOe6qqYjKd\nkCjNZDKhdxZvHVJpjDJoneLqJg7xZxnWx+1dRvs1KSWDGchUzmazJs1zOutojGU6n5GKaEMkRLzm\nGYaB6WRClqa0ffROllJS1/Vufvz46Dj6GO7pCcEzzXPmecH59SVpkbGuN5i+o+s6Cq1YLpecZgVS\nKX72i19wfBAZzvKUauhZLBZ4EUikQivJ6cHhawzrAA/vnu0YNg6ODudIINUKawZECDin6bqOLE2i\n4IQ4Nz6fzmi72KnXeYbwgSSNDDdNs2PYWrdjOAGMjfZlZiw6hyEyPAzDjmHhPdX6esewMR4XwOqU\n1AQcPc4HrFNgLaunTyIrAoKLDJ8cn7DdbEBKfvr+3+M8CO+4urhEKIHWGb0xfPib3zCdzdBac/67\n35Ol0ULo8uoKYHe1lqYpbdMyKUuKsox/n9IMUqHzlG1d40MgTzNsiAw7P1oIjj7dJstZrdZkaUZr\nDBfX10ynE1IR7YUQcR5x0zRMsow0y6JdIQGpJOu6pupapFRoKaP/5h6ffeLYDIambtBa4ULAW0dd\n18xGjrXWcVnXutilsgNVVcWGROew1qGUQipJIhg1N2C9x3qH6aPVVOwuh6hhPlBtVgTnEDIudJVZ\nCjpBJjlJ8DglEUKSCEd9dYlwnmRcKHchcHpyHIOqipz3//5/JyAospShj3PNWqekecazFy+YTaek\nScL5xTlZmpFlGdu6hhDo+571ek2SpTEoSmvKcrLj2KiBJElxdR2XAm9xHLU4frYYY7BSsV5vyLKc\n1lounj77UhzD/j7k7RPDJPqrqyekjA9QWsPolz2MyXHOuZ0WKyHo6orgHVLGekIg4g2IztAEnIxZ\njRqoLi8RzpEkesfwjRanebarJ4o0Qbi4s5XnBUcnJ7t64ujoiPV2E/MikgQh4/Ko9566rplOp7t6\nwjiLc+NMs1ToPGFbNzjvybIcHcbFfB9GZwzo+4Esj1qcphntYDi/uvpatXgviuM8zyjTjCIv0Srh\nfHXF+fqaR48ecbG65LraUvU9pu347nvvosd0lNx77i0WbIVk9fI5hwcHKKWIhsiOIoAInnwWr0bx\nhnlRIl3cCp1kOWZcDktUfCmkkmQyJfiAF4Gr1TXA6Lc8xY1hF9FLMCa4GGdJ0oQ0SRlMhZOCpqlj\n9KMZkIg442wtxtmY9hKitYgPnnp1FW1nlMa5DkhYW8Vbj96mwROCR2YJ2hgunz8hExBk/IU4mC25\nXl9S1xUiTfnbH/0EEyy//fBDgvOgY2H+o/ffJwiYzKYIqRisxUrBZbWhd3E7d7AGmabkRYkUnrZt\nsc5SVTUH8yVZmjKdTHl5dUGuFR6JtQ5nBqTWSD1eiwtBCGCsx3pw1tK4mmSSoweNzkv6vkEnCV3f\nv0rSs47GOdq6idcgSpNKgTA23hLs8UJekeWUafpZht9+xMX6kqttNTLcR4bHfPvMe+4tln9h+A8x\nnCQE7/jbkeFyNotFjTFYCdVrDNuR4eIVw9ZQ1TUH8wVpmjKdTHh5eUGuY7iNcxZnDFKryHAQaHkT\nP+pxIdA6S9M6rO1RvUYXI8M6pet6pNa4AMY42tsMa00mFcIYDOx91+2bxrEXEtM0MVjGmtjty3OM\njd0pbHx4DCEu+9Sr6M2tRo6l1Kzs6EccfPTZ1wl6sCPHgiBj6MDhZMnV5pKqrhFJwo/+9hXHWAep\nJjjPj97/KZ5bWnyL4+EzWlwgRXilxXvC8T5fgHzTGN4nLRZK/gGGBfUXYHhbNRwsFmRJrCdeXF6Q\nK4VTKoaijf7RUikCkIzLdrE5E2itpXH2a9fivSiO+8FwWW1pnj1FhPj08+DklOPJjGmaEpzj4vyC\no4fHpMFzulxQZjnTyYQkSXDdwP1336NpW5RUrNaruMjX99w9u8tms2ExnSGlRBE7St7FDpjzjkQr\nvIhFnHaaMNq9BaAYu5hytF1LtGYYBqxzuyF/gMEaAnFI33mPGf8bT8y2PypL1i9fIBBjuAUxWT54\nrq+u4hshAonK6FTC4VtnbLxBC03qNdvnL2i6nsx5nDeoANO8pPGG6fKIH/7oR1yvN7jgsO1Atd0i\nRBzrUGkGwGa1Zjqd0jQNaZqyzCdkB8dcX11DrqjrLe12SxCX9H3H3ZM7OON2bhJd13F69w54T1kW\nrKoK5wMq0RCIVikimnorpeiCQ4/xu9OiZJIXOGMZZOw4eh9fsSTNSLMEgWSotyihxg+r+DqqUeC1\n3I8poDed3hguq4rm2TOEj/N/909OOZpOmWQpHDkuXp5z+OCExHtOF3PKPGdSTknTyPCDd+/9heHP\nY1jGLsB2vWE6mdDuGJ6SHhyzur6GTI8MbwgidpDvnpzeYtiMDN8l+EBZRIatDyitI5PORWP+waKU\npgselWiC90yKAjO+xtGAPkb2eiHI04w008gbhuUrhgdjUBLwsXO0z2efOHbOfWmOxQ3H3o03A56j\ncsLmxQuAcQE0FseEwPXVVUxgFYFUpXQ64eSdh5/hmG4gtx4bXnFce8Ns5PhqFd0HzGCoqwp2WqwJ\nBKr1mslrWjwlOzjh+uoKckVVb2i3GxhtCe+enJLtEcd7XBvvFcPfSC3+XIZv6onbDG9HhjvORi0O\nIbpJdF3HnTuxnijKklW1xfmAThICYWQ4zmsrpei8Q6V6DHIpGb5mLd6L4lgrRRLg4ekpF9fXLJcL\nqm3F5uqCvCioqopFWTIrS5I0oZKSJEas0Wy3HB8esq0qqrpmuVgwyQuqektelqzWa4o0Y9vUFFmO\nljHP2waPFJAWBdbacTYnXnlMyhIRImubzSa+WSJeUQ1mtF0DpFL4EFvzPsR5n5vFsm6cebHBo4Vi\ntVrTtT1plsRN17Fb4YaORMo4LxQCFsXB/YfxWiKA1BpvBy5evqBMM1IZZ57SvEDnBd/5/rtkOkEo\nzfHxCUmiqTaW9dUVQkLbNPzkp/9AlufxCs57tFL0fU8VPKvnT+MWtJjRDT1SaYIQJGlO3bYU8wW+\n76iamrIoeHlxjtKaqqrHuZ14FUkYU5sEJDLmpXsBSkiUANN1aCFBx5ELqSTeOqz31E3D0EcfQkK0\nXxEwhqOMH3IIrN1fC6FPM7xYLqi3W7ZXl5HhbcViMmE+KdFpQi0liZCI4Gk2keGqqv/C8BsY7pqW\nv/vp35NlOYlOdzZDXd9jQ8f18yeRYT7NcBYZXixx1SYynBe8PD9Hax07fDJ6MAsfP+5v5gKTJHuN\nYQTYrkdLidAydnCUZPDxirBqGvpeRB91GG2zxmjUcY9AEGdi9/l80zgu0py2baPtE5Hj69U6Ohmk\nMdVMEN8jP/S7Wy8fAlYoDu5/i0Jl2ABCx4Wui5cvmaQpacSCNMtRWc63v/8euU5Aak5OTkiShGqz\nZnV1FTtnTctP3v8H8rwgTTKsj02EvuuoCFGLlWIh5jEYSycgIE0zmrajnC9wwe8Fx/vcOv6mMbxP\nWvyFGNZvYjinbjuK+QLXd1RNs6sntNZs6xohJJ7oxgXRtzkISFScgfajBWIQEtN2X7sW70VxLAUU\nmcI6y3I+RQrIs4SyLBm6uAgWnGMyn/H06dMITJbF2Mw0oWpq8klJXhYkSZznSrSmHqJNWNXUGGvI\nswzjLXmWEtKELMviLFeux7hFj06T6PUrVRzGXywAosevMbsX2I4G0zezs1LEyM7tdktZjql/iSZR\nCSoI6q5lNpuyqrdIIZBCIoXg+ZMn6BCvVVSaMzm9g5MxPzwAqm8J1YZUKrz1hESSpBknb72FyHIE\naXwKsx1lnuFDwv/4l/+OkgKpFWcP7pIXE7quIziPThLSNI1QB02epEzzEm8sR/Ml27oZrzMk3jue\nX58jAszLCVXTUBQF26Yh1dFtwNLHmW4pCT6QJAotJDLEqyNGb80wzsIJIXB4sDEERY5LAy4EHMS0\nnFF7rY2jFC7EWfJ9blfcMGycYTGfokQgz1LKsqRve7IyxzvHZDbjybOnCKVidr016DShairyyeQv\nDL+B4YcPHpIX0eoxWBevHLMozDJI8iSLFkhvZNjz/OoltjfMJ5HhvCzYtjWp1jHkhpiId8OwThRa\nCGSIAipEZNX76HggpIz/tA6kjFeNIeBDnNcLt8Z/dgwbT6rGLtIen33iWBVfnmOt9MhxTOdUQdC0\nDbPZjFW9RQgRO8VSRo4BJMg0Z3LnFCsUQwAIJH2Lq7ekInLstSLPIsdkOZJoO+rblmJckvuXf/kX\nlBCoRHHv7B55+boWZ2m6S2vNRi0Og+FoccCmrlFSE9SoxVfndP2wHxz/+dH8wmefGP6mafGD+/e/\nIMN2ZLhBKUUIbldPyACzyZS6qcnLkm0bfZpTKbFDvPXQMtYFqVIoIZHEm+lYNMemmRsL3a9Li/fi\nnlogyJOcSVkSXGBoe4IHNy4MiRDQSazjJ+UkPglIiVQaEGRJCtYSnOX68gLb9/TGIIWkblqKoiRN\nMoy1CKVJtB6XHVZAoO96tFJMJiVlXjCZTHHeU7cNTddivcMHz2Q6xTiLUBKtdOwwOB8tYrxHShXn\nbBGkkyl1OzAMniQvEF7QtN34lAlOEBcIlUDi8Cohu3sfJ3VMe8KR4xmur6jXK86OD0h0AJ3Qe7h7\nekapEhIZPTJjeELPv//bv8escSmYlBO+994PWNdbmq4lLTIGb3h5dcmqrtjWNTpJqfuOznvWdU05\nncS0JWcQUjKfLUmSjLP7D0BpLrYbemNorcEFj0bETrEQCAHSx1AXS8CEeKUVBPjRy9OFgBdxoSVT\nGuEsRaaRQu66ODII7FgsW+/jrBF+nzNAYGR4WkzABYZ2iAw7T5omcdkziR6L03ISq38pkKNLQ/oX\nhj+X4Xff+2vWzYambcjKjMEZzq8uIsNNTZKk1F3/hxlO08iwVlxuNnTG0lr7iuGxO/GKYRktmyDa\nfAkI4/fpvMcLAVKSKYVwljzVCClGEkT8HQgeJ24xHF55fe/v+aZxDNlkStUOmN6T5CWEaCGplMQF\ncMQbMD1yHFRKfnYPJ5Ixec+SE+hXVzTra86Ol2gNItEMHu7eucdEJWjJbnmqG3r+7d/+DWctUgrK\ncrrT4vpGi53h5dUF63rLtm5Gjju64FlXNZPpFBc8vTMgJLM94ni/zzeN4f3R4s/UEy7WE+um2jHc\n9CPDdc1k1OLe28jwNNYT9+4/ICi9Y7gzJt5qC7G7eRYIRIjBTy5EfmP9IF7VE1+jFu9F59gHT9N3\naKeRQnBwfEzTtgQCWZLEa6EQePL4MbPpjLM7d6mbmkTr6IecJphhAATT6XTM5xa0TUueJqP3XYIx\nhs63rLo25nALQdt1LJdLNpsNdVOzXCwRJhrNJyGhriukEHRdF1NWQnzqU0rjncOPTgAAV+sNOk35\n3bOnzKZT7j64x+PHTzAriwakFOAkvQikxrF++oxCKJxWHN9/yOA8iZQoHHawrFcrEgLffvttnnzy\nO5bzkrxccHh4wicffcTy4ABrDGF0ELi8vKZerZgUBb0xfOs77xGkxFjLZDrl6cuLmESndHzqEoGg\nFZ0ZkE7GGOjLC7I0ZTaZ4DsTzc+HnvZXvyJNErI0zn52TQsIgnOkScIwvmaECOzgHTIAUsZIYR9w\nNhDwCKXwUtC5aHeXp3kM/EgzumHA+LiQ0I8b2lqqGPG6x5WFD55m3KB/xXBDIEajI+Lc9JNPHjOd\nzbh75y5NXZPqBOscOk1xYyjMXxh+nWEvJcZEhp+8uBjtghT2hmHl6EyPcpG1zeUF+biw5LvoMLGt\nt7S/+oBUp2Rphgf68WcOo9uA+QzDFjF2YQbnRuP/+F5LpfBK0DsLAfI02zHc9z3Ge5I0dpASpdBS\njYK8F/2Izz37xPHR4dFXwPGzyPH9+zx+/PgVx0qCFfQ4Umsjx1JiyTi+/4DBxvAAJRzJMLBar0iC\n5523H/H0k9+xnBUUkwUHO46XOGMIwWEGy+XlFc1qxaTI6YzlrW+/G7XYWMrplKcvzxlMdDJyLn5Q\neyXp7IC6rcVJymwyxfeGi9UVF5v1XnC8z2efGP6mafHrDN+qJ5xHyBAZNgPKforhcrJjuB8Gml99\nQKYT0jQjEOiauIwY3Og8Y8wYChVw3tGHW/XEyDDjAuLXpcV7URxLqZiVZfzm04y2aeImYQCtE5y1\npFKRLlOapqaq4kyVtRYfAu3Q4/poOq212l255uN1SDeYXQvde89sPo9PJuOVxvVqRVkU+NHOZ15O\n8c7hgqPMC4w1zKczNnXNYhE9C8/PL2JKXAh0nSEg8FKQFAXZMNC0HS9evOTtb73FZrOhqbYE7xmC\nJfUOc3nBTFhQGi0CvrsglQVBSLzrqVYdTVMTgkOGgE4ygneErkWK6LPovOf/+dd/RSsIQXK93ZAm\nCZPJhJ/8t5/w8nKFF7EbW9ctiECeZcgxO71qYwSpliraq0lQqSJVCU3V4KRAJwlaa4QP8VrbiHHm\nzBOsIVUa4xxSKcz4fjB6xyIE1sfFEKk0RgpkCKSAdQGhBATBelsxn89ZrVZxHkhHv+c0ifNUKt41\n7bxO9/EoqZiWE4bhNsO8YthYlFKkByl1XVPzOsNd3+GN/QvDb2BYXiqEkCPD0Vs0Miyp2jYyrBQJ\nEv8phr0UqCRhUk4iw0NPsGJcwvIEY0m1xo4WhGbswt0krQoZuw1BCITSmOCRwaMB6zyoeOOxrioW\nsznX6zVCxOs9fCDVOjKMAMFeMwzfII5F5Dj1nrrpCC9f8OityHFdVXjnGbCkzmIuL5gKCzJB64Br\nL0hUSXAC7waqTUPbNjQhxtToJMU7j+9alBAcHRzgvON//uv/TaIEAcHVZkuWJEymJe//w/u8uLom\nXMa5x7ppgOi5r2Scj6+7jrbvUVKSiLilr5QilZqmbnAyumTsC8d73Kf45jC8h1rsiKORTdOACJFh\npQncZliRjHatSo1aXMd6QumEiU4Q3kcPbjPs7GsHGxk21u7ciDwBfIjvn5S4EIPVpFRfuxbvjVJr\nqcjTFCUlWiomRRE9GocBJVXcLPQxSShPU7SUpEksnK+vrxlCoO6iMbTzjklRkiUpXduhpMJ5N+Zu\ne6rtlizPuV6t4tOadVRVjVaK4F5df7R9Hxd7kpjchvdUmw3eWZazGVmSoLUiLwvunp2iCVTViiJL\nmeSaTMHq8iVt1RNsguxWZPVT1HZNmRQEocjzHKEFYCEYnj55yfXlmgdnircepNy7I0mzira9jMIm\npW33oQAAIABJREFUIcNxdnKMVIr333+fNInG5YvFkmkxY3nnLlU7oPIU72KqjtYK4cNOTP043ySt\nj7AoGTdRgUcPHzIYA+O1RTsYXKIwIv7/Wkikju4SfXB0PtokDdbQ+3iVKRCYcZY4COid4Wqzpum7\nGH/tHWYYdtci66aO138ubmRb5zDWxmQg78C56Hm4tyeg1Q3DAi0lZVEiBZhhQEqFGm1wDhaRYSVu\nMbxa/YXhz2E4uGhTFBn2rxgO9hXD4XWG3x4ZjldvjnYw2NcYViidIMQthp1lsIbhhmHxOsODM1yt\n1zRdC8GD93HT3Hs8glXTRA/dcavcOIdxkdngLFiP3+Ol0ni+IRyLVxxPc02q4PrynHbbg9HI/pq8\nfoLabijTAoQmLzKEFgjhEGHg6ZPzkWPNW/cT7p1K0rSiaa9AxE5sFix3T46RSvP+T39KmmqMNSyX\nS6bFlOXpGVXXo7IM7wIuxNAmfEAGgcfjg4sf+DaORggl0VqhQuDRt0YtDrEjui8c7/E+Ht8YhvdQ\ni3cMjw0zGcSoxbcZ5nWGHz4YGY6d3tYYXKKxIi7KaVT0bhaCLlj64GI94eyOYZBY58fRIPFn0eL9\n6BwLgdxtWMYNTetcdDQYr4Ds0McUFe/i08CYJJOkKVMl2Wy3MQPdeyZlSd3U0WMwzwhB4K2jte0u\nHMB7z8nxMV3bUpTFaLo90A8D3nuyJMU5i3EDaZIipWA6m412JglGDkzShK7rqKqKum44PT5BKcXv\nXjzlqFxy7+gQIQYYDL/+3YcYO+BtDPozQ0/A0/cekUwwLiNNE+7czcFfYfoO6Q25jpYji3TC5WqD\nSu5w/uIJHsf51TW275AEiiwhAGlZMj84oLcDDjAi2hepcSC/aVt88JTTKVJKZssl680aIwOmanj7\n4UN++esPEGn0jA3EZCnT9SgpEAGsdyBj18KOtm0+BJSMi3iesNsElaN3oZSKeTlByjgflUiFFnEs\nxltL8GJcjpG7NDytRguW8c/e5ytpccOwi1vCSkmcswgZN5AF0ag8y3PcGDAg1esMb6vqLwzzWYYH\nPsVw1+J9oJxO3sBwy6OHD/nlh79CpLEL4YkFie36uHwFGB/fgzcyPHqSGueIDYtbDE8mSAFOCLSQ\nKBE/KL11Y7plZFgQb0200sBY3EsZt4X2+HzTOP7k8iVH5YJ7x0fAyPHvP8TuOA4YE5enhj684jhJ\nuHu3ILhLbN8igiVPYrdpnpVcrTbo5A4vXz7BC8f55Qo7dNFHOY2xtel0wvxwSW8MToAJMURHh2gh\n1XQ3WjxBCsF0uWC92TCIgK3bUYt/BalmcFGL94bjPT7fNIb3SYuNZEyUVK+0eFdP3GYYbN28keHX\n6gkCJsROcRht6pSMf7YUsd7wImCdGRcVY4f//2XvTZoky9I0redMd9Cro6lN7h4RGVGZVZXVsILa\nsUFgCQIs2LFg0SJsEWlpAfonsOpmi9ALdiCwAWHNkhagSqimKXKIrIzMGNzd3Cad771n7MW5ZuER\nkZkeVVnVpRlld+Nmambq7qbP/fSc873f+0ol/8Zr8VFQ/uBBB9nj2HmH0oreWhLpsV3vfI4n7PqO\n/WHPvmvZbDfowTJFG0NVlsQYhpSkjt5aqlGN1Jre9kiVp0b7rsN2fQa3rLC9Jfi8GxRCYF3WpxSm\noCgLQor44Lm5veXqzRWvrl4zGo9pRg0vnr9gOh5zf3dH7B0/fP9DnjcJ1f4MbX9MmT7n++/VCO8g\nePa7NUrJ7A0cW6w95NZa26JUgVInbA4taTAgD7FH6sgHH17ye9//gBgT6/s1z85fMJ0u0WXJqBlT\n1TVnF+fsDjt6a1kul9kKpSgQQ8rUfLFgeXpGe2hJMbLerhlPJhz2B8qy5OWrV6SUcuIMg2OPAKMN\nksEKReWNTGd7hFTDQliQRB5siSnmQbyUYSclUowQAlVZEeExPSelPHggUrYaisQhoSx7kDIsjhMi\nm/Yf6ZUe/o8in/A451BaY132dHbe5ceHE/au79nt9+zbA5vtBvXE8K9nmGzLJh8Yni84PXub4U1m\n+HCgLAu+ePWSFOMjw5DbwEY9MDxsvAeGGTbjCXI7c+iYPDIc32LY5/ZqZjhbNqWYbYckA8NDPZNC\nkIavR7KVkzvyk+PvHMfvfcizMaj2Y4z9MVX6jO+/qMF5kg/sdmuUym+SX+G4OyBVgVJL1m1LkopE\nJET7Jcc/eJ8YYX2/4dnFcyaTE3RRMhqPqeqK04tztvs9ve2/5LgsEVoTSMzmD7W4g5RYbTaPvrFv\n12L7Vi0+Fo7TER8df+cYPqZaLN5ieKjFD+sJYmK13TCejDkc9r+WYRAUWqMe1hNSER58nqXCDfKf\nJOTj4ZgnfYVhYvobr8VHsTiGLEq33lGWJUIq2gHEh8x5HwK7Ie6163tGTUMiUdc1PoRhgtSw3mxo\n247OWnSRtYkvX7/m0LegFbvuQEqJ0hQ5MaUocc7iQ27h77ZbqqrM2hSlOOz3rFYr1HACqrTGOcdH\nH33EJ7/4hOv1Pb94+XnWAXUdB9vx8V98yi8//xn79oA2l5BGiGj4ox9+j+fPT9AqQApoZShMhREC\nGT1917LbrwlSIOofcAgX7P0p5egjgnnB3i253To++L1zXNzz6vYVvRaMFkvK6YzJ6ZLJZEJhCpIP\n3F3foIXGhcjV3R0x5cCVu7t7lNIYpTFlyeFw4MOL5/QxkLTkYn5CrYvHRDqf4qNReRQpp5CJ7EHo\nYwCRI56dz6bdWTcveRB6icGJQipJe2hxvSOQsDHnoHfeIoXMNm8hL4hTSkghsb0FIYchkOM9dRMI\n2rbLg4llgVADw30/MOzxIWaGY6Tre5pxQwSquiY8MfxrGTZS4ULg9QPDznF7e5cZ1gZTFl8ynB4Y\nXn6V4Rixrs+T4iKb7AshBoYjCInzARdyexDBYxcjLzUeGBa0+xbX2YHhQGBgmNz9eCjgMeYhUjuY\n+2droeO+vnMc//yX/PLzj9kdWpS5JKUGGQ1/748+4MXzE4yOMKSJZY5BRk/Xtuz3a6IUyCpzfPDL\nzLF+j7074Xbr+N5HA8c3r7BGMDpZUk1nTJanj9HQyUfu3tygpcb5wNXdLSGBdV+txcVjLX5BH33m\neHZCrc3jG/WxcHzM13eO4SOqxXk98SXD/dcZLkr2hwMffYPh4kuGU6Af1hNBgAtu8DQWeciarJl3\n3hMf1hMi64RTyh+nfwW1+ChkFQkoqzxhuO9agg/44LFDS0LpPEAmtOL27o7peMzq/p7WWWbTKbbv\n2a5XpElOrYnAq5s3aKEo64rNYUtZlNje8uLZC2x3oO07mtGISmp6l3eApjBopTl0Hdvd7vFovneO\n29U91jqcy/ZQr95c5YnnlNNroocffvgD7u+vmGqPb+H23vP69he0Dpbn7zOfTpmfz2lueu5ubimL\nmmA1QkqUtyxPTogxm48kkfIbe/Js11fYILm4fI/eOiSJxWLCzcqipSYlgS41uih4efuGsq6pmoYQ\nIoe2ZXG6BCWxh47OOSgMPkRC3yK0pi4rVts1F/MT1tsd2xiwMbejK11S1BW5pkbkQzqSlOhQUlRF\ndpWQmuh91hkJmU95ZU5kUipHU/7il7/E6OExOezqhp2kIZt99949eh8/4GukHtqCR7OX+8aVgHqU\nXTcOff/IsBukKUqrbK9kNHerFdPxmPVq9RbD9jvHMDIhogQCu80bbBCcX2QNpQROFlOuVz1GGiIC\nU2i0KXh1d01ZVdTjMSFEVusNi9MlLgbsvsOGvDDonSMeclRvXVZc395wMpqw3u6461v2fUsESl0g\nEyStSenLoISQ8sZOG43teozSOdVKKxTZVD49Mjx0QSAzLLL2WTwyLIfI86wzDDz4l3pQghji0TMM\nx8VxoQv2h5btdkscfvedtXR3d1hrHwd3Xr5+hZAiT9n3HcEW/OH3vs/9/RUzE/Ct5H7tubr/JZ1N\nLC8+YF5NWVyeML6z3F7fUpU10ZEtQoPjbLkkxizfM4XKk/JW0O5vB47HWJcwWnF2uuBm3VOZmohA\n6czx9eY+czyfEULk088+Y7E8wVrPbnUNKi8IYgxE5xDGUBUlq/t7xqMR9/cb9vuO7XZDFIlSl0fD\n8TFfx8TwsdTiv671RNt1LE6XCK2xh47ee0RZEELE2i6vJ6qa9W7D5eKU9XbHjogbNMm1Kem9I+ks\ncZEhkgBPbosorb7KsMi5CTaEbEsXAyj5r6QWH8XiOMbI3WZD13VUZfnYwnjQnoqYMFpyc3+HFhIf\nI30I1GVN9JHOWqQ27NoWlKLdrFnOFxx2e1a3K+pmRFWWTKoRh+2G+WLOfren73q2YUdpCrQQqAhS\nZe9DJSTOWqq6ZjydstlukcgsUUAihgjC+WTKcjqhaH9G6K+4aErCWCB5TkBxfdviusS+l7z+5LMM\nXr2kXBZoo0jbe2y7Q2uDtDu8lxT1AhULUtqD2qNQGBXYbzdEM+WXd4qu00xmc3jQ4yqNixFdNYSY\nCNE/ToG+uboipch8PGHftlycn3J/e48eNeiyorc9BMfN65d88MH3uL67pVa5vYHMurUU8sJYDlpv\nyK2KzWrNqK4hDlrxGInDaXFO+4mkpCiLgoPIw5bywUoFIMUcsCeH3ZzIcZgMi+f8d/lsv3LEA3lP\nDP8KhkNBYodQexQSIxP77YZUTPn0XtJ1isnsPGspEaDyBLKuRtl/1uXXO6bIm6vXpJiYTwaGz3JM\nqW7G6LKk7y0Ey/XrNd/7GsNCZs90fESm9DjfkEhIJNuB4RSzvY+PQ0iCEEPHIpES2eze+e8sw3Bc\nHAtg3DQoKXDWZY6LgWMhMeVwEiqBkDk+mYwpur8g9m+4aEpUWX6FYy8fOP6UFCW6XlKdZleCtLvH\nHnZoZRBuS/SKol5QhAZ4qMUDx7sNybzF8fQ3cyzIWs1cixPz8Zh917I8O2P1Fsdd30Ow3Lxa88H3\nvsfN7S2VksOpcCKI4+D4mGUVx8Tw0dTiI1pPHAvD76rFR7M4vt1sgMRiNme72+ZUFbJFR0xwd3+F\nlIqqLtkdDnTOsqFlVFbcrVdIpRg3Y1brFdoYDvs2+6MqQb/fo7RGKolUMmu6qpIUI5UsEUJgCoMx\nhvV+R2EiUiuSy5ngztkh/jFxdX8PEV5cLDmZTlCxpdtfI1WC5ns4UZKiQURBTG84OV9yUWh+/JPP\n8N2BsjZEpyhNA4BenCCNpVQavKSSkdhf57+fREKBUAgS2jRYUeJ9i5R58rY0higF3jvarqduRoya\nEa7v8M4ikuTi8oLVZs227RhPp7y+vmE8anB9T7R99iUMkfOLS17f3uBJVLpExEgfIjhPZQqc74gy\nxzhKKfLfV9cEsjl3tsOJaKMRPmKUJEqJHxbLnoTvWib1iDTEQkOGV5pyiJvM/rUP+malcjKej+Gd\nWeh/m9cTw99kWGlFStkWKAmFlKCKEVaUBHdASJE9WY0mSoV3nrbvqZoRTVPj+h5vLSS4uLxktV6z\naVsm0ymvbm6YPDDcW1pv0SFxcXHJ65sbvEiUuqCIiT4EwgPDfWY4iXxK2LYDwykrNTPDAW0MwkcK\nJf7OMAzHxfG2PeQURK1J1n6V4xS5Wt1DFLw4X3KymKDigW5/g9IJmg+woqLQI4jykeNzo/nJTweO\nqweOR4BAz9/i2ElKGUj9NaoJuRYnSZIaKRJqqMXBv82xyawMHOda/CXHksT55QWrzYZN1zGZ5Fo8\nGY2yc0/f03mHConzy8xxELllL+LQNj4Sjo/Zy+2YGD6WWnxM64ljYfhdtfgoenxCCBSSaTPjzf0d\nvfOUVZUnb71Da0UzGmFjIMmsb0UqRrMZq8MBXdcUdUnZVJR1TUrglGTTtsiixCO4u1sxns2yn68Q\ndF2P95GiMownDULljO7SGLq+Yzv4CGqlcoRkUbDfH4gKpIhMq4boepKuULOPsM0P8WICyZCCoCp6\nRAy4cI+Xb/ijP5jw/GyOFIZgHSq1FHh8qqnG5wiZUEIRg8RFiSOgypzik4TC6IIeRde3RBJKG7Qx\nUBSEKDiEgKkrmqZhu9+hy4p6NGHnPavtluQ9Ljg26zXBR+62W3wUeOcwIWSPRiUwdYV3nkPfs2r3\nWX9lNJpEOQz29c5DFNkIfdAIERKFUHjv8CmgjR5E8BB8oLcOrQu0zNIJYhqkG1k7lA3xJSqBDT5L\nNJQabGIiUmnaIz51e2L4mwxbAqrKFj1IjdYFFkXfHwZ7QY3SBoqSkOAQPLquGI8atrs9qiypmwlb\nNzAcPD54Nus10T0wDN47Cv/AMJhRhXeOtrdvMazQJIryS4ZFzG9iNmQHHEIcGPZfYzjhXaD7jjMM\nx8dx3/eZ45Sn7B85PrREBUJEJg8cqxo5/wg7+iFOTCEZopdURY+MHhvuCfINf/QHY56dzZHygeMO\ng8dTUTWZYykVKT7UYp9rsRQg1MCxfItjM3BcZI7jW7X46xzvthAcPjjW6zXRB263O3zIJ8zGBySC\npMDUJc7mRcrqcFwcxyM+OT42ho+hFh/XeuI4GH5XLT6Kk2PrHKIqeHV/Q20MxTAtap1lOptxaFuK\nouCkKNms19R1zd3qnrZ31GWZJ0zLks7d03Y9QimEz2J8a3uqUUVjSj599YrL2Zxaa1btBiEl2zdb\nur5nNpsRYmRSj3IWulIcbIcLgbKMTKdThJR8ePY+v/ziCz69vua98yWE7OknYxjAE8hS0KWCoM+R\npsg7oXTg+fM17zmPLOf86f/3E5IuKOIO3x9QQhLUHqJAVh8wrkra3RrBgbI0OBpCFJRlwWhUDpGV\nWZMdRPYP9CFwaFtI2elB+Mi4NETniVFgyoLoI5NJw2q7YdftKKTiZDZltljQ9pa7zRapDVoqah+J\nAmJMOG8ZjRoOfUdZGJSSqBAxw37NCWi9xRgDKd8kUebYxgQoke1mjFI4a/NOWElkaTi0LdUQ/CGU\npikrRBziI2PMdl59zzHnMj0x/E2GJ1XFYb9C0FIajWeMD5KiMDRNiVb6ca7Ai5yCGULI3pUAMZF8\nZPIWw7ooSOFthvdfMjxf0Nqe280OMRTO2occNxoT1vU0TWa4MG8xPJwgeAGt6weGwb3FMILBJ/W7\nyzAcF8ezZpxPfwaOTQiUKTKZTgaOP+CXn3/BZzdveO/8lBTJg8LpLY4rQZ8KvL7IHJNI6cCL52ve\nf+T4xyRtMGGPs3u0lCS5gyhzLR6dc9ivkRwoiy85LkvDaPRVjoPIJ5ePtRi+xnF4i+PEuKm/5Fgp\nTqa5Fh/6nnazy7VYaeoQB33ycXDMEY+WHhPDx1KLj2s9wVEw/K5afBQnx0Zr9qs142qETxGpNW3X\nIaXMlipDes1+ux1cEzyz6YyiMIQUmc/nCKnorCcicCHQ9zZPNkqF9Z79Yc+h6/n8+prNfk81HtPG\nyMFHdFmz3u2wzuJCwJQlMWadi1A5Y3y1XjGdTri9ekPfdezbA//8z3+EQwx+wLlYCAALBNAS8HuK\nKGH7McXdFURHOtzxb340Y9q9RLlbCvYoekRUKKEQRFZ9Io0WpNELOvkMPT5FaIPQivV2x3q3J4kc\nfLDvc0JYYQq6/R4lJVVREnxgVBR47/JkaW+pq4pgLRcnS2aTMU0zwvaWV2+uubm95bA/DD7TnmY0\nyjHTUqJMkXVSSQwAJ5aLBUbI7EeoBCiBUgoxTIIKKZFCogSIFFEPE9NSUjc1ehiiMTqfymQ9EBys\nZWs7DiEL95VSaKWRR+xz/MTwr2DYRhidQP2CVj1HT5ZIbZBGsdpu2ex2RCFASg5dm9OUjKHd7ZHi\ngWHPqCyGjkS2BKqriuAs58sTpgPDfW95dX3Nze0d7VcYbrI3upToomA9MFyogeH5HC3EcCgoQcuB\n4fy6ZoYFSoD8jjMMx8Wx9V/jWEq6vme1XjOdTri5uqLvO/Zty5/9+Y/wCKzzpCHeWADCJggJLUEM\nHIuB4xQs6XDHv/HhnGn3Eu1vKcVh4FijyNZXK5tgtCB9jWOhFavtjs3+S473XTvU4syxepvjosA7\nm2uxdVRlRXCOi+Uyczwa0dueV9dvuLm9pd0dHpPbmtEIH46H42N2Djomho+mFh/ZeuIYGH5XLRbH\nIKyfLxbp+z/8A5JSFMMve1aPBv/intlkkqcTleb6/g4fA763VONJ1j+l7HZxf79iMpngrMOFnI0e\nY8BHz/unl9xs14xHDZvtJnvcCUFZFFTGMC4K+v2O0WxKsB7nHCezKcYY+q4jAevtltZ2PDu7IMXI\n9tCy3m859C0Xp2dcLk/Rg1dviCl77cVE7N5gUqRrLilVQYrg/B5jan75yV/QdgcgoHWFxxCkxuiC\nGD1BeGzWJuTMcOsxhRnMrckaNa0ZmZLgPB9cPuP6/pZ91/Ls4pLdfkdrLW3fM5/O6HY7xvWIZlTh\nvGe92yGUxFQlm/sV8/kJN/d3RPIurSxKZpMpbd9l2yzEEEUakGKY/FSS3nt89Ghl0GIw9B4s37RS\nkBLb/Y7O2QHMNCyyJf1ws+VEHfCDI0aKESUkSgukUPgU+Rf/xz/705TSH/8t4vorryeGv8lwoUti\ndAQRsCmSoqcuCto+UBQmFzch6L1FKUNdlMQHhu8Ghi8vWW83dNbSdh3z2Yxut2dc1zR1jQ2eza9h\nOCRBIDOshPyVDAshSI8MO1wMGJXvL1IiBI8UIi8Iso/Qd5ZhOC6Ox4s5wTqc848cd10HfI3jENm2\nb3G8POXi9AyNRJc62zhBDsXo3lCkSNdcUKqSFMH6PYWu+OUnP/8Kxw5NVJrTk/PMsQzYGCG+VYvN\n2xw7lNKMirdq8Vsc/+znP6PrLYehFvf7PeOqZjSqcT5zjJKYumBzt2a+WHD7wHHKbWjFcXD84z/7\nMw673VGukI+J4WOpxce0npCIo2D4XbX4KGQVznt8ysfYQiqSkHlSUivQms9ev2Y6nXK6aJhUo/xm\nWo2IUmEP2fs4tC2jqmIxm3F7f0dR1FjviUlDD5/f3RBCwDo/RNHmnG3vHU6A1Yqds4RdzmHXSNab\nLScnJziXtY6np0uUUmw2Ww5dS+8cUmsq2bBab1nvD+w3W0xheHF+wageobTCNM+xAkQIdCHrY1JS\nvPzic8Ynp7Q3NyAlLuZmVcSzGlLAPJBUtjOpTUXfrhFOIIuS3mYZgxaKotRILVjv7pjWNcpobq5v\ncMHRlDVSG2qjUOMR3ntMUVAWhqossoaos5zOFrnVkKCZjOm9x7Z7hJojgBg8QWu0UAQipqywux3D\nj6DI6UxOptwiUXrwHXSMm4Z+s0YVBclHXMxaIIbXvSpKbHC4YcesZRbOK6MQ5DeeY3aJfWL4VzDc\nd5nhlIhaY4RkpGvsA8NlOZjtFxgpKQqF0oLV9o5pXSGN4vr6JrfgygppCmqtUeMRznt0UVCIzPD6\nVzA8njR0PuDaPXo0RpAeGVZCEcihNO1uR56CzlGmMSaSTqj4TYb3bfudZRiOi+O4OyBFdoB44Ng7\nj/eO09MTlNRstlsObZstILWmEg2rzZb1vmW/2dJMGp6fX9DUI5RSmOYZFiBGWu8QMbvp/OKLL5gs\nTzm8xXEkEVNg1a8fOU5a51qscy2GLzk2xqAH67fqgeNR5vjm+obddseorJDGMDIaPR7hnMMUhrLQ\nVKVhvdsRW8fZbEEcTOOb8Zj+kePmieN3XMfE8NHU4iNaT1T17wbDR7E4TiR0WeT/kPc471g5S5Jj\n2q5DlyWb/R4Q1KMRyUqKouD19TV1VbPZbylMQd2MeP36dRaWk0g+UBQFzXzO/W5DiDlJaFTm4JAs\n8A60IbDtDoBgt9szryu0BlNUvHr1KrcYyoJD23HoDvTOIxmCKmRuA3gJNgRk3WBF4Iv7e/zrK0II\nyJTQRiGERAqQCPyw87ne7oa2r8qG4CF7dwY5CGt89gR2MXC/26CVHpKSRLapkRKtJK63VMawPD1n\nc3dP1/cUZcFY12ghmU5O2dmO0PXc3t8jtWZcVvmG0AVBJk4vn/H///QnBAF3q3tSjHz04j32XUdV\nVpjBN7Pve1II2K5Da51TmULON09Cg/MYbXiI1yvKCi1kHjTxEaMUkUTnLKOqpm87QgyklFMQjc7Z\n7koqfAyUyqCTIBxxQX5i+Fcz/HAaoKXAhTgwnCfHETlqVymJUQpvLUobTs/O2dze09s+6zrrEiMk\nk8mEve0Ifcfd/T3qGwzHLxkG7u5XpBT58Pl7vLm9oSrrrzAcfXxk2IWQPTRjImlFcp5K5dcABObv\nAMNwXBwfBo6VVpii4NWrVyglKcuSQ5vlFNZ7BCn7/g5seiGwMSBHDVYrXj5y7JGJgWOBFGLgOJKk\n5Gb3NY69RyiZ45kHjr9ai7M+Uvwmju8yx0VpmE+nGCST6STX4r7jbnWPMpnjhyGjKCKnl5f8+cc/\nxSO4X90/cnx1cxwcHzPGx8TwMdXiY1lPvL6+PgqG31WLj2JxTIKzxRKREi9v3uRkNO9ZbfeMqpIU\nE6Yo2XQtfcyJRp21xBDQWvHi4hkCuF7dEUhohsx5kcMnQtuynC+4vb2lrkeUhSHEyKHvMFWJtQ6R\nsj62KCRNXbHbrFFKMZ5OqMqSvu9IMeJ9zNOrQBISrQzRdYQkcSEglSCGhCUgjEYMhbj12SdQyaxI\nFypHIwYESEVZGro+596nlHe8xIgeMt8LZD7JiBFdVVhrKaRgMpvSd5YP3nufn3z8Uw5dx0gVzEYj\n5uMpu/2O5ckJNnhcF1meLCAE5pMpn3z6KcJoDAoKw9VPf4L1nrIomRQFKXiC93mYoG+RVmCSRBlN\nEuBCQA9awEJKKl3gogcSzvYsT07ZHvYA9LanLgqUUrTDoIrKT8Ll8pT79RqVBNNqREwJG1zWLkeI\nKlEUhn3f/W0R+u7rieHfzHCImId48PhlxGohBYtmRtf3fO+99/npT3/KoesZacN01LBoJmx2G5Yn\ny4HhwHJxAiEyn0z5+aefIo1GoxCF/grD47KA4Ijh6wwLlDEgM8NKCKSUKFFki6HogYjrLctWqnPJ\nAAAgAElEQVRlZjjxd4BhOCqOq0I9cqyVoplMqKsyt6VDJITMcUh5Al9pg207Ajk0QKlhgO0tjhGC\n1nmEkKjBW1Yo9RWOi8LQ2SG1K4EUmpyilz1Zzdu1uHyoxZJpM6Xrez58731+8vHH3+C4Xa1ZLk+w\n3uMfOPaR2UMt1hojFKIwvP44c1yZkrIsSMERjojjo76OiOGjrMVHtZ443lp8FNMhicTN3S3r7Zaq\nyW2O6WyC0ZrT5Smj0QiAQhva/WFIvBLMT05Y77bc3N/xxZsrvPeIBHqIZkRA7x0x5V2YKUq0UDjr\nsdZRmALXthQyh1MorVkul2z3OyaTKSkEZILVakVrLX0IYAxBSQ69Z9113B12bPuWkCIxBWLKOzMp\nBC54kpJEH9FkPz9r+xxtGHKIhpY5Ga6zLueJZ3EMioiREq2yXgghqIsSBaTgKQvDdDyhGY1ZTMb8\n/JOPmU5qGm0oSoNICRcdJycLeme5vbtldXONCIEXz57x+vYNRVWjY+JyucAomFYF43GFiZ5w2FMK\nSR8cvbcZLO9RJu/SwnBD2hQwWlEqzaE75IncFEEbNvsd+67NcY3eE1Kidx4XAm54Dhc89+t1NuEX\nCS0kKiW0kpjCgEj0ztI6O5iAH+f1xPA3GdYpUiiZY8pNgRAwKipUYtBtGqaTCU3TsJiM+eTnHzOd\njGjMA8MRmzwnJyd0ruf27pb7mxtEDLx4dsnr2yvKqkaHxLPlAiPFwHCJiTk9rxSKPjg6Z3ML3XmU\nye25B4bdA8P6bYYTGJ0ZbluEEHj33WYYjpTj8SRzTGK1WnFwNi9qjMErwcF+yfHOtvgYSSkQBo6F\nGIaclCT5PMiTBPQ2x8zyFY4lnXMkkRfGxPRYi43KdoRCCEYPtTh6SmOYjMePHP/85x8zHdePHMsU\ncclzsjyhs5abu7vMcQi8eH7J65s3FGWuxc9OBo7LkklToZMn7PeUZMuqY+H4iA+Oj5Php/XE43ri\nWBh+Vy0+ipPjh+NuosDuM2Tt4YBRmtdXV1xcXBBTYrfdUVZltkOpyuGoPlHUBUJKrO0piwLnXBZx\nx5STbdqW7WpFVdd0hz1OJsqiBECXNVIp+vaASp7Pv/ics/kCa23O7nZ91ny5nq7PE9Tee0xZENrs\nSVmYEi8FImYTahsDGoGSChFBGpWLbIooZbKPn0hZA6N0FtsLmS1jElkcnyJKCnzwlGWJQ9Lbjqau\nkSnhvafrO0SKSG2ISKaTOVoq9vs9JycnvHz1kvEHE16cn/OHf/iH3N7dMm3G6KKgbGqmkxkRCMAH\nzlMqw6Y7cHFyyqcvP+Pi4pJd3/F//d9/QlkWKFPQHQ4EJYne4/seIQSdj4hEbj9aDwGUUuzaNr9u\nfouWis5amnGD9Y4QB+/C4SZ33pNiBrdUGlSO2XQxYEyRU3TkUc5/AE8M/zqGpQAfXGY4STrbPjLs\nvKfrOtYxMxyQTCazLxleZIY/Pxw4XZ5yMl9ke56Y8iBoSJxMxkRgHwIjZSiLgeHnz/j05Wecn52z\n6zsKISnqCiXzUA5KZMuuEDBIUszhAGVRop1Do5BacXA9WqmsDTWGg80WRHj5eNIkRI6Ydc4RY6R3\nlkJpjBJ01uJTxGiT9XNHHJ4Ax8Xxp599xtl8Qdf3SCUIfcdoNMocdx3WB5z3KGMQbY4kN8rgBTnB\nLSY2h0NOrYPckhZATPmNMSb6YHnQCOT0z4RP8S2O4frqKv9eQqAoy6xpDY6myhynmKiN4bookNqw\n2a55dn6Olor7+3tOT0/50Y9+xOGR4/nQNo4EHxAhcjLU4l0I1FJTmoHjZ5cDx2dHxfExX8fE8DHV\n4r+O9cTnh885XZ6ymM1z8lyIOWnOBxaTGZGGnffUQlOWDwxf8OnLzzg7PS6G31WLj+PkOGW9TUyJ\nyahBCcF0PAEB2hhubm84tC1C5tz69XbD/WaNlJJqaAmMm5wQ472nqiqqqqLQhv7Qst/vmE4miJSo\nRlU+SbAW73K2ede2zGZTlJIUVU1vLZHsMei8xzkLCIQY8rsBO9idMFivhBAwMptMS6UJMaKUxvuQ\nNTT5GbIOKEV8TEip888OX3XOE2IkxOE5Usw7w5QgBAqlcdbS9xYlJdPJFOc8m/2e3nkOh5ar6zc4\nnw3mT0+W/OD3f4A2mmLYNUuZ3SOWswUiBkiJqzfX3G/XSC0pSsMXLz/HGENVVWipmDUNRinsoDuK\nIZtn11VJU9YorXAhDyaoqmBnO3auw3s/5Lnnmw9gNwjujdII8hR2JGWLFinz80CeZNV58RyczzZG\nR2wf9MTw3yTDv482+vHk59cxfPcWw5//Coaz32mHKU1elKREXZY0VZ29akNOQlPlwLAdGE4gYl7M\nA+x3e0g5xCRH0kYicWgHSmzIVkxG5X+zGF5TF/0xO2ABTxw/cfwtOT7i64nhJ4b/OmrxUSyOIbc4\nCqFY3d0zrkfc394RfKAwZtCWJZbLJb21qMHHTg0DESEE7u7uUFIxahoOh0PeBYrcYhk3DYXWtIcD\nyhhqXRCtwxQFk6JgXJas7la0XT7J0kUBUlJLzXw8oTAFh7YlxkAgcfCOoijyMFqKhELjg/9y8RZC\n3sGlhB9M+qSSIAUuRrzIMYhuMI23KU9C59jJAqkVLoJHoIqSqqxYjKckF5Ah5YjFENjts1PErBkx\nriuEgLKqMCb/28oi/z+VVNxt1qzWKz5//YrPvvicvusIEYiJy5Ml43HDtGmQIfLe82dIo/n4Fz+n\nsz1u8ORUhcmm3UpRmDyIF0LAh4Al0g1JNUZrhJBZi6x0bkcOlkeVKSi0IYSsmYokkFkvpZQiCji4\nHuccMiSasqIuimxjc+QriyeG/2YYDgPD9+9geDJumI4yw+//CobLskQXBYeuo1RZWxpiIASPjwFH\npPMWUmZYDoNYRufCqo1BISiNya/pQypfSoPmL8eTRhJ7mxlWITEua0amRCaRdXFHfj1x/MTxuzg+\ndoqfGH5i+Letxd96cSyEUEKI/0cI8b8Nn38khPg/hRA/E0L8j0KIYni8HD7/2fD1D9/13FIK2q6l\nMJrz0yV9b6maGilz+okPeQf0+uUr9LDA8t7TVDVpMHoOITAejx8XXfPFCYUpkSov1O7v7vOizDrG\noxFn8wXJOpLInoYpxWzzIRV3mxWmKjmEwKo9cL1ZExK0LrAedpyHvmffd/gUsd4SpaJNkRAhpISL\neeFYK5ONxGPChzRMhmabIJ8iIFCAkoIoEs71aGNw0RNjIsbE/W7LXbunHo1QWhNcoDFVnsSUAiEk\nq+2WxeKEs+WS3llubm/o2g6jNbbP7ZMQYX6yRGmDkpqqLpk2I6ZFwbP5GVJJ5os5PoLtHToJXN8j\njaTrOg67PWcnp5zMT9i1HbNmSjOuUClRSY2Smq7vKZVmUY+QCfrokSprkiUCJQTRO1SCpiiplCJ5\nn3VsMgeMpAitswgpMYi8MJby8cT6r3o9Mfy7yXCh1bdnWEvm87cYjplhoXOAxGG353x5yskiMzxt\npjRNjUqJUqjMcNdRKM2ibpAIbMgMV1INuj5J9BaVEuOipFKa6L7J8MHZ7PmJQJDQMvukHivDTxw/\ncfxtOf5trdyeavETw3/bDL+rFv9lTo7/c+BHb33+XwP/OKX0A+Ae+PvD438fuB8e/8fD9/3GK4TA\ns/NzKmNoiopxVdIfWsrCDFYjibquWJwuKaqKznZcnJ6xPezw3jObz5iMx9ze3BB94Oz0FCMFiESK\nEeccCMHZ2Rlaqew1ObTxd7Zj33VMJpNsEo0ghMSma7ne73i1WhOVpnUBKXMuegiRIARJKRJ5ByKE\nyBocQA/H+z7l09TsEZyF9YhsmwI8WrfkRKc8ORqB3eEADMbYww7ROof1jqqukTon7ZR1TZKKsig4\nXy6xXcfV6yumo4aL0zNGdc3O9sxOTvLuTwr2u21urwTLZy9f8mZ1T9k0FKOaX3z2Kbd3d6iyYN91\nyGZEWVRI61ku5lRlwWZ9jxCSSV2z2aypRw3j8ZjT5XLw6iwwOmfYn5ws0EBwDusss9mEzluU0hRF\nQde2FDp7g1baIEOiNAV1WVIUBZGE9R6jdD6BNr/1lPQTw7+LDPeW2eJdDI8wDwzfv8XweGDYOU7n\nM6rSsFmtEEIwrmu26zVVM2I8bjhbLikKQ1WVFFoRvGV5ssi/z0eGp7SuRytNURa0hzafZkhFqQwy\nJqqioK4yw3loxD12UAp9vAzDE8dPHH87jh9+b7/F9VSLnxg+6lr8rRbHQoj3gH8P+O+GzwXw7wD/\n8/At/z3wHw0f/4fD5wxf/3fFO+4kJRUyRKQUfPHqi2FXmhNPtFKM6hHj0Yi277hd3ZOEYNaMUSrr\nV/brDXVVcbpcMqprurblsNmx2++IMdA7iykMV1ev2W+H7PPlCaooWExnKCFoD202ipYCowxta0EI\npJIcuo7eW+67liQgprybszGgTN41PaSvSCGIKcdMiocdthCPJuGkfPMCmCK3A0iglWY6aiClR72M\nIvtwygTlYIC9PewJ3jOZNCitkcZw2O+YNWO6rqWqK0Z1jTGG9X6H7S2/+PRTXt9c8/L2ligV+76n\nrBs+ePYeu7bl5eqWH//sp1xeXnJ5fsH1zTXz6YTQthy6A2ZU88nnn2NDRElN2x44m815dn7Gm9f5\nd1oqCd4RgH3fY+qa/XbLYjpjMm7obY/wnvPxDBc8fXDEYWLcx3wzK6Vw3mGDpfOWvbN0pOyxKNVv\n1ZJ+Yvh3mGFr+cVnDwzf/BqG7/jJr2DYDwwX9YhPvnib4Zaz6ZxnF2dcv7piv91RaoUYYqp3XUdR\njwaGp0yahs71COcyw97Te//oeuCHUwgtFdY5nHf0wbL3lp5Ea3sKpbNTx5Ey/MTxE8fflmNxxBw/\nMfzE8Ldh+F21+NueHP8T4L8AHrwvlsAqpfTQ5/4ceDF8/AL4DGD4+nr4/l9/Cei9Z7Xd8vz951Rl\nwfsXlxRa4bqOw2HH9rCjbVuMVIyKAikFI22oipJ//e/9a+z6jt3hwG6/z+bto4pCF5RFxaSZsN/u\naUZjnj17DiHQbracL09QQhOHKU+BIKaAT57gHdFHSJKAwCOIIvsLIgUiJnQS+N4SBr9fJSASs58m\nCZnACAUhW4y4GIgkRILoA85mo+1Ca1IM7Ps2R5HGOFgEaaIPRCExJovJBYmqrKnGEzZ3awhwdnZG\nWdd0zlHrIg+uxkTfdWzu71nO5uz7julshusspTSsNxtGTcWsrlk0DfPxmNA7Kq04m40plWIxm1Jo\nxbrv0EpTKp0nTF2OQF3tdozGU8ajCW+ub9n2PfPZjHkz4e76Bh8jNnqqJt94hMhkVPPi4oxCJOaj\nmug9xmgg4YLLWqrBE1fGiBKJzudsdKl+K4n8E8O/4wzv+o7pbP4VhuvRNxku32L45IFh26GVoZQG\nqQaGbcf9bstoMmE8GmeGu47FfM5iPOX2zTUuBmwMVOPcgiQmpqOa5xdnFDI+MqyNRpDtjqSWpJD9\ncGXIjh2dd2z7Np/cHCvDTxw/cfwtOea3Ozl+qsVPDP+tM/yuWvzOSi2E+PeBNymlP33X9/5lLiHE\nfyaE+BMhxJ/0fY+1jumoYVLWTEfj3DYwmvl8xu+99wE1WRAulaKqKn7xySdUVUWIgX/+L/5fNIL5\nZEJhDLv2QHQObXTOQneW09MlxmistezaA+PJhNXdPcRIU9U5D72us1BbKZLMuzUfPb3NepW3y0Ea\ndD5IQYJH718pBNH5nO5CIghIUhCIPBx8ZqG8QUmFCyFXCCHzzlZITpoJ46LgbLFg2oyQMeKdx/YW\nISTTuuKwXnFxcUozrXl9dUVvexIQlOB6fc/tds2+7xhPJnmHaT11YVjMxiwXM4LteHNzg0BgRJ44\nncxmbNqeT1++wVvLpBkjUsKQ+N57zzk9W6BKhUQQraPb7lEhe3hKI7mcLdjc3ICzfPDsksVkSrSe\n26s34AMnyzlt3/H5q9egCw7WIYym7Xt8EvQ+0PaOMOyWJ80EIzSFVBRCQvyrecQ+MfzdZNj3Hde3\n32R4+2sZfsbybIEuFBKI1tM/MhwQRnI5P2F9fZ0Zfv4sW2w5z83VNcIHTk7mHGzPF6+uQJccnEMa\nQ9dbXILeBbqB4ZBgMp5gpKYQmWHxV7TB+ptieHjuJ46fOP5LcfxbsPZUi58YPgqG31WLvw3l/xbw\nHwghfgH8D+T2x38DzIUQDz7J7wFfDB9/Abw/vGgamAG3X3/SlNJ/m1L645TSHyulmZ8sGE+m1PWI\nphkjpOTQtry8vaYPHp8idVlycX4OQvDs8hmJRFnXaGPw3qG1RimJNupRp5NSBqzvOvqu5+7+Dm0M\nr95cIYWk71qqsgASUsB4PMZ7n58zRcTQzggxPo4gxJinXRMQUwZa6wKUQonsQSikzP6DA+gPviFp\nmCINg1VJEoIQEy4EvAukBN1uDyGipaTvO7SSKKWRQhJC4H61Qsgco/rq9WuElOwPLSDYHA4c+h7r\nPEob5osFRVWhpGRSV8MN3XF+evpobZJC5GSx4NXV69yeIFujlMawPFkyaxpGZcluu6UZ1YxHNeNm\nxGI+Qwjo+x4pFaU2nJ0sePHskrquOD9Z4mwPKfL+s2dIshD/ZJ7z5Tvb04xG2WDfaMygP5YyF47o\nPDIJUIIkwYm/coDCE8O/0wzPKaoK/TWGL85+A8ODvU8xMDxtRozKiv12S9PUjOsRk9GIxWyOQND3\nPUpISmU4X57w/Nklo7ri/OQEb3tEirx/+RwlBF3fcbJY4K2js5bRqEZLgTEGY0xuh0r5WPRVAhR5\nuvzIGH7i+InjvwrHv8VA3lMtfmL4KBh+Vy1+ZwhISukfAf9ogPPfBv5hSuk/EUL8T8B/PAD+nwL/\ny/Aj/+vw+T8bvv6/p5R+450kpeSzVy9RUvLB82fYtkdIRVlUzEcTXr98TT2bsN8fQEj6vqUxJScn\nJ3zy6ac0TYMNji+++IKPPvwQd+PQSmFjwFvHuB4NCzhoxiO0zNYtD6EUne2pRjVd37Frs4RAhPQo\nds+JSxElFSlmD71IFucrJcnehC4L4oEos8OCIHvyRZlNWaQQhBQfgc4+vxl1KQVSaWzIE69KGN7c\n3dED+EBTGIRUjOoapSU2JbrNFiUN4/GY3lliiszqMVYqpJBMJxNW6zU3qztAcGh7pNYIUxAjTOoR\nvVDsDntGzYiqKimN4A8/+oB97/j05RdondPN7m7vqU3F6nrFeFSRjGRvW3xKLGczUkys9jsk2bx7\nvd0wGY25eHbJm6s32XFCGZbzBZPphBg8gsh0PGJSajb7DiFBFSbriYC6MFhrWdaT7B/p3btwfWL4\nO8nwhpvVHeldDI++ZPgPfu99Dr3ns4HhSTPm7uZuYPiepq5JRrCzLSElTmYzCJHVYYdIUBQlm+2G\nSd1w8eyCN1dvEAK0KjidLZjMJkSfo9Kn4xHTyrDetQhAFwWd7QGoy4Hh0SSHnhwxw08cP3H8bTn+\n6rnncXH8xPATw38dtfi3EcD9l8A/EEL8jKwB+qfD4/8UWA6P/wPgv3rXEwmRja8rbXCtY3U4sD8c\nUEbz6dUrJmdLyrJisZjj25YPn79H27bc3q+GCMgdMibef/GCdrfDSMl0NiNYl9si3QGfEr111FWD\ndY7eWkplsDZ78ybnUQGMVIiUWxsikQXsZJG/GP5MAkTMsIaQTbbTIHwPkqzzIe/qIomUIkIItFQU\nKmtlILdSGKZcCQlBFtgLqfEqJ9cpQKSID55K57ZOsJ7g866wqkvuNlusjxRFiXWWoijRVcHHLz/D\nec9ysSR4T9tmDdJus+HQtdze3WG9Y1TXvH79mvlsjkgS2znGTUNd1dk3UAiQMJ1O+Oh771PXNU1V\ncTFb8PuXLyiM5vr+jqookVJxe7dmMp2gTbZcqYxm2x1YbVaUpUGSuJzPqYuS+9WGN1c3TOuKpiwp\njaGpa0qp+fC9F/zB9z+C4Lk8O6XUf+223E8M87vDcHTvYPjqNbPZDJEkrvOMR28xLAEpmEwnfPjB\nB4xGNU1dczlf8PvPnlNqzfXqLk9TS8Xd3ZrxZIIymlIoKmPYdf+SvTePkixLD/p+331bLLkvlZVZ\ney9VPT0zQsuMpJHlYwzGIBmB/5Axm8FgH7wcDBwDsmT5GLwdg4+NQYCNZSPZlpGlAbyAJIwEEsIs\n2masGU1vM71Ude2V+xLbW+71H/dGZGRWZlVWVVZlZPf365NdmREvXtx47/e++O76WmxsrZPWUgRY\nmJ6inmVsbG5x//7yrsNxTKNeoxZFXDl3nmsvvQS25Oz8LLURdhjUY/X4aB4/+2IVD6GxGHV4lGKx\nHKEx4blTHxtzlz/9SWr4pUmiWkZmIlbX12g0/O2G6/U6U2NjrK+tMTM1zdbmJrVGg87ODlcuXuL+\n+iqtrW0uXLzA9o6/BzfO0Ww0Wd1YQ8Qv8J2lNbZ3tqjV61RlhYkNvW6PibFx4jhmbXWVxsQ46zs7\nlNb6u7+VpZ9pKn5qqRUvbFn6rgwxxnczOTfo+nD424qK8cPeAWL8Ei15WMMX/IUsYb8INJtNqryg\ndP4OOXMzM6yuroIxNMOwA8F3G3Q6bXCWblHSaPrhCcZZ4jghSmJK6/jk1WvsdFrUshq1NKEoCnq9\nHufOnafd2qFRbyDOEccJWzvbpFlK0c2prKW0Fb1ej63tLVZX12i125xZWKC1vUWzOebvmJck1BoN\nWp02WVbjwZ27zM3Pc+PObWq1LMyYhSiOWF5epl7zXVmtdpusXicvSnZ2dvySMOECzbKM2Aj1rMa5\n80t02h1sZamc48c//9e/4Jz7zImI+gjU4efncGQd250W9cMcrtV9K0Ecs7WzQ5qmFL29Ds/Nz7G2\ntkar1eHM2QV2trYYG/MOJ0lCvdFgp92iVqsPOXyLWlZjvNFEcJgoZnNznVqtxsKZeVot73ARHN7Z\n2aYqfctNlqUkYqjXMpbOLdFpd7GVX/T/85//GyPpMKjH6vHRPP5/fubvsba2dvwp8jGgDqvDxxGL\nRyI5FpFt4J2TLscTMAesnHQhjshHrayXnHPzL6IwT4I6/Fz5qJV1JB2GU+fxR82LUeJx5VWHj4eP\nmhejxDPF4seOOX5BvDOqLSkHISK/clrKq2V9YajDzwkt6wvl1Hh8mo71aSornL7y7kMdfk6cpvI+\na1mPfQCcoiiKoiiKopxWNDlWFEVRFEVRlMCoJMc/eNIFeEJOU3m1rC+G01b201ReLeuL4zSVX8v6\n/Dht5R3mNJX9NJUVTld5n6msIzEhT1EURVEURVFGgVFpOVYURVEURVGUE0eTY0VRFEVRFEUJnHhy\nLCK/RUTeEZF3ReRId3F6zuW5ICI/JyJvisgbIvJHw+MzIvIzIvK18O90eFxE5AdC+b8sIt94AmWO\nROT/E5GfCH9fEZFfDGX6cRFJw+NZ+Pvd8PzlEyjrlIj8DRF5W0TeEpHPjfKxPQrq8LGUWR0+QdTh\nYyv3qfD4o+gwqMfHVGZ1GPwtCU/qB383w/eAl4AU+BLw+gmXaRH4xvD7OPBV4HXgvwK+Nzz+vcCf\nDb9/J/B38Let+VbgF0+gzP8+8KPAT4S/Pw/8zvD7XwH+nfD7vwv8lfD77wR+/ATK+r8A/2b4PQWm\nRvnYHuHzqMPHU2Z1+OR8UYePr9ynwuOPmsOhnOrx8ZRZHXbuxJPjzwF/d+jv7wO+7yTLdEAZ/2/g\nN+HvuLMYHlvELzQO8D8Av2to+8F2L6h854G/D/wG4CfCyV8B4v3HGPi7wOfC73HYTl5gWSeBD/a/\n56ge2yN+JnX42cunDp+sH+rw8ZTxVHj8UXR4//ENf6vHT14+dTj8nPSwinPAzaG/b4XHRoLQTfAN\nwC8CC865u+Gpe8BC+P2kP8OfB74HsOHvWWDDOVceUJ5BWcPzm2H7F8UVYBn44dBt8z+JSJPRPbZH\nYaTLqA4fO+rwC+aUOAynx+OPosMw4uU8JR6rw4GTTo5HFhEZA/4m8Mecc1vDzzlf9TjxNfBE5LcC\nD5xzXzjpshyRGPhG4L93zn0D0MJ3fQwYlWP7UUAdfi6owy+Q0+AwnDqP1eEXzGnwWB3ey0knx7eB\nC0N/nw+PnSgikuBF/mvOuf8jPHxfRBbD84vAg/D4SX6Gfwb4bSJyHfgxfFfIXwCmRCQ+oDyDsobn\nJ4HVF1RW8LW1W865Xwx//w284KN4bI/KSJZRHX5uqMMviFPkMJwujz+KDsOIlvMUeawOD3HSyfEv\nA6+G2ZApflD33zrJAomIAH8VeMs59+eGnvpbwO8Pv/9+/Nih/uO/L8yG/FZgc6hZ/7ninPs+59x5\n59xl/LH7Wefc7wF+DvjuQ8ra/wzfHbZ/YTVW59w94KaIXAsP/UbgTUbw2D4B6vAzoA6PBOrwM3Ka\nPP6IOgzq8TOhDj/8Jic9QP078TM43wO+fwTK8+34pvgvA78afr4TP5bm7wNfA/4eMBO2F+Avh/L/\nGvCZEyr3r2d3dulLwC8B7wJ/HcjC47Xw97vh+ZdOoJxfD/xKOL7/FzA96sf2CJ9JHT6ecqvDJ+eM\nOnx8ZR95jz+KDoeyqsfHU+6PvcN6+2hFURRFURRFCZz0sApFURRFURRFGRk0OVYURVEURVGUgCbH\niqIoiqIoihLQ5FhRFEVRFEVRApocK4qiKIqiKEpAk2NFURRFURRFCWhyrCiKoiiKoigBTY4VRVEU\nRVEUJaDJsaIoiqIoiqIENDlWFEVRFEVRlIAmx4qiKIqiKIoS0ORYURRFURRFUQKaHCuKoiiKoihK\nQJNjRVEURVEURQlocqwoiqIoiqIoAU2OFUVRFEVRFCWgybGiKIqiKIqiBDQ5VhRFURRFUZSAJseK\noiiKoiiKEtDkWFEURVEURVECmhwriqIoiqIoSkCTY0VRFEVRFEUJaHKsKIqiKIqiKAFNjhVFURRF\nURQloMmxoiiKoiiKogQ0OVYURVEURVGUgCbHiqIoiqIoihLQ5FhRFEVRFEVRApocK/J05PAAACAA\nSURBVIqiKIqiKEpAk2NFURRFURRFCWhyrCiKoiiKoigBTY4VRVEURVEUJaDJsaIoiqIoiqIENDlW\nFEVRFEVRlIAmx4qiKIqiKIoS0ORYURRFURRFUQKaHCuKoiiKoihKQJNjRVEURVEURQlocqwoiqIo\niqIoAU2OFUVRFEVRFCWgybGiKIqiKIqiBDQ5VhRFURRFUZSAJseKoiiKoiiKEtDkWFEURVEURVEC\nmhwriqIoiqIoSkCTY0VRFEVRFEUJaHKsKIqiKIqiKAFNjhVFURRFURQloMmxoiiKoiiKogQ0OVYU\nRVEURVGUgCbHiqIoiqIoihLQ5FhRFEVRFEVRApocnwAick1EflVEtkXkj4jI/ywi//kJlseJyCsn\n9f7KRwMReUNEfv1Jl0NRngYRuRxiYXzSZVEU5WTR5Phk+B7g55xz4865HzjpwijKceCc+6Rz7h+c\ndDkU5aiIyHUR+RdOuhyKoowWmhy/QIZaJC4Bb5zg+yuKoiiKoigHoMnxEyAi/4GI3A7DId4Rkd+4\nf0iEiPx6Ebk19Pf18LovAy0R+Vngnwf+kojsiMjVsOmciPxM2PfPi8iloX18m4j8sohshn+/bei5\nPyAib4XXvS8i/9b+soT3vwf8cHj8T4rIXRG5IyJ/8LkdMOVjRb8VTkT+tIh8XkT+1+DlGyLymZMu\nn6IMIyI/AlwE/raI7AC/Izz1e0TkQxFZEZHvH9reiMj3ish7IrIaHJ85ibIrHy9E5BMi8g9EZCPE\n098WHq+LyH8jIjdCfvCPRKQenvtWEfkn4TVfGh7ydsS84Y+LyIOQK/yBF/6hTxhNjo+IiFwD/jDw\nWefcOPCbgetHfPnvAv4lYMo59xuA/xf4w865MefcV8M2vwf4z4A54FeBvxbedwb4SeAHgFngzwE/\nKSKz4XUPgN8KTAB/APhvReQbh977LDCDb63+QyLyW4A/Afwm4FVAuxSV58FvA34MmAL+FvCXTrY4\nirIX59y/BnwIfJdzbgz4fHjq24FrwG8E/mMR+UR4/N8D/mXgnwOWgHXgL7/QQisfO0QkAf428NPA\nGbyHfy3kJP818E3At+G/578HsCJyDp83/Ofh8T8B/E0RmQ+7PUreMAmcA/4N4C+LyPTz/JyjhibH\nR6cCMuB1EUmcc9edc+8d8bU/4Jy76ZzrPGKbn3TO/UPnXA/4fuBzInIBn1R/zTn3I8650jn3vwNv\nA98F4Jz7Sefce87z8/gL6J8d2q8F/pRzrhfe/3cAP+yc+4pzrgX86aMfAkU5Mv/IOfdTzrkK+BHg\n1510gRTliPwnzrmOc+5LwJfYdfffBr7fOXcrxOk/DXy3DldTnjPfCowBf8Y5lzvnfhb4CXyD2h8E\n/qhz7rZzrnLO/ZPg5u8FfirEYOuc+xngV4DvhCPlDQXwnzrnCufcTwE7+ArjxwZNjo+Ic+5d4I/h\nA+IDEfkxEVk64stvPsk2zrkdYA3fOrEE3Ni37Q18jQ4R+Q4R+QURWRORDbz8c0PbLjvnukN/L+0r\nz/59K8pxcG/o9zZQ0yRCOSXsd3cs/H4J+D9DN/UG8Ba+0WThBZdP+XixBNx0ztmhx24AF4AacFAj\n3SXgX+m7Gnz9dmARjpQ3rDrnyqG/h6+DjwWaHD8Bzrkfdc59O148B/xZoAU0hjY7e9BLj7D7C/1f\nRGQM3xVyJ/xc2rftReC2iGTA38R3rSw456aAnwLkEe99d/i9wr4URVE+jhwlNve5CXyHc25q6Kfm\nnLv9vAqnKPgc4IKIDOdrF/E+doGXD3jNTeBH9rnadM79mSPmDR97NDk+IuLXJv4NQawu0MEPWfhV\n4DtFZEZEzuJbl5+G7xSRbxeRFD/2+Becczfx0l4Vkd8tIrGI/KvA6/hulRQ/1GMZKEXkO4B/8THv\n83ngXxeR10WkAfyppyyvoijKaec+8NIRt/0rwH/RnywtIvMi8tufW8kUxfOL+Jbb7xGRJEys+y7g\nR4EfAv6ciCyJSCQinws5yv8GfJeI/ObweC1MtDvP0+UNHzs0OT46GfBngBV8t9sZ4Pvw4ym/hJ+c\n99PAjz/l/n8Un6iu4QfY/14A59wqfuD8HwdW8QPuf6tzbsU5tw38EXzCuw78bvzkp0Nxzv0d4M8D\nPwu8G/5VFEX5OPJfAv9R6Fr+7sds+xfw8fWnRWQb+AXgW55z+ZSPOc65HJ8Mfwc+//jvgN/nnHsb\nP9Hu14BfxucOfxYwoWHttwP/IT4Jvgn8yfDcE+cNH0fEuSfpVVIURVEURVGUjy7acqwoiqIoiqIo\nAU2OFUVRFEVRFCXwXJJjEfkt4u8g966IfO/zeA9Fed6ox8ppRx1WTjvqsHISHPuYYxGJgK/i78B2\nCz9Q/Hc559481jdSlOeIeqycdtRh5bSjDisnxfNoOf5m4F3n3PthluWP4WdNKsppQj1WTjvqsHLa\nUYeVE+F53LHqHHvvwHaLA5a7EZE/BPwhAGPMN9UbzYP35nj4lhb7l6o+rPFbhrYfft3jGsv3bz/8\nmoOeO6jMj9r3UcrwqHId9vjwvg96n0fdGuR5cczv2Wptrzjn5h+/5TPzWI/V4ceU4VHlOuxxdfg4\nOZFYLPLQQ0+n8UEvGH6RevxkHON79npdiiJ/ETeNeHKHo+ibmoc5fEQuXHjEvbEOO/cH0O12H7/R\nY3jw4MFTvnJXvgNHCJyQw3FyPGmntfbxGz2G7a3NQ2Pxid3O1Tn3g8APAoyNT7iv//rP4pxD9kXW\ngx4bPDf41yHObzO87a4Q/bM9/Pf+vRzEw+/b3/+wbAe/597XPM3wFYdD+nIPPWb2leuon+CoJXA4\ncIIYwLlwbTzdlfCoI37QtXfYPvrP/9N//HMjc7trdfjxqMMPPz9KDsPxe2zCjbyGj7d7KKM9Qrn2\nfPmpx6Pk8Zd/9VeO/L4vgmGHJyYm3We/+ds5vBXiEIcHB8HxA3/hBx7xbkePxW+//fa+1z05f/Ev\n/sV9by/wCIf3X6fOOaqqGhmH5+fP7DsUT3A9Dh3ydqu9u38Y+mxu3zXycHn6z/+9n/6JQ2Px80iO\nb7P39sTnw2OH44JqwuEn3T3cJOGGDqob1JCGt+hvv7+G4XafdkMS4ZChkSay76Q5GT4Rw0V79Ml9\nunHdsucEyz4Bjsqj3/ngfQmCE0scxRRlue9yCp9H+onc3jcZbuzZX479jzvAGH+hu+FTsu+zmsd+\njufCk3msDh+AOnyqHIbj9XjPFod5vP/54XKox+rxUzhM398DvHEOY3wFaf/5G3bDPfLcHhKLD3jU\nDsVm85DDw049nn75ZP/fB1QIH67Ijo7DyMPnpF8OEdkTSx4pMfvjTqiYu73e7j9OhqNVkJ/HmONf\nBl4VkSvhVsi/k8fdfUX2fsg9T4lgQ43ZOffEwe2w/T41wxXGjzhlVR6s+wEPDh+WJzk8VVXh7P5X\nyMFv8mJ5Mo/V4ZFEHR6dWPyo1q6nQj3+OHj85A7Doa6JGKy14Rj1/zv6cXqWBQzcvh+GyvCsPNX1\n+II5zOEDE/SnlLiqKqzbV3l5SoWPveXYOVeKyB8G/i4QAT/knHvjSffTz/Ktr/7treUO1QRcv6kj\n1OYcvgY9qImExwY7CA84HqrAhNfYwT6c23dER8y9R3YfDPeTHfr6XYkO6i5x7pBOKZFB7Dnsetxb\n2Qu12X2l9ft6uH7Wr/AO7/tFh+fj8Fgdfjzq8PPjxGKxhHMSJBx8bum3yB0m8tAREsCpxx93j4/L\n4X6pHW7wofYfk73DFexge0EGH3p/6/zuHh4+/wL+WnD96+PhVw1+e8wwiaP+PTxs6GkaYV60w4Nj\n87gyH3Dc95fX4RDzcPmHh1sMCnTI8LBhnsuYY+fcTwE/9Yz78L+EYLznYMvgqce//nEbPmof+/4+\n8XagJ+F5fnk8w76Hvxafx/6Pk2f1WB1+RtThZ2YkYvGeg/F0BqrHx7/v0+LxsTjMkMNub240PIzk\nETv4ePMcP/+ztJzvH/ZznJzYhLwDcT7Y7pdVhp4f/vsh4fvP7auh2P0RvV8bHt5pwLjhfeyroXHU\nk/AkofwwMY4mzG6nzMOlc+yOm3H7Hj/s3Xbr1Ptr1496/f4D3D83D53Bh/ex52QfVLs+vMwjiTp8\nhMf3b6UOjxzP4PHgsAUJh3s3rAyP5tyflew9QnuvBfVYPX5yHPsSqKHY2GdXPzf0Ot8qeZBj7oBj\nfNjxMvR7VBxG9o5/9Un6vlbNJ2T/pNTDW4uPtrLDC3F4/wuO8tEfs82g1G7oXMsjjusRWtVHIzl2\nHNzkftSXH+Hg7u9+fkRR9vQg7P/9oEkgT8qjZn0/Lf2LbfjyfmjCwVHKhhfrhQVAGT7Cey+pwd9u\nb9fLSKIOPzPq8AhwDB4/Sov9oyceUxT1eEQ9HuUUuZ8QP21r4lES1aPuec8kvyHX+r+7/eNj+/t/\nglhh3aOnDz4Np9XhwbX8CIXDho/90n0ut49+GoYbD/acArfv30Ne+yg5fE3RDbZ71A9DA9v7+7TW\nDuo9Y2NNRCBJE4wRP8ZF+jWu4TNyMMM1nP0XoXvCn4dezN7j+GSTDfbWmh9dHzxqvfGgx8OPc/se\ng92zsO/9++O1jvlL7LhRh9Xh0+4wPLvHj/2mtrutcuLY/dn3t3o8wh4fezp2fPiSy9DfT1bWw1qM\nB88HNw+K2fv/3n/2+suq+ed2HU7TBBMZ77EQkub9F+DDDFqMD3528DOaDj8jexR2ex+DQxX22z2+\nPCOVHA//mKHf+47sSQAC/c+9/3kn4QfCgRCsA4fgsDhXARZnK7+9c0RR7AWNhLIqBxL3a3HWQbfT\nJY5iWu0WZWmJTYRQ0ajXERFEzAHC7XskFFL2P+Pc7s9RCF8eg8Sp/0XSf31/5vGeGRvDAXHotSEc\nCMMtlA8HXhn6Pwx/qfXff/hsHHTphWNp7Z7PKXu233umdwPAc7jAjhF1GHX4lDsMx+Cx25vwOun/\nMPDYWRdaptyux1XplwpTj0fe4+eS7Bwzw34OT27uJ7Z7GLo+91+jB+engrUOP1HUgiuBCmcrv2Sb\nc0QmIjKCMUJly8FNK4wxvkJmHZ1ujyiKaXXaVKUliiKgot4IDh967gj1bP9tsNs2u7vtwa96BC/U\n4cFhPMpDhyMMjuVD650frHCYWPz41uzRGFbBbkDqz+ocPkAH1cZk6LnhtR4Hzw3OnwvnzuLXODRY\nZ7HOEUcRSRxTVRVpmpLnhW+ZECGOYowxVFUVAq0fO1RWJWNjTS975ejlPUQs7U7b62DM4OJz+8r2\n+D7Hoef6Yu5f6H6oO8D1n3dujwNOfIB04YvEDFqt/P/6idduKNg7LvBh3O5xFC/+bgCRPV8izoHs\nH5g0+Pj9C0iw4Xw8NJM0/LV39nv/nye6bF446jDq8ND7nUaH4Zg9Hk4u3VBCbG3wuArJ8K7HWZrR\ny/OBt+rx3iM+Ch4/YQrz4gnnoX+O+i73z9Pw4eh7MUif9zs7fJ77lTtnsc5ijK9cOGeJopg0NlSV\nHcTioqwwIsRRghGhGkqQwVGVBc2xMSpXYStHnucIlk67AyIY2XN1eT/CI9Y9+izseW6kHA4JLeHG\nV/0LlD2/+s/I7k2F9k++618HCDjr9+Vk+Dz13wyMmN33DNfM44ZTjURy7Jwl7+U43ECGfuzqtxj4\nGlU4qM4h4rsgqqoKH3pXBge7Ujm/wEhVlqRZirXQau1QOWFsbIz52Rl2dnZYXV1Doogkihgfn6Dd\nbiNJzPj4GK1WC2sralnK1NQUt2/fxjooq4K5mRnW1tZI0xq9PCcyESZOECPkvR5JklIUvT1B2Sc4\n0cBLkd3P1b9Ih5foGQTEwfHaFX34C2x/8N+/ILgYgxgZvGc/3tmq2nPx9Pezf5D/8JeTMca/aaix\n9d/D4mvMwzPch5fC6QttnfXSixfXOp/QObt3XJZ1FpyvfY8y6rA6fNodhuPxOMuywee3oTK3uz1U\nVUmaJQB0W93gcZMzZ+ZptVqsrK5hIoOtKibGJ2i12xgjTEyMB48ttSxlenqaW7duYR1UVcHszCxr\na6tkWY0872FMxGufeB0Rodfr+YSlKPZcY86G1rp9CdDwtbi8srInYeo/Pzg4MEhkdseSDm0ftmu1\nWhQhucDs2z5saK0dNNAZEd/aKLsJcN7LgZP32NrqCc16cfRbw51zSKgg9ekfN3/MBGd3GxxEdh3+\nhz//83v2ufdGG8HhNAGBdmuHyhqa403OLZzZddgY3v3au0yMj9Nut4mSmGazebDD+Pg+OzMz5HCB\nMYZPf/rTiDEhFicURXFALDYD7/r/DsfiN958c2/Sz94ktP8Z+4nvnsmDDCXI/WMY4nC/hVZ2M2Sf\n6IdKgBjj73Q5tL87d+7sORdP6/DU5NQg4TXGDOKMmF13/TEY+pCWkBjvvyXLw4xEcmytpd1uAewG\nUsKxCq1gw8Gnf/KiKKIoCn8QQ0sE7K01eKkNYOm0W4yNj/Ft3/JZ3nrrXaIspqpKNjc3MFFEt9fl\n9a//Or74xS+ysLDAzMwcb775Fs1mg6IoiaNx1tZWmJ2b4f69FWppShJH9Lo9yrIijmOiOGJre4uq\nqkhCMC7yHAfEUUQZvsSTJBl8TmstVVkOJNnzZcLBScPwxTp8MeyvDfUv+CiKsLiBNP6Y+hqXdRaD\n7A0A4bV2KHjsr7n1Zd7zXs76mtlQLa3/WfZMRjAyqM0x9F79/faDNK7/5Tzak5nUYXX4tDsMx+Px\n8GuHJwv5hibfYtZutxkfH+PbvuUzvPnWe8RZjLUVm5sbRFFEt9vlk69f4wsDj+d56803aTSbFEVB\nHE+wurrM3NwM9+6vkGUpSWzodXvBlZgoitja3vaVyjSlKAqKoqDfUu1vqQtJHA/OjbV2UAnoe9xu\ntwdJyEHn8Kged3s9bFVhomiQbAp+rLSw66nIbv9CP0Hou5X38pHw2D50s5DRwYaKSD9GDJ+zvsOD\n+EH/GBhiYwZ3Iex2uw/F4t3z6WNxu5MzPj7G5775s7z19nvEqY/FGxsbRJGh0+1y9epLfPGLX+RM\n3+G33qTROMzh5ACHE7bX1p85Fh+XwwCVtUTGDN5rfyx24ZofvDZU7vqO97/nntXhLM3C+faVu36P\n6uAzDO8rJMy+10oOPAb7GZkxx7B7UVprfY0uBAtrLbaqKItiMD7KOeclGdSQ8F14obvDhteVZUlp\nCypnSbOUnZ1t3n3/Omsb66ytrPDhhzdZWDjL+FiTsUaDmzdv8srLL7O4cIZOu8XFC+fBweLZs7Ra\nbSanmtii4OWXL9PpdHnnq+9RFBW9omBrZ4eddosrly6SxAacBecnkBiBqizIspTKVhRlgcNSlYVv\n5Ygj4iTBOjcQ3uGPRRVax6qqGmpJ2O0m2iuxI3x/Mex1ZS2u8scU57s1/cQYiELLj69T2YG0VVXR\n70arwnkZnB8evnj8RbHbMgH9lpAQaE1oARGwlQ2fhcF93wfn0kG3m4dtKpzYQffrqKMOq8On3WF4\ndo8JHjsXzr+1lFVFaUsqV5GlKTvb23ztveusb6wNPD5zZoGxZoOxZoMPb97k1ZdfZnFhgU57hwsX\nzoNz3uOdlve4LHj5pct02rsed3Pvcavd5srFCyRxRN8L/9nAVgVpLaWyJUVVYt2Qx1FEnKS+Z8VW\nu5/DOap+65n1f7vgscUvljXosQAe8jgcn8pW4ZiGrYLTRoTIGEwY5O198klpVVX0Z/2PgscjzVAy\n64Kv/YqHwyfPVYirtj85zlryovDbOwcGBD/u1objUVUVVXDYOkuaZuxs7/Du+9dZX19jdWWZmzdv\nsbCwwFjTx+IPB7E4OHz+cIe7nd5uLM7LXYcvXTiGWHxMDofjWw3Fhj2xeJCQC4hPRuk7bI85Fsvu\n+OHKVmGyrmArO+gR6W/b6+b++8Na6MfixyxvNxLJcb+Fp39g+xI7GHR/iMigxl1VlRe7/3rnKCtL\n5fxEjco6jPjagu+CtYhAt9OjXmty5/498qqgVxYktQbdvKDTaXPpwjnu339AL89ZX99ge2uTWzdv\nsLW5Ti1NyPMenU6PlbU1bty4SVmWzM5NMzHZ5OzCWaIooixK3n7nbeIk9VKKkNuSylmKquDlixdY\nXJjH2gKLRSJDrZYwPzNJVZWIwJXLl5iZnfEtZAaQ3ZYyG75k+jKUVUVelHTznMo6CmvJq4rCWnpl\nSV6VVDh6ZUFRVWG9XIOYaHCMK2uprKMMXXr9OyVFURRqbTYcw92aaD/JqZz/sf1WwcG5MkRRhIkj\njDFEcYSze/chRohj33lhQ62OUAONk9if/zjCiEHE+C6yEUUdVodPu8NwXB5Xg+EBlbW+ZdIw5LHQ\n6Xap15vcfXCfvCq9x1mDXlHS7XYGHnfznPWNfR5nfY9zllfXuHHj1q7HU7seF0XBO199hyRNKMsS\nEIrKVzLzsuTlCxdZPDOPrQosFUSGWi1lbmYCWxUYcVy5dInZ2Znwxe0/47DH/YSp/3teFPTyHGvt\nkMcVvdIn4RWOvPRjUfu+SRThwhd9aSsq66gq63M8s+uxP76j4fGeruoRRMIwAzHGH4+ACa3yJnx2\nC5RluWdoG0BV+XjSb6AQw9BKEpWPxd0utXqDu/fvk1vvcJzV6eUF3U6HSxfO73V4+xCH19YHDs8F\nhxcWFoijmKIsePudd54pFl++fJHZ2dljd3hw3ZsQi0OFrgoOl32H+7HYHG8stiF5HjgsQw47O+jl\n8A77lnUTRUPbPzoWj0yk7tfm+rWZQfUIdmvc/ZqP3b03OiaMS4ljzp5dpN5oUpalD+TOEUWG8WaT\nLE2RyLDTbjE9PcPlyxcBod3aoVGvU9qK23fvk2YZ73/wAdc//BDr4Oprr7F07jz3HjzgzMIZVlbW\n2dzeYWFhnixLuXbtGnmec/fu3dDt5EhSPy7IOke702Z2ZgZnLfVajTffeQfrIE1q1GsNYhMxNTVD\nWTmuXL5MLUu5fecm9+/fG0ymcNbLm2YpxhjSJMGIIY6TENgMRiJE/L+R8UEsksh3NSOkSYwxfmyd\nHZopbp0NrQg+oeiPxekHzIGUQaj+cY+jmCROQnd15M+V+OvADtXQjTGYaHef/a4qExkiE1GVlR9f\nGM7tcFDuJxJe4r1d5qOIOqwOn3aH4Tg8Tji7uES93qAsK9+K5NjjsTHRrseXgsftHer1GmVVcfvu\nPdKsxgcfXOfGjRtYhjy+3/d4ja2dHRYW5nY97gWPQ5niJCEfeNxhdmYGrKVR73sspGlGo9YgjiIm\np6YpK8fly5ep1VLu3LnlPR58/F2PxQhJ4peRSwYeRyF5NN5fE2GIgtt+OEoSJyF5M7seuzAERQTn\ngoThd2PCvqJoZDweZfrd/b4CvjfRGn7eOh87qsHnZZBMR1HM2UUfi4uyGgwDiKKIibEmWZp5h1tt\npqanuXTpAiLGO9zwsfjOvXtkww67Qxze3mZhYY40Tbjad/je3UFr6mNjsT0oFttBLPYO3z02h0X8\na8RECMFhCD1LQxN5+w6z69txOxxFu4m3iXySbcI5HPQgDlUI/O8G5xhM9DuMkUiO/VCTijgyQWIT\nekb875b+HcIEjBAlMRZHVbkQXBy2LLh97zZbO5sglsKWFGVBr6jY6eRcvXaNKDKkWUqn06JZqzE1\nMU5R9njv/a/RaXdp513qjSbN5hhIRNZscH95lQerq2y22ty7ex/BkMYxt27eotFo8uYbb3Hu/AXy\nvAs4xifGqNUaOCqMQJpkbKytYQT/RZEkrG9uktVrtFotyqqk3WqzubXFnTt36BUF4xPTzJ+ZZ352\nlm/49KdwrkAioZf3sOJw4nACRVFgnPWNC8ZR2QIJ3S4457u/JCyq4obGgYaEIvSEUJYWa0MgFhNm\n1xrvp/PjsXxSYnAIGIMVfIteuDBEzKDFExHfnVNUlEVJUVaUlQ0tf6XvDnFC5cBawPnuxCROiOOY\nOIqIY7P7fWxLnLV0yuJFq3lk1GF1+LQ7DMfo8d3bbLW8x6WtyMucXl6y0+l5j+PgcbtFs15jcmKM\nvOzx/nvv0ul0aeU9Go0GjeYYTiKyRjN4vMZW8NiIIYlibt0a9vgied4D55gYH6NWr+OcxQhkScb6\n2hoiQlGUmCRmfXODrFaj1W5TlRXtdputrW3u3LlDNy8Zn5hifv4M83OzfMPXeY8x0Mt7fv6R+JGQ\nReG9DY3rWFvuWVLNL1cXKkjstsr3K6POeo+KKkzIc/hKosiQR3ZkPB5ujR019jpshlqP/fFyLgwf\nEECEKI5x4o9XZW3wueTO3dts7mwClqLyQxe6RclOO+fqtau7DneCw+NjFGXO+++9S7vTodXrUW82\naA45/GB5leWBww8Od7jXd3j88bF466BYvD0Ui4/TYe+vhErbYAiOdYNYXFTDsTgiEjOIxcfpcB4c\nFnFUeH/9KI8hh6Mhh/10B7Alzlk6Zf5Ij0YiOfY1tggLg9o1hNp0/+DL7nhF5+ygNi3S7xYyg5ao\nJMmIohiHwxghTRNuXL/O/JzvWojjmJWVFZIkIUtils6eJUoStnbanF86i6tKyrxLr9OhKnpejqrw\n45Rsydz8PK12i0ajztLSIqsrK5xZWODipQtsbW1Sq2VMTEz4BpfQ3J+mGWmW0mw2sdbPkG42m35c\nEP7LO89zoihiZXmZjc1NJqYmsdby2W/8DN12m2a9jqtKOr0u1vpavkli31UQuhT6yUMYET8Y4wYO\nxBFFQhQbEOfl924iEf4xZ4njiF5Z0s0LylAb7I8NErf7exRqammShEDvLyJfe/MtdhJFWOvo9bpE\nxi/XRChTXuSUrqLsz46mvw/or+/oK3oxURKTJtGLFfMJUIfV4dPuMByTxyEhieN04DHOt1CmacqN\n69eZm53F2l2P0ySllsQsLXqPt3danDu3iKsKyrxL3mkHj/16yP0xzHNhhYtGoxE8XmZh4QyXLl1k\na2sreDwe8iI/RCnNUrIs2+txo+ETfeeQyJAX3uPllWXWt3Y9/sw3fhPdTptGhB+qoAAAIABJREFU\nveY97naxznschZ6N/hCF/jCUvsc4h6363b2+RyiKBbBU1n/J+zISEpaKKIn8UJOioLSj4/HuEmMj\nSBj2Y0VCg7HQX77LOd+eCMMO7w756rdo9n32sTgljuPQqtmPxTeYC8Nt9sbiiMXFs0RxcHhpETvk\ncFnm9Nf0rmw15HD7EIePIxavHJvDzvkhJw4XHPaVN8SGWOz2xmIqosT4WFzkx+qwkYg4igdlysuC\nwnqH+98bQ0rQrx9hIuI4JnlMLB6J5BgEh8GF4vQHk/vgYUhrGUmakKYJaZoOTppvcvcHLu5Pugg1\n7l4vZ2lxCXBUZU5Z5Ny5fYexsXGazSa1Wo2VlRVeu3bNB9d6RiSwsbHBJz/5Seq1GvPT05RFwezs\nFK9euUwUR9RqNTY2N3jp5Ve4efMm21ubXLxwnnqWUktTls6epd1qMd5scvnSRaYmxv1nSWLiJKHd\nbpNlGXmek+c5tVqNdqcNQJKFpYYi311w9959vvLWW9y794BaLaPIe1w8d47z5xYxWCKxlOELprL9\nLgQJXWNDAg66ORiM+4siIQlL0TgJXaLOJ06dvOvHdgJl5WvSNkwGyDJ/XuLY1xrTNCEver7LRna7\nT5x1RHFEURZ+rcIowlrfwufXenTEcYSJDSb23d+wO37Uf47Y12itpZP3/GD6kUUdBnUYTrPDcDwe\n+yYanwR6jxeXFnHOUgaP7965w/jYOI0DPK7XMiIRNtbX+dQnP0m9XmMueDw3O8WrVy4RxRFZLWNj\nY5OXXhny+OJ5allKliYsnl2g02oxPtbk8sWLTE5M+M8S7/W4CGMsa/Ua7U4nOJFRlH4prdgY7t67\nx1fefIt7dx9Qr9Uo83yPx6bvceJX3dgdT+yHKVRhPCVh0qgYMBE4LCYyJGkcunz96hEVweNe1/vr\n8OPpR8VjRrfl2AG277D4lVTifgU8jsiylDj4m2XZwGG/dJ5flziKzWBnxkT0ej2WlnwsLqucssy5\ne+cu42Nj+2Lxa7R3dmjUM8yQw42+w3nO3MxBDr/MrVsHO9yPxZcuPn0sPi6HbZj70u9MMpGPud7h\nEIshDLEadrg6docH83QqP8kuin1lM4r7q2dIGPrlW8ajOAaE3Do6RT6o/B3GSCTHg+FAzvqJCS6M\nYxMQ64iA2BjS/tId1o/9ESM0wp1kJifHmJyawLdvWKIoYXl52W9flUxMjDE9Nc3tW7dI05T19XXG\nx8d5452vkiQJM5OTvHzpAlvbbd774AMuv3SFeq3JhcuXGZ+c4tbt2xSlb7GYnJri7v17XL5ymZmZ\naba3Nmg0GlhrWVxc5JOffJ2t7U2cs0xPT9MrcqI4Is9zzszP01+BIMsydlo7ZGlGWZY0m2OUVeVr\noCYm73XBGNp5jkQxn/2Wb2FlZY2yl/OJV19hdmqSJIoHM1JNFA/G+KRZiokjJKzhKUYoK0dRWsrK\nUpSWvLA4Z+jlFd1uj04vp7JQWYiNkESGOJLBGKBaPaWWJYOB/H4h//4geLc7/idMHqmsDUJCFMfk\ntqJXlRDFYf1CQzPJmKg1MJEPXuJn7oSJPBFiwr5EKO3otlaow+rwaXcYjsfjiakxpibHIcx/73ss\nIkMeT3H71i2y4PHY+BhvvP0OcZIwOxU83mnz7gfXuXzlJep17/HYVN9jP+lncmqSu/fucfnKpYHH\nzUYDZy1Li4u8/vrrbG9t4ZxlZmbKt6bFMb0i58yZM37SUVF4j3daZFkaPG5SlCVxkpBFMXm3hzOG\nTl7s87jHa6+8wuzksMeWKI7oj3VM08yPs4zCRDZjKEtHUViK0vtclBaHoZeXdILHpfXdypGBOPIu\nj4rH/TVtRxEhJDbWL9VXhd4Ohx9iZURIjO/FAD+sxTuMd9gQYvE4SHDY9B0OsXi87/DtvbE4ODwz\nNcXLl8+ztdPh3Q+uc+khh+/4SZlDDl+6fLjDW9t+eMf+WDx/1Fh8XA4bA8ZPdCwrR17sxuIixOI8\nL30s7u7G4sj4YW6xOd5YnJclEsdY/LjjRlpjotYg6ld4ot05KhJ6Z0WggsfG4pFY53iwvqS3d9BK\n5FtZDLYofPddJIiJ6eUFiZRUCNZ1EYHVlVVcVXH27FkaE9OIlNTjjFv37zPWqGEry9z8HBs7W7Ta\nLcYnJzh75ixfe/8Dtra2cLYiSlJMJBR5wc1bd/xYmNK3Zn36676O2x/eoNVuIw7OzM6w3drh/nKH\nq69c5fatm6ytrZImCVGSkdVqrKyt0e12KMuSVqvFzPQcGzvbrG1ukqZ1KilJI8Pnvvkz/NNf+gKR\nMUxPTZLnOVvtjr9bThyRlxukScb771+nsBVJmnF3eZmL58+zsFDxhS//GlnaQBz0ypw0ipg/M8fW\n9hatVid0gQj1Ro1Wp4uYGGwBznc91Go1/JJLMaW15GXlJz/hSCJDLYn8ce8VdLo5SZJiTBxWUzD+\nrkA2pluUgKGyVVg3UohMRNtaoixFrB/jlKYpZWX8ygT4O1v1yhJESKIIDDhraOcFlS1JooSxWjbS\n49zUYXX4tDsMx+Px2soarixZWFykOTGNUFJPMm7du8dYs44tK+bm59nY3qbV2WFsYoLFhbN89f0P\n2N7aAlsSJRnG9D2+jRhDVfpE/dO/znvcbnUQBwvDHr96lds3g8dpijMRWZaxsrZOt9uhqErarR2m\np+fZ2N5ibWuLNK1RSUkWC9/6zZ/hF37xixhjmJ6aosh7ux5HEUW1QZqkvNf3OKtxd3mZSxfOc9aW\nfOHLXyENHnfLnDSKWQgedzttP2zDQD2r0er0kMiALfzaq86R1WtgLdbFFJVfKSBNEiIgMUItHQ2P\nV0b4hjb9CaP9uaQSWuStc+AE6/yY08gYiCLyXkFshAqoul2MwOrKGq4qOXv2LM3JaYSKepxy8/59\nxpt1quDw+va2j8UTE5w9s8jXPnifre0Qi9MMY6DMS27euuN7BErfc/SpX/fpQxzucvXVV7l98ybr\na2u+JbW0ZNnBsXhzZ5vVQ2KxOSgWP6PDOzttH4sNNLIaOx1/sx1nC/r3osz6sdjFfmzwkMNxZKjF\nx+SwiXDi13g2ka/EFTh6RU5elDjxFUoRcMY7XNqKJEpo1hp7hl0cxEi0HANUDvKixDrxEwZ6BbZ/\nO0DjuwiSxNcytra2SLOEKIK86HF2YYHCJVQmZmpujpvXP8AgrKyucHbhDPeXl0FgeXWZhbMLRALb\n29t86StvEEfC3Pw8UZJSWUsaJzhgcWmJsqoYm5qgqCxffvNtZmbmeO3aJ1hfW2NjY4tuq0feK3j/\ng+s8WNtgbmGJtDHG9Owsm5tbrK1vkGY1Ll64wOzMHJtbmzQbTT/eK43pdTvsdHv841/6Au28oN1p\nYxDGmw3OXzrPpSuXyJIEYy2xVKytrrC4uMjmxjomMqytrfPB9Vu8+sqrnF9a4MK5RaanJjECvW6H\nNE2Iooil+XkuLC6QGcOnX7tGLTZk9TpJGpNlCbERXFVSr6VEEaRpjIgf0G6tpSxKbFlRjw1zE75F\nyAqU+JpYaS1FVYZltFyQ3dcwK2ep1+vEGGpZShxHtDsdfG+doZf7iypLE+IoIS9LytIv4xVFhkaW\nhdp6NZhtO6qow+rwaXcYnt3j3MVUJmE6eCwIy6srnF1Y4P7yAzDC8uoyZxYXiJBdj4332CSZ9zhJ\ncDgWl5YoKsv41CRFVfFrb7zNzPQc14LH6xtbdNs98l7J++8PeVxvMj0zy+bWFusbwePzF5iZnWNz\nayN4bEiTmF6vw04n55/80hdoFQXtbhsjMNZscv6i9zhNE8RaYrGsry4Hj9eIIsPq6jofXL/Nq6+8\nwoXFBS6cW2JmaooI6HU6PjkwhqUz81w4u0AaGT71iatksSGr1UmTmDRNSIxgbUltyOP+WPxR8nik\nEcH2HcZPEOvmBdaF4VcCSZr6oRYibG5tkmUxkYEiz30sZtfhD/c4fMY7LPBgZZmFxX4s3uHLb3iH\n5+fPECUp1vqk0OJYXFqksN7h3Fb82pvvDBzeGDic+1j8/nWW1zeYXVgkqTd9LN7ajcUX9sRiv0JF\nekAs7gzH4iM47GNxcHjpYIfjfiwODn86OFyr10mSmCw4/HAsPszhMZ7W4SxNiaOYTqdLZV1wOA8O\nx8Rx4ifvlZai8g43swwjYG01GD50qEajsCh9rdF0V66+TllW/g5Cxg/MjpOEJGKw1E1RlpSVpSwL\nslioN/ySKjs7O5goJS86fOK1q6zcvc+D5RUWzy0yNjbGvbu3Obe4xIPlFbJmnV67x8TEOLUsoywK\nas0x3n7nHZbOLvDatdd474P36fV6RFGKdRX15hjbOx3EFszNzpJEEe1Oi6qoyMuCWqNBp9Ol2Wyy\nsb5GltWYmppic2sTcHTbXbJaHWfAIMzMzbK5uUm306XV7lFWFVEckyQGcXDh3BJvvPkmYgzj4xNs\nbW0hBpq1OmVR0KjXWF9bZ2JygrNnF1h+sEIcOSanpnn3gxtMT0xQ5D26eQ9nIl65coV7K2v+LjlY\nyqIiyeqIESIxYcZ0Ra3RoNvLfU0NP3YwNoZXX30FwrjQTqdDEUa2myiikSTEkSFJEu6trPkZzrEf\nsyTOQegaESf80q/8Cp1el0iiML7WS5rE/kvQWocRx1ijwWarQ1FWZHFMFBti8XdHe/tLv/wF59xn\nTkzWQzgOh8XE5EWXT7z2Kit3H3iHlxYZG29y7+4dlhaXWF5eJms06HW6jI9PUK9lFEVOvTk+cPhT\nn/zUMzvc6fSYmp5ia3MDB3Q7XbKsDsbf635m1jvc6XZotbwzURSRJBHiHOfPLfHhzQ8RiRgbH2dr\nexsTWhvKoqBZr7O2vuYdXjjL8vIysYGpqWne/eA6U5MTlL2cTt5lbXOLV668xL2V1ad2eKzZBOfH\nVnY6Xe+wE0x8gMNRTJxE+JtcWL8OrfPXbqvT+cg6DMfj8Q/+j3+VXt7h9deusnLvAQ+Wl4PHY97j\ns4s8WFmhNvB4nFoYA1kfG+ftt99h8ewCP/xDP8R7779PN+8R9z1ujLHd6kCVMz83RxIZ2p02VVGS\nF6X3uNul2Wywsb7OnTv3ntnje/fvjYzHZ87MHykW319Z82OrD4nFy6urz+Tx+1/9Cp12aySres2x\ncfepb/gsZemXcjPGUIUhMkkkQw4X3uGqIIt2HW7t7FA5OdThu3fvcO6IDo+PjflYnOfEUUJlLfXm\nGDs7HbDe4Tjyd7CzpXc4azToDjmcprWPlMMmzI7zsbhDEcZt+VgcVpfoOzyIxd7hfiwWBIzQ6fX8\nahjBYVdZkjChr3KOSBxjjTqbrS55WZLFSRjeYbA43vrVw2PxSAyr8KuJWEQqjHHEUVguxFY4E76k\ngDSKSYyliqBWq4XaYU69USfJMvKOxRY5UZbw2rVr7LRbOAeTk9Msr64zN3+GtbVVGmNN0izjgw+u\nMz07x/WbN8lqNTa3W3z13fcpi9yP64kcZVkyMzPLg3v3yAs/GeH1164RiWOj1cUi3H2wzLWr1+jl\nXZIoppN3ad+/S5LEFHnO+aXziDE8eLDMpZde5r333qXebNDLe9RrKc1Gg9WNDTrdksQYPrx9z3df\nRob7yytUZcV4FtMTgxPY6eSYJKVeqzE7OYUtK27cuolEKQaYnZ+n1+3S6/R4+coF3vjae0RJzMzU\nBJNTM6xtbFAUHT/pKy9I0gxLSreXE0cRQn8hf4MVIS/8nZpaeTdMshFavZxaWqdXdEmMQVyHSPxg\n9zzPyWJDPTN0OjkmirHSv5NZWLrFWdKwcHhkHN3cL7ckccxWx69kILYCIoq8IKr5dThHleNwOE5T\n8o7DFgVRlnDt6lVa7TbWCRMT06ysrjM3vxAcHiOt+fWMZ2bnuXHzLbKsxsbW8Ti8lm/Qud8hjmPK\nPOfc0jmMibj/4AGXXr7Mu++9S6PRoJfn1OsJzcYUq+vrdHoFsTHcvHMPm5e4yPJgeYWqtIzVInLx\nd2Pa7vaIkox6VmduagpXVVy/+SEmThCB2bl5et0e9U6XVy5f3uvw9Axr60/ocOnvSNbKy12H85wa\ntSGH295h58h7PulrfIwchuPxeGy8QdoNHqcx165eY6fdxjqYmJhiZW2d+fkzrK6uUR9rktZqfPD+\nB8zMeY/TQSx+j6LIyYucKnIUReE9vn+PvKjoFjmvX7tGJLDe6mKd4e7yMteuXqWX90Is7jze4+aj\nPY6qEfI4xOJ23sXui8V50SUOsdiIUDzHWDwCbWqH4ntnLEiFEeePSSQYV+EYdjghMRVVJNRqGRbI\ni4Jaow7GkHQOdnjyUQ7PznHj5q2Bw/fuPaAoc/K8RxX3HZ7hwb275KWlm+e8/to14uBw5Qz3Bg53\nSaLoI+dwWVmsdVTDsbjXo0Y/n4jAtYkQCucoQiyuZ4ZOO0div4pTREokYXUd68hMhJWKyFi6ebjV\nfRQNOWwRnF+JplYPNwY6nNFIjsWPRZmemmN1dRXnHFkt8wuT2wqxfkkhg6HT6foxLeG2sXkvJ6tl\nFL0cENo7bbIk5d79+ywu+dpd0etSliWdTp0oiqllNe7cuQNGmJqcZHy8yb37DyiLkiRNqNVS7GZJ\nVq/TarW4fv06jUaDwrZx1rK9sUVV5dy+c4fZuTlmJifZWFvF4kgbNaazGqsrK6QSMT0zx527d8Og\ncuGtN77C1NQkMY6rV67w/vXrtHa2ERxZ7MeVxRHUG00cjix1ZHFCs16j0+3R7nTohjFT61ub3Lp7\n1yfQDlbX1zl3bpFbNz+krMLi8tdhcXGJhflZVpfvkyQRq3lOHJZo8XetYXDb4rLyNTq/RIqvYhvp\nrxPrl3RxztIgpSpzKvG3HzVhbXi/6ouAs7RycCZFohhcBdZSSxM/oaoscakJd9cxZInBOQu2IhYh\niiPSes3fNlUiIgMSj8wooIc4NoddcDhOuf/gwSMczrh7x48pnpqc2HW4PB6HF808K8vLZCaiMTvH\n3bt3/WQ54M03vsJ06G67evkyH9y4QWt7C4MjjSCNhCgCGg0sjixzpHFCs1aj0+vR7nQpXAnWO3zz\n7h0eLK9SIayubXB+aYlbN2+GOywJaxvrLC0ucabvcPw0Dnt/jPMOW2tpZClVUVCZAxz2s9Jo5Q5n\nkuCwBdv7yDoMx+NxnhfgoNVqkSWZ93hxkQery+TdHmVZUq93iOOIelbzHkeGqYkJxsea3HtwP8Ti\nlFotY3Njg1q9jrV21+OqjassW5ub2KrgzrDHq2tYcaT1Gotzz+5xmo2Sx4+PxTLksXlesXgk24w9\nghCbiOnJqYHDtZq/aYe1VVjizWAQOt2CWpbtOpz3yGo1qrJEGHb4PouLSzxYWSbvHeDw7eDw5CTj\n42Pcu3+fsihIsoRaPWNzo/T7rSpu3LhBo9Gg3GlhrXe4Kgvu3LnN7Ow80xMTQw7Xma7VPmIO41dG\ncQCRd7gWYnGYBOzvbugQ3GCFl34s9vuyOFtRS1PKIYf7E0fTxO8XZ4nwq+6M1WpUtiIl8kl1dFqW\ncnPw4MEyTiLyvKAsCsoiZ2d7m7yX+5qGrWiONXzGL0IUxaRZRlVZenlBHGesrq3THJsgzlJ2Wi0/\nQ9P58Sjb29tMTU1CWJtzfHKCLE24d/cOY80GAmxubmCtJU1rJEnC3Nwc8/NziMDi2TPUsoyV5WVM\nknB+cYFPvPoKC/NzTI2P0W23WFlb4+WrL3PllZeRJOHmg/t+VqwIvSKnXq9hgNREFN0uL126wJnZ\nGZr1OmONGpcuLDHerGGiiLIsGWvWmGjWuLu+yo37d+jYil6vy7mlJSSKWdncYGZ2lso5JiYnuXf/\nPuNj45w7d45Wr0vPwvKDB3zly7/GeLPJzMQEF86e4eyZM0yNj5NGEcYItTSmlqUkcYywu4xWVVUk\ncTy4h3tV+fVmG2lCLY0ZTzLGs4zJxhhjtRqJMWRJQj1LacbCeCOhngopJb0yx5iI6YkxpsbHKKuS\nwjo6/z97d/Kj2XXm+f17zrnzfccYM5nzQFIiVaKGkqoALxrthhe9av8V3thGL7wxjLa98tBowIv2\ntLAXVeVh4YWBhjeWjW53oexSSSWViqI4DznH9EbEO9/xDF6cm5GZHCUxJWWleIEEk0kyMhnvJ544\n773P8/zqlrqt0br1a3UEOKP5zre+5YdTtMa0bbel/lm9vrzhqmkJwojj01PyXv/McF1Vftr2McPO\n+kdqg8GAOIo42N8jzzIkT8/w9Zs3IQy4e3hAGEcgBU3bkqYpwjki5Q1fu3yR3a1N8iylnyVcvvgC\n/TxFBoE3nCUM84T92Sl3DvaprKapSl64cB6hFMezGeONDax19IdD9g8P6fd6XLx4kXXjDR89BcNR\nHGGMj4oVONIoJIm94d4nDAekcUSmBP0sIo3k74FheGq1OIw5OZmS9foEUciyWFN3tVhK32c8HI66\nGOPOcRxxcOAdC/HIcRwnhGHA1tYm21tbCOD8+R3iJOZ4cowMHnO8tcVo0KNarzme/pKO5d8tx59X\nix93HP0ma/GzfAk/lDeZTHBS0bQtbWd4uVxR1z4a2VhDnmddLLNEBQFxHGONoa61P0+cGY684bru\ndnt/zLAUZ4b39/fIc294Np9hjCWOUqIwZHt7i62tLQDOndshiSOOJxPUw1r80g3ObW8zGvQo12uO\npyfPneGgW6dnjfF3dHGkUUQSB/SiiF6cMMpz8iTphqn9x8oU9LKQJPSGm7ZFCcl4kDMa5D40yzrK\nqqVuvOEw8G/mnNZ859udYaPRbeNvdnzO9Wwcjp2P9pyXJcfzGWXTEEhFHkVsbG76lU7dGpy6qZEq\noKwaFusVDoETAisEKgqxQnJ/b59W67N88KqqiCI/mLNcLrn34AEOCITk3t27RFGE0S1BGKCA+XwO\nSmF0y8nxxMf2AvV6Tb/fY7Q5xraGm9evUawWfHjrI5arBYvpjEAq/vzP/5xqXVCtS7IsRymFMZYo\nilgXJZPTKZP5nL2TY05PTonilFVRcjydcfveAyanM25cv44KAtbritlyTRxE/Jt/7+9z/fIVzm1v\n09QVbdNQVw3HR4cM+jlVVSCjhLrR6KbGuRZjNPPFnNLCz9/9kEVRMN4c0zQ1bV1z7dpVdNvSNrWf\nNXWOVmsao2mdReOYLVfsHU5YLNfMlyuW68pHVGpD7QzruqJpfNEIlMDohjgKObezhXGOZVlTaUGj\nHat1iXOOKPCP88rK58uvq5qibiiqGhmEIBQ/+enPsE4gVIgVCv0snyuemuEIJyT39vd9Ol5nuK4r\nwvCR4ft7D3DCr9W6d/cuURhhTUsQqKdj+F//a6riScPWGG94XXSGZ+yfHHN6OiWKE1brkuPZnDv3\nHzA5nXL9+nVUGLBaV8wWa+Ig5B/8vb/PtctX2d3epqlqb7huOJ54w3VVIOOEptW0dQ2fZ7htfiXD\n+4cTFqvCGy4qxo8ZLj5huPV7Rnc7w8XvgWF4qo6tlNzf36c12icjdrU4DKNHjh/sgQAlJHfv3CUK\nQ98f+gnHmpPjY+I4QgjvePDQsX7M8W3veD6bPreOH6/Fq4/V4scdq99gLX6W2ypcZ3hWlL5d8cxw\nzObmBnEc+TVhXUqckIqyqlmsVtjOr5V4w8Ibbp4wXD9Zix88AB4avkMUPTQcEOAH/lzg+55PJsck\nsW9/bNYF/X6f0eYGtjXcuHaN9WrJh7c+ZLFcsJhOUSJ47gzPFyv2D49YrNbMzmrxGK0NjbWd4Qas\nJVASo1uSKOT8zjYW31Zaa0FtLKu1b/WMAn+nuKhr/4S9qiirhqJskCoCqfjrn/6Nb0VSIe6XqMXP\nxEBelufuys2XcU7QtP4wIKB7ZGfI8x6z2ZxAwPUb19nb3wMCWl2zuX2Oe3fukqYhFy9eZH9/DyUl\nr7z8Nd544w0uX76EM5b7+3uEUcRyseDc7jksjoOjI/IkJghCyqomjmO2NzaQQUBRVihlGfaHnJ7O\nqbXm8sULnJxOGYyGzKZTcI7RcEixWqKdn+J1OMJQceXiJW7dvkPWyyjW/ovJGIPFEoYRVfd48Xvf\n/TY/+9nfomRAo1uyLGM06PH2L94iSGKEUn7aUmsa0+Ks48VLF4miiEa3NE3Lqiz9tHMY+SXZ1qLb\nlo3NTdZFyY1rV6kazXsf3uLrN28SKYcQltWqYlWV5Gnip9GN4e7ePkYFCOcfZTgcL9+84UMajG/0\nT+KY5XrlH8lZAH83qN/roRsfyRhIybppUFLirEVJxY//+sfdKy78EKJS/s6ENeAEeZ6zWK/84nnn\nun4lwXAwoCpLwijg7b/9yTM5zPQ0DCeJ4uLFS+zv7aHU5xieP2Z4ckSWxIRBSFlVxHHC+Z2dL224\nWK86w7dJezlFUT0y3E0Q13VF22q+94ff4Wd/8zMCGdAYTZqmjId97t6+Qxgn/nBjDG2r/W5Va7l5\n6dIjw23DuiwJg5AoDB8Z1prNjQ3uPdj7HMM1q6p4ZNga7j74pOFBnnnDWqMCfydiuV77aeauSHrD\n+WOGFeumRkl1ZnhdrLtX/PkzDE/H8Z/8yf/IpUvesVSSV19+mTfeeINLly57xwd7RFHEYj7n3O55\nLI7DyRFZ7B0XdUUSx/yz//Kfdo5LlHIMekNOp3OaM8enDIYjprMpWMd4NKBYrbr9wP6u6oP79760\n44O9/WfG8bntrV+pFgtAdbU4kBJrLYFUHB1Pulf813N8/9Z7z+xAXq8/cK+89u0nDQtBHMcfMyy4\nceMaD/b3AfXI8N27BIrO8AOkVLz6tU8aDqPwsVpMZzgiCCLKuvLhHGXp30CWlTfc94Zr3XL54kVO\nTk4ZjkZMu1o8Hg1Yd4at1eAcYRg8V4YD/ECpNoZAKZIkZrFao41BG0D4p6L9Xt7d4fW7josnanEX\nPY1v8fHbKHy7hLMG56CX91islj6C+swwDAdDqqogjELe+tlnD+Q9E4fjOM3czZdfIYn8lGEcx4DA\nGE3V1ERhRFkUbG1sMF/MGI5GLFfF2Te6OIrI85TDwyO0sVy4eJFisUCG9z6cAAAgAElEQVQIQVEW\npHHKbDnHCRjkfU5OT0mz9KwHKQwjHKBUwHg4RClF27YY3bC1uUXVttw/2GfY61FVNSoIydKMtq45\nt7PNdHbKbje9Ol0s+fZr3+T9d971jffHR2f9NnEckUQxs/kCJwRaaz/1rTVpkqCCkKKsCSSc2xyx\nub3Nm2+9xcH+Ab1Bj0sXLjHq90nzjNu3bqG1pj8YcHRyShiGLBcLhsOhT5JpNUopxsM+cZxwd/8Q\n52BjMEBJQatrXrpxk3sP7mOc9Lsas5QoTtifHKPbhiAIaJuar339VYSUqK7VQzctYRRR1o3vH+oe\nQxvrQxzsw1hORPcY1RflH/7VX3WxnH6JuHTaD0c8nHAVoK2hbEyXVtRFexpDGPnhgPsfvPNMHiye\nhuE0Szg8PMJ83HBRkCYJs+UCJ6Cf9zk96Qyrh4ZDLIJABWxvbn5pw9evXOH9d99lYzzm6HhC0CUS\nRXHcGZ57w8Zn3ZtWkyQJKggoK2/45uVLbO5sdalM+/T7PS5dvMSwPyDLUm7dvo3WmkG/z9HJKUEY\ndo8qh521tiuG/mPf2fv1DQ9GG8gnDDeEUUxZ176H9qFhY5Dd4cOZzjCPDC+Wy+fWMDwdx3/2Z3/C\n4dEEbQwXLl6iWMyRQp45ni4XAPR7PT/QlGUo5T+/YdA5DhT/xX/2nz9y3NZsbW0/cpz3qOoaFQRk\naf7I8fSU3fPnODo+YTpfMB4OP9NxGsVMfwnHr9y88cw4Pt8Nd3/ZWnxwePilHB/dv01Tlc/k4TjL\ne+6b3/keaRRiO8MC/xp/tuESo1v/xjmKCKPgScPzOUIKyqL8TMNSSZzx5wkLBEFAsVz5FsmHtXhr\nm6ptuL9/wLCXU1b+tc2ynLau2N3ZYdYZPpycMFss+PZrrz1XhoMo8bVYSn8grhuCOKZ6WIuFJIq8\n3Sdrsd8y8tCw6UJDED5YRFhvWEjp+5uFoLWGstFIIXDW777GaKIwAgH3P3j72d5WYa1lUdfMy4I8\nCCnKirquGQ6HNNpiTI2QksnJCUkSczqdMZst6fV6XN7dpigKxoOB740zjtOTU7Y2xuzt76FUQJal\nlE1FkqUoIdna2sLhm+/DKKFtWxASq1tmq1WX5qIYDQfs7O4QJymn0xOs9VOX/cGQ+cIP0bXWUFYV\nD/b3+YPXXuMHP/gBP/7JT0iCgCgKCJQky1KKoqCqKharlX8M0OW1CyFQUvqPVVckSQLW+I0D731A\nVVf08oytzQ2K9Yq7d++SZhk4GI9HVFXNcDCgKEuGoxFlUQL+ccZwNKSqfaSkEhahQparJf1ej9bC\nvQcPOL+7w8HhCb3BgJPDA7728sscTSZYKcFaXn7xJYSUtE1DK0Q3oJOwXK7QriuYztGEAWEYoLp3\naFJIrPUF1hi/r1DgI2aFE7RtwwvbY4qixCBpuzjHEIGL/LvDrJdTlRXaKf+F+bt/H/eZ19MwvDEY\noJsWYy2nJ6dsboz9kxClSNOMoqlJ0xQlJVvbWzjnp9HDOKHVLSBp7dMx/KOfTEiCgN1zOyglSLOU\nsiioqpLleoVzjjDoesqEwEqBEBbd1H7AxRne/fAj9HvvUzUVvTz3hlcr7t655yfCgfFoTFk1DAYD\nyqpkOBo+aXg4YrUsPsVw/0nDR59v+PD4xC/BPzOcdob9XQZvWHnD2hFIhQtk9/myvxeG4SnV4qGv\nxcY6picnneP9znF65lgKydb2Npw5js5qcdtqZsslSkpUoBgPh53jhJPpyVmiYm8w8I6dozGGsq64\nv3/AN197jf/zBz/gvffff64cL8vq82sxjqb9zdfiZ/myzrH8mOGm8a/NI8OqM5w8MtzvcXl3h6JY\nPzJsHjO8t48KHhlO0sSfJ7a3z2pxkIS0rQYhaVrNdLVCSdkNuQ7Z3tkhSRNOpqddtLGmnw+YzRe+\nFhvfGnN/74A/eO2b/OD/+gE/6s4Tz4vhj+7e87UYn1oYJymL1Qpj/VNLHERaEQYBiq4WK3n2Na+t\nxTk/q/DwqUDVtJzfHvmdx51h6ywRAkKFdY4s71FXFdpKH4f+BcX4meg5lkIw7vUQ1lEaQwvIMGC5\nWmEaX5xXZY1FMF8VNNrSH/SJ44jZYsXJdMH9g0NaYwnDgNVqQZTEXLh4kaapef/ObVprOTmdMl0s\nSPIchCTLcpI0o2l9f5CQgmEv6yYvIe+PeeOdD/hX/+9fUmrIBwMQASenJ6zXa4qy5Pbdu0xmM/YP\nJvzor37MaDCirDTD3R329vexQrFerUiiAKyl1+tR1RXXrl/j+OQYi3+hv/7yywSBROsa4wxKKsaj\nEVmaUbWayekMggDZ3d0qm4a9owlN26K7u8TSWVRgGQ5yhBQs1isQgtW64NqlC7imRreNT2ESAm1h\n/+iEtq2pipLNrS2m8zlCKUIVEoYRt+/eY7le0RgNUqDCgHWxIo5DIqXIk5AsjZDKPwYSUnZf9BZ8\n+ihxFJJ2P3pRRBxI+nnKqqz9o3xr2N45h+yWmUdKcfncLgGal25cpp8mJFFIFke/a6qfeT0tw9r6\nPY2r1YK4M1w3DR/cvY22lpPplNP53BuWkjR/ZFiFT89wVbWMzm2zt+cNF6s1cRQgnCXPe5RV/YRh\n6yxff+lrBMrfRTDWdGl5I7Iko2pajk5nuCBEhgpjLWXdsH80odENpvXmpbUo5Rj2e0ghWKyXneHy\nMw0fHJ36vd5FyebW9qcbLta0nWHZGY7ikEgFneEQqUS3HN7vwLSdYSm84eQ5NwxPx/GDgyO0dQRh\nyGq5II5jLly4QN00vH/nkePpYk6SZd5xlpOkKY32jpGCYS8nUBLB445/SKVd51hxenrqHVclt+/d\nZTKbctA5Hg+Gz5/jL6rFyW+nFkv5TBwdPvUSAkb9PtLyyHDwmOGmZlVWWCFYrNa02tIf9omjiNli\n6Q3vH6KNJYgeM3zxScOn05k/T3SGz84T+vFanPt1iAKy/phfvPs+/+ovfkjVesOOgJPTU4qHtfje\nXY6nU/YPJ/z4r/6aUf/5q8Wrh7VYSWQQsC5XxFFAGCjyJPK1WAqMM2eGH9ZiIfDDfmFEGoXkcUQc\nCHp5wrrsIteNZmv7HEoGhN3HvXxulxDNSzcu0c8S0igki+PPdfTMCC/LkuFgiMSBNYRKsbuz7XsC\njcZogxCCrc1N6qryL2hZkuc9hIA8yzg9PeXo6Ig0Tdnf22M2m/nWg17PL5aWfu1KsVpTVyVt07Je\nLvwXOw7d+J7era0tpJQcHu6xXi2IA0UWhxweHGBMS5IkpGlCEsf0ejmDXp9eP6WoCpZdstK9O7cZ\nDUes12vfN1fVhFHMarUGB2+++ebZXUClJKuiACEoSx/zSCApu8EKiQBjMa0mjiKUUmyMx8SRT0Sr\nqgqjG/I0haahWi0InaafxAyHQ5CKsmr4/vf+kKtXLhFHAXkS88rXX6JpGrLc9/akSUKWpn7DBxZt\nDVVTc/XaVVbrNVJJ1kVBHMf08ozRIGM0HJLlOcZJytYyW618UlrT+kG9Lj6yaFtaawjiCBUG1E1D\nVdc0bUtZVWd3SJtWEwnJarbg2sUrjPtDwH/TfpbXB8GXN5xlGacnJxweHZEmft3gmeG8RyAVgZRk\nyUPDFbruDIed4fbpGb57+w7j0YhivUYGfmgliBLW6zUCx1tvvUmaZighUVKxKtcgBFXpv7ZQygfR\nOIdEIIzDaE0UxQRKsrkxJopDjHVUlX+smWcZtA31ekHgzGOG5ccMqzPDdVOTnxmOP9XwlWvesJCS\nolgTxzH9PGPUf2i496mGi6qmsYbaGMrm+TcMT8fxycnJWS3e299nNp/7x7a9PoFUKClJk4Ryvabu\n7oaul8szx6ZtcO4xxwd7rFdzokCSxRGH+wcYo0li7ziOI3p5ziAfPNeOr1679oW12P42avHv2OgX\nXWVRMBgOzgwHgfSGjfHhIMYHU2xublLVFdZYqqok73WG85yT7jyRPDTc1eJBr0fQtQU8NNx0hlfL\npU8EdY8Mb3eGjw72WC8XRKEkTSIO9g98GmIck6QJSRJ7w70+vX7Culo/l4avXL3Kar1CSN9+Eccx\n/V7OuJ8zHAzJsx4GSdVaZssVRdtQNH5QtDGGWlvKtumiryNkENC0DVVT0eiWqq45OPCzZ02jiYRi\nNZtz9dIVxv0RDtGt6/x8Q89EW8XDvaPzxZxQ+jxs5wz3H9wjjBKf1iMN8/mcsIuTDZTiyvVrPHjw\ngLKqmRwfE8cxYRgyHo3YPzhga2uLqqpw1uGsJU0Swq4RPE1SBJDGPZ+wpDUboyFN69eApGnKarnk\n3M52ty2gJhoMzoYhwjAgUAFVWZKnGXkcslgXRHECUmBNy/bGmLt7e7RtSxgEVG2L1po//t73+dvX\nX0cov2tRBiEf3bmNcIL+oE+xWlM1NVJK6rZFItja3GIymbC9vY0zjd/z1z1m2ByOmM9P+NFf/gVp\nqAi7SNLZBwXb/+DfYlmsUL0+733wHlubWwz6fe4sb/POW2+jBBRFweVLF+mliV/kH4c4JVmtCuIk\nYXJ0zIUXLrDs3kGXVYnEEkhBVVX+UZV2WCew1rEuSxD4PiAMl69e48MPP6RqGrQxOOGQ3aM5Zy1B\nGIDzC9hVEGCVRIQh02LNO3du45wgVOqZvlvxNAwfHx8TJ3792mg04uDggO2tLaqy9DurrSVJUoLA\nD2OkSeINJz0fFtJqxk/JcBpGWNuwPR5zZ+8BbasJg4C6aWm15o++931ef/11UAqFRAaKj27fQQD9\nwYBi/chw0zb+G9HW5hOGcT6Yw2jN5mjEfH7Kj/7yL8hC/xgySVNmH5R84zvf7QwPPt2wFKyL8nMN\nHx9NuPDCCyyXS+IooSxLpHvMsLEYbR8zXDzqZQNevnqdDz/4kPp5NgxPzXESx4RRdOZ4q3NsO8dp\nkhIGIcZo0jRBOEjjiKIsMa1mPBrRtI13nD10vHO2uSUaPuY4esxx9qTjalU8V44nR5MnanH1KbVY\nf0ot9q0QT68WP8uXQHT7gxcEEv/ntZb7D+4RxQnWOJzojEcRSiqUUly5co0HD/Yo65rjycQbDkNG\n4zEH+/tsbW1RVn47grXu7DxhtPmY4QKjW8bDEff3HlA1DWmWsVws2d31tbipaqLBkDBUaGP9HU4V\n+jeZWUYWRyzXBWEU+6CW58jw8eSh4SVJHHe12BBI2dVi8+g84SyrskTgUyCFgyvXfC02tvH7jbuz\nBvgdySroDOsWFShcIBBBxHS94t07t3BWEKqALyrFz0ylllISRzFShcRJRpr3feN24PO8szSlPxgw\nny/I8oymbbh1+zb9wYDxxpi2abp9r/torYkiHwQSRRFht/VhXZWgJI1umM6ntKZlsVp0j/HgZHZK\nGIVMjo+7gSPJ6WzObLFAa0OaxAwHPZaLBYmSSHyc4XS54Hi1ptKa6WKO1S1XLl3kFz9/gyBUoFtC\n5ReTDwYD3n7zLeI4RgYKh6Cua7D4Xci1v4Mrnf/3816PMImZzE9pjKYo1gyHfapyjZICYyxBIHn/\n3XfIksh/sQeS0XiAdY63f/4zRv3c9+/EKZPTKbfu3GE8GnPl8iX/e0nZDXNA29QMhwPOb+9w89o1\nTNMirKUtK5Iggi7hq24MRW1QKqCXpfTSiF6kGGYpG4Megzwji0LyJOburY9IggAppO9/0xbbagIh\nCVVAIP2hQSqJcY4/+u53GfT6HB0cEQVRV4wsRj/b+zWfhuEoith/3PDBAVEce8OBoqhKhJLU7UPD\nmsVqQRB5w6dPzXDD1YsX+cUbPycIApxpCJQgUH4n7TtvvkUcxX6tkIC6rv3idyGp65o0iVHwyHAa\nM5lNaYymXBcMB32qYo2SEtOt7Hnv3bfJYv/4LQgko/EQ6+wThoNPNRz/EoYdTVkRByGYznBrKBof\n3e4Nx/Qi2RnuM8jTR4Y/+ogkUM+9YfjyjpumIYrjJxwfdo6jT3F8Op/SWs1yvUSFCtE5DqKIo8mE\n2XyOFZKT2YzZfIHWljR+6HhOLD/puNTtc+r416vFaRTSS2LuPaVa/CwM8n/eJaXs1g5GxGlG0usR\nxAlS+Td0WZox6A9YzOcfM9xnPB7TtK03fHDwRC2Oo6i7W6koqgqkpNbecGNbFuvlWUvF6eyUMIyY\nTCbM5jOcFJzO5sznS9rHavFqPieRCoHPX5gulxwvV97w8nk0/Hgt9quC6tb6WqwC8izztTiUDLOM\njUGffu9TajHS9x0b4w1L2SV3KpQSCKkwzvH97/4hg16Po4MJURDj8Ido83chIc85R9VUBEqha81i\nuSTv5UgkSjg2trd8z0uxwmKQUrCzvU1b1+zvHbC1vcmf/k9/SrEuaJuWqm4YDIcgYLFcUFUNWZqQ\nxjFVUWCsY3M08j1vccK6WBNGvqH9n/zH/ylNXdOu/eCcwz9GqtYFo9GQVhuatqUo1igVIKWfpr5+\n8QX++vU3OH/xAof7R3z00UfUbcNwMKaOQlrjKCo/GCC79WZRFNO0DWEQonWLkP6dUhtGqCDoJisN\noQowQtAKx72TI7726ovURtMUvgfweO8BddNiQ8GNnS0OJ8d8eOsuBsFyNmW5WLIx3uLo8NDfwS5L\ncIKT0ylHpzN6ecZ0espoNCRPY6r1grIoSNKUzfGQo/37xElGWZaEcYhuNcb44iil6Faw+OlRsOD8\nu64g8hOhbRe8EEUhzjoCFSADhQg8P6M1Ukof1BBGvPXWW2gHg6GPsgyiEIHgwvY27/7i578rpp97\nPQ3D/+L/+Befani+XFB/keH1mrBbuv7v/fv/mKIo0KbFWuffWSOoipLxcEhjNE2jWSzn3rDwk+9X\nzu3w49d/wQsXX6CYlfz1T392ZthGIdZJmraiWa+fMFw/btgZBBYhAlQQ+s+NtUQqxEiBFnDv9Iiv\nfeNFGmseGd7fo2k0LhRc2N1+wnAmQ8IgZGO8wYP9PcIw9HfThWI+X7BY+6HVk5MTjBmSpwlt15KU\npikv3rjGyekJcZJTliVZ1vuE4VYb/7lC4qzxk9LQBfhAK5zfZCGFD19wgJJ0HwJj/ER00E27v/7z\nn2McZHkPZwxJEgGCi8+wYQCEQCh/d1DXmtl8Qd7LydKcMJRsjDfOHJdlRJak7O7s0NYVJ9M5W9ub\n/Nf/zT+nLAqaRlNXNf3RECEE88WCuq7J0pQ0iqjKh47HnM7npEnMat3V4jBksVixLtZf6Hg/3H/C\n8cs3r/Hjt97mhYsvoBvD62+86R0nGUEUEoQJjamoisI7NvqsFmdp+lgtFkRhRNP4b6LPguN79+89\nUYvbVmONBQSF9BsLtHGP1WLX1WLfX9lajdaGOIq+VC2On+Heeessq2JNGCh0pTmdnZLnPRRg8fHN\nUgiW6zVS+zTAzY0xTV1z7959trc2GY4GFEVBv9fjzu079EdDZBBwPJtRVzVZlpJEEccHB1jr2ByP\n/QahJGE2nZ0ZThOf7OgN+/RCifCtXWHAar1CBiFlU/sgnSBEpsIb7mrx+mT2HBp+VIsfNyyl3+Ll\nv959LcZof7h/aFg6tDbgHG3rt7FYJaA77GptUNJvC4nDiJ/9zc8wOOI0wWlLGAQg4ML2Nu/84vXP\ndPRMHI6tg7JuMW1BGAakvYyyqgjDgI2tXSYnJ1hjCIKASIUkccL9Bw8wuua1117j/r27zGcLFosV\naZpi8T1H586fZ3Nzk/fee5+yKMiShEa3xElC0dQ0RlOtFvTynEAqqrJkvVqhlCTJe2itWRQFjbO4\nQHK6WCCVJI5j1nVLngXotkK3Dffu3meY95gdn5ztVHzx5k3uP9hnVRSUVU3d1PTy3PcCtS2ttf6F\ndQ5rDL089wk81vpYRKP9snIcPd3wcp7xYG+fD//X/x1rDFkYsiEVy36Okv4Owp2DA4IgREhFEoTI\nMKLRlsPDI1y3rzCMIk7nM4JAIQPJ4fGEPE58uuCFF9je2WW1WjObzVmt1/zhH32PB/f3/H8bSgR+\nh2GSJLTGF9NYSYzxdxTO72yTxjFxFPLBrds4JwnDsHt3K326kzaPXtMoRhvtUyJxjMebHJ+ekuUZ\nx0cTnHAkSeIfET6j1+/MsNZU7ZOGi/WaQEqSLEdr44fRnMUpyclijlKKKI5ZNy29NETrGt003Lv3\ngGGeMzs5QQj5XBl+8Wsv/WqGd3dIo+gThl1oUYF6ZNj61zRUkT88A8LBxnjj75xhANelpH26451f\nzrFSLJfLzrGgLArOnz/PxsYG7733PsW6II1jGt0SJalf+m9a6mVDL89RXzn+TMfXb1zjwf39LsFO\nIgFjfTzyQ8eR9IOlzqmuFkfEUcQHH3VtEV1y5pepxdY+u2k21jqqpmW9KgiigCzPqOqSIAjZ2N7h\n+OQUazRBdxiNo4T79x9gdMNr33qNe3fv0jTGP/ZPulq8Ljj/wqcbjpO06+nW1MsFvbyHkpKqrGgb\n/ZXh35Bhay1B4Pc2P/wRBAFhl4QqEQjn2NjY4Hh6SpblHB8d4YQjTVPWRfW5jp6Jw7GSgiQMIQwY\nb25QrNa0ArTRHB0d0ev5x8BxFPvpW/wOu+2dc6wWC65dvYpuG6zVrIoVUZzQtg2HB/vUTUOW+Dtr\n09mUKAqRXZ/czs4O+3t7AH4gwWhWZUEcho8y1tsWqRQ3b7zIm++8w2AwwOiWG9eucfvWR+RZzrWr\n1zg8nAA14/GYyWTCRr/n06CSmGrVopQkimJm8ynaWJK8hzWWwaBHVZSYrn94tV7T6/XQbe0H9WYz\nnG4obYNpNcOdDdrWocIAJRV3794j1Q29PEMaR1GuieOUOPN7AjfHI5qqwjnfI+WAqqoIQl8UtCvY\n2toG64ijgKOjY9I0xhpLEsdYa2l1QxSFfOOVV5hMDjk+naGU7AYz/I5Y4XyEpnMw7PfIk5i8l2Ot\noapqjLFsDnL2Dw6oarCBJIoiXDeJGqhuv2EYUqzXmO5zkaQp1rTkWUqSpr9Tp593/dYMT6dE8WOG\nd3fYf/Axw8XaO28FcZxgtJ9cf/nmTd585x2GwwG61dy8dpXbt26RZRnXrlzj6GgCWEajMcfHx7/f\nhnv5pxqWwU5n2H3CsFESJfwh+nHDcZri9LNvGHxgxGc7nnzSsfuk44PDCcZqlusVcZzQNg0HZ45T\n1sWK2WxGFIW+3zMI2NnZ4WBvH4CqqWi/cvzpjtu2c/zqE46FENA5pttn7Kxj2OuRpw8da6qqwRjL\naGP8pWrxs9w7r6T0j+wDxcbmJsV6TYt/uvOwFi8WNVHXQ29wOCnZ2tllNZ9z/epVfvHm25iP1eKP\nG/bnCZ+2F3SGz84TTU1rfLLcV4Z/M4azXs7e/gFV4wiEIMqyR7VYSqQUneECrQ2r9YokS7Fak6cp\n6RfU4mficCyF5NWvvYQKIj58913yPMN260diFWHblmEvZ1lWDPsDlFT0BwPapkHHMdPTOVEc0Qd2\nd3YwpqU/6FOXNWmccnI6Iw39+pmqKOmlGUVRUlY1Vy5c5HQ6JUszkiQjTVPSOMJaQ56mtE3LlatX\nee+99+mlGS9dvcrh0T6JNty4eYOjwwl3jw4pFwuiMGRzPGJydEQYJ3x05y5IQdTvo6QgH/S5en6X\nvemUxmkCJSibGqEgSmLKqiLJMrRSSAruf3CLF7fPoawlNAoVJejWcTxfYKwlShPkxojjqiRoQSlJ\nL01RXT9YHEe0kxPO7ZzjuGgwwqDXFdmgj20tEkuqQg6PJ/7wtXIMBz0/HCAVVdMSxhHVsiAQkslk\nQhDGnDu3y2y2wNqGLE6p6hKUwhIgdIVCUDUNuU1Jo4BeEpP3epyenrDR6/Hzd99BhglVo4mVJFSO\n1oTUXUSnEoo0yWiaktY0SCR5FHHYxXQ+i9fv1PDFJw0naUqaRDhjyNIE/dDw++/RTzJeunKVg8kB\nibZnhu8dHVLO50RhxOZ4zPFk8lwZrled4ePO8PldZtNf3XBdV2z0cl5/911kEFE3mjiQhErQmoDa\nGB+rjCJ7zLASz75h8C0mv5Jj9emOB8Du9jbaaPqDPk1Vk8YJJycz0tC3o1VFQT9NWRclVVlx+cIF\nprMpeZpjY8dssfzK8cdr8erTa7ExDXmcUtUFTikcAegKJQRV3ZBnKWkYkicJvV6POI6+VC1um2e3\nd15Kwatff4kgiPjgMcNSSJIgwjSaUZ6xLEsGg4GfBer3aduW1iRMpzOixNficzsPDfdoqoYkSjg9\n/bjh7MzwlQsXveHEG15X5VeGf0OGEa6rxe8gg4S60USBJJTQGOlrcV2jhCZNM5q6otU1CkkeRxw8\nuP/5jn4LVr/4EnD3wR6VMVx98SZZr4cIAvrDIefOn8M4R5hmZFmGcZbFcoExhto6Zqs183XB5tYW\nYRwxGA5xFvb3DgnjhOliQeU0K91QC0c6HlDpFi0cUZaybBtMELBqG7QUpEmMc448z8h7PaI45vbt\nO0RxRKAEh0cT1mVNMhpxb3+PpqnBGMbjMXmvx9FkQn88ZFmVEAZkoyG6bdje3ma8scHd+QmVNWQq\n5vxgi34W861vfhPd+DSYK9tbbJQrNiZrXu1tUR3PKJYl91dzPjo54qOTCadNybSt2J9P2ZueUtoW\nrYA4IIiis7uKeZJQlwW78zWbeYRxoOKYJIy7Pchr0iyjl+VIJQmkotfrMRyOOJ1OuXDhgm+O7/UR\nQiAlBEqAtbz2B69y6dJlvv7SdS6+sM325gjXlly8eImm9bno4IijuLtb5ijWBc5Zbt64TqQEoYTV\nekVrHOti5YMApGSxmDE9OeaP/vC7lMsVYRSjjeNb3/n27xjq51zPlOEE5xxZnneGI27fuU0Y+7aW\nw8mEoqyIh0Pu7T2griucNYw3Nsj7PY4mR8+d4TzvDAtvWJjPNnzpcwyvO8Mv3rh+diherded4bUP\nFpKS5WLGaWe4OjNs+da3n2HDAIgv7Xhrc4sgiugPhzjr2N8/IIxiTufe8do0NNKSjQdUWqMFRFnq\n/QYBy6ZGK/mV41+2Fn/jVS5fuszXXrrOxfM77GyOcI13XLd+E1ofRh8AACAASURBVAEPE9XSBNyX\nr8VZlv2uoX72JQR37+9RacO1F2+S5vljhncxWMI0I80yjLXMl/5w2BjLbLVmtvKGw/hxw4cEUcx0\nsaDsDNdPGH5Ui3UQsGy/MvybN1xireXF6zeIlSCQgtVqTWMt62JN29SESrJYzJmeHPPH3/su1WpN\nGPta/O3vfOfzGT0LU6dJnrvrr75Gawxt2/idxEr5/qdyTdE0hFECRmOBJE0Q1tEah1ICrVv+h//2\nv6NuG9q2IQsjzu3s0OiWo8kx21tbtMawWC2Jo4gARdrLOZxMCMKIuq4JwwBrLP/VP/unzFdLtLXU\nZcnW5han0xkAUjiiJOXGtWv88Kd/Q5REXD33Au/d+gApFCjJeDCk3+tRlxVRnHD77l2iwE9PJnmO\naTU2CHHWoOsa0TbsZCHNakbQaJrGsmg0q9UCa/06ExAY4Xx8Ik/umLTOMej38AE0XVN7oBDOkqqA\nC/kANz0lTQacDnuskoh+b4AVFmt8UtLmcOgfY67WBEGAtZqtjQ1OTk66+MiQPM+pqoLBoM+gN0Ab\ny/2DA+brgsZopAq5evESaQASRxz49ThKKT/w1Gqmp1OEFBjriAJJ1Wpu3d9HBCHrYo2Uiq3xmNlq\n6ROBtna4decWKkkpVivSKOSHf/Hnz2T07tMw/L/9z//LUzH8n/yT/4j5conpDG9ubnE6nfrVZMIR\nxwnXr13nhz/9KXEScfX8C7z70Qd+bZlSjPsD+v3+c2V4tSqeiuG6rpFCop0lDhRlq7l9ZniFlMGZ\n4TgI2N3a5vad22eGkyjkJz/8/55JwwBZr+++/t3vf4rjCF0Wv5Tjizs7VG2DbluyMGR3Z4em1Rwd\nH7OzudVtWFn6GQQhyfKcw8kxKgxp6powCrHdUM1Xjp90fHh0TO8xx/18gLGPHNdao4LOsfLfs55w\nLAStbkni9EvV4vff/Dmr5fKZXHec9fvule/+EY0xXTuBIlQBURTRFgVl66PjnTZY4UjSFNElYUop\n0bolUZK6aWh1QxZEnNv9pOH5aknyhOEJqqvFURhijWFne/Mrw78hw6KLPzfWEYWK6qwWBz5fQiq2\nNsbMlkviIGR3e5vbt28h04xy6Wvx3/z4h59Zi7/wzrEQ4pIQ4v8RQrwlhHhTCPGPu1/fEEL830KI\n97u/jrtfF0KIfy6E+EAI8XMhxOcfzwGllO/t1S0qCBFI4jBBSEmS9QmCoMtJByugqP1k5zDPiIOA\nzdGYumkp6gonJWEYc3R8gBLw0vVrLJdLtDW0xrAsClam5qO9+5wWS1blmivXrmCd5ur1ywgBrTYk\nWYZSiv3DQ7Q1bJ/bZVn6fPBitWSYpbRFxf0He6wajZMCjeP49JQ3797jo4N99k4OIXB8/do1hDbQ\nWmQgmU1PKOZzaBu2zIqwWLFaFtxfVRysChZVhbagAavACR8LCiBwGGH9DwxOWFzXJymkJPCRIYRx\njBOSk7bl7emahTSk799mkIQUuqYuaj+IgWO+XBBHgd8bai1BGNE0rY8njSMuX71Er5+RpTlKhFhr\nWK4WrOoKKWwXVGLJ05C3fvEm1hqiIMQ5P7ThrOsa5WNEt3ZJyoBYKa5eOs+Na5cpqgoRRBzN5hR1\nzfF8yevvv8dCa+bLFa2D4Xj8RZT+zhte/6qG159h2GjiLEMqyf7hAcZadnZ3WJU1KgwoVgtvuKy4\nd98bRkg0jsnvieHV+lc3HMWJ30/u/G7NRCmuXjzPjauXWZf1I8NVzcl8yevvvc+81cweGh79eoZ/\n546F+uUd1z48xQpJEMYcTQ4JpHe8eOjYGpblmpVu+HDvPiddLb58/QrGaq7euPKV409xfOXqxccc\nB1inu1pcIoQBLOKh4zffxDx03A3QWecIgvBL12Klfr2OzN+KYakwTYNsHzccI4Qkzfso5Q0753CI\nM8ODLCMJFVvjEU3dnSeEJIxijiYH3vC1R4a1NSyKxw2vfC2+fgXjNFdvfFWLf5OGo+ihYZBCESvJ\nlYvnuXH1CuuqhtAbXtc1J/MFr7/3HnOtmS9WNL/EeeKXaavQwH/gnHsF+GPg3xVCvAL8h8C/dM69\nCPzL7u8B/iHwYvfj3wH++y/6DazxO+dqrUmAXpZQtyW2bWjahjhM/P98mpKnOXEQ0RhDWfnBjfls\nisNy6YULjPp9giSiqg0nJ1Pe/eB9Njc3WS4WaOtYVDXLZUkaJwyyHr2sx0d379AUNT/86d/y4d4+\nLgx49/2POF2s2docE0nByfEpYRQghOQX771P2TTEaczm7jaDJCHJeggZkCQR/8Y3X2OY5TR1i9GO\nD+7fJ+4PWKwX7A7H4GAYCZLVEZW23Dk+ZlGWYFukcuimwXbv6yQglUQ4h+jS8pSTSCexxj/5LcrS\nx0o7i5a+kd1ow97kiDv7D6hFy73plKN+yKixNK2PxZRSIBH0B0OcFahAEYQBSgbsnDuH6vZeFqsl\nbV2zvT2m308JAsl4OOC1F2/wBzdu8I2XboAzfnVVL0e3hvlyAQiKosB0+efOGAT+UFE3NWVVk8cJ\nriw4f24H3bQEyq8Ia4xBSIUzln6/RxwE8OvnMv2dMXz5VzWce8Mf3r1DXdT88Kc/48MHexAEvPv+\nh0w7w6GE4+MpQeh3nL753vuUbUOUJGztbjNMEpI8RwhF+ntieDT4HMP60w1bo71hJanrhqKqyJME\nVxW8cH4H3TTesLPUxiC7AIJBZ/hLZov9FhybjzmOvWP9yzu2wnL5Quc49n3ZxyenvPvB+2xtbXSH\nC1iUNatlQRYnDLL8Y7X4K8ef7njlHW+N6fczAqXOavE3b9zgGy92jq13bB6vxesCa6zf1PKla/Ez\nbNhatDHUpiVB0EsT6qbC6pamqUmiGCkUUZqSpRmxCv3Wn7qmNYb5bPaY4QFBHFE1huPjU979sDO8\n8IaXVc3y44bv3KEpKv7yJ3/7leHfoGFrjQ9RU/Ixw7Gvxed2MHVLoJSvxdYg1CPDSaj4ovPEFx6O\nnXP7zrm/6X6+BN4GLgD/CPjT7l/7U+Df7n7+j4A/c/76K2AkhDj/uX8I4QFvDDdQoWJVFqyqhpNV\nSWEaGqcp2xprDLptaY3BCGidBSFpnUNI6fcPphmL+QKtFKWxiCjh9p3bvPLKq2yMRihn2RgNmM/n\nFGXB3v4DbKtpcQyyhG9+/WUubW9xbmtMnqUsV2tmiyVat5i2Zr6Yk2YpceyjGtfzOa++dBNbrPna\nlcuc29zijV+8jsAQSUEWhfRHI0QUMxiNWRqJbBf01ytqK5jM51TGYpAESYqRiiiNsEJhRYAVAflg\nhMr7OKFwziCkQOCQ0m9JcK3GGYsxFgssViums7l/ZKIUMgpZm5a1cBy98SZjDOti6fc2tw2z2Yyq\nKmmaGikETV1x7959oihivlwg8NDD8LGJ5sDvFI3iiGGvx/e+/S1mkyOuXLqIwLG7u3u2LL5tW5Ty\nRVhrTav9u0ipZPf4Q3LjwnmuvbBNtZox6veJQ0UgIVKStirp930/969zPQ+Gb925zSuvvOIN208a\ndq1G4xhkKa99/WUu7mxzbmuDLPeG58slRjeYtmG2WJBkmTcsJevFnFdffhFbFHztyhV2vzKMcJ9u\nuGl8KpPWGodDKcV69bjhnc5wjyRQBMIbbsqSXj/n6PjXM/xbcyxl53jcOS5/dcdCUj10vFiiVUBp\nHDKKuXX7Nq9+/RU2hkOkc4zHQ+aLOUVVsr//ANdoNJZB+pXjT3MMeMeRf6phrUWph45jhr0e3//W\nt5gdf6wWO4vD0XapYV+2FusvCFD4nRoWgn6SsDnYQIaKdVmwqhtOVgWFaamtoWwbrPGryLQ1GOkN\nOyFone0MN10tXqKlorQW8dDwKw8NWzbGw64Wd4bPzhNfGf5NGm7qrha3+qx2PTJ8jmsvbFMup95w\nEPiNFkrRViW9Xu8La/GvNJAnhLgKfBv4EbDrnNvv/tEBsNv9/AJw77H/7H73a5/9cf2UDK3xBTWQ\nikAI8iikqirKuqZ1lqKuqHSLVJLVekWUpRgctfHYT5cL7h8c0Di/izSKItI4Jggj3n77LabHx3zn\nm99EGEM/SdkYjuj3cy7uniNMEwLgzdffYHZ8ikTQ62W0xmABZ41/J5cl7GyMsabBp3Q4sjRjOBgg\ntWX/cEIYxYyHG5RlRdlqisWC2ckxgzRF1QUb2rLEUDT+G6wWgpuvfYt4+xzJ1jk2zr2A6vWwcUxv\ne5sSaOD/Z+9NeizL0nStZ3W7O631Zt5EkxlddpVVkFW3uFVISEz4BYwuXDFhwoQxc9BlwgDqCulK\nDGFwEUgwoZtRSXGryZKoqqwkKzIywsN7606/z957dQzWNnOLJjOyi0xLZCsUcpeZu7nZOc95z7fW\n+r73JRpFVJoYUvSviK/2PovFgs16zWa1JvrIaDhKFyKBa8ulzbqlzSSLjx4zmo65uLxAa0VZFmzr\nOvkx5jmRyGqzRn4q7nazXveZ5CmZRsp0QlaYDLfdMiwLBmXBqLedKcuSIi9QSvUR2qa3a0nXt0Ve\noLVOyT7OMcwM33jnbQZljhGSwmQ8vH+frmlYr1Z8Yd7jz7B+Wxk2JuMHP/hBYvjbX8Dw3/wt8/ML\nJDAcDnDep2vwkE6AqrLgcG+H6CwiptCWsqyYjEYI73lxx/BPZFhrnRiOieE8z38Cw0X6XjLDw/v3\nsG3DerX+lTAMXx7HiCuOu1+Y48ZaLlcLnr58gQ3p9DwzhiIrei3+AZcX5/zrv/MthHcMi5Ld8YTh\neMj945Oe43jH8U/iOMJmveHK9urq/2s/2+bzOc7z/Fenxb+C9aUxLAUYhQ0dg7JCK40SqbBsmoZt\n19BFz7ZtaGyHUCqFz1QFPkLjAltruVz2DMeUopmZjLJn+O9/8PdcXlzVEz3Dk1cMZ3cMf+kMa5PC\nPCIRJRVF0TMse4bzxPCwKDBSUJqkxV2zZb1epffsn7J+5vsRIcQQ+B+A/zjGuLx6YQHEGKMQ4uea\n7BNC/IekaxK0MTRtyyTPCd6TiUg1qhBCU0qB0IquaxmWJSbPcNYxHI4JTYMJkUlRYYRKVwRZmg51\nztF5y6ja48HXHvL4o0ecHByyuOhDOjJD12w52t/n7PQFB7t7nFnLO++9jVaSE32EtZYff7BmuLvH\n4b17fPDRj8A6bNsxmY45ffYUZw2nywXz1YKz+SXOO3I55N7JCefn5wwmI6TSNPWG5WKOmJ0TRGAx\nX9PpjGL3CCclP3z6ElSGFpIqyykzRb3ZIKVBhBatNJumQSpBDBG8wyiJVxBdSLnjSkCUeO9ZLFMs\ndgwRQfINFAjOg2Ov3hKE5N7JCfPlgrIqyFRK83r+4hSpNEZCWWQ0bUte5LRNS14WEFOK0na7TROn\nKmM2n1PkOcNhRd02ZEoTfcAYQ5ZntF2LjwHr3fWpXXQWJzwxRkTwCCExuSE6R+ha7h/s0LYNO1VG\n+eZDEJJ6W/88iP3WM2x/AYZPreWd995BScnJyTHOWn68WjHYSwz/+KMPiM5hm5bxzpizZ0+xtuVs\nOWe2WvYMe3J1x/DnMey8I0bwMRCs7YvrCH16ns4MwSeGHxxMaZuWaZVTvPkAISSb+pcPAfkyOTZZ\n9rNznGU49zkcS4UAtElRrdZbOhcZV0Mefv0hjz/8iJPDQ+YX6RAicdxwtLfH2cvnHOztc2rP7zj+\nHI6rsqBpmpT2FSPB+XQNLgQyU8zmM4q8YDj4NMeaPM9/ZVr8/vd/uU3er4XhLMc7hyGwP6pAaEop\nkVrStR26KtOgqXMMh6PEsI9My4q6XqfbJpNDBOssnQ+MqwEPvv4ejz98xMnhEYuLSwQ3tPgTDJ/x\n9ttfvWP4S2I49IFNVwzLkHqlXfAIIdBZRnA2Mby/Q9u2n6kn/u6nMPUzFcdCCNOD/N/GGP/H/sMv\nhRAnMcbn/TXHaf/xp8DDG3/9Qf+xT6wY478A/gVAMRhG61OPiZeCrfVMypJgHU1w6CgYjsZ4lwpT\nqRRRCiQa21kGwwH/5T//E/7h/ffJjEm7CecgRMrhgFwrokt9cYPRKF0HWovJMqqyoMgKLmYzZGYY\nlhXPnz7ltYcPeHl2jpSS8WjAi6ePiJuGvYNjFsslO/sHDB++zunpGRfPXlCWJXFds7+7z+XFJUVm\nmE4meALrszOGriGeX6CCogkQyjHDvX1WdZsiGY0gesfDe/fw9RY1nXJ5OWM+u8CH3lpuMKDrGkSp\n6bZbcqkgRIRUhBAREaLo+3tjuhaRvNoNOgLBexoZ2DGGtmu5vLygMBneWlYvX7K/v89221DmQ9qm\npShynnz8mDzPOTs7I+u9dkPfXJ/yyQXb7ZbBoEJqzaKuGQ9H1HWdPF+VRhtNVVbJIsiYlDYWY2/p\nIhEixT5qrdlsG3RW8LVvfIu/+Mu/YmdvH28d63X3s+D6m2G4GsTWWpw2OBHZdJZJnuNtR+06jDBU\ngyHBO9ptk05oJNBPRw9GA/7Tf/af8Q/vv48xKbIY6yC+Yjg4T7NNDFtrce5zGDaGqig+ybBSTEZD\nXj79mLhp2L/B8Oia4ZdUVUm9rtnf2/n/HcOL2Twx/PIU0zMce2ugdIIBZ8slg8GAzBiaest4OGS9\nXtF2SXO00fzRP/6j6wh4faP3MjEs8N7hYuT9H3/EZDLh7bfeSgzv7uNdmuD+P/63//3WclwOhrHe\nbsmReB1Z1w3TkcLbmnXboIOhKkqC82w2m5S4JSQIcLZjMByRVyXvv/8+JjP9k5YKsdl6waPnHxOt\n46NHjxiMhj3HDp1leGfJ85yPPvoIYQzLtbrj+FMc27YPoVitrznWfcqad47MZGw2GwaDAeWgoqm3\njIZD6rpmtVr1HAtCCNccC6GvB0+9DwgRrzm+mM17jt/mL/7yL9nZPcA7h3O/eELer0OL54sFohzg\ntWG9XjEdDQluw6pp0EYzKEq6rusZVik2XdDXEyPuPXz4uQxfbpasP6qJzvH46dPEsLO44DF5KqQP\nj464nM2phiOW6+0dw18Sw0IIrLVpKK8/kb6xx8JaSyByuVgynU54++13+Iu/utJiz3q9/qmc/ixu\nFQL4b4AfxBj/ixuf+p+Bf9r//p8C/9ONj//7/ZTpHwKLG9cln7t88ITM8OTygovFjKA1F/MFx8fH\n/Q8v6GyH847haJSsPIKntR7XJ409/vARu8MxX33tNd5+7TVODg8REup6w3azoaoqQoys1uvUeG8d\ns8tL1usNL09PEVLhfWBd15g854MPP2Q4HoNSnJ2d8vDkhOF0TBc9bXQ8P31B1JLx/i5CK0bDEbs7\nO3jr+N1vf4u//uvvYes1cr3iW/f2ePton6PDE4SSzJuOf/TH/xZCSA7HFd956w1+/723ePf1+9Bs\nMVoRhWQ6GWHbDVmRp3xiwJic8WRCVpR4BD5CFIIQI1GQGtVjQErFTaMWIQRRCaRUWCWZz+cEYDge\nc35xwe7uLmWZfAy1FAyrKqXWkDwt8zxHCvGJ/qB6UxNDREnJZDxGK01wHqMNq/UaEAyqAXmeX/dp\nZpm5FmZIRYUxOr0YhSDGFE/aOctf/PVfs3twwP7OmDJXfOsb734Rrr85hmMg5IbHlxdczOdElRg+\nOTnBWgs9w9YlhoUQKc++8/j0TfL4w4/ZHU546+FrvPPaa5wcHYKEerOm3mwYVBWhv6JquxZrLbPL\nS1arVwy7O4Y/l+HBoGdYfprhDTGEGwyrnmHNar1GCMFgUFEUVwxbjDH44HuGY89w6p8TIp2q5EVO\n5xx/foPhIte/MMO/To59nvH48vya4/PFkpOTEzprr9+QrHOMhkOEkNjg6KzDAUjJk16LE8evJy0W\ngk2vxYNB75G82aQkMWuZXVywWq9T0qhIp1V3HN8ijr/3PXYPDq85LsviVjMc8ixp8WLWM3xVT3QI\nIemsxXrHaDRMTN+sJ6S4Y/i3gGFrE8PBJ4ZjfMVwCAEp+3qizOms7bW4ZzhTfPMb7/10Vr/I51gI\n8cfAnwJ/C1xtF/8TUp/QvwReAx4B/26M8bKH/0+Afweogf8gxvhXP+3fyIoy3nvv60gbaUNDlJoi\nLyiVZjIoOZ/PyIoCZzsKkxOCx2tFt+3IirRLaZ1jVJUMjMG3LcNqgCkL6tUaYyTrVc3rb73F3//w\nH3j3q1/h9OVLppMpHz9/yv7eAReXlzTO8fDkiHZbc7B/wPsf/pjj42MypejWNVmeUeYFOjN4F/HR\n8fjJE8pywMuLc/b299KUbLtlOpry+Ad/x54GWQw43p+ynF/w/umMb/zRv8k0K8C1NJ1HaMW6bjFa\nYtsWIRWX8yXC1swuTnl+sSAzJdPphBgDXdsCILUiBJdOAACJIFoLMfXhhJCmUSVpl+VjoJAKkeVM\n33kD23RMp9PUU5YZqrIk0yb5PGb5tTimF0baiXVdRzUcsFqtGQ2HdE2TLHLKAqU0XdemSM6QpqEj\n6XTO9jtCY0zaaVuXfCetJcuy68LYekdeFpzPZrx4ecZ4MqVpO7yAznn+7H/9X35uj9hfB8OmKOPJ\nO+99guGyKCmkYjqoOJtfkhcF1lpKk+FDwBtJV79i2BMZlRWD7JMMb1ZrMi1ZrTe88dbb/P0Pf8i7\nX/0qL1++ZGcy4dHzZxzs7XNxOaNxjvtHB3cMf4rhq/OOVwwPWa9WDIdDuqZFSkFRlP2gR5tas/wV\nw5Dl6fr193//D665dc5hjOk3fVcMp+n+vCy4uLzkxen5NcMOsN7zX//n/+wX8jn+tWhxWcXXvvEt\npA00vgGlKfKSUiomg4rzxYysyLGdpcyy5NJiJG1tyYqUoLdpt4zKkspkhLZNp/FlwWa5whjFepU4\n/v4Pf8i7b32F05enieNnz9jf2+diNqO1lof3ju84/pI4DiH+XBw/Pz1ncoPjv/3zf8XmF/A5/nVp\n8b13v4a04UY9UVKqnuF5z7C1lCa1D3lzo57oLF1wdwzfcoa7zt5g2GJMdoNhCCFiw02GzxhPdmib\nDieg846//e53f6IWf2FbRYzxu7w6Sf/0+rc/589H4D/6oq/7iSXgtZNjnjx7jqBACdjUKzYoVk3N\n/t4evusYjMcQIsvViiLP+MobD5jNF4QsYzie8NHjjzg+ukc+nfL99z9gOKyAiK4D9x8+5IMPP+Do\neB+jJa5t2T3cYza75MmjD9k92KcUGc+ePMY6x3K5Icsr2s2W2WbFa6+9zsXFOVFKHn3wPkU1Qkl4\n6523iN6T55rxeMyLly9pWgdZzbDIuWjWVOuai0ojMNx/95tcPnuJHw0o8gyls9RqoFIIjFQarSWE\niEPjXOBoaOgQnJ2fs7u7k3wKhUD1V2KjUYH3nq7tKIuSt958E53nfHz5ktILXj76GOtdunoQ4HNJ\nXdcUxZD5bM67X3mTvekOFxcXdC4Bm5kMhMA6T6YFRmuCVJRFiQSm4/HV842U4FwKSEgfgxgDSmtC\njNjOUuR5ypaPAe98srFRElwaTvAxopXGZBnn5+cc7O5xOJ7ig6caDfnwyVPmq59+DfKT1q+L4ddP\njnn87MU1w+vNkrW4wbDtmFRFYni5osgrvvLGA+Y9w5PdPT76+COOx/fIJlP+/kcfMBhWECMm3mT4\nAKMlvm3ZPdxnNpvx5NFH7B7sU9wx/LkMaykx2hBVQJeJ4cl4jADaGADVM9z0DPQM97carrPkRU5Z\nFPiQeo+vGfb97VeIaYjSGC6uGJ7s4LxnMBry4dNfnOGey1+PFh8fJY51mbR4s2IjFMt2y8HeLq7r\nmEwSx6vlirwY8OYbR+n0KDPcOzjkw8cfcXQ0IZ9Oei0eAAG9jdx/8JAfffQBx8cHZEri2oadw68m\nLf74I3b39ykLc8fxl8gxiF+KY/Fzl8XXTH7pDIsrhp+/AEr0TYabxLDvLINxCSGwXDYURcabrz9g\nvlgQMsNovHPH8C1nWEmVGHYOrX8yw+dn5xzu7nI4meJ8YDAa8uMnT1h8QVvFL2VY+KtaQggen52m\nKeUATb1hkOUgNU7C5XyG0obL9RpBRCEQbUcHKBTns3OapuFgbx+TaRrbsHewy+xyRoiRB4fHfPTo\nCTrLODu9xHeWZbPlz7/315R5DkqRmzR1vpQr9vZ3GI/H1Js11lnKwYiPnzzjwf1jLi8u2ZlMWW1b\nVtuajx494ejokIOjQz7+8BHb9ZqT/T1styV2FhMEW9+x+PAx9956h+l4xKgsERI2depd8s5TlgXL\n5ZoQA0YPmE7HnJ+dkucFzaZBy8hASzazOa+//VXOz8/wIQ1RbDdbhBTphNZbOtvS2o7v/N53+Ks/\n/W6ajEUQBUghef3Bazz86ls4Z9NuLHoWywVFmd74iZGmS4EntrPEIsPHCL3Xq6D3DmxaiqIgxIjz\nqfe46zqyLLv+vdIaiNR1TZbnxBiuo0edc/Re5EQfECr9WuQ53ibgtTHYuuXh0TF+++g3A+jPsCSC\nj89OMWWOia8YFlJjpeByPkdpzeVqjQCUANnaa4bPZudY5zjYTwy3rmFvf5fZ7IrhoxsMX+Bby2K7\n5c+/9z3KvCDKVwwv5OKO4U8xnGWaQCSGgECidNrYNW1DURZJdH2yBPoMw0oTgbquU3BATK1GgiuG\nI/QT6BpFCIEiy/GdRRuDNhq7bXh4eIy7xQxDz/H5KVlVYEKkqTdUeeLYCbi44ni9RkZQImmxJSYt\nnp+TrTcc7O9hMkNjW/YO9phfXuKJPDw45tHHj9Em5+z0Atd1LLdb/uKvvkdZ5CAleZZhlGa1Wt9x\n/CVxXJbVL8WxFL8a15UvYwkEj8/PMOUVw/VnGNZX9USMn2JYcj6b0TbdHcO3nOErW86qqvqZpSuG\nI8H71JYRAmWe46zDGH3N8GtHx3zYfPxTOboVxXGe5YTOYwPE3n9US4F1aSJxWBV0LhBDJEpQSpAZ\nw6OnT3EuXSPM24bLpobpLrZtiUaxv7PL87NTNvUmPfF9sXZ2eoHUaSAsG1REJVm2W5YvF5wcn9C2\nDZezGaXWdE3HfDPjX/vd3+FHP/6AKATeB7721a9wfnZGp8MLdwAAIABJREFUNRiwvLjk6XbD0cEB\n9Dnq5fE+vu2o25p3v/Vtnv/gh8y1YL2YoWNg02yZ7uzQbRuEFLRtR4ye4WAIEWaLS2LwtE0LIvVD\nGwVaSUbjEfW2pus6QghUhWJbb/BtjUFwf2+P56cvmZ+dc3FxieofZxEAI3jjK29Sb9NuubOW1XJF\nUaYBBSEls9mMxrq0q/QpOacqQEmJROC8T7s1Y3DB03UWKQXGZCite7/ehsyY6+sOnclrb1jrXP8i\nipRlidaqv2KxjMZjYvAJ8BAQAhSC6ByvP/zpDj6/yZXnOcEmhukZVkJgfSDYxLB16c0nCkAKjNF8\n/PRZejyMZt42XDQ1THawXUvU+jMMh15kzs7OkVpDhGxQJoabLcvFgqPDozuGP8VwHjSVECghkSLi\nncc6h9YG532abRCpX02bxHDXNv21oEuDqDrrGU5CfHV1V5YlSunEsO0Yj8fE3h85+GQBCWlA5vUH\nt5dhSBzHLtCFDnzsrZEEzgV88IwHJdaFZOkkkhYbo3n07Fl6TLRm3jX48w1MPK5rQSv2d/Z4dnbK\nervBh0CwvRafJS0mRkxVUSnFqmlYLBbcu9Pi3yjHo5/CcW7Mbw7SL1h5fqOe8L0WXzEcPeMqMRxD\n6qtNDJue4b6euGP4t4pheFVPXDPcdYwmiWFivB4ojEjwjtcf3PupHN2K7V9yNEh+o1rK1LsaIo6I\nkoLWOpztqLSmUDoV0xFC05EB+5MJ0nsUgsezGS/ajtV6w+V6yXg4SGbWMeJFpHEdQUmcdygiOOga\nS/BweHTCZr1iWKXs7cvZjCIz/N63v8VsueDk8IBvvvceB3t7gKeaDLlYzrn/lTeYTCboqiR6S901\nbDZbGiH4xu99h5cvX/Lwm19HIyi1YVhVHO8fQN8fI4XAB4dCsq43zJZzJnnGiycfQ/RIqZFKUWQF\n5aBCm4zDkxOGkxHOdtSLC0y04BzBNnz04x8xwDJ/+YwYUuIVItJFi0Bxvlyy7mrmywVZZtjd3WVn\nOuXo8AjvHA9OThgPB8yWc5yUeCGICJqmxXkPIqXSLDdrmnqLlJK6aVhsVjRdR3CeajAgyzOUNsn+\nCoGSKeO+zArKoiQ3GQLo2o4qLxiUJU2d7NoCkRADtuvonKOzNlnO3NLVtG26ZuoZltLQBV4x7DzW\ndpRakSt1zbBv2sTweIzwHg08ns8Tw5sNl6tPMhxE6BlWOO9vMNwRQuTw8I7hz2dYEoG2bfDBg7zB\n8PaK4S2LzYptmxguqyEmz9Jpg/cgQKue4Ty1WORZhohgu5aqKBiWFU1dp82fSBzfZJgvmPH4Ta/E\nsYAQkxZLjfURR0CpV1pc6hQ5nJucGAW+6cii6Dl2qCh40mvxcl1zuV5cc+xjIBBoXUuQadOsADy0\n2w7vI0eHx3cc/4Y5bn8ax7d4NW2bLMpu1BOJ4cR0d5NhnbQ4RnqGYX9yx/BvD8OKMs+peoaJYNue\n4aqi3dTpNoTkz9x1ls6nAeLrjvefsG5FcQyQm5RgYp3Fe4cWkp3hiPFggBGS8WDIzs4UKaCzLavt\nhnIwpLGexjoyqRnlFcOsQPuAMjnrzZa6Sb3KeVkhlcaHFNxRFAVlVWLbmlxLgm1RBBAwn8+YTCe8\n/sYbKKN58uwpz1+8oBiOePz0CcYoVss10Xkg8nff/zs2ruOH7/+Iznl2JhPOXr7kYG+PZrvltfsP\niD5wfHDIyck9siy7nqy0vQuHDwEbPcE7mtWKD370PlnfCxZiQAmISnD88CHz1ZJApKwq8qJA9FY0\nWivK0YSz2YIXZ2eMBhVE0DrlolfKUO5OqNuGXEh2plPKqsJ7x3y5YLlZEwU0bUduDG8+eI1cpiLs\n+cuXNLZjVW9YLJecXVwQfKDtE4aW6zVKa6QAH9y1jyyka+j1epU6zURqq7e9wIa+VaPtujSkFnw/\naSoJfZb61fSp/QVTmX4dSwCFMSgh6JzrGRbsXjGMYDwYsDOdInvnis9jeHjNcETqnFV9xfDkBsNp\nJ1wWec/wlkzLdJIh7hj+fIYdz1+8pOk6lvWG+acYtv7TDHu8s2y32+uet9VqnSyfZOoGsn0yU+g9\nP9v2iuHe9khKvA/EmHywE8O3u7AQQN5zbL3FB4eWSYsn1QAjBONqwO500h9cJC2uBkMa62icIxOa\nUfGKY2UyVpstddMyHE8oygqhNN6njUJRFhRVgWu3r7S4TyS44/h2cvxFg/y/ySWAXBsUPcP+iuEh\n46pCi6TFu9MpSgja7gbDztFYf8fwbwXDvWsGXOtqjAGEoG1bfPC4EFLMtJSEkB7f5I4V6L5Ai29F\ncSwRqXioKqqywCiZ2iraLSpEMqXRMk1eTsYTtFTJS887hBDMF0ucEqxdh8MjdNodFmVFNRjy9Pkz\n2q7FGJOazgFEZDQeIWSkyjP2d6YoJSiKjPF4RFUWnJ2dEaVgZ3+PnZ0p3//7H7DebhlNJ1yuFoTg\naTZr9nYmGKlREd588026tuXhg/vs7e5SaINtWrbrDYOiRBud+mW0ZrttsF3yXPbOpcnResuLp48J\nwfEJH3Ql2Tk5wWsDWlG3LXlZsbO7m3yAe0uUtmsIUtK4kE56uxaTp54dheT1t7+KkorBYMD55QU/\n+uBH+BDY2dnhxYvntG2HVJKDvT1CZzEqeRiPxqOULtRs2diO2lq2XUdeVpzN52yt5emTZzgip5eX\nfVhC7L2MkydssjKzbNvm2iu5KIoEqk1XMFcrhNi/ECLbqx3mLV5CgBb0DOfXDHdNYjjXNxgejVN6\n0BXD8hXDG9tho0coSee+iGESwyIyyHP2d6ZIxR3DP4Hh8Q2G6+6KYUteVJzNFz3Dz/FETmcX14Ef\nMYZrX+O2S3Z826a59kq+6rtPDIurNvp+c5deA03T4L3nJ88i3Y4lBBgBk0FFVeRoJdESbNsgA+TK\noGSKbh2PxkmL+4l0pGA2X+KUTBwTQKXNYlFVDAZDnj5/mjjODEpJJBEBjMcjEIGqyDjYveP49nN8\ne1diWCSGb2jxZxluk2XYDYaFkL0W3zH828Bw9wmGA0VRpJ+79z++ktsrH+8YYXvF8BdMld6KnmOl\nFJNhigg0EUxZ0bQtiNRb3NqUpW3blm6zplSGcTVgtV2yMx2xrhuCC0gi+zt7CCJnswuadov0lqPD\nvVSkIaimo2vrsbbruHf/AdtlapTvguftN95gdnHBoEzR0eWgonOWLMt5843XkCbjhz/+CAgcHR0x\nLEuCiEyKIfOyInYNO9Np6mcKke22RmpNXiYbr/VqjTEZ88Xi+vQUkgCtZnNOnz9HStAyveScd2R5\nwdtf/zaPL8/TdUBMV+xt1/H//vAfmFQFRZb1vbqOshqxWSwIyrCzMwIEucpQQjIcjynWWzqRxG4y\nntB2HRdnZxwfHWO7jnq9ubZq0loxGQwZVgOiS4Xck8sZJs+QwIuzM2rb0jYd9w+PmG9qiv40VAbP\nYJCM/q1NOzqEIC8K2v76pG1T/rrOC5arFT4EjFIJ/ra7DloQQl67YdzGpZVmMhjStA1ZFOiyTAzL\nnmFnUUZjmxsMD4as6gU7kzHregtBJIanOwjgdHZB226pe4ZDiEgB5XSM/DTDqzXWWtrgeeuO4c9h\neMSwqgjOIaTkyWyGyQyS2DPc0bUt9w6OmG1qiuomw1Ocs4TQXetpUeQ026ZnuEmJhUXBarVMDGuN\nlJqmaRPDfZ95c4sZhsTxeDCkaVsMgqooabpeizNDZzu0UXRNS7fpqHTS4mW9ZGc6ZrNpaNsWESP7\nuzuIGDmbXdK2DbW3HB7c0OLJ+FqLO9v2HG9w1tIGxztv3nF8WzkOt/jkWCvNeDigaVpMFJiipOk6\nEPQMW7RODNefYng6HbHZNOlG847hW81wqicgv8lw0yKEJC80y9WKEAK6d+zouiuGBUiu3TB+Ikdf\nJqQ/+4ocHOxS1zVnp2eUeUZwrs/ItigRMEoishwdAl3X4GVASUNwgUlVMZvN6LxjtVlQZjmDIqfM\nDCozuJiu8X1/ha+kxOMxUjK7uGS73aKEYLozYTWbIQFrO8Zl+jpN0zDfrAiDIc+fPmZ3NGV/b0qM\nKSFmWA3w0TMaD7E2+e9dnZoGQIS+/cA7Mp0xW8wJRHy/G3fOIwmcnz7DGAlREZVCBg9Gc+/d93ix\nWRBwuM6hc0MeBR/+3d8xyTX4FodOLggqY71cII1hurPDI5GiMqsio3FQSEU3KAg+Mh1PkEJQFiVt\nPxVqm5bd3R2armPbtYxGIx59/DFu6mitZTIcMS4rZps1MoANAWkMhTas2oZtk/Lf5z5wOKxYbdaE\nmE7/O2s5u7hgd2cPo9LzsK1rtDFIp67tXmJMLRQmyyjLEoDZfE7k9gpy/DTDRUbwDi0V0VkUgUxK\nRJZhgk47chFQKpmYTwYVq+UqMbxepijjIqe6YjjE1HJ0NaQoFT56tJLMLi+pt1u0EEymdwx/HsMv\nXnyE89NXDBflZxjOrxhurxiO1wzHGMm0pnOO04tzdnf2E8NKUtfbvoiQ15PVV4OnWWYoeobni8Wt\nvo5OK3J4sEdd15yenVIWOd77xLG1KBExVxz3HqleBrQyROcZDyrO6jXWOdbrBUVeMChzytygey12\n1qWbICHSRDnJ3ml2OWNb1ygpmd5xfKs55hZrMUQO9z/JcPAedaXF1/VEhomRrm0+wfBkUDGbz+4Y\n5nYz3Lqb9YRMDG+3ydZNSjLzyrM7pcma63piPp9/IcG3oq0CIVhtazabDfv7e8xXC6qdMR0eVRju\n7+1SKpHGI2VkMBlxuVxcf956y97+HkWRY7RmOh6nGGlJH3cY2dvZQQFFliGzDB8k3gZ2RiMOpzu8\ndu8e46KkzAsm4zHOuutIQiklRVFQZIbX799nWJVIBPVqnfqxQsDaZKye5zlKSLxN8dVGabZtQ91s\n2bYti9UShMD71FsbQsB7x9mL5ylSOASkkqjgCEIwPDrhdLliu20RKgOpEOsVZ08ekcmIkaClSrvY\nsoIAJiv4w3/jH/N//dl3qTdrtFZsm5Z3vvYedbPFh8BiPu+nki1SSdqupWm2qb8nBFbrFUJKrLXJ\nnLtrycuCy/USFzx5nuNDSI311mK9Z7WtkUZTdy1Ca2rrWG4bnrx4wWq7RWcZO7u7ONvhQmC5XtN6\nh4uBzbamtR3z5SIJj/PpMfIBc2VMf4sH8hC8Yvhgn/kyMdxGjywM9/f2KBQIEYnXDM/pokflKRjl\nFcOKnfGYzKSTGsErhiXJ3UWaDB8lwQZ2hkOOeoYn5R3Dn8vwYEjXthRl+UmGY+rR7myHDS4xrDXb\nrkUYxdZaVtuGxy9esqwbdJaxu5M8q33fG9d6hyOy2W5pO8t8ucBeMxxS4EKeg7jdJ26Qhq9WzYZ1\nvWZ/f5/5ak61M6LDIwvNvb1dCi1ARBCRwfRKix0yT1q833OstWY6GpFp3R/yRCSwt5s4LvIMYTJc\nlHjr2R0OOdzZ4fV7J3dafMs5vs0Yv2J4w8H+/mfqiXt7uxRKgIwgwg2G0+e7O4Z/Oxg2ec+wxX2G\n4ZrO9gw7h/PJ+SyEgMmS3d7VTNNPWrfi5DiGwKgsmZQVZ7NL8qpgVa/oupaubamMYboz5TgvkVrx\nN9//Pgc7O2xtR1EWbKxlOh0TRURLhZaSw51d2uCwbUdwDh3hwfEJbdsyW6/pvGNvd4ICpFF4myI0\n0ZptvaUqC3yMqTep69iZTNk2WzKt0blGxJTUYruOtk3H9V3XJi9UIkoplJRYZ5PlVuifeO/SNKn3\nREi9PULQbNbE4PvIw5B8BJVB6hxNxEuJQKCB9cUFwnuM0Sgh8DFysH/AarkkK3L+4B/9MVFAmRmE\nT5GNRVGyd3DAYrFgNByyt7fHYrUkz3K0MQgpcf0LbLPZMBwOMUozGAz4r/75n+B96kFa1TVIyWpT\n40Mgywtc7Ic3nEMCToBGMi4KNs2WLMsos5x/8u/9E4aDiqyfVhUiXfN0XUdVFGRZlqK9XRKSq9x7\nKSVaqmvLllu5QmRcVUyrAWezC4pByapeY21H13UMMsN0dycxrBR/+/3vc7C7y9Z2lFXB2lnG42E6\nDZYKCexPdj7BsPSB+4dH1ww3PrKzO0HEiFappw4iuijvGP4Uw9/8nW/9Ugy/3TP83/3L/57hcEDW\nD4IgkrVh13UM8pwsz9k2DUVR9AzXqS+x16VbzTDJ+ipXmnIy5Wx2AVpxMbvE1g2rAIbIdDJld/cV\nx+PplMa1SC3Z1h17B0cEETFSodWntNh7dISHxyc0bctss8Z62NsdI4FMK5ztEDGCudPiT3PcOUfw\nHqk0VmmMyQmbDYG0aXYxOSn4mN5XZV+QuLxgsVySFwWNd4x2dzkZDHotTnMhttfiwbUWN+R5mdwD\n6g1SKpSS7O8f8qf/53d/s6D+tBUi42rQa/EledVrcdfRtb0W7+xwkhdIrZMWX9cTJRvnmEwmdwzf\ncoazGBnv7vwMWlzeqCckUcDR4dEXavGtKI7LoqDKcsqiQivD2fySs8WMN998k/P5BbP1inXbYrcN\nb7/3LjpP2eBFCNybTFgJyeXLl+zs7KCUQogA3lEiIHqK0YDVZg3BMi4rpC8gwiAvUpO+lBidPByl\nkuQyI4ZIEJHL+Qyg9/gc4vuwi+Ql2AAC6x0mM2Qmo7NrvBTU9SZFP9oOiaAsCjrnsN4RQ0TEmKy5\nYmAzv0y2M0rjfQMYFk7x+ptvUBNSE3pu0NZy8eIpuYAo0wtiZzRltrhgs1kjsozf/fZ3sNHx4x/9\nqA/WkEQf+Pbv/wEBGIyGCKnorMVJwWa9pPNpwrxzFpllFGWJFJHtdovzjtW6ZmcyITcZw8GQlxfn\nFErh+0x01/s9SqWIQNEPeFjv8SGydY6td9S2RXcaXVS0bWqnaNr2OknPOU/tPdtNndoqlCaTAmFd\nOpm6xcNMieHsswy/8SbniwsuV+ue4TYx3Ofb5yFwbzJlJSSzO4ZvPcMb16JajS57hnVG07RIrfER\nrPVsbzKsNblUCGuxpA3hbV5FkVNlGUVRoaXh9JrjNzhbXH4+xzGSh8j9ceJ4fvqC3Z7jZIjsKSOI\nGChGFcv1TY7TBPkgL7D9YI1R6W3pjuPPcrzebNgZT8iyjOFgwOnFOYXW+Bjx3uGtRWqF1AqiQEvR\ncxzwMSYd3npq26E680qLtekt0NLXSloc2NY11tlei3U6weR2b/DKoqAyGUVZoWR2rcVvvPkG5/NL\nLlepnui2Le+89y66SBZgRYzcn0xZScnlHcO3nmFV5r0WD2jbzWe02F1r8eYTWuy71Jv9RVp8K4rj\nxnZcrFfUz58hYtr9PDg4ZH8wYphlRO85Pztn7+E+WQwcTidUecFwMMAYg286jt97j21dI5ViMV9g\n8jTVeXxywmqxZDwYoqRECUGWZXifHBJc8GRKEiB5H3uVru9j6nAt+xMgKdLuxWhN13U476+HBgE6\nZ9MOnBTLafs/E4h479mrKhanLxGI3lCd5LMXA7PLy/REiIhROY0y7L5+wjJYtNBkQbN68ZK6acl9\nwAeLijAsKupgGU73+Na3v81sscRHj9t2rFer5KCgNSrTRCLrxYLBcJjS6rKMaTEg39lndnkJhWK9\nWbJdJcu1pm04OTjE25Sa03UdTdNwdHQEIVBWFfP1Ch8i2hgiySg+itRfpZSiCT792z6l4g2KEm8d\nneyI9I4UCEyWk2UGISTdZoUSKvVX9Y+j6l8cWt6OLqDPW03XcbFeUz9/jgjgYuD+wSF7wyGDPIM9\nz/npGbsPDjAhcDgZUxUFg2pIliWGT+4Y/vUwfPxLMuwcXdsREIQQCUJQZDlZrpH0DMtXDHfWoiQQ\n0snRbV5tZz/D8YPDQ/YGo8TxbuD87IzdB/uvOM4LBoMBmclwbcu9d9+j3m5RUjFfzNMQVNtyfHLM\ncrlkMhwhpUSROA4+BQn54DFaEQR459Be33H8KY6Tm4SlaRoOj4+JIVKVJfP1GhciSqcEscSxwHcO\npTRNH78bQ2BQlgyKkmAdnWzTn4/pEcuynDw3CCHo1lccpwGvruvQ8jpI79auKy3evHiGDOKa4at6\nAh84Ozvj4YN9TPAcTF7VE5kxuLbl63cM33qGh0VBcI6ubT+jxXluEIhrLeYX0OJbURwbpTERHh4e\ncj6bMZ1OWK/WLC/PKcqS9XrNpKoYVRUmM6ylxKRYH+rViv3dXebLJZvNhslkQlWWrNcrikHFYj6n\nyAvWmzW6KFBSoVV6sARQliXOOULvE9h1HYOqQvTG0cvlMr1xioAUIu2Q+isMqRShtwgJMVz782ZZ\nRrPd0toOFwNaKObzBc22JctTMp/obcp812D6/pcQIw7Fzv2H6VoigtSa4DrOT19SZTmZTD1PWVGi\ni5K3vvYuuTYIpdnfP8AYzXrpWFxeIiRs6y3f+f0/pChKMpPjgk8WLU3Dmsj8xbM0QSrGyTlCm36q\nt2CzbSjHE3wMrOuaqiw5PT9Da81qs0kvcByit/qRMl1ZGJV6loJI8bJRSNy2QQsJWtLZZO8SXPIh\n3NQ1XZu8NImvLISETMCL/j/nbq+FkNGfZHgynbBZrVhdXiSGV2smgwHjQYXODBspMUIiYqBeJoYX\nq9Udw78Ohs9+OYaFlukER0m64PA+fe22Fb2POr2FoUAIkSbf+2tMd8ttsLRSmBB5eHDI+fySyXTK\nZtlzXJWsV6sbHGeJYykQMbJZLTnY3WW5WrPebJhOJgyKkvVmRVFVzBdpWHpVbyjzIrXAKYWLASkg\nu+I4BKRSdxx/HsftlnW9oSpecbzebHqtDIiev6v+VmNyBH2aoUjWVq5pb2ixRUiRiqCQZj+6rtdi\nxPUAqRCSGAJBKgTxVofZJC2OvHZwxNn8kqPJlPUNLV6tV0wGVfI8zjPWUpKJK4ZXHOzuMl8s7xi+\n5Qyrn0OL+QW0+FYUx0JAmSdz6Ol4iBRQ5IaqquiaNAgWvWcwHvHs2bMETJ5fTyCu6w3loKKoSowx\nZEVOphWbrkXIlBLTOUcOOO/J84wsM+R5jm07slxf24Qpk36vZLITm04mAMmTz9rrB9iFFFhx1Tsr\nhcBow2q1oqpIYBiNUQYVBZtmy2g0ZL5ZIYVACokUghdPn6JjulZRWcHg8Agv08lfBFS7Ja6XZFIR\nXCAaiclyDl5/HZEXCLJ0IuYaqiInRMO/+r//DCUFUise3L9PUQ1omiZFaRpDnmV9uhrpmrmoiJ1j\nb7LDclOjlCJGTwieF7Mzmq5lNBiyqTcUVcVqm3wVMylxHa8mgXsbNiUkEnqBjci+yPUxuYU4AsIF\nhJBJEEK6LvGkYQohkvY6l1opfAwYqW71cYUgUuYK6y2T8RAlIkWeUVUV7bYlrwqC9wxGI54+f4ZQ\nKmXXO4vODOt6fcfwl8jw/e7Br4bhXlw9EeE8SJmuGmMkxNSvF2+0/1wzbAOZ0rd7qBSS9hYaG3qO\niRTFpzkODEbja45NXqSr9yxjXW8orjnOyPoh6U2XbMLW9QbrLEWeY4OjyDNiz3HXtphC99G3AZ2Z\nO44/xbEIMB4MWNc1RVWy2m7ItCaTCkdLcB4lJTFEtFFoIZAxFQJCJM0NIfQc91rs06DwZ7S4fzyT\nA0Lqxfcu9eHeZoqFiBS5xnrLdJS0uCwyyqqi27YUVZFSXMdjnj17ilQKU+Q9w+aO4d8qhl9psfiU\nFodfUotvxT21QFCYgkFVEX2k27bEAD7E5FQQI9qkOn5QDdJOSUqk0oAgNxnROaJzzM/PcW1Lax0C\nwaauKcuKPMuw1iUx14auaVnOkyVN2zZoraiqiqooGQyG+H4XXTdbXPCEGBgMh1jvEEqilU7XTT4k\ny7kQkFJhXcAhyAZDNtuOrguYokQEQb1t+l0meAGegFECiScoQ358Hy810TvAUxDoZpdsFnNO9ncw\nOoI2tAGOD0+olMHISCSitaTpWv7m//kbXO9HPKgGvPPeN1lsVtTNlqzM6bzl9PKCRb1mtakxJqNu\nG5oYWGw2DIYDfAi0wYGQjIZTjMm5d/8BUWkulsuUhNVb42kh+unW/pmMAolMPT8x4mO66ggifZ8u\nRqKQyYtQaYR3lLlGinRfJ+lfCL1AuxBS32efXnhblxCJ4WE5AB/ptl1i2IfUMhJTMg8ChtUgVf9S\nIJVCCEF2x/BvDcM+BIIQICW5UgjvKDKNkNdfAUm6zvXiBsMxfJHv/G98XWlx4vhVLLn3AZMZROSa\n40FVQYiIT3GMc0TvmF1ccWyRQrKpt5RlRWZyrHMIpTE6beQWizkQaZsWrRSDwR3Hn8txlnFy/0Ea\nlOw53jqHjwGNuL7xEAJkAIlM1mPQay/E/vt0IRJJWpwphXCOMtOpFzPGVHTFGxzHG1p8i5dAUmR5\n0tkQaXuGwxXDIaIzA8BgMOgZlj3D8o7h3xKGuaHFQvYMf0qL5S+hxbfi5DjGQN02aK+RQrCzv0+9\n3RKJ5MakI/UYefrkCaPhiJOjYzb1BqN18uDMDL5xCAHD4ZBt0yAktHVDnmXUm03y3LMpgnA+n2FM\n6qvaNg3T6ZTl8uoaZYqwljzLMNGw2ayRQtA0DSGkZqumaVBKE7wnRPqYZLhcLNFZxofPnzEaDjl+\ncI8nT55i5w4NSCnAS1oRyaxn8ew5pVB4rdi//5DOB4yUKDyucyzmcwyRr77xBk8ff8h0XFFUE3Z3\nD3j86BHTnR2ctcSQ+p0uLmZs5nMGZUlrLa+99R5RSqx1VMMhz07PU/qR0ngfEDISlKSxHcrJFAN9\ncU5uMkbVgNBazueXnK0WbP/hh2TakGU5kUhTp+GB4P31Y1tmafDAB08XPSICUmJ96vn0LhIJCKUI\nUtB4h4hQZEUymc9ymi7ZuGT9jttoncSiF+vbukKI1E3vsXjNcE0kxfHSn8A8ffyE4WjE8dFx4lIb\nnPfoLMO2zR3Dt5zh4NPQi1SKoAStd2mYJ8uvGW7bFhsCJksnSEYptFS9IN+K84ifuEKMbJst9ibH\ndc9xZq5PEhPHQ46Pj6g3NUabFNObGWzbAYLhcEjIolhZAAAgAElEQVSz3SKlYFtvKTKT0ryMwVpL\nE7bMm+21H+lNjjf1Hcefx3HbtT3HGXmWE4C2/5mjD9ePbZ5lEFPx0AWH6E8Tuyst7uOghZYEKWm9\nTy4E11rcp+jd1GKlUX388G1eIQS2TYPVDonkYH/3muHMvGL42ZMnDIdDjo+OrlPmvPNoY2j7NMs7\nhm8zw6+02H9CiwuapvmltfhWFMdSSkZVlb75LGdb1/3uFbQ2eOfIpCKbZtT1hvU6/Z2rPstt16ar\n5SxDafX/sfcmS5ZdaXbet7vT3M6b69ECiQSyQKk4kkmqGlBTmh6BT0AzjWSSXkDSWCM+h2aiqUY1\nkTRTUyxSMonFrEwWMtFE683tTrs7Df7jNzwAZEdEFj0j48AwCEeEI/z65+vu/TdrSZk/ReqqmmIG\n/dHTLqfEcrk8zqDkGLm5uaGezaaWUmI1W5BiJObIrKrxwbNaLNk1DScn4ln4+vWlpMTlTN97Moqk\nFa6uKceRtut5+fIVn37yY3a7He1hT06JMQeKFPFXlyxVAGOxKpP6Swpdk5UmxYHDpqdtG3KO6Jyx\nriSnSO47tBKfxZgSf/1Xf4U1kLPmZr+jcI75fM6f/aM/49XVhoiMMrRtCypTlgXGWDKKpu/pppaP\nm+zVjDEUxtE2LVErjHVSRUqJfhzIfjwaa48hUFg73SxlwSCSZWZIIS2PLF7IShu8VuicKYAQM8oo\nyIrN/sDJasXNZoPWGmWlvV04maey0mvC3OOFPKM1i9mccbzLMG8Y9kFe27OCpmloeJvhfugJHxi+\n9wyPWqNzwgIhJjDS8dgeDpwsV9xstygl7T2SmNXnnDGIYfV9Zhi+n2OQpo21luAD1miKs1OapqWh\nQWs1cZzoh+HIsbUyOhRSPHrQ96M/tjNTSixXKxQc28s3mw2zuibl/IHj7+F4bi0qZeE4KBRSXMp+\n4jhGsb6aKnG3icFKS9UsK4UyFj9xXKAIkwsBWbM57Cct3k5arN9ocbrVYn2vOyBvGJao465pj37x\nzlliCBijcaentK140yul3mjxZCH7geH7zfCv1uL9O9Hie6PUVhuqosBMnrbzukYrNbkVGNksTInT\n1QlVUWC1pnBycL65uWHMiUPfYcuCmCPz2YzSFQxTrGBKibISr8H94UBVlmw2G1JMxBhp9gdpbcQ3\n7Y9uGMhK4ZykBZESh92OFAOnyyWlc1hrqGY1j588xJI5HDbUZcG8spQGNlev6A4DOTh0v6FsnmH2\nW2auJitDVVUoq4AA2fPsm1fcXG35+Inhxx8XPH2kKcoDXXclUGgoiTx5cIE2hj//8z+ncBIicXJy\nyqJecvroMYduxFQFKWZiljc2lTI6y6EgZWmO6SBwKaOx1mBy5rMffczovWx45kTrPdFZvBIBsBjM\nFMPY50CfI2PwjDEwpjQZ/eij9UpSijF6rrdb2r6HlMgp4sdRgkSUYts2YiEUZZs1xIgPQZKBUoQY\niffcI9aaW4YVVmtm9QytwI/j0SM0x8TZiTBs1B2GN5sPDP/BMNxBTjBt8IeUSCg2bUtI6bhV7mPE\nR/lMOQYIiXSPl0pvH2sMlSvQWi6k89lMUr7GETO1n7/NcekcKcRJizNNL6E/MUXmtXDcd70kO6ZI\nVVWklDjs95RVxc1mI5WzEDkcGuz0//jA8dscd6MnOINXMk1plcFYcfoZcqRPgSEGYXniWCmFn2aJ\ns+J7tDjd0WLNtm3vaDFvtJg3WnyP9/GAuwxLctp8NkMBfhCGjXlzniidnCdKWxBD5PoDw38QDN/8\nGi3eTloc72hx+B21+F5UjhXq+OafsmxohhjF0WDayA/jIAeDFOU2MCXJuKJgYbREWubMZUrMZzWH\npj0u7pGhC0GqQ7fWKynxYH1B33XM6tlkuj0yjKMcQlxBjAEfR4rpjWKxXE52Jg6vxUy873sOhwNN\n0/Lw4gHGGL54+Yz17JSn63OUGmH0/OyLn+PDSAoSLuXHgUxiGBLKzfFR7MwePa4gXYt3bfJUVixH\nToo5V5sdxj3i9ctvSEReX98Qhh5Npi6dtI1mM1ZnZwxhJAJei6diSrJE0fYdKSdmi4V8TacnbHc7\nRgWhafn0Rz/ib372t1BYxhjIyOa+7wesVigyPkuVDaQ9Z7TYiGmlZCtXZXz002KBVEe10azmc7SW\ngAWnDUZJKymGAEkdf79SMkxvjdhhxcnG7T63pJWaGI6yJWyMJsaA0rKBrFAM4ygMxzjNab7N8Ha3\n+8AwfwAMK4hKYZXGKHmjTCGSpyUno6Zt6BSxxgLiQWq1lo23e/wcOVaRnCR8IAaZcxctVozjSFmV\notHqlmMZb1uYJdvdDpUzr1NiPpvRtI34vVYlOStSiHShkxnlW44vhON6Vn/g+NdwbI2dNvWl4uaT\naIlCDrFm+j4ZrdGTt66PEQXoKUhJa/OrtdgHiLdaLHOfafLMvavF9/l5w7CaQiTM8ec3TStawzBS\nVeV0npDfH1LEFY6lWXKz2XxgmPvN8HI+x3xLi9OkxTKzPZ0nJi12RizoflstvheU3/qBgngc++Ax\n1jCMI7fZ7ilnfJB4wn7oadqGpu/Y7XdYY2Qkw1qJIYwJ6yz90DP6kWpWY6zMUBmrpU3dS+skpURZ\nlgzjSIhBbl5KMXqZTylcQVEWxJwIMXB5dcXLVy95/vIFs8WC+WzOR08/YrVYcHN9TRo8f/qjT3k6\nz5ju59jx31Dmr/mTj2tU8BADzWGLMRoyxNQxji1ZKZquw5gCY87ZtR15MiCPaUDbxCefPuYnf/IJ\nKWW2N1uePPyI1WqNLUtm8wVVXfPg0UMO7YFhHFmv13JTLUvUZLJ9enrG+uIBXdtBymz2OxbLBW3b\nUJYlz54/P3rCyvdGLi+FtWhurVAMKUb6YQStj60OlD4KaEBy3mOK8klShhipyooMx/SclGUBQWXQ\nSpOQfHmFtKxk81S2Tsd4fyvHUuGWpcGUE957jLWMXjydffDy8eAZg6cfBg5NQ9O17PY7scP5wPD9\nZzhIe/XWUzqlRE5iAacRq6E06Zme3pxzyiTEysnf88rxG44VKYsvqL7leNLglBI+BNHiceDQtDRd\nx26/x0z2VdY5qrIkpYi1lr7vGUbhWFvLMA5oYyaOe8b+luOKcRiJIX7g+Ps4VuCMmzieCkjTuBBT\nUUlWlZR44qZEyOktjnNKb2txeBM9bIxELempQJGiXOxTnDjOwvKtxdt9fPL092Yac5DzhBxW5Rwh\nI0DjLcPDwKFtaPsPDP8hMazid7U4TVosDL+txel31OJ7cThGyVD6GDxlWaK0oZtAHL3HB/ECPDTN\nNJ85MJvPyWTxeI2R2azGFQW73Y6+7xjGEeccWmuevXxBM/RgNfu+g5wpikJSf0pZxIkhkDMc9nuq\nqpTZFGNom4bNZoOZkrSMtXjv+eyzz/jiF1/wenvDL559LXNAfU879vzs337JL7/+OU3XYt1jyDNU\ncvzDP/0xT5+eY02EHLHGUbgKpxQ6BYa+49BsiVqh6s9p4yOacEE5+4zoPqLxa672nk9+8hCfGp5f\nPWewitnZmnJ1wvJizXK5nJwPItevL7HK4mPk5fUVMcPgPdfXNxhj5esvSpq25bNHHzGkQLaaRyfn\n1LY4wuFzlINXikSFVNS0Jk8zQCDzQWMIJBkVxyiZ6xFThmn72ShJXBpkrnNMgZgzfRiPVjQpJoE/\nZ7TSjMMI6nbu835X3bquZ/SesixQZmJ4GCaGJd/90DQiBMPAfDEnAVVdEz8w/HtlOOQ4td3eZph/\nF4abDt+PE8ORyMQwUnG7FfCUZIl0nMz9xebt/j9d1wnHRYk2WlgcBknk8p6QbrU40ff9keO6loAU\n2eZ3bHc7uq6nH0dsUaCN4dmLF7RDB9Zw6FtyzpSukEthUeK9XPByzh84/j6OU2L0gzgeKAmLUEqR\np018lMaHiI+Tp8TRG1YWIBSTK5D+lhbHIBx7Lxv+k13WUYsn/3SmQ/N9f/q+Y/QjRSkMd30ny95e\nCmwxRZp2YnjomS8WR4bDB4b/YBhumw4/fL8Wy4H49jD9u2vxvRiryBmpkvUDu3AgBpkPGSeYjZWZ\n46zg1evXrBYLri4v6fzIyWrFOIz85//4H7NcLlFaqmpX2w1WaapZxdXmhrIoGXvPR0+eMg4dWok1\nSWEM/TjQjyOucPzz/+mf0/Y9+8Ph2CYdvOdqc8M4eryXN9Xnr16ijYYs81opwJ9++jk3Ny9Z2UDo\n4Oom8OLqF3Qe1g9/xOlqxenDU+aXA9eXV5RFTRwtSmtMGFmfn5OSGEFlJbZm5MB++5Ixah49/phh\n9GgyZ2dLLjcjVltyVtjSYouCZ1evKOuaaj4nxsSPPvmEs/WafXtgbHowmqTFMib5EeUcdVkSfeAn\nn/+E3f5AMatZ7neSdW4L/pv/8r8iayAnaXMgAR0hZlxVMPayyZxCkDkjJRulKEPOaRoxiISYcNaS\nEdGVyEsAJWlBRqp5IFVjHwPoKSmHN6bg9/HJQFE6+n5g37ZvMRxifMOwVry+umK1WHB9dXVkeOhH\n6qpiuVyiT0+PDGttWJ6f4bXkzo/DyEdPPmLsZeRiPpvhtGXwbxi+fH35XjGstObxw6fMm4ax7cBo\n5mVBjokYPNZaTlYrvPf85KNP2O4PpFlFET1WZUpT8v/8y39F1gqymMzLXpEihIyrbxk2pBCx1si+\nwx2GtdEyT5gmhlWSJZwjw3qKPJc5w8itf2kAo6YK3P1m+Pap6pq+72mGXjhOUS4NyBs8CpQ13Nzc\nsFws2Gw2dOPIyWqJH0b22w15KQliCXh++QqrDGVdsWv33+G4G3rmsxnVxLE2Blc4rLHvFcdt13F2\nsQZjGJue3nsoHD4mUt9OWlyx2W95dLpmuz+wz5ExhaMW/+jHnwjHKaGmg6symhCSaPG0kR+9JLUJ\nxwG0nbp0mpQCf/XXfy0cp+ljd7TYIWNIQ/BH7+Pbo4TTFgWykHVPn9lsxj/6z/4RfT9MSXVvtNha\n+9Z5Yr/dsVosCCG8dZ74y7/8yw8M/54Y/rM//3OyliU8nfkOw8MwUBiJKneTa844MZxzwmg59P7i\nF788MnyrxTlDvqPFaQqz+T4t/k0LefficJxS4nq3o+97qrI8tjBub6kqZZzVXN5cY5W0QIcYqcua\nFBL9OKKtY9/1KKPphp712Tnt/sDN1UbCFYqSZQXtfs/p2QlN0zAMPYcQZCtVaUxSaMSH1iiNH0eq\numaxWrHb79Fo8V1Go6YIwtPlivVqSdH9nDi85NG8JC4UmqdEDK+vOnyfaQbNiy++EvDqNeW6wDpD\n3t8wdgesdejxQAiaoj7DpIKcGzANBoMzkWa/I7kVv7w29L1leXIK02yOMhafEraaE1MmpiBVrBx5\n9eoFOWVOF0uavuXh+gGb62vsfIEtS4mtjCOXL7Z88smPuby6ojYGnxJKZaLKEBJ6qiDciqVGs99s\nmdW1ADp9b+JtBW1qjuQMZVEQfcBqg761UgHIiZSRbPecyUqstZgEO6YEyJ+7zwt574LhcjZn33VS\ndd5tWZ+e0R4aNlcb6nlNVVYsqhnNfsfZ2SnNoWHoB/bxIEslSmES7x3DKSdev3xJypmzxYKm63jw\n8IKbqxvsbIGrbhn2XL54zief/JjX15dURl5ndCbKQBsqJ+ztGMVUIdvfbJnNanKSVLuQpJWseMMw\nOVO4Aj+O7y3DIGNt17vtdzkGctIklXHOcHV9jZlexyEEZmVFCplu9GjrOHQdfC/HM6qyZFnNaPc7\nTn8dx+b94/jVy0mLl0uaruPRA4nbvdXiYRghjrx+seXHn/yY19d3tFhDBAhBvP+VnryKRXv3mx11\nXU9jPrLApKdRoTQVJCBTuBKj9A/i+D6PVbyr88QHhn9PDCvIUVwztNLEI8OK3WbLrJ5Ns+J6YlgS\nGlO+ZVgdGXYTw2FiOGWxKLxlmDsMxzsMm99Ci+/N4fhqtwMyZyen7A8y9yOzqfIDe33zEq0NVV1y\naFt6P7KjY1ZWXG83NOPIYr5gs9virKM5tCSj8VozHBrMiUUbgzZiQ1KVsmlaFbI56soCZx1t31O4\nhLaG7CUT3Ptxin/MvLy5gQQfPVpzvlpiUkffvEabDPMf41VJTg6VFCm/4vzhmkeF5d/89CtC31LW\njuQNpZsDYM/O0W6kNBaCptKJNLyW/z+ZjAElkZ3WzRlVSQgdWsv2eOkcSStC8HT9QD2fMZvP8ENP\n8CM6w6PHj9lst+z6juVqxYvXlyxnc/w4kIaBPnhszDx89JiXl5cElSltQZEyQ5Iljco5/DCQtLQ/\nlNZ03SCt1El0xZosYq1DxURhFEmJgbdSmkAm9B3LeiYHEbnvkWJEu3KKmzSElI6zocZIMl5I8Tdm\nof/7fN4Fw66es1gs2Gw3WOdom46oNV4rhqZFG0tlDdpo2raV5ZCUqHSJUgpXOJx7Hxkuefj4EZvd\nll3Xs5gYXszmwuSAeGumzMPHj3hx9ZqIVClUSgwxEcdAVTj8EIhaT5VjYbia1VObLR0ZdhPDbmI4\nZkCr95phmA4W+x053+F4qrDI1wTXL16gtaGcFRPHXjiuhGOltGjxHY6T1nijGJoGYy3a6N/I8bY5\nvGccqzda3IkWP7+ctHgYSMNIF0ZszDx69JgX39biGIneUxUFfhiITpMUMvrS9VSzN/Zhbzi2qJiF\n4+mAgPrhHN9nL7f4Q7V4d+c88YHh3xvD4zCQjgwrOU/MZsSciIk35wln0THjtDAcJoYjki2wuMPw\nbSx06UrGcUAZQ5wYzhPD+bfU4nvR41NKYdCs5ie8urlm8IGyqmRrMXisNcxnM8YUyVozhgDaMDs5\nYdO22LqmqEvKeSX2KmS80ezaDlMWRDTX1xsWJysKZchKzLpDSLiyYLGco7RkdJfO0Q89+8lH0Boj\nEZJFQdO0JANaJVbVnOQHsq0wJ58xzv+UoJaQHTkqqmJApYiPNwT9in/4Hyx5+uAUrRxx9JjcURAI\nuaZaPETpLNuWUeOTxhMxpSRRZWVwtmDA0A+dtDetwzoHRUFMijZGXF0xn8/ZNwdsWVHPlux9YLPf\nkaMnxMBusyOFxPVhT0gQfKAIsrGbDbi6InhPN4xsuoYYI7U1WKAoCpQ1ktyWRADGKO4hxEShZI4q\nMAGtbqNHI/3osbbAamnXkfLUapE5ztF7lNGYDGMMMqJhzGQTk9DG0t3jqts7YXhWUMwryromZ/BG\ns+86dFkSUNzcbFmcnFAqTVaKvh8IIVFUThg27ynDIbDZ78kh4JNnt90SQ+J6fyAkRfAeFyMaJm/Q\nSsJShoFN15JSpHJvGNbW0IcoDDsnm9BKoWKmUJYQPD4Lw0ZMOAkhMgzvN8Mgb0g6TxxvrhmCLHhq\na0g+YL7DsVRlZqcnbNsWV73R4rsc77oOXQjHosUnFH9sHPuJ4xhEi7dbkk9c7yctDv6oxcmAm31X\niytnMRlJ3TSGIUSIYF0xjQEpVMgU3HKcsM6It2vOhJAY3oEW3+e5Y631v7MWf2D474vhLKFCRjME\ncUh5o8Ua7mhxyG9G3ciZGCLD6DG2wGgrM8sTw5GMNlqs4/QdhicXjLsM938IlePRe1RV8Pzmkto5\nimlbdPQjq5MT2q6jKArOi5Lddktd11xvbugGT12W7PY72n6k9xu6YUBpicIspxJ/OauYu4Kvnj/n\n0ckZtTVsuh1KB/avdgzDyOpkJVuRKUkWujG0Y4+PkbJMrFYrlNZ8+uBH/PKbb/jy9Ws+friGKJ5+\nOsUJPIUuFX0uiPYh2hVyW88tT59u+dgHdHnKv/h/f0q2BUU6EIYWozTRNJAUuvqERVXSHbYoWsrS\n4ZkTk6IsC2azcoqsFJuYqMQ/MMRI23XSBU4JFRLL0pJ8JCWNLRw5ZhbzGdv9nkPfUGjD+WrFydkZ\n3TBwtTugTIE1hjpEic3NMI4D8/mcdugpnMMYjYkJN92+goLODzjnIIP3Xm6gWRwcxO9X5jr9OMpN\n2Gh06Wi7jmoK/lDGMi8rVBKHAZUSEeSW+e8X01/7vBuGPf14Iwwbc0xWGoeBalYxdyVfPn/G45Mz\namvZtDuU1uyaPcM4cHJy8p4y7Eg+kJLCFQU5JJbLOZv9jkN/oNCW9cmS1dk53TBwvdujrcNqQx3F\n9/I2LGg+n9P2HaVzUvkh4bIBFF5B7weJj+UOw5MLiVRX3l+GAYZxRNcFLzaXVNZRTK5Box85OVnJ\na3eH41ldc7XZ0I+eqiilXVw4en9D108cB1lSHce7HD/n8cmpcNwJx/tXe/rhDcfLevbecmwLmZl/\nw/GkxScrTk7P6MZJi6dD7BstzngvC+ld31E6Sa0zKVPccqyhCwOFlYhk7wPxuHiq3okWc49XS0c/\noqqCFzeXVL+1Fm/oB09VCsNynvjA8O+PYc9sPqPre8rb80TKOJFavJoYdg5Q+OAlbGgahzMTw4Ux\n8t6bIGlhuJsYTkkOwYuygiRR0iplWd4bRtJvYPheVI6dtTSbLYtqRsgJbS1d3x83ZO2UJNbs99OC\nU+BkdUJROGJOnJ6eorSRFLEMPkaGYXizZRs8TdvS9APfvH7NrmmoFgv6FGlDwlQV28OB0Y/4GHFl\nSZrmD5WRjPHNdsNqteTq5SuGvqfpWv7v/+9v8CjGySAd5BvLiNzmNRAaiqRh/zOK65eQPLm95j/9\n7IRV/wzjryhoMAyoZDDKoEhshkyenZFnH9HrJ9jFBco6lDVs9we2h0asp4ymGSRjvXAFfdNgtGTL\nxxCZlcV0+8qMo6euKpL3PFyfs1osmM9mDOPA89evuLy+opu8dUMMzGazo6+0LQq2+z06KwpjgMz5\n6SlWidgqo8GKufqbRBtxoDAKdE6y/Y/k2NfzGqsVOUnrD62meSBox5H92NNGT7YGYwzWWPQ99jl+\nVwz3PpCQZTCxMgRtDGMINE1D2498fcvwckGXI11I2LJmezgwvIcM14UwHDMMo6eqKuI48uh8zcly\nwXxeMwyjMHx1Rdd0R6/0eS0Ma6UxbmIYjTMaRWZ9h2FtFBgJvlBpMhPSWsIwAJ3eb4ZBOD7cbJnf\ncmzecDxMgUy3HPtRWDtZrSTMJidOT0+E4/EOx8Mojh964rhtaPvhDceLBV1KtHc4fv+1WBZwox9F\ni5cL5vPZxPFrLq+u39Li+Wx+1GLjHLv9HoXCGYOCtzhWWqGMEi1OMi8vbkAarfI70WLusXOQs45m\nc4fhX6PF/qjFqzta/IHhvxeGd4cjw0xa7LSSQ6yRf7UxkPJkAScMG5VRE8P5luFZjdWaPNnuyZy8\nHH+btxjWE8PmN2rxvagcq+kLafqWoqrYty0n9QzQHJqGk+USgNXJCUOK7PuOMIxUiyUhRcI4MqtL\nxr7jbLmULdBpO/V2S/HhxSOu9lvq2Zznux3++ga0JDuplFnUc4bmIJY2o1gWnZ+scM4x9D05w26/\nw6eB//DHPyKnxH6x5Oe/+IJ26Hh08YDH6wus0iQTiSmjs6S/+OaXOH3K9uwxpSnICXxo+Pg/+gm/\n/OLf0vUtELG2IuDI2lLbgpQCUQXGHOiahqooacaAKx1JafoY6AePKxwzJ44Tn3/yGa9vrri6vuLJ\no8ckbVE2MfY9p6sT+qZhUdfU2mCrit3hgNKaorQMbcOThw+4urkhZsVVOFBO9jXd0FNWNQ4xhg8p\nctjtjhcQYpJDiHFYJeEKfhzRSlEYK4Ar6McBayz92OG0kTjSFIkRCisRpQaN1pocxAvSWIVWBnOP\nAxTeBcMP6pKh7zhdLvGDxyc/MRwnhh9zud8yq+8wrBSlK1A5sahn9E3z/jGMvMG1wyAMHw4s6xm1\nMdiyZnfYk42mLCxD0/Dk0QOubq4nhkeKSdiHvqesKiwa/b0Mi4+m1u64dORHsQUqrMxbpveYYZCW\ndMqZpvsWx0rTtA2rxRKsPXJ86FvC6CnnC7HJm7T4yPHo8fFXcDz7FsdFgcp3tLh6vzjeHfYoa0WL\nT07oD6LFM22w5aTFRlOWlqE98PThQy4nji+DOCRobeiH4Q7HmZDSxHGS0IOcpwjeuxx7tFKUkg2M\n+YEc32eKb0OkflstPvTdB4b/nhnu7jJMfqPFSaLMVbpl2OK0ljnhuwyn7zJcaIPLij5FUhIv5bsM\np5CIMaDtdFH8DVp8Lw7HPgRCljK20oasZEvRWgPW8tWLF6xWKy7O5iyrGUMYMdWMpA1jK97HbddR\nVxWnJydi3VY6Bi+VZEb4+vqSGCPDFChirSOTicHjFYzWcPAj+0MrqTVotrs95+fneC/zNRcXa4wx\n7HZ72r5jmAzyKz1ns92zbVqa3R5XOD56+IhZPcNYg5s/ZVSgYqSPfroJGZ598zWL8wu6y0vQGp+k\nWZUIbPqOlDIByMZglaZ2FUO3RXmFLsqjD65VhqK0aKvYHq5Z1TXGWS5fX7JcLZmXFdoV1M5iFjO8\nD7iioFSWqijYHvakznOxOiMhJq+LxZw+RHzfCKxkUgxEa6VlA1RlRXc4II4UEsmbUibbjEkJZ+zk\nO+hZzOfstz1maov7JLNATN/3qigZo8dPN2ar5TBinEGhGII/3qbv4/MuGO46WWo6Oznh6uaaQteM\n3pMwMLxhePS3DEtqVYgeH2C0luY9ZLioCmZFhbaO2hnMYo4PIuJlYalKx+awJ/cjFydn8jOfYL5c\nMISA71qpRJDFjs0q1JHhkm7fTH6uCoscDrMShq2xJDJ9CMJw07y3DIN8PTHDMY3qlmMM2Vi+evGS\nk9WS9dm5tIz9iKlnJGUZ24N07r7NcVGLFVy2v57jb2lxfM84HsP4RovtpMUhYIuCQjmqUjobR45B\ntHg5aXHXoK2GQeYutRWbrkg6cpynbX2b9eQ4kdGTDiUQLZ7NGWJ8bzn2MX4/w0ctfslqtfyN54kP\nDP9+GL49T8hB1aKUIZCoipJ+bMjI0qTJsgidAJNlXjvdnidmc8Y7DIcMY4qQAprJ9vR7GNa/A8P3\n4nCcydiykB/KEPDBs/EjWS/o+h5bluyaBpphAK8AACAASURBVFDUsxl51BRFwYvXr6mrml2zR2eY\nzWe8ePECW8isVQ6RoiiYn56w2e+JWWYx66qWaF8lsaddlEoewOtDw2ldYS24ouL58+fSYigL2q6n\n7VsGH9DcmqNLKytoGGNE13NGFfnm5obw4iVxsiyxzkxtAZl9CZIswOv9QVoN2ogheJRY26inQd0g\nPpQ+RW4OuynGU27HVVlitcYajR9GKudYXzxkd31DPwwUZcHpaoVTmuVySTP2xKHnenODcTKL048j\n1hYknbh48oR//bc/JQLXmw05Jz59+hFf/fIrqrLCWYtBMww9KUg12loxBc8pyg+pNWQfqIxDfjQl\nUccqLRujIYn/IJnej8yqmqHriSkeE7iclWx3ow0hRUrjsPnWVut+Pu+K4XpeC8NOXr8cE4UrmJ3O\n2Bx2xClJaFbWx/jefGS4BdT7x/ByOTH8gMPYE4eB65sbtLUsq4p+9DhbkFTm4vFj/vXPfkpQiuvN\nDeTEp08/5hdffkVVVTgjl7t+6EkhMvaDMJwiOQrDySmUD7LxnQGlqP8IGAbxHDWl+x6Ol/R9j61K\ntk0DaKpZTdbC8cvXr6nrmt3hgLOW+laLbzk+avEpN78lx4f3jOPZrPquFt/cYKxo8TCOOFsQdeLi\n8R0tvrnV4o/x3UA9cayVYhiG73Cc4uTlrRVpDJT2luNMXVZi4fYDOb7PGKdfyfBCGC6L79Xil0ct\nPkxa/IHh3wfDoReGrTEYpRn6gRzvMhzItwwrBZPf8S1zdVFhtWhxOjIMwY/Mqor+LYblz95luDIO\ny2T19muee3E4JsODszUqZ55dvpJktBDY7BtmVUlOGVeU7PqOISXI4kWYomwxfvToCQ/P11xubohk\nXGZyUVDEmIhtz/npKVdX17hZQeEKYoq0Q4+rKsZxRGXxPJ1VBfO64rDbYoxhsVpSlSXD0JNTIgS5\nmXsgK401juR7Ytb4GNFGkWJmJKKcRTmDUoouiE+guTVwN1NMLQq0oSwd/SCZ4TlL9ZGUsEYTU6JA\ncuFTStjp71xoxfJEAiQ++fhH/PRnf0vb98xMwclsxuliRW0s6/WaMQZ8H1mfnUNInC5X/N2XX6Kt\nxSqNKhwv//anjCFQuoJFWUD0xCiegO3Qo0eFywrjHGi5oRslufRGFVSuwKdwNDJfry/Ytw0Z5FJS\nFBhj6Dq5iJiswEcery+42W4xWbGqZqScGaMXU+8EyWSKwklC3H193hHDr2+uiWQsiLBNiWux6zg/\nPeP66oq6nlEWjhgj7TjgqpJx9Kis30uGc06cn5/fYfgMQuR0teKLX36JchaHQRWOFz+7ZbhkWThy\nDMKwMbR9j9YKmxXWOfIUkGCmFptxjsqVjMnLZv84sj6/YN/9kTAMkOHh2RpuOdYa7wOb/YFZVZFT\noihKtn1LP6VP9aMnxogzho8eP4aUeb25w3G61WLheH16xtVdjlOatPhtjotCv1cc7w871uff0uJ4\nR4udxWJQhX2jxUV51OJ0h2OlFA6FcfZtjpWicO6OFgvH5+drDm1LJr8Tju/zo/iuFvv4thYX36PF\n8ajFj3lx/vUHhn9PDGujafsOpbScJwpLThBSwKBRSlM4/S2GB87PL44M98NI9RbDSgJFJoY32y0G\nxaoSe0OfPAopQ0eTKdxv1uJ7sR2SyVxeX7Hd76nm0uZYnSxx1nKxvmA2mwEyB9U1LaUt0Flxen7O\n9rDn8uaaZ69e4kNAZ6ZoRrG1GcKUpx4jrigwGLyXZJrSlYSuo9AaawzWGtbrNfvmwHK5moyqOSZA\nDTGCc0SjaYfAtu+5bg/sh46YEynHYwrRbTJRNjLrYhF/4HEcZOA8ikG71ZJG1I+erNTk054wJJzW\nWGNxtpDqVVFigBwDZeFYLZbMZwvOlgv+7oufsVrWzK2jKB1qAuJ8fU7vB66ur7i5vETFyEdPH/Pi\n8qXM/KTMk/U5TitWZcFiXuJyILUNJbJ80IcRlRLZB4yzRzNtZTQ+y5tiaS1t38pGLhmcZdccaLpO\nghWCREUPPuBjxCOfw8fAzXaLtYasxNje5Iw1Glc4UJnBj3R+JOb7u+v/Lhj+5tVLQgioDNYYwpQW\nOIQ3i6aukAqmHz2jDxJMccvwVC147xg+P2PwI1fXV2yuLtEx8dHTJ7y4fEVR1diUebw+wxpYlQXL\neYXLgdg2lErsqvowQhaGrbPytSZJ3xOGLaV1tH1LNw5SiXGWXXvg0LV/FAzfPq+vr9geJo69Z7Va\n4pzlwcRx5g7HTmJhjxxffw/HIYB6w/F45Njgx8A4+j8Sjr+lxSny0ZPHvLh6SVnV2Jh5sj4TLa4K\nFosSl7xosTIM8Q3HBOE45fwWx9YaKmvp+o5uGPA5ka1l3zQc+lY8jt8Bx/e4cEzO39biieE7WvwW\nw3e0ePertPgDw++M4SGMMsYWArYwR4bRGk/AWUNpLF3f0g79xLBj1xyODMfvMCwWbbcMm8nXWRgG\nqzXOOfKRYf+HUTm+LXeTFGMjkHVtizOWFy9f8ujRI1LOHPYHyqoUO5Sq5HpzI7fAuuB//ou/YBzF\nhimlJAk+ObOcrFuarpVY1H2D11kGwyebMrl9tBitsMby8Oyc7Ed0XZJRrC8u6MdBohZjwqJZrpZ0\nfY/RCl3NCApMCCijefqjH2GnlQVxbACSmLOTssy/TPKitSTEhJzEMiaDUfBn/8l/fNwML6qKMQRC\n8CzqGp0lK7x2jroo0Nay3e948uAh1mjapuXi4oJnz57xv/xv/ysX52tOFrJYEENgHBRp9KyWJ6S6\nZjsMFFlTFgX0LY8fPeWXz75mfX7OfuixKVOUFUZrhmEkGkkSTNPCXQyBlGXTXfmATWqqNg9oYOh7\nrDY0fcd8PoegjxVTpSSe03tPSonBjxTG4oyiH0dCTjjrZJb5HhvPvwuGb25ujgxffYvhbbeh+eq3\nY/hifcGnn35G9h5tFEZpnsye0o8j/TDiQ2QMEXVxu8UtG8JBIW8IRsuhE3U7uHdkOCVJKZIZrluG\nFTEjDGtZ1jEK6rKUFLUYKcpS5rJjYF5V6AykRHVk2HG+f8yThw+FlaYRhp8/4+/+7gsu1muePn5C\nWRRT6pWjdgWr8xMSkhx2PltSWseua3n00QVffvMVjx89Zj/0bMsNRSF/n3EcCVqJgOaMwuKMRWVY\nLhaS5GgtWmtaPzCvZyilmM9nXO/37y3DIHrkY5A33s6LC0vT4Izl2YvnPHr0iJgSh/2BoiwYvacs\nheOUElXlQCnGcaAsCrz3GKUhZUkZ6zr2m41w3L7hGMCWNdoYhq7F5MDX33zDw9NTRj+itabzA4vl\ngn4cGQaPD4EYI0VZEHvZXi+LiqBAJ41SEmNvET1SSWYOSRmTE8Y48VRVWWZqjZXFJ6XvaLHGKI5a\nXJcVYxC7sMVctDilxOhHDoc92lqytpyszr+jxf/kv/gnrNdrlvMFlzfXrOYLnHN8+eIZy+WKNM1X\nah8prWXbtzw+v+CXz77m8cPH7IeO//a/++8pigKjDeM4EI0iBmkha5T4wWZAaaKXaHVtDK1/497k\ntKHz4w/i+D4/fd/zf/3VX2GclYVaLVVVZy3/KsOjRw85HA4c9gecK+QwVpRcb4Xh2XzOk8ePGccR\nVzhSSsznc9SkxU3XSUrnxQXd4UBQsCwKjFLEfI6xmr5tMVrfG4Y1HLW4Kku8z4x+ZD4TLU4xMowD\n+31GW0dWhpPV2VGL1+s1z54/wz50PLh4wE8+/YzL62tWiwXWievFcvlGix9NDO/eYvgR+6HnX/zv\n/+c7YTgqxXwxp23aKdRDY5BONjkTo3ysnHafhhjwKeJcIVX7FH8tR/ejcpxl3iblzHI2xyglW9EK\nrHNcXl3Sdh1KK8x0ELzZbdFaU00tgcVcEmLCZFpfVRWFdQxtR9McWC2XqJypZpUAN46EqYLcdx0n\nJyuM0ZRVRT+MZBQoddxSVWo6KORMQm5s1miYrFfiZPCdc0YbS0wJYywhRJnJRbwijbX4nAgpo7WV\nPzv9V+/l88TJny+kxDiO6JQgCmx+HMU3UWuWyxXeB7ZNy+g9Xdfx6vVrfPBst1suzs/5/PPPsc7i\nnONivUZPVfLz0zPU1BZ9+fo1N4cN2sjs1dfPvsZZS1lXOGM4mS/ET3AYKEpHitLqqKuKeVVPc8fh\nOOt1GDoOvieEMOW5y/cFoDk0kBG7lSmOMk3JZEZpxig2Ns5YOWxP31Ofwn12D7pXDBeVzJJnpaTl\nGsS5BaZgqyzOIcPEsMqK0Qdiisftdm2FP2MsMcRjFVshAnxk2FjGEKdbuGIM/siwsRJNO44DOmeI\nkcK8YVhrzWpieNc0DD7Qth0vX7+6w/Caz/+BMFxMlZ9bhtd3GX71mpv9VhguHd988zXOOemO3GV4\nHGQ7+5bhsmRxy3AS9vSR4UEYzqCSzK/B+8sw3C+Oy2mePE9G6SFKhU4p5J3rV2hxSPFeavGffP4P\ncFaS0x6cv9Hi9ckpKsr21IvXl1wftmgrc6lfP/tGOK5lzvhkPp847nGlI4aImjieVzXWWMYYyWRM\nWXAYew5j/+45vufPLce30c2rxRJQWGt5fXlF23agFNbdZdhQlhXjMDJfLIC3GXauoD8yvEDlRFVX\noJXYGvpA8J6+61mdrND3iOG3tDh9jxYbzWq1IoTArr3V4n7SYgn7uDhf8/nnn+N+8Hni3TF8mAwB\nnLGoaY44kcVCdrroJzgyrFFEHwgxon6DGN+LwzFIi6NQhs31DYt6xs3VNTFE8c+MUkVbr9fitTl5\nMRojARQxRq6vrzHaMJvPadtWKnJK2t2L+ZzCWrq2xTgntiajxxUFy6JgUZZsrjd0faAbBlxZgNJU\n2nI6X1EWBW0rSVtJQRs8hXNYawk5EZ0lxOkgKH8hOVTkTJhMf7XR8kOUEkFJDKJPiahgzHmKWJaQ\nA20NPmUCClMUVFXN+WJF9hEVE3U9I8RI0xwAOJnPWNQ1SkFZlbJxagxlWUqqlTZcbzdsthu+fv6M\nr775mqHrSRNoj8/WLBYLVvM5OkY+fvIUXVh+9sUX0przI2VZYkpHO/SUxkxzVoEYIj5FRhL9lLbk\nnNxmldY4aymMxRYOg6J0Tr6ntyk6OU/zUhLtmMg04yAVp5hZlDUzV6Kzkrm4e/zcF4b7fhCDdqWo\njeN0sZRKdtcJw0ATxrcYToWMIoleZwhSTXqLYa3B6IlhSEYzpkjUMCIMayUtWG0MY4SAxhQlVVlx\ntliRfUDHLLHjMXJ4i+FqYljeiKy1lEVJGmWZ4nq3/Q7DMQMp8/h8zWIxnxhOfPz0KdpZfvaLv6Mf\nBolGLUtsIfHapbETw1HecJK05m4Zts6htToy7KzFuvefYbg/HHfDIKEvd7XYOdq2+34tTonoZBxp\nOnfcMy32aKO53m652W74+vlzvvzmG/quF4ZS4vHZOYvFnOVshg6Rj588QTvLz7/4O7qhx49+4riY\nODbiz5siMcqhSjiW1rWzVjhW6p1yfJ8pvq0SF0qzvb5hXs+4ub4mRXFpSjG+YXgYpmq/Ei6AlCLX\n11dorZnPJoa3G/L0zy3DbdtiC0dtHNEHisKxLBzLsmB7vaUf/L1h+C0trr6lxbOaGOJ00IST2YzF\nrEKpLFpcOMytFnuZY/5B54l3xbBSVK6gsG4yWFAS7DF1Cowx8vr6QUZuY2ZeVtKpBH6TIeFvfThW\nShml1L9USv3F9OvPlFL/h1Lq50qp/1EpVUwfL6df/3z675/+ps+ttaLrOwpneXixZhhGqnmN1uZo\n0h1T4sWz59jpBQkhMK9q8mRWHmNksVgcX6TTs3MKV6KNRSnNzfWNvIijZzGb8eD0jDx68iRiOSeM\nM2hluNpucHVJFyObvuX1dktA0Y+RzTRD24wj7TTTNcaRpA3ddIOLOeNTlOhl48RIPGVCvDWzllz1\nkCWxyABGK5KS9CNrJUYx50zMcH3Yc901VLMaa+UHcW4r2SbWski42e85PTvjwfqCwXteX1/Rd52k\nIA0D87omJjg9X0vsorFUVcVqPuekKHh6coE2mtOzU0LO+N5jM/hhQFlN3/e0+5YH5xecna45dB2r\n2QmLRYVJiUpbrLYMw0CpDWf1DJ1hiNKmL7WdZqI0KYyYnFkUJZWxJB9kjk0rnDbkBK0fUUaLrzIZ\nqxXpN7RBPjAsDCutud5tcVVJFwKbruP1bkcAOp/YdB1aadpxpBkGPEmsbYymy4mYIZJFeGOg1k5m\nnnMmxEQiT0KUCFkSi/SRYVnGNM7hU5BqVM7cTAzXsxnGOqKPzF1FmBhWE8Nn5+c8WK8Z/Mjl1aUw\nbO33MOwwxlJXFScTw09OH7zF8Dh4bFZvGB562kPLw/MLzs/OJ4ZXLBYyt1wqi7nD8Gk9QyM2V0q/\n/wzfO46V5mq3oahLuhjYdO3EsaL7lhYfOY6erA1dSrIb8UO12L17LV7MKlKWOe1bjqu6YrW4q8WG\ns7MzQgY/jNgMYRwnjgfaQ8PD9S3HPav5ivm8llheZTDa0vc9hbGc1XM0ijEGtDFU2vxgjn+oldvv\nV4s1Xd/hnOXhg/WUajdDKYMfRuEhJ148f45RsvgVQ2BezchJgiNSTBPDUmE8Oz2TsawpyOfmZmJ4\n8CzmMx6enJJ9ICkoykoiiu09YviuFu+/pcXjGy22Wopam90bLR7HO1r8684T9e9wnngXDKMwSpGC\nx2SYFwWVMeTwXYY7P0qh4/hepaV7+Os4+h14/q+Bv7nz6/8B+Gc558+BG+CfTh//p8DN9PF/Nv2+\nX/vEGHny8CGVc8yLikVVMrQdZeEmq5FMXVecXaynlnHPo4sH7NsDIQROTk9YLhZcXV6SQuTBxQVO\nK1CZnBLee1CKBw8eYI1hVlbHsvth7Gn6nuVySU4JoyClzK7reNUceH6zIRpLP92YCiebqUkp8lQt\nMVluNWlqPdupRRWyVKIU8sNmtEamNeTGcmvdknOCaXM0AYeuBSUhBbc3xNGPjCFQ1ZWYWFtNWdVk\nbSiLgofrNWM/8PLFS1azOY8vHlDXM5px4OT8DFcUWK1oDntijozB8+Wzb3i1uaZczHGzml989RVX\n19fSyuh79HxGVVToMbA+O6UqHbvtDVorFlXNbrehms1ZLBdcrNcUpaWqCgonGfbn5+dimeLDMX62\n82LaXZQFXSsHH6cNpXHolKmKgroqKYpiGrj309ybPcah/oDnj4RhRYqJfd8Lw5sNyVg6H9FaUxSO\nEKXKgNEyq5ZljOg2GcugJEo0Z/HSnDa1jTZTO2r6N3PcmGaav0wKDl0z/RlZFkLLyMUYPFVdYayk\nRRX1txju+iPDjy4eMJvVNOPA6vxMqslHhhNjGPny2Te83FxTzOcUs5pffPWlMFwUNBPDZVGhfWB9\nekpVOLbbDUopFtWM/W5DNZ8xX86F4eIOw95zfnYur0V4/xm+bxzbieNd1/Hq0PB8I1rc3dXimIhK\nCceATRJSlCaOf7AWt+9Yi8/OsK7AKkV72JOI+Oj58ptveHUzafG85hdff8nl9RWmdDTdXY49F6cn\nosWbieO6Zr/dUs1nLBZzHqzXFIWjqkoKa4hhZH1+hkERvX8nHN++bj/g+f1q8aNHwrCrmJcVQ9tS\nFg43BUjUVc35ek1Rl/TDwKMHD9k3B2IMnJycsJjPubq8JIbAwwcPsFqCrXJOjOENw8YYZmUtzhFK\nGG6HjuVyKe4Q94bh31aLNdUdhl99jxb/yvPEN7/leeIdMbw6WdKHEWMsRVHQdz2FdVj9/7N3pzGS\nZdlh3//nvjW2zMitsjJr6a7ume6ZIcdcPBRJy4BlkZJlSqBsWoApCDD9wRAgm1pAGxQJfzHk3TBk\nypt2WbJEm6IoQaQI2oRIirItcx3KHHKW5nRPL7VkVuWesb7tXn+4N6KiqmvrrqqurOrza2RXZERm\nxI2IU69O3HfuuYY8TjCNI0tSWpmPYYujrGt/HI58aciDPFJyLCIXgT8I/LXwvQC/F/iJ8CN/C/g3\nwuU/HL4n3P4d8pC/SZGJMI3FGOH6zvXwqdT5XXuiiHarTbfdZlJMOTg+womw3OkShfqV0ckprTxn\nfW2NdqvFdDJhfDpkOBpibUNR+cL6mzd3GQ3C3udrq0RpysrSMpEIk/HELzIyhiSKmUxLQDCxb2M2\nrSuOinHYGxwa5yhtQ5SkRCYOSYmv1bLONx+X2SdskXmTcJz/ywuQpP6UFg7iKGap3fFbfRpDJOKL\nywHjIAubEQzGY5qqptftEMUxJokZj4Ysd7pMpxPyVk671SJJ/OrOsix5+7332N3b48bBATaKGBUF\neavN5e2LDCYTrh8d8JU3v8r585uc39xkf2+P/lKPZjphPB2TtNu8fe0aZWOJjD8ltLG8wta5c9za\n3WV0OiCLIqj8RhjDaUHSbjMaDlhZWqLX7VCUBVJVnOsuU9U1RV2HutdyXhgfG79PelVXFE3JqC4p\ncEzKgjSKiR5jsuLjFMMiQhwnTCYlyO0YLqqK42KCRcIKYUdpLSb1p35pnG/Nhz89JZHxMRxO0c1i\n2OHCDKi7HcP42sWldvd2DM/iF8E4ITN+YcRgMqKua3q9WQwn943hk6GP4Xfee4/d/RDDZhbDHS5v\nX2Q4mXDj+ICvvPk7nD9/nvPnNtnbDzE8CTHcavP29WuU1hKbmPFkwsZy38fwzk1GpwPyKELuE8Pd\nzosfw2ctjjFCEif+WCzcjuO64nh2LA5JQGktUeJnYV3jwjazcsaOxZU/Foc4bqKI4bQka7W5vH2J\nwXTC9eMD3vjqVzm/eT4ci/fpLy9RTyeMpyPSWRw3lsjETCYTNpb6bG1usLdzk9FgSBZHSNjidzid\nkrbajAbhWNzpMK0eP47lDMdxHPkYjmQWwxbBd3GIo5h2q0Wn3WZcTDk48iU/y+0ucWxYancYn5zS\nylu+s0WrzWQ8YTwYMByN/EZiYbOMmzf96z2dTkMMJ6wuLWMQppMxURSfnRh+6LG4SxTHRHHCeBhi\nODQxaLXaJEk6PxY/bj7xpGLY1LWP4aamaCrsPIb9h4PIGKq6omxKpnXJqCqZ4nzPZhM9tMTtUWeO\nfwT4QfxiWoA14Ng5N5uXvgZcCJcvAFcBwu0n4efvT6Coa44HA7YvbZNnKZc2z5PGEdV0yng8ZDAe\nMpn4bS7baYoxQjv2jb6//jNfx7CYMhyPGY5GVHWNtHPSOCVLc3qdHqPBiE67y9bWNjQNk9MB59ZW\niSQOq/19Qbd1DbVrqOsSW1ucEyxCg/gtFqsKZwSxLpyyLambhlggwmGxSOK7URgHiUTQ+BYjlW18\n0uHA1g1V6Rttp3GMsw2jYuL3vLcWZxuyJPZjEF/3KA6/kCVvkfd6nB6dQAMbG+tkrZyiKmnFqV+4\nah3FdMrp4RFr/RVGxZSl5WXqaUlmEo5PT2m3c5ZbLVY6HfrdDraoyKOI9eUuWRyxsrREGkecFBPi\nKCaLYh9wVcG4nHI8HNDuLtFt99jb22dYTOn3+/S7PQ5v7VHbhtI25J02UeK3kF5qt9je3CA1ln67\nhQ0tiQTfKsbEBtdYEoz/R1r8rk6DYoJEj1Ui/zGKYRtqaUts7cCJb5IOWMTX1RoB54icUE9L6roh\nNvjWPuK3axbnk4HE+Biu69p3MoAQw3beLD6NY6xtGE3HvrWQdTjbkCcxtm6wIiRJ7HcQdI48a5F3\ne5wehhg+t0HebjGtqvfF8MldMVzdN4a7NEVFHkdsLHfJooiV5YUYNgmp8Sufq9LH8NFwQLvXo9fp\ncWtvn8F9YrjV/RjE8FmL47CifBbHt4/FIY6rCmf8mY/bx+Ka2EB8Fo/FR0es91cYTacsLfeppyW5\niTk+8XHcz9uszo7FZUkexaz3O6SRYXV5iTSKOCmnxFFCZkJdf1XeEcfddpdbewcMplNW+n1Wuksc\n3Nrz60JsQ95t+zrxx4xjHm/m+KnGsQPfY344YOvyBfI85eL5TR/DkwnjyYjBeOjLBExEJ82QCFpx\nQivN+LrPfB2jcspwPGI0GlLVFaYVYjjL6XV7jIYjuu3OHTG8sbaGCTFsoth3gThDMfygY3Gr2/XH\nYgvrC8fiPE5CDPtNv55IPvGkYrix9NotLmxukIqbx3ASx4Cjsr6nMo0lEYOxlkgc07pkUE7nNeb3\n89AjtYj8IeCWc+7zD/vZD0JE/riI/LqI/HpRFJRlxVK7Qy9rsdTu+tMGSUy/v8wrFy/TIiZLU19v\nkue88/bb5HlOYxt+87e+QIzQ7/VIk4ThZIytKt8H0jbUVcn6+hpJElOWJcPJmG6vx/HhEVhLJ2+R\nJ0lokxYWl4gv0K9DixO/5WEYO7NtGd38lMZsNtmIYKva7xaHoxFwRmiwzD6o+EL5hMhEVI1fIIX4\n9iSxGFY7PbppysbKCkudFiYsGipLXzfTa+WMTo7Z3Fyn02uze/MWRek7bNRGuHV8xMHghNF0SmfJ\nn6KkbGinCf2lHmsryzTllFv7+xiR+axQt7/MYFLw3s4t6rKi1/GzgAmOly5us76xSpz5FZ+2rJgO\nRkSNpaJBkojN5RVO9/aQsuTy1nlWe0vYsuLg5i2oGlZX+4zLgus7NyHOGFcVJkl8ezEHRdUwLSoa\n8a3Bet0eiYlJJSIVv9/6h4y1j1cMAyaK5otM6qahKEpMiOsweD8n6BwY3zOzcb6kSDDYuvZdC+Yx\nDDV+163w3EmShCi6O4ZjEmNYbffopgnrKyssddoYa6mrmrIoMWJYauWMZzG81GJ39ybTosABTSTs\nnYQYLqZ05zFc004TVpbvjGFBSMSvmu4tL3M6KXjvxi3qsqTX6SLOkeJ46dKWj+E0ujOGa0vpZjG8\nelcML2PLiv0XNIbDfZ/dOI4j3OKxuCj8hgYhjmfHZH8sNj5+ZsdizJk6Fnd7XaxzUDa00njhWFxw\na38PEYglHIuXlxlMp7x3Y+8ex+It1jZWQhyDLWuK2bHYNUhiON9f5WRvD6qSy9tbPo6rmv2be0j9\n+HH8GLH21I/FZVFQlCW9EMPL7R62XGRo5gAAIABJREFUscRJwnK/z5ULl2gThRriiKyV887XfAzX\n1vKF3/otIoffXTZJGU7GvqVYEvkYLks21teIk5iyKhhNJyGGD8FauiGGO+2zFMMPPhaPTo45v7lB\nu3evY/Ehh4NThsWTzCeeQAyv9ZkUU67t7EKcMi4rJIlDn3qhqBsmIYatg16nRyIxqQkxbB/cc/5R\novx3A98tIu8AP4Y//fEXgL6IzPokXwSuh8vXgUvhTYuBZeDg7jt1zv0V59znnHOfi6KY/uoK3d4S\nrVabTqeLGMN4MuHGwR5FU1M7SyvL2Dx3DkTYOr+Fw5G1WsRJ4ovJ45goMsRJNK/Tcc43xy6mU4pp\nweHRIXGSsHPrJkYMxXRCnqWAwwh0ux3quiZOExpnMZFf4NSEQn3wnwYdbp48+DZHKUQREb6mSYzf\n6WUW9LO/ArNT1E1oVeJEaKzfpKSuGpyD6XAEtSU2vnA9jiJ/WkUMTd1wfHyMMYYszdjZ3UGMYTTy\n21UOxmPGZUFZ1URJQn9lhazlexR3Wy2SNKYsp5xbX/f1jw5c07C6ssLO7q4/xRba+2RpytrqGsud\nDu0sYzTwnw477RbddofV/jIiMm/LlcUJG6srbG9v0WrlnFtZoyr9itNLW1tEIkyLKasrK9RlxbQs\nabdbxMYnWkmShN3KzPwvTOTw05lGqORDb6DwsYrhTqfrYzjUx0vku0zUrpn3JrYhnmdxLOJ3jSNs\n6Yn1H/TMwoe/2cF8HsNhi06HUFtL3fjEwTmYjIbQ+BguiilxHPkZQWOoG8vx8bFf5JZl7Ozu+hge\n+52OTsdjxkWI4Tih318hze8fw4Kf2VhdWWHn5i5l7We34zgmSxLWVtdY6nRopzmjwWmI3xa9EMPm\njhiOObe6yvb2Fu12zrmVVb8QyjoubW2/cDF8luO42+3ePhYvxHFzVxzb2bHY2dtxbCJMiOMzdSzO\nfa/tbrtFmsYUZcHmxhpp4mfoaCwr9zgWp0nK+toaS5027SxnNBjQ6bTottr02m1WlvsIPo4jMWRR\nwrm1Vba3ztNu5ZxbXaUuC8RZLp1//Dh+jAV5T/9YHMf0V1fpdpdo5a0QwxHj8YSdwz3KhRg+d+4c\nCGyd3wLn/L+VSewXCkeR3wAl8bvIWufmazqKyZSyKDg6OiSOY3b3fAyX0wlZlvpyBs5QDD/CsTjN\nUnZ2dzELx+JBOBYXdfUB8gn7wHziScWwwf+dXO2vUlU107Kg026TGP+eJaH+2Bg/sWmrGuMEIsEZ\nHnosfugmIM65HwZ+OATn7wH+I+fcHxORvwf8kRDg3wf8ZPiVnwrf/1K4/Reccw/8m2SM4erODSJj\nuLy9RTnxn6yyNKff7rF7Y5fWcs8fdMRQFBM6Scbq6ipvv/cenU6Hsqm4fv06V15+mWq/Io4iSttQ\nlxXdVjv84wedbpvY+FqgaVnS6XaYloU/jVBMmYxq4shP2SMCgk+MnSUKPWAltArxPQgNglDWJc75\nTxvW+Poewbc2scYvYTIiNM7OA9r35fOhboz4nrGNX7XtTMStg0NKgLqhk+aYpqbdahPFQuks09MB\nUZTQ6XYpyxJrLctd38/ViLDUXeK3v/Cb7B0fATCeTP3p8iTFWui12kyNYTga0W53yPOMLDG8fuUy\no7LivevXiOOYJEk5PDgiT3KO947ptnNcYhiWE2rnWFtaxlnLyWiIAFmaczI4odfusrm1yd6tWxiB\nOEpZX16ht9zD1jXgWOq2WcoTToYTBIjTlGlZANDKEsqyZK3do6prXw7wIXzcYngwHvqm/o31JUCO\nsCOc8yvUwxkOB35VtYlAoKwqHA7jjI9hkfnpY2sI7W+Mn7W4RwyLEaLFGJaIW4dHFABVTSfNEYlo\nt1qY2FA6x/R0QGwSut0uRVVinWW51aUM/zAs9Xq89fZb7B0dAvK+GO622hTzGG6/P4ZvXF+I4UPy\npMXR3hHddgt7VwxjLcchhtM042R4Qq/lY/hWiGF5gWP4rMXxcDoljnwcY0KsWb+zYRyOwbNjsQ21\nlSL4BVNuIY55vGNx8oSOxccnJ7ePxeMCk0SY2bE4b1NIxGA09HHcysliw+tXLjEqK67euEYUx6Rx\nxuH+Ia0k53jviE6rhUuEYTmhcY7V5WVoLMfjIeJ8HJ8OTum1Oj6Ob97yM9SPGce3z6OevTgWI1zd\nuUEswqXtbcrpFCMRaZZxsdOdx/B4NAbjP6x1Yx/DX7t6lU6nSxJ6TL/y8hXK/ZLYRFS2pi4rOq22\nP5ts/MZAkYkhMhRFQbvbpagKWu0W06LgdDQ8EzEcS3rvY3G7hYlmx+IhcYjh2bF4qdUlCV16lno9\nThZjeDLFJPfKJ4b3PhaHfOLJxXDCWn+F3lIP29QIlqVum14WczqcIgaiNPE19kCeJlRlyVqr53uq\nP+RY/DgFcH8W+AEReRNfA/TXw/V/HVgL1/8A8EMPuyMR3/g6jxOqScXxeMxoPCZKYt67uUNvY40s\ny1lZ6VNPJry8fZHJZMLB0XHYAnKIsY5LFy4wGQ5JjGFpeZmm9P0Dh9MxtXMUZUUr71BWFUVZkkUJ\nZen7mrqqJmogMcZ/gneCODcvZI9mO3+FREL8hDG2sSF5DrvdGXydD8xnlt3s06CJSKM4TMPhT4uE\nldo0DsEX2IuJqQ00QqgL8i218jjB2pq6rGkqP3udt3KOTgeUjSVNM8qqJE0z4jzjqztXKauatf4q\nTV0zmU6IjDA8PWVcTNg/PKCqKjqtFru7O/SX+xgnVEVNt92lHfYlF/EDWVrqceWlS7TbLTp5zmZ/\nlU+ev0CaROwdHfod20zEwdExvaUeceJbrmRxzGA65vj0iDRPEWBzpU8ryzg+OeXmzT2WWjmdLCOL\nY9qtnDyKuHLhIq+/8grYmvMba+TxE2/L/WLGsERIOOcmYbck43zrplm8OZEwc+Hbi83OhhhjqGcx\nHBbfNWFWw4TShTTyZ0dwzE/t3Y5hG2I4oo6gEecnm5ylaWryJMHahqasw65IkLUyDk8HlPXdMZzy\n5o0QwytrPoYnCzE8nXBwRwzv0l/u+01NpjXddodWiGEzj+FuiOGc7r1iOFuI4d4ScRKThRgeTkcv\ndAzD2YrjVCI/0+PE7wgWjsWzODbGn4LGOX8sDhsezBYhnbVjcVXVrPdXsXXDZDomEmFwesJoOmb/\n8CDsWNZmZ3eH/tIyBjM/FreyNs6CGMAIvaUeL1++7I/FrRbn+yt8cmubLI7ZOz70nS1MxOHhCd1e\njyiJySQiT5InEseP36zifZ7gsdj4TgxxSjUpORmPGU7GxHHM1d3deQyvrvSpJ1OubF/0x5KjE9Io\nZjL2MXz5wgXGsxjuL1OXFUmSMJpOqK3zbQ5DDJdFSRr5DxCucdiqwdgzFMP3OxY3DU1Vh4V8jizP\nODodzmO4qErSLCXOs9vH4sV8Qu6RT7Qfkk88sRg+JssSDI7z/T6tNOPo+IRbN/dZaocYThI6rRaZ\nibly8QKvvXoFmorzG+tkDzkWyyNMJjx1rW7XvfzZryPHtyaJ8ozMRBwcHdJudyjrilarRb/b5ejw\nkNX+CqcnJ+TtNpPhkCuXX+Lm0QGj0wGXLl9iMBwymkzAOTrtDgfHh4j4tmtZmjMYnpK3fONrExuK\nacFSt0ccx4xHI9pLPY6Gw7BDWETV1D6Q8Sv3nfhWV3XjC+Jn21M6/D/CL730sj/FYR1ihNkpkBjf\n8q0MPffA/2Mk4v/iINDpdGjKim/45m8gMTFrK6scHB4gxtAJpwnAF9RPJmOwfn/xdrdNLEKEI4oT\n4sQ3FP/8L/8Kg/GIPMv9J6eqpiimXLx4kdFwSLvVRpwjjhNORwPSNKWalmFnnYZpUTAajzg4OGQ0\nHrO5uclwMKDb7VBOfYPzVrvFcDwmz3Ju3dhhfWODd3euk2cZvXbHt/uKIw4O9snznM1zG4xGY7JW\ni6qq/VaewwFN7T/1ZllKIoZWnrF9YZvJeOr/EuP48R//ic875z73bCL1/s5SDCdxTGdpicPRgMb6\nZuhVXd9u+2P9THBM2Co4nAFx7vZpum63c8f3s38N5zFc+t6nDj+DcWcMt6nLmiRLSEzE+uoqBweH\nSFi4FRt/tiVJEh/DzjKtajqdtj8N5ixxnPjTm9axt7PD8I4YriiKggsXLjIePVoMt9otDg8PGY3G\nnFuM4cKvPH9fDJ/b4N0bsxj2dcsmjrh5c/eFjWE4W3F8eHhIp9fjaDSgnsVx6E1qxG9W4Y/FZr5Q\ndH4sduHY63jsY7EV+0SOxT/wJ//UwrE4ncfxxYsXGI1GtPMW4iBJYk6HQx/HReE3hmh8HP+dH/07\nIY4nnDu/yfD0lG63S1kUIY7b/u9K3rp9LL5xjTzL6bU7CH7HtZOTo8eK4//zH/8ch4eHTz5FfgLa\n3a575Rs+Sx7qd30MxxweHdJutynqina7zXKnw9HREav9Fd9GrNVmPBxy5aXLTJua0WDA5UuXOJ3H\nMHTabQ6Oj3y5A0KaZj6G2y1s3WCiiOl0ylKvRxLHvPnmW2cihhvsfY7FftLvUY/Fr16+/IHziXrq\nO0jMjsXD0fCJxPBkMqaV+/Ku0djHcBlieDQc3J58yVJiY2hlORcubjMZT/ykpnP87b/zo/c9Fp+J\n5FhEBsAbz3ocH8A6sP+sB/GIXrSxvuSc2/goBvNBaAw/VS/aWM9kDMNzF8cvWlycJQ8br8bwk/Gi\nxcVZ8ljH4ofWHH9E3jirMyn3IiK//ryMV8f6kdEYfkp0rB+p5yaOn6fX+nkaKzx/472LxvBT8jyN\n93HH+sQL4JRSSimllHpeaXKslFJKKaVUcFaS47/yrAfwAT1P49WxfjSet7E/T+PVsX50nqfx61if\nnudtvIuep7E/T2OF52u8jzXWM7EgTymllFJKqbPgrMwcK6WUUkop9cxpcqyUUkoppVTwzJNjEfkD\nIvKGiLwpIo+0i9NTHs8lEfknIvIlEfmiiPzpcP2qiPxjEflq+HMlXC8i8t+H8X9BRL75GYw5EpF/\nLiI/Hb6/IiK/Esb0d0UkDddn4fs3w+0vP4Ox9kXkJ0TkKyLyZRH59rP82j4KjeEnMmaN4WdIY/iJ\njfu5iOMXMYZB4/gJjVljGJjvxPIsvoAIeAt4BUiB3wQ+84zHtAV8c7jcA34H+Azw3wA/FK7/IeC/\nDpe/C/g/8NvWfBvwK89gzD8A/G/AT4fvfxz43nD5LwF/Ilz+94G/FC5/L/B3n8FY/xbw74XLKdA/\ny6/tIzwfjeEnM2aN4WcXLxrDT27cz0Ucv2gxHMapcfxkxqwx7NwzT46/HfjZhe9/GPjhZzmme4zx\nJ4Hfh99xZytct4VvNA7wl4E/uvDz85/7iMZ3Efh54PcCPx3e/H0gvvs1Bn4W+PZwOQ4/Jx/hWJeB\nt+9+zLP62j7ic9IYfvzxaQw/2/jQGH4yY3wu4vhFjOG7X9/wvcbxBx+fxnD4etZlFReAqwvfXwvX\nnQnhNME3Ab8CbDrndsJNu8BmuPysn8OPAD8I2PD9GnDsnKvvMZ75WMPtJ+HnPypXgD3gfwmnbf6a\niHQ4u6/tozjTY9QYfuI0hj9iz0kMw/MTxy9iDMMZH+dzEscaw8GzTo7PLBHpAn8f+DPOudPF25z/\n6PHMe+CJyB8CbjnnPv+sx/KIYuCbgb/onPsmYIQ/9TF3Vl7bF4HG8FOhMfwReh5iGJ67ONYY/og9\nD3GsMXynZ50cXwcuLXx/MVz3TIlIgg/kH3XO/YNw9U0R2Qq3bwG3wvXP8jn8buC7ReQd4Mfwp0L+\nAtAXkfge45mPNdy+DBx8RGMF/2ntmnPuV8L3P4EP8LP42j6qMzlGjeGnRmP4I/IcxTA8X3H8IsYw\nnNFxPkdxrDG84Fknx78GfDKshkzxRd0/9SwHJCIC/HXgy865P79w008B3xcufx++dmh2/b8TVkN+\nG3CyMK3/VDnnftg5d9E59zL+tfsF59wfA/4J8EfuM9bZc/gj4ec/sk+szrld4KqIvB6u+g7gS5zB\n1/YD0Bh+DBrDZ4LG8GN6nuL4BY1h0Dh+LBrD73+QZ12g/l34FZxvAf/xGRjPv4yfiv8C8P+Fr+/C\n19L8PPBV4OeA1fDzAvxPYfy/BXzuGY3793B7dekrwK8CbwJ/D8jC9Xn4/s1w+yvPYJzfCPx6eH3/\nIbBy1l/bR3hOGsNPZtwaw88uZjSGn9zYz3wcv4gxHMaqcfxkxv2xj2HdPloppZRSSqngWZdVKKWU\nUkopdWZocqyUUkoppVSgybFSSimllFKBJsdKKaWUUkoFmhwrpZRSSikVaHKslFJKKaVUoMmxUkop\npZRSgSbHSimllFJKBZocK6WUUkopFWhyrJRSSimlVKDJsVJKKaWUUoEmx0oppZRSSgWaHCullFJK\nKRVocqyUUkoppVSgybFSSimllFKBJsdKKaWUUkoFmhwrpZRSSikVaHKslFJKKaVUoMmxUkoppZRS\ngSbHSimllFJKBZocK6WUUkopFWhyrJRSSimlVKDJsVJKKaWUUoEmx0oppZRSSgWaHCullFJKKRVo\ncqyUUkoppVSgybFSSimllFKBJsdKKaWUUkoFmhwrpZRSSikVaHKslFJKKaVUoMmxUkoppZRSgSbH\nSimllFJKBZocK6WUUkopFWhyrJRSSimlVKDJsVJKKaWUUoEmx0oppZRSSgWaHCullFJKKRVocqyU\nUkoppVSgybFSSimllFKBJsdKKaWUUkoFmhwrpZRSSikVaHKslFJKKaVUoMmxUkoppZRSgSbHSiml\nlFJKBZocK6WUUkopFWhyrJRSSimlVKDJsVJKKaWUUoEmx0oppZRSSgWaHCullFJKKRVocqyUUkop\npVSgybFSSimllFKBJsdKKaWUUkoFmhwrpZRSSikVaHL8nBKRvyki/9mzHodSSiml1ItEk2OllFJK\nKaUCTY4/AiKy+ZTvPxOR5af5GEoppZRSHweaHD8lItIXkT8hIr8K/M1w3baI/H0R2RORt0XkTy38\n/H8iIj8uIv+riAxE5Isi8rmF279JRH4j3PZ3gXzh4daBqyLyoyLynSKi76tSSiml1IegSdQTJCJG\nRH6/iPzvwLvA7wf+c+C7Q8L6j4DfBC4A3wH8GRH51xbu4ruBHwP6wE8B/2O43xT4h8DfBlaBvwf8\nW7Nfcs5dB14D/jnw3wFvi8ifE5FXnuLTVUoppZR64Why/ISIyPcD7wD/FfBLwKvOuX/TOfeTzrkK\n+BZgwzn355xzpXPua8BfBb534W7+H+fczzjnGnwi/A3h+m8DEuBHnHOVc+4ngF9bfHzn3K5z7r91\nzn0W+B58gv3LIvKLIvINKKWUUkqph4qf9QBeIFeAFeDn8LPDB3fd/hKwLSLHC9dFwP+98P3uwuUx\nkItIDGwD151zbuH2dx8wlq+GMXwO+BQ+UVZKKaWUUg+hM8dPiHPuPwReBX4b+B/wpQ3/qYh8MvzI\nVeBt51x/4avnnPuuR7j7HeCCiMjCdZcXf0BEIhH510NJx3vAHwT+S+Cic+6fPubTU0oppZT6WNDk\n+Alyzt1yzv1559y/gK8J7gO/JCJ/A/hVYCAif1ZEWiGZ/XoR+ZZHuOtfAmrgT4lIIiLfA/yu2Y0i\ncg64BvwXwC8Dn3DOfY9z7h855+on/DSVUkoppV5Ymhw/Jc65zzvn/iS+JOIvhTriPwR8I/A2sA/8\nNeChLdiccyW+jvjfBQ6Bfxv4Bws/Mgb+gHPum5xzf8E5t/8kn4tSSiml1MeF3FnGqpRSSiml1MeX\nzhwrpZRSSikVPJXkWET+gIi8ISJvisgPPY3HUEoppZRS6kl74mUVIhIBvwP8PvwisV8D/qhz7ktP\n9IGUUkoppZR6wp7GzPHvAt50zn0tLCT7MeAPP4XHUUoppZRS6ol6GpuAXMD39J25Bnzrg34hSVKX\n5fkj3bkA95rrzrPsUcf3QBvnzn2ox1907dq1xx6Hsx9gRn82qFkX5LsvP+h3HuF+l5Z697jhfu5/\np6eDwUMe8OFGw8G+c27jse9IKaWUUuoentkOeSLyx4E/DpBlGd/4jQ9v9ysi3K8M5BOvfuKO7x3M\nkzsRg3P2Pgnjnff3/d///YuP+NAx3csP/uAP3v/G2T4eDylnKcvyHr967+fvHpAcy+KPL+wh8rBy\nGhf+L8B3fud3PvBn738fDll4DX/hn/zCh7qfRf/s//r5B+0MqJRSSin1WJ5GWcV14NLC9xfDdXdw\nzv0V59znnHOfi5P0ke747oTOSfhi4StctzgzOv895x6alD4Nd2xs9wHG4BYSdwdY57D3mpl1C3/e\n6/L8od3866GP626P+8O+YoLgwn/vG6+76/sHD0gppZRS6iPxNJLjXwM+KSJXRCQFvhf4qYf90izJ\nfd/1zs2TNLnrazHJcoj/cgtfs+uw8xTNf4X/xC38jGAX7we5nciGL8c9c86H+nCLHgXBzJ/t7Dmb\nDzib/eAx3/2Kzh7LgDjiKLpjQnrGOss9k15uJ/R33z6/fFdSLGL8+7v4Xt71+UFEEHfXLLhSSiml\n1FPwxMsqnHO1iHw/8LNABPwN59wXH/6L975aRLDW3lES8AHH82F/1c9Av//a2cg+3J0+R+qmvuez\nlHtce89E+BHYpvH3ufAmvfivrFJKKaXOqqdSc+yc+xngZ57IfcE8MV6sGJhf7Wbf23Cbn2meJXCz\nSck7cloXfu6u7FfCjXfXyt41mvnjPGv3HycPX5AHuPCaLf744q849/5Edfb6Ls4Q3/vhb//MHW/c\nXQ8k9/jkMi/ncHe/40oppZRST9czW5D3MPO06O7FZos3Puj37zgv/3hjeMy7eTbOaj75CBPvZ+GD\nh1JKKaU+ns5Ucnx7nvB2BiULk4d3p0yz/Hc23yvhP+6a8bTO3VmWIf5/s7nPRbLwf8OduZy7Y5Ha\ngxK4D5JW3+9+7H2uv/u33cLzkPd9hjALlx/0iHfmrO6OS3c/13susLvrKbrFaecHTMLPP8SI3K4j\nV0oppZR6Rs5McuzuufTrg/zugz3qYi63kEgvLgacXXYuJK13lQM8Stvgxce4VznB4/Bju7Pw4+6S\ni0cZ3yzF/qhy1MWOGHdPKs/HEN6SZ9BoRCmllFIfM0+jW8WHtFhXvNCP964/7/e79629JSTGzt2n\nN8NdHTBgYUraJ4lNWBDocHR7HUQgTWOMEYwhVNdaCP0uHmQ2U3qvlmp3NMfg4V93/vLslbj9/WKH\njoe7u576Hr91rzfjQdPQ97h6/jV7HRZ+fLED3+JdzD5HPOHPE0oppZRS73NmkmPfpow7mpfNrsO5\nhevD1x2Ltd6f+C72QJ49gnUutHizONcADc42Prl1DhNFmEgwRmia2ndScA4jAtbirGM6KYjihNF4\nTFNbIhMBDa1Wa17WsZjkLo7xfSUcd3WLe0Dqe28hwZZwefaazF+b2S57i32eZ/fvbr9u/oODLLy2\ni+O+86Igd0zwL/6OzO7+7iz37vJv58J7sfDuLHRzu/vDinUOJ49aaKKUUkop9eGdjbKKMLNrCafZ\nZyUM4abZZZjV/vrz7L4m+M5d4+YlC3ahotiBc9YnwAastVjn+/gmcUTTNKRpSllW1FWDiBBHMcYY\nmtBqzBiDw1E3Fd1Ol8bWuMZRliWCZTKZAOITaRYT38VykYeVjizcNkt07+7csFBfMHttZj2Yb38w\nEMQ5XNhRz8xev1BrPfvwMJtb9p07Hvz+LM54P6iGZLHyeVbuMp/Vd7cLYJyzODHzx12cRHeAGAn5\nu5tnzjpzrJRSSqmnTT7cBhVPVq+37D73Ld8ekldzR7LbWOtnkI3fLMI6h7P29vdNg3WOfr9/RyJp\njJlfdg6apibNEgDGoxGNE7rdDtub5xiNRuwfHGIiQzEpWOr1GI/HRElMt9NlOBpirSXPUlZWVrh2\n7RoWaOqatdVVDg8PyLKcsqz8uEyEiFAUBWmaUlXVHc/XOkcUxr9YXrBYzjGdTN6X9N99WUTmHxwW\nPzSEH8I5R5wkOGsRYxAjtzfcWEhwG9vMP0yIMbhZGUl4nLX1NQShbmqMGJDwfuATc2vtHXdpInNX\nXYRPkC9cuODfDxzO3n6PxAjOutuvx/wp+J+bjQvgL//PP/J559znHhZTSimllFIfxpmYOXbOMhqP\n/cynMXckejYkx7NEEG4nv1EUUVXVPBGdJVt2VmrAbLLUzzGPx2N6vS7/0rd+ji99+S3iLKZpGk5O\njomiiOl0ymuvvcJv/MZvcG5zk9XVDb785S/Rbneoqoo4XuLgYI/19VV2b+6TZQlJElFMC5qmIYpi\noijh5HRA3TSkSUJVVVRVhXOOKIrmM9Fxksyfp7X2jhlqYwyTkBzfL/G9Y9OMkFTea6Ff0jQ01hIZ\ng8PPms9fSwFnb5dmzH831FcL/vWfTqf+tXXQ0MyT11lyPHtcEQn12cxnm2f3ad1sdt1fNuKfpw0L\nHEVkngj7t8x/7xNpueODhFJKKaXU03Imao5ns6Y+QbK+7MFaP4MZki9rLXVd+93y8EleWZZhdnGW\nkDlwFuf87zfWUjcNta1pXEOWpgwHA7761jscHR9yuL/P1atXOXduk26nTbfT5r2rV/nEq6+ydX6T\nyXjEpYuXwDm2zm8xGo7o97vYuuLVV15mOil44403qeqGoqw5HQ4ZjcdceekSSeQT8lkhgRHBNjVp\nnlHbhrqucM7SNBVlVWCiiDhN/Yz07HkTnkdYoNc0zXy3QMftspM7k2K/I+Dsi/DaNne/ptZCmK31\nCbmAhPE66xNhezsR9uPwX86626UWd31omc0SzzS2mb9nCNhQHzG7XhCaxj+edXaeLE8n5XzMiMW6\nBqdVx0oppZR6ys5EckyYCRYRxJjbyRS3ZzNnSZxzjrppaJpmPrPqgDokjtaFUoxZJwnj26+JCJPp\nlFarw86tm5RNTVFXJFmboqqYTie8dOkCN2/eYlqWHB0dMxgcc+3qOwxOjsizmLIsGE8K9g6PePfd\na9R1zfr6CkvLHTY3N4mjmKphNyrHAAAgAElEQVSu+Mobb5CkKXVTg0DV1NSuoaorPnH5Etvn1rG2\nwtIgxpBnKRurS9i6wuB4+eXLrK6t+lIDA8jtmVkbEv5Zclk3DWVVMy1LGuuorKVsGiprKeqaqqlp\ncJR15T9cAITSD79g0dHYhsY66sb6yg7xYRGZKCwwnM0uSygbkXmiPvsQ0jiLkzDDb/z7aKKIKIow\nkSGK4jCjL/PZcREhjv3JC+vs7T7SAknqS2CiKFr4+bMRrkoppZR6cZ2ZbKNxltqGpG+2+mqhRGC2\niM6GWWQb5mRndchRnHB+a5tWq01dN34m1EEUGXqdDlmaYkzEcDxiZWWVl166DAjj8ZBWq0XdNFzf\n2SXLct5++x3effddrIPXP/Upti5cZPfmLc5tnmN//5DTwYDNzQ3SNOH111+nLEp2dnf8PHGo8y2r\nEmsd4/GEtbVVcJZWK+eLX3mDxglJktFqdYiiiH5/lapxXLnyMnmeceP6NW7e3J3lqDjrPwykWYox\nhjRJMGKI4yQkqwYjESL+z8hEGDFEEs2T6iRJfC00BmvdfMbZ2tuLH0XMvH3dLCH1ye3tBHXWZy6O\nY+IkxuIwkQkfYvx7Zp0Nc+bW3xYWM/r7u514m8gveIyM8e8rNrz34WyCzDpjGJzD1zsrpZRSSj1F\nZyPbEJ8AJsYg+BlC67M1P5Mcygpc6O1m4siXGVhHE+pSbV1xfec6p6MTEJ9ol3VJUdYMJwWvvf46\nUWxIs5TJeES3lbO81KWsC7721ptMJlNGZUGr06bT6eIkImt3uLl3wN7BIaejMbs7tzBiSKKYa9eu\n0m53+OIXv8yFi5cpiwKcY6nXI2+1AIsxkCUZR4cHCEJV10RJzNHJMVmeMxqNaJqG0XjE6emAG9d3\nmJYVvaU+G+c22Fhb45s++/U4VyGRUJQFVhxOfGuzqqowzj8OxtHYCnF2oV1aw6wpnjiZd9yYLXQL\nlRVUjcVawTnxybUY4shgBP88ROaLDJ0YiAQrUNU1trG+Oln8rL4vi/A1y3XVUFUNVd1QW0tZV1RN\njYijAf/4FpwTImNI44QkikMXEUM026LQ1jhnmdTlMwhOpZRSSn2cnI3kGEGiGBtmi/1sZ5jZhPks\nsQ2lBH5BnoRSC5mfchdjiOOUJMmIohic75yQpinvvvMO62trWOuI45j9/X3SJCVPYra2zhMlCYPh\niIvbW9imoi6nlJMxdV36ETQ1jW2om4b1cxuMRmM6nTbb21sc7O+xuXmOl166zOnpCXmesbTUA2Q+\nzjRLydKMdqeDtZY4iuh0OsRx7EsWIkNRlURxxN7+PscnJyz1l7HW8i3f/Dmm4zGdVgvX1EyKKdY2\nmMhgktjP7IYShdmixLDCLnTq8K+giCOKhDg2vo7X+kTVGJAIEIelIUoMRV0zrUpq67Du9sz9rDuF\ntRYTFhgmSbJQ/+zrjEVM6BvtF90VRYGRiDiK52Mq64rKNtTuzu4YsNCxTgATEccxSRJ9pFGplFJK\nqY+fM5Icg8Ng8W3Cojj2iV5IrrI8JUkTkiQlTbN5EmiMYG3oSxyHBXAORCKKomRrewvnLHVdUlcl\nOzdu0Ov2aHc65HnO/v4+n3r9dcajEa08IxLh6OiIr/+6r6PdyllfWaEuS9ZX+3zylZeI4ogszzg+\nPuGVT7zK1atXGZye8NLli+RZSpYmfiHfaESv0+Xly5foLy0RJ4l/TmnCeDwmzzLKqqIoCrJWzngy\nweHmbd9m5Qc7uzf57S9/md3dW+R5RlUWXL5wgYsXtjBYIrHUIdlvbPgIIRIS0pDEOjvfYAMBE/my\nBxMZX9c7u80IFkttffJdNw3WQR1KWKyz4BqyNCaKZuURjiRNKMuC2ULAWfnFbFOVWacOE0WhXtz6\nBXhiiWKDiQUTz7pn+BIZfzZAiOIYEErrGFflnc2QlVJKKaWegjOTHIs4f44dP0vpQrmxcY4IITaG\nLEuBWSu3CBFot9uIEZb6XfrLPQhzzVGUsLe3F3oh1yz1uqz0+1y/do00TTk6OqLb6/LFr7xBnCSs\n9pd55aVLnA4nvPn2O7z0yiu0Wl0uvXyFXr/PtWs3qOsGax3L/WV2dnd56crLrK6ucHp6TKfdxlnL\n9tYWn/nMZzg9PcHhWFldoSxL4jimKEvOnTvnF9JVFXmWMRqOSLOMuq7pdDpUTU2cxGQmpiymYAzj\nokSimG/51m9lf/+Quij59Cc/weryMklY6FY3DSaK5zXDaZZiYl8rTFggVzeOsrLUjaWqLVVlcc5Q\nljXTacFkWtJYaCxERogjQ2zEv9ZGyPOMPEtDWzWfeBsjxLF/L+b1xFFYZGcbn+CGWe2yaSjrGuIY\ni6877qQ5y3mbaPaBJ4pCCz8XejMbJOyOV1ndBUQppZRST9eZ6HMMs/Zlvp2YhDZlfrZScK7GOt+r\nV6KIoqyIRWiAZjrBCBzuH+Lqms2tLTpLKwg1rSTj2u4u3U4LWzesb2xwPBgwngzpLi2xtXme3/na\n2wxOT8HWREmGMVCXNVev3vBdGWqfsH/2Gz7LtffeZTyaIA4211YZDAfcHE95/ZOf5NrVqxwdHpKm\nCUQxWZZzcHjIZDKhampGoyErqxscD045OD0lTXNqqcli4dt+17/IL//Kb2CMYXW5T1kVHI8nfve9\nOKKsj0mTjK997R0q25CkGTt7e1y+eJHztuHzX/gtsrSNOCjqkjSK2Di3zunglKKofEmFgXaWM5wU\nGBPhbIULDYmzPA/Jbkzd+G4XaZIQAXFkyFODSM60LBkXJUmSYgQi48tWkjjCWse0bHAiVI3fpCUy\n/kPNaDolSlOIIpw40iShiQyNtVQ4iqqkrGqcCEnkk2FnDOOyorYNSZTQydva51gppZRST92ZmDn2\niTAUVTVfIDYtS78Qz/jFZ0ma+o4LYjg5PSHLEmIjVGXJ+c3zlC6mMQkr6+tcfedtBGHvYJ/zm5vc\n3LuFE2HvYI9zW5tECIPBgN/87S8SG2F9YwOTZDTWkiYJFsfW9haVtfT6y5S24QtfeoPVlXU+9alP\nc3x4yNHxKdNxSVlUvPW1d9g7OmZtc4uk1WF1dY2T0xMOj47JspzLly6xurbOyckxnXbHLz5LYspi\nwnBS8v/+6ucZVRXj6QQR6LY7XHzpIi9deYksSTDWEkvD4cE+W1tbnBwfYYzh8PCIt9+5xic/8Uku\nbm9y6cIWK/1ljEAxmZCmCXEUsb2xwaXzm6SR4bOffo0sNuStFkkSk6UJiRFcU9PKU6II0jSet1mz\n1lKVDU1d04oj1pe64CxWhAYDxoTFdjV12KI7SX0XDUSoraWdt4kR8jQlimLGkymNdYgYirLEIWRp\nTBwnlHXjZ7UbSxQZOlmGET8LLUZnjpVSSin1dJ2J7aNf//Sn3V/9mz9KXTV+oZkx1E1DEsfEsRD2\nhaCqairrE7U0hla7S56mDIdD/oPv/9OU1ZRPf+qT7O/c4tbePlvbW3R7HXZ3brC9tc3e3h5Zu00x\nmdLrLdHKM6qqpNXp8ZU33mD7/CZrq2u89fbXKMqSOEporKXV6TIcTsCWbKyvE0eG8XiMrWvKqiZr\nt5lOp3Q6bY6PjkjTnP5Kn9OTYxwwnUzJshYYhxHD6toaJycnTKYTRqOSxjZEUUSSRIhzXLywze7N\nXUQiur0ep4MBJsz81lVFp9Xi8OiQpeUlzm+eZ29vj9hAv7/Cm2+/Q395iboomZRTDk9O+cSVV9jd\nP2A8HgOWumpIshZihEhM2NCjIW+3mRZ+PIKv446NwYTVcXEc+Znw0DrExBHtxHeXiJOEm/uHRFFM\nnEQ+mXUOiSJfB46wur7GpCh8N4zYL65zjfUL+pyjcY5IHN12i5PRlLKuyeIklHcYLI5/9gs/q9tH\nK6WUUuqpORNlFb7VWAOmxgBRFDb+cBZcFFqSQRrHxNZgjZC3MqyDsqpotdt0lzqUE4etKqIs4fXX\nXmM0HmOdsLS0wv7BEesbmxweHtDudknzjK+9/Taraxu8e/XLZFnO8emIw8MTqrqkLAua2FFVFaur\nq9za3aGs/Yz2Zz71OrHA0WhK4wy7e3u8/tprFOWUJIqYlBMmNyfEcUxdllzYvoAxETdv3eKlV1/m\nzbfepN1pU5QlrVZCp93n4OiISVERG8PVG7tETY2LLLf29mlqSzePKMPOeINpQZRktLIW6/0+rml4\n5+p7mDhBBNbWNyimBa3JlE+8/DJf/OpbREnMan+J5ZVVDo+OqaoJRnyJSpJmWFKmRUkcRQgubKpi\nsCLUjcVaR1PW8406RkVBTouimpKYCNyYCKFyjqqoyGKhlRkm4xKJY9/nGCESEOPLMDITYaUhMpZp\n6TdqIYo4nfhuHGItgqOsSqK8RV3XzzBKlVJKKfVxcDaSY4E4iljp99nfP8Q5S57lRJGhaex81zWD\nYTqZkGU51voZ76IofCeHogQnjIdjsjjl5q1bbG1vcWt/n6qYUtc1k0mLKIrJs4ydGzfAGPrLS/R6\nHXZv3qKua7IsIW9lnBzXZHlO0zS8++67tNtt6uEIay2nJyc0dcWNG9dZW9tgZWmJ44NDrDjSVouV\nPGd/b4/MRLTX1tnZ2fGL5YAvffG3Wen3iYDXXn6Zt999l9HgFIMjjSCNxJc2ZG0sjixzpHFCJ8+Z\nFAXjyZTK1WAtR6cnXN25wa29AxqEg8NjLm5vc+3q1bDbnXB4fMT21jbnNtY42LtJEkcclCVxKHvw\nu+CBhK2368bPEPuWa751mxEwscE4gAjnLO08pakqGiF0xBDEhE2tja9lHpUOZ5JwXxZnG/I0pa79\nVuAu9Tv1iYlIE3+/OEuE72XdzXMa25AS+aQ60lZuSimllHq6zkTNMfjuBLdu7YMxlGVFVVdUVclg\nMKAsy7BpRUO70/bbMiPEUUyWZjS1ZVpWxEnK/uEhnW6POEsYjkYU02nYBc4wGAzo95dx1pc3LC0t\nkaUpuzs36LTbGOD45JimsWRpizRJ2NhYZ319HYDz58+RZyn7e3tEScLFrU0+/dqrnN/YoL/UZTIa\nsX90wKuvvcorn/gEJDHv3dwlyVIw4me5Wy3EOVITUU2nXLl8kc31NTrtFr12zuWL2/Q6LUwcU9c1\n3XbOcidn5/iQd3d3mNqacjph+8IWEkXsHx+zsrqKtY7e8jI7N2/S63a5ePEio3JKYeHWrVv89hd+\ni16nw+rSEpfOn+P8uXP0ez3SKMIYIU9j8iwliWO/i15oBdc0DXEckWUptvFlL4KjlabkWUw3Telm\nOf1Oh06ek0SGPPH31Y6g207IEyGlpqwqIjGsLHXoL3WobE1lHZNpRVEW1HVFEkdEBlxd883f9I1g\nLbapqauSeX2NUkoppdRTcjaSY+eYTCecjMfsnxwzKUtiE9FJM9bW1kjTNCzwgqIqMVHEtCg4HQ6x\nIjgjWBGiNMWJ4erODlVdU5Ql1lqKYkqSJFhrGQwGXLtxHSf4Eob33iNNUmxT+RlThJPTE1xsaOqa\ng7198izFAOVoTK/Xo7+2iq0aXr1yhdFwwFtvv8Xp4JTToyMiifmnv/iLTMdjpqMJ7bbfIto2DWma\nMhqN2Ts8Yu/kmJ2DfQ4Pj0iznOFowv7xCe9eu87e4RGvvPIKURIzHE05Ph2RxQnf8a/8q1y5/DKb\nGxuU04KqLCmKkv29myz1OhTTMSbLKauaqijAVTRNzcnpCRMLX3jjLU7HY1bWViirkqoouHLlZeqq\noioL37vCOaq6pmxqKmepcZycDtm5eYvT4YjjwZDBeMpKf4W6/v/Zu5Mf39I7z+vvZzjz+U0xx51v\nzs60na4q19Bd3ajVohf0hh07BKteAAskFvAnsELqFVIhFrSEBAuQYIFUoEKgmqtsV7mcaTvnO8Yc\n8ZvP9EwsTqTLLUHZVSjbV67zkkKZN+6NQRFn8Y0nvs/n4+i8p2obuq4D79FK4qwhjSOOD/bxwKbu\naK2gdZ7NtiEEiHV/Uly1LXXTUjUNddNR1R1SxSAVf/7d7+EDCBURhMIOs/FgMBgMBoOv2CuxVoGA\nOEnYiVM60w+0m7rGhkDwjqIoWcyXKAmvv/6Yk9NT8jzH2I7Z7h7Pnj5FesN4NGK7XuOd4d233+EH\nP/gBDx7cJzjPi9MTojjm7Oyco8MjPIGzywvyNCHSEetVRZKkpFmKVJq6bvAqsLe3w83NnNYaHty7\nx/X1DWmaMV/NWXz4Y2bTMWVRsK1bxrMphEAUjciyFCWhzFOqqiG7XdHIi5woimnbhrazfPObb/EX\n3/sLiiQh0oosy5hNRnzwl98jSlJQisZajLH84Z/+CXjPG/fvE8cxaRzRmY5tXRN8IEszjDU477he\n3PD6w8c8f3nC+9/8Bk1n+fizL2gthPWWSVmwQXN2fsbxwS4+CIJ3PHt5ilMaEfrViEAg0pIsLbHO\noZUiTRNOzk6xzmE7CyLgnGdUFv0JL4LVtuVsvkJJRfD+th66f9yuV+vbNApFliiCd4SgKIuS1WbN\nzXLVXwBU/crHZJzRNFVfWjIYDAaDwWDwFXolhuMvY73yRJPHEfFt0YRzjqZtkXjSRLO/s8PZyUtm\n0ynrTQVBUa1uuHu4y93jI85OXuKd5/j4mGdPnzKdTDg7PSNLU7z3NG3Dzu4uZ+fnZHnGqChvI8Ik\naV6glcJ1BikVSRzjbEcSJ8x2prw4PeP6+oq66TBXV+R5gWkb0iSjqWru3D3i/PKaxWrFu19/l08+\n+oi9/UMuri7792stcZKQxQnz5fK2XlnyJ3/+XZyxpKlERTHLTcW2qnj3zTfZPdjjgx/+iLPTK0aj\nktcePmIyGpPnGV88eYK1lvFoRF03CCG4mc+ZTCZEUYxShrpu2J2OaeqKpyfnxJFmPr9BSYGxLW+9\n/gbPX76gNZ5ttWWUZ7z26CGnl1dY06F1hOladJwipSS9TRFpqoY8y2naljQWSCGJY413juj2h4Dg\nPEWcEALISOK9R93WfSMEcRQjvMV731/YC4Gua1C6LyWRUtC5/gJgc3lOHMXUbfuLflQHg8FgMBj8\nknslhmPvPeumZVVvyVWEbBratmUymdA5j2s6pJRcXF2TZQk3N3MWyzVFOeLoYJ+6qtgZj7GdwXnP\nzfUNuzszTk9P+tPJLKfqWrIsQ0nJ3v7e7TDWESUpxhpAYrxludmgpEQryWw6Yf/ggDRLuZ7f3FYb\nW0bFmMVyhSBgnKNqG16cnPGN97/J7/7vv8uffuc7pFpzeHSAUoIsz6iriqapWW83fRawvt3vFQIv\nBUJ4bNeSJgkhOD767HPsx5/QdA1lUbC3u0O12fDs6XPSPANgNp1RNx3j8Zi6qZlMJ9RVDfTrEZPJ\nlM26Ik1TlPAIFbHerBmVI4yH5y9fcnx4wNnFNeV4zPX5Ge+8/TYXl5d4KcF73n7zLT5/9rwvJKHP\npE7SjNVmg/Our6wOEFtFpDWKgJaKcFthbZ3Dek+4rbH2vr+813SG4/0pdd3gkBjT4YMnRkCk8CGQ\nFyVt02C9RH55QXAwGAwGg8HgK/RK7BxLIZiNSoSDxjlMABlp1ps1tqtp2pZN1eCFYLnZ0jlPOR6T\nJjGL1YbrxYoXZ+dY32fmbjYrkjTh7r17tF3Hp8+eYL3nej7nZrkkLQqQkqwoSLOczlhUpBFSMCkL\ntBJ9NfVoxgcffcL/+ft/TGMCxXhMQHN9c0O13VLVNU+eP+NqPuf0/JI/+5M/Zzqa0jSG6dE+Jyen\neKGoNluSWCOCpyhK6qbl8WuPubq+wtPXMH/trXfQqj/Rdd6hpGQ2nZKnOU1nuLhZEHSEjBTOe+q2\n4/Tiks52OONQUiG9R6nAZFQihWC1XYMQbLY1j+/fJXQt1nQkWXpb0AFnFzeYrqWpanb39vtTbaWI\nVEQUxTx59pxNtcU4C0oitWZbb0hiTaQVRRqTZxFSClzoT+G/vMxHH4jRX/aLYrI4okhiEi0oi5Rt\n3WE9OGfZ2z9CSU10+34fHB0SYXnz9fuM8pQsjsiT5Bf9qA4Gg8FgMPgl90oMxwGo65rJZIIkgHdE\nSnF4sI+1femHcw4hBLu7ezRNi/eOuq4pyxKAPM+5ub7m/OKCLE05OTlhsVhgrWVUlGip0FKSpynV\npk+xsG3Hdr0ijSIkAWsMIQT29/b6k+qzE7brFXEkydKYs9MzvLekSUKapaRpQlkUjMsR5Shl22xZ\nNxVSwLMnT5lNp1TbLVIr6qZfT9hutwgCP/zhh2RZjhISJRWbegtC0NQ1pjP9rnHXEkKfDyxc6Fcz\n4gStJLs7M+IkwvlA09Q4ayjyHExHu12hg2OUJkwmE5CSuun4jV//No8e3ieJFUWa8O7X3qLtWoqi\n3xXO0oQ8y+ialoDHekfTtTx89IjNdoOQkm21JUkSRmXBbFQwGU8o8hKHpDGexXpDZTqqrmPbtHTO\n0VpPbbq++jqJkVrTmY6ma+isoWlbzs5OULJfqYiFYrNY8uj+Q3ZGUwL9DytiKMgbDAaDwWDwFXsl\n1ioE4JxnuVyiVd/MFrzjxYsXREm/LyxDYLlcEscRSkmU0jx8/ICTk5c0bcPV1RVJmhJFEdPplLOz\nM/b39mjqmj7C15OmGVpHOOfI0hQBZGnSl4UYy2w64fLqiqbryPKc9WrN4eE+3nu6piUeT4gihXW+\nP+FUEXVdU+Q5eRKz3lZEcQJS4n3H/mzG05OXGGOJtKbtDMZafvPXf4Pvf//7oBQKidSKz588RQCj\n8Zhqu6XpWqSUdKZDINjd2+Xy8pL9/X2C62PNgu8H5t3plOXyhj/9o98nj/qVkDTLWHxa8/Vf/TXW\n1QZVjvn404/Z291jPBrxdP2EH//wRygp2FY1D+7fo8z6C5FZEhGUZLOpSG4zm+/euct6vSZNEuq6\nRgaHlpKmaeicw9mADwIf+suUAoFUChHg4ePX+OzTz6i7rs83FiBln1nsg0dpDQE6a1BaEbRA6Jj5\ndsNHT78geEGkNPKV+FFuMBgMBoPBL7NXYjhGgFISKRNCCCRp3l/I8gGpNEJ4kkSRhpTlcsl4NKZp\nGp48fcLu7g46ijBdRzkacXJyQlmWxHHM2dkZcZLgAeccVVOTZCltU7PeNIzKEXVTkaQJXee5WdwQ\nRXFfxxxppNLcLJaI0JeUjEYZRZHy9MlzppMxHo+Ukvl6TdUleO/YtA2TouDRg3t88IO/QscxwXXo\nJMeHPlv5xx/+kCROsAQ80LXtbXmGom1bsjTBO4+SiqgsMc5yuZjTOUu9rTg8mHF+cYWSGncbn/bx\nRz8iTyIipVDSM51NuFlu+dFf/QWP3/s6kdIImXF5M+f65obd6YzxZML5xQVNa/qiDwmma5lMxmRZ\nTtgXPHn6rD/prRsSHWGMAaA1nk4E0kj3SRvGYo1BqByhJNY7guvzpJ99/jmpVkgkQkicM+ACcRID\nfX21xxOQuOD5B7/2bb747HNOz86J04Sm6/eRgx12jgeDwWAwGHy1xKtwySkryvDWN76JVgrbWlpj\nKMoCiSCKJDuzGVJIVtWGuq7J04yyKDFtw/V8xd7+Lk29oaoqTGto247RdIIQguVqRdu05HlGGsc0\nVYX3gd3ZjJvlgixN2Wy3RHFMFEVEUcK22mKdwfvQn3IiaKqa2WRC5yxdZ4mi/vRaCoW1lrffeMyf\nff8D7ty7w/Z6wbbe0JqOyXhGEkfkWUbV9HnAUkqC98RxQmc6Ih1hrUHI/uQ1jmK67suq5ICUCicF\nVb2l7Vr+2b/125yfndNV/cVFOsOHH39EFAlev3PM+eUV26bBIRinKY+/8S12Znu8PD0h0pqmrjnc\nP4DgubhZUBY5pmuYTicUWcJquSQITZplWOt4/uI5SZpT1zVREmGMxTsP9OkT1lmsCzjvAd+36gE6\n7neEjbdY68D3l/e89wil0Lo/PbbWoSRorYmjGC0Erl+mIFiPEwEE3N3f5/f+j9/9bgjh27+I53Qw\nGAwGg8Evv1diOE7zIjx4+12cMUSRJstz2qYlijRHhwcs5gu8c2it0UpRliVn5+c42/L+++/z4vkz\nlstt/2v/NMM6SxxFHN85RmnNxx9/gneO3Z0Zy+WCJM2ItO6TI7ynLEqUlDR1g1S6T6uINdY61tUW\nFzze+T6vVyniJKHpDGWW4Z3Bdh3T0YSq7TDeIoQEZ3lw/z4vXp726wJS0XYtZVGAENRN05eDeE+k\n+xi0siho2xatFUpqrLMoJYFAYjuOdMTLTz4jagzeOfIoIpOK9ajgB9UC4zxFqtE6omv7KLY0STh+\n4x2EB2P7wVzcLu9qreisY71eUyQpOlI8uHuHJInZbLYsFis22y13H9zl5YtT1psNaZrgfcAYR5qm\nGGfx3tG3HDpCgOODfbIkJoljPv38CZ1zCKXx3qO1wjn3kxetNVJKnLP9SbnW7O/ucjW/Ic9Lri4u\nCCKQZRnjYsSf/OH/PQzHg8FgMBgMvjKvxFqFkpI0iiDSzHZ3qDZbjADrLBcXl5RlyXq1IomTPk4t\nBBCC/YMjNssljx894jvf+Quct2yqDXGSYkzH2dkpbdeRpxnbasN8MSeOY5SSaK05ODjg9OQEgKZr\nMa5vlovjCGkESZLirEVIydtvvMGHP/4xk8kYayxvPH7Eky++IM9zHj98zMXFJeCZTmdcXV2xMypp\nmoYoTWg2BqUkcZywWM6xzpMWJd55xuOSpqpxt7Fnm+2WsiyxpkUpyWaxINiO2nc4Y5kc7GBMQEUa\nJRXPnj0nsx1lkSNdoKq3JElGkvcD9+5sStc0hBDI0pQANE2DjiKSOMWGir29ffCBJNZcXFyRZf1a\nR5okeO8xxhDHEV9/9z0uL8+5ulmg1JdDtujbC0O4PREPTMqSIksoygLvLU3T4ZwnLwtOTs9ouoAW\ngjjPCV/WVEuJlII4iqi2FdY6NtsNaZ7hraXIMrIs+wU+pYPBYDAYDP4+eCWGYykF773zFkrHfPbR\nRxRFjr+NM0tUjDeGSVmwrhsmozFKKUbjMabrsEnC/GZJnMaMgKODfayzjMYlXdORxik3NwuySCOl\noqkqRlnOtqpp6oaHd/RtugkAACAASURBVO8xX8wp0gKfBLZNTZbGBOfIsxTbGR4+esTHn3zMKM15\n6+Ejzi7PSK3n9Tde5+L8kucX59TLJXEUszubcXV5SZSkfP70GUhBPBqhpKAYj3h0fMjJfE4XLFoJ\n6q5FKIjThLppSPMcqxSSiheffsGb+0co74mcQsUp1gSuliuc98RZityZctXUaNPvbZdZhrr9bUCS\nxJjLa44OjriqOpxw2G1DPh7hjUfiyVTE+dUleZqy3QQm47K/bCgVTWeIkphmU6GFvN3FTjg6OmSx\nWOFcR5FkNG1FUIqABtughKBpO4o8I4siijTtU0VEYKcs+P5HP0bqlLazxFoSSeicpHWOtm1RwpJl\nOV3bYGyLQlIkMWcvX/xiH9TBYDAYDAa/9F6R+/+CZy9PaJzj0ZtvkJclQmtGkwlHx0e4EIiynDzP\nccGzWq9wztH6wGKzZbmt2NvdI0piRpMJwQdOT8/RccJ8taIOlq3raKUnn41prMWKQJxnrE2H1Zq1\nabFK9qerIZAXBUVZEicxT54+IUoSlJKcX15S1Q3JZMLzk5e0bUPwjtnODsWo5OLygtFswrqpIdLk\n0wnWdOzv7zPb2eHZ8prGO3KVcDzeY5QnfOub38R2Dqk1D/f32Kk37Fxuea/co7laUK1rXmyWfH59\nwefXl9x0NXPTcLqcczK/ofYGq4BEo+MYqRRaKYo0pa0rDpdbdosYF0AlCWmUIKRgtd2S5TllXiCV\nRMt+ZWUymXIzn3P37l2KPKcsRwghkBK0EuA973/9PR7cf8A7b73GveMDDnanhK7m/r37tKZP0yCE\nvhUwSyEEqm2N9543X3udRAm0FGw2WzrfN/SZriVSktVqyfz6it/69V+j2WyJkgTrPL/yq7/6i35Q\nB4PBYDAY/JL7mTvHQoj7wL8CDukjiX8nhPAvhRA7wP8IPAKeAP9eCGEu+t+1/0vgnwMV8B+GEL73\nN32McjwJ3/qH/xjjHMZ06NvhLo5jbF1RdR1RnIKzeCDNUoQPGBdQSmCtIXQdbddhbEeuY44OD+iM\n5eLqioPdPYyzLDdr0jhBCUleFJxfXqKimLZtiaMI7xwH+7ss12uc97R1ze7uHjfzOQiBFIEkSXnt\n8Wv88Xe/S5LGPDq+w0eff4qUCqEUs9GY0WhEWzfEScqTZ8+ItUIpQVoUOGPxOiJ4h21bhOk4yCO6\nzQLdWbrOs+osm80K7/t4NBA4EQhwe03tr/kQGI9K+kK720tyWiGCJ1Oau8WYML8hS8fcTEo2acyo\nHOOFx7uAAHYnE4yzbDZbtNZ4b9nb2eH6+prJZML5xRVlUdA0FePxiFExxnnPi7MzltuK1lqUjnh0\n7z6Zov86aYVS/YsUAmMNQvSrGM4H4kjRGMuTF6cIrdlut0ip2NuZsVivSXTE4f4+T558gcxy6vWG\nNI743p/98bBzPBgMBoPB4Cvz85wcW+A/CyG8C/wW8B8LId4F/gvg90IIbwK/d/tngH8HePP25V8A\n//XP+gBKKZwxSGtQOkIgSaIUIRRpPkJrTRZH+ABeQNW2KKWZFDmJ1uxOp3StoWobgpBEccLF5Rla\nwluPH7Nar7HeYb1jVW3Z2I7PTl5wXW3Y1FsevvYQFyyPXn+AEGCcJclzpJKcnp/hvOfg8IBN3aIi\nTbVZMckzTN3w/MUJm86CkFgClzc3fPjsOZ+fnXJyfQ468LXHjxHWgfFILVnMr6mWSzAde25DVG3Y\nrCtebBrONhWrpsH6/gvvFQQR+qg3QBBwwvcvOILwBCkIAYSUaCQCiJKEICTXxvCj+ZaVdGSfPGGc\nRlS2pa1anHV4Asv1iiTWaH0bDRfFdF1fiJIkMQ8f3aMc5eRZgRIaHyzrzYpNWyOEAzwCT5FF/PDD\nD3HeEeuI4D3QD/BaR8RxgpASCUihSJTk4b1jXn/0kG3TQhRzsViybVuulyu+//HHLK1ludrQBZjM\nZj/3gz0YDAaDwWDwd/Ezd45DCKfA6e3/r4UQPwLuAv8u8E9u/9l/B/xfwH9++/p/Ffoj6T8RQkyF\nEMe37+f/lXN9C571jkJp4jyhbmsipXEBkijth6ksQ0qJtZbOObxzBBFoFzVeeB7cvUtV1Wil2FYb\nrq5ueHl2xv1793l+cooFtk1L1PX7xEkUk8Ypnz99CnXLH33nLxmXBePxiI8++Yw8Sbh/54DtesPV\n1bzPPhaSDz/+BKkVcZqyt79PazuSoqBqGtJU8atvv8cPP/oxbdvhbODTFy9IRmNWqwVvPHjI1c2C\nSSIIywuaKOVsfkVnHVJKpALbdHB7TiwRCCXx1iIICKEg9KOydQ4EVHXNeFRiTEeQkkgqnHWcX12h\nhUQIz/P5nHIU8bDzzAUUcXQbuSYYjScED0orRJAoqTk4OmK73aKlYr1Z451nf29GCIEQArPJmL2d\nKc5YKuf48edf4DzkZYEzjuV6RZEXVNuKNE1vT6RdP7orSdu1GGMoy5K2qbhzdMBisSVKNJ1pab3r\n0zysZTQZY5oaGCryBoPBYDAYfLX+VjvHQohHwK8Afwoc/tTAe0a/dgH94Pz8p97sxe3r/j8pKSiz\nlJ3JDBUpNnXNpum43tRUrqMLltq0eOewxmCcwwkwwYOQmBAQQtI0HXmWs1qusVJRe4+IE7548oT3\n3n2XnckEGTw7swnL5ZKqrjk9fUkwFkNgnGe8/7W3uXewz9HeDnmRsd5s+zUL2+FMx2K1Is1zkiRH\nScl2teS9t9/EVxXvPHzI4e4eP/jg+wgcsRTkccRoOkXECePpjLWTSLNitN3QesHlcknjPA6JTjOc\nVMRZjBcKLzReaIrxFFWMCEIRgkNIgSAgZf+1C8YSnMc5jwdWmw3zxbJfwVAKGUdsnWErAhc/+JAZ\njm21ZjqdYEzHYrGgaWq6rkUKQdc2PH/+gjiOWa5X/fdIK6I4IgSPv420s9YSJwmTsuQ3vvUtFlcX\nPLx/D0Hg8PCwL+4gYG6b77q2b8izps9wllLerlNIXr97xOM7+9TrOdPRiETrPtFCKUzT14RfXF3+\nbR7XwWAwGAwGg7+1n3s4FkKUwP8E/KchhNVP/93tKfHfKjBZCPEvhBDfEUJ8p+sMaIVx/XCrpUIL\nQRFHNE1D3baY4KnahsYapJJsthviPMMRaJ2jNoab1ZKX52eY4FC3hRJZnKKjmB/+6IfcXF/xq9/8\nJsJZyjRjZzKhHJfcPTomzlI0gQ//6gcsrq6RQFkWWOf6dQ7vEFKRZykHuzOCNYjgIUCW5UxGI4Rz\nnJ1fEsUJs8kOdd1QG0u1WrG4vmKcZai2Ysd61jiqzhIIWCF44/1vkewfke4dsXN0B1WW+CSh3N+n\nBjogRIqgNME7okhz240BwHK5ZLvZsF1vCC4wKkf9Ka3nJ/F3201LG0uWT54zmo65vrlGa0WWpdRV\nhZaSNEkIBNbbDVKpPqaN/ru73Wz5Mrrty5fgPWkcY5uaMkspspTRbYxdlmUkSYJSCmMMOtIgIBBQ\nUv3kRFnJ/oS4TCLee+tNyjQlkoIsirh/9w5dU7PZrBFyODkeDAaDwWDw1fq5otyEEBH9YPzfhxD+\n59tXn3+5LiGEOAYubl//Erj/U29+7/Z1/5oQwu8AvwNQjMahaVsmSYJ3jlgE8lGOEJpMCoRWdF1L\nmWVEcYy1lrIc45uGyAcmaY6rKgQCFSUQwFhD5zzjvODeu+/w/IunHB8csry+QSBI4oiuqTnc3eXy\n/JT93T0uzCVvvvk6SkqOj4+wxvD5ek2xu8vBnTt8/uQzgrWYpmU8G3N58hJjWi5XC+brFZeLG6xz\nJKrkzvExV1dXFJMRUmmaastquUDMr/DCs1xs6HRMunOIlZKPXp6DitFCkscJWayotlukjBC+RSvN\ntmmQShB8AGeJlMQpCNYjlUIoAUHinGO5WqEiTfABQZ9DLBBcectuVeOF5M7xMYvVkixPiRXkRcnp\n2QVSaSIJWRrTtC15ltI0DUnWJ3l466jqGikEMlbMF3PSJKUscqq2IVaa4DxRpEmShLZr/7pI5TbX\nOFiD9P2utPUOIQQ6jvHW4LuWu3sz2rZllsdkj++DkFR1xQd/xwd9MBgMBoPB4OfxM4fj2/SJ/xb4\nUQjhv/qpv/pfgf8A+C9v//u//NTr/xMhxP8A/Caw/Jv2jaHfOT49P6fNcqyO2G5WTEYl3ljWTUMU\nReRp1tdDdwalFEgBAkxrKEYj7ty/zyeffEIUR/07tZYQAjfbFZsnFcFanr98STEqMdZgvSNK+kH6\n4PCQm/mCvByx2tScvnzJg/v3OL+8QirFZFRy/vIZYduwt3/EcrVitrfP6P5DLi4uuT45J88zqk3F\n3u6Mm+sb0jhiOpng8GwuLyltQ7i6RnlF48FnY8rdPdZVSy4jokgQnOX+nTu4qkZNp9zczFnMr3E+\nUBQ5RVHQdQ0i03R1TSIV+ICQCu8DIkAQHiEEIfRrFpK/Pl22eLxzNNIziyLaruXm5po0inHGsD4/\nZ29vj7puyJKStmlJ0wTT3haprDdEUYSUsk8TSRKctcRRzHa7pSgKsiKnqWpGZUlVVazX6z5aLuo/\nC2PM7anz7SVCARD6IdlafPDcLJdMJlPefPMt/uzPv8NsZw9nHZvN5ud5pgeDwWAwGAz+zn6etYrf\nBv594J8KIf7y9uWf0w/F/0wI8Qnwb9/+GeB/Az4HPgX+G+A/+lkfwAWPTyKe31xzvVgQlOZ6seT4\n+BhjDEhBZzqMtZSjPnO3846uczgAIXjxxVN2yjFv3H/AWw8ecnxwgBCCbbWl3m4pituM5O22b8Mz\nhvn1NevNhvPzSxD9ieumqoiShM+++IJyPAaluLy84P7xMeV0TBccbbCcXpwRtGS8t4PQilE5Ymc2\nwxnLt97/Bt/73ncx1Qa5WfONO7u8ebjH4cExQkkWTcdv/qN/ghCSg3HOt994xK+/8wZvP7wLTU2k\nFUFIppMRpt0Spwn4fmslihLGkwlxmuEQuABBCHwIBAECgQ8eKRU/HfwmhCAogZQKoySLxQIPlOMx\nV9fX7OzskGV9LrKWgjLP+xY8+sE8SRKkFP/avnG13faV2lIyGY/RSuGt66u5NxuEEBRFTpom/a6x\ntURRhPOeruv6B1BKtI4IIdwO9YEkTems4U+/9z129vfZ2xmTJopvvPf2z/lYDwaDwWAwGPzd/Myc\n438TojQLx2+9gzSB1jcEqcnSjFQqpkXO5eKGJE0xxpBFMc57XCTpqo447U89jXeMsow8ivFtS1EU\nxFnKdrUmihSb9ZZHb7zJhx99xNtvvMbF+QWzyYSnJyfs7e5xPZ/TGsP9O0e0dcX+3j6ffPE5R0dH\nxErRbSriJCZLUnQc4WzABcvzFy/IsoLz6yt293axztG2NdPRlOc/+oBdDTItONqbslpc88nFnPd+\n+x8zjVOwLU3nEFqxqVoiLTFti5CKm8UKYSrm1xecXi+Jo4zpdEIInq5tAZBa4b2l67o+Hg1BMAZC\nv9frvUci+sQLIXDBk0qFiBOmbz3CNB3T6ZRISNI4Is8yYh1hrSGNEwiBJE348uzZGEPXdeRlyWa9\npixLuqZFSkGaZreX7lrCbRW2oF9Ej5N+FabrOqIoxhjTX+aLI4yxxHH8k8HYOEucpVzPbzg7v2I8\nmdK0HVaAsY4f/OEfDDnHg8FgMBgMvjKvRH00Ah4eH/H85AxBihKw2a7YCMW6qdjb3cWZjkmegg+s\nVmvSJOe1R/dYLJb4OGY0mfHF8yccHk5IphM+/OQzyrIAPLoO3L13n0+ffMbR0T6xkti2YXbwOvP5\nDS+ePWFnb48sjTh58RxjLavVljjJabc18+2aBw8ecn19RZCSp599QpqPUBLeeOsNgnMkiWY8HnN2\nfk7TWogryjThutmQbyquc40g4u7bX+fm5Bw3KkiTGKXjfmhUfamcVBqtJfiARWOt57CM6BBcXl2x\nszPrc4+FQEmJEJrRKMU5R9d2ZGnGG48fo5OEZzfnZE5w/vQZxtn+cp0Al0iqqiJNSxbzBW+/9pjd\n6Yzr62s62w/AcRSDEBjr0FIS6YigPDrLkMBkPEYAbfBAf5Lctg0AIUAIHhVpvA/YzpCkCVJIfPBY\n5/pYvC8/H+/6LGSlieKY66sr9nd2ORjPcN6RlyVfvHzJYj2sVQwGg8FgMPhqvRLDsUTw7PKCKEuI\nAjTVliJOEFJjpOBmsUBpzc16gwCUANkaOkChuJxf0bYd+3u7RHFEY1p293dZ3NzgCNzfP+Lps+fo\nKOHy4hrbdazqmj/7znfJ0gSkJIljIqVZrzfs7s0Yj8dU2w3GGrJixLMXJ9y7e8TN9Q2zyZR13bKu\nK548fcHh4QH7hwc8++Ip9WbD8d4upqsJnSHygtp1LL94zp033mI6HjHKMoSEbdXvQjvryLKU1WqD\nD55IF0ynY64uL0iSlGbboGWg0JLtfMHDN1/n6uoS5x0hBOptjZCCOEkwzvQ5wabj27/ybb7z+3/Q\nJ20gCAKkkDy894D7r7+BtaY/3Q2O5WpJmqU439c+N12H1hrTGeJY4wkE7xFIlIYQAk3bkGZpPwC7\nPp6t6zriOAYEXdehlCYAVVUR6RjvA3meI+h3jG/jnPHOg4LgPGmS4IxB66j/HOqG+4dHuPrpL+oR\nHQwGg8Fg8PfEKzEcJ0mCNw7jAe/RWqGEwDiPN54yTzE29OsCApCCKNI8e3mCsRYRaRZdg7vawsRh\nuxa0Ym+2y8nlBZt6i/MebzqU1lxeXiN1X4IR5Tm5UqybhuVyyZ2jY9q24WY+J9OarulYbOf86re+\nyaeff0YQAuc8X3v9Na4uL8mLgtX1DS/rLYf7+xACeVGQHe3h2o6qrXj7G+9z+qOPWGjBZjlHB8+2\nqZnOZnR1g5CCtu0IwVEWJQSYL28I3tE2LQiFc55IgVaS0XhEVVd0XYf3njxV1NUW11ZECO7u7nJ6\ncc7i8orr6xvU7ddZeCASPHrtMVXdkKYxnTGsV2vSLKPrOoSUzOdzGmP7U2rnSbwmFwIlJFIEnHUY\na9E6wjqHMX01dBRF6EgjpKRrm9sVDUscRUgdY43FE7DWIkQ/YGdZH+fWdYbOGMbjMd47gr+NzxMK\nhSBYy4N7f2Nc9mAwGAwGg8H/b3+rEpCvStO2/a/Yg0dLiZQRnQdLQElBax3GdGRakShFEif4AK5p\niYG98RjhLCoIXsznnLUdq03FzWbJuCxwzveX/vC0tsXftuwpAAdt3eFc4PDgiO1mTZnn1OsNN/M5\naRzxK+9/g/lqyfHBPl9/5x32d3cBRz4puV4tuPvaIyaTCTrPCM5QdQ3bbU0jBO/9yrc5Pz/n/tff\nRSPIdESZ5xzt7YPt922lEDhvUUg21Zb5asEkiTl78QyCQ0qNVIo0TsmKHB3FHBwfU05GWNNRLa+J\nggFr8abhyeefUmBYnJ8QfN8+iAh0wSBQXK1WbLqKxWpJHEfs7Owwm045PDjEWcu942PGZcF8tcBK\niROSALRtg/MOpEAqyWq7oalrpJRUTc1yu6ZuO7x1ZHlJlMToSGNum/yUksRakyUJWZoRRzEC6NqO\nPE0ps4ymqvrTbBHwIWC6js5aOmP6fY3BYDAYDAaDr9ArMRwLII0ilBB01uKcRQvBTjliXBRECMZF\nwWw6Rd4mV6zrLVlR0hhHYyyx0IzSnDJO0S6gopj1tqZqWsrxhDTLEUrjXD9gpVlKmqfYtibREm9a\n1G2rxmIxZzKd8PDRI1SkeXHyktOzM9JyxPOXL4gixXq1IVgHBD748AO2tuOjTz6ls47ZZMLl+Tn7\nu7s0dc2Du/cIznO0f8Dx8R3iOCaEgJQSYzqsszjvMcHhnaVZr/ns00+II41U/Z6uEhCU4Oj+fRbr\nFZ5AluckaYpQCoToCz1GEy7nS84uLxkVOQTQOiEISa4isp0JVduQCMlsOiXLc5yzLFZLVtsNQUDT\ndiRRxON7D0ikwjrL6dk5TdexqrYsVisur6/xztNai3GO1WaD0hp5u0PsrKGu65/sH6/Xmz63TfTV\n18YYgD6CTvTrGM77/m2dR0qJc54QIIoivPcYa39hz+hgMBgMBoO/H16N4ViAFjDOc/IsIVISLQVd\nU6N86KuEZZ/kMBmN+ya3KMY5i5CCxXKFVZKt6TB4UP2QneY5RVHy8vQlbdcSxRFKSSQBAYzHIxCe\nPI3Z35kiFaRpzHg8Is9SLi8vCVIw29tlNpvy4Q9/xKauGU0n3KyXeO9otht2ZxMiqVEBHj9+TNe2\n3L93l92dHVIdYZqWerOlSDN0pG/3bzV13WA6gzEGZ22fRFHVnL18jvcWIX7qpFRJZsfHOB2BVlRt\nS5LlzHZ2mO3u4W4j1tquwUtJYz1N02K7lijpd4AVkodvvo6SiqIouLq55tPPPsV5z2w24+zslLbt\nkEqyv7uL7wyREtR1zXg86tsKm5qq66iMoe4MSZpzuVhSG8PLF6c4Ahfza6yzPxmM+7g2Tdt1GGto\n2qZv1wuBNO13lvuVDvGTmkXvvyxdDNRNg3Pu3/hzORgMBoPB4O+fV2LnWCvNpChp2oY4CHSW0bQt\nSEEcRbTWoCKNaVq67YZMRYyLknW1ZDYZs6nqvgkuBPZ2ZogQuJzf0LYNlTMc7O/2OboI8skYISRZ\nltKZljt371Gvt1hjaL3lrcePmF9fU2Q5xjmyIqezhjhOePzoATKK+ejzJ4Dn8PCQMsvwIjBJSxZZ\nTugaZtMpwQeCD9R1hdSaJOuj6DbrDVEUs1guf3J6CuC9Zz1fcHF6ipSgZT/CW2eJk5Q3332f5zdX\ndMZC8PgQaLuOH3/0MZM8JY1jgncQLFk+Yrtc4lXEbDYCBImKUUJSjsekm5pOBEIITMYT2q7j+vKS\no8MjTNdRbbaYzpDFMVorJsWIMs/x1iKk5MV8ThRHSAJnl5dUpqNrW+7sHzLfVqR5f6IvvaMoplhr\n8L4ffhGCJE1pq34do21bhBBEacp6s8Z5T6QUUmra1qJ1XzmNFLS3EXaDwWAwGAwGX5VXYjgOBPb3\nd6iqisuLS7I0xjuLlopgDQpPLCUijom87k9HhUepCO8ckyJnsVhgrGWzWZImKUWWkCUROo6wIWCN\n7fdlhejLKugjyuY3c+qqQknJdDphPZ8jAWM6xllCkSY0TcNiu8YXJacvn7MzmrK3OyWEvnGuzAtc\ncIzGJcZYus4QQj98ekD4fv3AOkusY+bLBZ6Ao/831joknquLE6JIQlAEpZDeQaS58/Y7nG2XeCy2\ns+gkIgmCLz74gEmiwbVYdJ/koWI2qyUyipjOZjwV8nanN6axkEpFV6R4F5iOJ0ghyNKM9jZlwjQt\nOzszmq6j7lpGoxFnZ0+wbkprDJNyxDjNmG83SA/Ge2QUkeiIddtQtw21sSxc4KDMWW83hBCItaY1\nhsvra3Zmu2gliFUfKRfdxrr18XH9RT1jLVEck6UpAPPlklchk3swGAwGg8Evt1dirQIB67piu92y\nt7/HYrUkn41pg0OmEXd3d0kVCBEIMlBMRtysFnTBoZIIYw17e7ukaYLWmuloRKx1v+JKQAK7OzMk\nkCYxIoqxQeKMY6csOZjNeHjnmHGakSUpk/EYa25zgelb3NI0JY0jHt69S5lnSATVetPvxnqPMRbv\nA0mSoITEGQs+EClN3TZUTU3dtizXKxAC5xzee7z3OGe5PDtFKdUXdyiJ8hYvBOXhMRerNXXdIlQM\nUiE2ay5fPCWWgUiClqo/Fc9y8BDFKb/1D/4hf/hHf0C13aC1om5a3vraO1RNjfOe5WLRl3oYg1SS\ntmtpmrrf+fWe9WaNkBJjDGVR0rUtaZZxs1lhvSNJElzwIOjbC71lfXtKXnctIlLUxrCuG56fnbOq\nGnQcM9vZwZp+v3i12dA5iw2Bqq5pTcditep/kLEOZx3eB6IkQdy2AA4Gg8FgMBh8lV6Nk2PvKZKE\nUZJyOb8mSmMW6yWmaajrmlRJptMp+0mGVIoffPghO7MptemIk4hN2zCZTPAiEEmFVpKD2Q6tt5i2\nwzuHDnD/6JimbZlvNxgHuztjJBBrhTUdIgSINHVVk2cpLgSUVHRdx2wypW5qYq3RiUaEvvnNdB1t\n297GkbVUVUUgoJRCSYmxBqk1+NtB0tk+ncI5AvS7wkLQbDcE75BSEILvc4lVhNQJmoCTEoFAA5vr\na4RzRJFGCYELgf29fdarFXGa8Bu/+Y8IArI4Qri+AjpNM3b391kul4zKkt3dXZbrFUmcoKMIISX2\ndmDfbreUZUmkNEVR0FmLdw6pNEZpoijBb7d4IIkTbOjTQFzov5fydqi2ScpytSJJUxpnaddryqIg\njZPb5rwU6yx111GkKVkco6KINE2RUrLdbqlNR+ssRVH2uciDwWAwGAwGX6FXYjjOkpQ8jsnSHK0i\nLhc3XC7nPH70mKvlNTfrDZu2xdQtb77zNjpNwAcS77kzmbIWksXFGTuzGUopwIN3ZAFE8KSjnNVm\nA94wznKk61MmiiTFNP3lsEj1XwqpJImMCT7gReBmMQf6BIZxUeKcBcRtNnEDCIyzRHFEHMV0ZoOT\ngqra9lXS/w97b/Jr7Zqed/3up3m71e32609XLttlJ5ERlFEiJggmIFBgwAQxYBCJCYNIAUHyJzAK\nIDGJyIAZCZ6AMkOBGSGSTWRDYpfr2Keqzvna3a3ubZ+OwbPOcRjgKgs+n8/l9yd9+vZ619p7P3uv\nNbjXta/7utyEQqirisl7XPDf+KNjSsQUabf3pBQx2hDCAFh2XvPJZ5/SEfNSW2kxznH35iWlQFJ5\nwD5fnfGwu6Ntj0hR8C/82vdxyfOHn39OChHRihQiv/br/zIRWKyWiNJMzuGV0B73TCGnfUzeoYqC\nqq5Rkuj7Hh88x7blfL2hKAqWiwXv7m6pjCGkRAie4BzKaJTRkASjvq6CjoSU6IOn6wO1NejJYqqG\nceww1uYYP2OIJ3tJFwJ92+G8w2pLoQRxngmPOtVYz8zMzMzMzMy8Lz6I4Xh0jrvjke71aySCT5Hn\n14+4XC5ZlAVcLukxYAAAIABJREFUBm7f3XDx4hobI482a5qqYtEsKQpLGCZe/PIzur5HK812t6Uo\nLNM48uTpE/b7PZvlCqUUGqEoCmIITJMjxIA1migQvMcEQ4oJUiIB9UnFVJLVUGsM0zThQ8hLg5IH\ntsk7EnnpL8SIOz0mkgghcNk07N69RRBiCPnTIpAiD/f3+YmQhNUlg7ZcfPKUfXQYMRTRcHjzlm4Y\nKUMkRIdOsKwauuhYnl3yl37t13jY7Qkp4PuJ4+GQU0CMQReGROK427FYLum6jqIoOKsWlOdXPNzf\nQ6U5tnv6wwEEhnHg6fUjgsvVzpNzDMPAoydPSDHR1DXb4xEfE9rkFrwYQi5JmTxaG4ZThXSKkUVd\nU1lLdJ5JTfnxMf/GiqKkKCwiiul4QCtNSnlJcZqmb4Ztoz4MF9DMzMzMzMzMzy8fxHBstMYm+OjR\nI24fcsZwezhwuL+jqmuOhyObxYL1osEUllYprCgkRbr9gauLC47HlmPbcrbZsKhqju2BqmnY7nbU\nRcmha6nLCqM0Rmt8iiiBoq7x3p+8vtlCsWgaJOXZdb/fY6wlSUSJZMX1ZIlQWhNTBCCm7B9WSlEU\nBcPJQ+tTxIhmu90x9CNFaXNyRsqLZ2EasEpl/3FKeDTnzz/KNodEVlX9xO27tzRFSaGyh7qoakxV\n891f+WVKYxFtuLq6xlrDce/Z3d8jCvqu5/u//pepqprClvgYcuTbMHAksX3zKidSyJpxHHNzoEBR\nVLT9QL3eEMaeY9fSVDXvbm4wxnBsW0QJMUYkZi/w1x5ta0sEiAJaFAj4YcQUJRjF5CZEC8EHfIy0\nXcc05lxjkG8W70RJVvARBMH7Oc5tZmZmZmZm5v3yQQzHSqAuNS44NuslWhJVWdA0DWM/UjYVMQQW\nqxUvX79CtKYoS5x3mMJy7I5UiwVVU2NtQVGVWGNopwER4di1OO+oyhIXPVVZkApLWZZM44itzKm+\nOWIKyziOaKXzct9mA5Azfp3Li2Ex4k+FFQkQEZQI1lgOhwNNQx40rcFqi05CO/SsVku27QElghKF\nEuHNy5eYlG0auqhYPHpMUDpHwQF67EnHPYXSRB9JVmGLkutPPkHKCqFgmiYGP9BUJTFZ/vd/9L+h\nlaCM5sXz51TNgmEYSCFirKUsCnwIaKC0BcuqIU2ey805+7ZDa01KgRgDbx5ukAjrxYJj11E1NYe+\npTCGQmk8I9EHtFKkmDBWY0RQSfAhIBIRycN/iBFRgiciPi9YqtMSYkiJbHbJv890ShhRQEgRe1KT\nZ2ZmZmZmZmbeJx/I36mFylYs6wWExNRPpAghxPzn9pSwNufdLptFrhFWgtIaEckRYN6Tgufh7hY/\njozOoUTRdj113VDYEuc9og3WGMZxZLfbAolxGDFas1g0NFXNYrEkxEjbd3RDj4+BmCKL5RIXPKIV\nRpv8p/8Q0eqUMqE0zkc8QrFY0vYT0xSxVY1EoeuHk2oNQSAQsVpQBKK2lE+eE5QhBQ8EKiLTwz3t\nbsvTq3OsSWAsY4Qnj57SaItViUTCGMUwjfzOb/8O3udylEWz4Je+9xfZtQe6oaeoS6bgeHd/x647\ncmg7rC3oxoEhRXZty2K5IMTIGD2IYrU8wxYFT5+/AKO52+8ZnKf3npAiBsHqnJYhAiqCQuX4PMCn\nRBJIp3P6mEgoRBSFNoj31KVBREFK+Y1DkrzkJ9li40IgEL92sMzMzMzMzMzMvDc+COU4pkg39Bhj\nUCKcX13R9R0JKK3NlcMp8fLLr1iuVjx5/ISubSmMxYeAKQqCc4CwXC4Z+h6lhL7rqQp7ytK1OOcY\nYs926ClsgYjQDwNnZ2fs93varuVsc4Y4R1kU2GRp2yNKhGEYcmtbyiqy1oYYAjFB3/cA3O/2mKLg\ni9evWC2XPHnxjK++eonbegyglEBQjJIoXGD36jW1aILRXD3/iClErFJoAn7y7LZbLIlf+PRTXn75\nBWfrhqrZcHFxzZc//jFn5+d450gx+6fv7h5ot1sWdc3oHB9/93skpXDO0yyXvHp3e7I0GEKIiEpE\nrRjchPYKHwP7u1tKW7BqFsTRcbu9Z5xG+t//AYUpKIuSCIynnzmF+M3vtiwKSIkQI1P0yEkRn0LI\nFpJTHbQYRVSKMficpFFUDCfbxTjlWLjipOBbbdCnCm0l+tt6ic7MzMzMzMz8OeGDGI610iybBdM0\nYYuSvuuySpjAGEtwHq01xXlB27a0ZH+r956YEsM4EJ2nODW6FWX21lYne8UwubxkR17yWq3XCHxj\nkXjYbmnqmpgSIUXWzZIYAiEFmqrGecd6uWLftmw2OQP55uYWWxaolBgGR0KISrB1TTlNdP3A27fv\n+PTjT9jv93THAylGpuQpYsDd3bISD9pgJBGHWwpVk0QRw8hxO9B1LSkFVEoYW5JiIA09SnJuc4iR\n/+M3fxOjISXFw2FPYS2LxYLv/5Xv8+5ue1Jcha7rQBJlWaC1ISG0w0B/spBYUdnGoTWFtnRtR1CC\nNpaFMUhMDNNI8oKQa6GT8xTG4EPI8W0nNfnr1mtR4GMkiSDa4JRCpUiB4E9JGiTF9nBgs97wsN2i\nlEKMIsVIYW22aqT8xfS8kDczMzMzMzPznvlApo2E0ZqqKNBKMErR1A1KwE0TSmn0KZLsfLPJjxNF\nYS3Bex62W6aUaIc+q8gxsKgbSlsw9ANaaUIMVFVFjJHj4UBZVTxst1n99YHjscVoTQp/ZKfox5Ek\ngrUFIBAjx/2eGDxnqxWltRijqZqaJ08fYUgcj1vqsmBRGUoN27t39MeR5C1q2FK2r9CHHY2tSaKp\nqgoxAnhIjlcv3/Fwt+PFU80nLwqePVYU5ZG+v8tDpoKSwNPrK5TW/Pqv/zqFzUUom80Zy3rF2eMn\nHPsJXRXEkAgpp1ZITKiUc5RjCkRA+YiBbBUxGp0Sn330gsk5OEXN9ZPDW42ThABGNNrkdIkxBYbo\nGYNn8o4pRjz5jYc7eYmTwBQc97sd3TBAjKRTokeIkSSKXdcSUsoJHwl8CDjvSaRcix0CYc45npmZ\nmZmZmXnPfBDKsYiglCKGnNigtSIEj6icBiEI4zRRVhUhBEQJSudmOlsULLXicDwiKXETI4umoe3a\nnFlclaQkRB/ofZ89ykVBjJHrqyuGvqdu6lOJx8Q4TcQYKW1BCB4XJgpboJSwXK1O8WgWpyYWhWUY\nBo7HI23b8ejqGq01X7x9xWVzxrPLC0QmmBw//OJznJ+IHiSBm0YSkXGMiF3gQo4ze/ykgniPGwdU\ndFQmF5FsigV32z3aPubm7UsigZv7B/w4oEjUpc3FGk3D+vyc0U8EwKmc0RyjJgHd0BNTpFku8890\ntmG33zMJ+Lbj048+4nd/+PtQGKbgSYDRBj+MaMmqsYv5ORDyEKu1zs+bUqhTPrQLAQGU0njvUSp7\nupUCL2CVRku2pgTnIcg3i40i2WqTfd2J8HWMm3wg7+VmZmZmZmZmfm75IKaNlBLp1CAXU8Q5hzaG\nyeU8XOddvu4dk3cM48ixbWn7jv1hjz5FsBlrqcqSGAPGGIZhYJwmqqZGGcM4jSidUyjGYWAaxjwI\nlxXTOBF8VpdFhMlNWK0pbEFRFoQU8cFze3fH23dvef32Dc1yyaJZ8PzZc9bLJQ/398TR8b2PPuXZ\nIqH7zzHT71Gmr/iFFzXiHQRPe9yhtYIEIfZMU0cSoe17tC7Q+oJ915NOhSYhjigT+fjTJ3znFz4m\nxsTuYcfTR89Zry8xZUmzWFLVNdePH3HsjozTxOXlZVa+yxI5lXacnZ1zeXVN3/UQE9vDnuVqSde1\nlGXJq9evSSkxTdPpuclRzlZbFEKMAaVz+sQwjXBq1kuQrSVkz7FPMQ+2MeTM6BghBKqyIgHe/1F9\ntta53kOdKqJjiKc86Jij3FIiAi7MyvHMzMzMzMzM++WDGI4Foe8HJucoywLRmn4YGMeRyTmc9/gQ\nObZtHsrGkcVyQQSquiaEcEqksOz2e/p+YJgmTFGgtObVmzd0Yw9Gcxw6UkqUtsAaQ1mUODfhgyel\nxPFwoKpKUsoV0F3bst1u0ToroNoYnHN89tlnfPGjL7jZPfCjV19lX/Ew0E0DP/yDn/Djrz6n7TuM\nfQKpQaLlV773Cc+eXWB0gBQw2lLYCiuCip5x6Dm2O4ISpP4uXXhM668om88I9jmtu+Tu4Pj4O49w\nseX13WtGIzTnl5TrDaurS1arFYUtSD5wf3OLEYMLgbf3d4SUC1fu7x/Q2mC1oShK2q7js8fPGaMn\nGcXjzQW1Kb55cfgYmdyYUzskF56ICEnyfYjC+YAL2arBN/nG2TgunJIolNB3HW50BBJT8AQSg3Mo\ncrxdjDEP0ymhlMpD+mloTnND3szMzMzMzMx75oOwVWijef7iOeM4EBFs8Nk+oTXWGLTW+U/3wHG3\n4/rqGh88TVOzXq1x08TbN29Iq9yCF4HXt+8woinrin13oCxKpnHi+dPnTENHPw4smoZKGUaXFWVb\nWIw2dMPA4XgknXJ5R+e42z4wTQ7nHKIUr9+9RWkFKXtno4fvffpdHh7esjYe38Pdg+fN3Y/oHVw+\n+oiz9ZqzR2csbkfub+8oi5owGUQptJ+4vLggRkFQJEm5Ljl5Dru3TEHx+MkLxsmhSJyfr7jdThhl\nSEkwpcEUBa/u3lHWNdViQQiRru85v7oErZnagcE5KCwuROLQIdZSlxXbw47HZ5fsDkcOKTBFTwRK\nU+BjIFkLKcLX1dfk/GJrcxOhNZrgAtZqFIKLnqTMyW4BMQaa5QprNJzKUuKphTAh2ARWaybvUSYP\nySlBUZUYpRGYF/JmZmZmZmZm3jsfxHAcY+R+v2McB6qi+sYSARBTHsaMUmwf7tGSvcZT8NRlTQyR\nfppQxnLse9Cafr/j8uyc7tiyvdtSLxqqsmRVNXSHPWfnZ7THlnEYOYQjpS0wIugISucsZS0KN01U\ndc1yvWZ/OKBQ2KJAUNn+GhNnqzWX6xVF/zlhfMvjRUlYCopnBDQ3dz1uSLSj4s0XX+ZBtr6kvCww\nVpMOD0z9EWMsajrivaKoz9GxIKUWdItGY3WgPeyJds2P7zXDYFhtzuDk9RVtcDFiqgUhJkL0OY0j\nRd69fUOKibPVirbveXydK6PNYokpS8ZxgjBx82bHJx9/ws39HbXWuBgRBSH7IPLzIOqUVZyH48N2\nR13XpJiVYRdykyCiiGQVGBKFLdGisEpnH3KKuUUvZpU4KflmeS/6CEoIxNxAGPNgPC/kzczMzMzM\nzLxvPpDhOHF/2JMSnG3OOB6OKJ0zbXN6QeLu/iEv2NW5CnrwjkRPU9Y87La008RysWS722KspWt7\nolI4LYxtizYGpRVKK7quy4t6MVKpEhHBFhZrLbv2SGEjymiSg2EccG461Ukn3j48QITnjy+5WK/Q\nsWdob1A6weITnJSkaJEoxPSOi0eXPC4Mv/eDL/FDR1lbotOUdgGAOb9A2YlSG/CKSkXieJO/P4mE\nBtEICWMXTFLifY9SOcmjtJaoBO8d/TBSLxqaRYMbB7ybUEl4/OQJ292Ofd+zWq95fXvLqlngxpE4\nTvR+woTE48dPeHN7i5dEaQqKmBhDIEyOqihw40iwiiigtGLoB6rmjyLwcrxewBqDhITVQlSKcDIu\nB3Ke9apuSDEhIojkhIqvlX3RKld7o07WirxI6GOcleOZmZmZmZmZ984HMW2ICDopNssN7x7uGU5V\nz1orovNoo1k2NS5GklJMPoBSNJsNu67FVBVFXVIuKsq6JiVwWrHve1RR4hHu77csNxsKUSQRhmHE\n+0hRWZarBaIVo8vD5jAOHE65xEbrXEldFLRtR9SgJLKuFkQ3kkyF3nzGtPgeXlaQLCkIVTEiMeDC\nA16941d+acWz6zOUWMLk0KmnwONTTbV8hKiEFk0MChcVjoAucytgEo01BSOaYeyJJLSxGGuhKAhR\n6ELA1hWLxYJDe8SUFXWz4uA828OBFDw+ePa7HdFF7g8HfATvHYUPWWXWYJsK7xz9OLHtW0IIVNag\nIbcVGs3oAwQwtsCFACKITxRi8N7hUsRYgxaBlPA+Mk4ObXLG8ugdkr72HHPyFntQgk6nBcxwqqRO\neWlPacMwK8czMzMzMzMz75kPQjme3ITUJa8fbqmtyd7TaWL0js1mTTcMFGXJRVGy3+2o64b73QPD\n6KiKkv3hQDdMDO6BfhgRrRGfl/umaaRqKha25CevX/Nkc0ZtDNt+jyjF4d2BYRzZbDaEGFnVDeM4\n5mW8acCFQFlG1us1ohSfXn/Ej1++5Cc3N7x4dAkhZwSrGE6DrKBKYUgFwTxC2SIrp6nj2bMdL5xH\nlWf81v/1A5IpKOIRP3bZLqJbiIKqPmZZlfTHHUJHWVocC0IUyrKgacpTBXaOnQuS84h9CHR9D4ns\nl/aRVWmJzhOjYIqCFCKr1YLtYc9xaCmU5mKzZnN2Tj+N3O2PiCkwSlP7QDwtw7lppFks6Iee0p58\n4DFRJA0ITkHvRgpjAXDOEU4lICA5wm0a83PrHBIhaoUqNP3YUxmTkzCMZVHWSEq5kjomgiSmaSSm\n9K2+TmdmZmZmZmZ+/vkglGNrLO3DjkVV42NCaUM3jCjJaQXm1IZ3PBzzUlzwrNdrCpsj1s7OzhCl\nGSZPRHAhMI4TKeWc3cl72q6lG0a+urlh37ZUyyV9jHQ+Ysqa3fHI5CZcCNiyJH79Z3+tGKaR7W7L\ner3i7u07xmGg7Tt++5/+Lg5hOpVVADlPYSIrqwrwLUVUcPghxf1biI7U3fMvfbZhPbxCuzsKWjQj\nEjVaNEJkOyZSc05qnjOop5jlFWKycrs7HNkdW5IIaEU7DphT7NzQtmilqIqS4ANNWeC9w5/i2eqq\nIriJR5cXrFdLFouGcZx4fXPD7d09fdtle0TwLJoFIQZEFNpa9ocDgmB1tnlcnp1hRFBCzj3WgtYa\niemUTqFQolCSUDF7kRMJUYpmUefs4hiw1oCSbxb0Wjexn0a64ElGY1T+p+ac45mZmZmZmZn3zAeh\nHItShBRp+56yKjl2HeumQUQ4di2b5RqA9dmG6d5zHHr8NFEulviUCNNIU5eMQ8/ZaoWbHC44pmki\nxoCPnkdXT7g97GiaBa/3e9z9A4hQFgWSEst6wdgemSpPmDzOOS42a6y1jMNASrA/7HFx5Jc/+YgU\nI4flis9/9AXd2PP46ponl1cYUUQdCDGhUm6Tc+2PseqM3fkTSl2QIjjf8uLXvsOPv/gD+qEDAsZU\neCxJGWpTEKMniGdKnr5tqYqSdvLY0hJFMQTPMDpsYWlsSXCe7378GTcPd9zd3/H08RP2xwNiDNMw\ncLbZMBxblnVNozSmrNgfj4hWlKVh7I48e/SI24d7QhJufU75UEozDANlVWFQKAEfA8f9nnTyGsup\n3U4pi1GalBJudCgRytxvjRYYphGrDf3YU6isOhMCAbDaQIzoJCiliT4QQgKjEKVQH8Z7uZmZmZmZ\nmZmfYz6I4dj5k/cUEKVJonAhYowhacOXb9+wXq25vFiwrBsmN6HqmqgMrm0JJLq+p6kqzjcb7h7u\nKYqayXtiMjDCV/e3hBCYnCemlL92StkjKzAZzdFNhGOXW/BQ7PYHLi4ucC77da+uLtFas98f6Iae\n0TmUMVRqwXZ3YNd2tPsDtrA8f/SYpm7QRmMXz5gEJASG4CAmUtK8evkVy4sr+ttbUAoXIQERz3bo\niTHhgaQ1RhS1rRj7HeIEVZSM04S1FiOaojQoI+yO96zrGm0Ntze3TH5iUVYoW1Abg142OO8xRUEh\nlqos2B0OpGHianOec4oTLFcLBh9wfYtdLIFE8AFlBRFFAKqypD+0pJRj10xSp8SJrBQbk+P3Bu9Y\nNgumENFFQfT58VMMSPKoBGVZ5oIXIEnCKJ0tJlaD5Di92VQxMzMzMzMz8775IIbjlBKmKKjKgsl7\npuBx7URSK4ZhQJcl+7YFEeqmAa2x1vL25paqrjgcj6gE9aLhzZs3eVGNRPKBoihYnJ3xcNwTTq1u\nTVlnlVOEFAN9CByGDhCOx5azusIYsEXF69evs2WhLOj6gW7oGJ1H8XVRRbYVeAVTCKh6wSSBlw8P\n+DdvCSGgUsJYjUhWXRWCTwmUcHM4ZuuC0rlgJPispCvhJNGilcLFwMNxf6pUzkuMVVlilMJohRsn\nKmu5vHrE/v6BYRwpyoKmqbCiWK1WtNNAGAfuHx7QxrAsqzxgm4KgIldPnvLPfv8HBOD+YUtKkU+f\nveDm7o66qrDaoEQYx5HoA9MwYozBxZBb7WKOZIuTpzQmT/qSqMvqZIuAFPKSYwS8m2iqmrHviSHk\ngTk4rDE479FK4WOk0gaDzJ7jmZmZmZmZmffOBzEcA1yfXwDw+uZdzsuNie2hpalKiBFbFOyHnjEG\nUkzoaSIEjzWGZ0+e8GALbrb3BBIGcDEnMIQQCH3P5dk5d3d31HVDWVhCjHTjgK1KpskhKftji0Kx\nqCuO+x1aa5brFVVZMo4DKUb8SfV0QBKF0ZboBkJSuBBQWoghMREQaxCrERF6n3OHtRKIEdE5qiwg\noDRlaRlGn6PLUlbQiRGjc65zgSKSiDFiqoppmiiUsNqsGYeJj198xA9++Pt0w0CjCzZNw9lyzeG4\n5/LiMr/hGAKX5xcQImerNX/4k5+grMGgkcLw9vd/wOQ9ZVGyLAsIjhh8Xk4chhx5h6CtJYnggkeL\nQolQWEtlC1z0OaFimri4uOTYdyRgHEeubYHWmr7vQXIyRXKex5fXbHdbNLAuczScCw5JAJFAorCW\nbhy+tdfnzMzMzMzMzJ8PPggTZyJxc3/H/rCnWjSMzrFer7BWc311RbNYkMie1L7tKG2BJDi7uGB3\nOHD3cM/Ld2/x3iMJzKnqGYHRO2LKqq4tyuwBnjzT5Chsget7CqUwJ+X28vKSQ3tktVqTQkAl2G63\n9NPEGAJYS9CKbvTshoH77shh7AkpElMgpqz0qtPwmLQi+ogh1y1P04hCkFNZhlG5GW6YHEnk1JkR\n0USsUhhtsKbIqnlRooEUPGVhWS9XLJol56slf/jFD1mvahbGUpQWSQkXHRcXFwxu5O7+jofbWyQG\nnj99wpu7t5RVjQmJp5fnWCWsq4LlssRGR+xaStGMwTH4KbfjeY+xhniKVxOlcClgjKEyhn7o6ccR\nlyLJGA5ty7HvAPDeExJM3uNCxKdISBEfPA+7LdrkXGsjCp3AKEVhTR6snWM4LRXOzMzMzMzMzLxP\nPgjlOMXEu9sbjDFMzqGU4rjfY7Xh4e6ex48fc2xbjocjRWEZhpGyLLl/+UCMkcViwdnZJquptiDG\nyFIvICYenW3o+p6271guFwyHlqiFuligEMqqPqmZHVoJX738iuuzc6ZpQmmhdyOL5ZLRjQzjxOQD\n3ntsWRD6gEIobIlXgkQBhCkGDIJWGolk32xM6BTR2iKiQBIk0Nrk5T1ROYIugRaFpIhWgg+esixx\nKMZpYFHXqJTw3jOMA5IiylgiivXqDKM0bdtycXHBq9ev+KrruLq84uLsPMe7xZQtECFxsVoSgTYE\nGm0pC8t+6Hj87Ck/efUlj64fcRwHLEJR1WilmaaRpLMCnkL+OVMMhASFLdDOYdAoo+nciFEa57JV\n4g9+9IcsFgu6riOccoxzmkX+eX0MGKUptCGSTgNxxBpLigkfw7f9Up2ZmZmZmZn5OefDUI5T9u/G\nlFg1C7QI6+UKBIy13N7d0vU9ogRtDLvDnof9DqUU1clisFwsgaxQVlVFVVUU1jJ2PW17ZL1aISlR\nNRUiwjRNeRnPOYa+Z7NZo5WiqGrGaSKSM4ud9zg3AYIISEpEYDrFp3GKcgshYJXO6Q3aEGJEa4P3\nARdCtt+Sz+9SzJF1yuTPPd3rnCfESDiVXoQUs9KcEoRAoQ1umhjHCa0U69Ua5zz7tmV0nq7reXvz\nDucdu92Oq4tLvvuLv4ixBmsMV5dXKKUwWnO5OUdigJR4++6G+8MOZRRFafnq1VdYa6mq7BXeLBYU\nWjNNA7a0BB+QlKjLkkVVY7RhCiH3+ZUFx2ngOA14n5ftJCbcqcCjPbaQwBgDp3rrSE680KKYQo7F\nszqfWU7PqYv+lJM3MzMzMzMzM/P++CCGY4DCWArRbO8fWNYND3f3BB8orCWESEqJy8tLxmlCm5yL\nq08V0yEE7u/v0UrTnJTJ++0DSbJlY7lYUBhD33Voa6l1QZwctihY2YJlWbK939KPnmEYMEUBSlEr\nw9lyRWELur4nxpCTMbyjKAqMMdkeUBh88MjX01sIWRFOCZ+NsyitQAkuRrzkWmUXI0FgSgmf0qnG\nukAZjYvgEXRRUpUV58s1yQVUSNR1TQiBY3sEYLNoWNYVIlBWFdbms5VFkdv4lOZhv2O72/LVm9d8\n+fIrxmEgRCAmnlxcslouWDcLVIh89Owpyhp++KM/ZJhG3OQoyxJTFHTDQKk1RWEJMRCCx8eAI57s\nFwlrDEpJ/nlMHnKNtWiE0tr8nH7dypfSyX8d0VoTSbTTiHMOHRLLsqaxJSoJOs3T8czMzMzMzMz7\n5WcejkVEi8g/EZF/cLr9mYj8YxH5XET+nogUp+vl6fbnp/s//amHUEI/9BTW8OjqknGcqBY1Smnc\nNOFDVlTfvHqNEaGyBd57FlVNihHIA/JyuSSEvPh2dn5BYUuUNogoHu4fKEyubl4uGq7PzkmTIyko\nqzIPZ1YjSnO/32Krki4Etn3HzX5HSNC7wO6kYHfjSDsO+BSZ/ERUmj5FQoSQEi4GQgjU2uZikpjw\nIZ2SJiCS8Cm3x2lAKyFKwrkRYy0uemJMxJh4OB6471vqpkEbQ3CBha1w3mFVjlbbHg6cn19wfXnJ\n6CZu724Z+oHCaKYx2zFChLOLS7SxaGWo6pL1omFdFDw9u0YZxdnZGT7CNDpMFNw4IkYxjCPdseXR\n5RUX5xcc+4H1Ys1iUaNTohSNVoZhGCi04bzOtpUpeJTWVEqfPNaK6Cd0SiyLkkobovP0biIpyep7\nhM5NiFa4nXLuAAAPuklEQVRYBCFhlBBnW8XMzMzMzMzMe+ZPohz/deB3/7nb/wXwt1NK3wUegL92\nuv7XgIfT9b99etwfSwiBp48eUVnLoqhYViVj11MW9hRdlqjrivOrS4qqYpgGHl9dc+iOeO/ZnG1Y\nLZfc3d4SfeD66gqjBCSRYsQ5ByJcX19jtKIpq1NyhOI4DbTDwGq1IsWIRgghsR96btojr7c7ojb0\nLqCUxtqCECJBhKQ1iaxoiggx5OHNnOwCPkUG7xAghryoh+QYNuCbKLiUIpySKCJw7E5LbDEgJ8V5\nco7JO6q6Rpnc3FfWNUlpyqLg0eUl0zDw9s1b1s2Cx1fXNHXNcZzYnF9kNVkJ7fGQ7Rph4stXr3i3\nfaBcNNim5kdf/oS7h3t0WdAOA2rZUBYVyjmuzjZUpWW/3SIiLOuaw25HtWhYLhdcX15SFJaqKimM\nJviJy4vz/Pt0jslNbDZrejditKEoC/quz8qy0pTaomKiKgrqqqQocu326ByFNlhtvqmmnpmZmZmZ\nmZl5X/xMw7GIvAD+LeC/Pd0W4F8DfuP0kP8O+HdPH/87p9uc7v/X5etp8P8FrTQqRJQSXr5+eapi\nTlilMVrT1A3LpqEfB+62DyQRNoslWmc/bLvbU1cVl5eXNHVN3/f0+yPH9kiMgdFN2MLy9u0b2sOR\nYRw5u7xAF5bz9QYtQt/1uXhCCVZb+n4CEZRWdMPA6Ccehp4kEFNWh6cY0DarsCnGb2LN4qm2WlSu\nS0bkm9IRUn4zAGCLbC8ggdGGdbP4pnZZi0IjKCSXZGhDIHHoWoL3rFYLtDEoa+naI5vFkmHoqeqK\npq6x1rJrj0zTxI++/Alvbm94dXdLVJp2HCnrBR8/fcGx73m1vecHn/8+T5484cmjx9zc3nC2XuH7\nnm7oKOqGL15+lUs8lKHve67XZzx9fM3N67e0hyOl0cgpUeI4DBR1Q3s4cL5es1osGNyIOMej5Qbn\nPaP3JIFxmr5ZtDNKMzmH844xTLR+YiTRTyOFNug5rGJmZmZmZmbmPfOzKsf/JfCfQS5QAy6BbUrJ\nn25/BTw/ffwc+BLgdP/u9Pj/ByLyH4nIb4rIbzrnGL1nezjw7KNnVGXBR4+fUBiNGwa67sihO9L3\nPVZpmqJAKaExlqoo+Yu/+hc4jgNt13E8tjnSrakoTEFZVKwWK9pDy6JZ8vTpM1II9PsDjy4vUWKI\nMadGCEJMAZ88wTuij5AUAcEjxFNeMUqQmDBJ8ONECAEjghaIRMRqINdHW9EQIi74XJZBQhJEH3BT\nLu4ojCHFQDv2aMk5yCl6SmuIPhBFYW1eThMSVVlTLVfs73cQ4Pr6mrKuGZyjNjnmLsXEOAzsHx64\n3JxxHAfWmzPcMFEqy26/p24qNnXN+WLB2XJJGB2l0VxvlpRac7FZUxjNbhow2lIqi9KayU1008DD\n8UCzWrFslry7ueMwDJyfnXG+XHP37gYXA1MMVMtsByEm1k3Ns8fXFCpy1tTEUzyckKPnlFGkELGo\n/IZJcsPeYeyzij4zMzMzMzMz8x75qdOGiPzbwLuU0m/9//mNU0p/J6X0/ZTS95XWTJNj3SxYlTXr\nZpltCNZwdrbhOy8+piYvmCmtqaqKH33xBVVVEWLgt//P38EgnK1WFIXl2HdE5zDWEGLAu5Grq0us\nNUzTlGPdViu29w9IjCzqmspalnWdF7+0Jqms/vroGafsf/3n5e908g2j5FT5nHLKhAjR+VwRTSII\nJCUEIl/vk+XFO4tWGhdCfschKivlorhYrFgWBdfn56wXDSpGvPNM44SIYl1XdLstjx9fsVjXvHn7\nlnEaSUDQws3ugbvDjnYcWK5WWbGePHVhOd8suTzf4MeBm7tbBMFKTrBYbTYc+pGfvHqHnyZWiyWS\nEpbEJy+ecnl9jik0CoiTZzy06BBxKSBW8eTsgt3NDbiJj5895WK1ITrP7dsbxAcuLs7oppGXr9+C\nKemcQ1nLME64BKMLDKMjiBASrJYrrDIUoilEIXGWjmdmZmZmZmbeLz+LFPevAH9VRH4E/PdkO8V/\nBZyJyNc5yS+Al6ePXwIfAZzu3wB3f9w3SClxdnHOcrWmrhsWiyWiFF3f8+ruhjF4fIrUZcnjR49A\nhKdPnpJIlHWNsRbvJowxaK0wRp/qhiOkiEIx9gPjMHD/cI+xltfv3qJEMfY9VVkACSWwXC7x3uev\nmSJyskeEGPl6NIsxp2ckyJXGSjCmAK3RkjONRamcZ8xpiOaPfMZfN/clEkmEEBMuBLzLFcrDsYUQ\nMUoxjgNGK7Q2KFGEEHjYbhGlKMuS12/eIErRdj0g7LuObhyZnEcby9n5GUVVYZRiVVenNwgDj6+v\nvolKSyFycX7O67dvst3hFLVWWMvlxSXrRUNTVrSHA4tFzbJuWDUN55szhFwnrUVRasujywuePX1C\nU1c8urjATyOSIh89eYYWYRgHLs7P8ZNjmCaapsYowVqLtTZbU5T6ZgDXCdDkpA+JzMzMzMzMzMy8\nT35qCUhK6W8BfwtARP5V4D9NKf0HIvI/AP8eeWD+D4H/8fQp/9Pp9j863f+/pPTHV5sppfjy9Su0\nUnz87ClTPyJKUxYVZ82KN6/eUG9WtG0HohjHnoUtubi44Iuf/ITFYoEuDC9fvuSzTz/F3TqM1kwx\n4CfHsm4YxxGlhMWywShDUsIwTixWC4ZppGpqhnHg0B4x2iAhfbM852PMaRZKk2LO5I3kZT+tFTnr\n2OUFOyAqIV/NGb9R5ZA3JUJI8ZsBWTjdJid2KG2YgiMJaLG8u79nBPCBRWERpWnqGm0UU0oM+wNa\nWZbLJaObiCmyqZdMSqNEsV6t2O723G7vSQhdP6KMQWxBjLCqG0bRHLuWpmmoqpLSCr/0nY/oRs+X\nr15ijGG1WHJ/e09tK7Y3DyzqmmSF49QTUuJis4EQ2XZHJEFRlOwPe1b1gsdPH/Pu7TtEwOiCq805\nq82K6D2QWC8b1pVld+wRwBQFwzQCUJeWaZq4bFY47xm8+xO8tGdmZmZmZmZm/uT8fzFx/ufA3xCR\nz8me4r97uv53gcvT9b8B/M2f9oVEcpFGZSyud2y7jrbr0Nbwk7evWV1fUpYV5+dn+L7n02cv6Pue\nu4cthbH07RGJiY+eP6c/HjFKsd5sCKOjsJbj0OFTZBwddbXIyQ/jRGks0+SyBcJ5dACrNJKyVUIS\neSGOvDQop/+TgMQ8/IaQSzvSaZEuKLJvmKwSRxIpRUTkm/Y3TvaAJMApNYOQEPLCniiD1xDIoqmc\napYrY3LW8uQJPqvMVV1yvz8w+UhRlExuoihKTFXww1df4rzn8vwyx6X12dN83O/php67+3sm72jq\nmjdv37DZbJCkcINn2SyoqzrnECtACav1ik8//pimqVnUNU/OzvnFp88ojeFme5+TLZTm/n7HcrVC\nW0MpmspajkPLdv9AURUI8Pj8jLos2e72vH17w7quWJQlpTE0dUWlNZ89f8Evf+c7ED1Pri+pzOw5\nnpmZmZmZmXm/yE8Rdf9UqJfL9Olf+gtU5KgzXZWUSnP3cE/TLJi8o65rzpZLHu7vuTg7Z7/bUTUN\n/fHIZx9/wn7oaPcHPvr4Iw7HI23fQ0osmgV323tEcmFIWVQcjnuquib4nME7jmP2txrDy6++olmv\neDge8TGijc7tbiIoyVEVUfIA7H22RohSOZUipW+sFIlEiglReY0OwJAj3yY3ISo/TiRfI2alerFY\nECaHT7lx7+rigru7O1CKhbEYpbJP2Fr6voMUGZynWTRYpVApYoxFW4OPCR0Th76lLiuqwuKcYxxH\nnj9/Qdceaao6K7bGsD8eKYoCN06EmOucx3Hk6vqK+/t72rbn0ZPHHPd7lssl0zhiraVuGo5dS1XV\nvHv1mqvra3786iuqsmLVLBASSht2uweqquLxo2vatqOsa5zzHI9HjscDwWcVvSwLrCjqquTZ82f0\n3UAMuYDl7//93/itlNL3v4WX6czMzMzMzMyfAz6I4VhEDsAPvu1z/Am4Am6/7UP8jPy8nfWTlNL1\nn8ZhZmZmZmZmZv788VM9x39K/ODPkhooIr/5Z+W881lnZmZmZmZmZn52ZhPnzMzMzMzMzMzMzIl5\nOJ6ZmZmZmZmZmZk58aEMx3/n2z7An5A/S+edzzozMzMzMzMz8zPyQSzkzczMzMzMzMzMzHwIfCjK\n8czMzMzMzMzMzMy3zrc+HIvIvyEiPxCRz0XkpxaG/Cmc5yMR+V9F5J+JyD8Vkb9+un4hIv+ziPzw\n9P/56bqIyH99Ov/viMi/+C2cWYvIPxGRf3C6/ZmI/OPTmf6eiBSn6+Xp9uen+z/9Fs56JiK/ISK/\nJyK/KyJ/5UP+3c7MzMzMzMz8+eJbHY4lN3P8N8C/Cfwq8O+LyK9+m2cCPPCfpJR+FfjLwH98OtPf\nBP5hSukXgX/I/93e3YPaUUVhGH4XahAUEkwRJDeiYtAuxkIERSRp/AnGIkhAMYSArRYiaG9hYxSE\nNFFJRBC5Cqay0sLG4F8hmEYuSiKJEfOjKBjEz2LWzT2FARvPDJz3gcOdvfcU3+xqnbnrzKy9+e8h\nYGt/ngYOzT8yzwAnZsYvAweT3AacBw70/AHgfM8f7PPm7TXgoyR3ANsYck95byVJ0gIZ+87x3cB3\nSVaSXALeBXaPGSjJ6SRf9fFvDMXb5s51pE87AjzWx7uBoxl8BmyoqhvnlbeqloBHgMM9LmAHsHyF\nrKvXsAzs7PPnlXU9cD/9qvEkl5JcYKJ7K0mSFs/YxfFm4OTM+FTPTUK3HWwHjgObkpzupTPApj4e\n+xpeBZ4H/u7xRuBCkr/+Jc/lrL1+sc+fl1uAn4G3ug3kcFVdx3T3VpIkLZixi+PJqqrrgfeBZ5P8\nOruW4REfoz/mo6p2AWeTfDl2lv/oauAu4FCS7cDvrLVQANPZW0mStJjGLo5/BLbMjJd6blRVdQ1D\nYfxOkg96+qfVf+n337M9P+Y13As8WlXfM7Sk7GDo6d1QVauvBp/Nczlrr68HfplTVhju/J5KcrzH\nywzF8hT3VpIkLaCxi+PPga39dIV1wF7g2JiBugf3DeBEkldmlo4B+/p4H/DhzPxT/WSFe4CLMy0C\n/6skLyRZSnIzw959nOQJ4BNgzxWyrl7Dnj5/bndpk5wBTlbV7T21E/iWCe6tJElaTKO/BKSqHmbo\nm70KeDPJSyPnuQ/4FPiGtT7eFxn6jt8DbgJ+AB5Pcq6L6deBB4E/gP1Jvhgh9wPAc0l2VdWtDHeS\nbwC+Bp5M8mdVXQu8zdBHfQ7Ym2RlzjnvZPjx4DpgBdjP8CVtsnsrSZIWx+jFsSRJkjQVY7dVSJIk\nSZNhcSxJkiQ1i2NJkiSpWRxLkiRJzeJYkiRJahbHkiRJUrM4liRJkprFsSRJktT+AajV9YsytGWQ\nAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "tags": [] + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGqCAIAAAAUcGK5AAEAAElEQVR4nOz9WZMkR5oYCKqq3X5f\nER73lfeJBBJAFVAoFOrobk43e4ekkDJDEZKyfJvdfV9ZmX/A5xUhH1Z2ls2VnmY3t0uGTXYXm10H\nugoo3JnIKzIzIiPjvvw+zdzNTFX34XNTVzcPD2QCCSCBik9QUZ7uZnrrdx/4//lv/xR9+cA5F58x\nxsc8yRjDEnDO5XePbPoze5d7JJx89nAlcBkdbgTGJg1BHsNA+xhzeJJzjhAbbp9zPPhPPtzdIBzR\nyOeAUePHWPnMd0ftyOg2j9vxrwY+4xQ9MTztXJ6231EHYFS/T9s+QeI0DrxOyNH3go+Y7qh+GT76\nsePX7clPC2afMd/Q6xQ96fPwgbFnc79GdocG7xfudTcKP4TwyWfDU+K3pwbsP93jg2hTfD7+3Mq/\nwufnAYd8GaB+3QP4ZsCoY/T8wLNC0M8KnmdifAIncAIn8DzAc0eAhxE3yMHPqv2n5W+fUBA5Bjjn\nz5DqPG1TXxfBO3LXnu1SnMDngFFXaeT3X+Zgniv4uljV3x04uf7D8NwRYBTQDHm3jqHBT3tpvsj+\nP8npkRTOCAWz+Aru9vMmAaPBpTjBbs8JhFXKYo++pYjxmHvxtRCDoYvwLb8XIQXyCQ0OwXNHgEMS\n8Gfu1ldDeJ5/FfQJhQP4utbhy+73WbV/5J16Po/0lwpHTvnkEn1JIJPhk0WW4bkjwAKE7Ci8sb6W\nYTytClqMOeTn8mXjuCdxjPqKYdj0e3L3ngc48kA+7dZ8y2j2t+dk4i/XieyLwIn4OwzPHQGWPZ+f\ntw17wsF8qezC09rwRsHXwhA8V7t5AgDfbt7oyb2vvxoYpYL+tl6NExX08fDcEeAT+HbAiefzCZzA\nCQDIdPeEBsswkgA/KwQ6qp0QZyRvz/CTxzCqbNTQBvj6fpv4KVW1GIXHfDw8bRzh06q4Rw1h5Pif\n0kb+ZcfLHt9vb4+kv08yni8y5qc950eezy/S71MdgGNu0xNG3Er3JWgKZkSw7C4ntoA85eS++Lk6\n/snP3KHQ6+yz4oa/JAgZofqj4kT8yjnHhGOMCSFPuG5PgB/C5/Pr1XCEELv8+UjHmuFxPpWtJERQ\nhjuFePcvL85Y7HvoHo0a9tcmAZ8wQScQguGb9tUckiNJ4LdVJXsC33YAAUA+0vD5uTvPJ2Ixeh4I\n8O9ImArnfMQd+GZ4zz5hX5/7Fn1dXqmytC1/+a0/kCdwAl87hGjw1zuYrwWeIxvwV+MtfALPFr7p\nThbPf4DZ1wvPoXf9CXyb4BuHMZ4tPEcE+KuBUTbjUWfgaW1gv5swHOf3RTJ2nThwncAJfLvhi2OM\nbwc8RwT4823AqGTxvV8HOhj+6quDZ6WCftpF+iolmG8iM3tkioBv3CyeHI45bfyoB761C3ECzwEM\nq6C/xVfvSPjaCPAo777fTUvANxeelQr6SLPrV0DR+VCu0BMDsAwnKugT+FLhm8i1P0P4kmtXjYbj\ng4tO4JsFw279nwO+YG6mzw08APmfX03XJ3ACJ/C7DKrHKJJ8QcWHwfi5/uentYkySkPBnfCBAY4b\nzNeIPgdnPSLOr9dOP9aRc4gGRtqRz49CuXSw1c8cDkfe0T+MfPW4uOGjLKNH80yj4t7wKCXHiPkq\n/OnimDkJAt0G+h1pGRjF8Q3HTz/bcKAvKMmFXn9ytv0zx/+EgZ5HqgcQQsGKht8b1Y7C6ZHfSxdA\nujicj7J5jJzXlyzMjIz7f1bwjOrp9i4fQvB/YhUZcgkhGGPGGGcMY6JpqqZptm0f2c7Q8n/GcfI8\nDw8COlap87njYj9ThXl8O0+L558QD4jHGGOcc0KIqqqcc8/zEEKqqo7K0zBqOqOeH1U/G1FGemve\nX1jORh7bo7HzM5QAxCEINf4VqBa/nvZ/d7UpJ3ACJ/AZMIwMn63GRdP6Asbvsl1PURSZdgK9/BxE\n58umU+qX3UeIU/jK/FxCHfW7+507iidwAifwvMCRAgkN1IRfHGSJdjgl01cJX69lV+jPYG1BB/C0\naQq/AlCHc3c944UbVCSKD+RrOhDPihccrdJ8Nu1/XXC8V/lTtDNyob/hCzQCnjch43kbzwkADMed\nM8aeIcoV8nQowdGzUvke085zdeRgHSilsLxiqUeqjr8m6KmgR0VhPivAUo0j6GIUM/KsbAYncAIn\ncALPJ4Rw7DOUzOSmhqXtLw+OpBpfY0ABSJKQZPt5drRWv5qRCTVI6MMwfHnj6fX4jOplPnWW+q8L\nnna+35BpncAJfCnw5dfTDUmlx6uIn5aAHenxijH2ff8LDPmp4XkgeIqiKIoihODPN6qvwgYcgmdr\nM/i64ghHxbQ8BwfjdwJGO6l9OzfgeYuX/baaSL7pEHK5+jIMf8PE5isQQ78uS/MooJSqqqooCpI8\notFzpidHwwT4yx7fV7ZDzzaIZVT7w/Cc7e8JnMAJPEcgCPCXpx/+gtZfuZFheH5I7PFAKRVsjbB4\nPoeDDxPgzz3EUS96jIb0IU9FFPsPHxvHFn54tFllVO/DHNzn1Vp8RjaJIxscFYf35Gv1hB3Jz8sT\nFJeWPaPr+qxUal82fO7xPHn87pHr/GWvz+jdf5Zx1cP35Vm1/2Wvz6h9edp2njZeVn5l+NY/bb/D\nLYxyMhrV/tP64jwrwvzM2w+9qCiK53kQFQ1y8OeDUf2OXLejnM+PGfyXnopy+JR/3TDKxgNjk1cK\nD33zTYRj5itPkAd/P/9hPYET+ObD09qAPxM/PA9I77mDpyX831Z4ZgT4yTmX581acDw8H0zDCZzA\nCZzACXzb4CsqxiAk4M9UwZ3ACZzACZwwvp8Pvinr9rSq8q/LJv1lr+fzFZV8AidwAidwAifwOwJf\nugoakvVDIQTISs45Rxg/Ycalr52d+3zOEd9ceNoF/2bP9gRO4AS+DjixAQN86Sro0d6SJ3ACJ3AC\nR8M3PQzm64Jvigr6mwJf9np+FQQY8l59vjCkEziBEziBE/iWwTfFBvxlw0gCPDJuLMgiGYpzYiMk\nXUUoKTkaKJL5ZP1+5uqyEfVrj4/fehKJvBdX95Tcgo8G0p7xoKl+8N+RWt6B6Kf+i0fB04VJqCN0\n/VwanNQ/xkHPoyIjQ5FtoEmSrxOs8MgL9qVbFZ42jOTzuEGM8u0/6kneW2wuf4menXXl6yrwEp5U\n7zPpZ5mVj1DoPHwm3uxXLxtsTRmxX8ebwI554wuKA6P6FXmX5DT4Ih/Tk7fztP1+ERhO0fW5W/hM\nN9tnZdo7pp0jMdgT1hp4huHmww3KfX1FXtAn8C0GoeFAEsZ5ho0f+f2JHuWbAl9jRv7nDb7p4toJ\nPHM4IcAncATIeeyO5N0ExYV6I2hQtfAMa349b7j7BIceD6HT8gyD/r9xK/+8Hd0T+Bph1OlVv62n\n5OuaF+aDCbSCBFNfF/L44qqt42VQjBHGWPg08med9Pz5tP18W2/NM4fPkalRvPhMFvnr2qmQ7vFE\nDfAVw/PMrskn4UQCPoHnGp7ni4QGVQVf70ieTzgy7/GTwJHP476LwjcDvrhV9QS+GnhaRn+0s9jR\n7Y+UgD97aCfwuwTHh40dVTSCcc4xljl9KL/xbDDlKG32M6xh/rlh2BvxBAQ82wX5xi3vibx7AjKM\nKp4xUgX9jTvxITi5AACfb39DtWLkt0K+haLYtax5PoY6Pu25es738Tkf3tcOX1AC/qZjIRlOgjC/\nSvimOG+eSMAn8EVBDq6Q7cHPBCilR37/DP28vjg8b7f6GwRf9tI9JwLGt4mTOIHPDcMCjPq5JZJR\nmslRr4Tihr/si/fk83q2I1EQRhxhjDGC+D8E/yOkHw4IwwP4fPFwR6mCR8Q9c66qKsbY931KqegU\nY0wIkQ8EfAPPhDrinKuq6nmerusIoVarRQgxTZNSCl7QYmpiXtCOZVntdltRFMMwGo1GLBZjjFmW\nVSwWVVU1TRPahAZVVdU0Dd5ljKmqqut6o9FQVVVRFM45FNlWFEVRFN/30VGq8q8MocuzRhKjIFbg\nSx3GZ8LXxRMIjQgajE8LgRieqNUqdCehsx3aVvyU7oxf9kY8iZU3dPGf8K0v0u+Tt//lOUt+Ph3G\n045HVrx9EZPQs5KYn6QdGT+cSMDPGIZRhvgeSdvzlSFooGecc8aYoiiqqjLGoE71qOflAYsvbdvW\ndb3dbhNCUqkUpRQ+HzkjIJPQr0w+O52O7/utVst1XaiYTSn1fV/TNMMwfN/vdruKosA/Oee+7yuK\nEuoC5vJlrNWTg4xPj0R2owjPtx4+H8Id3uJnPrAT+FaCjAqGJYfnH04I8LOHUAQC8L+C6/mK8TII\ntb7vY4xBpvR9H8THpwLDMGKxWKPRUBRlamrKdd29vT1VVV2vc+TzqqZ1ujZtewghDWmYYUw4R1RR\nsYrVyam867qVSkVRFI4oURAmHGHGEfV8Hz4AzVZUghDniHLEMXxEnHEWBHtJiwmfn7DKxwl8VfAk\nvMg3BV2ewPMGwxrZEwJ8AkdnQUODygdZMfXlAaiIQY4kEjxt1yC/gqK11WqBQpsxNkojODExUSgU\nbNsGKVlRlGQyqapqp9OJxWKnT58+ODgol8uGYSiK4rput9vVNA0U3QAgOiNpoYT+/GuUL4/c02Oe\nfNphflMQx/EgkODnw4ZfgYnqBL598E08MycE+MuCL27meSYAZlrwjfJ9X1CyY5xTjrTZY4wdx4Gm\n9vb2gJy7rqvpypE2Y9EU59zzPMZYJBLxfZ8QYtt2s9lECEUiEV3XwVoMf8EGLNgFhJDrujLF/d3U\n636DILRBn8kqDVvsni31PeacP5N2vq3wlflSfEGQZYkvYgP+uuCEAD9jIKOdLOCH/vefC9eMOlaj\nvvd8H6gaEEIggcd3io/KbGWapuu6YJqt1+uKopimSQhh3OdHeUHv7Oy4rgsvep6nKEokEmk0GtFo\n9ODg4NGjR8lkMhaLua7reR68KNzEdF0Hk7DjOCFXta9GbfCE8E255F8vPNV+Cb+t52eXT+A5hxB+\nEF9+fSN6CjghwM8YQr5IQucsKEdIsvwKhiRLIaLfp5WAHcdRFKXT6TDGNE3jnNu2rSgKwgOyqWz2\njsfj0Wg0Ho+Dk3M6nQbzczQatW0bIaRpmu/7hmGAuxZwBmCxBh8uP+AehAQPTrZf4+16Qq9X6Zkv\nfUjPFTytzplL5Uq/zHGdwLcTQv6Y37hTdEKAnzHItG3YL+Cr10sLR2VhiwViNiq+dhR4ngcxRZTS\nXC7num6tVtN1nY5wSI5EIolEApTMjUbD87xOp9NoNBqNxuzsLOe80WgQQqLRaDqddhyn1WpFIhGg\n9K7rMsYIIUoAQj7+ZumXPgc8K8nv612iExH2BL4aEGFv31ATlXp8vdthj6HhVPvwWQHFJpckJ84B\n12N4K2iKMYYQVwfj/57wug4/xvAR3udHarFwT5I6uqMQDy4+sxH5HgTnFdpy1ncwDt7kCCFOCOHg\nvosIQggjDP95fhvGRQhGCGGOwAFY0zQkBZtiButPVE1zXZcQwhgjWFEUxfVcTrBhGN2uB+tsmma9\nXk8m041Gw7RU1+1omqZqarfb9V1X0zRCiKYonU5HURTLsur1eiaTmZube/jwodvxOOe5XC4ej1er\nVdu2VUXhnKeSSd/3VUVRFcVutwkh0UiE+j5HWFFVjLDnekA1VVXFBDOKioUypYV8Pt9xXNd1G/XW\nxMRUOpfa3NweHx/vep5hWK7n7WwfzM3NWWZcVUmtWva6XcNQq9Xy1NREs2lHIolqtUoIGRsb298/\nAL03GLM5w5z1dAwYY87B5Hw0YxGi3NKuHRfRJCswIER1cLuPPktEqkE7fAiP/P6p4HnAMqHxi3+S\n4NjjJ5sjwbhfNBv2CCGEkIKC+xvSLgZ4I9TvZ2ojho3To+YyrC6Snwzx0Ips/JGaGURH0utD+OR4\nnlI+crJ6STb6oKFzNYy3R7Uv8H9o1qMi/Tg5mrV6Em3QkXDMvoQeG76D8DB4g+LAyfR4Svy0qW05\n5xBFKZc5F4414l2h7KQofK5gCwQ+l+fIOf/sRBwhBdHxCy03LUhg6BWMB1JSDH84sqNhKit6Pn78\n4UGOPhChrX1CZVroAdIf9sDr4ohgjOUi8Kqqoh6iFyNUCGbCMgqCIAryXXieRwgxDIMx5rk+eAtH\n4jHId2GaptPpuK6LMUaIWZbFkSd4Jlma1HUdfIwxxkDVHMehlEajUdAAi5GLcF4QoOF7UXwQGod/\nivYppaCgppQWi0VwwrIsyzAMu9nUNK3dbnuep2mGZVmu41YqFVVVOaepZPLw8CASzV69erVSKSmK\nsrOzk0gkEomE4ziapk1NTXHOV1dXo9EoRz17s2BTGEMY99X+MjzJNzJA4JZE3T9ngfEjj/Ex8FSE\nBI/OO/a0RPoJxz8KPhM/jALZIwEfFVQdmvjTMi6jBia3FuLdxZfDg5G/72GkEd4Xn4nfnhBkm4s4\nh6ETLqPT0PdHfg4NVEw/9OH4eT3h958Joe5GtQN4Riaf8k7J5BnI8NOO/5jnxcE45pAfuWLyURmm\nj/Dhs8sRhh54ok19ghaevJ3jZ8sHEZC8WPgp9WAh1Hb8w6MRFiCU8AmAi6QoijgcsLXyXeK8NxfG\nMcIK5xwxxBHmCGOMGGOMMZUQTdMopUCJLcPyff/w8DCRSHQ6rq7rQBQh4EfXdc/v21ZxkOsKVNAg\nRoNN1/O8SqUCZlfP89rtNnyAYXPO5dBhOV0RURBCnFGKMFNUVVEwY4wyj/QYB+x02pFIpNPpuF6n\nUi05rm1ZVqfTgVmomPiEtFothJiuaalkXFXVWCyWy+Xq9appmi++eK5er0N4Esa4VCqhgCfgsrql\nt/gDGHP43MvbxyWNzvG7LP89hkAeKYV8QfrxueELEtRn2Pvx6/aZELrFofUMrflR7/dfHIVJjtyv\nEOr87I6Ogi++3aPmGzrbn3meRxK2o/blmGHLZb/lwTwrRnAUyORWHiSXUviJbAdfBgEGOHIXZMbo\nCU+7eHIkAQ59P9xi6FYog6ohNHign5zEDnCX0l/ZZhkaDB9UOMs3Z5gGP8mBeBKO7EjgnHOEEQoP\nBgUEGBg0uX0aEN2eWiDYb0VRKGWg1NU0DXS/nHPXti3Lsm3btu14PD42Nqbr+u7Bfrfb9byubWOO\nkKZpkLVKURTOsKKovu/7lKqqyhlnDClE81yqaRpG2HMpIcTtuu2Wg3iPJNu27XkeDAZWXk6eJS6h\nWOTQpHAgK0MSyomJiWKx2Gq1CoUCVkk8Hvc8LxqJNZvNbreLEFcUbNvdiGVUKpVkMmlZ1uHhIaWU\nIPTCCy/cvn3b87xYLEYpffRoDfy5ut0u5xxxIvfOORfjlIWG0F48CUEVIchIkrCRlDoxBKO4N7nT\nJzlXxxD4I7/8HAjlqfp92qRjT85YH9n+kaxS6J8hQeT4Gy2Y2mOf+WwUIZY6jGdGSMAjxYanJEiy\nvHvkWXpC1Poke/EkxENmCLgkP3wRBuvIzyEIZbzinAtHFpENF7AlIJ9nnixPPnVPPuXPFJpHOmEd\nSbrkL0OfR7VzZNALHqHeORKOOToYYxVMqjJqA6U04zisc+YwoKfqZZSNXDw+gM0RooiK7+WfZKkR\nS+YKiigfhN67ritSImNFMTTNNE1N04qOA+Kvoii2be/sbufHJxKJRKPRGB8fdxznsFCq1+uJRAKS\nXgEVBLKKEIJvIpGI4zjAKoLHE/CP0WhU1zRd14H6wt4BX4kQErod+Auz8KgLGTN6eTkQQghBj6Do\nBt01sBGMMY/18nAZmtZVVcZ9RpGqqqahcc5brSaMDVHfaTlOp/3zn/8cEmYFkcSeoqi2bVuWhRBC\nmGNExJVAR2Gc4ROLJZXyMacrdESflnULtf+EiObJ20dHXVIBX3YZxxCyHuaJ0VF7MQzDqGAY7Yx6\nnX+WXWB4YKEBD4/zSXDRk/R7zJifZJwCZIUZ/B1Ovih/kCXUJxrPiBEeP34uCXzHU6PP5A9C1/MJ\nGUqBLQGzYUkED9GpLwhHMl4AoiNhCMODArF4Ho3AA+h4L+jQ6hyPg0IDxZJshI7CZfJ6yb8e8/lI\nFBbiR8T8Ay3lk+7oKHf241+Xpxz87VslpQ8MCLBoTWSkYpihgDyDG5E0JMQY8jza7Xqa5hsGJoRE\no1a1Wms0GmfOnDEMY3Nzc2d3W9H0U6dOvfjii1tbW622c3BwoOt6TwgmBCPEKNU1LRqJtNvtTqeD\nOFcIUQgxDIP6PqXUNAyPENMwhATJg/xZ8AGoJg9MLP31oRQrCuYchtt7C3hSjBFjnu/v7+4yxizD\nQAjZXtd1XQVhSH3FOXc8B3nUsizHsVVV9fyu0yKTk/larWbbdrTrGJru+77XdT1FjUWiiqIYmi5t\nLuaM8WCpQ8UhQhsqH5vjd1ZWucMZ6zFMI7zHh8ntMSTq+Ht0zKiGe/zctDwEn0+FyAdtKJ9vME+F\nLsXODm/o0Y2T45Z91K6Jvo4cAHoCGiyKmoS6HhU18JkETNCbI1dA7MKRP42aC0IDFPgz544Q8jkL\nrTkOuPPjxz8KQqt0/DmUyR60LMQDsS/A+j9tlMcoEAyNPDDZF2yYHqMhfp0PaYjFr+oxHLG80zzQ\nnY7aJMEFhPoQCFH+Ho+QgPFgCogQRUdDpw0N3UPxPDgxDePiUfM9kq/8TDiKAPdtMwHQ4X7FvnKF\ncc5Zj1uAuSgIIUwIEDVKfY+2POr7jEa8SC6drlartt2KxWIzMzMIoU6n03YcXdc1TWu1WvFEtNWO\nNJtNcKfihAAvkkqlxsbGOOeNRqPT6XDOwUgMwbWRSAQWzbZbhmH4vssYMwwNY44QUxSVMcQY5bw3\nPM6RzHsKdZCg2TjQQlNKW63WzMyMaZqHh4eqqlDEM5lMrVbDmKiqijniiFHqI4QUFc9OzXS7DiFk\nYmICEli2Wq1qtQ1WbZCz4/E450IagIUl8E9V01CfoemTh5Fe68dKhPLhCTGOIQgp4Yc7esJDdYw3\n5nA7n4OQf2b7ITiGMBx5JYfRvXw7jmzneLwf+mZUO6NMAxz1EcWojo4ZG5Lwz/BEMMaj6MvweYMP\nPjuOgRsGmZBIKGWk+nAUnhwFhPdnJDc7ioBxEm4Quhi5/scqP4b/Oep5cFiRaQH8E8Ypf++67jG5\n7j+HF7TsZwp/AaM+OQFGEkMfOg/qMWOVCTCWQkhDz4Q+h+hlSBLFgyAPBQ+K8/Lc0OCFHya6wwRY\n7vdJCLA87OE2j4FQF0BEZeorxoNBiiIcIcTEWz7lHPuccYZgExGiGOOuC164nDGGMOPgh6yQuYvn\nGGOtVqtUKvi+Wy5XdF3vdDp7e7uMsY8//nh2fi6Xy62trXFEDcOgfi/HhWVZqVSq2WxCVmeMMWS2\nglyPcMjAdRkEU+BggJ2UrSxiocBLyzQNoL48KHwEbwGNRwhpmmaa5sLCgud5a2trkVjUNM2JiYlq\nteq6HYJMjJGu67ZtxxNRr9O9ePHi3t7O9vb2+fPnI5HIytpj8CwzLd3zPEuxIBM1LJ449xgzhDi4\nQEO/gksF0hi6AGJzR51/0zRZAOIsocBr/UgIHR4xjCPP1ShE8ySc+5Oc0mdIaI/5fvhKinZCLz6J\nhH089R2+oU8yfspGhBdKjL78vOz/LyO0EF4STSmf5QUdPm/06PM2avyhspshbCaPB/6K0AY0AlWG\ngLEjJouOOYfKgB+y1M7nd8J6kvMMnLcgdWhQCw0jCUVkHNnO094LseCy7kEEPuFAFhdHQvJSx6F2\nhukdQkjtdDoo4N/ld8TGCxC8huiYSfFPoXGIoY9aUIHIjnwgRDv5oDsV9NiztxPCgggtHKSYABhu\nQbwcWgU8KHnL+4El4YZJbu4YD0i64hXPZ/KygPK5NyDmLSwsXL58+d69e1tbW4xRznkkqtdrzUwm\n43NWrpSzY/mDg0I6lfW6LlZILper1Squ67quW61XXn755Wq1+p3vfCeTyaytrZXLZcexW61Wvdks\nl8u3bt1SFPWll683m01d1x3HMQwDCu5ijB88eAAxPG+++WatVtvc3KzVapzzqampx48fu65rmqai\nKM1mA2NcqVSi0SgUTlBVFRrsdrvdblfX9Wg02mw2k8lko9HQdFIulycmJprNZqfLTGomEolmq845\nh8ChrutgjNceryYSiZnZqWbLqdcbN27cIIT4rhe1Ip2uraiYcR8zPjmZv3PnVqFQuHDhQsdxDg8O\nYDAIoVwuZ5rm9va2bdvS3mEWxHfBfkG6Td/3k8mk67oigRdYoA3D0DSt0+lAmkzYO4ieAhZbHBvL\nsmKxmOM4zWaTBcm/xAFwXZdSahgGHANoHDYZIQStiYMh4gi5lO0L4gLFTYFfweQfPoESexoiQsdQ\nrNAzIaIyCqHLiBs+C8YRSaF0YJIQ9wtLPg3DCE5mOIb7GvWMzLjIF01sdOhWdrtdGVmJt4imjlor\ngbiFaMGkWEH4J/QI9ULELsjrphFleHdIgJSGJ+7zozVt8iHhkrAh42EUMMRwfmRuWCBhEb4ob2Xo\ngzwqJfD+lAmMfEhC+Nnt9MLzRJ1QWCj5PA8veAh1oyEIfT98PkfhWx6YgeFIiFENV1yFIwrhl4yx\nbrcL8ZbibMv0IjQS4fUiXFNFCEnoLdj2UcsuH054VwUduijVLjqWbRihgyKakFcHjqz8Ty45qg1f\nPPhevjCikVDj8oWUdwvuiR4cRPG6SCkcOli9CxlwRkeeAzR0bnCwc6IRmVkZPg0c9TBs8Hgv5kdR\nMUKo0WgUCoeqqkxPT7Xb7Xq9zqk/OZF78GAlHk9Go7FO245ZkVq9YplR3/UajZrrumPjY4lEbH9/\nf2dn5+WLFzc2NoRrcTKZ/OCDDzhWRPmg9fV1y7Ly+fzW1pbrupjRaqk4NjZmqMrf//IXmqbVyqVL\nly452Qx1u5VKZcdz4xErGo06jlOrVXP5cYwxZKfyPG9xcbFYLO7u7pqmmcvlEolErVYrFou+72ez\n2WQyGYsYXdsZz+ZS8cT29nZh/8DrdBVF+fGPfvTRRx/t7++D9/Le9s53/8k/uXBh4X/7D39ZqVS8\nbjeRSCiK0rabrVbLMLS56SnLsnzfbzabuqZR32/a9qNHj1TN8DzPtm1D1fL5vOt0uk47nUxWKpWJ\niYlKpUJ9BpJ9L7QJk1gsRghpNpvgqqZpmm3bcBIajQalFL6E4kvdbhec2liQewt80yqViiC0UDEC\nArfa7bau6yhg2sR5g1sN51D2RxPHRlwxOD8yghBIhA+Ge4VOu3zdxIvDTo7Dz8gfQv8cBeJ1WBYx\nSDR4HcTz4lKECPAwJj3y1xBVCM0ihGpCr7DA8yCE5XvDZjSEAUXvTLLk4UGJQvBJYkMFHpMBIeTz\nsLyBB93yQ0C0fuCJ/AEYL7llPsiIiAbBZiSKfCMJi/JBNaGMqYanD+1TfsQg+RC6Fh88RkPty8so\n73Vov+RGxGhDGy3Oj7wpaMQZFl8eSYDlXnggHwPVhKMCVxsudWjZQ2cPDRqYevtICJf45v560iM0\nQ2hIxBU9qiEVBxpxM8WX4NQqZi4v6/DQBci0WVYJin+GjmzogzwAHLAkwK6iIewjNIc84ADkZQIb\n4TCMWgEhAcuzk+9D6K9hRsTNAfzMGOOIMg91u91Go95sNlzXNU1d07SpqYlOu4IxunLpwtkz5+/c\ne/jxx58kk+lUOmvbNseYtyhjfiKRWFiYU1TSbrdv3PjYMIxUKnV4eLi6uvqd73zn1KlTHc/tOK5p\nmtVq9caNTyYnJzOZbKFQiEajccvqdJ16o6bruut1p2emqtXqu799J5PJRGMRRSWlUgkT5Na6jDHP\ndx3HxhjPzMy0Wq2VlZWNjXXO+eLigm3bnufadrter0cikenpqStXLmua9md/+ifpdDoej3qeHo1a\njtN2nLbneel0MpNJ7e5uRyJmtVrlnNt2a2vrsNVo+q6nqmo0Gq03qu2Go6pkbnqGI6ob6uLS/Nrq\nY8MwxsfHd3d3FxdOFcuFdDpZq9VarZamafl8PpfLHR4exuNxOEJWxPSpxxjL5XKWZT3a2BTnijHW\narW63S6IwtFoFI5BLBZTFMVxHOCCxSmllHa7Xdg28OsG/YGu667rdjodVVUFHYVXQgkyZdUIPAbP\nwznEGEMaMjSo+uZDoo84kwJGqc5CXrLis3zV5e+HkayMF9AQspMPv6zrC+HlEJ4dhlEIV27kyPse\nGnZIxSrjCvmGCidHz6doECGGsJNMveAMiCnLQiEO+C35S4SQismRiF6EsQnk02uHsyPHrEiZAWWZ\nYRjnCP2nIDyhHcRHgbzO8v7KmQG5xAgO71fvPAcDDyHt4dMl75c8NvgLKiV5JQdGNTgjFNyXI5+X\nj6UYkjw2sUokCFKSlxFJGlYxETxI43DAz8m3O7S5/CgCLP6Kexo6tGpIVJfPJTrqXoUQkNyofFzk\nxeKDWgKxNPJKHYkF5L8hzkg87wZaKT6oGwddgUyAAegg0xC6ycOAh54JrYx4ET5oOrgDM/koI4RV\nVWWMcs4cp12r1Rhj+Xz+9ddf10n3z//8z//BH/zDl158odv1Iqa5s71fqzfi8TjHyHXdjttxO45C\n8MTEOMbYb7aSyeT29jZCSFXVGzduLC0tpcxMNps1dOvGjRu7+3sIIdftapqWTCa77WY6nWw2m/W6\nxzm/d681PT3dbjdtuzU9PT03N2PbLc/rtlqtdDqNEHNdV9f13d1dWPBWq2WaZiaTGRsb29zcFFV7\nt7e3y+Vyt9vN5/OTk5PNZnN9fb3RaMAipFIpECU1TUun051OxzCMd955Z3d3Nzc+raoqQrzb7Tab\nTc/rJqIxTLihm5TShbn57c0tSAyy/ngzkUicPXsWiCXG2DQj8/PznPO/+qu/6nadjY2NxcXFWCy2\nuroKGmOMcSwWMwyj0+m0Wi2QXGF3XNdNp9MkqI5MKQXdskDW8lHBGIt8n/DB930o3KSqKqi4WaCX\nhi5AnQXsKZNMFSLhCWAQeFgWKwFCaF0ccnE7RGYuJCEpdBRKHfVP8SUfpPc4EPiOPP+hcYqxHYMi\njmknNPjhWchIQ/4m1HuIqOBBBkVeN0gNGOoFD3qzy62F1lm+xfKl7vcrEWAxUxx4IIYGzznn1EeD\nFEv0G9ogADEwOE5IUvnKuDqEjoYJwMjTQgdi+oVsLavE5aPI8IDEGTqTw5sV0uiIYYiLEDr28v7K\noxXPh+bIB/UWsoVCTFOeBR/yJhZriIauDJZ0w8NDkneqv8WszyAOLviAM534oIJtI9QoH1RlyB/k\n/Za3P8QtosGrPkyARQrG0EAJCRv54S8wCqHBIIRwwDyGKurArzLphRdFO6E1lS+wvA1ktGPbMHDO\nA22nD7MGtyCiEMDduq4bhoYx5ohiwn3q/t5br3/w/m9TyWixcBixjB+99cNPb93+6KNPut0uQggR\nPjGem8yPM+YXDw+azeZYInX69OmdnZ2dnR3D0A4Pi+12e+/x2tjYWDYzViwW4/F4KpU6ODjwfc/3\nvfHxnGEYqVRiYWGBMba8vHx4uA/C3O7utqLgbtfJZrO5XCaVSq2srDiOc/78+du3b5fLZVDeMsbA\n+lsul8EkzBhzHAe8B3LZWDaXbjQaPnXn5meg5NH58+e7rrO5tZ5IxsbGs5NT+U6ns7e3dzqy1Gz5\niqJUKuVWq9W2mzHL9Pzuxsb6uXPn3E738ePHtVpNVfWdnZ179+6lUqmW3Uyn04ZhvP7666+8ch1j\n9PjxdiKR2NzcNE1zaWmpWCx2Op10Ol2ulLrdLuWEMdbpdIrFYjqdBikWKj1A5HStVgMfNGALBKYT\nZt1EIhGLxR4+fBiLxTjnUBxC0FqgxDI/7rput9sFoYdJBhRBgIUwJG6EiJ04ioOm4kaElEMhLVEI\nj4TOLR9BUOVOkYTs+CB5Q9ItRhLKE1dgWPbigRSCBlFM7x4FND5EIWQMwIfIEh6ScZnk/CJLJ7Ck\nYNLDkjygGro8Enlgod7FjoixcYkgyQOQd4fSPl7iklw4SmMx7EUcWigZrYcGIy9FaJsEyNshT1kI\ncKEeud8nMFwiJ2Swzi4eysbKg8QX8E856kRe0mEvZfheaJ4EQxMaZwjfyopiLuktQjNlkukHPsgs\nFJZU3KFzEnpLXvbQyMVayePvN8KPCLtFR90IAFU4FyDplMtLhgdtCUg6rPIzsqeomOrwjRJXSDgL\noEGQMxDJIxYXL3TDVVUF84lwvEIIUcj6dFR6MNfz5H8OQ2gF0BBvK07Aka8HqnWxUMBzIM9zOce+\n73Y6diIZW1hYaLVa1Wp1a2P9hcuX5menZ2cWX7h6rVyul8vTrUZ7de1Ru91u2m3T0DzPq5bK25ub\nO/s7MdWan59fWlp6//334/H4+HgOIdTtdh89emRP2YZhzMzNTk5OHhwcKIrS7XZ//JM/BiemM2fO\nuK778isv/fSnP93a2mq1GtVauW03XdedX5gdGxuzLKtSLRElMjMzc/PmTcaYoij7+/uKosRiMfDk\nAocsWBxYYdd15+bmXNdttVrRaHR8fPzhw4e//OUvM5nM9vb29evX9/b2JiYmDg8PQeI8PGxYlsEY\n03UdPEiTyeTYWI5znsvlDg72I5FIvd68ffu253qVcjk7np2cnHz//feLxSIUFT44KMRisWg0+p3v\nfCeTyd24cUNVVdM09/b2CCFI0YvFIsZ4cnJydnb2008/bTab4Oxdr9fb7bZt21CFAmMMDlmyYAFV\nm4B26roOtFz4SQD1BWKMg4Q74P4DlZKHoz+73S4YlWWMAGlEZTwrjpyMWENXD2i8wDJCcA/dFNGL\nPIzQKRWMguhLxvUydgNEiSS97nD7o+6R/FfczWGMho4iG8Pfw19h5Ov5NQY6DCAGYp0F4WT4aOFM\nMDfyKoVwi7jsQn4YxktHYgE8aMuUPxy5L3iIvoojIS8LH1SNMkmNIcYjz0heNz5IROXzNmrlZVwn\nH4rQEcUSKymPR/5enjJ8P4znxbxCmy6+l5cFS+zpcCMyxRF7Jzclhiduk/zKkYuABq8GH4Lh/ZVB\n1ojIXXxGKkqxbaExkcEU6sM3PNTNcCMCVYWu4jGJDvAQK4AQQpQpKuYIEY4IRyomCCGEiYIw9Cdm\nDEnjlCEnrOFDjOTjyHv/wBhjxDHubRoaxXgqcDgEh95rKRKJuK5LKQMRfHJy0vf9VCrVatRr1crP\n/ua/pjPjsWhqf6+QG5+anZvWNK1Sq66uPjw42KfM1QyVMT+fGzOIvr+/f/Xq1TfeeKNSqYCb7qVL\nl5aXl5vNZjQSbzabQA4JIaqq3rt3d2xs7I033ohGjbW1zWQycenSxVKpiDGKx+Ptdtu224TgWq26\nu7vDGH35lZcQQhDqAxFEtm1TSkulUr1e9zyv2+0ahkEIAQmYc37v3r1Go/Hw4UOorUQp3djYuH37\n9sLCAiHk8PAwEolcuXLFcZyNjY07dx+nUgld1yan8rtbnVq9MjE5durUqUqpDMUkIpGo43Tj0VjV\nrVNKl5eXI5EI0LBmswnZN/f29tLpdCaTuX///sbGRjKZLBaL4PWtKrrrurFYLJ/PT09P37lzp9Pp\nRCKRZrPpOA6DzGIBgHs5CXw3QDVdq9Wq1aogqNA1iMjAlAifZzBzaJoWiUTAmUtG7khCpjIbDhKw\nCJKWCTBCSBv0URAXUGANLrH5eLQEHMIy4nzCzSVDlmP5Tg2jURkByaOSsUToeTwoVfMhKUp+PnSV\nhvGUeDfEBODAK5sNFDtBAkcJXcXw39AikCDLm+g9RJ6HR8s5F/YzJOEoEtiAj4Ch/QrtIBtUcYce\nkJdIPlTyxskDFp+H1zn4fmAwoYeHV2C4TbFWIUomDn9oxeT2Q4NER62zaE2+KTKnFXoSDR7g0CKD\nUgoNnmEsiYtIOmyhAWAJZK3V8AaN+iZEVTHG6ijVxDAMX28ZhpcSIERQQ6cND8EoDkI4NpNByz9U\nwQNkKrjg0ImUJx+6deJXEf4hv4gQ4pLUjo/i6YbHSQjhHINMzpiPMcaEex7udDrRqGVZFihFo9Ho\n5GT+zGTScbqNRnPt0eY7v3m/Xmtdf+U1TdN1wzp79uzExPjuwV65UiyVSpqmJJMJzjmU17148eLj\nx4+bzWa367mue/ny5f39fdM0H69vMsYsy5qampqenm43itVqFTyEt7e319fXv/e971FKDw8PZ2dn\nHz58uLa2puv61tbW8vJyJpO5cvXVZDJ56tSp27dvP378OJVKjY+PT05OYoxXV1dN08QBnzQ+Pn76\n9OlTS9O/+MUvtre34/G467qlUgljPDY2trCwcP369fv37xcKhXq9fvr06Xa7vbu7G4vFPM/jnEVN\nS1XVw8PDaDRy9uzZx+uP2necxcVFy4qYpvnGG2/8/Oe/pJSePXu21WoZhpHJZO7du1coFE6fPgtR\nUgcHB3fv3o5EIvF4vNFoJJNJz/NAT845v3XrFqQcMU0Twqja7TZCSNM0jDHYp3ngLgA2ZhHHDN5Y\nQFPBCUu4SYMywHVdKOgkSkfs7OwwqcqyEHAjkQjceWgBScw7OkrVFpKQsCSboiFsgoYIpHyzQs/I\nPaIh7e4wroeRALfBJGO5PEgZ46PRiJ4HzjjDIw9JbKJNoaUPjR+UB0QKPgQdGGjyQhrIYSouejmS\n0Q8RFYFthsVKATTADFhiMuRlCeEfrB6dY5wclcEttO/iS7nNENYKRZeEdkReUnFmwiMcIVr0uhta\nNDF+mbYhKft9qLUe3h6RKEnG3qH2h+eCB/WRo9Zk+IiGqAwe5PnkcYYGGaJTw7PDg8RbnkJoePCM\nikbQcDRIHeU+QmNiEmGTnyQYo6MoFh80Hsi6L9EvGjoHquT9CGOGOh5cVVzqc84RRpzgru/1eud9\nN3EkYT3I1QwleQnChAdaJOpDgz5iHHOiII4JxphTRClFCiGKQjn3fQ/EIBT4KYCODuQkSiklVEEK\nwYQjTrGHMCeEYAU7thOJRDjndrvNmZVKJBFCt27etpTr0eRkLDWjW/n7q3tRbjze2GjUW7//+79v\n6Gp+fPwHb37f87p//+tf7exsFYvFql2OR6K3btz0Gd3c3NRU4/Tp081m0/Zalm7VKrVMIhmPx4vl\ncqvRTJ5PzE3l3//gt3fu3C2Xy/fvLefzecuwErE4QXjz8fql8xfeeO27//E//sdMJnN2YWF/f///\n8//+f2Uyme9973t//Ef/w9tvv805nsznf/D970cikcLBgUJUSzebzeb03HQikZjKTyIcrVSd+bkz\nzWZV1bBhko31NVVVzp89h1grEVNeunLOc7nbav/8b/4bo4gorFAs/MEf/EE6ld7cVC5dvGJZ0ZWH\n69nsdLG4srVVLBQK3/3ud0uVNkNas+0UG41IJOJ5nlFv7e7uYoxTH98ELfHU1NT3fvDW/v7+/fv3\nVUPv+J6qqflMwjCM2dlZ3/fX1h+rmCmIOh0nm0mqCsrlxlqtVrlcRgputmzGmIoN5vNYNGqapu/7\n1PU4wT6jIBO7jOoYeXbLcRwop1ho1uZmZltdp9mxCSGYeqpntDsOHDyO+6pakG4V5v6D3//D1dXV\nX7/zm1gsFo3EXMTisWSxVEKIdH1P13WiG7ZtI4Si0Sjz+0l2EOGsx/hTQpBq6JRzCMVGCHHCO15H\nJwrGmGDM4RgHx94XlacxRhxhwbaiHo6Gss2gyMUYB2K9FMIOzxMFE4XATUcIfGYxUSilCGOkkJ5K\nCLAB58j3xQrwQS/IYTaCc66TPkPQv/hY1FTmiHPEZVKEMOMIcyhPAu2AW5zgnzxGfZGriPYSGLHA\ntAmPKYrKOUfSfDHjnFOf+4BbCCEYYcx7Q5CV/whhhDHjjCOEgzBjhHhvzTBjnHGJWgV+WgQhxHGf\n0A5LUVhiznqvS+WKYCzQv+t70DLBfS85hDGnfSEES566wwlkZBosVp4HgqbIqCOwLg4YJh6IjEgS\nooQzr8xJyHKLMBGSIK4anBaFbrZHDhDHEkXkAQ/kBQlMgsXEHINWE8vDE0vKGINQQ9BdgSKEEAIM\nnOxihgL/IRETLDtIY8wJwQgpjDFKey50CElGaMwCNSvjHGGVBSdV2kTOGWZirJxzxDGH8/N/+b/9\nr2g0DBPgEI8pgI9QLrFBKijOChnhrMElVZLMDR3JB6CAkx1uZ/ic9X5VMUJIgRHyfiIbMS+KOOsr\nnTEJCgSJx3BQ/QpCSgQnzsFJZ6AiHidQFRgxXVE9z+OcIs5VVb106QL4Mc1PT2GMx8cnJiema7XG\nL3/5q7W1NcuMJhKJZCpu2/aZM6fPnTujqLjVaty5c+fgoKCqar3WHBsbm5mZwRhHo9FIJGJ3nI8/\n/jiTycFRm5ycLBQKjUZjbm7qtde/UyqVNjY2COpljRgfH0skEo5tr62tnT59emFhzvf9t99++2B3\nz+Waqqq5XO7FF1/EGDebTdu2K5UazLdareqaUSwWTdM8deqU4ziHpSJCiPndYvHQ9Zyz55bOnj6l\n6crGxrplmMlkKp/Lb27sbm/v7u7uZTNjTbc9PTX7+7//+5ubm81mkzEEiTI8jz5+/LjVbIPC/Nat\nW7/97fuxWMz2bNd1M5mMpmlbW1sQv4QQAnX3H/3RH3me9zd/8zemac7Pz9dqterh4YsvvgiK4r2D\n/ZWVR5Zlzc3Nbe3sUErz+YlOp1OtVomqQMSRio2u6yiKIrJyEkK47yGEILun57q23WaM6boei8Xi\n+fz+/j7oD8bGxna2thuNhmVZcKsJIb7v+10XdN2qqkYMNRKJWJbluu7e3h5DOJvN1mo1johhGBRh\nSBlGKaUMGYbhtO1eLLLSO72k53lAm81mIpEI8IsPiVO4F/hzwaFlvStGERc1MYGawmMK6bkpAIaF\nKaNAA8QlaQbeVZR+IXGZUg6rdgEMtR9OI/8N2UTFT5BYKUSD5TZDjHgo01zfEBp4vYHRtz+XIM5V\nMAFEihYVjwlEFyKEghKQodDn3vfK0dL2sIzV60XR+iMfJMDDyBZJ1dJCgAdF7T7KZeF2eus8ZHrr\nnQepDNsA4R/chf6LytGS+rDuQUxTLIggwHBN4L6QwQD3rtdzChb+dDJDILqT5yu+D0nPIh8OJOfh\nkmg3XBY25P0uxqMocAbABYT5HhP3pUekFGDTEKQcxqrQ6Q8I5ZDBN/hJqgfPhyiWuIToKBilfGaD\nDnviKIvrETpYaOiK9gYqzZ8NeuHLR00M+0gbAAoiPcSQ+iwwcHYwHt5PRc4HOXRxvsTGiHPMJbu9\nYPDFW1hX4RtCejHT8JhLXUJILjdmmWapVFpZecSYn0wmXd9bX1+/dfvuxYuXv/vd12OJWNd1I9Ho\n/uEexxOtdvO3779389aNZDKezaVLlfJhoZROpz3qHxYLsUT84sWL+Xzetu0P/tt/q1Qqp0+fzmaz\nW1tbvu8y5heLh57nxGKxtt3EGCu6fnpxCeQnx7EXFxeXl5fv3LkzNzfTbrc1TZucmb505aVKpXL3\n7t3NzfW5uYVWq8U5f/RoZXt7e2FhCWNcq9V0XT93/iylNJFIbO5sX7ty1XaajtPGJJLNZqPRKEf0\n/PnzrUYrEol4lBuGQSl9+eWXLTO6dP4sxti27VKpxBiqVqtbW1uGYZw/f9HzvM2tjWKpcPXq1Uwm\nwzm17VY8k9zc3IS0XJlMBjTYjLFGozE5OQn5rvP5fK1WK5fLGOPx8fGZmZlKpRKJRdneLvDd3W63\nXq9zzglRICbYsMyeJEQ0yn3GmOf7jNKeQRFzSmmn03Ecx/PdWCzW7Xaj0eg//af/dLdcatSqKsHZ\ndCqViB+oBGOOECOEcE57WeAxIwpSVKzpiuM4e3t709PT+clJrCjM8zRN63a7HvUZ93XN7NptoqlQ\nA4ozNx6PKyoGcijinUQ6ccBclPYcCRuNRiISFdeQMdBGIYwxZwwhOlyXGtCXjPfh9II9G0vqVngs\nVJQCDar+ZFQlAO6a0IWSIO5/AG8GF40E1xkfpbsLXWqEECH9TGFUcvxhGDHOwKe3NwWCeSA9i4EN\nX3a5o2E6FKJGMgrqr+YgxpPRYGhq8nyHd+XIz5yFn5Sf4YOMBUIID448RIaP2CwaTnw0vDIDLQy5\nLMkbJ6/D8PrInIGcSEvuF/wwEEKEEF3X4cCD2HrkkFjgeIGCwyb8OYIb0feXFFxgaKZikOIB6YT3\nHun3GJy6nqUfYyxlwOWQ+pRjhGSFM+FcOnvSDqp4yIust5RDSy9+5qGhBc+HjprYEvkgimbkqaLB\nOGV5jZh4fXB4/XZGyb4Ys4BbRrKTHqUIIYqQgjFBmGMsFxzkBGOOMMIsaBPCSOTwf0FxgasSqi3Y\nft5jxDjGGHME/DfGGHFummY6nY7FYrZt7+/vq6qaSOC1tTXH7lar1Z///OeFQikWi507d25jY0PT\ntHq97nRsTdMcp4eCHceJxBLReHJubqFYLG5ubs/Ozo+P8+Xl5WQyaRjGwd6+rmqFg8P9/f2pqanJ\n/ISikV/96ldvvPFGfmJse3sbptBoNBYW5uOJxNWrVw8PD+v15vr6GmS60FSiaxpnbGN9nVHaaDSy\n2Wwuk1WJUiwc2rbd6bhvvfXWqy+/8pd/+Zeu6/o+vXvvTjabdhznhWuXf/CDN7Y3N8bG86dOnfro\ngw9v3767s7334ovXv//WDzSi3vr0Tvf+w0gkcvv27d3dXc/zLly40Gq1Op1Oq9Vw3c7p06drtVq1\nVrFtOxqLTExMbO7ugMJKVdX5+XnP8xqNBkLIsqydnZ0///M/hxsbj8eBzE+Mj2uaNpYfp5Rub28D\no7q2vg6yI5w3zdDF/VQ0IraVUqpizBAFcb/Wbk9OTmoKgWzYPqOHxcLu9jb3vIiu18vlerlst5pj\n2UwsFgNVAXhEq4ZOCKGctTs2oXwsn3d9f29vD3RinY6jGdr0+Mz+/n7bbqoaOXfuzPT09PLycqlU\ncr0O8noOz4HDlw96grNnz1ar5VbLBkct0zQrlQozrd49IkRRFIooRgohhPZUoMFtkhDN8Ac8mPJQ\nJq5As0JXOPQYkgit5zEBgjBgiQCLrgH84KOMDdFRjD4AwX0Nec+RDXHEOQEtAmeIIwX3bfCY9eco\nzGQyVQhhj2HEJa+VTMZ6F58P4M/Qwspd4CHCNowtj7B0svBbYpw8kJTEqDjnoDkZNR15s+AnmTEa\nbnYYdbMhhuDIYcjtyEsnz11uQSyaCBmQdDBKaOnkXTiyO5n6ilWVnw91Ct1RKcMzAPCRYlMI6eVR\n5JxDlj2EECYDvAFnCEn0Ux5q7wMnHPWFVVU+McPbPDxzwUqIaYujI78SuufHH0QZ5NnI4xYXMvT6\nsGpLtMMlbkWMp+/cgTHv6eT7A+aSwkp0J5NY+EbTNDkKQo4z8ZhPCCFEQawXekEUjDEG9+BKpeY4\nDmVMVVXDMGzbTiRiHuWvvvbd8fGJjz+6UapUMpnsqbNnisWi67rReDyTycTiEdPUEUKdA9dU1EKp\nRCnTDTOK8f7hYaVSWVl5kM/n93f3PL+byaYUFZ8+tTg7O8s539jeymazCwsLqqrGovVPb9/q2I5h\nGLu7u5T609PTZ86cefHFF9Lp9N27dxnzW61Ws1lPpRIHBwflchEh1Ol08hNj119+8fDw8JOPb+7u\n7pbLxXfe+fXa2qqiKIqmt7Zb3/nOK4tL8zMzM/Va8ze/+c2pU6dUVc3mxl966aVuxyuVKozier0e\niceSyfTKykqn4/7oRz85PNwvlUoIoatXr9q2XSgUpqenf/CD7587d+6nP/2prqsIsWq1OjExAWwQ\nJAAhhOTzeU3T9vb2IpFIJBKpVCq6rs/Ozu7v71frtWq9ls1md3d32+326dNn6/V623GgBdd1EcEx\nK0YCx2bHcbp+L2eL7/s+9zWmuK6bMo2u5xqG3ul0yuXyzMxMp9P56f/xfxCEVFU1dR0xRilNRmPp\nVFpRlEatDveCSC5XnPPxbC6bzRYKhXqzAam47I6jKEqtVqWeNz093XUd6ndr1VK7VR/LpbPZ6Uaj\nUa/XXddVEFcIoZx4jCYSsbOnl959dz8Ri1mWVSqVVEKS8RgKrDAq0QLEyjBWSJ+x7l9MPOTtiSVd\nq3zXxO0GiVPGcQAi9aaMfzHGFAUhVYgjjDhnPSss2PYQCmy+vRvnDRUnEBjjSDygIIYUIhSAjHFG\nGeUMY0w5o5QyxOGfMDaF97NioaBjhDHDCAVXXvrL4SdCsGD9CdjPCWasH9QkcKDv9ot8yDBMArG8\nGYOTxYGrXQhfHwPwvBIUH+OSpW/U8zIBFt97jKqqqqoBxQoe83wvNBIZzw/jWz4EYk1ChyQ4V+GQ\nzp5qmvVMip7nCXutUEcP9yVs1VQSheUNwgHjRaR6SlyiwfJQxZNimpSGTQnyMIK/EgGVGMqgfSzo\nMZaKd8DramhLZHosk1LRWWgCYhoh+jpMbmVijAY5JvlwsJBPVvDukQQ4tBahn0JjhgFQxkhPOkUM\nI8J76ujgAmCOEZBWzjnHyFLNbrfLOYfM+8D4GIYB8TmilAVgc8/zNFPDChQTDK4ExoqigC4XXA84\np5SxVDqtqurU9MTq6up4fvK73/3uveXllZVHiVTy7PmzdsfWXM3zvEqt3PU6S0tLiop9RoulumEY\n1VojFo+cOnUKMfZobU1VdYQQJvyf//N/PjY29rc/+5uLFy82m82NjY10LruwsACpHJvN5qNHjyzL\n8rouSJ/gS/zoUdxxHPAZLperjLHpqUm329ne3IJUjuPj4+1mKx6P/5/++I82NjYikYjv+xghXdNi\nyWQul0mlEulM8vDw8O/+7m8fPFw+ODj4/ve/TwhJJFK1ertYKO/t7a2sPLpy5crjzZ3d3d1oNLqx\nsWFZFqU8m83u7OyAQnhra+MnP/lRJpPqdOyJifGDg4OlpaVYLLa9vc0YK5VKjuPMzs7Ozc29++67\nU1NTyWQS/CwqlUqtVqtUKrlUUlGUx48fr66uxmKxubm5j2/cYIyl02nO+d7BQbfbBespqOK7nssQ\nV1QFMYwp5Zz7jHmUOo4TiViPN9YZY6dOnbKikZ2dHaKgmG4ahqEoSjqTURSlXC5Xy8VOpwNOWIah\nEUJc6lPqG4YRjUaT6UzTbrvUt2JR6lNwoXLdDvX9eCL+wrUrpVKhWq26jm1q6pWLF3L5hb29nfX1\n9XK5DEye53mu1yHNXmzY1atXHMc5PDwol0umaVqGadu25/nc61fy4aifrg4FxmAcSJbCa0FcFj5Y\nR1lW1SrK0eyyTKTFtcUYc94PLxQ/8SB+VwZo5wgbJ0fy8DgHQg66deQzRljPa4ahXvQ/iCk0sAgD\nRwIhgDrqZ4UMdR1CSnxQvkeDeZdksV48zxhjLEyAQ5ZINIi1Zclexo008BoL4TQ2wgYsHiaDxfJC\ni4+GcLU8DLmRUL+iWgmSUDrGuMdASSyU2Bo4avAfDggYY4z3a0IiDl5BnBGiIGiIc2B/sEIwISQg\nr4Ehr5dWTB6DfErBuYwH1RHgYUgWJKZGpOxMLBgjRn1vAhg/VgQv2vNAxAhjRIBj44wzzilnlDPO\nuaKpsBoIY44RJj1/MDQoagL1hTGHqC9MoZ8LWihRQ4djePNCB0i66kcrVWQSKG8qHuSAhjs68uiE\nmpJnKw9bPBbSjSBEOMYYYYawwjHCmBNMEGaMMowJIpxxBsVlEeKMU+Z5ftcwjEQyRgip1+u+73Gk\nzcxOFQqFQqHjuq6KVUVVTEU3TK0biD4Y48BBFWOMoTQQKA8JURHyotG4pml37t1HCK0+XltZe7T6\neC2WTKiGvraxHonHeLvtUr/RbiGFRBNxwzDMSCw3Fp2ZnWI+rdfrhmUZmoYxdj0PigekUql2s9Fo\nNGanp7rdbjqZsNKZWq22urpa2D+wbbvb9VRFd31PIWR8fFxVtcNCoVyp5MfHJyYmarXaw4cPZ2Zm\nrl27du7cuV/96lfr6+v7ewe+7xcKB7/97TtLS0uO033ttdcmJyevXr3cbrfNaMx13bW1NWNXOzjY\nr9err7/++vj4+M7OXjKZ1DQDoo8KhaJm6HbHMQ3L92ixUOp0OjMzM4eHhwgxhFAsFrty5VK5XK7V\nK++9f8ARNS19embSiKT29/fBj6lSqZimCVk1crnc7OwspO46d+5cLBbb39/XNM1xnLW1tVarVavV\nlpaWytUquGDMzs5yjOxOp1wuQ3UHy7KwogDu1jQNwnpRcGnbHTsSiXiMLs7Pnz9//ubNT3b3d65d\nu3ZhfglYAYSQ57qQXSSZShaLRRETCudN07RYLNb13GarDSZkF/keozpiGONo1KrXq1tbG+XiYSwW\ny43lt7Y3Hq2t1JpusVgsFovtdltVVVUjmHA4P9vbW5GItbi4+NFHHxFCIHvoWDZXLpdrtRqlvnwR\nwM8huAiUY4S4glDYl0JcIiEfhK5kSGIWfyWKG9IEDgRNCQjZ8CRkcrSvCcaiuAIXjSGEiEI4VNVl\nvWoEnHOO+5I0C5m3OJIZDjGF4ZzS8jTxYFUYJNmbQuMUNmnUE6MxpRzjkEYQAyqSGwxeH0idOEDS\nBjV/Q+szwDfIxLg/9yHBSV5/KhXggV5kL+VQO4I0cWkAMrYXGkfxE+llChtI0IQGA8DkRkiQIbEX\nPiABGvQHGl4KmQqIV4D0QvtypyGyIoZHhqK3xah6NFrKnyUtNXi/g54kZF2W1PiSbpv3nIc450yV\nnYxkG0lowmK4w4c10AUx+QExFJGfT56V3ELoZoaudEiHHHoGDSIFGZhUpU60w1iQuhVJfzHmGHMe\nsCAYY/AkRAghJDIUZjIZQkin0+l2u57npdPpRqPBGIN8/clkEsyQyw/vM8Y4RwQTTdXE6clkMkKS\njsVi1WrV87xarQYHbn9/HyJZy+XyrVtVjJXXX3/93Lkz2Wz23r17n3zyyQcffBCPx2u12tTUUr3W\nJAqilDYarbFs2rDMYrE4mR9TVPVnP/sZ9dxO1wEeUFVVRdEo5Y7j7B0eEELGMtmDg4PXXv/O+Pg4\np2x/f396esa2257vZzKZnd1dxvxms765uYkx3t3drVarPvVc152enm42mysrK6dOncpkMvV6/Y/+\n6I+2trZ29g92d7drtZpP3U7HWVxcPLV0ptFobGxtxmNJ27Zv3ryFMVk6fWosl79586Zj+wsLCwcH\nB+VKyff9WCzW7TqdTieRiCUSCdtpPXjwoFQqxWLR5eV7CwsL7Uplb2/vypUruVzu5z//OcZ4e3v7\n8PAQcjtDyO/jx4993wcVBWOsXC5HIpHJmelqo27fu5fJZHRd/+TmjUwm02w2QfnvdLumZSmK0q6W\nVaxyrvRvqapyxHRdLxaLCwsLc4tz9+7d2dvbe/nll+fm5i6fu4AQuv/wwe7ubtuxTUM7e/7cK6++\n+id/8iftjtP1Ogghj1JKqW0jrCDOVNM0657frVUTsTjk9zAMQ1OJaZqmrjqOwzn3Xddpt+uK4vq6\nbduM+1bEgJBl13UxRplMutvtJpNJzvnDh/cNw4jFIhMT48l4qtPpNJtN6nucM8HwccY4Z4ACEBAx\nDNFHunzZhxVOXBIE0WAhcYHpQihvEKNhuLJogMpiSF0TiBYSMRiUsMUrrKfB5uAo2YtGQkgNGIUe\nwsEIE6Ji3MtoRojAoD1FogcaQhLUiUMIcUKwooDMJybFcU/OZmTICsaDaEMZZeHA5UfmM0KoDEkY\nUhAk0ay8mHKY0ECDbGRiIiRR6D6uowNxyWiQxsi7jCSTYkASKA6i4WUGpS8YBuFA8kngkuAuPshT\nlimceDi0AmIKQtOAEBJBSsIQK+tFAKhPhYwrLw5orUF0FhFQ4pk+XZRADD5kc+wvr9KLjsMDiTgY\n6kUlSSWCQmwlB3cjsSCYc4qQjxBSsRp45GPMMOKBqQYH2mwxODBtOo7TaxMjxsH9ARFMuESs4UCH\nBhpaoNBREMBwz5+LQzhQoNkIJhlYccQZ6v0oWJheNEivGINMxRHnGEFaBlVVY5Go33Vb7bauaZZl\n4QAxdDodrCpYISpwFZyNj49zzu/evQspD6HU7t27dyFLMKBUxthrr722tbVlrGmdTmdqakrTtM3N\nzampKdu2m80mMnSiqYQQj9Fqo04R3z3YJ4SMjY01GjWgGa+//vqdO3fa7XYqlUqnk7u7u47jvPLK\nK6urqxjjQqFgmpFiudSxHaKgTqdTq9VSr30HVC6qocdVkslk1tZWJ/Lj61ub58+cLRQKoLN9//33\nE4kUIWh7b/cnP/zR7OxsLBarVEsqURhjiUSScw7RPqlkfH9/37btV155Rdf1X//6147jUJ9ZlnX9\n+nXbtl988cXLly9DZkfbtlutxvz8fKVa8h306quvEkKuXLly586dpaWl//yf/8vdu3dPnTrdbrcv\nXbyyvb2dSqUO9tcYY81WA8oU2nYrl8tVq+VOp1MqlarVarVanZjIX7p0yTCMUql0WGpijMvlcqPR\ngMX/wQ9+UK1W33vvvWKxCBoFuC2O41BK46kE0dRms6mZhmVZqWSm3W4rmuoFSgLX97Hve54HGuyd\ngz3Oeb1ag/FwzrO5zP7unuM4Fy5cmJ2dfvjw4db6hqZpFy5cSCQSDx8+RAhNTk6m02mPUdu2s2M5\ny7IuXbrkc4YVkkgkHq6u7u/vg3B89cqV9fV1SmkiGYfKFoqieJ6HOD537txrr72Wz+cLhQL4i01M\nTCTSk4lE4p133mk2m/l8vt1uIcYIwlErouv6YWH/79/+ZcdxUslkKpXKpNPbW7szMzOZTGZrZzuf\nzz98+NA0TYQQ933APo7TPX36dDQeW1tb63Q6uq43Gg1ABJCSU9f1TqdDKU0mk61Wy7btRCKBEHIc\nxzTNSMSq1WqQkATwgCAVREo1JRhNeIxJKZSHr7yMdiEuX6YQgrwJVoBL/LessUMIIYIH2scYBaEK\nci8CvQqpCOKGhfeGhH8ZuN1CO8DIhoryokHDmTxHmfAc+QqScojKYTly6lyZDHi0J3nL78oUUUaq\nhBCEB8ImZeoC5g/Q61qW1W63gfoK6wAKjKmwy2LAMrkCFbQQbARpEFpfmciB40WI/Au7tXwYeJBo\nXQnqgQprArgiSjSor3LnnLOgyIEIOeGcQyJ9QenFgiiKQgLNimA7QsRYNBIowPtKIEJUEU3EOdd1\nXVVVhJjnd4VnLoTtyYsGofniSICCBBbB87y+rhwN8key7MgGrdny96KnkIYHfRbI+zT4/cADYhqM\nhTk7AEWqAyqeD4nv8isHhcPpyalWq7W3t5fPjeVyObvdBrbUtm3X87LZrN3tABUslksvXb48Nze3\ntbV1cHAAvrhQDqhcLiOELMtijBWLxXPnzi0tLd2+fRuEXdM02+02SMlQ696l/YBLghXOEGXMp7RY\nLHqeNzaW97zugwcPJicndV3/q7/6K4g6/eSTT9rtNqRHtqyoZVmehxUVm6ZpmmYqEYcaA57nHR4e\nEs4ymUw8HldUzbZtj9FoIv7xrXsguHPOo9HE+DjaLxzu7e1ls9kf/+SH1Wr10cpqvV5fXFxECE1M\nTHLOVM3odLsbm5tj4+Pfe+ONZrM1NTWVyWT+03/6T3ML87nxfCYXYwy1Hfvxxvrq2srZs2dzudzN\nmzcfP348Pj5+8+atZDK5v3+Yy+XefPMHjzc2Dgql9z78ACFUrzeTiaSikOnp6ZWVlZmZqWw2u7e3\nxxh78cUX8xNjjuP86le/qtVqZ8+ezefzf/qnf5rP5+E6HRwcZLPZy5cvJxKJnZ2d8fFx3/ehCgLs\nAiCOiYmJra2tWCwGGLbT6VDO9nd2zp492+l0Dosl3/ehcKGmabquW4YJ1763O5ritG0QzefmZj79\n9NN8buw73/nO/fv3I5HI+Ph4xoyWy+UbNz5d21i/fPmyaVmF5Yc7u/u23Tlz/hxHyHXdS5euZDK5\ng4ODfD5/5swZRVHcbqdUKgFhA+RZqVROnTrl+szzPMuyzl24sLC0RCnd2NzO5/Pz83NgYK7X64Zh\nOI5DFOR02pFIhFIaj0cx5rOz05lM6u233yYKssyoaZqRSGRsbKzRaNi2Y0Yi4B/OmE8ptSwrEom0\n2+12uw0LpSgKRFRzzkErABxDJpOhlNbr9YmJie9+97srK48IId1uV/a+9H0fQp8FzhVXTFgBEXwj\niO4gzRDXUyF9IiFfWPnayvc3LJ4yjhDiQuUradtgqCrvoXuh+eLBr4hSJPmggcDk+V2OeyFMIIuA\ntRArgypijjAmiHMmmagxQpwzggn8xWDiRJL2DmOV9OMY5XBkGX0hCcGKRSaSf5AYsHhd0BKC+ksH\nj4lGYrEY4AHf9yG7XLfb1U2DYwSiDlYIRggTAsIVSCwY94PIMTjTKQQrgXqZccYZpQyREfV4WM/U\n2xstBA5hpAWMWrB0vfS9EDcySBH6JsthegF0VyzLMAnAkoYcY+wjhoLEGRz10kUh0H5xBslUBncT\n3AkxQohyBtZvYEQoZ5z6GHOsEIVgESsoRosxRpyAMBxEUvXikcSRUEG6D41enqFMgPlQsLagjiGb\nSr8PHlZSyS8OAz+qQDQaJMAh4hpqUGYpxIwEEELK1QpiPJVK6ZYJKCkaiUQikUw2e3h4iFWFd3i3\n2+UYGYaxvHxPUcjMzPSFC+fX19dXVlbAOqzrerfbVVU9l8u3Ws1arbqy8rBarbhu58yZFy5durS5\nubm2tr62tpZIJNrtthWLuq7rdj3P9WVVP1gobdsuFA42Nzf/4T/8h5cuXbh//x6lnq6rGOO1tbV6\nvc4YAhU0wioIGc16LRaxkqkEkBzI01IoFPb29hLxqGVZhWJpZWXl3vKyaZqO47RbrWaz6fs+OED5\nXdfzvGvXrt1dvre9vV0qlf7wD/+w2Ww+fPiAUvrCCy8QQlZWVh3HabfblUrl0qUrsViCEJtS+hd/\n8Z/Hxsa6HS8eS7700ku+7589ezaRSKyurkJGJ8uKNNvtaDwxNjZGOW63nUajMTaWv3BhZmJs3LIs\nzjkhKBqNmqbebjdnZmauXr1ab1Tj8fjFixc//vjjX/7yV5T6kUgEKjtpmjY5Obm0tOT7/i9+8Qsw\n9+bz+Xw+D4k1XNcFGvPw4UNK6djYWKvVisfjrbbjOI6iKNvb21hVgGAzxmzbBtYNvOoymQzjNJVI\nzs7OlsvlZrMZNY3Ti0u7W9uc8wcPHhRLhxgx09CqjFbqtVK1UigWV1ZXVVV1fS+ZTD5YXWna7Wgs\nVqlUUtmMpmlzc3PpdLperXFGFxcXJycnS4eFarXqE6IoOBqNx2IJhEg0nrSi8VQ8QQh59OjR1NQk\nxjifz+u6vrOz0263c2OZeCJKKa1UKslk3HU7kHQTY7y8vMw5X19f55z7lIJ9BDg/jgkkANJ1vVIp\n1Zu1g4MCYwybFhBmqCoBvqaqqoJYHI1GIa1jNBqF+hY0yFYNakkQdDjnoB4XYgoa4piRZG+Wb6vM\nQ3NJISmeDLHvITKsBJZUBNoy+IkjTVHBCUsJaJU35NY03KwIZBBJG0IkJDTyIxvhkoA+jB5ltImC\nXMQ80CUIUVgZTNbPAy2CILdiVLJ4LcRBCb8NmG/Fu8CpgweiqqrtdjsajWKMOR4QzbFkEhaNCLkT\nSFsIDwtGAQ3RBRSk5hWKAUEXxdno02CYDusfDMF5hPC53L5wkJZJGAryN6BAmOz3i8NVnqDrUEIn\nafq9j6HjLTaOEKSouK9HCRigHvUNjgxjDGNlwPiCMMZEFRRbnCToQC7/J288GzLoYklrJJ9UHDBN\ncrPDOyQfXBTEmclnUV704TsQGg+XWAQuie/ijI6PTZTL5VQiOT4+Ho1E5mdmPc977733KEO6bna7\nXrWxTxRF18xKuaYoiorxBx98MD8//4/+0T/SdR0yQjx8+BAKFXieF4/Hc7nc3t7eL37xC8/zlhYX\nO45z45NPkqnU+fNnIc8w5xwTYpomo7yXWgGYa8Q7Tvf73//+eH5sdXX1xo2PP/nkI4TYa6+9Bvk0\nYrHIzs4exoqu69VKDQQg6rmIUYyxFTEVhCORSDweZeALqqlQEHB9Y8vpuA8ePEiPTWiaAspzRinG\n+Nq1lwzDePDgQSKRMAzj8PDQNM2btz6dm5s7ffq03ekQQqLxuEdp13PHJ/I723t37twplipXrlxZ\nXV2r1hp/+99/rqpqOp1OJBK/95Mf+L5PVCUej0UikatXX8jlcn/6Z3+WSCTGxvKMocPDw7Zj/+iH\nP8nn84qi0G4nFovt7u5eu3YVyhNNT0+fO3fu/fffX1yan52dbTQaULNoa2tb1/VMJrO3t7eyshKJ\nRLLZLOiiT506tb+/f/HixdnZ2UePHlUqFd/3gfwghEDLWq/Xk6lUNBpVFOXll1++e38ZmI9ut1so\nFNrtts/ozt4u5iieiGWy6YODg7Gxsbfeemt3a5twtr6+vrm5+Q/+4A8opf/+3/9vp5dOFYvFO3fu\n7G7te543Ozs7OT1TazQnJydPnTvf7XYjO3u7ewdTU1PVan3vsJBIJObm5u7ff7i3vcM5v379+uUL\nF3/2s5/pup7L5aamphBCphFZefioVC6AEHzmzBnNtLJjKUg5ksvlPL+rGyoUhdR1NZVKQEST67rd\nrsOYXyoVVFW1LMs0zUaz2Wo1NM1gjBmGsXuwb5kRuJvVahUrhHOaSMSpx0AxAKUp4JonEol4PN5s\nNiml7Xabcz42NqZp2r179yKRWKvVElhCkGHay3neJ1fBvQPjlbiq4gpjhHDwt4fROEcq66WPCKGO\nXsuBGVhYggnnDAdiDQpMylBzjFKKKFYISEWK71NKCdcG0UJvAKQXLyvGwxnzMaaYhPPmyggqhLUQ\nQgSroYpIvYnznucOCqxmAEwy2YrJwqrK1Le/DngAf+LBdpCEgbkE8pPwLlwQ8PwHotXpdBhjRFWo\nVFRK6H6FZlEeKkIIMl/Kuk9BWQWdlhdKYGAxLxyUjxzG25xzVXJZl4X+EDkInboQ8pf3IkRuiRyf\nMkhQB8iWxGNgjMElkNEBBa1gIBAF+jqgJAbNM++70ZHB4fU+qqI5+S8PRHiZrwHNlcxZiFVAQ9Bf\nmiH9sNiYo98dCtkeXA7cbxkhNGgTkr8XJijBwsOig0V2enLqzJkz1PcppRMTE//4H//jX//61yBJ\npNPpTrebzWb3Dw88z0smo5TSnZ2dW7duTUxMLC0tlcvl/f39YrGYyWQ45+Vy2XGcRCKhaVqtVksm\nYtlsdm1t7eDgwLQsXVe7XcI5bzYayUTKsnTHcTpuFyPs+6zT6Ziqkk4mDVWzdGMsk603qo8fPTpz\n5tT1F1+4dfPm9uZmt+Ol09mO0yEIZ9Npx7Hr9bpKjPFcdjybq1artVpFWK3S6ewrr3zn4ODg3Xff\nrTaaVjSWz+cfPHiAELIsg3PudrvLy8uNRhOOdbVazY9PHh4eYoz3Dw/Onj9XqdVmZ+cfPd64ceMG\nIeTSpUsHBwecKPcePOx4frPZ3D8sxpPpg4MDu+Pef7jque2LFy8uLi5OTEwAUtvb25ubW2i3241G\nw+l2KENjuXwikYCIGkNF9UbVihipdEJRsU/dpVMLqXTi3r17uVzObnc2N7Yr5Zqmad2O12y0y7WP\nI5EIsD5jY2Mg/ZfLZcZYo9FYXV199OgRlJpgQfalaDS6sLjIGNvY2PA8GolEzpw547jdx48f+17H\n932O0fziwvnz51dWVuq1atQyVUyatXq5ULSbLcMwzp87tzA/Xy6XLcuam5569frL586d29zc/PWv\n3saKMTk5GUskWrZtWNapc2dzudzKysrUzDTn3LKsVCrFG3XHcQqFwsHBQcKKUkoxR4f7B7qqWenM\nxHh+enr6/v0HpVIZ7Ojg6OdT5DjO5sZvQLi/ePFiJpM5f/6853mqSorF4vT0tK7r7Xbz8HAfalJd\nuHDh7bffYYy5rut63sTExMzMzOPHG6VSyTCM8fxYtVIDPJtOpxzH8TyP0wEHGUVRTNPMZDJLS0vv\nvPNOsViMxWIYY9u2o9Ho4uLi1tYOCipYQJ6vXvhWtyuMefLt82kfM4ZwHxokYH38NeizgwO5SsYz\nAjUxP8g5LEh+4BcDqWUJIZqiYowJwhQTxAfimENETpYve4RH7T8j9y6/KM9CkNdhHMgHibfAV8DB\nYEnmUQbzRAqRkbFe0Iu8mMMr2aeOhHApblVGlb7vx+PxM2fO3L9/33XdeDwuvHkEyZElXZkAw2OA\nQrEyYGMWayhcAbDk9yO2kgcmVaEolauQ8UG2Q7Tc3/ShdIfiVyZ54w/vwvDWk8DWHnpAblA+h3zA\nG6v/sHgMuFiEkKJgVVUZZ0FJYIr6ygmZS0BiUpxzFSsEYYwIFpHyvbAtgjEhQA5FPmeMMWVUPgEY\nYzD6EGHtgFZwj60dTr0WmnNo1VgQNBYyJoHVode11BSMByMMfDLBBCGOOKc8yMqNOOVBenTEY5YV\njUY96luWxRl7991387mxf/2v//Wnn35669atF1++fuHChV+9/bbPqGmaoPfL5/PNZrNcLk9MTESj\n0YcPH1qWpSjK4eFhNBoFip7P52dnZ0ul0sbG41wu83u/93u1Wu1P/uRPsrnc7Ox8oVBIpJJAsFt2\nm3OeSmU0TWu1Wq7d/vTTT+v12sHBQS6XuXz58szMVKPRKJfLvu9OTU1lM2O3b9/Vdf2HP/zR7du3\nG42aohDOaaFwYFmGaeqEEMdxwCx3cHhoWpZt2xyhWDy+sLAQjcY9zxsbG1NVtVotU8YePHhw/fr1\n2dnpZCa9uLhYKBQymczGxobrun/5l39ZaTQ1w8QKsTtOrdqIJ1IIobZt5ycmbt2+63kemI4ymUy7\nbS8sLc3Pz9+8eTORSJw+e2Zubn5tbe3O7XtmNKKq6v37D2PxODiQ31m+Z9u2aZqL03nf91966aWt\nrS1KqW3buVxOVdWlpSWoPuS67u7urqqqCJFEItXuuplMBiHU7XYfP37c7XZjsRhjbG1tDYJlS6VS\nLpfjnIPmeW93u1Quv/b667lcbm1tDer7Lj98UCqVarWaQlSiKhjjTCZz7ty5aDT697/4hW3bgEeK\nh4Vf/vwXqkampqZmZ2dfuHxlfn62UCh8+OGH29vbp0+d+sGbb7778ae26968c6der8/Pz396+06p\nVGKMRaPRaDTqbG17nheLRLqs26o3xzI55rpup7O+tra2vh6NRg3DqFZrq6uPqvVaPB5XiEawalha\nq9Xa3t0vFovphMU539zcPDg4SCQSjuP4vpvL5RYXF6enp2u1yvT0dDQaLRaL4CWwuLjYarWy2ezE\n5CREVANtjsRjqqqWK6VoJAb+ZbVaLRKJqEQTkVeAN33fbzab4PFnWRa46BcKBUJINpsV7kg4UAmy\nIGQFSzKKQKyUhRNrCBIb+r53lwGf8F7cAQ5Q1BEETbyIAsQiseMUcYyxggjBBDEuAlUx7ofHyLRT\nGMKxpNvjg1WYQkRXJsMCevhHEp54IFGJRpAkQnCJaMmxvyJORvQO3xNM5GGEVk+GHu0cwMwDqz0x\nMXH58uWNjQ3HcSKRCPBtvTWSQDABcndChlEUwhgDn3BCiDDBgsuFUInLYT89yh1kLhOrLVgQQVwE\nIUcSiUKBkkBeZAF8sHqjTDjlTRRNoUGncSSJgvLmSu3A2JBoTV5w3HNpBnmVMMaojxDqH4mgqX6d\nKDFxEEhUOfJJbl12jRMsBhrUJw8sxJBK+XiWRDQVegtjJK+CeCy87kPcqFhoeWvFA+L1er0OxrbD\n/YPJiYl6vb6/s/tv/s2/Ae8qKDNXq9Vwk1BKQTgAO+jOzk4ulwNX583NTaBDiUQCTmG5XI7H44QQ\nwzB+/vOfR6PR8+cvvvrqq6qmxWKJjY2NeDyeTCZBR2pZ0enpachn9PDOvbbZilrReDRm6Hqz3khd\nvLA4v6Cr2rkzZ6vVOudYU9Tx3Hguk41asT1nIxqNcoabjUar2YSiwplMBjSoOzt7h4cfGRFLNcxo\nIolVrVKpXLlypd1uwyxM05yYmJidnf2v//W/ZrPZw8PD+/fvv/TSS4VCYX/vsNO1kW7duXe/VKlF\nIrGsZkQTcc751s1Pf//SZc20NjY2dM2wKB3L55uPH88tLOQnxrK59OXLlx+urjx8uFIoFKr1ZvNx\nU1G0eCKh63q9Xk9m0j/4/pv1en1zc/Pu3dupVOr99zutlh2LxdrtFoQJffDBBwvzS3Nzc9vbu81m\nGxTpnuclk8larQbbB0RidnYWWKLTp08nEolEIjE9PV2r1ba3tymlc/PzKysrn3zyiWVZ0Wh0aiq9\nu7t79+5dXddN09RUveN2KaXr6+tQ/sjtdBFCmKNYJIoQWltbIwrSFXVyPL+7u3twsOd2uxihdqtV\nKpUqlcrk9IzjOF3PiyWSk9MzpUKRczwxMeU4DkLEdX1FUe12B46kEtWcbhM8rufn52/fvh1PpqBu\nZjQS11TD58juOrFYzDQjCGvJVE7HXYyxgrDneXazRannOM6h6129dBlz2nWcpYWFCxcu/PrXv3Zd\n1261Tp8+bZrmCy+8MD0zs7m5+fOf/7xWq42PT7TbbSgByRmC3VcUZW5urlapN5tNjLGu6yKbW6FQ\n2NjYUFU1mUyK1Lv1er1QKOi6KYyR4u4fGdTRo3NBpisODjWMgxIVkb6UiSR0SVD/arNBN9ojMYYq\n+U8giU4rCCtEQQhBDk4hpTHCwZmIo8DjpodbEEIIuHPEcS+Og2Dfp0c6xGA50YSEUhhjGIoSBW3D\nCxz30RSG1zFCGAkqhQNPYzSEVGXkhgP5PvQrUL7Q8zKSDG0QY6xYLIJDCca40Wj0fBh1lcNWIe4z\n2hs2uJ7Ju4AR+GrhQJUoOpWVzMNbJhJUybuMAnYBjp8oKKcoChSTQIO66/5pGVRzDpOhYQgRDqHZ\nBbW/YCywlPEQfoIXKQXvB5VzjriIOBooRxjYoXuzFpsVfCBiSViQHhFYDc/zVDxE2ATRFQyRvJfA\nEYsFQpKOPrQ0op3hgxVamhBrI4h3aOeO3GD5VyY5PwsGJ0y8OTIMY3p6GjFeq9UIIRB9SwjJ5/PL\ny8u7u7uU0nQqCb82m03O+ezsbKFQeO+99/7Fv/gXV69e/cUvfmHb9tLSEjhAQVbe3uJwOjU19ckn\nn/yX//LXf/AHf/DKq6/euXOv2WyWa9WO0yWENBqNSCRGKW00Gpubm1BSCWOsaZqiKHfv3p2fn/29\n3/vxzs5eu93+5S/ffvx4Y2nxtO/7f/qnf/raa9+r1cdqtZppmmfPnl5YWIBw7sXFxe3t7Wx2zGM9\nF/xCoQBpK+amZ/74j//4L/7iLw4PD8GSMT4+fuvWrW6367pu1/fGxsY++OCDer0ei8XyE2PYiID6\ntF6vm6b54MEKISQej7/zzjsvvPBCLBo3TfNf/st/eevWLbjPuYT65ptvbm1t/e3f/q3n+Xt7e/OL\np6LRqG134onE3t6eoiiO45w/fx4q5rJOI5VK/fmf//mrr74ai8VM03TdbrVaXVxcHB/LHxwcbG1t\n5XK5SCRSq9WuXHmBEfzo0aN4PA47blkWOEm5rjs+Pp5IJMbHxy9evHh4eFiv15vNZr3uZ7NZQsj6\n+vq1a9c4x7VaLZlJ92wE1XrXcxOJRKlUun37NsQ1UUrBTh+JRAjq0YDbt2///d///cvXX3zjjTdO\nnTpVq9WKxSKlNBKLAZsFSdCWTp9KZdJbG5uWZXW73Ww2m8vlHi7fBzf1SqWSsDS3073+4kvf/8H1\nf/bP/s8EK1hV4vFks9XqdFyGESEkEo1ThjzPi8Vi3Ybt+z6cCs5pPB7Xdd227Y2NjVg8AvqY2dkJ\nxtjh4UE0GjWsBFRnsiKRXC4HXODKysqFy5f+xb/4n/f2Cn/z1z979913zYgFlYkty6rVapxzKO0M\nwdPdbteyLIRQu92GdNapVEpV1Wq1alkWpMIWdw0QN7wYwrO+72NFlW+xfGEFsguhF/lhcbVl6jJA\ngCHeSUYJnHPJo5hwDhEHXFJxh3AFlhI+DOu6meRSFEJWIYwPqAVLIPcSokm9fiVbL4wZFPvD0Rxy\nL2JBxPdCcArpe8XroWHEYrGtra1Go9HtdicnJ4vFIiFE1/WO7x658sNtyt0Fc8fyWzjQpQtDMpZM\nlopU35AxBoYM0HiJ2sAIIXCyGwYmVbCVl0LeUxmGVyzUjtB+CxZBEGBgBYJGgDNQEUIYMUJ66o1e\nmOtANq5e/hB5F+BASee/zxr2amgS3NehB3uJCEe6pqgqAaMC4319NyO9OCeMGEaBy3XgUgEXC2MS\nxNxjrCqYMcwYohRjwhnrF8TsjxSJk4ygNgI4owuuclClA/OAZ5jfC0yDHPQYY8isRCmF0WAyEFkP\n7kuIeRhjw1AgWZCpGZ2uY9N2biLNObcUrdWuKip3vbZi6oSQZtfRola71fjF279Ip9Mdr6OZ2ulz\nZ3PZsVrL3i/VtEiqi3Wu6gpGbc/LZtNnL+UfrW+99ZPfy+VyjtPOZrPl0l5ufMIyNafT4JgWy4Wp\nmYlKtVRpVKs75TOnTrcatddf/65uaO//9j1VVc+cWjp7eqlUOJiYzG1sbXq0+94Hv5lemOlUSq1a\n1YhGytXK1sbmj3/841w2O5bLffjh+6ZpYlXxGSU6seLWiy9fPzzY+el/+csuc4lGrr54td1ub+3s\nJBKJ+YUFKxJTVFOPxKtN2zCiLduNxrU3Xv/O4WGx+UGrWCzOLy6kk5kPPvjg2rVr42P5n/70p9PT\n07VG87/+zc/29/d39vbHx8fv3Vu9cOGFYqnaajqdTmdudiFimIyxZCxaLhbOnz5VLpfrlcryzZvV\navXx48eM0vXy9vzsqWbd+cH3z9+9d8+x/VdevpjLThwcHHz44cegLU9lM9978/sIoWKxyNlCMpn8\n67/+61OnTqVSqdXVVc4s3/M+eP+3EKWDOK3X64jTiGXG4uOMsW7XSaVSh4X9vb29dCbhOM3U7KRK\nWKetZNPjtu0sziy4ruu6vmpwSnG73U4kEs1mkxDywx/+8OOPP242mzPzc/vFEtZ0Mxav7+4lk0mn\nbZsG1VScTESTiWitWopFzWJh36ddjjSO/Fa7bloaI7TjO52WgzGuO34kGf/7995996MPsvlxKxJp\nt9uVWmlsbKxer0NpKb/bILyLMU4nMlSf2N7bTUQTOmf1ZtNFahdTqpmfPlhljDGfJnPTnb/65S9/\n9d7Y2NjE+EKr28pks416vVwqKZy9/srL05NTv/3tO1NTU8XNrYPd7bs333PaJctKOx1/d89pNBlw\nM9VmVdM0wzAYZ0QnLvU1TaOUaZqhqmrNaUxNTRnUUlRMMfepT7CqGqbv+75HEVZ9ijijiqJoCkac\nIUYRZ7rCiWFAQCfnHCOuEEQw5wQh7lHf0zTNYz7GWNd113UxURWkcM6Z17MgKorClb5NEYqjCTmL\nc24zDLdappGcc049iA/knHPKKGMIYUKIEmQmEdkY4H3EOEEYslNhjqAEC0dIxQZCgEJ6DqScc46R\n2+2hUYr65AchpCINIcwZRogxya7csW0IdfM8z3M9ojDd0jRFQ9gTuVIQ9znjBHFMOKP91I8wSAUj\nRUEUk15RrCCpNTimeX4PJ/tIoQjyN2CMMMOUMqppGlZVp9PxPA88V27dupWZGKeUcqbslQqarjGE\nut2uY3d1XccYU8aJRghWhUM44pwF8ihY2hVCKKIosN0KqsE4102TEALpPxlCWITzepxS6jPKKCUk\nqLlLVMox55wyxBBBqoYxZkTxEfYYg010/V5NT0IIYhwjXyUqVgjBnCPOGAUrJ8W9cCbEkQJ7S4iC\nCGVcURTMEfU9zhVV0VDP7uArRMEIU69XIRhzxCjTNI3jnrM0nAfwSlCALEH6ScIDkseIjiBztqhO\ngYmCiMK4D/36HiWIE4Uwyn3qY1WjjFGCGMYewj5lLuIUYxVim/rxcZI/WLC4vexRwTf9UGVBRslg\nfjsuGa55wPKE+KZhm0fvqCt9tlpmwdiIOsQhdgOF3CJwOIM0P0r1zTnXVJ0hLspGigQx4GWqIGTb\ntu/7rutCxIuqqpVKxbE7EM/e7Xq+bauKVqpWMMaRiPny9deX7975d//u3yWiMUi2kM4kKaWvvPJK\n27Ez2THw8ZkwJk6//r3V1YcHe/uxWGxmZoYjtry8DOE3ly9fnpiYePe9DyKRSLfjKYrSajQjplVq\ntannTU1NeV23Wq0uLZ1+5ZVXPr11q1KpIIoM06KMtVvO6uM1p169e/fuxYsXU6nkysoj13Uxxq16\nAzYiGrXGx7LpVMJzqeM4YOquVsue1x0fHz+1uJRIJFqtVr1en56ehuwiW1trhUIhlUotLCwUCoWE\njjc2NjzPq9froDc+PDw0DAMhFIvFHj9+vLi4yDn/sz/7s7GxsfHxcR8hkNLm5+f39vY+/vjjN954\n45NPPqlUKg8ePJienuacV6vVhYWFubm51dVVzvnt27e/+93vvvDCC6CoSCaT7XZ7fn5+fn7+3r17\n5XL5o48+isVihmFks9loLLGyssKYTwjxqXv27Nn9/X0IxAIHItM0DcNUiNZutz3P1zTCGAP5D8RN\nhNDZs2cfPXpUKBQWFhY++ugjzjlE/kxMTNTbNiSvgHLOh4eHjuNA3TSMcbPZBJ6ABfWAmecfHh7W\narVkMum6LhAexhhYxOfm5ggh5XK5XC5PTk7Ozs5eOnvh79/5zebmput7nPNOp0NUJZFIYIxbrVa9\nWvvtb3+bSaXq9Xo+n89ms5vL25xzp9NJJpPFYtHQ9fy1/KuvvvrgwYP/30//MpVK/vjHP373/fdK\n5XLDbnDOY5ExOLHpdFrXdYiCgxkBPd7Y3kIIWZYF/IGCcCwWs6yI77Fms+m6vqmbkUgEcgUHlxSQ\nBsGEO91uSDYiQboocXmVAAghmtrznutLIUjCAMENxYH/qjA6yoIa5xxyNQidnKIocFsNw0A9P2cG\nSYsQAsmGIMQDXME5F0r1o6rDBfpkzgH797GKCMtBwjhNCCHYsEwg+apGojELIQQBEabVtzrLIpr8\nV/7AOOOcs2DYQqCXhIqBMBBhf+2hU4wdxzk8PITq1+JLLOkXoRI2QghqzIBlTUbvAn8y8KUZilMS\nLtzwTyJlvNI0jagKDvBqT6UajBP2CIpn9FTQfSm5t+kqURBBCKpj+NTHoLHo2/KloQY8AWaqohiG\nQQghruJ1XXiMMcbRgCSNh5Sv4vuAb2NkKGJKXhyxkr2t6S885kBMexWtoDOGEVg7wJqBVIIVhID7\n68mhClEIIVhRec85ghBCFIj/Y0xkvGRSpDMeVDfJ/2RDXgzy8QrdVYQQZgNGIEEswWli4FbA5IO7\nIZkWjrY9wwdNM6TXAwMVQgghQHkIgRaiV4sKYjMMVTUMI2JZjuMUi0UI3Wm3PyVY4Zgw3ss5blnW\n7Ozs7u5uoVBYXV0tFAoHh/uLc7PJZHJ3b1tRlP39/UKhYEasU6fPYoy3t7edTjuXyeq6Ho/HU4nY\n1tYWRyydSKbTaU3TLCsCpK5UKW+sbyWTyYnJ8VwuVy2V9/f3tze38vl8NBp1nDZkxOScd5yuGYlG\nY7G9w4Of/exnZxfm5ubmzpw5s7W1hTFPxqP7+/uxWCw/PjE3OzuRz9eq1XQ6bRhGvR5zWu2//9Xb\n6XSaINyx27VaJZFIXDp/7vbt23/5F/8pkUjEE7GrV69GIpGNjQ3mexfPn1tbubd7sB+PxzXTuHb9\npWg0urq6CgmVdvb35ufnW45dKJeWzpyGWz05MQFeoO+9955P6fj4+Pr6um13NE1rNBqvvvoqaL9v\n3LihKEo2m93f36/Vajs7O2fOnIGwJcMwKpXK3t7e4uJip9MZHx+HFNB7e3ue52Wy/vnz5z/66IOZ\nmRlNV4CBKBaLoDGmlBYKBc6RoVuc87m5mUrlAIhBuVxOpVLgz2UYhu/7c3NzmqZtb2+DPnx8fBwh\nBNUk4dCm02lFUSKRiOd5pVIJIiwrlUo0Gm232+CWohEFVMoYY9D6AktXLBZTqRSUiEAIJZPJubm5\nfD5vRKyxsbHt7W1FUVRd73Q6iOFutwtGXKh8TCnNZDLlcvmTT28elA/u379//szZ//l/+p+W79zu\ndjqNVnNnZ+fUqVP6roEQf/HFF+eXFjc3N//2v//3brfrel1VIbqu2e1Ws0HT6XQ8law3Gq7rFgqH\nU1NT6UQC1On1Wi1qmiAjgoo+FotpmuH7vtN2NE3FGBPMOeYEc0wIxlA9tFdTGRS8PGBnQWUn7iMI\nc0pQF72PGYiki8aBbkzCjyE7sSAqQHHBVg3MBIQ4y50KVDOMfHnfbDyAozDGYDkWHfEB22iYZBIM\ngZQkEol0OzalFGODB6WdEWI+IxgjLJVY6Hd0FPiIgmNtCPWLYWPOA+6hTwxoUFIXCDDEc4c8rZgU\nnwmrAQU9VVWNRCJQPOaYsYngJVA8AH4WVFa8qGgqGgqx5XIKTNTPSo0xhgQvCMJbGBWBtArREPNB\nod3TBCDOGaM04Aw4pwgpgnrqmGNEVEVlqud51O8pfmGbh2mwvBQyneoTmhGeSfBwXz5EmHFEEEQc\nK4goRMEaI5QhhDFDGHFGGFE4URnBmKtEVfqrwjlBGKpSKJqKWJBoVFEwhGdhrKp924O8eSJuOAS9\ntgPGTdTQlmeCoEQGY4wxRVI1ixmG5iwvBMMD+8o5FelwEWYhb0o+mO8agXNBnzYTWVkN+zQzlkMI\nMc/3fY/6/u7ubrPZzOVyGGPfZ77vq7qha7rneZ5PKaWTk/l6vWoZ5t27dzt2++zpU2fPnp6bm8vm\n0qurq/Mzs6qhz87P7e0deJ7num6z2fzoo48QYulkynXd+/eWFxbnL547Tymdnp7OZLIbGxuTk5Mc\nox/96Ec3b97c297OJJN/8Ae/v7m++dd//de6rmZT6UqlAgio61NV14iiMIwSiaSiao9WVr773e/m\nMhm71ZqenOScb65vtBjHHLXbzVarUS0Va+XSxMREPGK16rWO3eoYmq6SZr3drNdLhQMIAZqZmUok\nEsViGey1sYh1uL9XKRUVwsBXFioDzs3NqapaKpWWl5fT6TQQG8MwNE27ePHi+vo6Zaxaqz1+/FhR\nlGQstrOzMzc3B6mXrl+/fvXq1Rs3bqysrORyuVgs5nleNpt+6603b968iRArl4vttjk2Nnb69JJp\nmu12E2N++fJFjPHKyko6nYTYmKtXr96+/Wm73c5FMsBiNxq1bDZrWRaP4U7HVRS10+mA8Ylx7nqe\npapWJMIRcjodTdetSAQTcvHSJaCUa2trqqZxhKq1mmqYgAIgsV+n0/E8r9VqTUxMAO6AuaiqOjU1\nFYvFHj1cicfj+XzesqxmswnZH0UQCFSgchwnmUzatv3+++/bLVvX9VarhQjWTVNRFMM0bduGjKeg\nwMAYQ6zzxsZGPJeo1+t3lu+98+6758+dWZid0zVN1/VC4eDatWv7+/u3b98eHx8/ffr06urq3Xv3\nIqYJPlaAkSGB+f7+vmEY6VSq4zi1Wm3p+vVLly41Go2HDx+uPnqUzeYikYjjdB27y3lH04xYLAoJ\nTAjmCDFCEMYYMUo5A7FDXDegBCzI5ihEJRbU8WR0UDdGJO+nIbTPMWL+QFZ9gTdVVQUCLHI69lA8\noj2EwTnBCPcIPO8V45G9gXqqzYGKFBhjjAlCuGfJIwhzTogkwtIBJI5QrxoxYz4mRFMUQlC360AU\nUDabLVcron2ZBIIdcZjUMUhShbjcRX+JACuyXkEhhHhfgRxwOZ7nAdsKP4WUB1AmFRB4sViEfB27\nu7uQZX2YzHDJjZkH9nIw+goEK7pAg7pP+EsRB5yNB92MxCEBPywFE6QQUMwqGGuK4vMeIScIY44Y\n45SyUN4mFpAG5iGKuOqpjDGP+X4vx3GfheltbXBWe+kZBmOFseR9LZNk8YyQv8UZoBwxyQWfYwQF\nLRXMEcEKxxgRxBhCBCFCMFcR6ZVzYpwhzhjGkPgc6lj38qQgTDmiHDHWL48l5iwuz/Dp4Zz3krUS\n3DOdIMIo7emBJfLIEIf/sLRhYrOlyzDAtCKEBEOAEMKYy1ye0D8Hp5Zx3o8bFgS4v6wK0XWTS3nJ\nQTACQadardRrNeZ7ULgevGwY5QxxqP4Gp7BWq9VqNdcyXLcTiVqTk5MLCwuzc9Ntu7m3t/fCtSua\nYcWTiVbLbrXbsVhM0xW71dY0JRKJJBKJxcXFxaWF9fX1arV6+fJlwzCWl5dbdsc0zfGxifn5+a2t\nlXt3b8djsXOnz1y5dHFiYtKKGISQrd09CCh660c/9Hz69+/8plypjI2NpZcWPvrog3NnTl84d/bg\n4KBWq6VSiXa7rWB+6+YnH77/20KhUDwsWKYejUYxYulkamlh8ezZsxALtLe31247165da9SrGxsb\nsVji6pVLyWTSNE1NJfV6/dKlCxcvXnz77bc7nc6HH364t7cXj8cjkYhpmgsLC5ZlbW9vv/zyy6+8\n8grn3PO8jz/48PHjxxMTE2+99VahUEAIXbt2DYJqdF1vNutLSwsPH96fmZlKpRI3btwwItb8/Dxk\nsAJW4ODggDH2wgsvrK+vg5mtUChsbW0lEolisZjOdD799MaFCxd0Xc+NZSYnJzHm0ahVrzcxxo1G\nS1G0WCwG9K9er2u61mq1QKYslUp37tyBwSuKsra29uMf/5hzDl5g1WoVY+za9uzsbDabrdVqzWYT\n2onH43BKk8lkLBa7d+9eJpNJJBKu6zKMVFWhiDfaLYY4w6jre+VaNZ3LttvtlmMzxjTT4AQXK+VS\nqaRjdWxsjAT1WT3qG4Gbped5tUY9YlqMsY7rmqYJ0c8XL1/a29n99//f//C//j/+75mx+P5OyfM8\nyNb51ltv3blzh2OUzWT+yf/4j86ePdv18QcffAAStmVZXceOWubs9NTOzo6u641G3TL0RCzabja8\nbqfdbDCMGOYUccZ8yjzOVYxdxDilPiEIEYUoikqwoig+9TxGtUCyQVLwkqAxkLsG7iBsqO/00vaK\nAr29u6yQgG4CYgWbJFcVTaBCeFIoPIVhUsi+jDFVG2C4RYOKVB4RDYg4lEPAIuQfJIgQRAjGDDPU\ncxCSKQdjPb8TzPrIkBDi+V3OuaqoiBBCkKYp0aiVyaQKlZIgZmJlOOechrFob5pB4ikxXzRYYR6J\nACT4J+mzFDhw95VdpmUZA3igZrMZi8Xgw/T0dDabBdNPaJ3lt3Dgwg1q9lEUAUkq4h61Uwg46UFl\nml4GFUJAHY0QajWaWCoIoSiKpoggN0XBTCaQlFJOVHlsYsyc806nw2RJD1S+wRRC0xEIXPwU3giJ\nciMpo5mwnvSOBKQaBQ4DYcoQxowQgglROAYDByE+UVTiI0qxCuQatg4K8AG/p3jgmc0ZY5T5CmaM\nMdf1Ke87bfUPHAJH/14csKjogBDizBfnSiGYcEIUxHs53Hs2GM45JhxDMPGgyggNUffQWZTiw/pE\nGmOMSd+cwzlHiHFOEEJ0qLwX5xxx4nm+qhMC+V0po35vam7X5wyruqrrxsLCwuWLlx49Wjk4OGg0\nGslkWlEUr+tRjjAGHQEqFovxRNTrupP5CadjO05b1/Wdre1Kqayq6s7OTqNl27ZNVK1QKJw9e44j\nv6KUNU3JZDJRyzh37tylyxc/+fCjsbExiJYpFArp7Fgynfroo4/+1b/6VxfPLVSKpY8/eF9B/OLF\ni9FodH19g1E0NpadnZ21YvFIJLJ/cNhsNglROVHi0Zih6bFYbGxsbG9vT1OUF65c8Tzv1q1bezs7\nsVjs9NKSgvHh4QEYtg1Df+naC2+++fqjRxuQBXptbS2dTl66dKHTsR2na2pqq16rlf1WvXbp/PnX\nX39d07THjx8TQlqt1urqKqRV2tnZ8TzvjTfeaDQawE2vrKyAMjaXy50/f17TtHg8vrCwsL+/zzn/\nwQ9+0Gg0dnd3T58+/dprr5VKpU8++WR3d3dxcbF4cHju9JmNjQ0jnrh48SJ1PU3TYlbkxasvfPzx\nx/s7u4uLi+1Gs9FonDt9ptpo3l8uvvXWW2fOnNrd3W3Way+/dL3T6RiGkUiktrd3Hcep15qlQimd\nSnHOu9026JCbzWYikUin0xjjDz/8cHJycmNj47333gO5ql6vnzt3zvf93YNDwzBs2wa8Y1kWxDuV\ny2XwDZ6enu52u6lUCiG0t7cHJZhKpZLv+1NTU4ZhgERimibkIgCR0bZtzrlpmmOpLKTOME2TY8w9\n17Ztn9FWq5VJpfP5/PTklNNu12o1BRNVVZWYRj1/8dSS53U//fRTu9W+d+/eg3vLhJDd3f2XXrq2\nv7+fSCQePXo0Pz//wzffur18/8K5M7GICfmt4lFrejIfj8e//73XVlZWlpeXZ2dnF+dnHzx4sL29\nvb29nRif8DzPdWuIcsPQVFX3Xa/ttBVFUTgmIFgqiqKpiGCfUbDjMJFEUAFVISeqoiiKZuiIYEQC\nZKcQkFN9zrBQhjFGORN1XlHPFSu4rVKxFshYABe167mEEEwwD+xwCCFEMMdgmetXWeccMcaxghDi\nCKOegwvDCiIcM0L6BJ5LHs4kGE+fwCgEIaT08BJhiDHGMacIYfCb4b7veZRzFRHMGW+0mt72ltP1\nBAFGEnmjPUdX8McBAQNxzhXJqCfkEKIgQnoPiBTbPToumYd7OkVFAb6HBrUfxKRUVcWcM+4rKtaI\n5npaPBHN5tKHhVin08FBEq4BFQLtkR+Bh3kgB8s2ZuEMLEuTOHAZ72FyhSi8zwAxNoCae0NknFFE\nCAeJCisa6Nt79gLGUT9zGe85HSGOEFI04nc9z/f4YNIxhDEiuJfjmmAgVAxxoiqcc3Cvh2TX8Azl\n/fjd4HxyQghGGGoDQwJUjHuJKDjRKaNQT4/3VAJcZUhRFIYRhmTTWCWMKQj7iqLynlch5oT3MpBj\nTDD2GCcEc4Q5Q5RSHzPGGGVcXAWZ0+lPb5BqIoQ47hU07m0Y7+kBsNIvK4EwRkG+bDQiDalML2XA\nmHAObJ2kKEAUM8G/UJmVC5HzXqaQoJIUOMSzfiQxTqVSjUaj4nY8z8tlM2NjY4XCQa1Wi8fjsViC\nUkoZR5T53GeUu24HczqZn8jlMtlM+t1f/6ZcLhcO9+FoxaOxzc3NaCSez+c3t3eKh8U33vj+eD77\n8P6DSqXEGNvd3UWMn79wDgrv7OzsxOOJixcv7u4fWpaVyWTef//9uZnMxUvnC4WC73m+193frW+u\nb2iGrpuReDyumVaxWGw0GnNzc5Shje2tnYPtq5cvc0qX795NxKJnTi3t7OyUi6X/6//yv7z77rv3\n79/PZbOnlpZAi1iv15stu3Bw+PYvf7Ozs+Mzms1mnY793//ub69fv/7KK6/cuXWr6zqZVHp+fj4W\ntVrNer1eX1lZKZfL09PTmUwGrL/gYUQI2d3dfeWVV2q12r/9t/92YWFhdnZWtyKnzmbee++9ZrOZ\nzWZv3LgBptNPP/30+9//fiQSsdvNixfOdTrzf/d3f8eZv7+/n0ql8vm8aZrgBRaJRKB00tLSEqSM\ngDoE1Wr1/Pnze4eFWq1WKpV837158yYh6M033xwfHy8Wi5FIjBA0OzubzXR2dnYXFxcLhdKjxw/G\nxsZc13Uc580335yenn748CFUxVhcXNza2gI/TMuywJ9re2+/VqtB8ktQrQNXAbxXq9V69OhRrVZL\np9NgCc7lcigQNWKxmOu6sVgslUrV63WIgGq321AWAlAkIaRarxFCOMaKoiQSCZ9R5jjxeDyeTGTT\nGYxwo9WCmHJTN2ZPzd+9fafdbi8sLDxYWfnkk08UTFqtloLwx5988uDhw2KhkE6nI5HIxYvnEeOQ\nNeXFF18E6bl3vxivlivfe+31V66//N577/3d3/53iHTPpNL1djMWS0QiEe5T23Y6tmMYRi6XaTbb\ngaTlUYpVXcMKlOLxBf7lkl1NEFQc5EDudrvdbheQQv/m9hyOJF1rYAnuESrJw0i+1wLdh6RDxtwA\nKfXwP2Pg3ALurAQJ1RzBqqownyEEmkOBTzjDAXaCqoUIyDZkREK4X3QtyCyNuaZpkDQKMpMwxpqt\nTrVWUY2YIMACIwlCJXEJPWDwQKA9VThWNULIQOJomDJBmHGGVARuWYqKCSeUUkyIqig9JybOICqZ\nI4QJVzDWiA4ufnD8tre3i8ViuVyGwpdoEPhgbI8SFPvjQb5leVTwpEgeThGnjJLAh1zRVLmdHh5H\nyFQNzjkhSFVVEtRyxhgTvSd0MoYY69dcl6l2L3aZI4SQzxjlnCFEMOYYQSAPUQgZtFKjQEkuUQQ0\nwDEgwQxhcHgm4PjQW3hVUbBIA0opp5hTGsQTg+sAIkRFrFdWsue73ksAw5DKSa+aMAQSk0A77/s+\n6Gh8wihlICcyjDTST9CBJG0MXIxhSkyUsD0Apic7znGJa6OeJ14nQ3U05QWC133uYykxGEI9f7mg\nwXDJMIJ6KXsC/oBxhhFCmqb5DNQpsFE91RnGiud5mXQ2k0mlEslWq1UqlSB8DWzArucTVVEUlWOk\nKEpENx88WL506dLU5EQsFolEzZs3b6qqOj09ffnyZffTm4cHxTd+8BbHpFqpVUrlay9esVttQlA+\nn28364/WVj/88EONKDMzMxcvXvR9+pvf/Gb/sPji9ZcuX74M0XuZVLrrdHyfcc5N05ybm+UY319+\nWG00q81GNJ4wrcj45MTY+Ljvu2oqOjU1BbT2zTe//+Mf/7hZb9y+fTuXy710/dpPfvzDxcXFe/fu\ngQbS8zzGUDqdhrSxn374IdDgfD6/u7urEUXT1CuXLu3s7NSqlVg0svLwwdtvvw3lHTHGWgCMMRAr\n79y5s76+/sYbbywtLW1vb1uWVSgUIpFIJJ64fe+urutzs7OmaRYKhQcPHlgR48yp04SQSCRiGAaY\nOefmF2dmZjY3NwuFwszMzP3794HcggU0n8/ncrnl5WXIaw321E6n02o1VlcfYswvXbq6vLxsWdbS\n0lKn07l///7U1Ew8llQUJRaLra6uzszMxGIxyMFy7ty5Wq32ySefgJPwxYsXk8nkzs5OuVy+cOHC\n6upqsVgUmjGgpuCQNTU1lU6nPc9jjFUqFcuyOp1ONBpNpVJAqrPZLJzkVqsFCTE+/vhjyPECqUWg\nWNPu7u7FcxfyW1uc8529vUarmUqlup7b6XTi8biqqrqub25u7u/uXb54sV6vNwkxD43Tp5cePnx4\n4dLFqBX59a9/vb25OTGeB8fvFy5fabVat27dWlhYMM3I//6//0dsaGtra8lk8sqVK9PT07VKtXhY\nUFUVfGUnxsbHs7l0IpnPjd2/f79eqRq5jOO0u07b0C1D17ChI8a9rmvqmqIoPqOUMo/6KqUUcV9y\nZ2WMQYpNFMSAQuofQWZAe6nhgZzDYCcTGJAH1jQUqL6YVC1HxjOmacp4n3MOFEXT+2hKfosH0rYs\nP4geBZ5BkNmD8T5+Czh4mAVjFPA+WNA45xxRxhH1uKFqmtYjP6qmqZrGGPOYiqAiUODhDH7UCkKE\n9Eovibx+nCPEBzIPIoIgdFKodhXQOBICbamqLheI5AG9gbx+MvsC03EcB5yfMcbpdNp13UajkUql\nQnWgxVshiVYZzCUpbw0AU+FYIOr3M3Iw1Et1yRjzgmww8LzrupxzVVUJQTzYDYwxRgrDvcqMngck\nH2FCeBAFhEif66Kcc9ft+e0GGWAI5O0KgtrlAQuqxIKYHcEJgWervA54MPe1EmTzCMLKEWVgv+C0\nF7SEEFYo81CP8+lXrMIYq7xnxe7Nn4HuFmFFURlHBGFV0RSi9syiBFjzvglEDEvsd+j4CjMvD1QT\n8CR4ggjazEVQs2GIhZD5QSKV7VQldRB1mXBeJ4RouoJxz++023VQoNyIRCLJZBIhVKtUg1OIOOdQ\nFavZbGYiOdrtaJqmqrobbF7AHKiMMcdxLpw7vzA/hzFGiK2vr+/v758/f7lUrmzv7nDOx8ZynY7L\nXGdsPLe5sV4uHdrNFuJ0aWnp1q2buVxmZ2dnd3uHMnTv3r1CoWDb9vLy8rmLZ9LptKJgt9OllF67\ndk1V1Wa9wTm/c+fOBx98uLOzY0Xja2trvsfOnj2LMR7Lj1uWVa3WCSG5sfFEIlGvNzKZjN3txGlU\nVbVms7G9tzMxMXnx0qXrZ5cMw7h3755t28lkyvf9mZmZ5eXld999F2F27eoLp0+f7nQ677///tTU\nhOd5c9MLY5nsQbHAGJuYmFhde3RYKuJyCbSs506fmZmZSSQSW5ubu1ub8zPTbY5102CNXpGy/cMD\nQsiFCxcgoVgilXz8+PHKo1XOuaprn9y8kU5mXNdNp9MXLpy7fft21/f8lj85OZmfGLvx8SfNeuPy\n5UuZTLrVak1M5P/xP/ofX3rllcPDw7v3bmOMferaTuvg4OCll146PDzcubfFOT9//ny9UdU0rdvt\nlivFTqdjWRYUD1YU3O12Z2anZ+dm2i270+lcv359f//w4OAgFot+/PHH+Xy+0qw4bnd6brZWq926\ne+fTTz91qR9LJrb3dlPZDFYVirhumQfFQiqVOigWotF4pVIBPqNYLC4uLlar1UajAWWgWq1WPp8v\nFovJZJJSCi5XwpsD8kQCZYKMImA8rlarnHPHcXZ2dgr7h4uLi4unTrm+X65WDg8PVV1LpVJnz57d\n3t6+f/++pmnj4+OFUimVSnW73YODA855o9F4/7fvzc3NdTqd+cXFerVqO91YNBpLpijlS0unL1y8\nTD0/Gol3uAvMxDvvvDM9PW3qRiqV4pzH43G72fpoYzOVSv2zf/bPDB3/h//wZx9++KGtEkqpqiic\n+SrRm81mOpFst9u6bhqaoWG16xKiKqqqem7Xbncw5+l0emlpaWtrK6ikWY9EIoBVXdeF2wqFuSKR\nCEYYIohc12WIi0TTrutCUi3hOgT4G5yhEOqnlOqFyQYYXBhWwVED4Z4jtEAgYFOAEpYC8wgxDirm\nssDbiGGkStTap5QHPrRssP4r9E4xBe8xVVV9zphHMes7slBKPT+sI8RD1keZQCqahgLrMkIIIeZR\nCriOc8ppjw5gjBWVIIT4oBMyCKBssOgvDsozUEohHxzQZsDJhBA4tzLpFVhdEB4ieefwIIWneEtE\nXWuaAbQW2meMKVqvDLPned1BhszzPAUpQiTVNA0RxHA/nRYkNSP9MCeiaER2+YZl1BQF3PFQoFOB\n1z3PA70r/AQemijIHCKLwuLMyMyHWAcuhb2FFO+225sRJirnUCWYYYxd10OIYYxVIoo6I4xxPye4\naB2E4F7fuA8wbSVI3CG2B0AZkckFq+HccjLBFk+KMRCJ1RJ7LGwMQm8jbo5m6hiyyTCPMor9njLE\ntlsQiKkoiuM4sXh0dm6mXC63mo223cKIJJNJjLHdcQhR8/l8u92GNn3fhYMLU6aIQvWuUqkUj8Yw\n4tVqNRq1ekEmmpbOpAqlIsQHE4I0Ux8bzzHfq9frzXp1amrq2rWriPn7u7t2x9V1vdmyW63WtWvX\nFpdOvffee2tra5VSORq18mPjyWRSVzXTNJOxuK7rn3766d7enm3bhhX1ff/x48erq6svvnDmte9+\n7+y5C7dv397b3b2//DCTyWSzuStXL+WnJrd3d4rlqkddU9PtZnP98dp41Dp/5uziwikIgV1dfTQ3\nN/fWW29NTU3t7u7+8lc//5u/+RvLspLJeD6fv3DhwsfvfQJlf+r1+ukzZyq16n7hEAJe4/FoNGpF\noubFC+emJvPpRDwRjzcZevDgQblctm27Wq1Cbk7w+zBNc3d3NxKJVCoVz/NM0zx//nyxUP7xT35i\nmSaUiNjZ2SEcNZq1tt2cn593HHt3d9c0jFgsNpEfGxsbg0TWf/iHf7i6uvree+/t7u5evnz52rVr\nkD1xeXl5eXlZ1/XZ2VmM8e3bt30P6bqay+XqjWosFpuayGOMq6XyxMTE/r7TtR3qdsvFQ9f1k7G4\nRpRGo1GtViHciDEGTnMPHz6ExNQ3btwolUovvvhirVbb2tpaWlriHBcKBfAXBddl0zQbjUalUpma\nmvre9753584d8CgBHbUVjYDRl3MOLuJra2uVWhVj7DhOo9XM5/O24/z2/fdarVYikagclmq12t7B\nAWBD1/c6bpcx9umnn4LHNULIdz3I4eX7vqKg3e2dU4tLkUjEtu033nhjcnL6nXfeqVarhKOV1VVD\n16dmZzzP293d7bjdZqf18OFDMD8vLy8vLi42m81Go7E0v3D21Vchp+lvfv3rixcvptPp8+fP65lE\nq9Xa2douF0sdu2UZmqGrnqthxDpO2zAjiXis03XL5TJR9YmJiXKx2Gq1tre3W60W4DhKqeM44OYD\n6fc0TYPatJ1OJxmNq6pKOVO4KsgkxlgzeoTQ8zwm4QdNstEK/AhcDpECHLCw/A3q6pAkKgRIHIuf\nCOnZs3poByMsV3ORo004KM6QTnRQuTHe88jkHCPMfUoxQpwjRDAnGHxwMcaKKqgsIkqfUkaMCBAt\nSC4NuIsQAowImLUx79uDfd9FCKmKohsaGHE4Zb7v08A5iA3GawGPIjS6AhsL3gW6EzKPjKsFlsZS\noQWxC1hSoYvhibeA64LKmAghUMt3u11VVf2AZxJSlqIohBMO1Qc490HrgBgNko0jBKWsAspESJCp\ns8eoCWaXcwU2SCaQGGOVcuE2JKLgCCEQDS/PGv5CYkHBapAgdk5wOfJkEUKapoj1Z4xSSpnH4BZA\nyI5HiKJijfTi4FVCMAoi38FM0CvfgFWMwFgNW4KBNoOSWt7CHigEyYQ2+KwpPVlTzC2g3AOmDokS\n9yPEBacppO3QnDHGnHGEmaJihDXU51kYpQiSHigq+f/T9V9RkmVneii23fHhfWRG+szy1V2mGw20\nQTcawHA4Qw45M+LV6I54l/QgvfJBetOrHB+oJS5SpHSXLrmke3k5xBhgZgAMMAAaPehGu+rylVVZ\nmZXehPfHb6eHHRGVjbmK1Q/VmZFx4pw4sf/9f/9nGKdRFCWTySiK2rBRLhfDMByNh1JKomtAANcd\ncS6JrnHOKZ1YsUgJENIp5YZhAK65rnt4eOi5Y9M0FxZeVSKibrcrIRgOh0r4mEql3GGHRmEURaZO\n0un02dnJ/m6+VqspJe7W9gvLsn7vd/9RvlT8yd/8VBn+nZ2dra4up1KpcjHPKUulkyuLS2dnZ0EQ\nVKvVWq1m2gkJAZBoe3v708/vPHj0JJvNBm7wxhtvZLPZ+fn5fL7AGGs0Gs16g0txcWNd07TeYMgY\nOz2tG4bFOaVchiN31B/UarXV9fUXL3YubGw8evSo2WzeuHUzl8sVCrnF5aVwHLc67fHIrTeaTipV\nqlZGvnf12rWNjY27d+/uHhyWy2XXdRGASru8ML8QRZHaK3iep7IBnjx5otZE13WvXbuWSqUUdtpq\ntdyxf+fOnVKpBCAsFAq9Xm9hYSEKPMMw1tfXer1eOp32vLGUPI7j3d3d/mA8Pz9fKpVqc/PtZqvT\najfO6o8ePIQQqnwh1US+2N6Zn59fWVpmXDabzdFoNBqNIIS+73ued3p6ury8DCFqNBr93jAIguFw\nrMw3wjAcDAZxHEdRpMwgGWNBEGQymd3d3VarpaS9w+FQStnv98MwhhB+61vfSiQS2Wz22bNnJycn\nCoTXNG1jY+Px48fVatW2bfXV9X0/kUio0biKOlAi4/X1dd/3R6NRoVDY3Ny0LCuZTFqWtba2dnZ2\nNhgMiK4ZhiEhiKIoiKNCoXDr1q3t7W13NL5582boB/XTU8uyPLd/cWPDcZwXL17kCoXLl682m81k\nMtnpdKq1WrvdDoIoncnt7O7X63XLskzbZow5ySRCSKUvHBwc+K5HCMnv5h3H0XV9c3Oz0+n0+/18\nPs8NohNNxGxlYXE06NdPTzuthqGZiWQyjOho2JdDhA3DNO2YsVar5ThOHMf94RAAgDWNS5lIpQgh\nCqufLOKUQgixpiUti1MGxUtnaVXtKJ84+0M1m51qVDjnCM3i/+SsVmGEGGNIAqwGZAir0ishRJhM\n1iII5aSsQokQB0Cei0aQ01UcMDkh8kAApRSCCw44l/ScrFmic2VGxmBqK8E5l4AjhDCAhBAJXha2\nSemCCLLfrP2zc1fo4KzlUv2i6rRmS+XkH0AAADRMTMtwHMexbIwnuRoepcriYuaYpI4yK8CzrYna\nnEjJAZAYT0rLb1TcGeNntt4rVFieQ6HPn8WsSs3OYkKyY4wJjhBSnxSlVJ7bJEnVpEIFI6sCLKjg\nytYbSYAwx1JACNFkIjt1YJRSEiQhQAgijRA4maOf7wblOZ3brGqqOnT+fPlX5xdADS+FmCmPX1Y9\nKaWUGE3r3azqSQkA0KFGJeCCqjQkCQGXgsYvueIISiKIwEADCElJNDXPV1VyOkxWV2PyBxLAmSHZ\nVynv53cK//8e50vs7Pnnz/N8VYYQqtGmepyfK6sbaDYtmL24EBRDjBBSo0cpJedUYc6FQuHo6AjG\nQCWqxnGcyWSuXbtSrVYbjcbDh48ZY6lMmjHheZ6GsG5olCIpY1VNZ67XjAkNwXQ6DYFsNdvZXAZj\nrOs6xtjzxrlCMZvNSAliGvb6cULXPM9rtRoba2trK8sPHjz4+OOPb968ubq6qoLzEMT379+nXBwe\nHpYKRSUmUbYbpmmGIlDUm06ns7S05DgJTdNanR7E6LXbX1tbW7t3//Pj4+Neb6BIy5qmz8/Xrl27\n+PjxFqUUCLaxvv7t735HSnnn3t2joyMuwP7BUaVcBAANBv12p/3xJ5/96uOPV5aWbt68efX6tbna\n/PxcpdvtptPZZDKdcFJ/96uP9/cPl1YWt7a2IkpTmfS1V18FQF66dGk4GJycnP3Fn//5P/7df1TK\nF+r1ulOqFAoFFQiIMe71ekEQqKqTSqUsy2o2my9evLhy5YppmqVSyR37Ozs7/X7/D/7gD4ybr967\ndy+TSbmj0erqijJS9tzRkydPMpmUUi1XqrXnz5///Oc/TyQSb7zxxqVLl168eKH0SDdv3kyn06PR\nyHVdtfoMh8NWu2maJiawUFw7Ojrc39+fn59fWlpS/aVSS/f7/eFwLKUcDcdQg4VCQWHCyipkb29P\nDRRVzpJlWYoIduPGjePj493dfdu2S6XSeDzu9/u+7yvPbUWNPj09VUZCCmdW4l1FrVIeIOPxWL3b\nXq9XKBT6/f5wOFxYWOCcR1E0HA6ZbjEhgBBcCgEkQkgiyBkjhCQzaWWRkU6naRQPx2Nd1wlE1A+F\nYepECzyPc44xPj490U1jbeNCzPjJ0fHe4cGw15dSQoxCHqkQi16nSymvN9tRSF//2tc31tc//PDD\n44PDpaWluUpVcBBH7Oy0YedTEMm5Sum73/6OYOyjv/u7zz/9XAjhjUdOMuU4ztgLQsYQEoamKbNx\n0zSVobRqBdT2KwxDzrlyQ3Ndt9FomKY5Pz+/+3wbnOsw5DTHbDKiwtggBJzz4fnKqv3VFgqca4tf\nPhmSCSlagmkrK4WQaMbGQlBI5bsE4NSQYLYETf4NJzsDzrmA57sIwEU8XaiZigJUBUCftmIYTxqC\nyQlyNlkPIUQYQwDV0stpPOt61XEJIgAABjCQEgoGIZQIgAmcKgkhqvc1DE31rmpR4lE0Wyf/Jyr3\nV9tWCKHK953BjbPNxOwEf2PdhucwgPM/n/XW59vo8xcQTptUKSU711MJIZh4ublRY1IhARNcsdsQ\ngGhCUEcCAgSAkGrfAAAAEJzzpSAK1oWzUo0AkHjyJgnCCCEOf9OWcXYu8JxF4+znCJHzdxfn6q6T\nhoEBULsNqMxn1OUlEEgEhJzAAkrHy4FgbDLvIBABLjFWqjZEJOBqVwEhAErTPWEASiQVReml4xUA\nAPCvABSzX73ccXwVcD6/AVGUMigBnJmZKTXw1NwVQgg1PNtOnp8EKwM/eW7nqF4fTc3fp39F1U1w\n6dKly5cvf/7FZ2dnZxBCRU9FCK2vLUjAXW/kuiMI4WDAwzA2DMOyHCkFQsAwNMUoFBJCJAnUxuNx\nwKiu66ZlAsIZY1tbW8ViUWnYMca2bQshmVSgA43jKJ1Ol8tFpUg5Otjf39+DEKZSqUKp0my29/f3\nB6PxYDC4cuWa53n5fL5UKkEIgyAYDgbdXkcyrut6tVoNglCZO5q2lc/nc7mcZprFSkVQxjl/sbfv\nu+5oMPQ8r1wuVUql00ym227dv3MnVyxUCoWFublO293c3CyVSozLXn/oB1Fcb/q+e3pa7w0GFy9e\nXF9fF0IkU7Td6Xz2+efDxvDGjRulakVCoAiUr9x8ZTgeUUoxwZevXJFCxGE0Hnu9dqfdaiWq804y\nCTGuzM1ZlrW7u1soFK6/+urR0VG5WlX4fxiGhmU5yeTp6elwOM7kc2EYjkajxaVaKpU6Pj5mcaxp\npNvuOAlr8/ETCGXCXocQMsa2nu/s7+9HUTQ/P68yCQAAa2trtm13u121MyuXy+vr6x988MHOzk51\nrra6ujoY9i5fvowxUgWAc76yskIICYKwUW8NBgMhhOM4qkuuVCqj0ajT6UAIV1ZWLMvq9/v9fr9Q\nKIxGo8FgoIw2T05OwjCsVCqGYXz22WfK/ETVGNWs2LatpFYqItowDMdx5gvzyvDZNM1Op6MuiBDi\n+fPnQRB0u91arfb+++9/9NFHilPWGwwMwyiVSplctj8cnJ2dURpLKbe3txuNhm2YjuPcu3cvCsJs\nNks5z6RSg35ftexe4D9//jyVSbuuu7C0GMXxcDQKopBoeiaXr1Qqnuedteqjsef7ocoMdkeDq6+8\n+t577x8dHdGYJ1KZKKK6aem6Wa3On5yccBohhOIwglJUy/l/9vt/UMhkH95/0B8Oe4NBGFPNTNim\nGXFBKTU0c+SNEokExi9j3uM4VpInKaVhGEoeDQBQfB88SZKZfqkRJGLaY00xz9kSiafpgTOk+nwZ\n/o3CAM4FxsyKwezVzhN/ZkfhnEOIORezxQdC5fKFEOJq+eVsQitT75pxKqdyWM45AhBj1TshAICh\nAYSYEBNYeKpnfbmCzdZ9Fb8BAFA8NdM0U6lUIpHYPz6TUgqAkFoz1V+BlywcTpnPOMbQ1HVd1w1g\nsGk6OPhq/zNbnGd1EXy1+UFTJvP5ag2nCPPsOeB/qndSne75S61egYmISzH74KBi8JzL+OHy5cQd\nISQBAgJKOYmUlFICCCBU7hYSIzSpJBIBAACcphdMZ/8qlQBKoJ6HgNpiTPXQEMUYzObT5ysXmlJ9\nVQFWHwdCaNaKzjZkswsyu1Bo6kMCIRRCYgSJgEwKAAFCEGAIOIQIz+5OiVRXC4QEBAg5qbfqUFMu\nNITTHAQhhRRw6hUtpiQI8PeIyr9RfSdnONMBoymnW0gJJnqkc988CKfkBXGOHCHPPWZ3wPkdFp6Z\nlQsBITQMw7Zt5c+QL+QqlYpKNlWcl16vVy6l5+aqiYRjO2Ymk8nmCpzzVCpzcHDQ6w8BAJZlU0pV\nKhnnPGYcQphIpjGGcRRoGEEI9/f31SeEMVYEHIxxvlQihDSPDzDGb33jG1evXm41mnOVcm2u2u12\nHSeRz+e7nX6X9D3P88bjIAgcxwlCt1wuK+c8TqNWq3V0fLj/Yvf111+3bVsZYarrsLm5+eDBg+HI\njaLY1I2knSiXqyIfu773/e9/P5vNLC0t3bp16/Bo//nW03ynsL6+nnLsQqnkffnl9otdXdeJoRfN\ncjLp6Lo+HPW/+OLLcrkcRZFh6rdu3drb24t8L5FKF4vFm6+9/n/71//3YqV862u3vcBvdrqvvnr9\n+OgoiONyPv/7f/gH/+//13/76P6D69evU0qV6YSCYZPJpFL1KGeos7OzbDarWr35+fnj42Pl8xyS\n8Msvvzw9O95YWy8Ucl9+8UWr1XrrG28aOnnI4ps3bxbz+X6/77ojz3OPj49SqdTFixeiKGq1mpzz\nH/zg+2+//bYKrtd1TUrp+x5CcGVl+forNxcWFh48vKeIeIyxw8P9vb29/+q/+qNLly6dnp4hhL77\n3e8yxijlGxsbf/KXf3bWqBNCsEZG7hgRXKqUG61mtVrN5/NE14q4xBhrt9vdfs/zvIX5xaWlpQ8/\n/NA0TSGEyjNuNptK1txsNtUaallWpVKZfXaKpK3qfbVaVaYfp6enShasimsmk4njWDXT+Xz+6vVr\nrU671+uNfU/d+ePxWFCGMfbGruRCgb1IJ4HnN5vNYqkU0rh+1vzmt7+1uLxUP2v2e8N6vZ5IJBOp\nZG1u/ubNm5zzn/7sp6enp47jjF2XUmo59htvvHHh8sYvf/nLerORTqbU0S3HVl9wTlkqm42C4Mc/\n/NGF1bU33/7G+996V4Mgonx3f//x5rNWu2k5qUyhKAEae64a36jzUiiR8hK3LEt5Ig4GA1WPbdtu\ntVomeUliAtOBHsY4nU5HlKq5gFouIUYEI8F+cwilCuf5aL/zj5lD3/mKghBWiCyEUFFjpmxtNQ4U\nbErZRVNWEcE6kAwhOa0yCAAEAJRCSKkUMBBBDKCEmEwSAYAACCGkeDZqOwHJS/+PqScXQhOPCgWf\nAyiEBIJxGsXhy3TeyaIKJRQSAUAInlCFpZSSY4jVdcOzzIZzbcn5Mnx+LZ2t1eeX1hmt9+UaPv0t\nhBD/Pbbz5HLM0nqmDlmTF0EYADCzJwMACAC0qX+FQjtmx0UIUQmhFArPVf+pe4JxThDSpk+bbV+i\nKBDnJDDnqy+GiCBMIIIQ4mnViOWEBT0b7c/O4vyuSE2UhBBxzM5fpfPD0POPWcmDQkAoEYRIADYN\napAA6LrOgYRCqo5SQiwAEgCS2cRdTWpVnP2kJ1YQ90ztDgAAgPOXnuC/UYP/fvUFAChbfDyNYp49\n4TfmDef/dvYQM3OyczmOs+s1fRsvXaBVdJSu65ZlPXv2zA88NbpDCCnTXc7pyenR0vKCruuZTHp+\nfq4yN6fr+ly1xjl3fY8zaRh6GIZxHOq6HschZURIXiwWC4Xc7ovtQa+b0dKc82fPnmUyGcMwuGCJ\nRAJCqEIClOHctWtX1tbWoAQsjizLWl5e/pu/+cl4PP4Hv/UP//n/6n/9P/7n/9LpdA3LarfbTsZE\nCG1tbelEswyt3W6fnJzE+UKr1SqXywghZWqYK+TPzs4QQulsrtFoZHJ5y9DnF2rj4cgwxvu7e7pG\nTMPYWF8lGLruyLFNy9THo0HPRcVi+eTkJJ1OXrhwYTDsCyl7vd7q6upwOGSCK5NkNeaEENqa8z/8\nj39y8fKFer0+DvxY8GfPn95+/bUnT57Oz1WAkIdHx7aux5Smc9l33nlH0Y8XFxf39/eV7FXTtO3t\nbbWR2tjYME2zXq+fnZ3FcaxpWjqdVpjt1tbW4dE+lKBUKrRarUIhv3FhLQrCdDrdbjZPj49TqUSp\nVHrnncuO4ygy2snJyWAwuHDhgqZpP/nJT95//33HcXzfbzabW1tbKp2+0WgkknaxWGw0Gs1ms9/v\naxrOZrMffvjh0dHR7u7eoD9aXV0NAnBwcDQ/P69pWq/Xy2QyqlE+ODjQNE01x81mU9f1SqWitEP5\nfH5/f59PswuVOZdy2J9l+QEAlPWmaZqJRKLZbHYHfYyxUokkUykIoWmai0tLQsr9gwOE8dHx8dHx\nsWEYaiKeLqT7/f6Tp5sqfjViVG0jVJzicDjs9/tJJ4ExViKoseSZZKparTZazZOzU9NyFhYWTutn\nz3d2SRQSQzdsizE2HI96g37SSXT6fSZloVymlA0Gg6STeLG7V63MtdsdShlCOGb8wf2HUsqNjY3L\nV64enr7QCcGmeXx01K6fWRq5+cbrly5cHAzHN2/eevut9k9+/ov7jzdHo1E2V8hms0EcqFH6bOLI\nGFPWaep/lROWaZpqA6ET7eU+G75c8bGmaeeyY2fiYAXBngc84Tm9KZ+aE83WB/H32NHnEezz6yk4\n1xmDaSc9W5oQQpBgDWjnWx+h8o+nDlmTZ0KMMVIlByECMYYzfisiUMTK5UlOixBCk2xEKQWEiBAs\nJRJCjEbD4XAANUcttOJlyAFAAM7MrQghmoZ1QpQY/Xzvfn6dROeo0bNhs5QSTTs89cPzQPTsislz\nuCP6Ku1otobPruFv7BjgdAczu+z8XPlAYAJszH6rabqY8pCklEBCAQEHUgJJJFL2zrPagQAUQOec\nq8gBKWf1elJ9NYQJxmiWtsclE+x83ZndHjPUXb0ZJXOYjPWnN8bsllOIrJzy52cXCgCAuEQEI2VZ\nKqVEmEAiAcS6pi6knPS3GEMEFNtuVgJnZX1yM321KCpU/fwGZ3pXfSUk+Xz1BQDM8HF8LhHlN4rx\n+a0EZy93KJxzpQiS51JQ1Bue3SIYvkzeUOnljLEwDAkhm5ubhmEkEgm1jyYEQQhVLDylNJPJFIvF\nMAwRQmtra61Wq9VpRyFNJpOu64EpN9227dOzE2XNH/juoNdVGJH6zDzPG45HiWQ6nU5Xq9VerxcM\ne/Pz88pHN5VMJBKJ/f39YrGYy2XDMDw6OlpZ30AIXbhwAWLcbN4pJwqCi+3t7WK+MF8t67qey+XW\n19cHg8EMylP+Sr4XvvXWWzEUH3zwQalQ1DCp1Wr70V4+mx72B91Ou9VqzM9Xl5YWHMfSTS2KoidP\nHg1CY21tbf/woN3urq4yd+xZthnE9PPPP2c8/uijX+fzWSnlLz74+dzc3MbGRqPd9Dzv7t37b7/9\nzS/u3Tlr1GuLSwCAnZ0dhACN4wsra+16/erVq6lk8sqVK4fd7uHhoXKdVNoqAIBhGJZlQQjff//9\nTqfjed7GxsaDBw/UNVfWxzym1bny1tbW7i52HEe1jwd7++q+JwRVq1XFm61Wq1tbWy9evFBj8tnS\n89FHHz1//vz27dsbGxs//vGPV1dXL1y48F++9+cvXojV1dU4jnO5nOd5moavX78+HI4/+uijZDJV\nLBY3NzchxGEYfvDBB6ZtLi8vY4w9z1MwiWVZly5dOj09VSbPBwcHCo7O5/NRFEVB9PjxY4RQr9fL\n5/NKKFwsFiGEg8GgWCyqetlutymlvV7PTiYAAI1GI4qi1dVVQoiCZLrd7uLi4mg00jTt9u3batdy\n/fr165evbW5uPnj08PHjx3bCIYTk8/ler6essmzbNog2Ho8rlcrCfO3o6IiOhv+H/9P/sdPv/5//\nr/+XV65e64/dBw8edLvd9fV1Qsh47Lqu2x30u91us9mUEiq62eHhYf3ktFqtZnLZ733ve19+cWd1\ndVWFWU22FLpxdnYmhLBso16vJ2w7mUx6w8Hdu3dzmSwAgFGaTaXz5RyVIKB86/nO2dmZZVmarfu+\nrwiPrusqEmytVlMGrsVisVAotFqtfr+voPhcKj2ZN4GvuDOORqPzhYFLoVAuhRXJKWtpJkaaLRrn\ntv5CCIGxNqsN6kBwameoiotympwWLPwbpV2ei4lF06RYcX5GpmRICMJzzaIEMxeBCalFYcIIIR2B\nWZepzkiVE6XCV7NztfqrU4gnOCRWEmUIVTYf5JwDKRECpm7oum5ompSSsVhJis63K/ycFHu2hM6+\nRFC8XJBn/F4wBf/PjwKnZ/ey/5n943wj+Bs9ouqAZ1VfADDzIoUQKuepmUycc25Y2uy4L0uRYkWd\nO/TkJy/dxSd7Jjn7LQTgXIOucFwAAGV0Rn5WnxGaitnOw+yzGq9IcLNLOru7lJXm3y/AGgQEGarj\nBgBAohEENSEhwVLOelcEFfAsAfkK7g8hRESdQRSGhmFAiIGUGOMoivwoghACwMBUnqyYjZpmiK/m\nSIhz5AgvQgAAQoCmITUrgRDqhhaFzDA0IUQYhhhDpRT0fV8AbtsJPwqlgIjoi4uriVTyk08+IxIS\nQmgY2gYyDRKGIZICY8x0wgWXQiIEIdIllBxITjkAIlMshmEYC+7HkWFo48B3UkktCuaz5ffee+/h\ng3vHx8eGYcwVyxkdrZRK26bZ8gN/MBj1+5AQopsAhePwdGUtf/XKvK1FMOgXbS3wRteuXr145Wp7\n0Pv87peJRIKzuN9pd0+SR4eHy6sLKdu69+Xdbrf7xuuvU0pv37zdaLTCgK6urMecffDLX0Iov/9X\nf6EZ+uLiYqvV8H1/fqEmGN8/PlmsLSDdSGRyqYQz9vza3FwUhPv7+/Hc3Fw+u/PkkZ4vpRJp27Zp\n4B/u713cWN3Z3qrNl9Ip6+nTp543Xl5di6KoWKps7x55oXTHg08/+ejqlYuapu282BZCOIm5lZWV\nzUePC5nc6elpIW+kUsmT45brHlGKW91GtlaIY7a1v+skM5pm9OuDlJ7WhfXRzz5zElbWKWDdKVSS\nIWP//j/+h2RC1zStVqt947XrW8+2nzx72mn2rl17JZ1OHxwcHLzY0XX9xdYzJ5m6fPHi+vp61jae\nP39eW1ji1y+fNuqNxmnfDYrl8tbh/uinUbVafbD9YmN1Y3lxqTWMXr12YW9vLwxC07T29w/eeOON\n4XA0Go0NXctmMr1ez3Pd51tPx/2egZGta+N+bxyEu/ce7ewdJRKJcmXh2fb+rSvXEpmClczix5sM\nSCtlq33Ye99955NPPslXFpeWlp4+3dx6vlOdK2dy6SuXLiOEPC8FoRyNRuOxV5tfiSN2etwxzUwk\n+zIm6VQhVSz0er1EJuMeH1+YWwjD0JeD/WYfgH4+X5TYefTixLIsn/lxFCVsXYPcAODa+tpnrQYc\n9XNQ9vr9hXS2trRcKc03O92knpkrLm0+20IEf+c732k2m71ez0KoUCiYhMRx7Hqe57pGNrW8tuj7\nvk89O22N4vjnn3y+v7/fHrjISsccfvH5/T/4n/3hcDx+8ODR3PzSoydP/Ij7YeALFIahqdm6mWs0\n2qZTuPX62/t7u8Xq4nvf/q3xaGAlU912K18pXr5w8eTkaG9vz0yapdQcsdOSaILDCJsexN/78Y9u\n376tE4IS+MX27qULtXTyH9y9W9h6+uz09HTUA5ZpheNu6HlQAlM3IYQnZ3XHcSzLWZhbeOWVVx7c\nv9s6OTFsGwh+0m3oup5OJL2xKxlLJBI05gQhxiLbtj3PkxBomiYZ1bGggmJIYk4tW4+iSDegaeu9\nXk83TQRRLCggGEIihCBIk1wErkvZOJvLuWM/jOjY9zOZDONSI0TTtMB3EeMJQ8NQxKEPgbAsUwpd\n1UWEMcEYQSgRVKwtqaJ7lBcImjRLSuYrIQSajiAGaFq3MIJYYwjGMWVSSIAQIpFAPAhNjhIJUzd0\niWgUhhHjBAjL0CNJhQAYT1ozjBExdCJiIUQURTxmAGNd15mQQRhl04XxeMw0PZvJSaIftJqK+cip\niELJOclkUrZtHx0cmKYuGZUQSCYgkLpGEIAsDBBCuq4buhmGIYtiiYBmmjqBQlBF/dWxRgydAxhG\ncRhThJChW5SdQxdUCtMMnFCkdIwV7CElxxgbGHLOhZBQCgQkRggTLBCmnPlCYAiIZnAEgjgSGBHL\nsAwbAMS5FCKSKlkeACYlRMDSNUR0zpnkwjAMgjBjDGkISsABn9RUAARBQsORlBFggRQm0lVaKOec\nMYaJzqjgnCNEOIGRomTHDGqGG0ZQCMMwTEJ8GrGASUYz+awQQjIoAYhDziXAAGGIIyZDGjPGAIIc\nCCEExEg1DAlN03VdMi65UL5VSHKLWHy6AQQAAG3CHSOzVlpKCSFWLiJSylQqhRAJw/AloVEATdck\nkAr7mvw9IbPOHZ5DxmdbIWniSW2GQkjJBIcQAApM0wzjSIXS6DpRfiVhHHme5/sh0ggEmIXR6ekp\naWtRFGHTUttznwvOKABAbdcG47HaoBFC1A6GEKRhaFmW67qe55mGrjonRUkVQu7s7r7+xtdMy7Hs\nxK8//jiKaLvXRxgTXRsMBpSJVCpVrlRLler2ixcMWK/ffi3rJA1Nn5ube/p4c2lp6X/3v/8XEoL/\n73/+M8/zDMMSQgx6/aRlv/POO7qJlaTM87x6vY4QeuC6BGlhGM7NzdnJRL3R4kBevXr16OTY9/3V\n9ZWdnZ1kMkkQPjo6un71WrVaPTk6ciyzVCqp9/zaa6/1er3a3DyE8N7O3t7eXuiXvfFwf/fF8eFB\nLptOOjbG+LXXXnv+/PmXX365urraePx46I7TqUwiUxwMBq1WS40hlby1Xq9Xq9V33nnn2bNnqtFJ\npVKZTObVV1/9/Ev/7Oxsfn4hjpnyQ0jnsrsH+45pQQjT6fTe3t4rr1w7q598/c1vfPu73/nTP/nv\ngyAoFouW6UAI3337nZDGg8EoCIJ+b/Cnf/qnpmmGYXj9+quj0ajVaNauX71x49ZoPG53O2o2H8Sx\nEEJNTD/77LP5Sm1xcfHJkye3b9/GuoYxPj45G7s+whqEcGlpKZFIjMfjra1nyWTy2rVr6XR6OBxW\n5mu/+MUvDMNwnGQcxzs7O6urq0tLS8vLy9VqlTF2cHBgWda1a1c0Tdvc3PzH//gfV6vVvb09L46P\njo4ajUYymTRN8+LFi8lkMgzDra2tubm53/qt32o0WgQbCSf19OnTdru7dLEWRdHa2ppG9A8//LDf\n6SrfruXl5a2t7dH4SEUl3rhx6+bNmx999FG1lGUsBkBPJJ2Fhfmbt2+Egduqn926davV6jzefLq1\n/eyk3mAS+VH8+RefIiIXFxczmcz+/r76WqXSSdcbh2Goa1p5ddX1RoSQMAzr9TqEkFL6X/7Lf3Ec\nx7RtzqlywWy1Wp7n7e/ve4Ef+j6lNJNK27bdpbFtmq1Wa3199fT09C/+7M83Lqy/987b2Wx2PBqM\nRiMppfLKqNUWu92u6lo0DQvOMMaWbRBCAs6Pj4+XFxfv3XvQ7/YODvZWl5fVSL5Wq20enPR6PSFE\nMpns94cY40I6u7d3EAWhcld1bFM1FqZpDgb9GGAAQKfTsUwTYTwcDAghgvF33nmr2+0eHBwABA3D\niFkkhCCECC4BAHEQmrbFGB0Oh4lEAgBAFcsJSUIQjaVqUAghuuFEYYgQMg1N09JY06LQRwjpRDMM\nAwrBOZVQYgwhwHEck6mxxuyBwcRlHqlp4rTNmsCzjGOMia6pViymbNYvSsClQEIIMenPuBBSkVQU\nMCCU8YViAjM27bO/QuoGE0sKA0IMENI0jUiIMQ49n8c0gn6v24UQjodDznmEke9GAADD0FSbq+s6\nIYRTBiFAGkGTqSJQk2nOOcN84sKPVXeMMSRYI5xzCBCTQgDIpVDMfIFidn4G/1KVM+m7fmMQCQDg\nYDpv/mp6hLIKnpw4QQghCICGyawbnDbbU7Xq1NMQQUgwMQxDw4RzzgCT+GX7p3Y/in+gXoRJgRgD\nU8MWJgWllHEJAGBcRtPLrjp+JKeTBTV/xQSfy+8CCCI5cThXflWT7YcSHDMeC4axpiiZimSFAFBG\ns7OTUrRzMb2GhPLJtVWN+uRsBex0+woMlBLoug4RgBgABBmTSkz+cloAoIQIYgIhnNCb1VuGECI0\nJVW9TCEELyOXlZUMhhASQlKplOM4u7u76vIhSHSIOOeDzlDXdc/zTFO3LAsDCKSQklPKz6unheCK\n6g0EplAOBoN8Plsul8ejoRDCdV0F3MMoGr7Ye/b8hakTPwxH4zHRtE63yxg3DCOOYyFhsZJPp9Mr\nKyuLi4t3Hn7sOI5pmp98+KvG6dnq6uqlS5fu33tsOonNzU1N0yqVSjKZbDWaYRCm0+lOr3Fycrq+\nvr66ukop9V336dOnw8H4W9/61lvffOfx48cvXrwIaSwh0HWdCU7jEEEZBl4mk1ldWarOlQEXYSGX\nyxWGw+HfffB3ly5devfdd7/44ssooqZpRmGgovpC32WcHR4eGvra8vJi4PlSym636/qB5/vD4bC2\nuPTo0aO33n0/k0ltbm5KyU1T933XdUf9fj9pO7Zt1mpzh4f7rjvSdZJOJweDXrFcCqLYDwOlzFFU\nVYQQ1rW5hdp4PHQDTzwW9fppqVK5/srVf/Ev/sXdu3cP9o+ODk/UdirwAh7T0WikAviy2ezFi5eL\nxeLu7u7+/v7e82dfe+ONzc3NhaXF8cgdjcavv/76YDTcerb9zW9+EwoEITw6OhoOh0tLKwCgv/nb\nn3qe98rVaxhjP4i63S4hZDTsB0H4z//5f+P7fhSF7Xb74OCAUprP53Ppgsr0zeVyYRh6nnewfzQY\n9pSLRb3edBzrd3/3d4vF4hdffLGzs3PS7JfLZd/3FBlKMPp7v/d7uq5DCAuFUjabff58ZzhwV1dX\npZT9fl/s03w+n0ql3LGHMVYj8M3Nzfv373c6vZjR9bUNzvnp6amu65cuXRr26k7SrMyXJY2fbm0K\nFo1Hg2Qm+d53vrW3u98bDe3hkHI4HLnptOP6AQJy2B806w3XdbPZbLfXaTabg8FA3ePpVCIMvIO9\nfUopIUSd49LS0tXr13/5y1+enJwQXXMc67PPPjMMgxDUrJ8ZhnXl0qVms7n5+PHy8nIU+DQODF1z\nbKtcuri+stzr9TSCFKNHzWsOT44zyZRaoOM4xBiHYSQkU8sl1rRer5d0nHw+v7y8/PHHH3NKr169\nurq6rl/Se9HfWZb17PlOOp1dX1/3gzCK41wuJ4QIgiD0fN8bX718qVQqjQb9yZrAxWg8NnTN0g3O\nWCqVYjFtt9tqA9ob9IUQyXSCc97v9zGyNU2L43B5YVEi0Gq1NA33ej2AoIaRRjRCMBRSMEYwtpIp\nyyFnZw3L1KOQ2rbFONd07NgmQsjANuA8joIJpAcEjWI5U6RMEGwM4cQdU1FdAPoK7go1IaUkmExd\nBCiEQNOIUHYZnHM+UVaqBdOwTNUg+r4POFeW6YyxKIok4KphmkGpEELdsGbIp8KHuYSKiECwLSTw\nRkNVWSCEse9hrGaNcjwcxmEYhj7GDiIYCKlpU3NKCRDGAADGuYYRBMpeGgCCJUYIYwKhpJRzyQVg\nkjMgGZSCAxbHXJx7M3hyKdTRz8Of4BxTR1FtEZiFEyCEMBIcqJGBGq9DBDAiGHPGlXAGTqQxYLqb\nmdDUAZRAO0eGElBCBKGqAqoMQyEhVI5aAEghAGdyak1KCJJSSsG4ADHlgnM5nQgAAFQaphBAwikj\nGADKeRQzyhReTWbQNJcQISCABAAzFlMhgASc84gLjLFBNAQhYwwBiHUdTh9ITgYWXKmSpISzmTcA\nSnwEpBQYY4TwJDL5nEMNmMLi6qF0OJZlKVhfvchsF/OyGE/BfIwnjC3GGMLItm3lB0YpTaVSy8vL\nrVar1+vFccxZZDkJCNFoNCKEOI4VhiEEAANg6HoymQJccEGBQAghhfpIKYVgAk9o/SsrKxCAZqPu\nOA5jAgAGIeQScwm2d3bX1taa7e6la68k02lCiOu6EeWGYYQRRQgdHx93u92VtdWTk5Ovv/b6pYuX\nPvu7j3wvYFGzVCrdvH39Z7/8dafXG4yGtVrt2rVr8cravbt3D3b3RvHol7/6kDF269YtFKJCoUAp\nvX//vp1MxHH85b27Q3e4ur5hmub+4cGLFy/6nQYhZGNt/dq1a5ZltRvNk5MTQki73XYcB+taOpdt\nNpunZ2enZw3HcWKM1tbWQt+jlK6urLSbjV6vJwSIGS2VSqlMNlcoForlzc3NwWBACDk8PFT7rxm9\nHkI4Nzd3tH/wox/9SLWng8FA8dQeP37s00DTjOFwSIgehNHGxsbpaT10o4jGhmUORsN0JtVst2LG\n+8PB8+0Xm+5wbm7O97du3rw5Ho8fP968dOnSeDze2LjQaDRUQuJSbUFD+NLGhYRlawh+8MEvq9Xq\naDTu9/vvvPPOWaN1dHB8+/btr3/967W5hU8//fT+vYeWZf3sZz8bDAbHx6cXL178zj/47TiO7969\n29vb55wmbSebKyjQeG9v3w/CVDpzenrqen7caA0GgyAI6vW6yiDSNO3SpUuKKIsxzuUynU7nL/7i\nL4IgyOfzS0sp5ZJhGsbNV2+k08larfbDH/5wYWHh2bNnP//5B61mu1AoNBqNUrHCWGwYRiaTefjw\n4c72CwBAJkPc4YhgXYXAO46jbml1V8/NzTkOPDrYb7ebi7U5l4eNdsMytGw+94O//EG9Xq83Wrpl\nU85DGiJDMyw9m0yr5dW2zIRju2PdG7tCCMbiGUeMEFQqVV3XlZIjDfdHg7v3vuz1uxcvXWBc9Pv9\nwHODwOOUmrqeSid7nbaGUW2umsukD3YP1paXUo79tNVMOsbZ6XGz2fzjP/5jKEWlVB4MBmqALRlP\nJtPKsdjUSRyC0I+jKNIwSqfTcRh6gb+4uBhHkWEYQUQhwMlEutVqXb16td/vdzq9Yrm6sLR858u7\njUbDspx0Oh36rrIZz+fzQIg7jbplWcPRQEsmkwlHlWfTMATjEMqnT5+qXEhD0wGS6XSaCe77Pga6\n8sABACzVFhAQJycnnNJcLmdZFkZaHMcxoibRlFEMIaird5LJxFC6RCMACMcwbMNQKzhDEkgCAUAE\nIaW6ZpPOTkoJJEcQAaT0IAIoIcdUvgHwJAJBcTYFUCweqYasTL5khAnG+DSEIISToSxjjKjUCokg\nhIwyAAUGUEoohIDTkbNl6DMSjErsUWu6kUxJKcMwdF1XMqar/tv3NcuRQgggRl6kkBLFRRdAEqQh\nACmLBISzNZwBdXzEgYgFF1xiIDDGHMqYM8oFl5IDKSDgUAoggDzvAPWSrvWVrh2AWQEWUqrBsgQq\nLEJCOFG/IIQwRBBCAtEkkkC8JMEhpLLzJi+LMEQScNWIUhqGIQKQc8UJllKFBJ9zqlJEAVWz1O5A\nNceEAAKBxFjZVkqJFMtAThMqJUJcCCAlxhAB5HleHLE4jjmXEGIAAZAAMIYQ0nWifK9iFkEINYwA\nAH6oEAiDEANByGMaRUxK7jjOROEshVRZvwhAAEjMlHnFTFw0EVZdu3w5iqJOpzMcjGkQqTMxIIZY\n4xLEMUUI2bY9wRAgBpOcC0WnVux8CQEU56o7hAAhBCAUADAWYYmVIZkfhl7oaXUDEqz6dyGA53lM\nSMMw1OcxHA57vV4qmTQ1jZu6rhNOI8aY1CZepqr6zphdjuNghJT+4caNG71e78WLbYQQJHoYjnYP\njykAO/tHlWLhlx99XJubv3DhgilldX7u+daOruvVZPLxk81er1cqFpU10htvfH25trS/u8ul/Ju/\n+fmLg0PVuDuOY1kGFmB1dTWbSr+4/2JhYcGwzfF4dHp65o1d3/cjSk9PT2NGwzAsFAqFQs6wzN6g\n/7Wvfz3od8bj8criYtK2pZRKrGyapq4buVzu2rVrR0cnT548NZ0EY+zF/t7a5cs6wRGEiURiYWGh\nUMx7o3Ecx7Xa4ng8zuVyc/MLjUZDQAAkuHLlytaLfcXR9X1fEXdHo1G5XHYcZ2dnx7Is0zQLhYLi\n+BBCGqftYrE4v1AjWD86Or7+6iuLyyt/+7d/6wW+HwYQIz8IEwkHIKib1tOt58/v302lUt/5zncG\ng9Hx8fHbb79NKU2l0uVyeXFx0XGcvd2Dk5OTo6Ojmzdvrq2t/eRvfjQeezdu3m63241G68at26lU\nuLFx8dKFy8+fbT98+DCRSF24cMmyrOOjUyFEtlhKpbNn9Wa73e71hxAhnViLK6uj0ejug/tL/aU4\nCAeDUSqVKpWrnPNUNuNHYRDTTr+naZphGE+ePS2Xy6lU4tVXX/3Vr361tLQ0Ho8vX7v661//ujI/\nl86UPvvsM0PX+/3ueJxfW1s7Pj7e2dn5oz/6r//1v/7Xp6enxULpxo0be3sHyk5v2B9ILo5PT3Rd\nX1pa8jwvm81uXFy/fev1//gf/6OmaVLwOI6LxaIQ7OzsxLRBfzjknG5cWNFIjrOYStEZ9EejEWOs\nUC37YRzJoFgte0EkhHC9caVSUT1Zp9NxHIexWAjNo3Ftbn57ezubTf8v/+s/7nQ6n332mQpB6nQ6\nh4eHmVx2ZW213W4fnxzlcwUVx9Tr9Tq9fq/Xm5+fr5bLyWQSI5FMmNVKoVLOszhiEDqW2W42vv3t\nbw9Hg88++8yykpqm+VGYtJ3T09MLF5ellJQaYehjPJFnjAYDxtjjx0/a7Van06vVavNLtcCPS6WK\nMPWDgwPGhIT48PBw0O+Vy2UhRKvVSiaTlqEDxgzDKJdLKl0qplGhuHz96rWdredHR0fYtgeDQdK2\nVpeWaRh1mq2Yx5lMhnMulbtOdm48Hpu6BiUoFYtA8sbZ6aULG1EQZjIZzuVgMCCGgW2sa4bjOGN/\nbGBsanqoEwkEAVKzTIyhppEoioDguq4jKFXNMw0DhBP+UcSoYsNOCFPipTk8V6JkhDHGURxQFnHO\nIZJE0wghAlCFFnAupOASCIgAAVBAAMGk2VXzVwhhGIacINUHzxBddSAFIMupyhxjrEBXFeOgm1gI\nwRG0dA1bpuJwua7rRwHnUvE3Z4vnS1oTQkIqZSwGGAIJgjhSh4USQMQIR8oVS0oYxBFlQgIoJaSC\nCwkhgBp4KQE6D2rOWtJZ9YVw9o+J55aAAJ37k4lyDOFJOy6EEBwADCHEEEEsEcIqbVFKiQkCfHIW\nVAIgAoX6In0yAxUQIAjxFJcNolChyGgq0lH/BlJAIAkEghAAMUQqMhggSIQUAAjOOZMScI4xlgCF\nYahAYggwRi9pyJRzTdMIIRJwGQupfL4wVOIlPHVrE0IAIRljQErBuerCFVFebeCIciGZsQeniR5y\nMBzGMfP8MKLxS3hdChXCxTnP5dK1Wi0IgtPT0/5gmEgkJqC02oygye5D0hhNbZwhnFwdZZcxZeEj\nZZ3T6XRGo5Fy3dI1nU/Nux3HwRiHfrC6uvoPfuu7lVKhcVZvtRrNeh0A4cZSeY1yThFAQgjOaRRJ\nzuLd3V3P87LZTCKRaLVaNKTlSjGi2mm9ibV+p9cfjQatTtt3xwKgpZXl9fV1iNHDB497vc4777wb\nRVG/3//t3/6HrXpjZ+fFP/oH77frvX/37/6dpmmPHj26+/CRlUyoDrLb7mTT6Y3VlcFgwAR/++23\nu93uB3/3IY9pEIQba+vf/e53Lcfe3z9MZ7PPd7aPT08qc9V2r/v+++9fXfnmyclJs9168vMnFy5c\nEILbtp3L5RAiewf7umY+29oaDAZXr14vFMuY6IHnPn/+vFDIKXlMKpUaD4Z3vrz3xhtvKO/A8Xj8\n819+kHCSlUrF932DaIIyQRmXgIZRMpn0oxhw4YXBxqWLAIB6vX7twoamaePxOGy1VIrOcDiMQiql\nuH//vuu6g9HItm0JeBiFKSN1Uj+zbfvo5Oz09LRWq928ebPb7QIAMSY7Oy8ghMeHRzdu3JBSVqvz\n28+fP3z4EGP8u7/zO9ls9uc/+9m3v/31/mBwcHAAANrfO8QYb20/T6fTCJFGo3XhQka9h4hSIURE\naavT/cnf/qzf7xumcj/GfhDN1xZXVlfv3LljGIZhWhJhzTSW5+e/uPcQTZJ2ZD6fUgNvhUX/4he/\nqNVq4/H44ODg7bffLhaLx8fHc/Mrw+FQBaaenZ390R/90ZMnT2q1RRUh/NZbb41HLmMsm89FUYQ1\ncuvWLSklhGg4GtXr9SAISqVSLp1RrtcqwclxHCH54f7RyspKMpm5ceumbRnFUqV5eiIkNJ2EhChX\nKPb7fQFQGMeUiYiFvcEglUop5pFSlgshIJRKCJDJZF5//TZCoNvtvvmN2z/4y78ZjUbZbHb7xXNd\n1zO5NMbo8ePHAADbtm3Heuebb//4R3+zvLz87rvvfu973xOMLiwsPHr0ZHVledDvff7Zp3EUplNF\nxphlm9s7zy9c3FC4kRrGHx8fJxIJFfWr0osV20NhRWdnZ6urqx9/8mvJRTKZzOcKQIJHDx/Pzc3l\n5yuXLq4tLCwdHJ0wxgaDkQAyDCIahYlyqX56Rll8fHJ0cX3j29/+1p/92Z9JKRO2c+nSJR5TdzzW\niRZ4biJRXF5e1nWdC9ofUjX9VYlVShmv63oYBd12p9Vots7qxWyO04hGQRRRTiPbShiGgRCxTYPx\nyDLMwPcsXRdC6hpOpbMxZ77vC8FU4ZRwskZrmqYMkTnnKAICAMOYFGAYS4SQ4lgh1aJBiaH0vLGU\nkhBN1UsAgAx4ECliDZeSYwwJ0SdTRggAnSDbhmEgKaMoEgIghIiOuaCqZswqmRCCCUkphxBirBGE\noQQSE51oGoZUcNvUM6lEIpHQCY6iyPf9IZW9Xs8wNCkYIUh1uoQQKnjMhDLfFABCRSYiJmfedDIJ\nEZQQIQmhgDCKo5hSxoSQgAPIpQASQYLxOX71DHCeenjNpKGKlC6klCpYd9KMAsV6loAx8DJOA6ma\ngwUQUiIkBQZYQgQIQtOI3KlJFpxqsSbqIADxVxOZZh35hHY+dSyZVGKMNSSp+jnGQkcxlZQxoSYO\nQAouIZiwmjUhAACMn0+FQqqxmWHpGGMhsY4xBjrREMYYEME5h0LSOIYQIggxwQRjxf2e+FUo7jcA\nEp/z2VLshpkb5YsXewoohhBalqUEDJRyCDnGWL2WkgnNlD/oq26iE8x7gjlDICBCAGOkSAmars3O\nQTcNwzJVhwE545xLiJPJ5GA09n3ftGzP8yilQvJCobC6uoqAdN2REAwAkEolfd/HUFIKVDfOOZdc\n6AlrMBgoQd7dL+6oILlMOtf3mOEkdcMajQeI6ECwy9eu1xbmkW6kMhlnMBAQHB4e1qo7LIr9sfvF\nF1984/WvPbhz9/+5uz9fnVtaWgqCgOja+oWNgTtuddqdTkfF+ww7vc8+/TSbz+aLBdXBLK2uSSkZ\n4198eefrX/96p9My7YTnea7vEctgjN25c8cUjBBSPz3r9zphsODYdrfdEUJ0Or1Op/P+t77z1ltv\nffrp577vCyEuXbq0f7TLKZ2vViuVSqNxpuu6H0ZhTH/x4S9v375dbzUfP3oiuGSMHR0dmaap4mbH\n43GtVlNGGaZpqoZYaTGHw6ES7w4Gg3q9Xq5WpZT9/hAAkEql6q3m3t5eJpOJ4gBjTBnTDcO07EQy\n1esPLNshWM7Nzc/P1xzHIYTcuXPn008/LZeqhmGdnJwMBiPGWKlUSiQSjx49ajQamOgSoNu3X2+0\nO57nMUpPT0+LueKvfvmra6++Yppmo95EAAyHQ9Ul2Km0k0z2+11EMMIEA6jr+tj3rlXKR0dHTip9\nsLv3+uu3L168+Nd//de6YRFCFhcXNzc3KaWGYTUaZ2oNWlhYODo6AgB8+umnX/va1548ebK7u1ur\n1R49erS/vz8/X11YWFhaWqpUKt/73vfq9Xq73T09rVt2AiD4fGc7nc5ijJ2Ede/evQsXLmCMLdMs\nFgphFNl2Qgjx+ae/fvfdd4Mg+NnPfmaaZiqR1DWCEez3RpjAdrPtjbzAcwu5jISkMxgpRoLfH0eU\nI0SCMAAIO8lMqVTc398Pw7BcLBmGQWmkdE26rivMnDG2/Xz/7OQkDsNsOn3jtdfUySpWkdptdLvd\nBw8edLptKMHSwuI33vj61tZW46y+srQYh16yXOKcX7p0KZPJfPrpp4r68JMf/ZgxJhlPp9OMMVVO\nNjY2Tk9PoihaWVlRuyIAQBzHEGNltwI1XK3OF8uVp892//z7PyCEvPdb37lx40Yu61y9tLxUWyiX\nyx999Otuu5NOJREEyytLw17/YPfF+spyqVS6dOnSUbvVbrcf3X+gDNWjKNAxSSQSNI6TCVvNpHVd\ntwwTYiQkAwAjBAzDSKeSQjDJ6VylamhEw47kgkahZej5XIYxFkVUI0jHxDA0EbAbr75KCBmNxwDj\ns3rd50wjCALEOJdS6rpOCBZAqpaXUjpTG75EQRWUChGTjHMuBJdcSMZt29YtEyppJ9YAAAJISqkA\neLYGoqnOlUmhOidN0yRjmqbpGsYYIwCVmZ7yY+Cch2HIGDOJJoTQNA1DJASI4xhJYFoa51wwTgjK\np1PJZFJKoRPsWGbWTDBGZ4imlDyOGcAIQcKE0iNpUELKhASIEGwYBpycHcQQAShUAcIYa1iXkkou\nVLguQIIIosgH0/3BJIZoqiEGql+fDiuhnHpBcymU7/akHRdy9ldCAMC5kJIgDAAQEBIppRJNISSn\nsbBCKGMpBAAEXAgp0bnwpVk7PpGJT42XVe0X50MnkQRUcCAhQggjTQMSAKoU4WKSd6kuCAcAiymD\nTCIAABUTtvVL/pNkSAJd1xEGBGEpJYVcV0AFY0gCDRPFL5t0mxBCJXpWOiUJyCx+S0wVx+oda9rL\nPY66ymqEpkhho9FoPB6Px2M1jymVSv1+X8nyZqrq6T3HlQkWmgrgVO870/BNudlQFQaT4NFoxCXM\n5XJENzqdjm4YSoi5vb39ve/9yYX1dVPXJOAASMaYJiUQjHOqBMcYYyiBkEyRgC5cuLA4X/v8888B\nAJzzp0+fSj2t6aZECGuGOxrkMunVjQ3JGISw3mwcHx9ns2ke80ajEYZhv9/dfhavLS1fvnz57udf\nnJ2cXr18Zey56XQ64qLd7y0sLNy6dWtpYckdjff29jzPG3G/Xq+vr66pnLh8Pu84Tr1e/0//6T/V\narXFTHplZeXg6NDzvG9+85utVusnP/pxOp02HXtpaen+/fuMMUM3/TAYj70gCJSBFCTYTiZ2d3cz\n+RyUUkHKqk9FANbr9aWlJUppr9sXQqh4htFolEyn4jgOQ5bJZFzXzefz3W53NBoJIYbDYaVSefz4\n8dzcXD6fJ4QcHBycNepe4Ef1ZiqVAgCUy+VGo3Ht2vUgCNqdjmmao/G4UCj1+8Mr1689f/5cUQRr\nleLd+w/L5XIxl8/lcq9cv8GZ3NjYqFarAAA1yT4+PgYAqOHf2PXr9XqhULh48aLrunHEcpl8p9et\n1WrtRhMKQBBaXV9/+vTpeDxeXF520mlKaavTplxErocxTKVSQRgdHZ/cf/Awm0lTwTe3no88/5Wb\nt+7cuZPJZGq12vb2tuM4Fy9eDIJA1/VGozEej1OpVKfTm5ub++53v/vo0SPP85aWlu588fnXv/b6\nP/kn/0TX9cebT/70T/90NHKvXXvFtu3dvb3BYPhP/+k/PT4+Pjo64lxCCE3HzGSy29s7cRyvr6/v\n7Ow8O3w2NzcXhmG33RQAXbhwQQmLu932YNDjACYcq9sbCQF4HGGsOclsHMPhcHDl+rVWqzU8PYtY\nFEfMtK3DozMYhZ7npVKp4XikFg7HtofD4Xg8/sUvfmnb5mKt9sEHH2CMHcdR1h8qFIRz/u677xJd\nw7jOOX/8+LFt28fHxz/84Q+r1epwOBRCrK2teW5P1/V2uz12h2dnZ91u980333z69KnjOK7Lksmk\niqNQAHgmkxkPW5qmXb9+3XXdMAwhhLZtLy0tnZ6eVspzvu/3+v1PPv10b3c34aQ2NjaePHny0Ucf\nvfbaa9/4xjcs0/na7dfKheL29vaPfvQjHkf/zf/2f7Ozs/PjH/94OBw2Go3bt2+f9rr7L3Z//etf\nZ9JJnWhcyGQymUomCUEHBwcnJydOMlEsFoPQ8zxvPBxZVl4lbSQcO/IDnWivvHINAaBs43oIJZPJ\nXKHUbrfHY48ypkC1dDr9nfe/5SRTz58/3z842Np6JoQwdT2CMPZiQIBiC0dRxKGEAAgA+LmwOYUR\nzpYvONXIquZSzapDGgshCJEKT3Z9jwhBBQcSqSZETonTyv6dTwu/aWiEEBZTIYTkXA1WuZRxLAAA\n0EooAEAhgp431rHSUPm+71uGxhiL4yjw/DiOCSHIcFTXpGKzGWMjz2dS2E5SMKrsdTGAsSIfIWSg\nCfEYS4AgkEyoRiiRSESAYQgjwCRnHHAoEAIwpnTWhiqHRFUaVJ8pprF1swIMZ8pdAPDUCFGK82F3\nUwsLhDDGVMUnqygqNAlYhBPjbnVcwSEAXKjgRSYAQJAABCZuG1g5aCE0tYuQEkk48fqGgFIaxzTm\nTOOCGEBIyBinnOuaOZsywHPAtRQQAigVU51zIBHWiPqMYkYhE1JKDSGdaGCa/WUQTZ0bkkDXdCll\nHEVKCjW5hRAC086egJcxEZxzztnknkNIAS3K7iuacBYYFwJwzlUNUFsz1WCpsqoG/gonRJNgLKa2\nEQghKIFgHACgYYIhAkICIDGcsOnUcwyd6Lrph+F4PNYNUxkVJRKOH3jlcnlnZ6dZP33v3XfS6RTG\n2DA1LrkCGCuVShRF3U5rdXV1cXHR9/3nz59DITOZzNLSEoSw2WwWi8VBgHQdLSwu6hp5+vSJH3if\nff55u9X8vX/0O45jKSD6z773vUaj8c133tF1veP2t5+/yCSS289frK6seF7Q7w8fPX1mpWwh2auv\nXs9m06436rc6o2EfCF6pzNm2uX+wG0VRwrIfP36sa1qlXBoOh7qu37lzJ18svP32m91uf2tr68KF\nC4NEAgBw48Ytx3EAQJ1ORwqQzmakhCrRvdlsrqwsKQcDjHGvdcoIGfZ7+Xy2VKoMh8Nyda5QKt+8\nefNP/uRPtre3X3nlFaIbZ43m5WyuUilcvXyNMZbJpKrVajqT/OKLLwzDCKMgaWqpVEIItr6+OvZG\nL/Z2dF3/xjfe2Nk/cl3XcZxGowEhPDo6jFms3kkikQgpC2l8cHDAqBgNXQjhjjueq1Y/+eQzZY59\n6dKlf/qHf/jjv/4RpXxhcfno8OTxo81kysnlckdHR6lUKogj4YInz57Ozc1BCMfjsYpzmatUV9ZW\nP/nkU8/zTk5O2u22pmndbndrb6/f7y8sLBRSqV6vp+t6GEdxHG9tbaVSqTCKNUNXGWf7+/sAgPpZ\n4wt6RzX0nuc5joMQWl42gyBoNBq5XO7GjRvvvPPmN77xjX/1r/7VYDC4efMmhFDTtNPT008+/jUT\n8rd/+7fX19c//+wL07Sq1Wocx5cvX67X68mMzRgbj8f1er1cLp+dnT179swwjGwmBQAwTRNCWCkW\nkinn5Pik3+8rWlYmkR6NRuXS3Gg4SCTS/YHXbD3OZtNxHD/b2vV9v9UZGpaZcJJMcCFBfzBkjDEu\nAABcCMe2vSBERFNrnOcFEGuVavXoYM9xHCHE1vb2ab3+6quvrq+uNhqN8chjnCvraY3opUo5iqJG\nq6liIre2tijzVYPV6nSWllZWN9aZFIsry0dHR5lMzjTN44NDSqlBNEJIwrJZbFFKEcKGYaZSKSBk\nFEWZTA5COHTHLIoppXHMuABMcAFkuVTlTD558mTr6bNSqbS6uqppWrVS+s63v7W7u+vY5sryYrVS\n+qu//sGbb75ZLpcXa3O2qbujMQBg6+mzfCa7trqaSNg8psNe33XdbDbd6bQ8z6u3mvl8fuQ2bNPK\nZNPD4VDQ2LYMTikxDNd1pZS2bRNdp5TuHexjpFEpBsMBAAAy3Ov1Hj15fOfOneOTM0KIcjs/Oaur\n1GrBQSQYgFgFNaqSoBQcKjtPsReVLFMVY7XgKmkfxhgKGYahaZqpdCYMQ9UESxoLPjFUVK/pOI5U\n4cdCICnV68dxDCWgLEYSEKIJIWgcAyCV91kikYAADcejOIyklNCQQRB4gZ/P5RiLfd/PZrNCCKUD\nlpqmG2a/389kMgihiHEAANEMxtho7CWTSd/37WRSQXSMMQI4RgAAICnngOmaZlg2AEBKqBkaTqZH\nQxdwl0bMD72MllGDW9UyoanBo1q9VfF42R0KASFUqAmEEAHIwMzQA6tYX0KIUrEIyiCABCKooRhI\nIThQU1MpqOBCCASxlKr1lQBAhDAAgAupLJYFBJBgVeA55zGljDE4rSkAIQXLCiE0y2ICwEhKCTmT\n4py1lK7rnHMah+qzRlIiBHXNhBAKIGPKOWMzfrGcGplJwbiUjFLD0DRN454Hdc02LCEEjykEgECs\na46CVYQQGCOIJ6JkKeXUD2XazitSFWdi2vsiOSufE48xgM/5bs/QZsUCUFxo9fGoYziO+RJDAGK6\nC0AIAzWSF+d8TwAAEYZhGCtBC9b0MAyF4FEkojBMpRLFYjEO/WfPnpmmIVi8vLzsBvHioopd8+Io\nUiB7NputVCqdZrPZbNZqtStXrhSLxUcPHw4GA42kOJeNej0Mg/F4bOpESC4Ee/Do0dtvv2kZ5v27\n9y5fvhws+vPz1W63v/n4SS6T9UfjSqVy/fp1KWXMGTZ0nwYhjfv9frVaJXCSFZHJZHLZ7Nrqarvd\nbp7VX3n12uuvvfajH/2oUCgsLCz0+gPTNEvVSqfdHo3H169cRpq+tLomhDg7O7t+/Xq5VHn2dCuK\nItf3+v3hwsLC7t7O8fFxqVhJJ5KAC13Xa7WalDKKom67U67Occ4fPHiACLkU0dri8sj1u93u6emp\nUvoihG688qpiXart8Pr6ejab7XQ6u/v76rt0Wj8Lw9D3fcbY2dlZwrJXl5aHw+He6MBxHMMwivlC\nrpBnlG9vb1MhE4lEsVCerxmU8na7nU7ZIz+oLSwNh0MnkUil0z/4wV9+8MEH+Xw+nUiGYViZq9Io\nHg1dy3QYFdevX79//z4AYHl5mVIa0zCtJdWt5Y7GlMaK13b9+vVerzf2XErphQsX9vb2RqPRK9eu\nzc3N7e/vVqtVz/PU1KNWqwEALMd2fW80GmVz+Wa7tbi4eOnylbHntrsdwzDef//bn3/+qYTAtu3r\nr77y5On2Rx99tH94EIbh9VyuPxw+efKk3W6HYbi4uIwQ2tvd393dVWvrgwcPdMv0wsBJJX3fB1wo\n1lsikdB1XY0GaByqy6scnoMgyBbyEMLBYBBFHGNDCMAZ6HYGmo6TyfTy0sZJ/azR6nqepxuWodsR\nZY6drNVqnfoLgpEb+HEcO44TxXQ4GmOMuv1BuVxWW5bBYKAyjIOIQuDn80XLchDRXT9sdTumpgsh\ny5Xq4eHhK6+88sYb39jZ2fnyyy91hOdqC2O3F0WRaZoYY4CgAl1Ho5GmGcqJSQihoYlVUBzH47Fr\nWda9e/cAAAsLC1ACTTOUfanneXEcKwfTjYsX04lks9nMFgulYpEQ0u93u92ulNI2dYxxKmFfuXTh\no4/+7pNPPomiKJfJHuzt379/P1suF3L5YrF4/eq1jeXVTrsNgHh0/4Ft24uLi5RF/X4/iiIBZDGX\n73a6UE+02y1d06rlEmWoXu/Ztrm6vIwQCoKgPxwnARy4AdINALGAk8Xu8Pjo//Hv/x2EsFarvfH1\n15uNthv4Y891hyPGWOBHCI8x1jDGXACIGeecCYmAhGp+CQXjAgHIVUaVhFOP/pfotGEYumUmk2lD\n16MoolHMJUASgWlAj8RYSinYxGmLEIInalcBIdSJhgnEAOo6mWCVEOi6LggHCCrWt6IYSYQjRtOp\nrOXYEDqmbmBN0wHIFArpZHK31YuiiAMZxBEAKAxDxjnnXAA5wSYJVkCxciLLZ1KqUYQEQCDV3IcQ\n1On0IEaWYVmG4XkBAkCHWHJxvrjKcw6UjDEhpkFPk4cEYALMKmbTDEJQMHvMKBMcAYwQQtO6ziUQ\nXFVcCAmGACnfDIiVfHZy6eVEiAvUwqtelkGIwSSWEZ2zN5u0tQhCFcmg6SZEABOICOMSSIkhVOlb\nUjAAAAZAI0QjxDR1LAVCiEuoaRQGURDHlNKIUWXIiCY6J4CkFAIIAdQIA0JIIIKEIAiVVyOSAEmg\nunY4naBzIYjiQ2GMZw6ljBHVSoupsPrlOUzTeckkMfelKevsaarEqjkHAAADiSCQCEqIXoYvAMii\nGEKIEAFSAiHg1PnS96NZ2y1jqjRO6upwzk1DkxyPRsMgwAiAev00X5qvVCqC8+PjYymlZVmEYE0j\n7UbDMIxGo7G5ufmt997LZbP5fL7RaGDDmpurEIKbrXrSsTQNM04dx7l4acO27dPjk1artViruUTr\ndrvdVjuTyVBKt58+u7i+kUgklG9wab66tfucCh7S2DRNf+y2223P81KJxO7ubuj5GxsbN1+9wWK6\nWJ2/dvlKu92+feNms9O2LKtQKDx9vhUGwcLCgmVZYTb/F3/xF0EUJlPp69evB1H4Z3/2Z//0D35/\nd3d/e3tbNVtRHHzy6ce2bc/Pz19YX9vb2xsFQbvdNix7ZWWl2e42Go0HDx4owagS3qTT6VwuNzc3\nl0mmFJm2WCy2Wq3jw6MgCBBC+XzeNM2Ixt1uN4qiRCKRzmY0TSPYOjk5hRBUS2XXdTOZTKFQuHv3\nrnIYsG1n0B91u/1EKtnvDTzPw7GnAG2AUbW2kCuWdnZ205kcgPCs2UilUmtra4eHh+12O5VKdXpd\noYG1tRUpZTLprK+/8+Duva2tLV3Xj08OW61WIpEwTbPdbWuaFtHY8zwhZLvdVnz7IAg6nZaiCI1G\nI8s0MMaYoNFotLe3ByVYW1uLKUsmk1evXtV1/d69e1euXBkMBgcHB1JCjLHruioo3nVdy3I4l5qm\nIQAGvQ4AwLIc0zSPDo+Pjo4UYE4pHYxH2PeSySSEIIpCBTB6nqfMEGLO5ufnLctqNBoQynw+G4Z+\nvR4Pe/0oiqyEE/oB55xGSH05CSaMit5g5LmB6wVCAEJITHkURRDg8Xjs+aFK2QrCGGEtEJEfRPO1\nKiFaEEZAyNXVVcZYp9MDgEdRVMhm4zg+PDwcjcaNRiMIwmw2Nx6PvSBKprO6afcGg26/H0RUABRQ\nhnRDUIYNU0O41+9LKQ3DajRbcprVoygkYEpSte2Eruu93sA0zf39Qw2TGzduDIdDx3FarRbn3LZt\nzvmlSxccx3mx/2L/3lHCcebm5gghlm4YkyEYRACsLC3FjMa3bm5t71BK5+er6xfWfvnRJ816o5gv\nvP/et4q5/LOnTxKWnUtnGKWLywuXLl9oNpvbL148efJEhV+ddk9STsJJWGcNnk2nivl80rH7w2E+\nXxQI235sOInWyVnEpR+MxXAcuiMIIYC4Pxw4jkM5U26vrZ1Os9FyXRfrhhAgiqhtGRBrnjfiqmAw\nplYwIYQ+4ZBCIVT9BQJMdC+MUgBhFFGMNUM3IIS+74/HXhRROaUBC6nEKwBMLQ9VPzOBOqclXMe6\nhjAhiDEmCUEI6rpu2PpsIK2eHNE4jCUimhh7mqaFMRu4Hudcw9D1g+N62/N8yrjwAsZYEMaci4jG\nMpaMcdd1mVTNldT1iXZOsCm6DqSU0iBaIpHo94cKyNQ0jUUxi7kQIvJDpL80KlEW2LMWboaxT2uw\nAAAwSsHUfhITYlkWIlhIKZSiSEhCdJ1oECPOGKdUYKiq74yKhiQQQjA5kbkqY2ekwp6nSfOz0vOy\n+MuJTAqd/4mUQRjFXEgJkISCCaZAXQCEZCrZEAOAEUJQahjZlkE4hwRDRGImENak7wdhyBiP4xhC\nDIDAACIAGZKYCwj4lCPGkQRTY08IuEAYKcAZEYIQooBBCDFCRHCKMVaJT1JIIBGGAGuEAikgQoDP\nTk+dRhhSpbSCEAmVqwkhQiiKIoygrhFCMOccAokRNHSNUR9jrGuaGt0LITiTag4PEYQSAKlcpidp\nS+pYisRIOdM0DUyh6Zm7DcHItk0Wh71eTzcTdQjG4xFjlDGGEByNRtvPto6Pj23bjuO41+02Gg1V\nAxzHQZr+yvVrlmU8egKPjg48342iwDC15eXl09Pjs/rp5SsXu63u3t6eY1rXrl2rLC29eL59TI4S\niYSUcjgcer4v+8hxHGIa6rsRBEG/29nd3mFRvHh5LZ1MxWFEbOyP3a2trUw6SRB+9uwZpfTwYP/k\n5GQ0Gp01Gw8fPHjzzTddP3CSqe0Xu8+f7xSL5evXX8VY63b7jMUYgkK59N577wZB8ODBg3Q6XSoV\nARCFQkEIMRy7u7u7hVJlY2Nj5HqPnmy6ruuHUS6XsU3L932EUKVSefTo0cHBgWEYuVwumUym02k1\n9VfoUBCFarMFEPQ8T9f1Ya9tGIaUQmW2nx2fjMdjXddd111bWzMM697gke/7um4EQZTN5iEdJ5Kp\nZqudSqWarXb7lx8apv7WN99R2xeEgJ1MzC8urKyvXVzf2NraimXUaLSgBIyx8Xhomno+n3VdP5vO\njH3PHfuNRiNbyIdxFEbB1WtXakurv/jFL6rlotqEIYSuXr26v7936eKFUqm0v7/faDQKuSynMWPM\nMLTFpeXnz5//7d/+LQAglUrdvHHr2dbTn/70p/l8vt1ub2ysXbx4sVrONBqNra2t1dXVJ08elcvV\npaUlx04eHZ0cHh46iaQQoFyu6qbRaDQUCd80DS/w1QZSMYPUPZ9J5N54441EIvHf/Xf/nYqgVtYl\nlFIhWKVYaLZcIRhCIIqCVCrluq5Kpxh7rqIWx3FMua/rehQHL3a3NSLdMDIMQwDkBRFCCBGNcZlI\nZY6PjwVjiWRKw0Q3dtWXqNvtIYQwIa7nAYhT6ayQcDT2TJNfvnx16Pnf/+sfEkLsVJJSOvR8yjyE\nkBuGpqYjXTd0XbftcqV6cnRMNUYQNk0znUhO1BQQpVOJer2ezxaKxeKXd++mUqn5hZphmd1utz8c\nRFFk27bl2GEcaYaeTKcg0oHkjDFvNOz1O+2WnkwmcvlMuVzmgo6G/cuXL1uW9XjzabfbtcKgUqmo\nT3b/xe6g3x0Oh0u3X3v7rbeePHn0q1/9ynEcLsX1q1drtdqTzce5XK48dA8ODkajUcJ2FIjKJUgl\nUzGjlEszmfRj1uoNhp5POQtjRlho2aYfh6PBsNsfDsfjsefduvVar9cbjUbJZHp+YUkA2B8MXdcL\ne0NTQxJO3XmRnCKNagGUUgII8Kw6ICgZZQBINR0XQoQxU9pcAACGZEI7krOA3pfRCAgh9VuMJkbW\n0wbxJawIIYQEcxpTwQEABCIwSW4HQRh5vm8YBmOs2+3OwqddMXNpjoQQTHAAAaWUYN00NcaYQTSM\nMedxHEecM48gVWgtQwcAKDmNBWShUOj1B2pDFsQRZQxCGNJYg1NcFwA4DU+cbim+EmihGmIiAMQI\nCDHDRzVDV2VxCqNOrgVjjHKGJEAYAQCFhJzzWVxSGITqmqgCjOHUgVE/l6gHAACAgwmqOrmkXzXn\nGvnx5A0LJISIp32mOimDEAElQgBILnkEuAGkxBIBKHWCDJ3EXGecC4g8PwSAT4ooRJBJqhRqSNIo\n5ogRiAjGBGE1TFKYE4QQYgzOca0IkoJArCEIhNIfS8UpF0xCCBBWra26VYAUUMOQEIQVIAChVPsR\nBDkCGCIMJadRFEXAMJKOZRj2cBBgjDB+yV8AgAOGDMOAEEoJX8rVFRcAY0opIsQwDB4KzjnCWEpp\nmSYAwrbNOJQ0ChE20+k0xpAxVq/X0+n0/Px8r9djjAnKDg4OhBDKuEOVnFar1el0qtUqAjoUPPTd\ncb83Gg6iKOCCAkkGg16lWFhcXEw6iedPnz18+LCUL7zyyiuqh/Ncd3//EAJQLBbzpeLh6QmVVEDQ\narX2C/uVYvH69eu5dMYbjWPMLMswNT1wvblqlRAChJS8RRlDAC7O15BGNH3V3t5++mQTQzTo+wdH\nJ1gzzhqtP//+X77/3jcXFhZ++tOfthr127dvD4fD+w/uLS8sXlhf0zQNIXB8dLSwsNBsSk3Twij6\n8MMPVYBgu9NNptKK89VuNtrttormPdx9cXBwoObliVTq2rUrMaOPHz/WLTNwA9MyMpkSF6Lb7Y5G\nA8uyysVKv9+P41gv6mEYDgeDVCq1sbr2wPPq9bqmGVLKdrvDqOScj0ZuHPSLxSKKqGFb7UFv/8Vu\npVKRUvZ6PZ1M0nscx9lYX8e6JiBIJVPD4TAMQ0ojQ8OpdAKfYSm5aot39vZdz/v93/8nz3e2v//9\n72MNNZot29SVTKjRaERROBz0FxcXq9VqrVaTnO083zI0UiwWVWuo9vWWZRWLRcbYf/7P/1nxzgaD\nwdzcHMbav/yX/7JSqTQajUqlYtu2ZZgAiF6vZ+hWrTpHdCOTyQRRPByPwjDsDQa5fCaKoohGjDHL\nMtyxq3b06XRaCNHvdDc3NxXkY5pmGAQnJyee5ym903g85jTKZzMrKyvdbjeRTj18+NA09ZiFhkkA\n5J7vM85t27YsXQjBGEfY6PV6hUJBNy13PLYsSyPaWaNlm6Zh2ZyyZ893aBR5QZjL5SLKPD9ULAeV\nZ6VpBkBxuTrf7Xa7w9FwOPSCMJFMxly4foCjmAuaTqfrrS4Q0rFNpemyTUs3DQgQZ8KySD6fTyaT\nURAGQUAIGY+8TDqXSedKpUo+n41CiiBRp9zpdBIJe36+atum41i3bt2488VDIGQmk7F0zffGYRjk\nc+mF+Zptm4V87sGDB3Ecr66uhjS+++W9erORzBYQgKapD4a9ubm5W6/e2Hzy5Aff//54PNzd3b10\n6VK1Wq3V5m/durm4tKBp2ojLX/3qV8+fbfmhNxhhCKFp2yPXDcO4NxwJCM9a7d5wFFBmJ5IUsjAK\nFlaXXdeVEGoYLy4ujocj13Xn52uMCwgxY8IPQtf1OedCQjVCA1xACLEEQkjGBQRC4QEQTAIFJ8UA\nQjTNjItjZSkYxExgrBGM4DQnCQtB0VQDqoqEMvdX+bh4+iCQYDJVxEi1ZioHNzBJIEYSgBm+SCmH\nms65HAdRGIZazMIwFLp5blyIMCYAAMr5aNhLJpNB6GUyGZ0gTiWNgkiIVhwyxgxNT6YcHRMAJOFa\nzKhhW7zXG7jeyB37cYSJRjQdTZEA9VD2kCrwUUqJ8UtF0GxWmk4mMcYCACuOfLXdl2ISEqUKOYSU\nMQiAonQJwXVCIEYRjeOYqRQsjPEEhFdFF2COpDLxAAhDICTgcNrmUkojSiemm6o9RgBIlXapDB2l\nBJBJyYXipQEIINGQhrDUINQwRkDQWAouONMwBFJAIbiUQHIoOXjJcpfKIETDRErJJcAQaTqgqqVG\nWBIiIFdturosCCENQg6kYJOpK9F0QgjGBEkBpORTurLagkmpSGBwwuIDUCiyCTwX4DVr8NWORkHw\niUQim81mMhkWuuoGFZQq8hgCACJAKZfTHQsUEgOIEQYASIImCD5EAABd13XDAABIOdECYghs00in\nkxhIKaVmmJzTSqWk4hwiPwAAqPGGSoVTTLEbN25sb28Ph0Majr/49OMwjtqdFiKwNlfBOvZ9fzTo\nG6YeBdFnn31WLpd/53d+p5DNlUqle5ub7nBUqVRWFpeSTuKDD3+hW6ZuW7qtl6qVTCZTLBVy2ZwM\nY8MwnILZHLVajUbhUtYdxwvztbn56tPNZ8Nh37Kc46MjJ5FIGIZtmTdv3jw5OaGUNlvtZCqbKxS7\n3S6n8Z279y+sr7711lumrlmW9fzZ0yAIIJSWqROCVMP9xRdftDu9y1ev0eHo8OAokRrN1xamCAz0\nfd8Po2w2y4R48eIFAVL1aicnJ7ppqi/AeDyuplMAAMuy0uk0F0J9zzOZTClX2N7a0gzD1I2xBOl0\ncq5aTmeypVLpyZPNufmFt77+1p1798IgzmbzvV6PS97qdghEYUQzmczqxnqr1fr5Lz5YXlqsVCq6\nrp82zgyiBUHQ7fUODg6uvnrpypXLR0dHX9z5fGGuls1mMQLzc5VKpdLpdLLZ9P7h3q9+9SFAcHV9\nTVmkIYSePXuayWQs07h4YWNzc7PdbnY6rSePHmYymY2NDQBEEATpdHLY73/22RdRFCWTTi6Xs21b\nkYFtx1Lf4bOzszAMG42GYRjf/OY3G41G+tVXj46OHj9+3Gy0CdGr1Wo+Xzw5O91+saOkOBhjz/cx\nR4Qgznkul1OmWo7jKK/NF8+3qeDZbNb3/aOjozAKEIbD0WA0GnHOCSIIcsEj3UCZlJ1K25qmRX1f\nbSkYC23bzhfSrusOhgPHsWJOiGGU5+aEEPV6I4ppNp2JKOM8SCeSRMMnJ2dqiBuFVAroOEkIcRyz\nTqfXbHdt27ZjZieSMeObT5+m05lMoTBxBNN1bzSam5tL5fK9wSiikSkxp9xz+7kM14lmJxyCMARy\nMBiEfgCgQAh5Q1/XDdf1jo9PdF2HEN+/f39+fj6KonQ6fXZ2MhgMhsNhv99jjHmeF4bcG7uURQQC\nXdcd20qn07apv377dhBFN165Xq7OuZ6XyWRe/9prQRgdHte5RlKJRKfTGQ9H3mi8s7PT63VYTIv5\ngud5KyvLr756DULgBv5nn31GclnLMtLZVK/bpZQ6juMF/uHxiaab9VYL6UarMzATCV0zOdY45HYq\nPQ7C8XgsIbScxFyt9my42el1U+l0Op3t9QbNZjOmgjJhmnYy4UTUhwgJwSFCABEhmJRQQgQQBlxM\ng3ImgznFXQUAUMo5FUAKSikHMpFIRDEVQkrIEUIIEQyQQEBwANHLjPPZ/A6qkTBRa6AghCjhEkJI\nAo4JUQnDnPOQMowxJBqCiAEhGA8o4xBBTZcYM0gggBLAqbnEJAdWCHHxymWdoOfPn88AbQAAhsAN\nIwAEJJhKoWFECAEEx4K3O/1mt0OF9IMoZLGt6QJDrOsoZrMOWDX0choNB8DEhQpjrOu6qsfVXFFK\nCTFiQgzHo3a/F0ShhNKY8LcQBxJyocbeiGAaUVUWhBBAMAgxQPCruXwI/L3HhDh8LpN+1tROwIZp\nn4w0jXPOOOeUq1IFABBYEM2QUkAgCIYGwQwIBARBwDYNCRETQHAJJzJtCcDEk0tKxiEUQkipaRww\nKHQDAzCx6+RcCgkQAAghz4/UpwygEl7RCUKgYQIBBEJihDSiq8sqOEdQCimUOwsEaoghJZAISCkE\nn8YfKVxGSCk5k0IAgDEEBEEMARBcMDoLsJ6U6skfAU4nAmcpIASAoMknF0pGCEEYU8oRQsViMZfP\nDwaDVrOuzp8Qkko4mWzKHQ6CINAMgDGOoigIgjD0VVCXYRie52GETNNUxgtra2uFQmE0Gs1Xy61W\nc+S5UAqd6JVKqVarjX339du3HcfZ3927c+dOuVAsFco8po8ePQJE+73f+73A9x/eu68UpYZhHB0f\nH9ePL1+7+uabb1ar1WqxfLZ/eHp6Wsrmk06ikMu7rjvodU9PTyM/ePZkM5/JvvLKjWQy2Wg2Dw8O\ne4P+ytp6JpNpNBqUs//5/+KPPvvsM4xIOpPae7Hz3nvv5TKpXCb9+MmjOI5XVpYc2+x0Ou4oEkJU\nKqVnz54JCQeDQX8wXFlZiRlvNBqEEKUKMw2dELKytMgY6/d7mpRJJ2GVbMMwmq1Wr9dLZzPz8/P1\nZtP3fYCg67pBGHqeF8QR0sjp3pfpdNowjG6rrRt61AkfPnz4zjffo2GUSCQ4ZY7jpJxEv3fqODFC\nZGX14unxyWg8COJI+RJnMpltALq9vh8EmXRa100A5Un9TIm5nz171u905+bmUqnU06ebq6urCCBl\nnCmALJbLCwsLn3zySXV+bnF5aTweW2ay3W6XSyWE0P7+PiEkmXQ8z1O+ifX66VtvvZXPZh8/fvzw\n/v3hcMgEsRNONl94sber0gVUNq3n+6ZpQoR0w8Aaee1rr2dy2d39PY3zMAw1TEzTHI+9jz/+eGPj\nYiKVxEiDEKTTacexojiGCFiWEQTBKBxajg0hrNfrSkjt+z7WNc55p9PWdb1YLDqO02w2OefFYlEw\nykV47/7nlIvsWTaIIkKSTsIUQnztjdtxHO/v78eRz6gvRUSw1R16juNARAJ3HMZMSumHAZCQaPrQ\nHRtEk1I6iRTBuNXt6boOoigIAjVCnp9fiON45I67m5vpdIYKISCI4ngwHGqmZZsWc729w6OR53e6\nXdswx77vmCbWiLIXRohoGomjcDwej/hQAq5jwgRW+RbNZlOlpyj2pu2YKlySMTYY9N3ANwzDD9zF\nuY1mvSElRxivrKxsrK9VS8V0JqkZ2uPHD/P5/Pr66hd37iqTcNbpXL58cTAYACEKubwCKgAAlUol\nm87k8/kgCpeXl+v11mg0iqKoUqnsddpj38tkMsVCodtq1+v10cgluuaNR0JCIKGZSBiJBNT0kR84\nmbzNvf5wcOXylVI+R+M4lUxBCA/2D5UCNZFIIGIQzQjC2PfDKKS6pQMAmAJGCUZC8AmNFkoEFXcX\nIjQxpCRYcDU4jwEAmBAhJFPN0gTVA4gATcMYQqq4S1OjBTgTxXIOAIgBRBxwOPWvmK6VQk5QSYkg\npTyKIgChkNDzQ8oZZ9KPwogLhDWJMdYF0o1pdZQISCEBhAhj/O1vfzv03W63SymFUgAxcXykEmgY\nCggixrHGuAA0YCPfa3U6o/FIAhRRDhDiCMQ0toilTRFUzjkXL5MMZj0YnFqaWJah67pOtCiKiIad\nZFI3jZDGEY25BIoXxgSHEgEAkAQIIQyAmr4DAYGQhBCINSY4j6liJgMAIMRkapyCAET4ZdIwPld0\n1WvOZsMQwokfCESU0TimM2rw7HIxxqRgWEOQIAwllBIBSaNQhR0wKSXjs1ADTdMol5xLICSAWEIk\n4EswHE5xDskFVsafXMy4V2JKMgAAEIyh4iCreTuEynBjmteIlL/ky02HAlLUhcbTYMXZjkMR9yml\nKguo3W7zOEDnEiilADMB3OT+Y+cDtAGfirEUslEoFGoLC5ZljUcDAAwIROC5UURUZksmk5FQM01z\nNBopQ+NUIhEGsW3bEELP8yCEuq4fHh7Gcdzr9sulyu9857v3Hz44OztptBvNdst13Vw+W6mWv3br\nVn88XlhYeOONN/7q+z+wDLtaKlNKDScxGo3Go9HVq1ff++bX7j24my8VNy5f+uSLT6IoOj09TSWc\nhGn7vs9jms1m7z65++zZs1u3br16/ZW//Mu/lIwrk+RPP/20UC4lHAdCyBjzfDeRSAyHQynhX/3V\nD01TX15eBlBirMVx3Ov12s2G0pLu7e5cvnwx6SQ8f5xKpbLpzNtvvz12/Y9+/QnE5Obt17e2dzjn\n5XK53W4TQizL9FxXUZaGw6HX71+7dq1YLrVardFgoO4exd1NpVK5XK4/GIzH4ziO/TDodrt5K98f\nDhS/1+12KKWD0fCnP/lxvlBaWVl5+ODxl19+ybkwdV0IUSwWd3Z2pJQIa4VCfjgc1uv1d999p1gs\nPn7wsNlslEul+fl5nWBFsMpmsxKGg27vyZMejeOlpSXOebPVmJ+f13W9XK00Wi0VCSCE2NraKhaL\nmZSua9qtmzdbrRbGeHd3p1arJZ3EtWvXstn0f/gP/+HXH31UqVTa7fbh4eG1a9fylcVPPvkkDEO1\nXctkMso7yXFszrmS7jSbzQcPHvzwhz988803k7oVRVE+X3zttdfCMP7Lv/5hv9+3E87S0lKz2Rz7\nY0UMRhDquh6GYTabvXz5chhHd+7cUV5UjLGQxtVqFUIwHA4554hM6BdRFAEWlUolBfy6XmAYmkQg\nYVhhFP3e7/0jzvm//bf/9uh4r1QqLeUXbNtu9I9939/Z2VFhusl0JgpD1x3lsznOmKbpvtLbWNZ4\nPC4UCrpuxnHcanaKxWImkxkOhxmCW+2OH4W6rg9HIz+KJcJCiN6gLyEwLBMgmEymM5mMPx4RQjRi\nMsbshO153ojGhq6VC0VDJ61Wq9lspjJFtbBalu37vhL67+zsLC0vwIkFEqaCp9KJ119/PZ/P72+f\nVcuVRNKOfC+OgtFocLC33W63k0nH9/1br30NAGDbtor1VcvChQsXOKW5TNYfuxDC1ZUVQyOMsXw+\nDwAwLAMIWalUTk5OlElcNpvFAB7s758dnwAEDcuMIyaEtJMJyqGOsB9ESdMhmlhdXxOj1uHh4fxC\nbTwcPdvczGYyEJM4Cmzb1nVz7EVxTAnRbVuHUAMIMUSllEioySSBWEImECJi6rULIYYQSamQWDyB\npidVR49jqjQdmqYBgKR82S9CiAFAjEWztVSFDVMqOOcspgir5VbZbEEApBCCcQEh1EzDMAwhptE7\nCEZhFDMRhmEUxRAhTdcxxghrAkMM0ay0i4lFIn7+/Dmn0dHRkWUZ2XQGT1ONYyEEICKOqOCURggh\nRuMgCCSACGOk6YAISDQIYRiEhtoTCMEYo5RyxRnGGGOsdht8mj0spdQ0rGnaxGjdtuyEY9u2ZVlk\nTCSXjDHBJABAsaAJfKmIoZRCRVnSCNZ0EUdK4DpFCzAGk5qKAOSSvURhAcDTYqzoWrPebzJvhkhM\narzgipKsER0jTdMAkJxzHsdYIoIREBxKITjtdkcAQUCIQFoMAI1V38wNw4BMUKoyuAhGBCM8Aean\nB5VCcMbAFBKAEBLlbDqdukopiYwlhhhhCBiPknrcggABAABJREFUWCCl5GqjgKHgAukoCAInkVAy\nVsMwwqEvgcQa1nUNAsQZU6o4iCRGKI5DJEHScSCEnFIMIdJ1pToPGVN8Ft/3wzBEiCuN5nA4JDqB\nECrrDAsZfuhTP0oaBiYQR6EtRVbHlVTyrH4KAChlclJyb+AahsGEtFOWlDAMw3y+aBhGq9VyXZcY\nuoAgXy4tLi4eHx93Op3OoO8GLtTxz+98Enjj17/5ZqtZf3D3SyDF/Tt3F2tzTx49ajWaq6urlzY2\njm/eePJk8+KrV8Iw/OSDX/+3/+7f//Ef/3FI4z//q58urqzajuN5Xv2gfuP2LRCBzz66g6Serda0\no1OUy11+5bUnT54UqkudcdgcjBcWFrpBlM1mD46OUpUKNK3q0rIb063nL2Iqksn0aW9v2Omsra2Z\nDjk4OMAGfPb86eXLl+uNZr1eDzx///C03Rv/s3/2zzau3HBd1/Pj087hixfbup1MJp2/+Zsf5fN5\ngODZ6YFlWVEYj0YxQjjm0I+4k64sLm00O52j5nPTNI1EPnZHg1GYTGLB0dLyerlcfPDgQRxSz3fz\n+bwQoh+42DK2D/aEELZtI4RMKzEae93eTj6f/yf/+Hf/8A9//+/+7qN/82/+DYsG3gAHI5opZA3D\nOHhxZDvm08a26dimabZHAy1hY8soVIpLCwt3795pnNXDOEgTdGXt4oWLlz78+NcHJ6ch5dXFjbNW\nO+ckDeQ0QhiEkYeMKGCeFzb6BxsRPDk5SeYKly5dGlMGTk9enJyWy+WjTrvruRcuXzs63H+xs5dw\nHIuYWAAvHms2Rga4evXa5uZmyEMGmZO2RuOhZVkUxJVq2UlbBwcH6+ur9+59uVxb3rh8LQiCUrXy\n5MkTAOVp43jkDd59991+vxl3PCCYY5i6rgMKIIOXr7+ytrb20UcfOcm0EKLZ7uQL2WHT9XwfImxY\nZnWh5nne/uFhMpkUAJjJfM+jiXRp5Hmm5tAozqdzmqZZlvWLH3/ABDdIMpeaoxGIMGKM5fPF8WAY\nx8w2HRpGkRfqOnEMhyDN9T1N05x0Oo7jcRyligWOMR11k+lUopztD7qUum+/826+VPzp3/784ODA\nsBMawpALgDQpJUHESTq1tB6GIUMaQVQrpFRLh7AThiHTNWSSWIKz8UDX9RgjmrCpoWWzWUppv9uD\nlukzjiEwbCefK9M4bJ22geS1ufm8lX115bJm4pSW+uyzzywDZ/K5j379cb/fT2UyZ+2B7cXz8/OP\nt/ef7h4lbGeuNE8pfb653R4NcrlcoVCKmUgkEo7jLCwulkqphw+fb+0fhmGcSCTiMGq1WjohlUol\nF4bJTFo3rNr1VzNYu3P/wbA/0A0LEaRriPPQkPFcMR3TXgKzCuyPWFBLGE+/+HxhYeG33n2PC3ly\nctZoNBhjSCO5DHa9cRg2NQ0nbEkpTRBLShmwIJlMRpGvY+4JnwADCIQJxkjDiBJCMNYYY5T60NAZ\nY8LUOeM08qGGLN2mgnHKCSG2Y2AMJ5ZBiEJdcqHPIOgpKoohQnjiZfEy0gBCSCDEXDLGVAYNAEwK\nBglGUCNYchYRomnaJGqFK9Iyp0odAyEAGHKEIi4pZX/5s1/ommlmKxjrYwaEEIATAADEjAnJYoBj\nEEVCwwBDjRAdASg4FUzoABKBpZQmNNjI70Jg2zYyjViCOJYKKeeUE0wQBAbGGEEhGKURRnYyYSf0\n2D0ZUx4mEhVDtzt1icNQ5T0RQ8fKYETEcGolrZEEBBAKSQgEAPAoBpw6hARRhLGGCFZCJCYBAlgi\nApAQXEAACEQaArpQPhzAtIw4jimNAACaYWiashHlACUglQAyAKCSNkEJIGfKEtqwE4ZpcgwVZczz\ngTRSnHMV+cc5pxEDUiZ0bTQaFVPpEQ0QRoRAzuOUk4IAAAEtzZRSxnEsJSS6oSKVOMaO4zDGRn4w\n27kJIYhuaLOBxDTGAqhabZomEyLGMQQglUrFcdzv95NWQrXtGGMoFWNsOhvHWO1TVCcNITQMg0k2\nY1fFcax+rtKTKKWq7Va7g2w2WyqVYpcqRTkmsNvtptPpK1euPHu2ube3ZzuWMliQUuZyGcMwgiDw\nRmMAgIawQTQNYQ1hwIU/dh3H4TEd9Qeh52sIO6YFhTQ1/cmTJ4amXb3ql0ql119/HSPYbraiKPrk\n4183Go1er/ed7/yWaZrHxyfbz7YEBHEcl8tlDmSv1RoMBs1mk3HeaDTefPPNbCG/v78/Go1c1z09\nPT0+Pl5dXa1WqxBCx3HG43GlUiGEqG4GY1wsFrPZrArUW1hYiOO4Wq2+ns8+fPjQIJrqCYr5Qq1W\n6/f7u7u7JycnG2trS0tLcRzff/jg61//+uPHj7/44ovecKCEsOPxUJF9LMdWsE+xmHBdP4zi3d1d\nAEAqmfF9rGmastHo9buj8TCZTK6vrwkhLMs62Ns/OTouFArfvPJNyqI7d+7EcbS8vHzx4sW9vb3T\n01NlwaOY0hcuXLh9+/bx8anKOVZB0blSOZ/Pe543Pz+/tr7y6MmTk5OTfr9fLObnq1UAwN27d7//\n53/+2q3bcRxHUaTb6eFo9Oz51snJyXjsludqd+7cqdQWOKfPt7aCMDw6PtCJ5vtuLpfzfV+ppM7n\nTwMAhsPh9773vetXr1I/jEJfN41ur3fh8qVcOnN366mGSegHey92EYB+EBTzBQk4wdh1Xd/zxv2B\nbdsEInc0tk3r+PhY+Vj96le/Ojw8BACkUqn19XXlgJhIJVUzoW5dxli/291HaG9vDyEUBAHR0Hg8\nti2rUa8n00ld10eDgRBisVbLZDKdTiuKgkQigTE0CA7DsJgvIITazaaE8Pj4WADJGMMEUsZGowGX\nAutpQgiUACFgmBoCEAFoGAYColTIUcHd8RggkLbTumGMRqMLc3OQ4IjGACLdsVKpRDabXVpYbLVa\nSpqvYWI6pmkYhmFYppPQaMJxiKYZhoEQCmkchmFEWSqVEkIEcRSGEQyQIhhHfrB49UY2nfY8Lw6j\nXq9DKTV1zbbM7e3tleXFGzduHB8dBFEYhuHms2cEoZALhJAXBq1up9PpuL6fTKdXVlZUdak3GsN+\nHwG4uLh485VX/+E//If/4b///5wcHbUmyMe6EtT5vh/H8bA35Jwnk0nJhaLit7vd33n/zfWNjYjx\n7Z0X773/nbff/fZf/+THz7a2Nd1wXRdjmEmmEEJASBbTw/0DLOFwOMzlCqHvHxwcLC+vzFXLz58/\nTyQSNAyQYSSTSdPU4zhUBBcayyAIstlsOp0+Pa1jjBVZHeCpa+9E+jJhMkMJkAQYQH5uUjlbUSlj\nUmLVFU1yHST8jQKsXmfWxk2B1pdY5gxExRgr7ipCSLV0GsIATxjUEzR4gpFCAACUAggJJEcSEEIQ\nBkAIBmIoEZyQZxHlquGSHEIimBBYjR0NTZPThD6BIZIQAYyAwHBiyYn/f2T9Z5BlZ3oeCH72+Otd\n+szKrCyDcigUCgU0GugGm91qWomihmppFDGa2F8zu39mZ2b3x4Ym1sTs8M/GrmJ3ZzQKxq4ociiN\nRDa7ySbbkd1AF1wBKO9N+szr/fHnc/vju1kNzVYgEIlCRua995zzve/7vI95GQioFABAY06KEtsy\nbdO0DKodmVIgK7V6IV+khj0YjYejSZRlGFHDMDAxAEYQIiyxJjcrpQiAEkhNAIIKQKgwRAopk1Lt\nB60gBAASgBSEAEgolf7Ifrn0hRATjGdzrSY2fcnrAiPTpBA68th/Q8FZOTuW3UooIFJAq+ETkeqk\nCqTzoA3COVdKVEoFSqmREkopQThJEgSVJi9jiBRQFBMJ5UuQWAnJ0kwIAaRCGCmpoAIUa8Lz8R5C\nv0oDY4UgZ1wIkaYphjgIAkopZ8ygFGrVkARK6DDi2fUwTVPrWzS8DCFUEhLDoIhqKxmlVBzHeoeq\nX1aWZfqm1Pg7QshxnIJtMMb09g5C+MUXXxwcHIzHw3w+b1rGy5WD9kvTqKBGRV6GMGtPfMuy+v2+\n9upbXFycm5vb2dnpdDrzjUaapv1uz7XNvJerVkoFxysUcwtz8z/+8Y+fP3++srKWz+e1+UOlUrv6\n5rVut7u/v88Y832fUrpx8uTKyoq2VXrx4sXh4eHz58+FEJPJ5P79+9F0kiTJzs5OoVDwPG93d3dr\na0sptb6+HgTBlStXisXiBx98MJlMcrncaDQ6+cqZ58+ff/7554Vcfm1tbW1tTcs6AQCvvvrq7u5u\nvV7/1WvX7t69+1//7/93tm1LMYtYLpVKUnKdwjY/Pz+eTiaTiZbHzM3NHR42lVIAyvF0whjjUggl\nx9OJHwblcrnRaMzNzX3++eetVuvy5csrKytasrXxe+vt7kTbLOg/juMkSUIICcNwd3c3iqLd3d2b\nN296nre5udnv93sDnzGmN6y267quq5mWpVJpMpm8+9V3SqXCH/3hH8ZxbBnm5sZJmEUff/rJtWtv\n/mf/6//8//0//I8fffTh+YuXXzl/7m9//oEEam5uLpj6lGLbsoqFQhhMoVJJFH326Y04jDKento4\nmQl+eHiIITBNczwcBdOJa9qbm5vvvPuu4Lw9GbZardXFpWazubS0ROdolmVnzpz67LPPkFDVQikO\nI9e0KcRJFOtyrlu6wWCg36nmEBwcHKRpqsGblx2nbdu+PxkO+1EwdV23XMzrIBDbtuI4zllOGIax\nP7Vte7FRd113MujXlhaaB4cAgFObm8PhECoR+j6lGEIYhrEEQENz0zBI0tRASELoOoZkHENEqSWF\nUFxQg1BClFKSsZPrq5bjNJtNnia2ZUgIRJZxLgghiovdnZ1Wq/Pk6SNKEIZAQoANXPQ8z/MopZQQ\nUwKMMaIEQoggtKiBFEIoMwwjThOeZkkYAQAyg0op0zS9ceNGuVwmCE2nY5ZmGELJmQIy9AMI1YXz\n5xcWFxGEYei///77vu/X5xdMx2aMtbud/nColJr403yxEEURxCifzxuGEYfhZDI5aB41qrWlpaXh\ncKiUIghhqMIw7Ha7SinGWCa4tpdSSkkAuJR+GP7Pf/Zd27Zfv/oGxIgpsLCyeu7cBcO0wyTu9/tJ\nEnGWxn5qmjTvOJPJxDYtijCUwnNspeCnH36YpOlio04pHU0nURiUSgXPKQbhNI5DqIC2yNUB5Llc\n7q233hr0h5999plJoToOlTl+ONAx8KleaodeFtfZglEIDrUH/oz0C9V/QF+dVVmlIAAv/1Ff4hwh\niJCmFuuKSykAQPJfLgFnnoNICPDLODug9OuEmjEEgTQwggBKziRAQCqEEIEEYMAE1yUbQigwIEBB\nra+FEs66AQghkBAIpSSGFCDwpVf4pfciFZeZkhRCgWCq5FiwYDJVICuVSgBbg8lRp93tDsdMIkiw\nRJQphCQSSgKIJIA6G4MiiQCQigOp2xsNUytKsZSAz+JxoQJKSakAkJLpbkBKKSGQQBKKMaEIQIwV\nAIArrQQDWEGEoQKAUqr7Fc4zzrn+FKUSSknGhHiZvoAUBhhIBV+SvBAyKaUYCyEsy5JcmNTQRUdX\nsZc3wJd7ppe9kb5Yup/TNGGM8S/DGGZtgm7rIAQAcM5d29GewEEUKq5q1dp4OFZfIlXrX6C/IIRo\nIyrdpnHOAZRCzA4v/b/0t81Q6+OdsTZjAwD0+/1gGKZZnCRJPp9vNBpZlmVZoms25zxJEy0y8X0/\nScJiMQ8BBEoJztMkSTAmhFBCgFKDfh8jVCoWlVIsywb9vpKyUi6HLE2S5Pnz51CpRq06rJQi35+f\nm6uWKwWvMBpNvvjii/PnLvzK198zDKtarRZyxevXr1+/fp0Qsri4yIVgjF29evUnf/s3nU4HY3z1\n6tW5ubmnT5/q9Vi/39fcsbffftu27T/5kz8xTXNubu7atWumaT58+LBYLOZyucFgACG8e/fuNArr\n1VqlVIYQFovFJEmazWav09XMsizLtre3h8MhpXTi+ytra5vrp6Mounv39uaZ06urr21tbQ0Gg063\ndWL9ZJqm4/HUtt18ruA4FudSCFEq5PWKN80S0zQrlYrl2HEcb29vE0JKpQrn/P79+wYhjDHP8y6/\n8ZVPPvlka2sry7JCoaDvGH2t9/b2fvCDH3DO2+22lDIMQ6WU63lJmhJCesPe06dP4yQUQuTzHkLo\nyZMnCMClhblLFy4CqTIEEQDUtJfXVvUm5mvvff2L23cOj/bzxYJUfGF+qVarLcw3Rv2BbZgiSxvV\nWjQNMUSmZbm2Oe2OhRCe51XLpU6nc3BwMB4O8p7nh8HaxjrAqFab+5V3vvbv/t2/6zXb4XjqO2Mp\nZRQH58+cToLwzMnNEydO3Lx5c3t7u1Iqb6yucc6POl29tNNV1s05GOOtrS3GGIAQAKgN5PTMoYf4\ndrutUdm1tdVOu60fOYNiSpBlUgghi1NfTixC5qpVZBi2ZUopg8kkCcNKuWxQcnR0lPPyJiUKAqBE\nkiQsiQnBuZyXMggUSZQiCBc8j2VJEAQGgkAKhBRSrFYp5/P55uG+kjKXc5UEgksAgGlbmpSgABh0\nO8Vi2TSIQRBUwLGpY2IIFQQ87+W0B9bseSSYIEopjaKIZwxwpQcgpICSCko1Go10j4uhsm0bYyiE\nTJKk0WhICHr9vpK8lC+YlpMvS2qbmZAqyeIkgZg2GvMKAp0XwqVCTAgFlIIQ04zxVquTZRwqKQTz\nff/Bg3udTicIgsnYr801TNMkxFBKAQWllCbCAICUCSjE7rNnmFrYoHv7h8VKdW5hfmlxsdVuf+Xa\nm6Vifnv7xe1bX4xGQxMRh5qLcw2lVBynjkE3N0/XiuUnz5+5liWBsgiBCDmWRQhKIEIKQKlMakAF\nkiiOomhtbf3cuXMPHz7UlpMYQATRy8RTzX9+WXG//LX6kgcyOGYLH0+0v8yq+XIl/jKV6eUPhBBK\nNfN2eFlxtQYGQQCRHuwAAEojvwAARLGQEgqFEOFSQoUBABJAQMHM0EvzZwUUUPtyzVhFCAIIsIQA\nQSARTCXX7YgEUEqhp2kBpJJScSwgkJLD4zeCIMSGAQSHQEnFs0xxpmKlgBQcKD9mze4wS3maMgUQ\ntRxCqYJQIqQgVIBACBBGSgAl9GsRAACh5EzjCpUmwTHFoZKzQCUo5MxPgiGt20FIcYSIQhhghbUF\nqB7hheJavqUgzrIEIUSIlnpjAADCEGOcJBwCoJQQfMZ/QgpJBSiBUkoApBQSAAwxNQiWCErOpJSu\nY+mqB22TUqKUJAhgBCAEehP/0v1CK8cIIbqWAcnTONREM/Ll+0a8NB/PGFDKca28642pEYkgjZPJ\naKxZWfL4Rnk5Aev7ifNfAs5SqSxN4yjSq0QNODuOo4uuvp900ot+oZp8VHDymMByucwYGw6H6+vr\nS0sLt27d0tF7CMMsy5RShUJBT7oaCNXlWVtgav6Rbvn1rBxFURRFhmEUi0Xp+0AqxlgUTJXgk/GQ\npxkl5JMPPyGEACH7nd4j+OjkyVMLc/O1Rh0B/Cu/8iufffZZp9tdWFycTCbdbnc4HIZhuLW1pb0h\nJ5NJlmWVSiVN0/X1daVUrVbzff/o6Ehjs2tra5ontbW1FUXRqVOn8vn8cDhsNBrPnz5bX1/XjsQv\nXrxgjOW9XBSE/X7fcuxv/p1v3b59ezAYZJydPffKUav5m7/22+128+5doLj4yptvGoYRRv7ublcw\nPjc3pxSk1Ox022mSEWKYtmXallBCKWVaVi6Xc12XMfbk2VPPcefm5qSU7eZhp9NpNBq+7z99+tQt\nVrVd1OrqqmEYBwcHGpyMoqhSqTx48KDRaGxubrbb7WfPnp04cQIZpNPpVOv1wXjQarXmFxpBEKRp\nOh2Nv/3tb0MuP/3ko7/7W7998sT64dH+rS9u1urlYqnEpfg//LN/Vp+bP3/+/MMnT27f+qJUrmKo\nxsN+GsUE4cl4aBpkY+1E/Wz16dOnAEHLMEf9QavbWVlZPnlqs1qtjocjIEW1Wu2221t7O8Sgjueu\nrS5ffvXiRx999PWvvp1l2f379ymln3/8acHxRt3+pD9sHhws1Bq/9Vu/debcK3/+538+mExzuVwQ\nBEKIOE02Nk+dPXv2pz/9qfYEZoxrrhAAIEqTMAxzgZ/EUc5zpeAIwrzn6tseQtu1bGpgzvmwP4AQ\nNirVuXNzd548ljyDEA76XajAdDwqFosUkyxNEIQKgiyO4yyDEDqmZZqmlCnnHIrMMGzPNTmFgKeE\noCSKl1dWuoPuwe6WaVkGAl6pOMMqEHw5ujEpPNc9ubERRZHrOkBIxpiBAYFKt8rgmN+rW+SMS84Z\nEzyOYy4kpTSHsdZsaINiM1dUSiVppD2OAICGbRU87/nWi7W1lcF4NBmO2o5ZKhTX1tbiOB6O/F6v\nl7CMEJJxJpWK4rTdH7iu61o2Y2w6mUAFHMcREiBMz184t7u7e3hwNBqNJqOh4+VsJ4NS+VGEMQYK\ncin0S1ZKCZbEflCfX+4ORwnjAKJp4Ftj23XdMAjSKFQ5743Xrlw8c+bBw/s8zarVcq/bbrVaRS+3\ntjhfzntgrjoc9La3t23HU0oBjIbdrhakUJOYppmwTAdP5XK5fN7b2dp+/PCRaZovDzospQTHskwg\npFJQXwGod5ez+Rcdj7wYY52wO1vxyi8X5v9lAdY/VkihpI7bU0pygGbMaQn1JCyV4JRSCbTcVuhB\nGmEgpSSYIN0vAkUUYkIhCQRUBsBcKgWhJu4qpZTiSiFkEKXEy/2jUkooBeCxvyHQU+YsVFhKaUAi\nJYcQQ6idFiFCRBPHMKAIAg1TEwwJggAAZVpZyqM0kxJCaiIIMTEhJRhThMDxIAcwQUIQjCliQCmk\nlIQKIAAgBjPrCl3sFZe6P1QKIiWU4kpCCXRYAgAqgwpzqG094C/1QhJgALAylJJCYAQRBAACCJSW\nBkMlCYIAYaWQAuI/uBwAIARnSU1SSi4UlARjLgQEQC+zMphRx4UQpmkqkcTHRHGE0MsCrCuklFwI\npHMm9YdG9OGivuTJrHlVOj14Op7GcTIej03TLBdKYRjOsqikEkLI41QQcLzhyLKMcQ4R0qVRF0U9\n8mresk5P0oCMnif0ddXQihCi2+8ZhhElsVKKGFQoHsaRaVsKAkyJYZmGyYQQcZLgl9O0dgZHSEqp\nzdUopa7rxnE8Ho/1DKexxNFoNL+0FIZhOJ0CziRXkslivjA3N3e4t1+r1VzXW1tbC+P40aNHQoh7\n9x54udypU6devXz5xYsXR0dHtVqtXKt+fONTPb4vLi4CAFpHzXq9vrCwcHR0NF+rWpZlGMb169db\nrVaxWJyfny8Wi59//vnh4aHneZ1O5/nz5ysrK6ZpFgqFIAiUEPfv3k3TlBiG67ozi+OV5UKhcP/+\n/TRN19bWRpNxsVyq1msffXRdAwk3b30+v9DIFXNXrly5cuXKw4cPteUIQjAIAs6EZUGMcX804JxD\nqbIsMwwDziI7WBxGo9FIMq6UynkFwTiGqFapWpZ15swZTcHVj4dt29qXUe9KtZt8Pp9P09S27VGY\nKAiLxeLUH49GI9M0DYNgjAei9+zJ03ff/uo/+2f/DEjVPDiECtXKtScvniCErl59Y2ll+cmTJxdf\nvfzGlSs379xuNQ+V5IZhRNPJxsaGYRhXr7xOCLn12edZkpw8dYpiUioWlJI8zR49eKgJsVrfXK1W\nkyw7e+6Vw8PDaDBECriWnabp3t6eYRhxFMVRJISY+v6ZM6/82q/9xtzcXKFcYkwUi2XanO35coV8\nGEdSykqlMjc3t72zo1cwEMJCoWA6thVFtm2HYWgYJAimxXyh225Vq1XJuJX3XNvR/nNpFpNyyfO8\nSiFPgHIdg2BFMaa2TRCaTCbSc+qVMmMMYMS5RCihlGKDQox4lkIpRBpDIByDOCYBFBsYYqCYbdYq\nRYJUfzRMwqnr2AXXAjzNONMPvD7fBcuyLFVKGhhbBlFCSpYBnkKBKTFNjJMsjZJ45hbElVKKmobj\nON3+QNMIdHSPlBIgjAjtTEb6iAAA+JGvuCjk88VioVKt2q5j2lZlrm6bhhBCQGA5doVaQRzBjCil\nRtOJAMp1XSHEeDz2lrxKqYgx1nShhGWZ4KurJ/Vj+/hxoo1EdDNtYAIJVgBCSTRTjEsgVWa4LjQM\nwWUu7wohwjBsHrVevHixuXHy7KnTGAF/OF5cmPt7v/Frk/H04cOHC/Xa8vxclmWlUqVcrU9H42Q6\nLXouFzKfz1cb9VqjbjmO7/s7+9v7+/sA4rW1+mSCbdsu5vOafFDI56Io1lHoM4T2uCToOguhQghI\nCaWEQgApAWMZQkjHyyNEAEBSQSUB/g9nXPDLnzPz95DHThdfhnn1jAFmFGik5elKKYHkS+IxAEDo\npSnWBhdYAoWFYAILpM35lUBIKaDbBD0pUdM45kvLWTcApZJKH8hw5gUx8wADuhRBCIAyMJKEwOMQ\nAaQkwRgDIAUDSpgEU4NgiDi1KOGW5SilMsa1twZFBM2QdSgEUwooIRGABEGttpcSAighRERLmRGE\nUFFFdbFQEh6jVgQTAACYwTZA/0CRHecRKCWUUgIoDIEQgnGE0OxzFkIIofXQaLYyRwpBqF2o8XG6\nolASQWgQqnFj7UFr2xY0jclkAgRXGAMlDGoppRjUeZKzBgdirYUCSkgIEZAqYxlLM8MwMESOZWOM\nyf8/eKKUAgralsOZr5SajieSCztv6SGp1elqFr6UQCFJZw2f1HSqmSQ3idIsmcF6ACmltFTRsqzJ\nZKKUWllZsW17f38/iqIZWP3yLqTQtu3pdGqatFQqjcfjbreLENLCmJdotv7+MAxtaulhBSOsgKKI\nOqZDER0OhqZpuparc7wn/kR7JB0cHHDOkQKEGEDO6EWBH164cFHH6YxGo+FgTEwjlyuMRhN9vp84\nuVEolx4/e5ovFavV6vPnz23bdl13c3MzTdMHDx7EaYIQ0omKejrXH0i5XB4Oh4yxS5cu3b59O5/P\na5FJrVY7c+bMnTt3apXqyZMnh+PRaDSam5ubTCYHBwe2bdfnGuPx+OjoaPP0qel02uv1OOcrKysg\nlRsbG41G4/6Du7dv375y5fKlS5cARu+//z7LRK/TpqZFCEniVEo+Ho/tvK0tPB1u6WbItgzbzqdx\nQinFAPq+7zoOIcR11XQ6dV0HAMBYdnCwX6/XPc9NkjgIgnPnzhUK+WvX3tjf33/06FGpVLIsczgc\n1JdXSuUCoei44xnatk0phQgEQbC4uGgQ+tEvrp85ffrV8xdExiKQ7O3tffzpJ/3e0DTNe/fu5XK5\n+XpDnykIwosXzheLxZzrvfXmtel0+tO/+muEUKNWffjwYbvZcjy3UqkgjHvDwerqcrVaPjg4mFuY\nhxA2u53v/sX3aco2Nze/8a1vQqniOK7Vau+//77neSsrK81me3lttbEw7+Xzj588ef78ebfbNVw7\nGQ0JIQWEXNfd39+/fv36aDzW2AznHBvUsC3t6EII6Yc+pVTrocMwZGlsm1bey9mG2eu2kyRBAFJK\noQKdo2aSJD5PXtk8ZZrmYDCMw2h9bdUwrMFgkPMcAHHKGYSKCSmVyjKWZZljGQwq27VLxbxlUIJA\nwZ1Z30Shb1tkY3UpSuIwDNMkch0ry4hpmlzO7AuAEJEfTP2x53lQSQSBQbQuXymWJixVxIqiKM6Y\nUjP5X5GW8rYdpwkimCiCJNITHibENk0S+lgTeZWSkqdZlqQp5/zKG1dfvHiRDAdCiFKhyBjb2tmu\nVCqcQYQJRiKIQiYlxjhjPGO8Xq97ubxt2xMyhVIBBYVShmkVi/mFhYXFxUWl1N0795IkAgAJJCDE\nSimplARQKiAU4IJzKSqVun5AsGmlGaOmYRBqmUYwmX7y8ceLc43Xr1y2LTId+q7jfuUrb9387KMr\n165NB+PxeLy4uFDK5SN/yphYWl0ZjsaD0TCYToRgEMFKqQwVSDO+OL+gxKFlOQghyyBryysvdral\nVIQQBdDMuvV4psUEKqWkoFJKqaUsxyMBON7rCSHkMQStAHxJ/wEv43q+xLr6X5RnipGUEmFkGFRj\nLRQhaplZlmGECEBCQHCcDwiAVMcRgRBDDCCGCELOgYQQIyCgAkpCSNBLzwqGiZRSQCRn9skzByuM\nMQAKoOPl9vFQiGcTPAAIYQDQcSlFiGIEoRICQAQxpYRiAoAEklOMKQYZl1gIg2KIZv0KQgACJZRU\ngonZtAmUogBKqTiYsbIgAAADSI4RBaVmcQtSYiklkVh/nkDOQHudTUQIkUpJBaVUAECJoJAACgUk\n0+8xyzK9CdU9h5SSSKQAEIIhhAg0dP4SmpUbBSFQgkvOivnc8soSxvj+3Xth4Nu2rZTinCkuCIQS\nSCClmuFFEmAIIIRKala83t4DgkyKMTQAAET7nL0cgiGEGBEElaaeVqtVQowsy4IgKhYZIQZASK/+\ndcttmOQlf0z71KdpwtJMHVueplzovEIppWVZSZJQSufm5kqlkrZjBcdhxRBCy7IMi6RpbFmGYRiD\nwcDzvHq9vr+/r1fLuugWCoXz588jhO7fvy+YUEpZlqV/uFIqiiKNVydJMh6P9TyqIXghBDEMlgkh\nOUQIQGVRs1iuFAqFXq/36NGjq1evtpqdVrfzzjtfGwwGAOJ8qXji5Ibv+8PhsFKpHB4eDgYDnQ3w\njW984+98692PPr4lpbSIlcaJP5kuNuqc8ziO9YhGCAmC4OLFi61Wq1wuW5Z19uxZx3EODw/n5+ej\nKJqfn+ece45rGSbCuFgsnjp1ijE2Ho97vd7SyvJoNDp16pRhW51OZ//osGLlPdeNCbx48eKnn368\nt7e3sLDw4ScfZ1kWJ6FpmoZhevlCmhzqYp+xNI5DhFDecwyTcM7TVFFKq9XqYDCQCliWVatWp9Op\ndp/f2d5GCLEsMw1jbXVVSrm3t2eZpuC8WqnMzc0NB4OV5eVCodBsNovFomc7EoKnTx8TQpaWFjSk\nMRkNKaWrq6vVSuVv/uZvfvLDH91aWrr2+tVyuYwQajQab7/99p/8yZ+8+87Xx+PxrVu3lpdXv/3t\nb3/00Ud7O7vf+MY3P/vss/u93tL8wsLCwuuvv/7ZZ59FQaiUWpxrJCwLgqlhGBTD6XSKMU5Z9uDB\nA+1osX90ePHkxutvXcUAPnr0ZDAeOTnv8utXzp07t7+/v7S6lsvn//R7fx7GEaV0MBrW63UdBKsv\nE6WUEL61vS2E0DzzaRjqqxlF0Xg8FkIQACQXtm0jBHKuPR6P3fkFIKQOZ8l7OcdxWJpOpxOWZrZt\nU4JcxzJNu1GpttttxngYhqVCTgoAMDKVSQgJojBOMkKIZVkESZaSnOcWch5BiCBo2zZBKE3TXqfl\nuo7tWAgCpSRPGHUcfShPfJ9z7dUHCCEIIckZgsoyDAM7FjUIhkkUZ3HiozQMQ23/G2dpGIa9yXjk\n+0GWID7jkEoINIZk2qZBaZJEcRxrnKBQLjWqtaWVZY3s5QuFVqvlclYoFvr9fsp4MVculUopy6BB\nipUyJiQMw7E/ZVJMJpMwDDWf2cBECUkIqdVqEOJarQohDIMoCILRaDIZjw3TFkABiCAmEGOAFJdS\nQdgfT9xC0bXtJE3XNzYsw7hz66bnOlEUbW1tPXn44PmzZ6c3T55/5Swx8N6LPSBkZ/+gWqnnT5TT\n6eQXP/9g2O2cu3jp6huvZwkbB/5wPG53u/3hwHXdfD5vGrZpmv1ur1IpRUE46PUdN2dgks/nNPyc\nZpxzDiEEiAAAFBBKKUVmc4iUiDPMsbBt+xhTVOJL2XHHELX88oCrN3THS+JfbvcAAIjOKDzanVuT\nVQ3DeIkjYqxR2hnJhjMOvrQWBEAgARGASgoluBJSKZ1Ff8z+kUgCgHVuBPml7T/nXKLZJhvMKMQQ\nYoRTxZUEQBs46uhkAAAGSgIdZoCxRbBlmwRBKSWBx2AnSyhErmdDgLMsMwgihCggoFCMS6AkxbNF\nrxCCz0jBGEJx3KBQjCEhRGdhQICEUABjjTYLIRQ6rmJc6Z39zBEFztogqSAXirNUFyyWZgAAamAI\nsJKzuVPruV42HAAATJBgjGcZkHK2/czlT6yuEUKePHocRZFr2QhhKBUXwrIsnYKsh8+X7hdSSt/3\ndYbvy65Lc0oIAEALEvSQKoTQZlVpmhJi9HqD+lwjDQNKabPdElwhjBhjtm1jjMMw1NRlvd99qfvW\ny1092hJCdY3Xe0TbthFCDx8+1Bxg/Tpezo6EECiV1ulrUVOSJDpEQWMsGnVOksT3fe39VCmUarXa\nzs6OjvTR7GLXdTWDSaspKKU6CDPLMkIJxCgI07znBH4kufg//ef/2Y1Pbly/fp1L0BuMnJyXzxdP\nrK/PLyzduXufAf6n3/0zDZI3Gg1EcKlUMk2z3Wz5vg8AePjwYa/Xe+21165cufL06dObN29+4xvf\ncF1Xh3Q2m02M8XA4XFpaunv37uLi4s7OzqVLl1zX/fGPf3zp0qWt5y8QQmfOnCkUCgdHh91utz43\npw3Wl5eXmeBZlvm+//bbb1+/fl3Lcn74wx+ePXtaB6Q/e/YsTZNer7e6tLx55vTTJ89HowlBuFGv\nMS6SJIl5nKZpvVrVW3AMZwqTTqdjGIZtmEEQhFGkp2QAwP7+/mQyMU3TNE0dLN/r9YbD4aVLlxzH\nef78ub41u93utWvXVldX//l//9+vr68Xc/kZOqQkma3reByEcRzv7+/Pz8+vr6/fuHHjwoULo/H4\n4OCgVC7/o3/0j7761a/2er233/pKt9vtddp5xy4VcnHgb66fOLWxPp2Ow9CfX2j8nW9/kxCSpNHB\n4SEAYDSdGIRSTGqVysHRURzHcRynnJlJXCgUvvYr7129+trf/vyDDz7+RZak7X7v//jf/DdSyn//\np9/93/7X/1XGWf3R/c9v3jx15qzAeBInkosTJ05kWRbHsWVZQkod7iSE6I+G/X5fc9A07284HF44\ne9o2rWazmWWZa9samFmcm4dIVSqVOIziOKYYl0qlLEnjOF5cXvRsJ47jKAoKubwQwnPcOI7jJJtf\nXGy1u8kkgRDm8/lOp0NMIwkmuVzOtCjjKcRkeXF1Oh5blsVYpmkccRBatiGEFcaRH0yc/ILv+8fu\nrZBzlmax67qeYwMAXNcp5wsIqjROiIKB5NMgTgUzLbM3GKRpatsOts07jx7otQIlZrla0YZE1DIn\ngT8c9jXCdHR09N57733l2psPHz2AEA4GAwXBwVGTZ2kYx0yIJMsMy+r1erVGXVt1AgC4EDp+J8uy\nEEIold7dWKYFANjd3f3oY3NjYyOKYsHl7/zO79y//xAAMDe3sL2zt3902OsPmOAxy7iS1LAkUBjT\njDE2DSjFrU5X8llOGkZoNBrlHHtra2tvZxdIefXqVWqand7gYP/o3XffdTk3LQsqwNJs69nTUr5w\n8twZGIAzp9aXlpaEUt/93p9P47harYe+Twg5Ojg0TbM/HDlhGEVRoVCozc0xxvb2D5MkMU3TpBBg\npLjkXEgpMSIcAcaYApISBNFsLKGUKjBzqEAIAfHL9NWX87Gu6PrQ0/9LV1ClFBPMdV2d76ttyACe\nUV/1PSmktG272+0WCoUwDA2TcMElUJJlnHPbtCyTMoSEEGmSQACUko7lGpaphSQmJpDA4w2vlEBB\nABGCjLH5xQU9CRgG0TWjWq12Wi0KIFBYvPQlQQgCZZoWAhJDpON8LIOalEZRYEAZJbFNTcOzEKGG\nZUdRFEcJhwIB7DiOha1AMCmVRbCUnGMCpZxJY6RkqZASGAZBCFFMIVSEUtu20yiOohBjrDgnlAgE\nsyxjUgEApOJcipRlUkqpIEIYHVORGWPqJd4OAYSQH18LSmmSJJRiQoi2v3UcJ00SvbvMsixJEikl\nVEDLLMMwXF1dlYwvLi6+9tprd+/evX79+sLCwkt7GY1wiGPPDf03hBD9A/XwbVkWkccaR6WUXvZA\nhAkhv/qtv/PkyZNbt24NBgNiWBDTMAwppRATnrEwTgCQKcsAgjSiUvEwDG3bMgm1qGEbJsIgyzKZ\nCQEB51z/ipdMad1QCyG0o70O6dNQrcgyzezXjR44RvMhhGEY6sLg+/6jR09M00ySjNYNBUGpUk7T\nlEth2laUxAghx3OpaSRJAhUSSoZxRA1KTaM7DSjGtuvEWSqVqtYbnd4QUzIYDSGEh4eHmBi+7x8c\nHOWKBSfnxWnkOE6pVOr1euvr69oBuN1uN5vNf/9nf6pz61555ZV+v6+dm/rd9u3bt69du1apVO7c\nuUMImZ+ff/jwYbVa1ddgdXU1l8tVKpXf/M3f3N7e3tjYePHiRbffO3nyZKPRMAzj3IULP/3pTwkh\nnU7n/PnzhUIhy7Lt5y/yrtc6PHKx9Y//8Xem0+n3vvfdfD7PBOt2u+vr6xpOcF23Xq9Tam5v7yax\nr4Scq9fn5+dfvHiRpmkUhNpkyrZtRaRSKmE8y3i329cjkU6EfeWVV+7duxfH8a1bt0ql2eL/Bz/4\nwcrKSpqmzWYzTVP999/73vca9VqxkEcIEYM+f/6ccz6/smKaZpakvu/fuPHJ4uIiT7PxeJwJXiwW\nX52vXLhw6ehwv91uB1M/CsKbn99IkqRQKLz77ler1frW1ta9e/eAQsVi0bZty6SWVe/1ehsbJ3K5\n3Kc3bpw/+0p30FcQIAAno9FcvYEI3js8mJubC4Lg4bMn3/rmN8aBP/X9bqeTzxV39/eFEE+3X/zJ\nv/03AMGfX//w//Lf/rc//ulPdh7edxzHtN29vT3TNIvl0mQ6HQyGpVLJMIz+aGhZ1uLiYhiGh4eH\n1DAQQrbjHBwcVCoVXZgLhVIc+pAaz7ZeeLYDgUQIYYjCLBNCuLY9t7DwlXffev78+WQ8nuVQCdDt\n9oIgqNYa3W6Xc14oFPYODh0XeIX8YDDI57wwDB3HcauuSWixWKSUJlGkR5w4jr1C3jCslGUgBlpu\ngGcedsf4p2RSSqtcKhXzkrHBYFCrlm3bDqc+hBAZxCSIMcaBhIQwKXqjYSaFlLI3GluWZXqOZVkC\nqGkQKaUowpDQer1+9tTpi+fOA6h0+6s00VJKw7KnQUhIWqmUxtNJMokzzs6dO0dYFkVRu91udTuu\n666urvq+X6tWCMZHR0dASNd1j5rNfv+wevdurVwxTZMxcfzBFr72ta/de/ig1e48evK4OxxYrjca\nDbIsw8Qul8uCs15vIDmvlIrSdbI4BhABJeM4FUL4if/XP/npg0dPyuXy2urcpUuXDvb29/YO6vX6\nhQsXBoOBbVqffvrx8+2tX/ut30hihjF6+PCB53lZlo0GfUrp6vLy0dHR3t4elwAAkMSxaZrdVosr\npSTXGIOmdzx+9GAG+UKFlSIQcQQQQggigZDGFMGxThfCGVwMjplN6liyYhiG7iT0IPtyH1zI2QAA\nSunu7i61zLm5OR23VSwW+4OBhm20f+d4OsEY+0Ggg+X1b+GcY0w1XSOfz+tOiItMRExISQjBUiqp\nuJIQQkpeimKUXSrnHTeKopQSSqiUMkuzYDyZ7Z6FgBLK2WsEEEKWpAgDRAmCUAgeRZGgWEqJRII4\nhxgShFjKUsEpwfXKjD8IFccIGgTwTCmZASGx4XDOU5bp0oWPXSfjOEU21JtpAxNkWzqTygBKSskY\nhxCKNGFMSKUMw9CpkfqtSTlD9qWUUIlZpwEAQojo8gyV1mpChQ0A9AOlmUODYV99SUSUQaSZB7or\nevXCxd/5nd9xXXTv3j2tUwVgFi/0klysJ2B9TcVx7P3L9otwnsXxTIMhpcwYhxCapqk7NIVJKiTF\nKM14wkWhUhWKR0mccYYhUggKITLOKEGO43i2bds2wViz56IowgpOk1TDv+qY56X/U2NclmVpkwo9\nUmdZhigBAAiggOT6CwEUBEAKYdiWYZppwoRmZRCCCOkPR3oyjqKIZsw0zYwLz7OH4wkhJAgj13WZ\nkBM/KBaLAAAFwTQIbMckiAgADo+O/sW//B8dy07irFQqBUEApYozdv/RwwsXL1289OqPfvrX1Xrt\nzCtn939ycPvuHQzR+vq6Dp6bTqejybharpRKpefPnxuGMTc3d3Sw1+12nz59msvl9B3POV9dXf3G\nN75x//79jz/+WA/QDx8+nJ+ff/311weDgeXYOt3d8Tw/DJ8/f66jERzHaTabW1tb6+vre3t7pVJp\nfX0dM/m9732vWCyePn1aKdXrdxcWF1dXV5MkCac+SxOjVHJdb2FhIZ8PCCG//hvf2t7eZmnyypmz\nW1tbYRhWq9XpeGIYBsbUcUzP87rdrkIwTdOpP63Uqnp8j6Ko3+/3+/3xeHz27FlK6c7Oju/7rutq\njGFpaUkIUS6Xt3d2qpVqpVLpd3tKqSgIecYsyyoUcv3hwCDUK+Rr5Uo+n/ejUKTqxIkTz58++/zG\nZ/fu3H3jypX5+bnpZLK0tNRqHk1G4wcPHgyHo2fPnj158mRhYSGfc994441cLuf7fq1WufbG6+98\n7d2/+P4Pnm9vvXjxYjweV2o1y7Apws2jdhiGcTj+P//+fzfo9V+98tqnH318avOkaVu///u/PxwO\n796/F0SRl8//4sPrmBImhURoMpmYthVE4WA0RAgRQgkhrW4HQthut6VUhWLRy+Vc19Vi6CwM+/2+\nguC1115bXl7+4Q9/qCT0ck6z0wYAWNSgBmZpxjlnxaLluY7j6EOEMTYcjMvlcj6fBwD0B8PR1C+W\nSrV6YzSZZowzztM085FAAFiOLSTo9AaelzcI7g0GjDFMDWJSKeVoPE6SJIxTHYyoPW2O3ZA4QphS\nGsfx0sJiGofTyZgLZRoYYGSZzlw1F4Zhvzfw8gV9ZMRxXCgUwjiBENbqdWoa44k/Ho+llPV6/d13\nvqofzzRN+73u7k4AFcjn877vO46jT/ZutyulXFlZ63a73E36/X6n006SJFcsLCzOp1miIBwOB7VK\nZepPgqmfc1wIYeBPl1eW9va2kpQdHLUAAKPRJJj6pmkfHR1FURRMpo5rC8GHw2EZIy4yhEHK2XQ6\nVVKAY4MUzvk08EuFIlIkYZlpmgW3OhyM27fvVavVB4/uXb5ybePM6WDsP3n82KLk5KnNc+fOPXr0\nqN3rfvLhxxunNvuj8e7u7uLS0nQ69SfTg4ODixcvXjh3/o/+pz8+Ojqyec6yrfFoJJWChBiGYVmG\nlGAwGEynUwgBRrNQOB32ihVWaKbSfLkGflmABVAAad6W3g1LAAFEiEshOdOX8ngFCzjnvUEipVxc\nXFQQAwCGo4n+5Fl/yLlwc3kAgB9GhUJhPB5nWSaAKFCDp5lpmgQRxiUhIo5jPYTNxjgICaUapWCR\n0CRNhCBFGONZnC0GUCSZzFICoImJhFKoLItigJQUggsppYQAI4Q4khjASMYEQWBSgqBgGYdK2bbn\n2iZCFjGpaXAAp0EkeWK5Rdvx9vcnQgio5EtoXQkEoISYcpAmKdPCVIKxUEBKILgyDIMQJQWAEGrP\nCcbTnO1xzoWlbNemfjj2p5IpRCATSim9kQVKCaBmEZMIQ6l0QjOASgEEEcEE4SzjukIlUiouwjCe\n7bwReTk9Cy4JNQgFQKk0zaSU3cHge9/7/rNnz46OjjwvJ4QkhqUAEFIILfiWAGMEEOI8k0BJoOCX\ntg8AAEIQTlicMq5H0jCKlVLUtP/yr34wGk1SxizHHgch5zzNMjoZG4ahWfsGoQqglDOaZZbpVioV\n17Is04Sa9i2kbZh5z0FjX6+7X1ZfnacEAPA8Twihb7XpdKrHXH091LFdNeccQqSJVEoplgl9YXTD\niDFmQry8ZTPOgyhCCFHTTBkjhgEQcnM5IcRgNCJRlCSJpCYxaBDGlklNy0IQPH+xnc+5nuMqBBEl\ntus5Xm48mT568rhSqaytrQVBcHBwYJrm/Pw8Y+zRk8fB1J+fn5+fn3ccZzKZ+L6fJInjOL1eT481\nOoFYE4uazebZs2d/9KMf/eqv/mqlUrl///6zZ8+KxeJgMHj//feFUhjjN1ZXp9OpSFPLsj799FM9\nLo8mY8uy1tbWlpaWGGOFXL7X671y4iQhJE3jJIlK5SLG+OjwsNPpFAoFjf8HQZAkmXbFiKPkg5+/\nv7+/b5rmqZMb/W7H90MlJAAgTdOMR0EU2rZ91Gp6nkcIsR039KdPHz86ferUs2fPKEacc8cylxcX\nfvu3f/sP/uAPHjx4kPfcKIpCf1qvVjZOrP2rf/WvEEJvvflGv9/3J6ONzc1er1cuF4fDoevaPMuG\nU//MmTM8Y41CoVwuZ4qFYehPphDC7ecvqsXir//6r1MEj46OPMfJlwq9frdcqV65csWwrCiKtnZe\n1BrVc+fO9ftdhMjly5eVkN1eu16pRnHSqNU7ve54PC4USvuHh5ZlhWE4Go3a7fbGiROXLl5UQv7k\nRz9u1Oq26Tx78bxUq48Gg3/9r//1a1de/9rX30uS5Nb7H1y99oZpmnfv3i2VSlnK9w4PHMfxPC+f\nz1Nq2I4DAHBdVxvbJkliWRZC5KNPPi0+frK1tVWv1/0ojKIISoUwIIQQhAkh0yjm7c7Nz78YjSZ6\nIxPHMee82Ww9efIsY8ywHSGBwjRj/KjdGo2nnudlTAjGx9PAcTxMjcNm07Zty7TuPXiYz+c9BAeT\nyWQywZRIKQ3LqpaLQzWaTCa+P1FKOTl3vlKr1spBEHApiGHl8gXDMCkhhJpBEA0Ho263G8exbduj\n0ajf1w0+6Xd7pmkWcvlwGoVhqGmVxXxhdWlZCDEcDv3xJE1TRIlS6vMbn2GMy9VKtVqdm5srFArD\n4XA4HPaHw6qXr9VqnDG9+l1cXFxZWYEQBkEwHo8NQk3THI/H+VxOSwCQYVLTCsPQQCQMYkpNIYQG\n1W3bLFUrkzNnmp12EPjUNCilxHSyJMUI2rYJgKxUKq69cOf2rZRltmkpRcI0YxISy4JCdEbjkmf8\n/v/t//57/+Dvnzq5hk0rSZM33vnq4dZ2vV4vVSu9QV9K+ejhfUzo6upqrVZ78uDRsN//6Y9//OZX\nvvLqxUuNRmPrxc50PDEsPVqgLMtAlpmWo6ndpbwNFJJwtoAEAAAglfolr0qvc1+ufhnnujALKdnx\nsIsQ0ufbS0UJoVRKCYQwLavVamlv5FwuF0ynXIowjtI0rVar3X6/1WphjKdBoIccJoSQIIxTgAi2\nKGMMqiwM4pSmtm1PJhPHcUzLwhgnSZJx5lkFoJBSUgCVcobkLEwwSRIh2UtOmX79QrBZTO8szI7r\n98gBQAAqijnnmkWvlDQoLpVKrkiIaUGEUiEVxBnnpmlmWTYNA8EVAEhBlDKRMW4QSqkhgWKCJ5wz\nzpVSVEgpFGdC2UAKIAEEQnDOdep8lmWeoyCQBsGO4WCMI5ZGqZ8kDAIsAQQz2xOkji2joVQKzLAH\noWZ2zhTDlGUIQMCPiXSBn7CMImy5DjVMpVTKhRAK45myCAAgudjfO7z5xW1CyLe+9a1Grfazn/0s\nZplSSkEAMQJKKQgkUFBHQUAggXpJeJ4VYI1JwjjVYREAAK4klGI6CXvDYalUSjOesIhSypU66nQM\nkwohEFCEEKgUz1LOOaXYCiMCAIFILxQAADYlrmmEAkyn05crDW2SpUE23bV5nqczizRbSkr2co+t\n0RjbtvSs3Ol0WCY8z1NKDYdDjLHn5fW5wznf2NiQUh4eHpZKJdu2NQFK749nChwIOed2oXj21OnH\nTx5OxyOnWj17anM43++22sSi08BXCsooWls7wRh7+uL5k2cvXM9wXde07ZW1tTgMNVRw5syZarWq\njb0wRKPRSFNU9KadEHL58uWtra1ms3nx4kXf9zVt+Pbt25VK5erVq++///7u7q62zr905bWnT5/e\nvnun1+u12+2zZ88uLC1ePH+h0WjcvHnzzp07WhnsOa5B6PLi0t7e3vLycmKQrZ0dyza1xoMQoj2w\nXNdVCgx7fUSJYVh+MOVJWPRypm3du3PHNk2k0GAwAAAwwaUEtm2blgURAhBBhCGWcZQ4jrOyshJF\nkU4f0lzlR48ecc6r1SoAYDgcnjt3jjF2/fr1QbdnGMbtz76QENim5U8mSggdUaDtzBYW5k+cOPH5\n558HQfBbf+/vpml6/foH0/H47NnT58+cGQ+Gg25Hdza2bVeKhbm5uRPrG4iSydi///DB6vqJB48f\naROuvJer1+ue5337W3/nz/78u47tVUrl0WjEOHdtJ+e6SilCLQNhyfnu9s5cpT6Npw/v3vsn/+Sf\nZEz8wf/3/+N6uVKptHpi3bbt1lFzf3//a1/7mmVZpmmurKy89dZbw/H0+9//fhRFJ0+exBj7Qagx\ng/X19TiOHz9+PF9vSClz+cLh4WGv31cAToPQyFiaxpZlIYXSNLMM03QtieBwOvnxT/6mkM/Pz89L\nAUajEQBwPB4TSufmF/048cMoa7fb7e50EkgpqWkbFmoPm9Nnzz0vf/LE+sH+bjyenD19pjcYTfzQ\nNGnGmW3bUEHGZZKyv//3//7BwcGDRw+fP386Go2Q9iZEZH5+PvQD06S5QokDIDlHhEzDUBCDJykU\nctTrD/v9uXr9wvlLhUJhOp1GURTH6eHhoWta9Xrdsqy11bWD/X1tCwWU0jQlxpgu4aPBUB9k+uF6\n+Pgx59ySqlarDcejQjG3v78/Glme5yUsE4IpwalteY5lm9S1HYqxYJlQoDMYsjQ7vXHSIDTygzCY\n6JzBcj5PKF0/sfp8e/HOvbumVVAAACEpJbZlZUk8icP5hcba8soXX3yOOJemslx3Mpl0223Ttj0v\nL1nGETps9/75/+tfvHL29H/yH/9jzeqtNupKqcFg8NZbb3348ceNubn5pcXRaDSdTikmf//v/c4P\n/vqvfv63f7uxebqYL5w+s2na7vWPPlQKmpYFCUnTVCpFqalnSl2EhJrxlRSASkmFIJAz7FH7DOuv\nmORQQo1GcjmDHpECfGYaATHG2KCIEJ5lXMnhaIKJMfVDIYTmf1Wr1XavizH2w7jV6ri5/GuvvXb9\n+nXTND3PE4LFWRqnCQAAAZBEcTjzGTQMakkxMahl2y5CKGVcKZgJLpWUEHDOJJPqOFNIKYGYDhGC\nWZZJyaXkAABqmNp6iek0Bj4rbJ5j25ZlEkwJtgwiOTNNwzJMDxM3X+BCpUIyhYI4FhIctTpRnEGE\nmISQq4QDxhUiCEEcJWnKOFdSAaSAYkJJyTmXhBgp5yQjGAEmBZJQNy4YgkyP7EpoKyTOszBJEaYA\nIAk0qQ3qzxwAkIgYH6frSimhVBDNVEwWNbCSFBNqUKgAZxJSrIuX4zimaXLOM0340tFJSukjt16v\nI4T2Dw/b3a7tese9F4ZQhyxpuJugXwZFyGPIBBADE00zYUJyISilSkCFoJfLBXGCTavb7zHGTNvR\nhd0fB5q0hTmDCsgsBUrFtgW44CwDUjkGhVJJwRgAEMIoiiiltVoNQtjtdpMksW3bNM3V1VWtqtT0\nnyAINA+Q81RPwEpBOVM3ES2Nd2yPEabXGIwJKQFjLIwj3VHarsM5F0oqCIIotF0nydIwjrIuk1Jq\nL0ZMCZciYVkQJZgamBA/CiVQQRxRWlAAEUoGg0GpWp2fn6835ofDYZrGOk9JhwvVKhWMMTUNznkQ\nBBBCg1DN36aUOo4zGAw2Nzffe+8927YfP358eHiovYVff/31Vqt148aNU6dOKaUcx9H8589vfuG6\n7tbOtuQCIfT48eMoiuI4/tavflMvpZIk0f5nB3t78/Pza2trBwcHyyuLb77xRqff9X2/Uin1+/18\noRRFkY524ZzLLJtM/Ol0ClnEMmGaZvPwqFQqCSk820GUNNstSk3bcTzPq8/Pc87TNI3SJJfL6c7g\nnXfeCYKg2WxWKpV2u/3KK69IKQuFwuuvv/7zn//8+fPnh4eHGOPNE+uGbT1+/Lhaq71y5iwieGPz\nJKb0008/tW270+lESbK9u0NN43D/6NaduzJN/bHfaDT8yTSLonq9evnVVweD3ntff/fp82fNZvPk\nyfVavXH/0aPnL7bb7Xa+4Eopjtqtc2fO1mq1KArabbG9vX24f7CwuBzvp5RSqWC32y2Xy3EcYxn1\nO+1//HvfefvamyahSqhPP/2MQvSDH/ylYrxRrl5+4/W//OEPCSGdw8MT6+vb29uFQuHUqVPT6fTD\nDz+c+GGWZbZtHxwcpCxzHU9z+O/cudNoNN56663tZ8/7/X6xWNQ7XaXUeDxWAEgFbcczDCMIp6lg\nCc84IHGSuBBOplPOeRQm1WoVQkiIsbGxubC08vDxI6EAte2UsVyhSLW3eRI7+XzoB9s7u5QaR622\nZJxzubC0PBqNhFKI0JW1E34YjkajIEm1n2utVsmyVdOxfd8fDAaDwWB1dXU6GjfqVcsQrVZLZCzn\nebabu3PvQaFQWFleHY/Hr2yevnLl6te+9jUp5R/90R+dO32mXK6maYoATNNUh2vF0yFUwDatnOtl\nnHHGXNd9/fJrrVZrOBkPev1ut7u4sGTbTs7xiGlAqJIkCqaTRqPmeU6WRKSUVwBnqajWykkYhWHS\nqNUpJr7vl8tFZhoIwGAyDcKIYEQARJCMx+M0TSeTycQf50rFUiFHKQZA8oxzQYBSGAFKaRRMt7e3\nGctarValUgmSJJfLAUyQZUtEU6XiTMRhQA0MmHj49Nkf/Ks/vHLp4oXz50yC0zRSEAyHw/F04uUK\nd+/eHU8nhVJlrlDJ5XJLC4u9Qf9wfzdfLF+99gYTKsuyO/fuD0cj2/OklEmaUpoCABCZKXSBFApq\n41+olORcKQm5FIwJMdv/SSbFy2C5l5tIKRVUksuZcklJoViWsixJkiiK5ir10WjU7XaxQYM4BgDk\nikXOhVSg3ekCiH79137jN//ubz968rTb7RLD1EmFAsA4zSDEWZwKzqvlyle/+hVCyAcffMAEH4/H\n1DSEELbrTpMYAG3rIBQXSiky8w5RmeQGoRAjITnEyDTsY8URUgBpg6MkUQJInQBkGIQSbBm0mPcE\nz7IkDcPAzdkQQgWVYdqGlSV+5Mf+QbMpAcEUEiZiloRhAiWQSCWCJ4hnXACEEUVKQcWFkAookGVZ\nFCZQSmpgSjFSQO+5teF5xkWapkJnGmKsET6FZskNuprodMJMCYJnGwHB2KwGQ2gaVAAFOMAImsTg\nnKdZIoEyTVNIkDGRMcEywbkAlBqGCRC3DEOjDuOp/7P3P4AKOI6nnS8xwoRSvUTQkiSCCYBQaXMV\nCAEECgAIIeGcYwAxxinjQghtACqECMIwTlMB/YRl6xsnOec7e7uWZSGMTcuSQogsJQgjgnVFNBBm\njImMKUowQoKrJIqzLEuk1EisZkFrx2b9/rUmeDQa1Wq1RqPRarUghLmco/c6CGH9nQCALMvG47Fp\n2PqHaAYgY2w0GnmFvB7+BuPRZDIZjEeTwE+SZBoGmtqqN+EIoShNpJTDZns0GoV+sLq8qJTa2tqS\njDPBE5YpoICSTIpurwcgrtVqtm0/e/pAu3RBCG3bjuNYWz1bhiaEmYLxXC5Xr9er1aphGLvbL7a2\ntv7wD/+w0+msr6+fOnXq7t27hmEMh8NWq6WUqlQqmjceBIHjOIfd9unTp6WUQRC88sorD+7dbzab\n5XL58PDwxo0bSwsLlNIXL15Uq9WlhUXf98cK5vKu9vZqNBqe543HwzAMPS9vGIZhmGnKAJSGYSjF\nLMvK5ezLV1576823e73es60Xn9z4lBDCpZybm0tSliTJzv6eUiBjzDRN23GA4FoB9Wu/9mu9Xu+n\nP/2p4zhLS0uFQuHEiRPNZnN3d1fbS2keyrd/9VevvH7l9r173/3udw8ODupzDcuydnd3fd/Xjdr+\n/v7e3t7q0iqh9Pt/8ReQsZWVlUatfri/2w38E2sr+by3v787HA5LheJoMuacX//4o1anI4QwbWt7\ne9s0Tc6ZhGBtba2Qy3tefn9//7333uv1Bv3BYOXEWsp4s9VaXV5ZX18/2n6Uz+dfu3ip3+lWS+W8\nm7t07pW11RPTweR//rM/HfX6X3xyIw0is1bLuV7r8GixVikWi6PRKI7jar2ecXnq1KkoihzHOWo1\n9c1p2/ZwOEzTdH5pUUpQrtaVUkJlYZwuryyWa1V9fwKKFUGAUMFYwgWSiknx7a+/0+/3+/3hZOxf\nvHiJc/78xQfbO3t+GE8m01RIhbFlOYZlMqGYkADiWn0un0umk8nB4aE/nRJCHjx8dOrUqVq9XqlU\ntnZ3coWSHyeGZXOe/ct/+S/0oQMxkkBpLESTzzU0EoZxp9WJ47BSLDmOc/XyaydPntzY2Gg2m/Pz\n851O78ZHHw+Hw7/6/l+c2jxjUkPf54SQRqOxtraWEDUcDhOpPM/LuV6cJkeHh0maAgA0Sw4hbFmW\nDjLqdrsyjeIwLJVKcRwrITPO65Wq6dhJknSarUKhAKQ6OjoqFYqVUunw8NByC5ZlKQUnge8aVqVU\nppjEUcrTLCDTMI5s111cnD+xttLudtIsM4ycJnwUCznLsnZ2digll167PB6PEcJRnKZMEMOUCgwm\nEymAhWHeyfMsHU3GH/ziw52t57/4xQenNjfefuvaZDL5n/7Nv1lYWjQsU+/Iwsg/nIaHh4crKyuX\nLl36+Qfv37p1q16vzy8s/eZv/iYi9P6DB3GW+b7POJ9ZDyUhIQZAUEqJIJEEKwCFEJqRy7hMUyZm\nhFiZcoZmJoi/NILWX2vmra7NLw89xtiZc688f/48zlLOue/7+UIhimOIkJQyiCOE0NifPnr0KMsy\nzQ+NskRy4eVy6fG6F0K4sXnyd3/3P+p0Op999kV/2BNKWkqGcRzGMXIcKWdYo/aIFlJBxQxMspgz\nQ5iUAqAsamiaThwFlFJKTc2QBUDLWICm9SgphBCmaSLLmDCepql07IyJTCrXtdTU7/aHfpSMgxgb\nJlFAhLGUkmfCNkwmcRCnykRcCIgIhJr+AyWUACEuVJTEXGQWpZIzAKXUXGVCMs65FIBjDqBSMxcw\nCWe5jTMLTSmEQtpcWqpjHBgigCBEiiJMDRNjMsPbARBCJEkm5cwMX1euNE11NdHWrUmSACk1Rjjj\nNisJIAZfys+Qx2pv/UdfX/ilvA0ij43m1XFCoVKKC4GpoRnLCwsL//Af/sPhePQn//bfJkmi3Q3T\nOEmVJIgQZCipqR9IcpGmsWsaxKSQUA7TTEgv5/V6Pa0a0l4cQojRaDQcDjnnjUYDADA3N3f69On3\n338/TdNarRaG4cx+Fs+050mSzM3NjUdTxlixWMzni1EUjUYj7belpUetVisMw5eikV6vp/GBlx+Z\nlj/migUgxdzCPDXNMI7CMIAKYAi0y4mU0nZcKeWLFy/mFhd0fH0SxZptWKvVxuOxvhEtw9TiUc1J\n0bW8UCg0Gg0dAsE5P3HixNWrV0ej0WQy2d3dvX379m/8xm+88sor3/ve9wqFgraXyo0HB82jN998\nczIcbWxsaPqV7/ujwXA0Gi3MzfX7/XazlcbJ8vJyuVxGCiggRqNRmqa5nDccDjudFkLo4ODgtStX\n1tZO7Ozs7ezsQCAopYVCAabhN977Fd3uLC8vd7vdg8Nms906e+4VGqeMsdTnjusI34cEE8NwoRmG\n4dLSknax0FwkIcS1a9c08eGVV1558eLF3t7edDq9fPmyYRiffPwJF0L7ZWok03adLMt6vZ6eFIfD\n4UHz6PLlyyxJn9y7F/h+r9epVUqXLlzodDq//3/97yil/+D3frdarUdJrLnoTIh8oSAkyJAEAFTr\nNQBUtVq1DFMz5L/yla/8zd/8rN5ofOWdr6aM3/jsM0LpmTNndh7dLi4VeJrtbm0XL3hTNkEAYgre\n/eo7Dx4/mvqhnfM2T5+htvngyWMmlWnSWq22vb09Nzf3jW984+c//0BnxeuRWnCpY5Gq1WrKWbfb\nRRAmcZxlmc6iONg/sh2zWqtRw8hSxhhTEFqOozXrEGPLsq5duxYEkUa2h6MJY6xWq924cWNtfT3N\nWJxk+XxeYZJMJsvLy7mCMx6PKaUn1terlUqn2TIN0jN6+0eH3/zmN1977bX+aDgNfN/3LcdBnCRx\notkVAEFEiRbvQYQMw0zTpN1uU0ot0zSl3ekPgOgxpTqt9s3Pv2g2m6+//vrHH3+aZdni4mI5X1Rc\n7Df3IISO40RRNOj3/en0yuVXpJRpmgZRlCSJECJNU891B8PhfHleACWEbLXbaZpqg9JysXh0dOTm\ncoeHh/OLCyXtXN1samW8EIJxNt+Ym2V/1WoTgHnGKKV5u2abNAqi6XColIJK2J6dLxYc1yqW50fT\n8XA8lFCZhrm4uLi/u6NFR7Va7Y033jh37txPfvKTUrny4PGTL27ejjMmIVQANRbmbQj2d3cKOTeX\nL1gGHYwmwXRqGmR9bcV13fPnz4dxFARBLpcLolBKadvucDBqt9uVSuU73/mO+f2/fPz4cZIyhaDr\nuteuXQuC4O6DB81WSzdtBccghACEZ3xmYkCIGOeI6p2X4JxrVasQMmMZ4L+cffGxPEb/zUvxLjxO\nloMQvv/++1//+tf/6T/9pw8ePvzjP/5jLVDUPmK2bVuWpddDSZZq7RwHMgNZoVD0wRQIiQFUhJw4\ncSIMw8FgcNRqYoznFxaqtXKz3Z5MJgojJljGmYYbCVBSSCEZdSlnDGQAQIkBFJTqFaZOKLEsCCDV\ndGt9wOo6lEShthOwLUPPl4hgLpQC0LBMoeBgNArTTAColAJCqZRJCTBE1LQRISJOueBQKQgRglAC\nIKXEEBOMoZKMMc5SjnGWwowlLEkopTwOiGEQgyJCOVBpms1QQ9tFiCigrTd1xwMBAEwqASQ59kJB\nECJMEJ35hSrOlQLaY1FrdiYT/6VIDADEGPNlxLmk1BBCGLZB9eQpBMZYScChUEpJoACCSHPrdIVF\nWLuAKwBmywoIIILExynnnAEWwTQCCTEMii0WxlmczDdqvh+qjL//k79hjFkSEmiWcw6E0JcKYyPv\n5TV67MeZRJHruuNJsN0faeML3dkZk4kCIElTKiU1jDjJJMInTp4hhDx58qTVHVuW9eDx1lF7KCSd\nhmESpp6d67X7hUJ+bW1l6o9v3r6dz+ePjsZLSytREhIDr6wtN5vtg8OmbdurizW0uvT82YskkZbt\nTqYBQFQo6HmlMAxt5IqMEWJkmcjnKu12u+LyMA7n5yrXrl1rtVp37tyBEGoKmGkbnuMKIcajfq1W\nax/uKqWKRgkRsjI3F0URUWptYaHf7xdcN5fLbWxsUEq3t7efPn16dHSQy+XiOH779TfeefurBwcH\ntVrtkxs3YpZh02gNejtHB9S189XybvPw+c42QXhtbW3Y6WSjUJI0GfgHW3sOtnb3dkeDcZTEfhgs\nLy8jx2EY5xfmmJQv2s1fPf/KqN3kXA2CablcLtRroyjsT8J6vZ6kwc7BUak2HzKWSDkddxFCnufF\n/vSnP//Z1atX51cWWq1Oxpnt2Tp0qD8cOI6Xs+0gCCxCbWralm0YjElw0NzxHphPnjyhWEVBSIjR\nabb6uPvoydMgii+/dnXsh3w8ypXrozSxct7Nzz6rzM/3+/2MCynBzS9u6xsgDhJsUCEAxmRnZ9d1\nXei6oyyLEWn5MegNgyAZ9Px8wfvuD9+v1Spz9cb84rJkAgjhGZYkqeCubdtJkrVa4z/93l8tLi7u\n7+8nSQSpwYEY++MnTx8QQgCLup3DP/6D/wFS2B0NnOb+uSsXE8ZNDIMguPf4oeu6a6dXP/300+XG\nwvmLJ7Msa7W22+02cRf2dvYJogjgj3/xEeBCZiyOk7lqLQzD7miwubmZz+dfvHihsqxULBLHGA6F\nIdCT5w8IIaZjjyYjiGEaJ47jtJqdd955p1arffjhh5rt/9Nf/OLChYtRFK1snny4/Xw4HP5v/sv/\n4q/+8i8LrSaE8vyZk4PesN/vl8vlCi1FUTi/PDc8OPj1b397PB7fuXt3PJ64rnPtyhXfn0z7vduf\n/OKdyxf86RiMOoHfrecLXZ95nhcmcS6fj9JsNBmXyuU0TQmlGRPUNgghQZIlKQfIUFBBiPtBEvdG\nUZL88BcfGbYFLXN7MvLmKq3Az2xsUiNQIobiRfvwYNBdbpRWV1dv3rwJMLIsC0NYL5UMw6gViwnL\nBoNBu91uzM9RSpp7OxaGPd/nhEzi2C2VcqXyuXMXOOfdds913Wns51zPMmwhRBImnPN8Pl81cWGu\nOp1Om81mb5Kkaco4M02TMZaEHBhEKjjXWPj1+aX56vxnn33WmQQEc8OEBJN6rQxV1jrYPb2x9vqr\nFw4PD6ueffX82ShO0jRlQiGkgOlYthdEGVAEAKNQLa4tLZZLJYXsM6+cK1UaP/vpT7a2n7722qsL\nxcLW1vNRNqpUq4bptvujtc0z/8n/6j998uT5n3//uzdufXbm7KmT6xubG2fWV2q3vriZxcnyymIk\naJaknPMomA77A+0FxKBiLE0Z93K5LI2n/qSxuHTUaiOCIUMQEu0wxaUCEkAIICRMZIoLyyFSyjhJ\n8vk8ImQ8GtVd++03Xnvz8sb204eegTjPPM+DEDZKOcaYEMyBsuDZJWshiiIDQopkAjhJg4IBs0wk\nIst4+sWtTw6Odrf3dsMsyBcLZs4oVMpHnXacJpxjjHEUiCzLbMdESnDObdsejkOCMUKcCGDbNkYm\nlBAKxSSExMSGLbIMIGxYNlRgxtMCpFJdUEoNpgyHUimTMTZEoOZ4lNL79188efJkMPIhhLlcTof9\nua5bKZVN04yiaDgcIpUQSSCEEEoAAMKAzlKSEUKUMcaYiKVUiRJCKkihgH6kKJOmhISALGNRmAph\n5IoNwbhSCihBlMJEW3opABQCmHMOAbAMA0MkGZeCA8EpNYAQFKEsS6M0URBMWeJQZGEqIJBSsEwi\nhACCAIKUMwEUQijljCMBEVQQaS2f4pAQIqRABhoPx57nIQAJwoIzrQM2TMKYjKIIY5zL5ch4ONJq\ncdu0EICa8E0wzudc27QkV3Ec99ttxhgFqFQpJPHU87xGo6a543Ec62w1xlLf55rn7DgWQiAIwiRJ\nDDSLZNLTPcZkoTF37uxpP4wPDg7iONYeIPoFmabZ68y80dM0nU6nyyvLvu/vHRzMz8+bpokRbLVa\n02kAIc7lXdOwtR7G9/1mu3P27FmIyN7hIVBoNJpANbM2TZJEClYs5DfX19vdPa35SZJkfn6+0WhI\nKZ8+fdrttrMk1Y2MnnEdx6lUKgXbrtfr2gNLs0Y7nU6pVDp58uTS0pIOxjl37lyv10vT9OLFixig\nCxfOD4fDvYN9pdT+/n4YhnEcNxqNpaWlIAi63e6ZM2coJoeHh+12u+DmCSHaEWw0Gm1ubkZRVMLl\n+cWFu3fv0snE87wgCmu1WpqmH330ERGsWCwuLi5WKhW9OK/VapZlpWm6u7vb6fVrtZp2qNYggUfI\nz372s4ODg29881cdx9nZ2alWqxsbG/fu3dPupkophLGGi8fjsWEwCKE/md67d6/TbOXzBdd1JxP/\n+vXr5XJ5EoSmbRmmRQipVCrDUX9xrvKjH/1oMBi88847T548efr0+dbWVi6XK5fLk8lkMBgEceR5\n3uLiIoTw6Ojo4qVLcRyDmVEadi2bFwqObT58+NCyjGtX39g4eWJ9ff3Zs2edTsc0jXKx7HleGIbt\ndhthqOFxx7E++uRjqKRhGLdv3Z36YwhhuVzO5XKmRXq9noGJUmp5cWkwGLiWa1lmGMb6FtIfmv53\npVIZj8au6yKE9ECDENJwXLfbhRDOz89Xq9UTJ04EQdDr9QAAvU7Xdd3JZFKv1pRSo9GkUiorqTRF\nwHFmaiW9OQ7DsFHN/fDHP+Kc/8P/6Peq1epHH37yxRdfxGmqB03fD4WShmVWq9VOp4Mx0VYnz58/\nN0wTYwIAwJg8evz4tcuXd7e3TqwuO15uZWXl1Vdf/Yvv/fmTp48ct8EYi+N4MBwuLK9oktT8/HyS\nppRiTQDxPMe1rSzjjDGpoKEMy7JKqCyVykTGOScSxUEohLBNC0OIADTzBSGZa9lRFKVpOj8/r80H\n8vm8QWmr1dIKtAsXLly+fFlK2e52tBuPRwtJkiRJYhgGxfjFixf6O33fhxBqNddgMBhOxgSiRqMx\njf3BYKDNXvReQ4uL6vW6ts169uyZBsZKpdLbb7/9w59/0Gw2CUIjP+gj/Na1qzon+8aNG0mSEGIs\nLC6ffeVcmMS3bt65c+eOkSsiAJWUo36/WMhdvnD+/JnTWZLk8nkuQGOu+mu/+RuH+7uTySgMw3p9\nbndv0Gw2FxYWAADXf/GLfKFQrJS1DlBzI2zbioLYtu0333zztUuvPt1r7u3tBVPfWV7knId+kGWZ\nlHJl9cSznZ1ffPxxyoXjONr/y7QtFvFfsqOVUkoohCCEhUIhTWOMsOW4YRhOxxPHcXKeC5S8fft2\nu92+ffv2Sza+ZVm9Xs+2be1ZNJ1OwzA0DKNer883qvfv3w/DUCmwurqq00hHo9HOzp5t2wsLCxDC\nTrvXbnW73S6lNE5CwyAGQRhSKGemXVIwjJA2iYNK8iydjmdmSiXXFkIkSaKdjpRSUM1m+izLMkJn\n/DLONaaYUtxqtTjn4/E4DALTNAkhGMxCBLRbQJqmPM2AkBhjYhjgpQf1MX4LwC83vvI4GXDGZBYz\n9Z2WCCOoIIYIQKS9rKVQSqPOsz+YYs4Y1DFECANM1DERvVKpeLnceDwOkzhKYj25AogARLqSaB8x\nAITAEnKufarxy8RfpYBUSZQaJlFKaUqT/nvOuZQCQqhxAv0haI0PgRJihA1sUIta1EqShCNpGQZn\nAgJYcJ2il2OMxVLYruuYFpApRkgKoaN2S8WiEKLdbudyOQCAxNi2bduypJQGpQTjtaWFKIr8MOBM\nAACyLO10Whjjbrc7HvYNwwr9CWOsWChrGH08nmjBqG2ZpzY3llaWX7x4lnNtfzIBAMzPz3tejjNt\nS4n6/b5GnrMsK3g50yBSwVI+f/Lk5tbO3vaLF/5kRDHKeZ7EIA7CUHHNlvJ9X0ftFotFzrlgnGfM\nNE2N8ruuqw/lUqm0NjfX7/fPffWrC3Nzf/RHf1QoFN5+661Hjx5tu+58o7E4P+/adhAEi/Pzvu9X\nq9U0iJIkGQwGYRhq9UUYhhCjIAg0calYLBZy+d3tnYODg5WVFcewPc+r1moIY+1X0Gq1EMFCiJdr\noeFwqJMb0jSNx2EQBIVCYTKZ9Ho9oJDneb7v5/N5jOnEn+rSqJ+uNE1d1+Wc37t3bzAYLa0sSykN\nan3yyScnTpxw3dz+4awHGvYHlqMfrdCx7bxXqBRLtmEahjkeTnpJf319HSGUCTkajRSACsE4it//\n4IO7Nz83TVMLpQ4PD5VSSZrm8nl9HK+vr9fmGlow2ul0KKX9Xk9LV7VtOJRSb/prtdp4OMAYm4Se\nPXt2Mpn0+33HcgqV0tHRUaVSKZYKGv5aXV1uNps6VosQlCQJNSzLsgzTTjM+nU4syzpqdR4/elqt\nVAqFwqsXLjYajVwut3uwT4mRptlPfvLTV1+7/Pf+3u989NFHw8GOfgF6qaOfDaWU53k6kWJnZ8d1\n3fF4HASBDtTSzlClUkkplaas0WhUq9Ver/f06VPdzMVxrLlRWmiXJMnS4sq7X3svCIIbn33xs5+9\nn2WZ5djDyfTwsJnP56dTXyng+/7a2pqcjoQQz19s5fN53VwOh8Pt7e3vff/7r166BDHd3t35/Man\ntWqZmtZoOAHAoYb15ptvjkajdr8XRUGa8Uxwz/Mc206zjDMGpI7czpTg2DCFkEQBBYFSEkgJlSIY\n5spFpIBJjcFgoKTIuZ7kRrlcnpurJ0mEEKjVKmer1f5omCTJK2dPm7YVRRHFkAvGOVeCYwgwBGEc\nvzQf0NmacRwvzM1rNsZkogXouFQqJUkymUwiFmuCSC6Xy+Vymv+hb359vI7HY11CarVasVj8x9/5\nzl/+5fen44lpmo5l2KZVq9U0zyCOYwixkKA2N7cwvzTZDPrD0WAaREHoOvbZs2c31tdOrp9gjO3v\n70PFWs3D1ZXlhYW502fPPn78WACVy+Xi5MV4PE6zmKQ4YcnEHw8nQ/009Xq93d3dk+sbpXw+COP9\n/cO9vYMwk5PJxCAUlAq6CGnjoHq9Dij92S9+AQD0PG/kB5ZlKQBMSiCEegKWUgJAdMYDpQQI6gdT\ng2DLoFBJ27FkKETKbty4oaVZmo4wmUwIIWfOnHlpH6tv4JcGTJ7nAQXL5TLAiGeMUMIyodXnGOPJ\nZAIU0hkejuOk0xQq4LkeQiiKAz1BIQDjOIZKCow1R8lxnFwuZ1rGsNvRk9wMd4UzeQsAIA4jyWfG\nT1mW6VA1aZt6n51lGSHEtWz9IvV3SinTKOZppmuqbdvgOPlDSqlZ5BBAbXuph4RjhpAO9OUCzIIZ\n4LHREwAAA6j36RAQLQEDQpszC44xAVC/cgIRJDN99tLS0rvvvuvlct//wV8+29kqFovlchkAwIVk\nUggpkALHlwwIKYFS7EtpvLMSDYBUPE2FLrT1en0yGft+RAgBQGqnI5QgTGY0+CRJiIEwhggKAKAy\nEAaEYoPmcjkMsdYIel5eL370LrZaKupHyzGNtbW1N954gzH20Ucf7e/vG4aBsYExSqMwTVNCSKVc\nOnXqVLvdZgcHQRYAAJSU08lESen7PobINo0oiTHG1MBS8iD0l2rlEydOPH76yLKMKAqePXnsWPbf\n/a3f/u73/rxczC8sLG1v7e4NDgVX5XK5UqnE0fD506fFchVjcu/ePSkAIphg7I/HJiU071JMEJAZ\n50pyxzYXFlcmkwkAwLUdJeT2i+d6RZ1lWS6XE8cennopHkVRLpebm5vb2dn5+OOPEULLy8uMMb2E\nf/To0YkTJzqdTr/fr1arxWKx1WqZiHz88ceO41y5cqXZbmu9ZhCFCwsLrVar3W4/ePCAYnJidW19\nfb3dbpfzpUKxqG01B4PBYas5GAy8fC5lGSGk3W4DAOYbc8ViUXtJNtbWGGNa5BPHcb0xb9u2Zo1W\nalU358Vx3Ov19BTCMjGZ+LbtEmJoMb4uMOura5r/LLnQ+cos44vzCydOnDAMcXR0RBGu1WpBEB4d\nHOoVe5qm2KCUUia4YRi5YsH1PEKpAdXS0lKv19vb29vc3BwOx7t7e2EYaqFzlKbVRr1SqegH0jCM\nbqevW3iTUMm4lMI0DMexVpdXms3DuXpdCLW4uLi2spolqVKqeXhkULq5cbI/HNy/fxdCVa+vFItF\n3/f7/X6aSi+fsxw3juPBaJxl2a+8987h4eHh/kG5UNw/OEyePu92er/7u7/bH47mGvPUNIbDYWNh\n/syZMxsbG3t7e0+f7Lxcv2kujDqOu9ZKA73lKpfLWpAAlYr9oFwoBNMpY8y17NbhUTCZVqvVarUa\nx4mGc8SxfVvGhJcrWI79iw8/CoKg3e6GYWgY1nA8cSy71pir1+udTkcpVWs0vHw+yJKpHyCEgjgq\nlCpr6yeb7Y+JYRUM49atW/1u5zu/9w9Ob5765KMPPc/7L/7L/+rD6zfG4/G1169kgv8//vn/0yvk\nX3311aNWs93tF4tFghFnQPIMAGAQRCxHKIhMY5YpKwHBppBSCMGTOO/lKsUCT2LBuYnRcDQKEGzU\n63GSaL7Ct771tdu3H926e+f8+fNZlnW73aNWs9vtlkoleazK0MtLznkaxxEAOplD1wmEUBCFk6Mj\nrXNzHEeP1Ppjfxn7mM/nNbtCyz8ghFmWtdvtIAiKxeLCyuq1q28MR/3PP73R7/Zu3f5iOOrv7+45\njuM4nn5fvV7Pst18vrh64sTk4eNavXr29JlTJ9ezJN3f3ydAUUr7/eHTJ92tra3z51659ubry8vL\nWZbt7h3444lhGN1u15pOF1dXkixtb23FYXTy1KZG6fr9PoTQyeWEVIPBwMmXSqWSSQ2phG7fhRDT\n6fTZs2erJ0+ur64ddboQQMeyDctMGdd2aS+HYE3NQQilaVouFYGSQApKiFPIFwoFkSRusajZWPPz\n8xcvXuScP3361DCM11577eHDh5q46jiObdsaNWw329VKzbbt11577ZNPPiGEQAB1LRlNxgQi13Ib\n8/NhGPZ6vTAIbctRShkUY4zTBGGCXNPknHvlEoRQCq5BdSk4y1IIlJ529JVCCEFCdR3V7b4uE3pI\n5ZwjAJRUhmE4pqX/khCig3IVVbq0z3hncDZO6mQCdSyTfclX0u2CLni6A9Zjt2M5+otjnpN6mTMB\nISTH1CddfYFUHEAOkMQSKYCPLck0bej69ethFB21W9oJLgkCjDGAiHEmpdRRSzoHS2l9sZTy2NDq\npbqXKqiPC011vHXrZr/fF0JQigGYMY0gUvr1M8ZIkmSUUpZyfSxiSCxqFLzc8vLy8ydgMplgJZQU\nDiGQUiwEsew0TantWCVrvlZ3DHMSJ0iqnO1YlqX9wTnngAvTMPOOixAwTaqtySmltm3X6/Xl5ZXP\nPvus3+8jDIqFnJJQcsYYKxcLjUYNY8jSTNn87u07aRaf2FgHUFYrpSgI93f32p1mwfMY41EQpDgu\nFN1SqVQq5id+yJI4lyskLHv25HEulzMNDBXCGEKFbEoAkBRDSjFjqeM4pVLBsqxerzMajYQQa2tr\npmnqsZVzrgE3jPGwPyjk8ncePtrf3Xvvvfc2NjZu375dLpZMaty5dVswbtv28uJSEAQszSzD9Gyn\n1e1sbGwABJ+9eFGqlBuNhpvzbt68mWXZ+vr6pUuXOq225KJYLDqOc/7s+cFg8Pnnn4dhWJ+fI4Qk\nWbr7YK9QKFRqVQhhylihUGBpFgSBrmSO4yilgEK5fNG2bQ2bpymLosiyrHa7bZqmY3tBlBi2BQRX\nSpmmKaVcXFieToJ79+6Zprl55rQm7zHGbNPCVby4uLi+vp5zkEWNIAg4Y2mc6DKPMR4Mx9VG3XJs\nHob90WDv6DBhWaPR0G6Io9GIEHLhwoUkZRcvXtQYLyQ4iqJ79+41m816va5ZHvm8jTEmCEnJOedA\nKkABAtj3fSln/iomtfQIpZSqVmuNRuPo6KDdbhfzhXyxsLu7WygUvHwuThOgkFfIZ1nGhLIcz3Gc\nE2sbxUI5ibPQD1w3Vy5XO53eH/7hH33nO98pl6u27WrR7bOnL/q94bOnL0zT1E+79hvXwJpWMrxU\nVwdBoNl8URQ5llnMF1zH3TvYl1KeOnWmUi6PJ5N+v18tldu8ByEsFov9fj/TMScGllL0h+N/96d/\nahJzb/+wVCrp/FUvl19eXWm3271Bv1qtr5/cPNjb39/fJ4ZVKhUJIXGavdjeOWq1IYSSc8t2coXi\nw8dPf+Xr7/7ed/7RjRs3CDUXFxf1xFkul8PIX99cv3bt2v2HD/r9PpAcQoKU4oJrt9+EZRBhx3EU\nQoIrDKVpEsZYkCQUYwphGoY8jhGAXCoKoWdZrdZRLpdDUI3Gg/EkFJKlcfjk0YOvvvvuiROrT548\nCf2pY5lJBpRS1Wq5H0RJFFGMUwDG43E+ny8Wizp6Sx8C7WZL6+Z1yxJE/i+PS0K0pCIMQ42ogWMX\nZX1ahWG4s/X81KlT9UrBQPDTTz8d9gf9bq9cLg/7A9N2hAS9wbjVGxQeP5cSjEajNIlznhuG4Y0b\nN3qdbq1U3NxYd11X8qxcqWAEbt66tb275TjOhQsXXn/j6oPbj2zbfvTkyWHzqNtuToMgZZnp2GkS\nFYq5d776tWazORwOc64XG6xcrSecB0EwSFMgBcXYpEaapqPRqFganwDq9OlTQRL3xxPbsiWEOdeJ\npwECQGttZ15LROtZVamQMynOsmQGvSqR9xyKsM7bKZVK2tBeT7qTyUQDQhhjbfCiz17BWRLHUogo\nDKWUFjW4AizLMCEEYcOwGBPiOBM2n89LhdI05WkiEQKcEUIQBEBJ1zQRQgBKxzKklErINAz8UUaP\ng+W124y+ZJxzgjTKwrUFI4bQIATbdqwUxUQTyvRV1mQkfRogCF+Sf4/rrgJAJx+Cl1odCCFQchbf\nCwFGEGMkIZAEU0wggRAdE9kUAEDp00MPpzr0EAAAAFVKKQiUMqScSaeAVNp9bGvruWaP2rZpKMqk\n4DwTCmFsCwmkBABBqG08AFAKSCFfNgdKKXRMrE6SJMuyyXTa7nSa7ebu7q4eYHI5Fx07akkpMZ6p\n1wjLhGnYAAIhAUJEKZEkSRAEkR9ACC3DVEAInhKIqGF4jskxSpXECBqU9LqddquZpmkSR7VqBR17\nn+oWWAihpAim0ySKJM8MgvI513PzrmVjAHiaEggpQghAYhAIYQwkxbBRrZ06darTOjo6OgJAMily\nOS9ZXf2t3/jNX3x4fWd7b29nd3X1hOd5ec+wXWd764lpO2EYKi7KpaIQUrGskLMlZwqpMIo828nl\ncvmcl6YpxjiYTqfjMUvTvZ0dy7KUEI5lhWF4enOz1+sxxjSPWgPsein185//HEJ49epVpdR0Om00\nGoeHh7os6U9fK1AHg0GtVqOEzs/PCyF2tnen06lQMgzDhaXFN954I8syvRJeWVlJ42Q4HE4mk2A5\nWFpaQghxJbV0hFJ66dIljPF4OonjGGKcZZnneaZpTqfTLJwahmEaNsSJhvgAAKZpCxVrexPTNJWE\nXAlCSKlUigdDiIgfhHoV981vflNLPCWTOmlKb+Jt256MR/fv3WXp1HNd0zSnE58Qsra2FoZxp9Mp\nlw2MsQQKIYQpdXIoh/OnzpxORyPN3GaMEYNevHhxfX39r//6r4M4sm3bNC3tC9bv93P5vOO60TQE\nhHClKMXlchkqkKRxmqacQ8UFACDv5SaTid4yLiws5ApFxzIYs4rFfKfTw5RgjIvl0u7OfpQmEEI/\nCjPGMcaGoZJ0vLO3/+LFi729AynlpQsXx4MhNSwI8WTir66tu04uSjIjiH7xiw+jKChVyhgbupfV\nzEE9AQMAisViGIb9fl8/MIVCQeeF+OOJ4zhxEG6cWJ9Op+1ma25h3rasqe/rUU8IYVmWjsQ2DCPN\nEgVRsVwxTVtKFWdZHgDb89ho3B8OrMOjfr9v2k69Xn/ttdeq1erjrecF151MJqVKNYvj3f19oSBL\nYkrp3Pzi1A/u3H+gIFBCtpuHEJNLly588knwox//db5YnpubW1xc3N5+cefWzSSJgiAwTZNiovVI\nCMAoCOycGyeB1lQQQizPs2zLQJBikssV4jCqlyqWYfq+byNSKRQ9z9MaDJnKv/3p3zDBS6XSdDpl\naVouugtzcwsLCxqi930/DiMlRBAElmVVq9VmszkYDJIkAVLpmuE4Tq6Qx5SMx2PO+eLiIsZUCJGm\nLE1T23YRwlKCMIxzuYKuvowJCLHjzPadceLf/OKzYrG4srR8YnU1iqLDw0PGWKlUEgpEcarnad/3\nAcIQI+3Wubu7PR4OJWf1cgljHMZR4E8wUIQihFCSMgWSwXDYmJs7f+mVNGJCqUqt+vjpE8Oy8sWC\nUirlDCG0urrqeV6n0yOEDIfDaRCGcRSGoW1atUrVIEgzuhuNRsaSg4MD0zBq1erYD5RSUeA7jgeU\n0GHwGGGEAMYzZS22TH88StMYY+w6Duc8mIw1k1HDM3prptW3CKGtrS29mdJKEN2+CCFcyx6Nx6Zp\nfvbZZwCANGWe5wVxZBFimjYEUPuaMcYoxtVq1Q9jRqkGbKjrUkoppTYlBEOEIACY0Jm4VgPLXEmM\nsdYKz9S0QgAFMYEQIkKRUhQIqVe8CAHLtoUQSjBwnDahRccYAYwAQlBKBSSQx9tcSKhuvMCsqgEE\nIQSQMZZGMcdYCgGlQgggiCChXGQGJkghoAA4noOBFARCXa21x9BLiZdQEgBt9aQAAAop3TeEQXjx\n4sXN06eePHt2595dgFE+n0cIBamACiM+A7XVMQqdsux45oYIQKlrPAT5fB5jHEZBf9BL0lj90nsq\nRgi8LBmMSc4lQoiEaWp5HlAKKCUgVAAkWTrxp8+2XkjJLWogqL0hhY56hph4jquUMqmhrz2x8Vy9\nof3ZoyjigpvUsE0rSRKWZkdHR3Ec+76vr6Lv+3v7O5RSgmhBv8Mg4EoahgGUZFmaL3iXXr3gB5M/\n+7N/H0UJpSSYTM+ePRvH8eryysXzF+bm5vb3D9vtdrlcxhg7jqdFtLZtSy6C6dQ0TYuQzqBTqVSq\nxWKhkOOcS848xz558mR/2JOcGYYxmYyPjvxyuax9bpvNZhAELE09xyGEFAoF0zT1dkrfTIyxVqu1\nvb2tD1b9mAkhnjx5sr29rXk60+mUIuzmc9o+qVSpPHj0sNfr9YcDjXH1er2LFy+eXN/46PqH7Xb7\n9OnTT58+bXbaeuOo+9z9wwMd6gcAKJVKjLGjo6NcLre5uVkqlbrNI6kgIljLe8IwNE3btC3tfcMY\nMywn5UxLWdI0zRcKetngOM7NmzcZE81m28l5o+ksmFlzxLS9ESEkGPcKhUI+n9fqlEKhNDeHK5XK\ncDRpdtoZZ2EYslB6+XzG2ZMnj1GSIoQsxyaEPHz4cDL2T5065UdhrVZ7/vz5dOo7jkMo1WMNQrMo\nLSmlbTuNRkNy0R/0oAKWZVGElYS2bTebzfF4SgjxHKff73/wwQeNRqNcrUZREKeJ53nPn21Ry4QQ\nJmnGGFMIOo4XxMlgOMzS5OTJk8sr4Mann+Zye2srq5VKrdvt3r13zw+C+fn5N9988+nTp5ZpFYvF\nIAoxARpPe/ny0jTVRVdKaZqmbdulUslxnFqt1u12g9Fofn7+1VdfPX/+/Oeff/5XP/px66iJKTEo\nnUwmBS/HlUQIVSuVOEkYY1Iozrk/DUzTjIPAcd2FxcWlheUHDx4opYbjsSYcPHvxfDAaBkFQKpWE\nknGaEd/H1MwynsvlppyXKjU3l3/x7KnnWDu7++1Wa21luVSp/dVf/ZXjOO+9956by22ePvnk2Yuf\n/+3PRpMxpTSNI8+xPc8ZDYZCSSeXA9LCBKdpihGaq9c0BmMZJqXUwMbS0pLg/OSJ9Xw+f+fW7V6v\nZxjGm2++qe9wnR+qIDh58qRhGD/5yU+0JbgSAgFgGUaMUOvoKNeY0+SdfD6vaXdpnHiexxgbDAaW\nZentWpqm08BXzaOLFy9qzHYwGOg5vlar1ev1brfrOI4Wm+rtoOaIEIShYViGwZLk/NlXzpw58+GH\nH/7Z9763ubk5mQZKqVwuR21HcBWnGRfCsU0MkedV6tVqEviWZRBC8p6bJhGEMGMpxuqo1RZCjAM/\nZvzVU2eTJJFKLC8tCsGb7VZvOJj6fqla3d3eGQ7Gtu0qpYQEQoIwSv0oRgBo8C9NkziOMUSEEMnF\noNvDllEpFncgyFhmEBKHvoGRXmrqMD/9BVYAKskFL3i5KA6BFCYlwTSrlIoQG9pqlzGmxRp6Bo2i\nSCNbpmkKIfSJpMX3tmF6rjcYjQr5kkkNSmnFLI2nAZAKYFgplSVQnPPhYBz4ESXEcBzGGABSL1ml\nlMQ0cnlX/9I0TRUXUAoDI8O2OIB6dtclTQgBjwf62UJUAT1T6vmeWrZemQEAEIBAKi041rON0h8l\n+GVleglK62hiXYkhhAhClmX85a9Ws0mAi1nokBQcAYgRQEBwyRHGQEqloFJISgjQLOVaF2l9pKtj\ngBoAUKvVdvZ2J/4041yfnAymbj4HUgEA0M0CAABpATdC8EspzrOZHQAIYbffzefzlm3nCwWNTGRZ\nlqSpbdspSyGHpmkijDhjUpPOusMRMkz9EwzHNjARCHGgojQxDcKhApJLpBBAHCgBFZDccaw4jtM0\n9jzHsoxer7e3119fXwcAYAzDMNSwM6VYKXXQOrJtu1gs6vesVZW1SpVS2m634zjFGBmECM4KOW9z\nc3M0GP78b38Wx2G5XC6VirVabWtr6+d/87dX37w2Gg2LxaJlmIJxy7IqlUqSJG+88cbR0ZF2sozj\n+Py5s2trazdv3txYXwMABNNJqVTSp78/GQ16nVqj6thmqVzd3d0dPXwYhxGEMEvijz76qFaraTDE\ncZzNzU3Dcra3t2/dumVZVq1W01FTR0dHmqGjmVY6kjaO48uXL29vb7///vvLC4vaAOTS5VeTLLt1\n5/bi4mKlVn369Kku2Lu7u7ZpLSwsmKbZ7/cJMR4/fryxsfHgwYNXX311ZW11Z293ZnJJiV47zTca\nWj+tve8Hg4EQ4hjUpQoCnX8MIUwyTinVbqtaGw3dnOu62DAt19vZP7Asq1gpM8by+Xw+n69Wq4yx\nZ8+ejUYjznmtVnNdVz/njUajVqv1egM90jkOc113uVoZTyd7R4eu6yZZure3V7Lter2u4RfXdQ1q\nHbaajuM8ePDAMIzFxUWIkM7b0P4JtuvmCoU4DJMkmUx8libTiZ/zXN3FJ0nCpTjORoSd3oAJnsvl\nLl2+vLCwsLCwcOvOXdO2TswvTQJ/NJ5IFXDtkhPHhBDXdS9eevW9r399d3eXcxFMfdO2Oq12r9eL\noujixVfDJN3b2xNKOoYxGo28fK5aruTzec3S5JwTYhoG0c07hNC2nTRNCUFxHDYatW63rV0SX331\n1TRNW62W1rbW63Xbtl9sbeXzhSCO4jguFotAx3GaVpZl7V5f79EXFpY8L98b9IMoPLG6FkURptSw\nLIDQwdGRBvSCKF5cXNTZc5ZlRXFCTUPzhGuNuSjwO50uF+Kw2ZoG/le+8pXHT5/ol/HGG2/U5hq5\nvGtaTrfb1bQdxtinH3/S7XZZmqZpiigSQjQajdOnTi4uLkrG2f+PrP960vRK7wPB417vPm/Sm8qq\nQlXBAw10s5tkk9GiKFIUxRnFRij2aiJ2Z290swrtlf4CrSIUUmh2FXulCIW4nCFHlCg2TRsB3QAa\nQAMFlK/KzEqfX37evN4dsxcnMxujzausrDSfed/zPM/v+ZmyVFU9jRMVwbG/YLRQiQIAqHie4zia\noTdazWcvnmtlQVRFlgHpvDEcDqVZ23g81nW93W4TQiLKTd2Yz+dZkjqO49pODGNJWJMkkmv3WVlQ\nJRVR5ozJHeHlYX1VdCVd5Xorr2HESxEHIc2Ld999d2N9BYDv6rruR9HB4fH5Rb8oCgYR4wAh7Lpu\nkadZliZJQhCwNL1Sqei6HiYxUbSyzP0gclxL1Q1C0Hg2++Krr3a/fry2uc45v3P37u3bt0tGT3vn\ntVotCgJ5A1YqtdF4Ks33ZYNe0GIwGg4GA0NTl7td17bkXk/RVIBISXmR5xzhZqs1mcyw4EgAJDjk\nEmEVAGCAAS2LzY11KU/o9c5MXdcJ3lhZvpgs5K1x6bcFAABALptN03SvZhi5OwcA+L4vEQXBoVyd\nzGYz23alUEImYWd5KTcvqqoG/twwDMaoEELXdU5ZXqRQ133fNzWdEIRUpYTXfxloslhAKMsnRkgQ\nItd2EEICERdXQUOEEEKiJCWEGJoOAKCUMsoghIqqKtdGUULIdY/8Kcovt7/8/xiiLFFVcWVgIr+I\nMdYVlTFWFrlgFBKiEiw4p4IJLi6rOAMQYIAuay1BWCAoaQ8QQqIoAgOiIAhFnibTKcvKgtGiVvWY\n4FGw4FC7fiQIIU6AIi57BfnIrpDzSwhaEv7jOG632zJHbmlp6c6dO8+ePQtDUBSF4BARdA1fE4pQ\nfzrVVU3TldPBQMXEtgysqxjBPMt4FCqKohJ02TIIwQsut8USbZbHhOu6kmovcyvH4/HGxgYAYDqd\n2q5bFEUcRStLS81mc3d3FwBwfn7ueZ68hlhJ2+229HnZ2dkZ9y/29/eXl7tbW1tPnjyezWadTuer\nr7467Z0XRfHxx5902kurq6svD4+m0+n29nar3T04PJ5M55ap27YNAIjDYGNtNUkShEGzuirPCMuy\nptOpYRhhFKVpWqlQINja6jJnIEridrsdRQdyspdcR8uydm7ckt5sklDe7/cl38T3/aWlJdu2Z7PZ\nYrEQQkRR9Kd/+qeMsXv37nVbbQ7BJ598cn5+vvfy5SXVM0vLshwMBhBCudwKw3AwGEynU1XVO52O\ntLCeLeY/+9nPJBAKAJDYxWKxaLfb9Xp9Pp+bpvnmO+988cUXlNKXL19WKrVaoy7nY9d1gygpy5QQ\nMh6Pq9VqHCcIYayQktHpfLa0skw5i6Ko0+mcnJwMRsOvHnz9a7/2a2+/+46iqQ8fPiyKIkriumd2\nq0trK6urq+uapvX7wzzPz8/PLwZ9DhBA8GLQ9xcLjHHBqGFoqqpKfc7m5ialVNF1V1UwxpZlVSqV\nyXQWhqFUJZ2dnem6HvoTxgSEAiG0t7eHEFjqdMfTScX1JH3m4YPHj588rFQqQRAMBgPVNBqtVqPR\neOedd8I4WV5dybPy0dMnqq6FQeRUPAOThe8PBoPN7RtzP/joF5++++57zVYrztL+cAAhlLdcweiL\n/T1CyPn5uVvx0jSV0GKWZWmaqqpqWRaEUIZGSwq3PNRkjPxgMJAggQLQYDD44z/+48l8tlgsFEWT\n0ardpaVmsxmGkZzbJJlA1/WCccbY6uqqDNsWCJ6fn0sn/ThN0iTpdrvy9pZ3LITQtC1J+KKcCiEq\nlQpCKEljyzDTJAIIa6pOKbVtO47Tjle5d/e1h4+fapoWp1mv3//kF5+98cYbEMJ/+Ef/QFGUg4MD\nfzE7PFQUhCF0q42aqqq6rt+6cSNNUwiRQPji9ERqq8qi+Nu//VuEEIJEzlVn/ZOiKKR9myTMY4yj\nKGKM3b179+XLlxIoKopiMpmsrKycT2acc0mewhi3Wi2Zo6yqqpTtqap67969yWSyu7tbqVTyPJfn\nVKvVkngyhLBarcqohmazqaqq7I0URel2uwrkAIh+v885p2UJAdhYX6GUPnj8WBIMk6zIi0K3bF03\nClokcVir1cosT6K422y9/fbbjx8/NnSNaGqe50RT85Lpus4RIIrmBxEV0H8Srawsy+t2e3vTsozd\nl/sAAMMwk6zAGK+trlLKkiQrCiogyPOyzNNXbt1u1mtREFBKVZXkecYYI7rRaTdfu3v3+Py84nlh\nEAhaQggkVQ0AQMuCCQ4BwRivLi3ffeXWV1/+Egrh2k4owGQ0vhiMm83m+++//8tf/vLs7Ew65LRa\nLQmSySBCyeGSOi6CCOUgShI5YkZJDCEO4xhCyIHA+FKZJjNFJGtE7k2kUlRVMBeKDDYFGpcLAln5\nJDVVCswk3C2+wV4khEAuJGAulzWspIwx+9J9hcp6KUF1dpXNc91sya9wzhG+zM2TX78uVLIJQ1d2\nyvBKmwQgkt0DxtjQFENXBcUYgCBcKIqiqQYhhEPIxXXJBI5lCyHm/kIyPCBGnPMsjiU/3yamRpQi\nzSCEtmaEAiIEhBCaouR5ThCSqkjCoaZpEju0LAsBmGUZQogL9sq9V6bT6Ww2q9RrtVqt1WphVUEK\nEQgKBCHBECsQC4WohmHAN37//2QYhmnpGKI8zwUrTdOsuI4QQjBKENY0RVWUqxeFd5ymrB+SrMg5\nlwRdyZ6Yz+eyrHqedxnXpSnylWKMGYbhWrakEAf+XNM0uQWUvpK1Wu1/+p/+z6PB5E//9E8xxoah\nvXjxAkJQqVTSIo/juFqtZVm2urYxn/t7ey+3t7dtyzk8PhoMBqqq1Gs12zY31tarVW887M/nc03T\nbNtSFGVzc1PqTNI0ldTudrsdRXEYhg+fPK5VG8vLyz/94L+tr2/euHGDqMqDBw/yrJRD9qzf29nZ\n2drams/nUtBmWZbneUtLS0KIk5MTjPHh4WEQBKZptlotXVEFgvV6nQm+CAKA4MHBAUBQbo/krQK4\nmIzGBwcHv/7rv14y7rpuFEVShyqLfZZlEqYTEEhbRPk9iqLUKh4AQNfN/YOXmqbt7Oycn5+PRqOS\nCYnJZ1mWZTmAUJJ7u80WIeTk5ESyt9I0dRyHUjqZjHVdr9dqEmznnAdBMJvNosX0H/7Df6jrOiGk\nUaufn59nWfbhhx+meUZUPclSwzKzorhxc4dS+vWjh6utjrTcWiwW4+m0Xm9KrjVjLE4TIKCcrSGE\nmmm0Wq0yY/KkHvYvGo3GW2+9tb/7PM9zjOBisUjjyDTNZq3eXWp7ntfr9RAhi8D3vCoAIE6T4+Nj\nRNQkSVRNRwq5uLjQDavRaEzns3a7vbS0kkShv1gwxnqnZ6ahrS2vxGFUq1ZkE/Ybv/G9//gf/2Oj\n1dR13Q8XlmVBgeQpIIctucy+Jj/L+scYS9MUQpimadWrTCYTgKCs2RgrURRBhFZXVyeTScGYHEbl\nEA8hFJjI/C6p1DRNMwmjsixXV1eTJJrPZrquy+ZVzruGbnHOkyzVdZNyEEWRqukIoSzLatVKFEWh\nP7dNQyUoSRKE4O/85q8vLS39+Kc/uX//fprniqbGcWxYZr1ev3nzZrPeyIt0e3Pr5s2bt29snpxe\n7B680HU9XPiqoodBAAAQlMvLklERhWGW53JlxTmv1Wph4stsSjk3QwhlGvRSpzOdTvf39xuNhqZp\nvV5P1/W7d+/6eRkEgaTlyzFITjNhGAIAsiJXVVWCAVmWWZaVJblUH8iZOEkSSmmSJJ7nScKRPP0N\nw5COgCuduuyQ1tfXNFX1PK/b7X72+eez2XzmLy76w6QoLcflABYlUxRFIcT3fcC4aWjdVvvevXtf\n3/8qCsIbO9u+7xdFoWgqQiDNM4maOohUKhXKio2N9XfffTcM/ZcvXzIgzs/PVc2wPa9WbQzHs+lk\nZtqO7/sTf8IYi8OgWa83KhWCkKaQJIo8z1td34zTZBFE+4dHx2enhnnZV0lCOIRQIViaSdG8IIRU\na56pG1K+TwgRjCdJVBBd1/VqtTqfz+U1LOddOXxfSmCEKK8S4YiA18WMciYEJKqq6zrlrCiKLL9E\ng6ngEii2TR1wIQsYxljKfwTnuq7L9poxxopSPmyMMQVQkqfkX0FXTl6GqsFryjHj/MpuU6YLfbOg\ncs5Lzr453YIrKrIQAiLCr2yqrrnQ4IqLd7lzReiaSZ4XlHOOoNBU4lqm5zqubeqqdn5+muc550DV\nDEXXuABlyUrOosVctiYlpZRSBoS82TVDl5C+vNdkwYqiCDkV+acR+FWQs6ZpqYzdu1KuE4g453Ec\nN2rVRqMxGo0Gg8FlW2AYQkD5OzVNkwnfl06WABDN0BVNJYqGMQYQU1YITDLKEABCyPxCIP+ANKeU\nStOClojgReALIbZubKuR9umnn8q5hzHWsK0kS+f+olKp+Ekiw4jCKCiKUs6ORhjJ5UFR0DxPJXNs\nPp//6Ecfhgs/8CMA+XhMy7L0alVIMEsZYzzNM0r53t7L8XgKIUyT7KI/yApqOZ4AbDqbt1qtP/iD\nP2g1nU8+/uzDDz8QnBGMizy3LCtN06WlpcViwRmTAVCe67Tbrfl8LmfxX//u94IolKaDr7766ng0\nPT4+FkJ0lrqqrvX6F9PpdGNjQ7Kcvv766yRLdV0fjkcSK67Wa2+99RZjrEyyx8+eMsYWgd9otaq1\nWpZllVpV4tvyEJmOJxXX29nZmc1mumnt7+/Li1s2d1mWSXwmDENFUQjCWZLCK2HlbDIlqmKaZhRF\n0uBzPp8nWbG0tNRoNJIkGY0naZrKKaRer+8fHUsH0DiJnYrn6hpjbDKfIUVRdG00HvcHA8k9dl33\n9TfeyOKg2W6/ePHiYH///fff39zcHA2GUpT1P/7RHzpedRH4H/zsw/PTsyAIdra2t9bWDw4OHjx6\n1Gq12u12vz80TbPf79ebjdFotLqytrm5ySGQZ0pRFMPRNMuy4+NjAEC727FtOy3y5y+eb29s3NjZ\nmU4mz58/FULolllrNA6Pjw3HCcNwOJoBANpLXQ7QfDqt1uqmaY5nU8uyOt3l0WhU5kVRFKenxwom\nLw8OTMNotVqaSiilECM/DNI4uXfvTqfTWdtYv3375nQ6PTh62Wq1gkWo67phGAghubOR5HBZHnzf\nl2OfJGFhjC8G/YwWSJJA8gxBmhcF0dTRdJKkCcZEzhPyNBRCQIRkn2pZFgawzPIoChzH0TSFloqk\nCCEEXdeZTqcaIWkclpzJ/AxNUQtVVQgGAADBKaUYQ3l8y63q8fHxRx//YnV19fnuvmZYgCh5WbS7\nS8PJ8PDk+OjoqFqtKpgYurWyspIzIKXY8sSZx1NN0Q3DmE+mum7EcZwmue/7OS0BQEVRYEKMsshL\nejEYysG3Pxy5rqsp6mg0uXHjpoB4JS993y9oqqlGt7OkKrqNVcAFAjDJLu9rhJBcpS8CX8aa+b4v\nMYbBYFCr1Akhkr/m+758qeVVfXmyG4ZkAF06qCeZZH2rqjYcDb/++uutra2jo6NXX33VWjiT6Xw8\nnSGEiKpBAD3XzvPc0jXTNMMgePjw4cuXL8u8sG07L0oBYMlo7KdCCIGgqqpE11Ss+FGsKDjJ8r29\nPdPUa7UaJvD999//6U9/OuoPAANZknoV13MrwcJXdV0wlsbReDyej8eWYXRaTUPTbNu+ffvmfO7v\nHhy2mvUoirKy8Fw3zbLrtwBjzTRNSmmQ5YyxYOEP08Hf/bt/9+To+MmTJ7VaLcsup0m5g3ddN01T\n27ali77EIOWrIYdISml5KSw0IYRJVkhJuoCAUhonWZqmHAI56gEAuQAlY4BzjLGAoKBlWZYYQ0PT\nGedZXha0vN7RcgiQ4IQQIADj19RlJMsjAArGhBAiOC845eJytIUCfvODAUE5kz97OT1fJTbKCoyv\neMW/gnmv6vT1V2SpvkTjaQkYVxVMCMEEIcB1VanWHFo2h+NRGMQQ6ZqmcQGoSEEBpEv5r0jjZYEx\nNixT9pdvvPa6qqqff/750csDXde7jdaCsSCJCSGUc6mDioPQqXgKBEVRWJomiU1MUPnbzi96QRSW\nZanq2uWyWfAoSizLUiFUVRViJBODuACMMYIxyfOiKEpNUw3DMFWbUhrGCQLSSJojhORLq+uqrusw\nTA3DEAJMZ3M5Fjx99nw+n2u6MZ/PAUSEkChOEELT2bykDGhakheqYVqupytkMBx1AOwPBkgASks5\nG5kVp0KU4bD/8ccfy05Z0zTbNmuN1nQ2Lmi5trbmVauT8cy2Xc3QLdvt9wePnjx1HAcphm6oKsFc\nKWzHUTSVC+D7fqvZzLJMAonn5+cy+UBV1Vdu7qiqenh4mOS5pmlLS10AIKV0fX39/Py83+8Ph0NM\n1Gq1KrmvzZpXq9WKojg6OXn4+LEc7iez2en5ebvd9jzv4uJC+rPUpXPyyZlhGC9fviSqgggZjIYQ\nQj8MptPpysrKdDqllDrOJUvr5ORES7MgCLrdrmxp5cEqa5UEc6Rpl6kbhmEEQeAtL0vjG9u20zSN\noggg0u3WKaXj8ThJUnmWyf0ZIcSrVXd3dx3BOYBPXuyurq6+9fprrucdHBxwAUrAHddhjI1GI0XX\n3n3/vYP951/c/3IymfT6/el8fuvWrWcvnk/ns1dffbXVai2vrk6n0/7Nnd39vaODfcPU7k9n1Wr1\nD//wD7/88svj42Pbdl3X3bl184svvkiSZDQaNTvtWq2madrh4eFgMIBIbbfbs9lMwWQ8m06/+Hw4\nmpSULq2u3nzl9nwyTbJ4NBienp/deuU2UZXzi4EEM9fXNwCApmWPJ9NWq/VP/x//7F/9q3/16NGj\nOAmTNJrNZodHL2/dujUaT5vNJkF4dWM1jeKX+/v1SmU8Gi0tdQzLPD49WlrqfPrpp3mZra4uR1GA\nMSIEaZqiaZphaDLloigyQhBjpevaEkfd398fj4dZlglF0W3LMIwoihZRqOsmgwJwFsdxWZaqCiXU\nLEdqIQQvSn+xsCzL8xxZVCqVyvLS0uHBS9kgIwGCxQxCCAUbT4au7SkIU1EUWc5VjqEQQkgCfxAE\nmoIty2AlzbLMtu319bWSixf7L8M4WV9fT7Ps7KIHMTYNe3Wl7vs+URAryqdPnz569MjUjfF4vHNr\nQwixvrJaqVQMzYQQpmmWppkfxpzznLKFHwoEDctWdT3Kc4SVLItN08SKmuaFWlAgUH8w+uu/+dH2\n9vba2obcr3MO4ix/trtXazXlztKxbE1RgyiU8lDZU0ok83oHPJ5OsziTG2WE0HQ6FULIXkdOdRL1\nkQW40WhYlnV08LLZbIZxenEx0DQFYRwEwc2bN+v1OgBgeanDGCsZFYIjCOIwYAJISEkIsbS0xBiL\neCjlqqqqFrQMo7jkzLJtiHCS5QCUQoia7gZRPJ0+39xaazealm3Uq55r2ZyDWq0ShcnJ0bHreBij\nTqczm81UXaMZKLK0mGcEwXazeX5+3u/1mBCAUwUTQ1cppQwLSPD1QhFAyPllHcUYq6pOCLm1c9Nz\n3OfPn3POdd1MOJcvnTwf0jTVdV0yQsCVFdS1KJZzjsElzomRQigXEJRlWQqWZ2WcpXmeAwQBghrC\nECFFUSgXZUkxFyoEgvG8LBWg6JhAwAtalmkpH56mEoUrCCGVc4kVyT8nhFAQRjK9WEp1MMYYyzaU\nMXY90crqKwlZnHOIEKNUvhQQQnFJz5K0qV8tVq8/rmnM8r/kowJXA7uKkKoSRVGEYCXNKS09z10E\niwhFEApCEOUCSqkxFAABAQVCQAAgBC8oBQWAEGqKsra2WvW8w729iWHcunXr7t27P3vw1dOnT3WC\nGQO8yA3LyjFEnHUa9SRJpJgK25YELz3LFCqOoihJEttyZcdgGIZhGGXJZMNRFIXggNJLcR3RVe3S\nfaZkjDBIYFmWaZqLK8cvRcEUcUw55aBkUOeMpgkAIFvMNzY2Op2O5PG+9tprYZr4ceS6bin4t7/1\nHlTI8fGxiohXqQkA/EVYWnpR+L/xG9+vNxoPvv46y3PbMCueKzdGjlfhnHuIYIwF5EyIJIkRVhzd\nDPwoiMLV1dUoSlic6ZalaEalVqtUavMwDqKk6jlepXZ2dv5v/s2/bTWqmoIlv8MwtOXl5ePjY03T\nwiR2Xff09HR5edl1XV3XgzhRCDk5PVMUpbO0oiiKnMxarY7rus1mcz6ff3X/8/X19c3Nzbws5vN5\np9MBIVxaWb5e7ha0jJI4y7I/+d/+V8dx1podx3Fms5ll2wAAwzAAAMPxiFJar9dlINLv/e7f+/zT\nz2R4Q8F5q9NuddoX573xeNxsXiL80h8DSOYCY9f3m9ynyrihLMssx8MKkFGmjHHDNLe2tobDIUJI\nYubTMMYYu9XK1tbWl7/8oj8YPNG04eCi2WymaTr3fRmpRDkLovDl4UEYJV89eqxgDBB++vyFEPD8\n/NyyLLnznkwmiyAgCHda7bfffGs4HCZFtrGxcXJyIk0xK5XaO996t9frmabZbrfPL/onJyeDwWBt\nbU3ag1TrVUSw5diDi/5XXz+ktOCM3b37ynA0mvtzwXi92R6NRhyIZru1sbV93PtMPvHexUWe57pl\nLq2uuNXKxx9//PLly+9+97u6rv/kJz/Z2NiQ8XndlWXAeK931mzVHcuWTV53uXN2elateq7rup5N\nWfHo8WOIQJLEVbcuYQkJBUMIJRjzyiuvyAXb+vp6t9sdDodxHGualkIQZWlS5NKOgAMQp2lZlqau\nM8ZMLiQoByEEjHPGKBBpGtu26XmeEKLb6YRh0OudAwBMXZXMl9lspuvqrVs7Z2dnrl3BGAcBLkrK\nSggRRIDnaWy7bpmnHGsEwSRJOC3q9Vqz0VjM/TjxHdfzgzDOUsMyiaq5lWoQhbppaIqqeArlbDad\nXuR5p9Pp9/tFUdy9/crqyvpFrzcYDMIgkhNFyajASDF1ygQFIi7zMokUAV3XDaKoLBftdjvJ8ouL\nAUJofN6L45QQtVKpaLo5GI6TOPM8bzQayd5RqoYktMAYi+NYCDGZTEajkaqqluPIzCVkGLJ3qdfr\n3W5X6lMlU8G/+nAcR4Y/Jkliux5A2Ha9OE0Nw+h2l7Is1VS13+/7vm/bVr1W2d3fEwBVq9UwmCmq\n6dhuGIaNen1na/vg4GA6ndqmpapqmmecc800CAdUgCxOKGNI0be2Noo8G46nVc9SFG04HG6Ya+fn\n54apMcYCfzGfTQa987k23dja/vrhgzIvDE2r2NbKUtezTMswXdt+8ODBw4cPXdfNSxaGPqWUYEhz\nCiGmggEAVEKEEGEUASEIIXIXizHu94etVrPdbk+nU8B4iQmEUIaaywNZGgFdYteUiisJtdyqqqrK\nqEjSnPO0KIqSUQ4EEJAKDhCEGHEm0rwoGb8EVAWTyTc61yGEVAjAaF4WiqJkRZlnCeecEMKA0CAi\nBGLGZEskldmQC6BiCfbIyVSC1VIQXJalqmEhBIcAIiiu9r5ycC7LsqAluEqru9r70G9OzODaiwMj\ncfUBhPTDAAAAJjgt8xILDoSqEt3QDEPXNEUo2DAMyzJVU8MKYZQrmkpUkQSBXEUjQoQQECOporQM\nczAYfPrJJxXXK7P8vW9969e/+73NzdW+Pz95+dI0DQBAGAQ6wYrrAMEQFLpCfN/nGHueBwGfx5Gi\nKEjTkiSxbXttbYUzIG83SdSVRl0KUS+500JwzomOFdPS5JvHCpoV0lhOCAEQwqqiyllKPlvOYE4Z\nIdAwDJpmRNOdShUparXR7I/GWNWQAAXjizDyavWd268EcTKaLF5//XYcx6PRKC+oqVsr62uc8+7S\nysnxYZQmpmkOR+M4CiUErxA1LzIARRRFYejfuXe31Wp8+OGH3//+b7/+5pv/9b/+EABoGnaSJK5b\nCcPQtDyiKAXliyCM/UVZpOjOrd/89e/OZ9NerxcEQavT5pzrlnl6erqysrK/98KxTV03kyQhEMgG\ndv/lgW27UZIALurNhrzc5Vz4zrfePTg4+MVnnx4dHa2srKysrQZBECXxvXv3nj59+uDBgzt37gwG\nA9t1jo6OvvWtb7VarWe7L1zX3djabHe7EKP79+9LWeR0Oq1UKmdnZ0EQrK6unp6e6rq+trUVBMFo\nNKKcuRVPXohSei9t5yCE0qw8iqIsywpaNpvN2WwGAMjSIgxDzvlkMvE8D2EgD6/FYsEYo5QTojAh\nPNc9Pb8AiECM8rLYe7kvBKs16qquGZZZUDoYjQSEHICj06Pe6VleFopi3X31XhLFvV5PU42iGDXr\njdfuvfrv//2/f/Tk8bvvvhuHERQgjROkaQ8fPqxWq6enp4QQVTe++OILaWFx7949VTdms9l4PJYG\nuY1GoxACIDKbzRqtZr1evzg/AwDMFvPT01POea3iLS0tLYKgu7zcXV529vaIqhNCSpofnpxalmUL\nsLa29vz58z/90z+FELquSwj+oz/6h81m81//63+dRNG3vvtrL168MAxjf3+/3WzWGvUiz1abyw+/\n/ioIgkaz9uzBk5WV5c+/+Hy8N3rrrTeS8FLPJ1fg8uaUXp7NZlNKYCXrTXKXoiSc+HMIoaUbClaj\nLImS2NSNrCiKLONMSIoKYDwvaVmWTsUjGJ+dns5nM9d1fvu3vj+bzY4PX9qmaZpmECxYWSAgPMfd\n3trACJwcnkvMQwhBFIiRRlQiBeuKoiAgiqKEgqmqSTAuiuLV19949uwZQGg+n7uaSgX3g8AwdMer\nMsYghqqqElVtd5doUW5srKkqODw8lJd3XhRhEBFC4jQzTXM+jpjgTrWW5tncDwpaCiE8VZ9Mp/IQ\nmc3nhBAOBGN0aWU5DqOD46Nut9uo1qRFzOra2mBwIffEcuct+0ghhKIo9WZD2jtzACTfW9d1r+5K\nDbHsbyRkpSgK59x13U6nI01AXdfN8zyKIterBEHQbjXLMo/TtOo5RZGfnp4qCuZALHe7pmkOBv28\nLG3LKIpMYrbDQZ/RkkDU6/U2Njb+0T/6R0+fPvWPTxdBpBk60UiapkRRmq0W4YhyQYUgqiKdYeaT\n8e7u7u2bO67tzGf+/t7LvKTNRiMIw9lkrKrqUqdbq1Sm49FsNkOclXmRJfGNra2SSayV5WlKixJA\nIDiFkAiBMMaQEMFZWZYYIaKqlLI8zy3TfPTk8c0bO4qiMSZ0RUEAMsYkMVOuHq6Xptd195ojzRgr\nKS9pSSkFCMrUHcq5YKXMG0YK4YBxzgtayjoqGIQIAwC4EARjoigAISqAYLRgtOACCSgAEhDI+v3N\nDwLR9TwqEV34jcQ9JAASQCAoScSXtCnOuRAIISY4k+GFQEht8eXUy/j1lveahHX949cT8PXnWFU4\npwWjWZYWhW4al9O5v1gURSad0ZIkyhmgV7+ZCcGEgEIwweV+RELhRZY9ffwEctGo199+9fWaV5n0\np3EQCEppnmuahiFEAJiGUZalKEsEBIYAcW5pmmdZoiyHw2GSykwtQ9V1QlRlPsvzXFFIrdm49Evg\nDCEkIMCqYqgKicPkqqMRECACABCCMwYx5ozzkjPMMMDXzDRTQQBCTIiiqkfHx+PJZDKZAACkfzpE\nKE1TPwj+9kc/KstyOptNF77ElyrVOqO02W49+PrRhx9+uLWxVlJe5oXv+5IX4NoOpTTPIilEMQzd\n9aqj0SjLMt20n+/u7h8c7e7ufufXvttZ6qInT/0w8NzqLEw81y7ytMjLar2uIEGIGkXR62+8QSl9\n/vxpFCZy7/3gwQMI0dLS0mg0ms/nAKAbOzsAoBs3bgxH4729F4blbG1t2a5zeno+HI0450VRSBaS\n1OS8++67pmkeHBzcv39/dXVVsjrr9bqMWnvrrbf+4A/+4NWtmy/+n/+i1+tdDPobW1sciIuLi5u3\nb/X7fYTQa6+9luf5L37xi3t37jYaDc75eDyWSWGmadq27YcBQViODqqqhmHYarU2NzePj4/Pzs4k\nmCb3+evr6xArUta1vLy8WPi1eh0hdHR05HlenpedTr3V7bBnzwAAqq6NpxPLsFqGHkWRguB5r1er\n1SQ742LQX+p0252mbduVeg0hNBqNLgaDNI4rrteo1XeMHak5bjabgvHPP/9c2hK1222rXm+1Wv1+\nX0pxbt68aRjGl19+ORqNTs/Pdd2o1WoSk5FURg4QACBO051bt+7evdto1MqyPHx5sLm9NRoMIcbn\n5+d5WTDBpQCm1Wm7rnt8fIyJiok6nc0AhE+fPNncXO/3+/P5jHP+2WefFWUWRv7S8i3ZdTmOc9Hr\nBYvFzvY25/zs7KRSq/713/zwn//zf/6d73z74OiQENTptCaTCWCXmm8AgCQhG4ZRq9UWi0W320UI\nqaoqcRE5wBU6AQgijDmGWVlQyiFGpm2pRJEj/iV1KC/kEPBif69arTBGIQSNRsO17P3d58PhsFar\nqASzkiZx6HmeV3FkOEcSBQkijDG3UlU1PSsLwbCmKWmaS8cGiISqqhhBadp1fjEYT+eqrmRFbntu\nHseVWvV73/vezZs3/+ov/zKKIpUQwFmepgihwWi8tdEty/LJsxecARkPYFlWVpSUgzTPGAdCybOi\nZEBgTQUAqJoxGAwsy3IqlTSKORemaYZ+4C8CQkjghwhi23I6S8snR0f9/sB1Hdd14ywNgkCyzxRN\nhRBGUURUBWNs2za7cieQ0cWqqgohZrOZXGdWq1WptZOfS3khpXQ4HJZlGaUFAtwPQggEhqAsS103\nIABFkTWbza2tLU3Tmq36oD+6GPTPz89+8we/ByHc392bTCbhws/zwvM8eSthRZGPAQtOFM2yLNN2\n8iA9OjmzTb1WddM0KsoySZJFf5ZE4e3bt++8ciuJ47PzPsNQ1zTpBiURYN/3Y3+hEwwtoKtKo9GI\noogJEUVRmqZlmReUMcaEQhRVJRgLIQTCmkYQAghCXlJFUU3TnM/nX3zxhSQb66aZZJmclq5JgrJH\nl8QaWfauy5IQIi8LeZwShAWEWAgCEBMcUghkJJ6KJKJLVEWOqqr+K2XRJYQMkRACYUXRxPVzFBAL\n+CvzjeuHJJ8+Rr8qxkVRsOJytOVXhYNzLqE8zrm0wlYUBSlXEbxCSAthTtk3q+/1s0NXv/+6+sr/\nwkjhChGcCiGiNCJYCFaE0XyxWKRpmhdUQAJIygVmXHAIFAHkMGo5lwYSQgi5+NM0TTBOszxPs6OD\nw3C+WCwWZxcnhqYxxgDnnuMAzsu8IIRIf5u6WwEAVF3vjTfe8H3/r/7qr3wECCGLxeLk5ERRlDRN\nLctqNpuGYU0mk8AP0RUpBACgqjqBQnBKoRC6rktgNssyPwzl5klC9t+ABDAAPAgiSrm0cvX90POq\nSZLI91QIpuum61b29w8AAJ7neV4lzrK9l/sSyXz//fcBgpZlPX++q+uqZVlpkUsrXbfiTafTvCx+\n53d+5/j4+Nmzp4ZhzOfzXr8vCbGVSu31N96cTqe+H66urvbO+5TSRqNhmNp8WmIALMuaTYbBYu5Y\nWrPZAABkeTkfjJaWljzP45wvrSwXi9knn3zi+/7v/M7vvvPOO//7//7npmObutHpdGaLwDRNCci7\nrtvr9WazWUlT13Xb7XZZlp1OJwguXUGiKJJ89L29vZWVFQnUfPLJJ8dPdy8uLjzPy4qcc773cj+O\nYw6E7OifP39uWZZKFNu2JYwzm83ee++9JEmOj4+l23PVq4RhKJUAUq9y586dKIqkB4jUYxBCECRS\nQiMZLv3+QC7JLi4uXnnllePjU4BRURQCwTSKX3311X6/v1gsCIaqqko6ZZ7nAIqm3nQcp9FqAsCP\njo8RhDkt5SufJYmpG2dnZ1sba0tLS//yX/7LTqcjo4p+8IMfPH78uNfrVbvdo6MjGUTRaDRqtVq/\n31dVVeqObNuR2JrEeDnnDPCTs1PXrRwfH0MIO61WHI9u33lFIejBgwe6qtbr9du3b4dhuLu7O5/P\nKRMA4t39PceypUYoy7KV1dXj4+N333335s2dTz/99PmLp5ZuOKb14ukzo14P/cA0TbfipmFMadFp\nty/OTyuVysXFxcHByxs3bhwfH06n07W1NSGE4Fw2NPK4l7e93DU8e/ZMCNFuty3L6vf7ktCYIa4Z\nBqVUTmyu7bGiLIpiY2MjTdPFdJ4kCQCgSDN5rHz72+/XarXHjx9fXFyEC19TsOyQWq3W9uYWZcVi\nsbh586ZlWfe/+NKfz9vtdlEUlINGqyWEiC76Cc0ut2scAARUTLKSLhYLiVu+fPlydXV1e+fGxcXF\ndDE9Oz9fWlpaW1t75ZVX/j//7t8VRdFuNjWFxGnaabU450+ePJnNZnGUWrqxsbEhpeS6rodxKoRI\niyKYZJQzu+I5XqUoiiKIGo2GhDob7Zbv+8PhUGp2EUJhHAEAfN+3LCvJMoBQmqau61YctyxLSVcG\nCMr969xfMMY4AFJKgDGeTCYxj2q1mmRRuK4rYQY56p2enkIIJfV6NpvJC8ap1FfXNof9XhJHjVq1\n1x8iwBv1mhS2zSZTy7G7rTYhZDgcZln2ox/9aHt7W2rceUk9r5Ln+Q9/+MM7d+7oul6r1WaLOS25\n5agFLY+OjjzdsRwbAqFqWrfdcBwnSpPl5eXJaJgkSbPZtiwrSWKM1Fqttry8nF+cjybjyWiUJUm9\nXq/X62VeSCaBXPhdi9xQmhNVmSa55DwWeQ4hNHQDIVTkqaSvAgEhBCfHJ/V6XQIhkhsvjXSk1shx\nnGuaknKlT5GViXMu9b55nqdX6mHTtlRVnS7mjDHK+CWdGF9VOInHInSpNcIYYwQAgAAoQlEUhSiX\n1GXJZwb4KtcOXFqCSCyaMXZtS5llGc0LCSZlV6tieJWSxDmHGGGMiXYZOZ9kqTzWVFXllMFv8Jyv\nJ91vfg6+EXFPAUaGhjiDgkIo8jxjZSY4lRgPY5fjN4CCc1hypigYYVCtV9bW1sqy3Hu5v1gsOKeM\nl0VBNUxMUweMPnv+BHIBuBAVc311ZbFYIIQcxxmPx3ESVz0v9OdZll2eGIC/9updwzCeP3vy8ydP\nVlZW5OrQMAxF0SQkJoupbEDlG5rnJQCAmCaAUEDIEMoI0ev1Ki01WkZlSVWMgyBWINSJQmmpEAVj\nkdASqIQjWHCmGLqCIROU0oJglCZBFieNRkNVUKogVVVZEpmIFvMe9QerTWe2WPRP91RVT2MfQhaG\nIeWAUsqQUmJt6MdJwVVVebr7wjAMxTD8OG62unae+75PFJ0LIMkvQRA0m03TInmeo2Ku6W6naiKE\nkiSxLMv3aSHIwengoj+lUMO6++j5QVmWXKhPn76EgJ5PgyRJnxwcK+79iLJwtli7cePw8HBzeytN\n088++0zXdV2rIMg0FcVhhAB847XXJ5PJZ7/4VIZ4v3Lr9mAwODk6Xlla9n2/d3YeBIG0uf7pz35+\n586dpaWlL774Iu5fNJaW6kLI92MRxfMwktGEtfls6C8sy7K8ymdf3t/e3t7cufno0aNZEDpe1fIq\nJycn69s32p2lBw8fB2F8cHBAFG1r+0bBqGEYtUY5D3xFUTgQHIiTs9Nmuznz52mRdVeWHj55RAhx\nVTcI5q+0m4dxqKbRkqWveStJkkwmkwIK2zQAAHmep77v6rrI82az+eLFi+Ek/sf/+B9/+umnZ2dn\nq5uv5Hnen/Xn5dnz3nQS090ne4ZhCN0dUjTmJDUr56NBFEW///t/MJ3Ojo9OVWt0cnIeBAnAZhzN\nizIEwFdUPPfnSRJtbW2Fi3waJ/VaPU3T/afPj/Z2Oec3btxACNSrNU1TLcvaPzja2dn54//tf93d\n3a15S6P+4ObWzX6/b2uWUM1gttA07dvf+rX/2//1fy7L8uGXD4Uu2u323osX7Vq3RBbViFOpThaT\nBEK1LN+5d2e/34tnC8zA3/7og1ZzOYnEyelk5/abACF/OqOg2Gy1J6Mx4LxW8UajoWObReyjIjVs\nK48WpqKoCIxGgx/84AexwMPh8MWLF2kJK2YljtMsy1qt1mgwnM1m2ze2/9H/8D/82Z/92d7eHkQw\nSZLf/x//QZIkP/n4g9FisnnrvcPe2bPdF7d2bo4mszwvO632u2+9f+PGjWC+uGj2Tw/PVV2P84wy\nOp1PECFIQ5QViqJghWRZDgkuc+qnqW3bruPmed6tKv/o7/+9rZ0bBwcHP/vZz5qO/ejRo7/+T//5\nox/9xFF1rVK9uLggqgIAOB8MVVWFRF2+8QrNi3Gc5me9LMumcbqysjJPe6quSb+CsizXGs1ut/vy\n5cvS0ErKpY5wPB4TRWMQYU2P0zTjXFMJR2IwGYaJjzAPwuliBvr9oed5ACMAUK1Rl5TdPE0cw1Aw\nXsymHAIcx0mSVCEKSXJy+qLdaimKwlliKKqgKYO44lpDTTEsfTgdUc7iLLWbFYiQhcVsckrLPE1D\niKuIYM7hzI/eeOONxWzS6/XrFU8ApinkN997s6qjrx8fzs/Obix1R5OxbdusyIqUQYxOT09efeN1\nTVeiJBzPpq5nAgAatep6u12W5WIxp2UJsTpZJCvrNyeTCcXO2WBhuLFVqdWbrfF4TGm2vNw+6PcJ\nh7qi5izkHKi6mWRFlmV+mliOVxRlZ22j//XXRNGQjpIsq6iGKLkQTEcYIQQoE5ArCFPBNUOXvrNu\nox4VhaIommXiIj+56HU6nbjMC1owDAvAy6KEENIcJLSQFLayLNM4FhjmSajrep5TwJmu67Ztqqo6\nmy4qmipPobJkjDHpWgUhBDhTFM45FURgjIVgjJdyBcAIY4JjiCGEDDDBBRSw5AgBgTGGGJVQlLQQ\nQggoEAA0z0BypSZSiACgYFQxVESAEEL6RZmGKlElSalSCFYMvVRVyefVVK2Al24bGCIVE4ygDAHE\nGBdFpqqqpmlpnkn9mKapKRNcovBIhRAygLiAAgigAiSE8g1FE8ZAxSSlCKuGW12uNlYjP8Cop6DS\n0N0cZK5lxkkEiWJYRhrHQghVVUuFQEMPh/n3f+M3v/P+t/7yL/6rqSq2Yz746msMaLKYmq7ZbDp5\nPq9XjFdfv3FwdlLMJo5hmJ5TFLQAHAsm4ghB6BKsGHocx7QoDEUps8R1XUnov/RWlExLjJRWq4UQ\nCoJA07SyvAwIko2P6zqSqCyEKPOUYWzqhmmatMwxgAihKAxXVlY0TZuORpWK99bbr52dnWmaFoZx\nURSj0aTb7UpiUb1eb7RbRU6Hw+FsNjMMw7KsMstevnyJMZYiV03TTk5OhBBhGEqDoSRJwjCURLtK\npcLyXHImpdCFENLpdKTPi8SspG2bbduU0vv376+vLUEIpY/PBx98cOfOHblnko+KUup53nw+n06n\ny8vLhmF8/fXXzWZTLlaXl5eFEIvFolKp7O/v8yuHFMMw5BAcBMHW1pbrulmWeZ4nB3THcVZXV2ez\n2UcffQQA0HV9Op2mabq+vr67uwshVhSl1+vJRX0SxUdHRzIYce/5izt37ki75qIo7t69qxBSclat\nVofD4cHBwfLyMkIoimNJHM2SJIkirChyjpfEb8t1ZWCDnMwopYQQzdBlR9ZqtYiqBkEQRZEkr0qa\nvoRh0zgpGTVNU6ZX+b7f7XYLRn3f/+mPfyKE2NjYiIOhEOLZs2fLyytCiKOjo9lsRohq27Z0TAOA\nEwX92q995+nTx48ePbq5fa/ZbErR4erqqldxgiDAGI7HY8dxut2OnD6Hw6Fhavfu3h1c+HKbeOvW\nzquvvhoEwaNHj+bT6WAwqDXqq0vO1o3tr776araYA4JLwSfT0cra2iL2Z5PJ6vpKEkU//OEPsRDV\najWazaSR03QykcaKeVm6pr29ve3P5lghWZIfHB+tLS9zVoZhqBp6vV5fLBbD0SRJEsMwAcbf/973\nCSHPnz//D//hP0h2TL1eHwwGruvKENlGo/HGG2/s7++/9957cRw/f/788PCQUtpqtRhji/n829/+\ntmD84uLCn8/n09liNt/d3f3ed37t6OiIMXZxcfHq6689e/ZM1/XtnZ2Hjx8xxhzHSfNMGpzlWQYA\neOWVV77z3vu7u7uT3vny2upf/dVfDYdDORN3u93pdCqXAt1udzabBUHgVjyp/1lZWYJXBvRRFCVR\nLA0p6/V6Gsfy8UscXiqCGo1GGCVff/01SxIIoSagZVlZlkmiPqMFEgJjLDh1bater2vEOD09nc1m\nzU5b6v2kU0EUhXmeN2q1PM81RTEMgyBsWZaHMsDPOafnJ32FaOPBsF5v1Gq1JMrXVpZ10yomY8Oy\ndV3PyqIoCs9zIYQKyXZ2dsbjsetWJpMJIGAymfTOThqNerPTHg0u0jS9/crrN27c0M0Pt3d2VFX/\nT//pP52enzWbTd20B6NhkkYnh0eGbRVl3m21wzC0bVtTycHBQRiGrWZjnCRFUTSbzXq1kiRJHMeO\nZTx58qTdbu7s7EhOw9OnTymlNM/DLGu1Wu+//75l6F988YWu62+88YYfxtdu2I6qIyEkxU9AACHE\nEF9jqlRQFavyTSnKsqSUcy7vUKAqlmVJK19wtTuXmHytVoMQpmkqD+coioqi0BUiP/E8z7FtOSVX\nq1WJtcqZVVY4OWVyLuSPc87lPF1SSggBAJWMQsbk32XSOBPCtMjlz8pMBXBpwggMwwBXJlboOkHh\nyuKKUsoE50AgglWiSAtrCKGCsdxkI4JllQWEyOhAjBCBCCMosABc7ixEURRMcFVViapc0bCvg4i+\nYWMphATn0VVU4vUKVdpMnpycDIeDMsuDcKEpKiGEXu2wL+nWCKkYq6oap2lvcba2smqb5k9+9GOd\nKHdfuQMgf/H4aeT7tm1/77u/9sYbb8zGkzLLN9c3PM+TvBxp9WwYBlYUCJFkuimKIrEfjC4jwi4l\n4ZI+J2sVwerS0tJkMpFFUQhRlqXjOHL9kOUJ46UqEC0YY6xZbziuNR6OphPf1HRNVS3LvH37lqUb\nn3/+uaIoH3zwgSyHaZ7/0R/90cbGVpqmne5SHMdbWzc4BI8fPR0MBkWWc84ppY5BPM+Ty87BYBDH\n8WKx6HQ68lCQQI0kA1NKEUJhkmiaJlUNjuNcXFxgjBeLhWVZ1Wp1sVgsFgt5Nbuu++qrry7mY+lF\njhCS0Vrj8Vg6eUnFoW3bn3/+uUwu6nQ6AIC///f/vuu6Dx8+1DQtyzKZ20opnU6nhBCpsalWq5Jg\n0qjVT46O4zje2NjI83w0GI4Gw+Xukq5qUsotnbAcy97Z2XFt5+c///j1119njB0fH5umuXSjG0WR\nP5sLymTEbJokqqpqqjqbTmez2WwxJe+8020359Nxt9tO09SIZPCkr6okCAJaZKqqIsChELpxadSe\nX6VnI4QMy5SO4cPhsFKpCAglXOP7vm3bFrGeP318cHAg4UT5qgoo8jRxbNP17NlspqvEsYyC0sVi\nFvlzVVUPDg6WlpYNwxiNRgAAjKHvz9M0NU1dXvHz+bzRaNy4cYOWlBByScYRFGGwWCweP35Yr9cR\nQqqqBEEg7YIJIUWZERVqnHBQBpF/MejFcSwgtyvO4eHhf/v5B7dv3z7rX1ie22q1TMeWBsKLxcKw\n9LW1NQAFIWQ+m2kYM5K4prW2slqr1XRdbTQai8UCEfKP/y//cxLHf/In/18MxdbGehgQRVHElTFe\nWbIkzcuydCqVJEl2d3cTBh3HkaeqPMJMXZemNBjC0+Pj+/fvy9e53W7run7/wVdHR0eAi0qlMhoO\ntzc2/8k/+Senxyf/4l/8i2a9rijKcDxa39w4Oj2pt5rHZ6d1px5FEaVcGm+VZSnbKc45hDxNU8F4\nnqdpFEdR9OzZszRYFLQ8PD56/Pix1Jr7QSA75o2NjZm/CILgzp07nPOTk5NmvcFKGqWpYRhygcI0\nauq6Ski33R5cXEieiBAijRPGWFmWaZrWql69XlcUJc6yNCs0TZP7F0VRaJlnWcY5N3S1Uqm02+0i\npdIIrCxLzinnlBYl18p6vc7KUleV0rLu3bmTRNHzZ88QhlbNWGo1q5V6xXJMzTw+Pi7TNI9jzTAt\nyzrrnfcuBp2VJVVVHUNnqiLFewSrnPPl5VUpNRwMBvsHLzllO9Waphl5yUxdpyU/6/d0Xfcc5+6r\n97Is+eu//tvzi15TUbY3t84vetWad/vWnZs3bxZF8eTZ0zRNoOAry0tHR0dxHM9ms1qtNhhcTMej\nVqul66o0fbMs48bWtmVZvV7v6Oiou7rp2bbMDiEIRlEUBYulpSVVVRWcyMtM8lijKJL8VokMX4LG\n8FpAxMur0gu/wWo+PR/UajVpJSZ/JMlSiYhKda+maQDBoigKWtabjcT3JWOu1Wq5jiOdkQxT44IW\nWc4YQ+jyT8shh1OIEMrKQg58gkMBCgiRgEBQQbkQjAohKGdXNZsIIVjJchnZBCEGEEKoqAJeZeJK\nji+EAEIIysvNrxDSHRIKCJkQMuGBC0BLCUoTRmmRF7quc8Q55xBAIC2mIYQQciG8ai3P06IoVF2j\nlMZpCiFEugEAvPZiFhBc8qSvvD6EEFz86kWGRJXGbWmaYABN09QUVZY/SC7JN1INIWu2holq4pVO\nNw2i45cHq8srjx8+ZCWdjycqxoai5lHCsiIK4tlkur6+XqlUyrKUfjKEEKwohBDGuKZplHK5Pi/L\nkuBLC+vLoCg5Htm2TQhhlHHOm81mlmXNZtP3Q2nTL08BwVijWrNtOwwWAGhb2xuaog7PLzSFIAgo\nLXlJyyzXq97a+kqWpH5g2bZdMhFESbfbLcvygw8+mM7mlmWlaT5dzE+OzySTSFM1CKDkIsmA3rW1\nNWmK63neJ598slgszs7O5GsqKR6Xa4YsE0JIR57BYIAxlhvfsix930+SRLKIm83me++99+zpw16v\nNxgMZO18+fLl2dnZd7/73aIoZOh9pVJptVq7u7uj0Ui6JQshLi4uXr58ya5MzwEA8/lcMqSkSli2\nBYSQNI49x8EQRkGAMa5Xq3Ecf/7pp5qm6aoaRVEkRK1We/LoEeC8Xq3euHFDRv41m03XskejkQTY\n4yiqVCr1ej0IAkJkZS1N3fDWNy7OezIWnlOqq2qpKP1ez7TtRq2OIZrNZrquW5YVx3EchCW4pO/L\nNRuEECCIMd7Z2RFCxGkqO0d8pd5b+GNKKaXF0tKSnIz9YA4AWCwWhmmenRyrqqqryquvv3Z+fn58\nfPzOO+8IIZ49e/H06dMkSZI487yqXO0sLy+3281ffvGZ4ziLxWJ7e5Nz/ujhLgDg3r07EMJPPvlE\nCPHaa69RWtRqtel0miVJxXWLLPv2e+9lWfbRRx8hRalUXcZYv98PwkVZlo7rtrtt3TT+/L/859pH\ntTCOVlZWzs/PgyBQVbVmVw6OXm7Xbnbby+e90057ZT4zwslMUZTbN28uLy8rmFSr1TzP5/6i3mz+\n+Z//+WQyadRrBKJFEK4urwLB5pMJhDCJEgEQA8Cwbdvx6HC4//JwMA8VRYnjuNVqSctu3/dXVlbk\nQGkYxvPnz1ut1vLy8v379y3LorQ0dN00jM3NzedPnkqiwP0vvsyybD6fy4bs29/+drPZvHFzZxH4\nqqru7x8QVZnNZoPRyLStOMk456ZtxXGc57kMQTk+PhwMBg8ePNjZXP/4k09m8/l0NltbX9/c3JSN\nL0LIsqz5fN6s1Wte5fDwEAP4e7/3ey/3Xuzu7grGOKWsLF3bXllZ2drakrwHadNW5LksvZRSic10\nOp1arTbz/dFolOUlQkiqg0zTTKNI2odJn+doHktjjchfpEVer9c1TZHGh0WR6arSaTVNXQ/m86rr\nxXEc9aaTyeSgeIEgWep2WZEvwkDQ0vFcxDnNsnrFIZynUeh4rgLh86fPbMfb3t5mjEFMznrnnHOZ\nkeVYJsDo7Py8LMvu9vbK2rpuWpiYT58+ybJsbW3t93//7/3sZz87v+idheGdO3c21laTOKScJVF0\n++aOxOTSMJHZSnEcO441HU9kg+5YVpqmjUYjDMMkSd555x1d1/v9frhYyAShsshkmbQsS1XVBw8e\n6LrebHfleSWdvwghXLqqSDNoAKAMlhVCGjPJFalAl8bXjDHDMDY3N+UuOQgCqUEqy0ufPnQVjiuF\nXgAAnudFUUj/gOs4GSiA5zgxQkWWXY6JMqbXNJlQAQAkJzIRh3Eg6dNlQSkXJeOMsfLSMxIhhCyL\nyABpzrmcdDnGGKCSs8sxlP+KJwUA4OX1WHw5npacwSIXkqLFufTwIhhTStM0lRUUcAEhVBAWhGiE\nQIQE5/VGo6T5eDymnJeMKZrqed5otriebuF19O83hMLyc371mLOyIIRcrr8RBgBkWRaGOYKQEMSK\nUs6BRZHJXYxruUVRRAt/mg7LJIsW/mw8AkK4tvPm62+4njMaj58/e+Y4DhAgT3LZoyBE2FUQhOS3\nSy27PGkhhIqKVc3iDPxqCJare/nGS6dJOS9nWQGkZusyJ5VZpu7YZpEmURRNRiMF44U/b9TqhKDQ\n96M4+OrrL+/ld19/9TVKaWu5/eEHP5dw6NOnTzkHh8dHBCthGPp+OJlMFM1otVpy9peNf5IksibJ\nIJrxeCwtpiWrQhouyqi1ZrMZ+77MWpCLbomot9vtSqWyt7cnhKhWq9K1oFarnZ+fS6RFtgKapknT\nzqdPn+q6LlP/3n777bW1tbOzs/l8nuf506dPv/76606n0263EUIy1j6OY9/3pSL+7OxM4tWNRsM0\nzdnCNwzDcZzrOBfbti8uLhBCEtyTX3nx4kW/319fX19qd3Z3dymlrXojTdPpZAIAEJxLfy4MkW1a\naZpKnH+xWAAu5K/inKtEGQwGRVFohp6nKTNNBWPHsqqVqhAi9IMg8huVqmmakm1fliXlLM8yOYMi\nQib9/uXxUZYIodlshrHaajYTy+CsLPKUcypbE8c0BAKGrsqn9uXnnwkIlpc6tmWFQew57nQ8qVQq\nXBMIijxLIOAEw9l0mqfZ+upanmbnp70kjRgrG43GgwcPhBB37txRFWV/fxdj3Ko3NKJYtokxHg2G\nWZIyxkzdgJoEqeDycsdxnOFwTFTCBQuCRa3ZaLVbw8n48Owkz3PVMubzOeRKvV5Pk3gyZp1Oq91q\nDM7Pa7VKsggcx0mieDQatdttQZkkVT3b3VtMJ//gn/0zBMH9Lz5/7733LMP867/54XA4BABgVbVV\nI4yjOE45gIgo8gaRqw2ZGC1tkK+DWg8PD6WN8PPnz23bhlDwklqWxUu6trZm6saH/+2Dfr+/s7Mj\nOwZWlj/867967bXXPvnkk+FwqKtanueGZeZlCQAoCjqbzUzTVEo1y1IMkdxrYADPzs6Wuu1mp/3k\n+TMOgVutEE2V5L6yLOfz+f379yWDcm9vL8/zGzdu1LyKY1iAcgSxAjFBGAqwmM3P8GlZlipR6tXL\nbtIwDF3XwzBUMJLxvZxzU9Pq9fp5r38pk9NV13WVZjNNU0aLRRAihOIoIYQAwMuSC8oUBSuK4c+n\ncehnSaoTomH833764+ODw83NzelkohpgMhyenp5ubWzGpuHZ+qxIICuGZyeh7SRZBhDun5/pltms\n1TDGY8a2NjaDIMjzfLbwhRAXg1Gn0xGsXARhFEWGrtqGcXJyhjG+e/sWgurx8fHJyfFoNDRN8+69\nOxsbG3N/8eqrr04X80cPHpWMSj/LJIqKLAEcu677+7//9xxL+/DDT27t3ByNRnt7L0IfBEGwvr4O\nALi4uJCbJk3TzsdTCKGmknZrxTAMwCnG+PTkWFXVTndJtp6LxUJSEU3TZN+AQ2XplZWjLEvOORWX\nIiJZfYUQt1+9t7GxIbPaJD8UYyyZVlI/IzUdkrkWx3EWhrIej0Yjue9VCQEAEIQ0BROgYYwVDC8n\nYAUjTefiMsoQKYTKlaoAJQYQE15yJjjjiHHEgUBAxOmlTeO1/IkgjjHmqLiuvvLjcgBFv3KavPp+\nifFijLFg0t8Ny2SOjLIyCAAACEKEkEoUnasQQgVBVdcUXaMpz8uyoCVCyHTsZqd9eNa7xp+/WXGv\n+eHyn796zEin9NK2k4OCc44hIgR5rksIKooCADGdzwTj3W7btm1R8v2LC1aUGMA8y86OT6oVFwrQ\naNRu3bq1tNx98eLFZDJRq4ppWwohQZQUlMokiqv186WPpnyjZZ2SxTQMQyKPV4kTzmYzCYsIIc7P\nz+WtmCSZtPy4fE05z5KEICQEL/Ps5d6eruueY29urnfb7aIoxuPh+enZbDZRVQIA77SXVlZWTk9P\nTdOMokSOjzJ9r9VqSXOvar0pjdYGg8HRwe6lWymljx49evTo0Xw+d12Xc25Zllxnytosl6mQMQih\npmm+70vtplT1NBqNW7dujcdjmYcod1qWZT1+9NVgMHjttdfkfKDr+tbW1nQ6VRRldXXV8zy5xZRv\nqvy6tISUvvxFUcgYHInvb25uMsZms9lsNptOp2VZQgFoUbqu2213KKXj4WhlZaXTai8vL/u+TxCW\nlj0ba+uryyuOZRdF4dg2IYQzFkfR0tKS67pZkgohNFU9Pz/Pk7TVaqmY+LO54FwoiCA8Ggw1TXv1\n7j3Xdl6+fIkgEoLTolSJAi0rT9M4jjVFaW9uxmFECJHMew7E9UW5d2Wjf5WkliuaKiDY2dmRKJ9c\nvd/c2ZHzzZtvvfX555/Lqfrm9o3pdOq6rhBib/dlEASe59Vq1fX1jV6vlyRZlmWO47Tb7cHgYmtr\nK02T8XgshHj11Ve7y0txHG/v3MAIHB0dCSFqlSpCCGOsaoqh6b7vN5vNg719WZWhxheLRVYUnXa7\n1WoF4SLwI86pqimzuXzXljmAL168YIw1m80yKKoVbx4u4ixotqqAsTRJWp63dqu9urwkSrq/v3/W\nO5/NJ5s7N7/1/vt7ewfnuv75558rBNOCPX3+ghZ5fzCyTRsAgLACAMiKMonDglEBscRmCCFZlmGI\nsiTVdV3W9dXV1TiJZYtWr9dbrZamaRiiO3fuuK77ox/9iBDCqShLtrS0Mh5PDcOo15vT6fQXn/3y\ns19+CQCQQSaqrjHGKpVKrz/IgrDZbC4CX6KOuqGHYaggTAgpi6LTbpeMhvNIwjnHx8fD4TCnpRBi\nc3Pz7t27e3t7R0dHmqq6rhsGwS8//zzx/flk2mw2NaJA2ymKond2Prjo7+zseNUKhDAMQxmWZds2\nY6zfO7fK0na9MFhkeQkJURXsVWrNZjMMFhjjqusSQsajgdR5t2owiqIkjXTD4IKqhJRlTimdz6bd\nbvfs7CQJo2G/9+Crrz/84Kee7dy+s6lgYimKaxoXx0dFUQRBUKs1GOe9sxPf9xlEECvvvfdezTEX\ni0DFJIz8o8OTwWi4ur6hm6a0hUrTPI5DTqlrW/qSfnxy+uzZs/39AxVBxzbbnU6v1+/1eoSQjc2N\nt2pv7u7uTieTpU6rVqvdfe3V0WgkvVawQgjBZyenkgKyvLyMoUjjUN4Ow+Gw2+3OFvMvv/zy5s2b\n3W6XYs1fzAzDcCxzNLiYz+dpEstWvlatCCFUgjAEhBAIeFEUmmkwxoQA/BtyViGEDLe+/CcEECOC\nEULoYjBI87w/HEZJYtq2rCJMCAHh8empZVmmbRdFEcYxIaRSqXDKVEyKIhuNRlmamqZBHJfTIgly\nhIGKiaEQVSPS6JCxkiANASDnM0ZFURZ5UXKICloWlFPKKROU84JzISASoCiyq7oiC6qgWGDKi/JX\n9s6XKLSUNimIySDhspT0Kyleiiazay43xljFRI6eEEiDa6AgzJRLE2nGuYBgtpgXRUG5YEBQRjPf\nz/Jcbkyu17fwyq7ym9PwN3sCwzDkMo4QAjhljAEMNU276PddxzIMg2iaCUC73f7+979/69atf/dv\n/m29WkuSZKnd+ta7v733/MVwcKFr+s7OrXq9XhZUYh71RksIcXhwLE3dr/MqAIBSd6RpGqW0LHMI\ncVmWjmk1m03HtAjnXFoHy30+Y4xgNY5jyQv3fT/PSyGE3HgxxqquAYVI41hVlE6nlSWppmnLy8v1\nanV1dRljzGkZLHxVVY9PDvM8Z4DYtu04Tp6XBS0lAT3P83q93mg0XNcty9JfzEaDgeM4p6enhqHI\nDD7ZFgghbNt2XXc8Hq+vr1+v3ySR5+joSFMVCMD21tZ8Ps9pqZlGFMfj2VQ9PQEIUsHjLNVMg0Mw\nmk7SIpc28XJ9O5lM5MmVZZnruuvr6ysrK48ePer1equrq1tbWwihu3fvAgDCMHz06FGe50tLS1KK\nc3x8HEXRyspKtVqVq+7xeJznuWU5t27dsixrMBgMh8PNzU0pF5YOkdKgIIoiznmv15NyZAky12o1\ny7I4ZQomXrvd6/U219aDIBiPx6ZpSjf8zc3Ni4tzScYpuHj2+MloOiGEuK6bJAmGCGIk6Vec80ql\n0qjVWUkxxnN/IdkQsjHkACRRxDmXAxMTHCtEHqBnx8fT0SjPc0NVy7IEjOV5Fsfx0eFBp92q1+vn\n5+eCM4Xg27duep73y6/uy+WQ7FTyPNd1VVFwt9v9rd/6zbOzsydPnjx79rTVal3KkFjJWIkxZJRq\nmiZ9Blr1RrVWCQNfyoUNVQvzgnOuqiqGwlRVyFjVsW5srANOe+f9wXhi2WZR0HDhK4pi2M5ydylK\n4tls1nKajJW6qjKA0yieUepapkawoWqWYb7yxi2EUK/X0zTt/Pyc/uIXYZgoirK3t6coSrNR/+CD\nDxaz+draimwvoijhQOQly2lZUlZS5noOIUT27Lqq2bbdabZs2z48PAQAxE4qhGi2W0VRyMk4jxJT\n0x3T0oiSpikSQMqOJT2kZNSrVkzb6vV66+vrw+FQ082iKMqCQUwZY7LAgMBnjCGEhOCKQuI4lseZ\noiglY4PRSCXEdV1FUxHB3Vo3juO/83f+zu/8zm/8+Z//9WI+l/y+IAhu3bqlV6uWaeZ5Lu3SdF3H\nABqG0Ww2ZaK24ziGYUhFkKZpi9mkVnHLPGOMRXEq/cIkOiKvySJNpTbddV0mwNbGhowV0TQlK3KM\noaKYnutomtaq1/zpKJgXzXrjrddf++ijj2rVlbVOpyiyPA7mw/7BwUEcx57nYcFns1maFTlljWZz\nY3Vlud3qnRz3er1ZXAIAHNee+5plWePpFBFc0LJSq5q2xcqClaUAqNZoAQBG40kaLKrVaqfTWV7u\nViru+fn58cHLUd9stDuWZUl2yLDXe/7ihVQetzrLWSb+/H//U9lBpnEoJXby5k2SBCEgD0ZJaygA\nUhUcBX6/3w/9OWe00WhId7kbN26kaVqr1U7PLzAECCHOypIpnHPJHALgcjqk11EEEEKMFKRcV5SD\n01M5CwEApIWtJAxLkLzZbN64cSMMw/39/TiOpRZDTpNpmgrOWVkiAMs85aw0NZ1oosgFRrqm6VTQ\nosw4NyGEEHDGGOUsy7MsywAmSZylRZkXJQeCcsCYEAAKABhnl40DBBACOcxTyAEHSPwfCzCEAAAE\nCOecclFygYCAlDNeXhYdGU2oKOgqWxcjRBBHCGGIKOLXSICiKGmRp3mOEKKMFZQVRZFkcZ7nmmHL\nh4Iw/ubUe/kJ54JzAaAs9EAISVlACAgB0aWHdhnHrFqtYnJJ2krzfDyd7u3tzWaz+XxerVUFBK1u\n57vf+16z2fyv//m/eNXK5vaW5bgHB/tFSU3HCaLw6PTk/v37/CohA0LEOUXossO4xMBLqmkYKqRa\nrcoIeSIdhqWATH4TRopExhFCYRgyJuQ0ja/S6cuyzJJY1/XV1dV6tcYYswzjxYtnk8kIcPHo0SPH\nte7cvW0YRrvdHs7Coy/vy7WE1CZXK7UwDMfj8Wg0qtUa77///mg0+vnPfy4B2yiKpD5P3htyKSJl\ncDKLVy6th8OhtKrI8ywIgtu3bxNCPM+TuxZ5EciXY2trS1brfr//l3/5l9vrK5ZlnZ2dyRTht99+\nW8bZxnH86NGjKIriOGaMmaYp7085PZ+cnARBsL293e120zRdXV21bfv58+cvXrw4Ojra3NyUi0BC\nyHg4icNoPBxBCP35AgEYh5GCybA/4IzlaeZzIYQwdH08HKmqatqW5zmU0vl0oihKpVIhBMVxaGrq\nycmRpmmOY4Whr2tareqdnR5LVpGiqtIpU1fUVqt1fHYqWWl5nMvMYBn0u7+/311eQgiB0a807Gme\ncwA0TYvj2DTNOE1k+5Xn+crKiihpSfPlla7nec+ePVv4s2q1euf2zbOzM9d1iyypuPZoNCII9M5O\nBheYFkXV86RFLS0Lz7Hr9XoSpzQv7n/xy/F4PB6NOq2WpNqenp6WtGg06+1WczKZeJ4rbY3XN9ak\n+1hZlvVK9ejoqN1uQwCGg4FhCNu2zYp3Y23jd3/wg7z4zS+//PK//OUP84IqGlkEAUeIZqkKsWtY\nrmFlQaKqKmPStweGizkSvOJ53XYnCgKJbO/v71cqlTDNFouFYdhlWd7c3lrM54PBYHW563kehjIx\ns4oVwgSklDIuCCGG7URJUvW82WwGuMiS9Ae/9ds3btyo1WqPHj36m7/5myxJCkZff/11RLDM+s39\n8Ojw8P5sVq1U5NzAS4pNkxAyHI8aBFcqlZOzs+2dneFwqOo6Kpmu6wCj8/Pzm7dvGZb1ySef1JsN\njHGWpGmaurZNaZkk8cbG+p1btw7OTwEAXrUqb1JFUcI44pRhVfnyyyc///nPfd/vdDqO49Tr9ffe\n/dbZ0WGn05Fyanm/S8+HIAiSJMnz3HNcRVMliD2dTmu1WqPRODw8ZAIChGVwxenpqewLZY6ZrAea\npo3H45urG1XXq1Y9SmmWJYamV2sV2zL92fTjj36mEiUKFp98+POtzXWMwHQ86jZ//cmTx0f7+whA\nSilnBcv1/edPBQSMcSZgqmvhYvHs0cMXe7uWZX3nt38XEtwfDFUFnx4f2ZUqLSnGOE5TlZClldU0\njpI44ZQJASnljutOZ7MvvvxS07ROpyMNMh3HuXPrpsTYpqPhs8ePIIR5HJmmeXZyUq/X5Qkj89M6\nnU5ZltJJVFGU2Wzmurppmkcnx5IlbpvGfhJPx0NFUZyKp2I0G4/WV5ZXup3T3gXGOIkCSk0MgWma\nUZF9oz6ha4BU1zXOhayC12tLzvnG2prMXPF9HwGQp6lgzHFdwRiGMPT9Rw8eJEniOE59ZcX3/SRO\nVNk6A14ilKYpQSDLsornEIIAAEWREwiFpiiYFBApCCOEKCEYUyH4NZO5KIqypIwxARCACCIIAcBY\nKcoYXDGfwTecMaQk8r8bNwEAvMilv8qlYwkEssYbqsYggwgigiGEshhjQijNEAACCsQ5g1BCxwpV\nLMMsigIRxBhL8wxCaBiWaphZml8X+2sOs7hKbrgGFa4/URRy+V9CyMUc51SCfGGUQAirXgUhnCTp\n1w8f+f6i6rhTfwEhj9Pkr3/yI1bSRRQKJL5+/Kg/Hp2cnOzcuqGo6ldPn7x48SIMQ6XSYIwBhChn\nkiYsjUrkShspQMqLTk6O4jjs9XqXqZ/yEUgkkFHGGJMxuhBChC4funSZn2SRqqrNZl2KZxqNhuc4\n+/v7cRxKxjKjVK5OO50O57w/8SW1khDSbDYhQHLglpFMs9lkf3//4OBgZWXlGvuSkd0rKyvD4bDf\n77/zzjthGMoYA3BFMZeb1OXl5WdPn9y6dUsCEZLSLOln0lAwTVM5aK6vr8sLejwev/XWW0EQhGG4\nvr5umuZ0OpXg9ng8/uKLLyT4Ztu2VEANBgOZASyJoGEYrqys1Go1uQmWv+T58+cAgDt37ty6devT\nTz4Lw/Do6KjVajWbTQihHE+lVl0mrxmGMZvNPM+T9DHZ2Jq6IYmO8jF3mi3Zdkyn02q1mmfZYrHY\n3t5OkggA7rruZDyUqs3ReMDKfDiMbt68ORqNLMsAAGyur10M+mWZl2W5vLx8cnIiheFMCBlumOd5\nq9Xyw0CybyT+M51Obd1gjIVhqGma67py7bRYLOTFvbe3J3XMEMLJZEIpBUSRFHSJsTiOEwSBfAs+\n/vjjtbU1ubaXpwwhpF6tqap6enoqZ33btNZXV0ej0eHhYZIklUplNBrJIazdbkOENJ5qmhHHcbte\n07GCMLh1Y+d773/nww9/LiB4ZeemYZh5UQyHY9XQp9Op69qNRu3mK7dPz08Pjw9M3fCWlj3bevfN\nN+IwOjk8irNU9tQb7dZk4bOSrS51wzCktJTvl+e4WZbUarW8pKzgTEDOhaqqVABelLquR0nieR4t\nynaj2W6319dWdnf3J+Oxrmmj0ciyrOfPnzPBs6LAGLuKximTNDrLNDEh17dSu91O0/Tl4aFpmkdH\nR8urK3mel0Hc7LQnk4lXrfi+f3J21mg0iKKEYaiSSw1Jt93R13XHtO7cufPkYM91Xcuy5HskhLAs\nK0vSP/mTP9EVVVVVwzQlOL+ysqIZ+tLy8v/9n/7TSsX827/94Ec/+pFcrzSbzQcPHrz22mvS8ZsH\nvCiKOE0IIZ7r5FnKOdd003JcCOFiOq1Wq2VZStpjGkVpmsZxKr1WHj9++Morr4QLP0mSznInCH3B\naK1WsZc6J0f7H/zkp6cnR5Cy3RfPhRD+fPbgq6+Ojo6SMNB1XdMUmIHFdAgQYiUvaImwMp0MLi4u\nqACdTqfqVY6PDiqVii5VrQDSItMN07AseeGdnZ01642llWV/Ok/zRVXXDUOR0DFCSAaGyp4+iqKt\nrY2iKB49egSk0MO2EUJSr1XmGSuLne2t5eXli4uL6Xhk2lalUhGCqSoRAhYFNQyLMaEIbtv266/e\n3dOU2XSShMEkSbrd7vLy8suXL4MgaDbqqqqyMqcc4DQRAGCMDdMsimKxWGiaZttunKYAAF3XoijW\nFJWoimR3I4QYxqZpSnO3JElu3boleXayukh407IsWTINwzA0PcuySrtdFFlZFFKiKWm9lFKCsWma\nBKI4jqUdECQkSZIojrK0yEuaZFmSZWlJISKu6woAwyjxo5gLIbd+cXxJh5aIWlGWsriWlEqjCblV\nlLMTxhhfeWZcrmMpBwJqqg4xFkW5tbUtY7/liSoESPNMJYogRCVEUzVD1QSnMlbryjKaI4IVRZGJ\nihIllY9HrtLlK3O9ZZfF69rWAwIo/ymFyIyVsqAghBzFA5BnRS53mgDBSq1GMPZ9XyXoYjI6vegJ\nxrxaxatWHzx7Mvn5h6+99lrO+Gefffby6LBer5ZQoCt7NQlEm7oh35okSRzTkntfSbsZ9Pue6xJJ\nzZJj5WUHocpG6fIJM3bZzsiyZ6kyPBkIARVF0XXdsCxZojDmuq4LTRRFsf/y8ODwME1Tr97hnMuA\n2DCI5Iwv+QLvvPOO7/v7+7uu7UVBGEeRtBxaX1+XCM/Ozs69e/ekRqjX66mqurS0JMmHvu/LdTKE\n0HGc119//fPPP5dS4MlkEkWRDDZ48uRJFEX37t1DCGXZpZJS5gzeu3dvPp9LKY4kFd+8eXM+n3PO\np9PpZDJZX1+XKzFxFZYJIZT+X0dHR9PpVCpWCSH1el2m/ezu7iZJBgCoNxuGZcqIjKOT4yzLJGmC\nEMIoLxnVTaNSq6ZpCgCQw0e9XudABL7vOM729rak1Er9nwReWu12lucIoW63K48bRpnEQnd2drCi\nPH/+XMoPAADPnj1zK97777//s48+Ho1G8ldphiEZvFIBfDHoF0VRq9Vc1z08PEyL3HIdaYKmadqy\npq2urqZpOhwOpVtvlmWbm5uSdFav1zFEtus1Ol3LsqTY9OK8V616S0tL8l32HFvBaLm7JJstYuFO\nqz0L54qCdU1BhqYrqqJc8g+SKJZbE0XXal5lOp0uFgvP8+LJGCNkavqzx8/Ojs+iJGWMlYybulGt\nVn/wO38XIvTy5QEWwI9Cz7QRBtVqFQBR8RzXdhgtmo2m57pREDqWtdLpfvrZLwUrm51OzqgQottq\njkajasXzPA9D8Vu/+f3pdPzVV195ngchhhiVTFDGCcambjiOw1gxmUx0XWeYnJycfPnFF7Vq1dB0\nz3ErlcpsNmOcJ0nCgSgZQwjNgtiyrEuwF2PGeVmWAkHTNBHBlNJXXnkliqLpdCpVdmfzIM8LxjiC\nWNX1KsZEVTRNcxxnOp4wxsIsgwK8eucuhPAv/uIvkjg2TfPi4kJKGMIwNE3TDwMowCxJLN2QC5eF\n7xuGUalUPv/0F5989qnrup7nrW9tHh0dmabZG/Qlxc9xnGq1OhgMZHDpdDpt1d1WdwkhRBk3LEcz\nTMb7o9HIq9WknE9ByDAMVTMUgqT2XVImw8ifjEbLy0tlmX91/4snjx/2Ts/6F+eQc0NXVUyk0+CT\nxw+Loqi6nldxyjLPEKhVPN00dF0vmSgo84PoYjDO4iTyA38xT5movP76+vJ6zvg8DBdhNJ/OhpOx\nbbkSRT8/Py+ymq2bVbcaRUEY5I1GY3ltNYqiKE3qjHU6HcuyRqMRwXhzY+32rZ0nT56sra1EUUQI\ncatNWa273a5MXJenJ4TQ0PSsyIfDsRDC8zzbtiGEuq5jKHLBatXKK7dvba6tHh7sv3jxIktj2aMo\nuvHbv/X9oqSPHj0ajCZAIwAqGAHT0IrMKBkNQz9JMoQQchzpBgUAEIxTBjgvSygcxxGMF0Whq1qj\nVu+02htr65I3auoGhDBnXMFEJUpZlkEYKooi+2bP8whCvu/bpn4FivKiKFNGWVFCJBRFCdKSc86A\nEBxSLoqy5JxjACFEZZbnJS2KXMUIKQRCmKWxPMmvyU1clgfOEUKcMQCANE+UkhkAAMbksgQCCCAU\n+NK6EnD+5ptvfuc733n27FnoBwRhlSicc8+rAi44p9djNMKKonC59xFClFSUZcnAZdUkmFwvksE3\nYpJ/RVr6xgQMIYQAQiGAdPf4xrCOMQYYgCsllSyLEEIBmW7rUIAkzxhjtmFChfhxlJbU8ipIU16e\nHveGg1LwIEnjPAc5xBAhhAkBaZrKBHGpSDw+OJS2aLqmQQgsy9R1jcipF1+F0QIAIMBy3SsrHGNC\nupTJb8OilG/AlXM6iqLED0OiqiXjeclUjUCCBYKaabrVWk4hY4Wi6bV6vUiz+Xwup+FKpfL++++f\nnpz0Ly4UFeeFMEzNtPRG6yYhZDqddjqdV1555fDw8OHDh/P5vNvtyglb+nhJR4UwDCtV7/T8LC+L\nw8PDyWyq67pXrSytLPu+/zc/+tssy+7cuXNydjqZTFZXV3v9Cx0B2W1JiFuyus7Ozu7cuXNycjKb\nzVZWVuSWfnl52fO8arU6Go3kEQkhvH37dhAEf/Znf4YxPj8/hxDOZrM0TT3P831fujHIBXMQBLLk\nLxYLRVEkhCUV/QCAVqt18+ZNxtjT588cx0EISRBCrvHyPOecm54XRVGjUpEXxNtvv61p2l/8lz/H\nCqlWq5PZVE6uaZp2l5dlckOz2XRdt6BlGEePHj0KgqDebAEAECFYUeTOGyGU5zlRFYRQtVqllC7C\nAKtKxTTSNEUQyozS6Xx+ubcuS9e2KaWS1y0TdebTmdSW1Fqdt956++c//1m/3+90WmmaHh0dvfb6\nvTiOV1ZW5AonTVPHcSqV6nw+31xbT5KkzHLJidMUlVKaxlGlUnn33XeDIHj48GHJGSR4EQSQ4PWl\nVU3TDMucTmfn5z3KuaJo65sbCsJCiIrrTeez0WAYh1EaRohg27A4o0cH+1hVdE1xau5777xrKepi\nMlUgqm1syg1FmqZTf1FrtQVnqkJUTACnruc2m/Wv73/JKZMILVZUTkWRZwJAExNCyDUaqWna2tra\nwcHB/+vf/i+apn3nO9/RVc0wjDCKiqLACpEtOReUcSEYL8sSoMuQVE3XHcdRVBVB3Kw1giBECPtz\nP45jieUqqioHAggRY0xuH6vVKoawKIp6tRKEi16vl8YJtqylpSV5jhRZxjmX94Wh6RIRNWxLt0zX\nsqM4/vFPfvL0+bOzs7M0TeVWvtFo/OEf/uHDrx8cHx/LVkyafgMAGo2GoWrNmvXOW2/eu3dvMBzt\nHxz5vq9rytbW1tHpqezIa9WqzO4s8hQhlCbJbDqt16uO4wjBq1Xvwdf3//iP/3g6GYmyIBCahqYr\nKsFQV1Rd16Ngaqia41qGoaVxlKVJWeR+sCgptT2vWqk3Gg2iavN5mBe0d3rmNdOvfpmd905b3SWB\nyWwREN3Y3ljnEEEo7Za4gsl0OoVccEY1Q1/4oRRfcg6SPMOqIp94o9lM0/x3f/d3m83mowcPq17F\nMIyl1fX5dGJoaqVSWcymF/0eBMgwDE3TOOd5mnFOTdOWriaTyWR1dbnb7WIE4zheTCftd97c3tq4\nd+/eYDDo9XrD4bC7tPLGG2/IE+DTTz8NsqTT6ayurpdl+fTF87PTHiHEtS0OICGEZZcuyhpRNNNi\njA3GI8WrWLqhEaUsy8gPTg6P5pNpvVLFGGOEKaUKwoaq0ZIupjPLdRSETVMvS5VzziCwbdtzrCLL\nGRFYwMu0hrIUQhAqiqJUVVVTNA5AVpSUc0UACAQTjDMBOEcQYAUTgrmAlDIVEyqA1OlihIl6mf3F\n4eWgiSTACwBGiGAMgLhU6UKAAZR7b4RgkuWh758cHZ2fnmZZWqtVMcZpkhimySmjlEJ+aaYh1+KW\nZcqyioqCMQYJ1nSVEMJyKoslEoBzLiSNG3LA+De9Ky9FyUJgLAQQEu3/ZpGW9RtCyAESAjAOhJTt\nStmSAGVeXK7w0rQoCnnUVxrN/f39RRQ7jntppc5pKQQhBAFY5JSywrUdwzDeeustQdloNEqTOI4j\niYNalkUkHwTjX9mycAbkzCqfvNwBy7YCY+zoVp7npmnatiMAKBmN0yTJcsoFQtCteEtLS5xzSRzg\n4tJvReItspADAJIk6Xa7T58+ffjgQVEU8/m82WxKABkiNB6PPc9bXl5+8uTJ3t6eaZrValXGb81m\nMwmPS2crSTcdjUYvXryQW67FYrG1tSVZY/J7ZrPZ8vJyr9cbjUaNRqN/ciSdbCWILdVHw+FQUhvK\nsnzy5Mk777zzrW99SyqAbdsej8dnZ2dyA/TTn/6Uc37nzp08z6vVqryxLcuSQurt7e1Kra4Z+mw2\nS/1FXuRYIaZpViqVyWQi33LLsRVVLRntDwfz+Xw0GhiGkWVZHMeWZS13l3RdD4IgSkLD0uv1aqfT\nOT09nQdz3dK3trY2tjb39/eTJHFdt9vtAoSCIMAYx3G8tLSEFSKjLN544w25QZAxR71eT1pbSO2N\nqmsSIbBtezKfXZxdNJtNQshoNNKIRlRtMp0NRmPLshq1OkJE1c00L1vNzvnZhWVZcZRSSjc3txfz\n+ZOHjyI/uLjo5UkaY6hpSr3aSMJoMZ+7rhv6oarqgjJD1QDjwXxRr9rENHi1IoTgAEpta5IkjUaj\n1WrleT5bzClntVpNAIgwSYqCI0QYd7yqU63Jee78YpAWeT5j97/+6uLi4uDgQFP1er2eZZmmK4KV\nZV5kWZLnSadRr9eqOiIV0y6LYjwcLebTlZUVzXFKwTVNKcP49373d5a7Sz/72QfBwk+TSDaCuq5y\nBoiqMAFKzijjGAgAQJwmzXqDIMRKqiBMILJ0Y319fToas6LUFDVTFA4BIQQgxASX91dRFCWjGFym\nyciXOklTKfmr1Wpvv/223ICYpgkgvEbYOOdFXgghNEXVdZ2VpWXorVaryLIyL3RdLxjz5/Oq5wEA\nJKs/SZK33nrr6OiIUprmGYZI0zSiqf3R8PGzpxAKu+LV263RYMAX83qzcfv2juM497/+anNzczab\nff755/3znmVZaRTfvXt3e2ujLMtB7zyIE1pkRZZmRaly4FqWZpry3JDojuM4uq7XdIMQNJ/Pyzw3\nDOPk+PjBgwenJ0e2oROF6AQTBBkvFYR1Q624jqGhcOGnaco55YK5ri1jBzM/HY9HF/0hJqrlVNyK\ni6Ca0/L85MS0JgDyWq2m2Y7gJSsQAGA+GRcF7XQ625ubt3ZuPn38JA0DYmgUsjzLPM8zNW0ymRwe\nnViW47qV1dVVSikQQlXVe/deYyX95JNP3n///bfffrPXO5tO547jSMLHZDLJy0tD5tlsFiWpYVjy\n9KxUKkGwoJQ6Fa/dqMdxfHh4uLS0lMRhniW6rvd6PQEQIcSP4lar9a1vfasEXB4+AoCb2zcUhMfj\naRrHHKAiy7MsxxhDhFRV17mgeaGrWpkXUjMJBej3Li7OezKJAalQUTUEYFEUCMCqV6m4nh8ukiSx\nLAMhNJtODcOouC5ABBGOCUKYCCGQ4JAAIASAyHUN07Q1TcvLksQxhDAvSyJEHKWGpugQF7QsSyYg\nIBiqRMFYlTOuEAKgX9U4xjnHCEKIIOBCcAwRQoqCBZVDnRw9ARAACAABrHmVs9PT8WhEKa1WKtVK\nRVCGBShZSQhRVRUDCAVAUEABECEYKTLtDWMs85QgwRhjllNwJXOSp/G13Pa/G3+vl8TXouFvLo+/\nOYV+U7aECc+LlDFGEEYQhmEo7TuyLJOGnaPRiFJq2laSpbplihJJJ3AIIYJQVfSyLCeTieTwVqqe\nrqmWZQVBsJjO5pMpkWC43M/JkZeWXMq9ZT3GGKFvGHopqs44KCkPwlBc89HB5aq5LBmlHELIGIuz\ntCgKXbMsy4IQTqdTuYtyiTIejyuVyvnZmQwakxJ+Q9XajeZkPlcUZXt7WxJuG41GpVI5ODjI83x7\ne1tuT6UCPQzDSqVydHR0tRsQ13ZXjUZjPB5vbW1JT//pdGrb9mg0yvN8a2VpPB63222ZDfzixQuZ\nWSFrgG3beZ6//vrrhJAf/vCHt2/flh7oOzs777zzztnZ2VdffbW2tra2tlapVCilH330kRyLJTA7\nmUyiJJWHrAwOk2kKnuelaTqdTmXQr+/7hJB2u80Ya3baRVEUjJacTadTKS0FAAQLfz6fv//++7VG\nfbaYB1H405/+9OnTp0kSTSYjBliapotw4bouAODrR1/JKROX2D+YzxeLIPJHk+HOzs75xWg2m0m2\nc7vdXiwWc39hmqZkVid55jiOJNbJkX1tZ6NSqWRFEYehYRhuxRuNRjJEmTE2Xczlgvbo6CgIAsu2\nB8PR3t6eohC5+NF1GWPMTVPHGMunOZsuZrPZbDbnnB8fHrXb7VqlCgCYzKbBYgYAUlV1Op3++Mc/\nXgS+PNAXQagoiunYYRTmAg5mC9M0HcfJ87wUwJ9NOAOmSY5PTmazGVGUZru5vr5+dnZ20TtTNLVS\ndZMkKvLUsUxp0EMQqjdbZ2fn8/lccxzJSIiy9I3XXr19c+fevVfSJPiLv/iLzz75ZH193bUs3/fj\nLOOcA4hUTCBkCCHAWaPRmE1nzXodITSdTN556+3vfvs7URD++Mc/ZoJjjHVNKwWHEFLGsiJXiM6B\ngBhpSFNVteSsKEueJEKITrt9586d+199Jdu7OI5NTZ/OFgAAIRgVnBCi6hosEecsTVLDMLa3N8fD\n0df379u2vba2puv6eL5I0rQsy6WlJQhhv98vy7LdbssmWPJ3wjAsL8pqtWpYZpzFF+Nho1pTDH1z\nc5MD8K//l//30cFBGiezxZyVVOooHMfZ3Nh47dVXa54ax/F4PE7ygjFmWRYiRV5QXdcZ55xzVdeF\nEL7vIygqlUpN1+r1pu/7S0tLhqn95//8nz756GNdUVWFEAQIJhgIKDjGikqIqhCMzKIoaJFJZMKt\neCtLXcuxy5Idn56/2N0bDKdhnDUFsN0aIWSp01hb3Wgvr6gYQcGatSqDJAwWcRI26q1qxU3CaDYZ\nqwQZtZqgbJZG0gHRsG0tScKFf3h0lKbpm2++2WnWAABxnLqu/b1f/3VNM1SVDPr9Rr3eqNfb7bZl\nu4PBYDqdYoKkoZ7cDmZZNhwO5Vr9oscxgqZp3rp16/zs5Pj4OEtjieTLW7IsMukEJ6NFC84sx5Ze\ns1kaz6ezKPANy0YIeW5V13UA4GQ+y7MyTzN/sXBqFSBEkeeCc4yxpqoAgGqlsry8fHZ25sstsmUZ\nhgEhzPIcAKDruqSyvvXWWxDC09PTLMsVhUBMAEKcsYJDyqAQoARCQKoopTTh4ZzLs5RyzgymKAqA\nWClhQagQAggkhHArjkSYpUiVXpktE4LppbKKQ8AJAggBBLjkqaBf1bvLWmioGi8LTVONiqcShWVZ\nnufwiuJjqBoUoCxLzphKsKZpgnMuIMQAIQSEoJTSLKOCqwjL6HopQpIO19cj5f8/BC2+wdVCV4FL\nlxtijOSjZ+BXLLgiCEzThAAUZY4EkL2OqRu3X7nVarY4EIJDKFCW5GEYu67LOJLrdiniMFQ9L4uL\ni4v9F7uKopiGruv6jRs3NKJMR2MuKJFwK7zy7cQYyxdaysCFENe9gmwcfN8Hl+FQKlIIh4CyAgCw\ntLK6WCyGw2H88qUEVG3LxS4uSs44cGzDdV1p/ciK0jTN8XicJoncsty+ffv5k6dxWd67d0+3Lblk\nlQbIt2/fdhyHEHJyciK7e/nA5ObfsizTMhaLRbPZ9H1f1ubJZAIhjKLoo48+euONN7a3t3u93ubm\n5urq6scff2zb9qNHj1577bVer7e7uyvLpzx0IITf+c53fvzjH//0pz99++23Oecff/xxvV4/OTmx\nLGtvb8/3/Z2dnbt378poXmmxKWn08uPly5dOtSZhZ4SQommccw5AmuclY4Zl1ZvN1dXVfr8vB/Sy\nLPf2duv1uud5UmEs/TcA4+12+/j4+MXe7snJidSeDsejMI4Cf67omrSpms/niqY2Go2Dg4Msy7pL\nS7Zt7+7u5nn+8OFDzvnq6urOzs6zZ89+67d+6+nTp3me94eDOI6liXQYhiVnkj8l3wghhGnbnldZ\nWmIyJjLJ8izNwyhGmEynM0KUgjFTN1qt9ny+oJRVq9VKpdLtdk5OjxhjEIrB4KLRaNy9e1dV1eFw\nnCTZfDHNs1JGE8bhJAr9OAoUogEuLMPEiloUhR+Gp+dnGON2t+v7fhCFGOO8LCxNA6oaFUWY55Mg\nkDXAcNzFYgFVsojDRRxCCOdR4MVhXGSGocVpksWEcWbqWq1SNXW1TDKsqEEQPHv2lBBScb0gTeUJ\n0qhXK54znUzjIMAAnJ2eNhs1giFjLE+SgjGElYIyDhCEVACAiSIzqQTjkvzy5MmTRw8eRlGkaCrA\nCGMsAAIIMkmzNA0hRJkxAQC7FJ8AeY5Pp9Ozs7PRcGhZVpok49EIIVRSzhjTNI0KCiFEBBdFIQSX\nlL2Dg4Miy6vVqm1aaRqzslAUZaVWOz8/j4KQFqVgvNFoPH36VJrYGJYFAIAYh2HIhAjjOEzDerX2\n+ttvTSaTLM/Pjk/m01mz2fy1b38bQ2S43huvvvbixQvLNDHGZ2dnw17aandt257Pz/b29iBWdNOi\nTDiOEywWkJB6pSIpYFEUMcZEHNVqtWq10m63B8OLr768f3j0crnTprQkKlEw0hSsIqQSBQiWZUma\n5hBCgFCWZ4JS30ftdrPT6aiGbrsVVdONl8fj6WIxD5KMqoqmoXI+m1iutbS+unnrZs747uHJWX+w\ntLKytNQ1dWt40d/f38+i2DEtubwQEIRRksSZEEK3zDBJ5s9f9Pv9e/fuQS4UgjDGrUZzZWXll7/8\nZa8/aLfbm5ubQoiLi4teryf3ApPZXE5+qqpJKo2cAj3XjeP4/ORYRq4JTmVvJHcxnmtPpvNarVap\nVH7x+S9t26406lmWDfwLQpRWo8lvirPeeZYVb775Zq3WUDVtMpnmjx/T3NdV1dR1eVpCw8yyDEJU\ncVwpzllfWfVn88V0xhEVlGVxIjd0VtWROn5VVX/7t3/b9/3nz5/L4UpTVLlbvGYqAQBgUVw6Ukk7\naEw4FogxbNuMsYJSjICtaPAq2QlzQLCCVAgFoJCqAMg5GEIoDbMuRzV4NXGyywr3zQ8oQBRFru2o\nqgqFKPP8Wlis6qqCLrONWVkKxgVGCiGXjGCAARSsLCVjn3MOLet6Byw/ZPX970hY1zU4LwqJSGMM\nr+o1BBhRSq8r9vViWAjRqFTffPPNZrMZLPw0jsMwDBY+53y1u5Jm2WKxwAJAIeIwgkxAJqL/H1f/\n+WTpld95Ysc93l6fPiuzvEHBFNDdQDsSHA6HpneWHKqXGzMaSbHSaEKMmHmjf2J3XymkiBmFZnZX\nK3INGVpyTLthk40GGg10FVAooFAms9Kb683j7TF6cbIwXL1BBApZiXszn3vOz3y/n2+aYIxVVa/r\nkr/kfNG6NAyDcSq7i8V0tvvieX9w1uv1iPwKeWVeTPMZkH9TvpmvXtCFRrq+iBxXVNWyDTlPLstS\nURS/2ZDzT8aYgFBAEKdJr7sSBEFR1oZhqWodxzHkQnJhJMjUNM2//3u/d++11z788EMJvJTbQV3X\nT05OHj58yDk3DOPy5ctpmg6HwzAMpdZOCDGbzSACMpLPdd1Lly5tbGxsb28vFosgCDY2NkzTlNJW\n6Xn9+3//73/xyX3ZLt+/f7/RaNy7d+/q1atlWR4dHf385z+X/qInT55omnbr1q04jvf29prNpmma\ncRzfuXNnPB7/63/9rzc2NuR/tSzLcRwZXCifY9t14jiuaC3DqizbCqIQIIgVsgiD2WLOBJfyIkVT\ni6rUdF03DMu24yQBEEpXWBzHUZpIJHKe5+1uZ31zQwix/2KPYNRutzHGtuuouibxmbZtE0XhnE+n\nU0k0Y0Asr660up1gEckBSJ7nT548Keuq3W6fnJwYhgEJlgN2+VhImM7z588HnicfiSgIJVjc87zZ\nbFZWlVSoZYaxsb6uadrh4SGGaDGb/9p3vyM4ffLk8fLyMoBWsFgIzmldQwGG/fNwEZimjSEyNN1S\n25TSKIqYwXTNtG1bQCDV71ghRNVt254t5vJXFkZRjJBb11ICmtc1pXRyfm7omqIoizjSNG2ymCuK\nEqbJPAhUVb2+uT6bzbIitW07Sel4PK4ub5d5vr228dGHH3/66aeXr167d+9efz757PGXeZ4/ffr0\nlVu393d3Hzx4gBF46823dF3/8ssvpaYJq6qqGTXjtOYcAs7FeDq9tLEJOF/M5oaiHh4e0ryUQSay\nusYICyAEBDLCSO4Opcj8qzJXQrNVVT07O5NVr1QSNBoNVcNZlim6xgohV/VlWQIggqr2PI+zGmO8\nvLxc5tlsNllbWR2dDw1V0xVVchB7vV53qffll19OJpOVtTUIIeXMdh3DMqVewfZcCsXh8dHx8TGt\nalVREMGEkI8//jiNk/XVtZXekuu6URQdHx8DALbWmxBCTSWu67aaDYBVRBTJoXMcp6jrMAyl2FDG\nYuqKMp/OFE3Z3d398Y9+8OLFC9d1DcNI4hpDhDEmCBOCiaxaBagphUhIVp/je4DT8Xjs+J7v+2Vd\nqLpmuc4iTtO8VoTQDH2l0RpNJrPFXGBsea5i2Y5tXr96eR5E4SIotNx3PV3VIsHLMscIMEr8ZhtD\nmKZxnmZlVeua0u12q6r68MMPX7l1O40T17NVVT07ObVt23atqiriOJZ9TLfb1jQtiiLXc+azRZIk\nWKmazaYMKpbM1/l8fnB6IoS4+8rtpV4ny7LHjx9zzl3XZYzN5oGccEjmT5bnDderqirPi5LWfsP1\nvNvNZltVVQ5gHMfj4SiYLxSidrtdx3HOhgO5L5R3EgCAUppl2YMHDxhjy8vLnPPFYiHRH+vr66PF\nRJ7ASZIcHR0FQbBYLFzHFxxCgBGShEuOEMIIQwgxZF+NcOU9zRjLWa0pKscXYqCLa1MIyDmtS0VR\nVIygQigECCGsKvIaq2gtLxG5aZFTXCQQeMmh/KrXxACauqppSlkWjDGVKKqqSBgIBRfWI8AFpZRW\nNaeMUYoQkq2OoKwsy7IoBAC6rtOq5pxjjBGAkBDZbWPpmrrQVF3cpuB/ra6S2+oLpdXfNi4jdOEn\nFohjfvXy5re+8fbly5fDRTCZTIb9gcTdH+4fDIfDKIkpYwRAxEWn1SKEBGkJACCqqmmKfP0QQlVV\nNaJggm7fvMUYM1QNQiilJOSrTlw6zRljLynWQGZWyBctXkq9ARdCCHkuV5Uncf9FWZ6e9R3XQghJ\n5rBcfZVltbS0JPk+BwcHhKBLly45pjWfz09PT5eXlra2tuSMV+5Ljo+PoaJcJL1bFgBAHm0IoW63\nu7u7K59F2YAahlGWpaarly9fPjo6ms1msmN+6623fvKTn2xvb7/99tsnJyfD4VA+r2VZvv7665zz\nt956a2tr6/33379y5Yppmvv7+9LIixB68eLFixcvbNv2PM91XRla8Mtf/nJ7eztJElVVv//979u2\nff/+/fPz8wcPHmxubsrAGQCA53nSyCuE+Ap7yRibTCaWZV29ehUhNBgMIIRSj1pV1d7e3tWrl09P\nT8fjsdT1LIIgjiIZOHP9tdd8x93d3UUIbW5urqysyNSpxWLx5dMnCKFmszkcDpMkGY3Hq6urcRzH\ncXzrlTsvXryQK+rt7e0ip9Jr8f3vf7+qqqvXr21sbPzLf/kvq6pSkNZsNqXm8+joqN1uE0IM3QqD\nGADQarUwUauKVlVFKe92l2azhakb//Af/sOzs7Mf/vCHm+vrACDbtldWVnq93v37H0sG8t7+ru97\nn332cDqdqYqOEGq1WowJuRepi8pxHMl5SLJiOp9RSvOirCgtqhJVVGo4ESYyTgNpWhRFDKH+ZMLq\nqtFoBHFEtDYBMIjCTqcjkbBVVU3nk/X19b29PcuyFEVZWVnZ239xdHTwnXfebrfbEqnW8C4U7wAA\nKrhhGMFs9t/8N/86y7KV5Z5paL1eL4sTIYT8Gks3TNstaxqnSV7WVVU1Go0oigRjstwmAGFNQwhd\nTPIZLVhNGZU1KMJIOqRt25Zln0ydkqVnr9d78eKFbI8kDh0hhLAiLzMhBGO11E5jjAAXjDGVkLIu\n0jS9duVyu93e230hRYK9Xi9JEoARAGA+n8s7Ty6omODSJ3bz9q2/e+W3/uaDnx3s7Y9GI8iFbduu\n53HOJ7Mpr2qCcBRFK72lVqv1Ynd3MBg4prXcMWfTcZoVUspQ1RRrpmVZh0cna2trHdvO4liuJCGE\nSZq3W/rp6enmpY2D/f2f/vSnVVV1e+3BYOA6thCirmvIKOBExbqqqqZhXrpyNYwWZ2cnhq5ubm5M\np+PDo/1ZsFhZWeECMg5N02w2myBIBAB1XXuuazl2xXldFvsvXuiOAzRDM6319XVK2XgwpHW93O52\nOh1aVQThYZbJ2a9tmo7jTEbjKIwAAC2/4drrZ2dnAICtra3RaCRlw3EYjacThIjneWma2rZtGFae\n51Dwbrfr+76A6OVvh2VZRutCllBBEERR5NimqqoYiEH//NU37n3yySdBEIRRMp/Pt65cjeMYIpRl\nmSTgYkwQQrppSwv1YhEOx6P5bEEp3di4dO3K1SiKZotFnuVQAAUTTplg3NSNpt9IkkQwzgAlhLSb\nLUlfj6JIKky73W5RFD/84Q/lMtF1XXkyCyGEgHKGyDkQgteglu2jgFCyVAEAUABKK13XDUMryzKv\nSsooUbCqWWXFVFXFGEtfEYCQQCRDheFLrxEhRPaUVVXpWLuQFknFE+MCgFoIqTESjOuqpqpqnudl\nWSKEGMaMMZlbIx+YPM1AzC3d0EwDAAAAlyJc07I8z5uNJ7LAlWUEfEm9wF/FXfyv5dDya+Q3v9j4\nQiD5vuglSAshhOCFXbh/crrz7HmWpJJ2d35yyjnf3NxyTGsCIIao2WlWVVXVtUoUGeIum3XDMBmr\nU5bIwb5cR8pCyjK0d955R5IfSVQXmqbVVS0b06quyqp0LLOuawDJbDpSVJzFiXzRW1tbWZxO5jPX\ndU3bunXr1tPnzybzhWmagvG8oCrRBa1YVSIAVU1db636jk41fLK/s7W+nOe5AsXdV26lcTw4Oy7z\nxDa1OFz89//v/1YaT6Nw0dpcbS63zs/PS1CpjlYVJQcccvCDn/z7lZUVRUVv3LtHKX3y+Ms0CV3X\nhXmyGPSbpmFgPBiOd57t/Ju//Pfng9F0Ot2+HCwvrWmK9uMf/zhZhGWR/eqDD77/n/+nly9fPjo6\n+S/+j//70Wg0HJ3PZrMnTx+HYeh69uracqvpn532G54fLgLLMD9/8nxj++qr9+49e/bsvV98lFTU\n9/2NK9dOT09V10+ZGCzCF6fnpmkCvSjLusGEohmfff6w1+v5rldVVcPzIaMf/+IDDNFrt29f2b48\nGJ732p2f//znqw3fVQ0DEoLRxsYGQXg+md66een8/LzAAKeVZoCO49eMirKusuLd7/zaSrd3//59\nT3ekfKmGSrKIu81uEiSdXhdD4jv+7Ru3d3d3p6PpR7/4iDM0nU6Xu8u7z3ZVVbdN58njp7du3To4\nOFCJsrOz43kOhHBtYzVN05W1ZcQggZQBAUCFEEUYFlVl2fbO/lND1YgifM84PkiJqIfnx+srq3Gy\nsA3UdA3H0Dmtr2xfHpwP0zQriura1Tsv9vZc1xFCjGZDXdfDLKF58ht/7++mabq7u0s5i6KIUt7r\n9RaLhaBCMAErtuS1NjY2er1ly7JG+1/klrJ9dfs/e/c7f/Fvf+C1WpjxVqczWQSAqP3p3HGc4+HA\n8zyr3RrHUU/ok/6su9xbTGJaAl1zGFLP4+QsiQ+C6UESBEcHD4+OhBAYEdu0hUZv3XllMpmMh0MF\nk/c//MR33HZ7rSxLCOusqAQumOBlXSMEIAagYp7vy46WUhqmkYqJpmkEAyp4Xpecc1bXEHLLNOu6\nZhBxzsIwUFXV87woClutVpFmpqZNR6OG69KiWO50fN+/f/9+XdcAFxjXgqYEMs+zlnqtqqrCMEQI\nS2S36lpEIzsHe3meG75TlqLifBoEruNIW7ll6d6yd3p6ms5DDWDLdmezaQUALmg0mKTHWYP7bbMV\nRWFT8e/deWsSz//De3/jtBolRvtlnk/Hw9NBjfV3vvb1L0+nL17sfPOb31xbWyuLYmPpUpamtObN\nZnPN68m8PNdsYgdTSou8KsvydDFYX1kdzseffvYJ59zSrTRKVd3mCGWcm7YLaDWdzzXUaFk9glAy\n6d+6fr1l6FVdp2Hi2c3NdeX0/OyzR3tIIY7r2a5fMq7qyiKMDFu/ubq8d3TIalYkMasr13UpVhzb\nBxVTIen67bquqeD92bioClVVTcOR3ViWJWWOGGMAwSwtXEdkWQwAVBRl9+Co1+utXlrhnPdPz8qk\n2NvdJ4raW1rRreb9B5+qupFmqe/7JYsbjYZtm4Pz06qqhGD9/tTzvOWNtfPTs0dfPnn99VeLLNMc\nz2lk5/0+xlAhIM+j1+5cXV1dffz4ccUvHPO+bdm2vYjCPFnklh7MhnEURfMhq6qVXhuwZDY+fvz4\nMRes2/RkVdqwnbysAECvvnqnPxien5/nVc97VKwAAQAASURBVGGYqhAszzMBmNvQAYdlzSCEnu8x\nxtI0NzBBrK7ySgEWQjgL567r5nmum6ZpWpyrCCEAEAeCA1gzzgDCmpHnZZ3VEFIhIBOqAAIIBABe\nWnHjOJY6eV3X5I2LGK/K1LIsUVae4+Z5riKlhqAENeXM0PU8zyVZMy8ySDCCsKwLADjUAIUVpZUg\ngglec64BldKSAZAWhaIoeZV+42vfGA6Hk8mkTtOiLCGEWVYoinJpbfvVV1/9ix/+G0FpzTnCmGha\nWZasLE2M0Uu42Mtl7sU1rCgXCi+5UECIY4AhAJxzIAjCWMMIcIEQgBAghAlXvnz65FeffgIACOOI\nMbG5tbXTPxkOh77rmioxHMdgPJgviEA6VhWV1QRABBfRxPUalmMKBBeL0DZMrOCfv//B7evXL73+\n2vbG+vWrG3/2P/0vpCopZyAvUsaYVVUIIcMwGn6z2+skUZzneVVWumVurK7NZrMvvvhCxfbGxgZA\nsD8cHh0dSQ6OlCiPx2NOmWWYEMK6LJWMSKFTnuetVmt9fV2qnXVd11VVxtzK1NKVlZUnT55Is7nj\nOEdHR3JhrBLl5s2bR0dHr9y5c3h46Dtu4RSSU6Fp2srKCsYY16Wi6UVVLi0ttTu9037//v3749n0\nrTe//hd/+f+9tL7x937rN++99tpocNZseGWZl2UdRYkEX6yvr1+7du2LLx6fnp7evXtXbp2v37hl\nGvaTJ08IId/97ncJIY1G4/r160EQHBwc/PjHP75z5873vve9TqdTVJWEpJdlKblUx8fH+/v7ly9f\ntiwrz3NLN9bX1xezef/spN1u52kmdWF5nr/33ntbW1tXrlw5H4w+//zzRqOBMS7yIskzK8tkK3lw\ncLC7v2fbdl4WRycnlNJ33333xpWN6XS6WCwajUZF6yiKXNd1HEeOJSaTSV3X82Dh+77syJ/s7GRZ\nJtsIBeEsy4IgKPNCqi06zVaj3ZAnO4YIASixJKKuXdc9PT31G42qqhzXLctS1/ROr/vg00+n4/Fr\nb7w+m0yTPPN9P8/zv/rrn1mOU9b1T37yk4oyzvm1a9cubV3uDwb9/rnfaum6LhFjiqbuHx6EYXh0\ndCLzYUxTH41GhmWCorp69er3v/+fST8YAODmzZvdt+9++umnl7Yv33rl9nd//Ts//usPhtPZ+fl5\nLUCUxAihNE1VjQghxuNxo9GYzWYra2tFUQwGg8lsrCj4z/7sz7729je2t7dPT091TbMsaz4PpIU9\nSRLHNQ8PDyURvS4rLkBRV9Pp1DCMktZJkmiGnqRJEIbb29tlXaVxLqkshmGcnp7qutZsNofn/SAI\nbt++LaVPGGNdtwC8wLtKd6zUQ8nwaUknkG6CqqpkHyxzW8eLkdxrSPjAdDqVghfLsmTWiGEY0g0l\nfXS0hgRjwbkML5KICfmp9FvNxXQ6mYxVVW21WrPZ7Pj4eDAf3bv3xurKyocffnBwdtJZX1ItzXat\nipaaahiKMpmMAOSObZyfnRpEvfrKdafj5aJMaYYRqjFdBPN5Ol9dXbV0M8uyxWLBmLAsS3UUoAlc\noXwRzKfTSX/Iq9qyDERwzWsmKACCMUZpXVZVWTNF1duNJhN0MBxZllVEYZYVoCgZEwAAVVXTvKBs\nkeYlE1wIQSmdTCaffvppkKQUY7Pddjy3u7w0WSST2XT70naz0T47OUnTtN1rl7NpHMfb29t1xWVS\nEyFEet4IIUvd3mKxcBzHMoyqqipaq6raaDQQQuX6uuU6dc1sx5WOYSltsxw7zbOK1oswCMOF/D6D\nQX9tbTXLMlXRu90uISSO0zyN0zTtddrSyXnlypW1tdU8TUejked5UcbCMPxqRmgbpuM4nuctLS2l\naXpweKjrhsxjrarqtddemy5m4/HYMExN06IwUVSNMfGrX/1KN0zGmGc7tudWVcEY44IihBSi6bou\n4cOcc13Py7KUnZ9cf0hogRy3YIwpLTHGECLOmbyTmAByZwIuEoshvYBPQ8bYaDSSy1dVVQV62UQK\nIR/1uiyZaaoqKctcJYrlN+KykrBuCCHCkHEVv8wAfnkvXszAOeWc8yiJNE2T1nlN09ZW1//wD/+w\n3W7/8R//sZxLQQh1XSVEPTw+Ojw+CtNQvrWyLKV8GiGUZdlXAquvZF+yVijSjNcUISTX1V9NWOVt\nzRiDAny1KrpYhIUhIkTOODXN+GqoYFnWogwGg4Gp6RLjqGlaUUd5ViIM5fCYUmrYVq/XK9LMdawc\nILmqr5eXPvnk89FodBHOrKkG5xwhLCv7rCwOD47kp13X9abf+I3f/LuMsb/+q786PRp889vfarfb\nP/rJT3714H6z3XIc5+DoSCIpACGIYCiAoihymjGfz+M4bjQaOy92J6Pxq6++enR0JKU0vV5veXkZ\nQggxkvNk3/cNTV9fXftqCsEoZZQ+ffq0zPKm51+/fj3LsuPDo7W1tc3NzSzLDAJN0xxPZq7fUIg2\nC4Isz7ut9qcPH/iOm2XJF198/v5776mq+lt/9zfDMFxfX798+XK72ZpMJoeHR3Jg/tu//duqokOA\ne73e6urqzs5OEIWe17j/yadhuFBV8skn91+82DFN/fLlLcbqw8P9R48eTSaT5bXV1dXV6XQax1FV\nVW+/8/XDg+PJZEIU5JiWhH6MhyPAqa7ri9n84cOHvU73+fPno/6gqqqzs7Pj8/7K6opj2bt7e5e3\ntmzb3j86fOPV11ZWVhZROA+DitYVpbZtD8ejitYPHz09ODpM84yoShAEiqZhRTk6OvJ9n1ZMnuO2\naV3a2AyC4Pj4eH1tDSGkqKrnef1+/+DFXpQmS0tdjPE8WAAA4iBECOVVKSNu5JyKMSZJLhIeUhQF\nUZQgjgAAk9E4yzLLMLIkjaLo9dfuZEW1u/dFo9EIojAMw9dfv1fW1eHx0WQ6L+pKMw3J0M7yfDKd\nri61HnzyEADgOA4TnDGBCGZCXhssSZLz87MPPnh/MBgsFsHS0tL/9Z/+7wBAL168KCizveb7778/\nnU51w6zSzLFsAQFj7Ld+6zcZYz/5yY8xgPfeeuv8/Hy2mEvAk2HpBwcHGGP6xuvT6XQ4HDIqECK+\n6+maVuQ5hDCIwpWl5U6rdbC3H4eRoiiLKFzb3Lh9+/ZPf/rTk5OTtY11rChFVS4WCygu4o8sy/J9\nT9pUTMfOsqwoCvlP0zSlB7/dbhuOG4ahEMJ2HSlWyLKs1+tBLqTX7vT09OjoSG5b5D0hl0Gyw5ZE\nJIkek0WJpD/KK5ZSKgQxTVOKNuTBIYnunLO6rjTTaKmK9OkeHB+VZQlcdefsIOGZ0/FXNZDUKQ9j\nr+mmZY4VZBnGdDzpNpqebkXz4Oqdu//o//BHp8cnT58+Lcuy2+44ROXCwJCUVRTl+Xg0HQwG0ufT\n7XZd113SLc75PM1FmogyBxqhnJasRgQKwUtaA7njgti03ZX1jdP+8bOnT65evxan2Wg2pZTrplHV\nDCmE5wIIGEWR5dgIEakTDMLQaTTDqhyMR4fHp82VdVUzuqYznswEx0mcaapx6+Ydgfiv7t/vnw9M\n05YPNqXUdz0IocwTzPM8SRIJvauqaufFbhRFrVZrZX1N0bXTs37N6Mn5Wb5/MJ5Ny7qiISvL0rQM\njDHntNPpKIoymo6CIJDrfMPUqqKM41hXiRwpyzwYecqnccw573a7Rs7X1tbkdZVlmfRqm6b5q1/9\nSgpFW622ZLl7nvftb3/7b37+syAI0jSVNpNGoyEETJIEIUgI5pxHUVQUGca40+n4vr+7s/eVaQVj\nLCe90rwuVQjSkSEvKkVR6hphrCCEBAMX1lgOZCQSAEAA+YeAiZd5f7CWt1QtKlZTIYS8sSilvU7L\n1NU0TaAAZVkiy6qqKq8pAoDWFUIIQYUgrCoqQBBRygCrgVyBSjoTBXXtNBzOORCQM1GVdRAEjz7/\nXNc0glVIoLyqZaEgrRx2Y202m8n9nXyDsjz928IreaDJd4cEl4RI+QaBDBN+ya3UFFVumuXXU0p1\njIUQpq7Haep4brPZPj0/l3ykOAw5E67jLHd7YRhKWC/ADEnqjiooE4zTMsvri2QzhXEahuHZ2RkB\n4sGvPhKME4gJxERTsBCsrqWNSqA4JQRpRDEtO4njOE2Z4J7nAYSu3bj+xptvnp+f52VRVOV8Pg+i\nqNvtHh8fb21tubY9m83yNPMcF2I8W8xdT5O1GELIbzYghLJFaLbblmVZliWpUgBBRLCA4I033tjf\n37//q19JQdbpyQnnvOF6kt3R9BvT8SQIAsm5bDQapoJs206yNM/TTGQACKLgKIx/891fn8/nv/zw\nF4audLqt5V735q3rqqoOh8Nf/uKXH3/8MWPsnXfeeffdd3/54cf7e4cSwzSdzp892ynL+u7d1wzD\nePjwYZ7nYRh+8sknhmEsLS194xvf+OhXH3/yyScSmih/9/LUAwCsr68DgcqyNExteN7f29uzDFPT\ntJWlnqZp/+f/0z/54IMPPvzwQwHY0urKaDBsNpu3X7kjcTaDwSCIoo2N9UuXLiVJ8vGD+4qitLud\ng6Ojqqps10EIjSbjvd0XSZqatl1Rqmhap9eTNipJqPEavow6lpQABKBlWfJMr6uqyPMsz1VV7bRa\nlFLpPAaQAwgppRpRqrJybUcyosMwbDabjHNN0+I41nVd1bS8Kn3fNxHsn/cvX77caDWPT85koZaX\nBRN8ffOSqmtFVQZRNFuErVbLbzam06lpWQjj8XhcUR4lmeM4huXUTFRpyoQwLEtRFE4pF/T+/fuf\nf/659EXs7b04PT2/fft2fzACAv74hz/cfb4jEDZNkwmepDkVPM/T48MjjLFlmrPplNxQbr/6SlWV\nH374IUCQMabr+tnZmaIovXbnyu/+nmFYnzx4OB2N2+2OY1qUXTB35vN5fzjQFHV7e1tq4NM0TfNM\nNw3XdQcvXgRR2O12NU2FEFRVFcdMRnZGUaTruu/7s2DBGNNMA6tKUVeQYMt1sEJOT08l61TCO2WJ\nAxC8du3a0tLSbDbDGEvyxmw+b7U9QRkGEBEFckEI2d7e/ta3vnVwcPDkyZPFYsGqumIFpRRBKASA\nhEg5vTzNX26vhYw5uXTpkqqqZVkGwdy2zU6nNUMcMF6DugIFE2USzyilvCpajl0UmcZIAyOb1zAO\nSRL5kDu83G655tVLRVG0/BaGaDqeREFwenoajifFfOHUtVIW1SCo6kyHa5BiXVUbEHdMc6RpEAgG\ngaqqVFDOQVlRLASAOK/ZIk7DOBtMpmfDUQWAqqpxmqVZZlK35qyqqfTyzYOFZCbLJzlMs41rNxyC\n0XxhWCbjQNSsqoua8XmwMGyLVfWHH34EkBAQyA2u3PrPJlPLMH3f55xnaSalJJRz+cGXRoPpfJYv\nd1RFV3VN0bS9g8PdvYOiqg3DIIqiV7q8bRQVy/NqdW3jaG9XklIAAHVV5HnuWp1ms9nv9xlj6xuX\nkjiUqNrl5WXf92uhKooyGAwk2Keu67PjEw6RjJcOwzCOE0KIaZrT6fT4+Lik1cbGBmNsNBoHi1mw\ns6Momswghy8By0xR5MpT4gEAALJEE0JomnEhqkCormtV1drt9mAwuOj2IATgAhrFvwrQ/Y/CJfES\nF8WhEAAgIISiEgyRvJw451AAQoiCoWMZV69elVkAmGDPcZrN5mw2AUVp6irgFACEMAFcIACFAFJL\nhAQACCtEQQgxwhRCFaTkec650DRDIsrfe+/98XAk4fbS2RiGoYzzefXVV/dPjmR4nZyxyURdzvlX\nnER5y37lO9IIRn8rNAn/LXY0p6wGtawGKKVyyMRYDQBI0zSIoqzIi6Kaz+cyon5rcxMjcn52Rild\nX19PojiOY91CnIO6qvKalhWVXWiapg3fz5JUwciyLMbY3sF+Eme3bt8gcsCFMQb8osF3TIOoCq3q\nIJiZWkpp1e12hQBYUVRdf/5897/8r/8rhFB3qbeyspIVBYRwMpmoqur7vm3bURRRTfUaPiEkz3M5\neRsOh6Zp2rY9GA3Lsry8tR1F0ePHj58+f16XpTxBZIRAEse6pq2srJyfnwPGtzcvjcfjPM87rXbD\n8yW0odPpWIYRBYGp667rjKfTg4ODmnLDMDRNWe51q6rY2X1OEGy3m7ap62obImGaZlWV3/zmN6uS\nriyv/exnP3v8xRPH9vb39w3DAgA0Gs2dnZ3hcLy1taWq2vPnu5TyN998czgcxnFs23YQBDs7O+Ei\nkEt1aceezWabm5uKohwdHf31X//1rZt3AACe7cyUi+zY9fX1u3fvzufzH/zgB5PJJEri27dufPHF\nF6+++ura2tqHDx7YhtnpdNrdznQ8OTk5efONN2zX2X34wnXddrcrhMAKOTk7zfP88OQYc6CqKhOc\nEOI1/JpSgODN27fm0xmE0He96XiyvnlpNBpVRbm1tVVUrCiKJEk8z3McRyoUxuOxNDnoqlrSEmPs\n2LaMqY+jVNM023WyLKOCV3VtmqaiqVmWaZpm6kacJFmayvIrjmPPMofDIUBQFWpa5HQ2W4ShEAIR\nbNom5YzlOQBgNB1nWdbudaMsb3Z7qqr2xxNaVa5rI4QgrTnnYRwjQsJo4TfcLMs8v8EYm81mm5tb\nCKFOpyOx1QKgcL7Y2LqU5lmj0YiTZPfZcwDAjZvXHz16FKTxP/nj/+LsbPTzX3yQZZlhNCQ9VCqN\nX3311ddfvzedzF+8eKHr+ng8VkxFnsVRFDHGDNfIy6KB4N7e/tnZmeM4pm3tHx4CAFZWVgghTb95\ndnYmKdnD4bDX63W7XeksXywWtm1zzufzuaZpuq4HQRCniRRUj0YjTdM4EIZhyBVaXpUHx0dSbCzn\ne5L2IHWnGOOqqtI0FUKsrq7KDrh8adj46nAhEMkoN3k2QQg4ZwghmUqiKLgs8+fPnwshiKrUjF65\nsjUdj3hVwLo0MTIwABCadqOscqiqpoJJq4FKqkLorq418mL4wf0rN2+2G92jp09nu4cYomg2Pzw4\nePz5F2WSKRi7tmNykaZpiA+Bt8ORYXpOBUA9namUYkOnCsEKKmrAgKCMU8Yog4sgerqzN59HSbEQ\nivJ8b399fZ0jTAFMs0xR1KKuBJcdD5AtCxQSZs/KuspKYTnu2vpGs9OeLqLheLrSW+FUQIg5ZKen\np4sw2NzauHHjxosXL6TLTlZLcnlfVCUUoNFo2LZdlCWn1Pd9mXE0GIqNjQ0OwXQ+O+v3KWdew61K\nWjHKy6Kc1Xoa2aY5mUwUBa+urq6srGqahhBM01RRdSFEmMQQiY2NjcH52fHxMUboQpFa03kQFqWQ\nyNKyLDc3N+u6rqrKdNwoilZWVhqNxrOnz794sUsIuXXrlqZpYRqoir68vLy8vDKbLuZBmKapbbt1\nXSdpKoQAkCsYA8CzOAnni5W1DcaYjFyjlGJMZU0mRUaSAy+F60VRUEohBHVdyxyFCxMwYBWj8kYH\n/MJCBF5aeiit5MOJAAQYYIxVgjDGRZafHp/QqsrTuNvtclonUSgYb/ueZVkaJjLfGgqGEKoZ0xQV\nc86kbAphgAmEGEJcpJmcBkk5lVy4NNstXdflPFn6PvIiZbyeTEfBbF4XJcaYlhVg3DZMwzCyLOM1\nBS+1zRhjVVHlqJnSCrwkdn0l/+acY4jKqiyKIs9zFZOvKhLBasrZBYcO46OjI1VVdV2XE+Ysy4bD\nIWOs2Wx+85vfvHHjxnsf/PT47DSOYyRAVZTIRLqueK5blmVVlMQy5ZKoyJK3vvH1u7fvkCKvpM9H\nVVUIGYSCAVEWtdRtyuViw2+cnJ4fHZ/uHxx9452v27b98f1fnZ4eAwwEYHleWI7NGBsMzwEAYRgS\niOaBggCM02htdenmzZvz+XxnZ2exCFdWVjQNUS62ti5nWSGVcrLdWV1aXllZWVte29rYGpwNFKRQ\nBA3Deuve1yaTyXA4TJJsZ+fF6emppRuj4UQOeW7cuHRycrK/f9BstRhjWVmYpqkqeDw6tyzrd3/7\ntxoN78Xu7scff/S1r72VRPHjL56Ox+M0TTc2Ntrt7ubmpclkpmiqZNZQJgxTIYrCheACLC2vvHb3\n7s8XC3mHtVqtxWIBAAjmiyiKFEWR1PXOUu/JkycSxYUhnMxmwXwqhLh6+UoURdLWPJlMNtc3NjY2\nZrPZ3bt3fd9/8803dV1/8uJFmqZ7hweXL229fu+N/f390WRyeHyMCCmqKityCY7O6rLZaRdFQSDS\nTUMIwQTHEKRpCiFst9uaocdhFMex53nvvPPO4f7+J598ggBQiYIApKomvfDSaVDmhWPZDc8v66rK\nZbSIoSCMNR3akMl5ne8neba8sjKajBFC7XZ7Op0urSwfHBwACJvdTn80pJRurK/WnA2HQ4gIpRSh\ntNFoLBYLwzDysvZ9f3lpKT06ms1mqqrWdRWlKQdAo3VFa8uxDcuReVNFUVzsPrPEMLQsSwSjtKow\nVs7Oz8fjiarrnue5tuM3W+P5rMzyq1euRFGEIGw2GvP5LIli3/W6vV4Ul0EUXr58+fBwf1ntOY4D\nIUyiWAjxox/8MAriO7dv11X1Ynev1+vN05BzkOdlXbOl3oppms+e7z787HM5pOotrQwHw9F0cu3a\nNQ7E6empYEDmgsjPcxRFTHDX9+6+9uqPf/zj8XQiJ8mI4LwsaBSGcby1tVUURVFVb9y6NRwOgyBo\nNpvz6ezw8DCO4yTPGo1GzZnk20HAsywr80pVVdt0AIdnJ+fvv/eBZVl5WnAqhAAq0Tji8k7lAlZV\nJRjDAEIuIARyu7a01JUS32632x+cRXHsujZjLOifJbO5DqFDiG0ZGhCYsY7rEuw5uomZgEUdT+cG\nwB3PGx8efbnz5Bn+d0mS9M9Pp6MxrWrBOatKU9Wamm4oKpqnuqoamq5wRIeLU5KkwSIXgkWRjZFq\n6QkUNb/Ib685Q0IQTRNUTGaLJMmgwXTTCE7P7DgxDAOralmWAiFNNYqqTPNCnvuqqlYlFYy7vh+l\n2SyJ7W6vqOkiiGrGVUUfjCar3eUwiJI0vnz5KlZQGEfn5wPp73IsWzoLptMpAKDRaMhphBxLJlnG\nhPB937RtSuuiruazxdHJ8WQy2bq87TWaewcHlDLBACIYIAgQisJQZhA5nmtZVhJGnAtd1zFWoigK\n54v1De77zSAI8jxfW11VVfLixYv5fN5qrzSbTXlB+r7f6/U0Tev3h1Kx0e/3T05OaFVblnX58uWq\nqrIqlRqaZrM1my5UXYMQz2YLKZrJ85yoEq92gXOStZ3sbjnn0uwubSbywhgMBlIlcKGLhoJzLl76\nfBRFoYQCABgQX6mLZQ95sUMtagUTeUEiAC46WcZNXZ+Oh5yyO7duX9ra+PKLx/1+3zAMwSkSPI1T\nSilWCAJIVbEc89aMU844A0xwUVM5eTY0U5puaE05FQRhCflK09RxHIhEmmU1q1RNy4vi2fPnVVGb\nuqEoSl3VBOF2s6WqalWUf8t9BAAXEAEEIAIXAYqCc4DxxWqcCwihgBAAYKiaZVmqqsp1EqWUICTq\nenV19Vvf+tZssfjrn71XVRXEeDwe9/t9yAGEMAiCBw8evP3229eurWrmb33++ef94ZgD8XTnebCI\nJGMRcKFpGuBiMh0hDhzTunbtmu25BGPC+UUOEgCAUp5lBatKiU8ydKuu6wBHs88fsaqO4/izzx+1\nWq2K0ZpRGUl2aXtrNBqpqpoVOacMIURUteYMA6gZuvSo3bp1KwiCo6Mj1/fPTk4+//zzJ0+eIIRk\nyBQAoN1u33rlDoQwCsIoiiaj8TvfeJtS+vjxYwyRYRivvPLK5ubm8fFxWZYYQGk+zvP8Vw/uc86L\nstR1vdHw5vvTYDZVFOXb77ytKApl5c/+5q/TNF1bWzk5PvzTP/3Tt976tmzHV1bWTk9P+/1+Xhb3\nrr4lOMyy7PLlyxCi8XjiOI4sJqRT03ddjPHrr7+eZdnh4WGSJPKpdBzn137t1zY2Nkb9wXQ6jaKI\nQEIISZKoruuNtXUZfvDFF19sbm5WtNYY6/V6P/zxj2Qiwvb29pWrV589e9br9bCqfP74izzNut3u\nYDTs9Xp5WRwcHMwWc600NE3r9nqTySSvSktchFtwzi3HhhCGYej7fpHl8sw9PjyU2vc4jtO8lt4+\nmSSqaVqv083LTNYTnPOG53LOJds2SZJGq10URcqYlJBIc14cx1Two9MTgBFjjKgKISRNU8u2B8Ox\nYRgQEYDRxvqlXq+nKMqjR48M05Q4no2NjdFoFKeJ63tJknAI+uNRp9lyXVfTdcpZXdempZdh6Lpu\nliezyQRC2Gh4nLEkLUbjyeraumbou3sHcviTZUkaxSvra65t7T5/NlsEvV7P0DRK6Z07dwbj0X/3\n//nvr1+/dml764svHh2eHDdcr+H57Xb76OhodXXVNM2f//znSZJcuXJlsVjIXxBCKE8zCKFmGtLM\no2lanKU7ey8455ZlHZ0cS7hKniZyL54VOcY4K3I5q5fKl6IoEMSqbgCE0zyRgX2TyUTTNNu2BYR+\nszmdTjnnAMHJbFqXleM4Er4oEKw56zYblmXJx6PRaDiOM5lMHj16JPfKslqVmkfJ66hqLv0biqIw\nRhFCKia1KAVjlNLB8NwwNdd1syyxLUNV1TKZv/3Nt3uu1z88qoKw5zomwiYhiDOaZbPBqAxiPp6F\nSZ4zMDw9bxHY7/dZTVut1jIhRUYVjB2ryWtqAx1VvM5LFbNmQzV1TXBoNDoF5BGvE88zgCN8m+V5\nXuZ1XUOChYCCA1XTdYNwymoOIOOIMtf3wjiCCKuqyjhnHBiGVjNa17Wc2GuaxqiwbRtiVFaVZljr\n65sQoePTE6KbumaXSWZYJiEkCIL5fG45tuxmuu3OdDqlVV1VlWwK19bWvtrClnVlWqaUyMlTaD6f\nQEWpaK1bpmlbEKMwjtM8U1W1pKXpmBDCmlHLsTnn4+k81xWpI4FCpGkmhEAQhmFQ79dvvvWGbdtB\nMFcUxTDM1dV1xsTOzs43vvGNr3/9LV3XP3nwQABgWRbGys1r123P/fGPfywNaeEiOD0+8X1f0zQJ\neD8+Pn727JnvNdc2Ni3LCMMwTVOEgGU4GEO5ZcQKqIpCdqyGpgEABIecc11RGWNAgDxJF9OZqqqC\nc1VVVUw4BvxlesFXRlhFJRrE7MKQe6G0kk2haZoXvCbOhWBQYEopo1Wz3W41mgiKa9euebYzbDRH\n/T7kvNdua5rGqjqsS15ziAgBEECQ5QVAEHLAubiYZkOMEFQwAVxQRhVMVFWFGHwFqNANFUKYpimj\nlGgaJoiymguqKjrCAAuIMS7KLMuTqi4kb/ira1gARhmHHGKMJGsSAAHFRaUi3w6GQNNV13N0XU9T\nwhnNOeOcCSEubWyurq6Wdd1sNqUGllLabrd1RVMUJUvT4WR8//79+Xz+27/zdxuNlqIZEpsjHWuS\n1dpptYosB5xyytrtNoA4ywoiNR1FVpR5GSeRHFMIJhQFM8ZGk/FsMpV51Jqu6JY5mk7yqpRh1Gtr\na2maKpisr649e/ZMKsGkeetC5yZ4XZV/897P3n33XTlbxxgzIbxGI4kiAIBMdqzrOo7jxWJxfn4u\nWXqKouzt7UkmZb/fRwg9evRIQpIVRWFAVLRWDZ1DsLG+CQD4Mv6SMXb9+vUrV64oKlldXeWcT8eT\nzz77zDT1ssyLPN/d3f3d3/3dqkJSlbdYLJ49e2Y7Hue8Kj+Sw3pdNxgQmmnolsmAWF5blfomKdx4\n8vhxzZhhGP/4H//jhw8fTqfT8Xj87NkzznlRFJ1mqyzLOI45ZRCKy1vb3W73ww8/dBzn29/+dlVV\nV65c2X+xN5vN5Cdq58UuVsgXu7tIgIuu0bbquh6NRtevX+/1emdnZ0cnx93lpaqqEMau6yKFHB8c\nyugbKS0xNd22bc54URStVgtjXBTFgwcPLMuSuVeEaPKTI23c8i8Oh31CiIJJXuVSDSg3KJKQRymV\nHFBBUH8wqKoqK/KS1oZhSNpwXddlWdqukyWp6zhhEleMIoF6vd6bb74pO7m/+dnPdF3fO3gBMahZ\nBQDXNGVz8+aTnX1KuW6ZcZYOh8NOuyXv8k6no6rqaNg3DMO2zYbvyzrp7Hzw+3+wnZbVw0dfnJyd\n+o6n64ZCUJnlDz/5lFO2trI8m800w8AQhYtgEYa6rt++fSsIgtXVVYJAWZaGpidR/Ju/8XcAAIv5\nQooSZrMZ51x2AK1WS1XVOI7BFNR1DTAq6kqOwoiqTCYTCOH6+vpsNkvjaH19/bU3Xn/48OHu7u7N\nm7dd193b29vd20MIdbu96XRKM2rbdppniqbqpnF6enr58mVW00ePHr3zzjteo3F0ctJqNOTikAk+\nnc+gAHKsPR6PO53OV+nXEmhKKZ1Op6Zpys+znFfXda3ruqaoaZUihBWFFIxCCBUVc4HTNO62m2ma\nHrzYpZR2W+0b164SQmDgjU/Pp9EzjfGWpsNZkBeZ5zeD8fh4d29wfKwK6GGtDJMkL1uGWYVpz23I\nxNI8jjWiOLqFmWAciKpUiWqZJuKijtIsyVRVZYsFUhRVw4oQgNVlkWd5kpcFgAJjLChllAKiQoIQ\nEowxXVXysuj2lk5OTmpGHc1BCJVlLQU1UAiFkLqqARcEQ993m7oaZRkhxPM8hFAcp55i2ratKcZk\nMlldXrl3797RyfF8MdMNw3YVRmupX2232/IC1nW93+/LY1dCLZjgqq7VjJ71z5c77bIsIcG261Tn\n/eOzU9tx1tfXozRJp9M0TSdZBhhfX183LHMRBnWqAAB839cNVW7iet1OXbMgCA72jzbWV1dW1qbT\naRzHS0tLQojz/vjf/tt/u76+ruu63PsijLOsmM1mKysr0mheluVkMpnP5/fu3ath7fv+8+fP33vv\nPYzJxroIgsh13W63XVXFy9VJDSFstRutVrc/mLxc7gLOOaMXlCjp1Za/x3a7LQNS0zRVLV1+sVzr\nSokyY8yyNMQgpAC/ZEIxxiAEEqEiJ/kICISxShDiyiu37/zGu79W5UUQLMIguHXzRsvzGKtfeeUV\nIcTu/sHx8XEQRkVR0KpkgidhjLACCeFCcA44BIqCFIIEZQrGCsZCMMprTnlRFKqCbcuQS1lVVRTF\nlS+YIGz5jaqqIIDSDC1HDo5lU3oRfAJfGnzBBYFOlf4CwC823AgADCHCOM/zKIoAF6ZpyjWQaZo6\nQkVVdjqd6XQ6Go3WV9csyxpPp3IsTwi5fv06Z+yLL76Yh8HDhw8pKz3PMwxjOp+Px+P19fVer5em\n+dOnT+u6zLLEMgyCsN9qjkajVqsFf/0f/lM5/dM0rSjzS+sb/X5/Op1WVSF5EYALCVeq6kK6gyRH\n13EcGUL3FXmjqqrLly+fnp6enZ0tLS3lee66roahpETJMSOE0NQN2XIJIfDLGb0stoQQBOH/v+Ag\n0zT/6I/+6NGjRycnJ1LDJcc1kpz8R//5H7iu++WXX3q2c/XqVduxwkXwyiuv2Lb5yYMHvu+rqvpX\nf/VX/X6/2+0mSeK6XclpkxJBTTcXi4WEWpwPB7btyIILIWQ7zvHxsW2Qy5cvB0Eg8xK2t7fzqlxf\nX5chu0dHR/PFQo5HBoOB53m26eV53mz6m5ubk8nk/PxcMPYP/sHvu677F3/xF7PZrOH5a+srVVXJ\n/1Fc11mWsao2DaPZbBZpluf59qWtLMtGk7FpmrNgUde1putBHHW7XRUTyR2bz2aSfBTOF1VVbV/a\nWllZOT0+mc/nDc+L4zgMQ1VVbb8lMUMyb45WdbvdLorsqx02AFya9yUIsz8cMcEppZph6KbxbHfH\nME2ZvzQYjzjnBCLTNAEAZyencheS57k0MlmW9Ud/9EetVquu61/84hc7OztBEJimKRmilNJut1tx\nZFlWXZdVVQnKMIJCiDgKfMdljF3aXG+43tnZSZoksje9tnlFFitxHFumw4BQFEVAYFlWq9OOkmw4\nHCZZKoTwGg3ORavbmU2nuqrOp1PbNDityrzglLVarX/+z//5o0eP/vRP/8fv/vq7t2/f/p//pz/r\nLvUqQWVi8bNnz/I8931f2pNkBSl1yFIUU9d1GIacU9u2v/a1rz179mwymdy4ccO03fF4fHR0pGk6\nVkgYhjIFhBDCqBCAflWMy1ODUyY3W1EUqYRIJ5I8LIqiIJxLFaXsjOXvRa6HGWPSGvHVcKKqKoxU\nAADCUBpXqqpACKkqYYxhArMs29rcFEL0+31d1yfTUXF22PObRRiuec2ry8tKTUFWRNPx/pMnOiI0\ny/J5qDLQNB1FwCJJjc21ra2t5eXloijOzk6Gg0ESRlWRa5hoGOuKqgDAq5qVlUqwbZi5ZSuem2r4\nOI+OinjM6YyV86oSmAAAoQAKUlSIEYRyhKNbQNO0JEmqqvIcV0pYCVERgGEYSuFVEkW97vKlS5eq\nqkJlRgHIhbj1xj1gmI3eqmY6i0XIKcjipNNqS4KegGJlZQUpKI+j6XS6vLwsVTyS7by2tiadKpRS\n27Ydz53NZmEYNhqNpm1zzhkQQRRSJoaTcbPVWtvc8H3/yZNnYRjKltSzvfl8Hoahp6myKuKcd1ot\nAPh8Pm81G5PJBHK2tbV1aXNdpkRrmtZptX/xy4/kfIVz/vWvf/3zzz8fj8e248lJoeu6RVU7jpPn\nebPZXF9fZ7h++PDR06dPOQOapq8sr/V6vfF46jjOcDiU5I3T02NFxTIbJiup/Bm2220AwGQ8wxhL\n+ZIQQlFUAIA8h+Wpq5iavHpftqFQ7lbkvpz9rXgDiemQNIkiyxUFV0VRVYXvelEQfvPtr7/xxuvB\nYrG+spok0XQykehAx7GiKPIbLUrp8fHpyfnZ8spqFCX/7gc/qCiDECuqCgCU9a6q6OBlMBHjNYQQ\nIsQYK4rCdd2K1XJPL0+zJEsdxyECAQBkQCqlVEbEysdJbr7lYluqwdM0BRhKLs33v//9w/39H/7w\nh/IzhTFWMJFmRdmwWrpR13WexO12+/LVKzdv3+p0Omf94Ycf/fLzx481TQMAYEw0WZG8BCTXRdHt\ntZeXl6fz+Xw+bzQab339awcHB19+8bjVap2dnMiEm4bnm6Z5ZesKMVRNxUQ3NEVREBBSPkcIqktQ\nFWVVlIZhYAJ90+XcPjk50QzdtK2tra2TkxMZjDoeDA3DQA74+te+JhCU8pYwDBHBNaO+67UJtm1b\nU1QJjKUyaiJN5ZhUVVXXNIswlOMmjPHm5ubz589Ho9GNGzdUVX348OH//Od/9s/+2T+bTqf//t//\n+7wscEba7fZrb7y+t7f3+PGT73znO6qqy0R3heDf+q3fSpMII7C1tcU5ffjw4e7uc8/zMMZnZ2eb\nm5a8iSVaZL6YSoGPDG5DCPUHwzzPy6pSNc33fQVQTpns6SGEURRJZpYQYmlpaXV19ZNPPnmxt1eW\n5dbWlmEYUZAKITzPOzg4IIRsrq+fnZ3dv39/aWlpNBptbW1tbm7meZrlOUJoNBpxVdU0rRZAsqxN\nTe90OtLiKYUSTHDHcWzH0UzDsqztzUuDwUBKmqWSmRCysrIi6ZtlWSqYLMKwrmtF02bzOYNECOE4\njlwTdHrdKIp0XV1dXaVVHUVRmsZSkCllPqqqlnWVZVlRVWEcVVWl6bqK8fr6epIkWZbFcaxgQild\nXV1VFWU0ngIgQ6MhAOjhw0ff+97v1nU9GAxUVd3e2pIAUcuyXMfpn5/PooRzvrq0LEOCVYXUZXX1\n2uVeu3N0dHRyclK2OwCgvCg0TXvrrbeG55Ojp8/kWXz1xvUgCFSVTOczVVXTNM2SOE1TTdcwxoeH\nh1euXB2NRifHx51Wqy7LIks311eLLKeU2qb5//wX/2Iym0m2VE1pu9uZzWY1YFKT4rquZhiMsThN\nszxXFAVi7Pr+quMYmlaW5XQ6TdP0xo0b+/v7P/3pT03T/Ef/6B998tnDjz/+2DTNsq4o56QmZVUp\nFaWUSiJeluVxmhiGIX3no9Go4EXN6HQ6lVaQRRhSSk1dlw2ZaVgygN120CKI5GAGYcVx/TAMpa5S\nCFjVDFJe19Q29bqu86KUYwzXdoqiCBdBw3OaXgN4Pq/p548eSqWo4zg2hlG86HmuZWvDUd+BpI7C\nRx9/HM9mtm7oCEPOMCKMAA2rhoIr1z6IghEv293ulbe/dlvThsP+8eHR2dFhGMVVvDBUxTUt1dbz\nms5ooQUU1hXuNh3HgVU6HA4ylbSWlwRAnAPBBGICACAY51AAwKMw8jyPICwwkTB9gTGCgkCoKRgK\nRpDqOa6mkjCYR1FkI4Q0RbVsBCAmxDYNpJIkSVSiua5LKT07OxOAX7ly1XTMg4ODcDb9anwq8emq\nqnoNv6wrjDFRlbKuWBC4rqvr+mw2y8P46tWrmmEUZa0ZqmqolLPFRTRndWFl+VuCJktR8jTLssww\ntN7yMoYwjuPZdL6+vn5yeHR4eNjr9VZX109Pj+fzuWmanVZbgjxv3r51eHgYBMHm5uZ8Fmia1u12\nTdMMw8iyrNXV1aIonj17tsjnZ6d9RVXXVzcgRJwBxpjjOGdnZ9vb2+12e319FQDQH5ztPnt+dHTk\nd5cIIYvFQiIBOAONRkOWkvImk7eXvIbLsuQYgL/FkPrKOKtgQgUVgKsEA/LVnwtd1QTjAHAEsKqq\ntCrjMEKAKwqpypJVJQTcdSxTU+fzuWCUYKjrKgTcsc3r167cvHldUbSHnz+6efXKcDwZT6esEoZh\nGLojLzBKqaQoAwi5EAAA3TI77dZoNGKCG5rmOZYQAmKAEWC0Uogh9f+y5bUsS264TdP8qkmVlYRc\nGrK6hppmGUZdlhDCZrNJKWU1xRj/7u/+7p07d/7qxz+RxkU5ad9YWnrn298yDOPp82cffPDBYDQZ\nTydylMgYAxfYS4gQwggRQhgheVbu7x3WtFRVdT6fP/zk0/F4rChKVRSSIjwajeqa3bzeSYuc1FVZ\nVdViPpOjyMVsKt0ptm1XdREnYVUXZVlub29fv3LV1PSSV3VZDQbnQTDXFaIrxDS0paVuHMdffP5Z\nEIZ5nluuwxi7e/fuZDYdDccIIQgQ1VhVU0IU27blsHoymYSLoK7p2tp6XdMiCIqqXl1ePTo6jpP0\nytVrqqYzxvxG88Xu3n/1X/7Xf/C/+cPX773pN1uPHz8+Pj3jAEZJSggajacYKabjXrt27cXuzgc/\nf//d3/i150+eYgxXVla+/uZb6yurWVbMwyBNUyF4nuez2aTRaDBGZO9+cHywVC4RojLBozgEAAgI\n0yIvymLJd6QnJy8r+Ukuy/Jwbz/LMmnfHAwGS73e0tJSt9d79uyZa9kEosP9fWlrDubz9fX12Wwi\niZJyfus4zmw2m81mmq7nnFd5URRFp9MRlEVRpBJFNkMYIg5Ep9lyG35NaRiGR5OJApEMRZbFnYoJ\nJFByP4osr6oKahBAwIEgCrEsSwoBLdseDIeWbXe63fF4bNvm/v6+7FwpreIwMgzDtu3pdIqIohk6\nxljVtCiJNU3DCKlEGQ2GtKqbfkNQlmdZmqa/81t/b2Vl5V/8v/6VdOUvLy97nvfw4cOdnZ2yzLM0\n9X2/yHMp4EqSKAiyZtP/xjvfDhaL/f29sqC2ZS51e6PRaH/3RZFmvutBz+dUhq8Z16/d/Ad/8Ic/\n+MFPwjjJitJr+GEcRUlo27aqqrPZZDge+X6T0srA5rvvvvvBh7+U3bDkaXNK15eXOGVxGP3Tf/JP\nnj9//uDBAwEhxOTThw8fP3vKGCeKAqkwDStYhJDgPM9d37Msq6gq07bTNI3TVJcj65qWZQkBOjo6\nkmhDXVcrRpMkyYv019799S+//DLLC865WtcMiJLWWFUIJjdv3pSAl6zITdti/YsTvNluEUJoJfn+\nKqU0kgeHbkRpkuTZ5WYjr8rpYg4A2NjYIJoKMOIMAPwfBZwcgqqqLNs0gZHGCae15Xtbm+u6qsVx\nOJ9Ozs7OOKuj+aLte4PzfgkAwaVOcF7l00XpISUNp0c7O2Ead1d6nmW7pqljxcCKpRqWpisQJ+2W\nECLP8xfjwfPBmZzlrt+9tXb7xmw86Z+eTYeDQZTgqjR1w7J9B2iJqIfz6QhUCWStXtfVVKhqRNUh\nBYxSwDinjGKGOWKMVTnTENEMTQI4FUWR7RgAwLEtCJCCkaJrCPAsieoy12ynrtlqr3v18tYkyeez\nWauztH1p67PPPm+4vue4rXaTcR7FwSJaCAiqquKcDwYDmXXfaDT8ZqPRaCRJMh6Ppc42LXIOgaIo\nNWespBJz7TiOYelIIYswSOOQNn0ZXYoxFlTM5/MwiJrNptcymOAVrWU/rZqm5zUorcajiWrodVEO\nh8PVlRXPa5yfn5+dnamq5rruzZs3W63Wpw8+EUI0Gg3OQJqmMg+q2WzKzPbZZHJ8fBwUC9u2O+3e\nUneZUlpVteBQVm+XL19GgB/s7cnJWVVVnDO5n4IQSssDrbm0wQghDMMoy0r2ErKvdV03KTN5ucrr\nSk6bBeOcUyEYABcptBheIJprynlNBWA5pSpRoAB1ma8ur7iOoyBoGoZglFFqGJprm6wssiyT1q/J\nZHR6eu77PoR4f3fn9PgoTVNWVpCQSlAhqcwYKZpm6oqEC2VZFqeJ7/ubm5tZEiVJwuoKQVhTiiG0\ndEPTNAWrjNauY8uXZ+halmW2ZaqqKjiDEMrhnGziNVVRNEsudP7mb/5msVhkSWpZlmPZGOM8SZ98\n8fjo6CiOY2nJuXnjRtNxeu3Op48++/jjjxVN1TTdNE0OgCxogNysACiE4AgJITRFkVYdVVdM01ws\nFpPRAAjhuW6v16trdrh/ACHsdrvtbmc4HBIFQ9O1G54jcxEkWEDXVcaYqnpRFGEMeV3xunJde2Nj\nDWC0trb2+eefp1G8ubn56t27AID7H/9KwSRNU0ka0nU9iCNZXIwGQxUQuVmUNieIkOSYd7tdhJD0\nKcGXEM6yqjzfH08ukOL7R4fz+XxpacnxvRf7e4vFYjAYAAQvbW+Nx+PZYn7lyuXl5dXBYPDxR/f7\np2fdTuv89MxzrJWVFYJguAg0Q790abvVaoVhuLS09Nc/fW9ladn3/SRJwjCM0wRCIQfIRVVyzouK\nqqrabDYBEPP5LF9MhRBSsh8ugjzPLctaWVnJ83w4nUpZU1VVcnU96PfXlzdd14VI+L5f1/X5+bnc\nQKyvr8s7ezAYfOtb78iGUghx9/adKIqeP3tmmma31T47OZUzxq8Wfp1eV7dMuXxFYfj8+XMF4Xa7\nXeWFlDRL6rrv+0sry6enp5SzTqcj/U6dTme2iKuqMtKkqKtZsDAGg8l0WtESQshq2u12VZWcAyBn\nnnKqoxm6qqqU8ygIIUYVxlpdQwBm02maJN1WG3ARIuJZNmS82Wy12y3pWXQcp9vtPn/6bGV1SUYm\nx0FoaCrGeDbO0zSFXHzt3r35fH64v3/12rU0jh89/EQ6eebTGUGYEEKrilIKIZ4H4aefPXIaje7K\nSl4UjuvvvNhtNXy59ZATiG63O50Hw/Hk6ORkNBrJVL4oCImqIgDH43HDcV595ZVut/vee+9du3at\n3e2e9QdZXo4XM4xI23NxWWmaVtLa87yaUcYYgFBRVS4EkKcSgkIIBi7SRsuqlKJCIcSf/Mmf+L6f\n5fmXX36ZZGmW5oZhaKZFCKkZRVgRAPqtZhzH4/FYWnUpZzWjJkIIoaqqiqLQdd3Q9DRNW63W1tbW\nk8+/sCxra2vrgrgLYZqmMilSkrBkFSjLc3k1CsABAHVVKQoGjLOaMgi+ePgwjqL5fGqbugZhnaau\npnm2XRZ5GsWoKIWiWqYTJnFW5Dfu3PIcW1c1XddVQjAHSCAKEUB4Pp87juP4nuHYWZGXZXkyHFBK\nPduxDPPyrVsbW9vD/mB4dj6bzcdhPC+51WmSlqshSmiuKhipBGBCEEQYQo4FgBwhJiCFmAnBC8PS\ndMMwalIjhFRFpRBlZQ0hdF0PAFBVFUaIUyqEaHierWizODQ0fand9btoHMZJlo4n86bvXr92HUG4\nv79fVLnfbBqWrtm6q+thGErVjHRjCyEu0so5p4KLEsoBrHQrWZoTLCJVVQ1Np3VdZrmh6QihyWhU\nlgXG2NINOaLIs6y27TCMhYCu6wrG5/NAQvIbjVYaJ512N42jzz773HVd27I0TfP95mwylRuHH/7w\nh4PBwPW9g4MDQ7ckbb4/HKRpJstxXddvXLvW2exWVRWFSV1XcZTkeVHkVb9/1vSaBCLLtsbjMUJA\nJUqz4UdhAPI6TzNKaZHluq4jRBBCmqoWRaGpKgJIwUQadfI8V4miMBVCCODFolcIAbgQgEuBAgIA\nQQg4pS+ZjhhgRdMUFRdZ7jl2t90CnN65favTbCEIoeBxGNZlofV6CgRhFBJDMYxelmWL+fzLx5/3\ner3e0lK71eCsvHrl0vb2Felcle4Sy3ScpgshdF3Xtt0gDPf390ej8d6LnYZr0arkdYUUFUOIBcCK\nggCcT6aKotTiAvWFEOq22p1OZzwe1whjjDVVIxDVdX2xvkFcwQibRpbECIhGw2OMcVoBju4/+BgA\nQCl1Hcs0zVbTb7UaBlGPj48PDg7qupaJJnKmXVzMtxU5x+JSxQ1hXVEEsZRuBPNFkacYYwGBZBdG\nQVhV1RtvvNloNKaT2enJGdEUVR5nhqY6llmXha4qUIA4CpaXlw1d1TSNYDzon3/4iw8Wi8WlK1cc\nx8niRFXVVrPZbrYwxi2/Ma7q5eVlIcTx6cnW1pbv+8fHx1LwyQkoaY0FRy/JXlKReGlzs9Pp1HU9\nnk5mizmj1HGc67durq6uqoZ+dnY2Hg0ljIJydnB0GCaxLBIhhHGShGnit1vLy2uKplPK5VjGsc3f\n/95/Mp4Mp+OJqhJFUSzLEQKeHJ89ffr0xYsXv/O975mmOZ3PHj58WNNSM9T5PDBs3u21ozjWNKPm\nbDqdKhrxPK+o8mw2OTo+qKrq+vXryyu9siwxIZZlJUmkYlQT1Gh4smjyPK8sS1t3syy7cnW7rusg\nCK5duxZF0fr6uizDZYnz+PFjjLHrupzzzc1NjNBwMAjni26rbdt2XVZJFEtHuZxV4gUuae17XqPR\noEUpfTvy9pUxTXKhJd3JkGDZgVHBIcF+sxEEgYBgbWM9S9J5GPitJoSC1bWAAGIkQwU0TWu1Woqi\n9PvDvCwURTEsq9PpqLqWpmmepEdB6DuupqhlXlRFcefGTc9xP33wyWKxkDHMW1tbWZLWZWVZVrvd\nXkxnMmredZ3ZdPr2N75x7dq1jz766F/9y3+xvLw87p9fubTZ67SDlVWZ6AIFWMxmGGPLdGjNkySp\nq6MkzqCuxUEY57kRRxDjVqcdx3EUB6urq7//B3/4+OmTk//w145jQQgBgo7nAi4cx6mKnAi4fuXq\ntSuX33jttf7Z+fn5+YWvo8hNx/WhCKLofNA3iFpVlWYar7766snZ6dNnz9Is0y0zShMMIEQXmAJV\nVQHjkuDmN9x79+4ZtrXzr/6V1BbMZjMmeJbliq5hrDDBq5JylsopYl3XNWeGbeV5Lje+Fa3LspRA\nA4mhp5R2Op3Lly9/8ejR2sb6a6+99t57702mk0ajARA8PT/rdruKoiiqUlVVWZaWZRmWSVSF5WUY\nhnVdN/1Gu9Gsq+LBx786PTkKFnNDVTRMmr3e8lJ359lz17IRowoT48GgvX6poVvxbKEIeO3K1Zbf\ngEgghCoAKsohF4BTwCEAwDUtXtNotmCCC4zkLVVzlhXFcDjO06zhuGu95ZWV9fFwNDg7Z7NFUFV1\nlvCWqxiE5gllzLWsKisRB0QACDhHgCGkIsggEJqGGRO0BoxyBiDBSHDOal3XTUNjjAleKQpiTDDG\ndQ1jxteWVla63WH/LIeIWB5BOI7DGzfuqAqez+eUVrZtKyrO85wKqouLDZ/cdimKItN5KaWdpV5Z\nlqPRSFEU3TBk4aUjPQyCRtMjhEzG47KqVtZXsyybB4GuqlDFhmGZulHmJYSQUSGX/a7rCiEEo2ma\nZ0lU17VEtGqmoaoqpZwyFsfx5uZmq9Uaj8c7OztSImtoehAE1OKSwWeaZhjHslZotVp5niMNj0aj\nMAy7nSUFqwcHh3leNBoNRuv7Dz6WEH6CIGNsa2traWlpOAshhEmSnJ6eRlFkGJYU7cuxs1xDLC8v\nyy9IkkS1DDmfF+ClChoTAHie55qiEPIf020RgIQoVS2IggjCMk1kdbnHKVtfWQWCZUlMq4pXJUGA\nIMAwFozLCnI+n2dZwjktioyzuuHb33znG1e2tm/cuKEaRpll8qbQdV2zTGmF101rc33Z96yPPvrV\nZ4++uHr1qmObaZKrCiGGyRhjghdZJrm/p6en8gKW2F3xMjpIHm7yX6V1quY1xtiyLOkiI4TEYfjV\nhlFylCX1wTTN58+fI8rP+/0wiT3Pq+q6yksptpBD+6+cWuJl3kNZllVVmZYhiV0yUf7waL8oimF/\noOv6t7/97bfe+vqTp09n/YFm6GRtdbmqqjiOizwnGFdl3vBdzrll6o7jIAQ1TXMcmxAs27Lz8/Pd\nZ88VRTF0fTaZ/uqXH0EIl5eWCMaD4VAIURVlWRSS5HJB3ZOY0LpWFAVARF/GLjHOJY8tiiJCCFYI\nVoiqqoeHhxIsFUThpUuXTNN88vTp9va2ZVl7hweqqqqaNg8D1/e63e7Zaf/x48eC1uvrm7dvXj89\nPJzP5wpW33//PV1RdcvsdDrtdpcLoev617729dPTE4zxN7/9LU1T//RP/wcA4aVLG1hVFkHkeV6z\n0+acL8J5nIQYY13Xf/sf/IPJZPLgwYPBYCD5l5Ztn5ycSFWhpmntdlsOpiRhVcPWYDAYDoeu60II\npfhIVdXV1VUJs0UIbV+9InMAF4vFs6dPHcdRMfGarU6rnQTRLIocx5FTIwjhNMvyssAYt7qd1dXV\nCpFwEchQaMuyEMEYY6kInS7mDAiNkMlkwoVY39gwTXMwmhVVVc/nS90u5Wwym3a7XcFoq9ORj1Fe\nFlghqq45jtPpdOI4HYyGqqpiRWm1Wr7vT+ez8Xjs2o6iKJ7jQAH6Z+d5mp0dHofzxdWrV3d2dhhj\n7WZLrrG/+fbbRZFh217q9jRdYYwZhmEbpqUbtqFbhnb3zq3tSxu7u7vhYtbwPE1RGGPLvV4cpfIq\nYozZtq1pehwnx3v7EELHNs8H/eVeN8mzOI5nsynj/LPPPv3o/oPj06NGuyNDFc/Ozkzd2Fhdy2u6\nuXnpP/nd3zF11TatL2ePx8NRnudeq1lUdXreLxklikopZbhijOmWOZ3PJKSXaKphGN1ul1JapFmW\npjWjuq67li2EyMvg+Pj4P/zVj7/767/xO7/zOz/80U82NzdHk6llWdP5QtOMsq4kD0uK0eoqlRlZ\ntm0LBA3bkp00QogoivwMq6pq23ZW5L/8+CPdNAWERVWdDwZFUWiGIWmjNWMAIUBpUVVZnnMAECEI\noTgICMaNRsMyjSiKhoPz4dlpHEauYZV5Oo1nS01/47XX4tkMA9jv97P+aNn0XEFYkOo1sBSLAMHS\ngqiKUJCAnAouACBERQhyLsL5XNN1RVMZE1ma5ouSQwAxggAbjq3oWjAPBqOJZzvbG5vf+Ts3R4dH\n0zQ6imfDLEs1bLpODUFRFIoQioAKhAigGlAoAIMcIGhpKmQUVlABgAoOaK0RYqqKphDEGeNUJcQy\nTcbqNE2LLFnyOu12a6ndCvIsKRmm3PKaN2/cYLTu9/vSMmtY+nA2mi0WlmMzTqIoknZYy7JUXRsO\nh2VZSkOdbIw0XZeKyFarhXLuum6n1Z3OJ0WWI4JVQmZ5bup6UVWAQ6mcqOtaxQRDKISQYCZN02zT\nkgWWTMWIgsXS0tL6+rrnea1WazqejUajlaXlS5cuxXH8+7//+19++SVjrNvuMA6Gw6HnecvLy9tX\nrvCXZG/G2Ac/f18ISAjxvaZl2EtLS3XFOKXPnj07OjravrT19ttvdzqt8/Pzoszlektyge7fv7+3\nt6dphvxu0g0vNxcyTU7i0EskpJkVgIvUXoIwxpAxpqmqqhJ59TJeY4wVRSEVlGBHyzC77fby8rJc\no6RRaGhKq+FTSrMkCuYLjFGr1XQaHlGJbVvLy0tBsBlFUVXkmuO8cvuGgslsOpLRCBqGVIgqS4o6\nl61qlSeKpi61W6/dvWPpBtHURqNxeHiUFZWmqAAiCCFUtZs3bhBCZtMppVRRlLqqqrJM4ljXdS7j\nxSDECKmKIjUWco8gg+M8x6nLEiHkui4hpCpKKUuSWGmM8WgwjBfBQipJLZMx5jgWxGg0GkkJW3Ux\nroMAABUTKc6X5CiMcaPReOeddxAGaRYPBoMsT+R24INf/GJ3dxchLIQgcRAKIVSMZO0JGNc0LQxD\nQvBsNkUIFYznRYogNA2NMVIz0HC9hu8XWT6fz/MktUxzgpDv+6PRyPG8RrsVh5FM8rJtu93ryovn\nwkHEGAUVIWRjYwMhNJvPZUcvpWuMsf/w07+S6CJ5Ci+C4Oj4eHV1df/osNvtSneHpdqWY9u2vbW1\ndX5wDgRSVT0IwqWlpSJJXrzY27q0iQGUWv/JfFYU1eramu83qqp68uRJEAREVTqdzvLyEsTo2rVr\nQRxN5zOimJPJiPOLvf1oPPB9nzH2xhtvyIxhWRZEYSjzPgkh3W43yzIp7peN4L2797Is+/SzT9bW\n1gAAT58+1XV9Z2en3+/LGjxM4iRJRqPRdDpttVqnp6e0rEzTXOr25MCNU6opSqfVYow5nhdE4WKx\nQAQDxlVVHZ2cR0FIbSp/mNJ3pCiKbpkKY0VRIIwVzjEhuq4jhUgMU57nWFEcz5NfbHoOhgghlBUF\n4BRCKKsBx3Fev/dG+fHHcRz3z84UTbsIarXs3/u93/s3f/EXKYA3rl1v2O7njx7tPd/xbAcZ+qWN\nTQCAxFV+7c03X3/99S++eLS5vtHpdF7s7ZRZvr15KY7j58+fOo5z7erlNImAEK/dffU73/nOeDz+\n8sunz5496y0v+b5/fn4ex4n04SwWiziOiaoIIQCCiJAr164u5tOTkyNZeP7lX/5lzcXdu3eni+Cz\nzx/puuH5vq3qo9HIMo1X7twBAEyn0zEd7ezsbGxslHVVVZXj+el0VmYlIKTV7ZRBLDuATz75JE4S\n07Fd1wUIBlEoGBdCKKrKGYuiKBEAIWTaWEZD6rre6/UkH+fmzZvSL65oqoAAYsXzvO3t7bqu55O+\n9EPL86uua4lzkaw7jLFlGLZtS+/vYDBwHGe2mH/y8FNV1xRNXYRBs9l0PLemNE4TeWgigqMkTrIU\nQlhHabfTkVqE85PTJFjomrKy1JuPJoALXtVHh4dPm60siVWi+I6rcHJ1eauIIhon3UZbE6guc4BQ\nVeS6ZQqE8yKraopVBSFCKbU5i7O4pDUgCtYUBkFe1WVdyYUdwVj3Pb/bFYzvnB796ovP1pvd5SuX\nbpkb5enBbDrgjEGMsjT1NZNcXMACAAAg4wAgABVVq+uaIIwxFkUBaqaommMajDFBa4IRQBgBARHW\nFJUxpiI8GgyEohDXXbt2XRhGmJU1ExyATqdLKR0MBtNwYjn2+saaAKChOvJjVVVVFEWI4DAMi6Lo\nLPUki8OybakHlKufoii3t7c7nU4YB5ZllXUZRRGtqkUYlmVFiMoZUJTENizfb3qeFy7mcRxfODgI\nsbCuKAqHwjRNTus0TRWM+/3+ysrK3ddeffbk6XwyXb+0KWVWz549i6LI9/2qrjHGEk/tM7595fJo\nNIrjmFLqOI7jeEEQHB4eWoZtmhYmKA5TObLyPK+qitPT0/lilkZxkiTYcs/Pz1VVlcYNhAgAQGZT\nylfIGBuNRrJ/cBynTCOBJKbiwpCCEZRqFQVDhBAUQBCIhCKnCKZhynALWfRnSeq7DuCirmuCAMZY\nsBoBmCSxrmndTmc8m8lZHUJIIsAYY6pKbNOgVZVEgRBCJcpFmqEQglHdVBEiWZZFeaYo6spSz3e9\nsqIC4aqojk/PCEKMMQUTUzeePHliGIYsnX3fl65aqaOWAkYpv5IwMskdkz+HlaWlVqt1fn4uhXXS\nKS6p9Z1OhyA8n86CIGBV1W63HcepGM2KPMsyRVMdx0GE1HVN6cvsXkneJkrDbUpXbV3XgIu6rPIi\nVTC5ce06UZUoTF68eHF0fGoYZrfbrWtGNE1hL3OeZa+2vrLa9L3xeMw5v3r1KlGQVBthjKfTqWbY\nEv7+5ptvBrP5l48fLy8v85qeHZ9Iwguo4MrKimlbURyXZfn8+XNJURdCyIjfHACMsNR8EUJWlpfl\nzkN+SGzb1jTtG9/4BoTwZz/7WVXXa2trly5v//rf+Y0oikzb+tGPfiTlA/tHh7bnVmXdbrdPjg56\n3fb52WA8Ht+5dWNpaUkSDBRFwaqS5/mXXz6ROLreUueNe69FQViW5ZUrVx4++uzR55/dufvqd7/7\nXUrpL375y6IoNjY2LMuaTCbrGxvf+c53pD7ixo0bEuIahuHa2prrugcHB/LH8sorr0hPsPwBYow7\nrfazZ8+63a68S8bjoTwFLl++nJXFdDoOgkBSxq5uXz47O9N1fTgcRkEoPYUQQtu2pTS3qqrKqqQw\nquF67u3bq6urQoj+cFCW5VeKtiRJ1tfX54sF57zX6w3Go+OzU8uyTMszLLOsK2kLBggtFgtd7+Vl\nbpuWYRiuZ/uOOxgMZLLT/v6+LMZ1XUeESAIlY+z9994zDOPWzVsvdnbzJHVd17XsyWSSxnGSJAih\nVqslxR0/+tGPvvWtd167+yrnfDIaFIpKCOGcWqaZZVnLb8iKpDBzqYu5du1av9//+Jcfra1vYoyX\nl5ebzebp6Wmel1//+tuPdp/JFdGdW7e++c1vhsH87OyEqlpRFDK15vz83HTc27dvU8ZPT0+zLFvq\n9Wbj8WAwuHHtqqm3P/v0Ybfb/eM//uNPP3v453/xv0ynU4wJUZUoivxmQ6oQpGxQWguiKOJANBoN\nymtFUSzd4IxlSYoEsG2b8rTT6dy7d28RxlmWvf32259++uk8CDkEsv5ljNVMQAiDIJhOp66lhmFo\nGAbG2Pf9IAikRqzZbMqfrYJJFEUyCmxlZUUK0Uejkf8y9FAiM5eWlmRGkyzsJFFLatE5Y+fn55PR\nUFZySPDpdKqpGHKCMU6jeDTs9zrdNIpVVXnt2k1e1rwWru2LrMSKurq0PpmNoyxVTMwALPMyjCKA\nMBCoqqqYcCY45ZxBwSBgEAEFQ4RLWhuGpQO1zHlWFrqqWS3f6TTL8eJsOIgJCNKYA1AzCiHWdR0w\nAYHAACCIOEAcCYaEQJBgTOuaYEwIyTkvq1w3VIJxVZaSTMQ5L6sCAKDpqqIoQRDkdTWLk9PF/JXZ\nfPvWbc32NM1Iskz67lzfgxkqioIIZpgmp0xSUNI0PTk5UTS1qqqVlRW51Ccvg1qls3E+nyuZUFUV\nQoghajabo8lImgznQSCHjUVRJGHCXGqadp5mVVWZhrW8vCRpKkEQZFmGAG+1Wsyw4jhc7vWSJI7j\neHV1NclSW9cA44qm/vKXvwyCQBbQlF0wLuI4HgwG21cuS6vu7u6uYivyhjBN07bssqym02n/tL+y\nsvL666+ncSKNTCtLPdnwTJO03+/LZIJWqwUAklPZLMuqqtI1wzRN6fcVQkRRhBQEAIBAAHgB3GCM\nc85VQgDglFLABXjJUuacZ1nGGCuyvDTzk5OT/hm8ef2a61iO48yn4zLPNAW3my1NVaRtd2NjQx7+\ngAtJ4+q2mw3P7/f7tmlahi5HtbTihmEYhgk0JIQoy5xzapuGabtCAF0vKBee2+j3+1mWIaKEQVxV\nFUNoMR77vu/7vlzDSXx0q9WSi3b5muX8GWOcZZncYCoYe573VWo757yqas/zRqPReDyW6b8Y49ls\n1vYbnLHxeAwJdl23pjyrS13X87IUQkCMEID8ZTgpq+ppdZE6BQSX02wu6O3bt+M4tl3nF4e/PD4+\nBRDbtl2WpeN48H/7T/8vnucRQhZRiLHiOM6vffdd27b/9E//xyRJ337nndu3X3n//fefPdtpNptx\nHBtIAASbzSbWVA4EVpQ0z5IslT0QhLDVaA6HQ8swOaVJkty6fNMwjNlsFsaRZRlU8DzPpDPSsYw8\nzXRdvXbl6rDfj8MAY7w3nXc6nWvXrtV1PZ/OZrPZYrFYXl7OsuzWrVu2bX/88cdxmly5ckWWtL5t\n1nWNAJRzYM9xXn3lzng8VokSBMGdWzdGo9Hzp88QQmsrK9PpFDn6xto6IeTk6Hg4HBqqdvPW9Vdu\n39nZ2bF0Iy/SJEmazaYUvDx9+vTr73x9a2sriqKTk5Nut5vFCcaKYHx3d5dT1mi0kjB6++23Dw8P\nP/vss0aj0WwvDwaDita+7/cHg26367ea0qnGa2pZ1tUrVzhlh3v74/H4nW+8fePVW3/+53/eaDUh\nhPv7+wLCumau63IgEEJxmgMAAILSR+Q4zqWljuP5h4eHWZZZlpXmmaJomqYtwti2bV3XK8pkOS8x\nTLlgs8lEwi4opa5t1XWtYOw4VlWUy0tdSulsNms3mkLws7MzRdHX19cxxlhRFovF+flAnkdZkW9v\nX7l79+5nn31WlqVhmsPhcDQaCYwX8/nSUk/UlNNaUKYQ9Ad//z/tLXX29/cmk5HtuWEcuA1fErWu\nu6tIUXaPDp4evFA9e+3S1tbVKz/4wY/m8/nrd1/Psux8MMCquojCrWtXAITh8akM8Gq325c2Nm7f\nvj0ajb744gupprFtezwe2677ve99ryzLP/uzPyOqJuc/lmG22+0sTra2tu7du3f9+vV//d/9tz/7\n+XtrGxtn5yc1pa1OO4qilrPOoDB8exIvTM8qqlxBsGGYugCuaiwmU0qp7XvdtZX+dKo7ljOb3331\n9Ruv3NYsqz8aP3zyeP/oOKcVUVUmeFHlEMJW0280/Koop7PxPMCAs29/+9tFkT3+4qGqkLouizIz\nVK2qClVVvebFYaFp2qA/sgyFVgwwTiAikAghOEACoZJTCmBVs0ajoSl6nmVFnJZZvtRhwWz+9PGX\neRCCot7s9gyEfE1f6/UMgBFnsK6h4BhCTllVlR2oQIA5uGCzyAUhB1BO0mSxNQ9CGalU1/XiK5Mo\nEBhjOfcGCGqapugaVoh4mUYnvXkJp1K5bTk2A7ysKybFOxgrKsYQccqgkER+xiktCCaEoJdOGEXB\ncjWOMeac66amaVpRFHI1QAix+jPOOVa1WRhvXLtx52tfKwixlpdCxqKKLpKsqKmKVVszCcKIC6aX\nGEACUf/0LFwEvXbHdGyoqLVgTqOR5vlkMlMQbnlNLGBdlESHVV40m03f88qyNFRd07R5EIzH0zCO\nBEY142Ecm55jmOZkMlltNG3btgwTYyXLstlsJssg2zLW11fTLFnpdTcvrc/n06oqMMaeYaVp6rpu\nlmXj2fzy5cuNRuPhZ58LIVTN2NnZcV2XaPpX9CsFAvnJDaPI87yyrJFCiry0LMv1G/P5nGAVEixj\nGAghk/kgSdJer6dqxu7u3mIeWpZFKTUMg1Ka5Ynvu3mWEIKljh5Qw3Xd0XgIITQMraoKJrgADGEF\nEiw4xIpa1tQwLNvxJpMZL0PD1Kq84JSZqra1ufH6K3cNXSvSLIqCoihs27ZcCwDgeO7GxoZKIC8K\nKVZFCE0mkzAMpWtISpS/suGapmlZVoEqUzeBEFmUGpomKIijiNYMYqJq2iyKvnj65NmLvSCNAYQC\nAkX3IITD8bTdbqd5Tmv+1aQdAs5p3fJcwavpeGzqasPzEVduvXLHb7ReHOzvHR7VnAOi5EVBOTNs\nq2a0qipKZdAFzrJMxXae575rAy6gAL2ljqBsPBrousaqWjVUSmkQzk3Lsm17Np9oun/16tVh/zyc\nTREQ68tLv/5r3224ThxFz549+9XHD6qqUnVdcOj7Tb/VJG7DL8oSc+Z5DSHEoD967/2fK4pGVMX1\nvKdPn+/vHyKiOp4XRJHjOAbiMhSMAVEzSlRV1TXLsjjnmmm0/EardeGvEEK4vi8HKZxzjC9CFmWS\nYp7nEGOv4a8uL92+fdtxnL3d3ZOTE1kGPnjwoNls2qYld+nD4dC27Z2dHanh2r5y+ZVXXpnP58fH\nx2WaQgiRgh3D5ZQJCEeTaf/8XHJnhuNpp93d3Mo//+xRlmW6rpdVmsbJlStX7tx9xff906Pj0Whk\naLpEhei6vr6+LjuSuq47nc5HH30URdHdu3cxxuPxuNfujcdjKICqqpyAdrut63pWFtL6bVnOeDqx\nXEckSVaVqqHP43C8mC0vL9eMMsEIraM4ZpRSKIq62j85CqukqMo0TREhTAiMUG95SVGUOE2jKDJt\nB0IYxlFeFleuXU2SxHCcOE2KquRAnA77S70V3/dPzk4xVmpGIWVJksxmM6KpiqEbhMTTuTwcKaUq\nUdrtdpqmi9nMMDRKaZTEdVnVdV0xigG0LAtjFSH09bffppRGUUTpAyHEIgwMwzg4OIiiqCxL1/Oq\nqprP55RSIPj169eanr+7s1Nk2VKnqyp4d3+PKEhV1Yrx+XzebLcEEHEcm7Z1PhwihRS07i4tGZ7n\net6f/MmfdDq9d999d+fpjtyspGHIOFssFmvr68M8f+ONN+I4/vLLL+9/8oks2zVNMwwDAOA4joBQ\n0zQJ2nRdt720vLe3d+/11zHGjz//Ioqi1Y31OEv/b/+P/3tRlddv3pwHi9fffKvdbv/lv/u3vu+3\n2+20zAVCUt9oq7aCoKUbrqKiisk1v+M4rutHRcEgMDxvHMwXD+7XnFdc5HXpNRsWZ0RV0zxjYS04\nJwjbugFUHXHBWHF+dvb82WMAeJrEwjR91752ZVvO8Y6Ojvhisby0muZZlped3lJd54ouiMCYA8g4\npbSuGWXMMY1mpx0G0WI6KwFATFgIL7daV3zy418+guezy82O5SgrrS4qK88wfKFBxlleVkUuGBcI\nIC4UxnJNXpRCKlo5p5gBAIBpmVwIpOoYQhchrTSlbHsWRRxBjiAHAEDAAIdCCA4Ax1XBWcryqqyq\nSgbYMcYywOu6tj3XQA6ECDKEMMIQ1nWNhEAIQCxzaTACCiM1K0uEEPiPuCJEOeMvpxGqosgTAABA\nMKE1rQUDEEDOEQSmQmxEyjSPz4ZUU03b5LpWV1Vdl9w0BUZxllkIUcYQgIZhYIgM2wIQU0qJpsij\nqen5CiFlXgrGbdNK0oVcJ2FClptNy7QlISgMY5xhDoBhGFhRLMcmmlpXlXQTUIUiROQsqkgzGf4x\nHo81Xe33+wIwyaPgnBtdRXbeN27fcc7PJTfwzTffXCwW5/2hJOxKR7KqqlevXh33z6XhuJFlVUWz\nbCK3oUEQyFKbUtpodTDG5+fnjuNI4gQAIFwEcRjVtGRMBwBMJpOVlZWyyrMkRRiWZZllydLSUp3C\nwfmZ69qGYSAMoK3HWaooyvmgjwkhRHV1HWONViWtS9e2akLni6mhat1u1zWtpaUlXdeLIpcOY8Mw\nNF2RAJk8zweDgavii+Wxqn4lU5ITbEn2+ErYL9WI0MIKJoJecC0ggoqiEKwwAYqi0DTt5s2bWNM/\n+/KL8WSCCJ7O40azratEph1Qzgzd4pwXeU4IApyNRqO6LNqtRrvR6A/OLq1vLy8vW459fHYqt+O1\nyGtKsULkmc85L4osyzJNVy3LirOYsTrLEIZoZbnHa7q/t+u6bjCbO67F6rrIU8nMSZPIcRzHbQkh\nfN8HtM6SOIij58+fX760dWlz/ejoyDAMz/PKus7Sggou3z8mRBUACAAM015ZUxFRh+MxpcwwrJqx\nUX/Q7XZd3+MAdpaWWRLYjgsJ5kIUdVVUZU1pHicX1bSqKUTVdCPPi6qqEIAt00EIaJqCiC0QxBgL\nKIqqxApptNqeYyOEdg8OTo6Oa8b9ZjtDUK4kAQAcCGmqkf1BnudM8FanLeM2JQmL1bV8/5qmRUGg\nQLQIw6Qon+++MHVjOp9FyytBEHRXVm9ev+44Tg1ZlqcYIk3T7ty5s7q6moQRQNBzvTCKTo+OV1ZW\nNF2RE7+iKLYuXf7y8dO7r7z2u7/zvffff18I0Ww2x6Npp7v05ePHQRBAgBFWDMc1bIdDwDBkCECV\nIEJ0ZJV1VQues1o1jaIokiLfOz1mda0pKieoPxpGVapZZskoEpwYGsGq7XtxHM8W8+s3b7366quH\nx8fPnj2L41gxdAOCSjC76SuLRRHHim4kRRYNC6zpk8mk2e50Vpt+p8UITpJkslj0x2PL0C3Lajab\npmlmSSxzasuynM/nmqJWJaV1TQipqioIgjiObcvlAMznc4SQlNdKMRpCKE3zyWRCFKWsKkVRDMO4\nffv2va+9lef50f5Bq9VIFEIpBYKdn5+fnZ04joMwZJwDBed5rmqabbnWUiPOM09V4smIY7iyvmZa\nThhFJycnL17srK6ua4qS5plhGUiIk+Mjzvl0OmWMbWxsYIyvXr/+9OnT6XQqachaVcnLeDqdygkk\nxOj1e2+0u91hfyAwSor88PhoFgZhGPrNxvUrl//6vZ8NJ+Nf+zu/kbF6MBgk83QRRxkrZnFQA9pq\nNzzb6TQaCmWwZrqqlmVZ0Ho2m2VZxhDIVZLMp5qh++2OpqpZIqq8ZEzQqq5LyisGOEOVQLVQMHEV\nfaFWGPHpZIgE4LQqc7aoC0NTR5Nxt9ttNBocIMpFXbM4yes6anRbGCIMgAaQBjEUAHDO6ipK4rQ/\ngLTa8OxLK2t5GJdx0mu3vcnsjtp89Vqz7Xt5nLYdj6lVnabFfAY5F6xGlEEoVEIQQkKgkFRIYIAg\nBxwJQShAnDIBa4XUdU3qSlG0WvAagoKzsCzisuCc14zKASyHQLa8ACPOeUXrqqroS/Q/pbSAnBCi\nuzZDgAtQYyAR/3XKOYY1AhAABCBHQAjAINJNgyAZ/C4QQgrGEBKuXHAhMMYQAIUQea8kScIIgpQz\nSk1Cliy7qyogy6M4xqWGMNIt0+q0Sow5IVXNKENxljum1e32lpZWeFkzxqIoooJXjJV5lpeFoVsK\nIQghRVEbjUaSBwihvCol21V+CuI4XllZKapyHgSCMg4Eq6mu657taAK0Wq1er1cUVb/fVzHZ2tpS\nFOX87CRN46Xl3ng8HI1Gm5tvWpZBCBmdnjPG9vf3F1EsjzVKaaerbW5u5kUlEUYY45Ky8/PzlZWV\nV199tSrp/v7+PFjcvn17eXl5NptBTKQ3UtfVPBeOZWBFiePQMDQBaJTleZojSExTr+ua1rVhGARj\nwalKFIyh41q+7/XPT+ezmcpUXuVvvvbN7avbw9HA87xL25uz2ex8ONjfO/zs889Hg3PH8ZiAnFEI\nkQDVcre3urrqmrap67qqvHjxIgwWm5ubgLGqqrigHABCCBGkqiqKLtRPURBIvpAkbcn9owzQlCNu\nSZ0zDDPLMlYxwAWGEAmMEFJUFSBcBQGEsN1uC0yiJM7yPIoiz3Ygo6qCVYw0z53M5mWRyWloHISt\ndnPr6pUiSzirDdu2HO/JkyembdVMPH7ytKyo2/BlMGEUx7IEhATqilrCLFoEeZKOxsGtW7eWl5cJ\ngpsbG6dHh+PxeH1lZW1paX//BedcUbBhGIDRJIxUVWVcnUwmpq6xupI4h/2DA13Xy7Lcvnx1Y3Mr\njpOf//znjArHcRRFIY3m/4+t//qxLFvzA7FltzfHm/CRGekzK8v39abvbTNsdpMckhhKwlAYQIAg\nYCBIgP4CPg6gBz3NjEQ3A0Hk9Ayb7NtNtrneVN2qrKqsyqx0YTJ8xPFme7eMHlZW9W1p4iEQGbHz\nxIlz1l7f+r6fa0VRFMRRGsVc4kajQTQtL0tMNErp62++PRgMHj36vExTQdAyiXxKBADBYsGk0Ayd\nUKpZJhO8KIo4TfZfHpxSTQjRrNUbjYauaTYgFSsZ50VRxFnKBC+qKoljAABeLPKyBEIQQnLG250u\nRXjv7MTzPHX+VaQnx3OVNTEi2LU9FX+7t7enaFAQIYlQEEU4TTlnq631siy5BF6jaZuGYRjUNIvZ\n7Or2ldXNLUJQUeWMsc8//5wzdvfunZrnG7ZVcz0hGcY4r8oX+3vrK6vvvHNNpQiUjAEA/viP/3hj\nY6NWa6ytrSkr0SwrGJee7+i6zgTXNA0SEmeZZllBFPn1mm3bZ5cXUCNrK1vqnEsxhFWVl6UEYqXf\n1RwrWCwBRpptlmVZcW45NsI0ydJ5FBSCZVU5mIwny3mr3wUUP9/b7bR7N25cS5JEaqSEsNbtKuB5\nfWOrkBJpNClLAACTAlFCNa0SvNlsJkmSJIlj2VAKFQ7f7XajKFAJ6kka6bpOEI6iSA11bdv+8MMP\nle14kqVKlue6rmFYYRQpzEbhLr1e7+b1nSAIXu6+iKLI0OlVpUA7Ol4u55fDwdraGsDg7PQiiMJO\nrzudL7Jh9Na77zi+e/L4My00p1GkEpZOz85c15WS12q1ivOkyLjJzs7OPEJniznG+Pr162maqtOl\nMsZSnQQi2LStirOsyG3XmS9n99947ezsbO9wDyBpWKZA8OjkOC+Lw9PjRRQBiF6enj5+9uzmnTvj\n5eKP/v73J/PJyeDi2cFuwQpelXmRMeZSAIUQhmURTdMFdxoN03dzXmXhLKtKFuSni1nFBICYECIl\nWM4XlGANYYvqGkCkAhRIgDUoWbddAwCwsmo02jXXq6rK1OmtazthnGqakWflwd4BobTd7QVBEKYJ\nloAIYEGEDds3TQIkE7y/0l9OJ4Zp25S2WDmPltV4Oh8NxTS9onsIIcrhMq3iYAClWM7nRVEQgpX9\nL6FEAMSY4JyPZYIxhhCrgqqSJwQHJArzslDtprpSkUUzKaSUqsFVpVc5NXLO1RybSZWESAHAHEmE\nCUCoQiCryoozJphEUBBELAMDCICAAEAJOACACy4BQohL5Y3HMUScEF1FgKgGnQMJGEHYMkwAQJ5m\nSVWIvNQ4aFteW9dbHGKJGphO0yzIM9JqrG1vcNs9D5eLPOFUaIhijTIgqyxL45SVFUKo2+0JIBnn\n8/lyEQasKHVd55UYjkdKe11U5Wy5MAxT13VFotYMkzGWZRnEiFIdAaBTzbWdlVbr7Ozs4ODAtu1a\nrdaqNwAAp6ennPNarXb9+nXHsWaTkVq3nPPr169XQh4eHu7u7vb7/WazaTterVaTUm5vbYTh6+Px\nWDk5sCIfjUb9VqfT6Xz9619fBMsvnJ8FZ4UyIoUYWZaRZQll1HdtnWIhQJnlnItWq1XZznQ806m2\nc+WqppGPPvpISnn//r12p3n79q2iKI5PDh1k9Pv9Xq9nmLTbbsRJaOpaniZvvHbPs63LwfnpyTmQ\nlms6UsI0TXNemJqeJalr2t1uu8jycZa1Wi0hRJnneZ5rnKhpMybQMnXfc9XJSW0vigmknGe+1LIr\nOaUQIkkSbJCiqMqyFIzzqkISa5RiRKhpeZ6Xc44x6Xfbd+7cmS7m5+fnRl6VjFmWlcLYtN0yjRGh\nVVVJTNMscQrbcRyK8e7zZ5fyklL6X/xv/snW1tbTF8+f775gAkoIkjjJsoxxpqoJ4djzXMs0Tk6O\nkii8cfPa9ub6eDweXg5GF+dJHHdbrXt373qOfXiwf+fWzW9/+9uEojAMHz/5/NmzZ7PFXHIhmNVu\ntgyNTMejy9Eoy7KrV668W69vbm4VRXFweJxlGaV6GIbk7Xe/8uzZMza4lFJWFRtOJgAgauiW51dV\n1ei2oaZ99OhRkeSGYSRF8Qff/73pdHp4fGRalq7rZ5cXURJLKSvBOZC8rFT0rOnYfqOOENpstDnn\nWZ5fDAeD6TiIIiVMNk1TM3TdNKqKlWU1ms2WccyKUnftsqoc1w3DkFDa6/ellBIA1/Om0+liufR9\nnwshpMSESADcWl0IkYURFnKl27lx+/ZoOByMRhXno9ncNs0FDtOyOr28OBtcfuc730nT9PDwUDnS\nPX/+QtO0ZrOhCs/OtRub21s//uGPnjx/djkaXtncIoRgjXIubdvVNCOO4yTJGo3G1es35vM5NXTT\nsPI8Z0JCKS3PrapKIwjp1HBsiVAlRZHnrmAY47PhpeKXIUARpabvFoKxcKkhmOW5YRiyZBJLAOE8\nWEKEHNd/+uL58dkpobTRaDiuf3p2cf/N1c7a2o9//OMwSdMit6Vv1Wr1ej3LMsvz4jQ5Hw3UXuY4\nnmVZ1LK+/tWvPXr06PLyUrBXmVfqs+/7apagvI51XbccWwC5s7Pjed6DBw8opaZtlYwr3mCaZ1Ec\nK5c0hf/NZrP3P/zg7PxIMH5ycqJTokKB+v2+4zjD4fDk5CjOUgmBZhgOAFKA8Wx29/rd22+8cTK4\nSMvK63ef7x+srvVXN9YNTFleKFe5ldVenCSSoPuv3X39xu2NjY0PP/xQqTsGoyHEqNaoO56rnKjj\nOFb0UeVfwyT76OEnQRCMRiPDMDSDWo7dbLckgrt7+0fnp51ut9Pr//CnP+vv7UEIL4YXFWMASI3i\nomRIAoKwY5kNzw+nc9XutLqdTn9lkcYXg8t5ngkhFsvg8PgoTfPNja1WqxUGQThbNP2aV296jusY\nNoXUJJpNzCtXtCzLlotFGkX1Wq3TaivR0VtvvfXJJw8ff/60QqWt64RqnuWYVB8GYwIBhdA29H6r\nvtpoYcGzYJFFYa3urbZajz588OuDn+tM+KYdBKGhNzRN299/6bq267qXgyHGOM1TgBFCEENOEYNA\nFEWVl0VVVVOYQoIBQPwL91opZcWEYvIrrk1RVqovKcsSG4ZqT7kKdoNAIggA5BBACIWUCACAkcRY\nCFFxTnQqgKwkT6pCiTV5kaOqdByHAQkhogQhhJAEnHMsMJRICIExopJ+oYHBFEO16jjngnNIAZIA\nQgi4SNJclgWRpNEwm5jQIKjlhW7ZGuc8isMiSwgC7SYrcl5kFZAmNQBEFRcF51yIvCxYwS3TMU2T\nUo1iggWglCrO43K51HSMEBZMpnk+Wy5UeEmj0YiiRAkLgaIjAVgkKeTiydPHggO15gfng9OjYxXk\nSgmyLGsymSyXy+F4fHx8fP/+fUK4qSllMDs9PV0ul8Ph8O69++vr62VZKobdzs7OwcHB3t5eo9Fg\nRX5xcZkk6Ztvv1VruD/84c+UGNL1/b39XS6YYzmdTmcwHEZRuLq6WhSF57qtZhNIaNt2uIxYnml+\nrd2of+tbXxcVgwS++eabk+no0aNHr+y07r9er3mfP/7s6fMnd+7cCePgV7/6hYCAi8r3a7dvXF9M\nZ5PRyDQj13VZyWzbVIGJ167udDqdLEmB4BiiNIkAAJhABeQpgFl+QQ74UpWrBCZKiatCBF4lQFCK\nEbIByEGlViYAoCwYlIxzUVZMhIFuWIgSxpgQAAEJhUyTpNdq9/t9jRoff/owicN6o6Wb9sXFRZoX\nnufNp7P33nvP9/2KC4yxbliNdtOr+7brEI1mUVwu50XFdV2HDFVVBYVAUhqaTgmyNN01jaIoLi/P\nLy8uLMOsqmo2m3qW/eCDX/d6vX63/fWvfvX11+4URZmm6fDi8kcnp52dm5qmTccThJDn2Jqhv3Ht\nbc+1kQQfP/z0s8ef379//9vf/rbjOJPp/NGjRyRKEkiI59eKogjTOYQwzTLKWMFFkuY//tnPkyQN\n01RKWWXCJe5//Mu/yvM8LfK333671e+dDYdRkkEIlRJON+2i4kXFZ4ulaTuO4+zuPvfrNYRQUbxy\nJdy6sr11Zfsv//qHDIAoy5R9F6IaJNQ0zDSNlYm2ihyQCAZBKCBYXV1Ni3wymZAkUdMqxT6fzZeG\nYTieW1UVg3C6WC7jhBhmHIXNZhNBeHl52et1KyFPT06+SzVCtChKWq2W7/tnZ2eGadbqjaOTY8ZY\neu36zZs3d67d8H2fMWZ7bqveePz48ZMnz/53//S/XF1d/Tf/5t8EQbS1tSUkgBDajhtF0XA8VeP3\nerNdliVxTN0wlGdIq9NeLJej8ZjoGtIoJqSsqjzLAACz5WK+mBdl6ZgGAMBxvEpwZanBOPf9OpMi\nyTPdUCtgePe1extbm0mS/PxX703mCwFRUpRtQmxdrxjPi5JSiigp0gJC7NdrauiR5jnnVbfb5rxS\nEF29Xtd1PY1DTTPViE9lyqZZUVYVJkQlEJesGoyGSipmmqYAcjqd5llZr9cd3zs/P09PT03TpJRe\nnJ3run7jxo3XX7sfx/H+/v50Pu92u3sHB5bjTeezqqpW1laRpkspb9y41eqt7p0cjxcz0/dmwbLe\nac0WAeDi+tYWtlCz3oiiqNtude/f+/DjjzzPuXfvvl+vv/frD5fLcGVlZTweT2ZT27YdiJxa3XPc\nvDwfnp+naSqEIETb2Nj45JNPpJTU0N955x316n3ne7/94vkuhNC23KKovFrN8lxCtLWNjcVyqVk6\npbTmemWZE4zzJF0ulwahCOOK88F4lJZFXJZRlg7Ho7gqFosFRGTz6g5jHGMaZ3kQxhJAJgDnEnAp\nBRQCCCaBlOs3tsPFHEJoWaZrWLpG2o16v9dbjEe3ru7kYfR8d9dtNbGmQ15iIN6+fYMAAPKKct6y\nbA+DLIqyyejxxx93m42td9+xOTPKHOWlremOaYyKcLWzyjw6KhNi16uamXA2LyuIMQMlq1IgEAcy\nr8qSVUwKDAWuqKptUko1UuZc4DJnnCu0tSgqCKGmaQIjyL9gtUAo1FkYIQghk1DNh5VlGIeQA8kQ\n4lwgBABCRKMEUCYFAKBiVRBHigJim7qmaUJKLoUEUpal+j7RMMYYcCGAZOKVM6LqmSSTihRdqk1G\nN+sAtjzPQ5gmiVZxm1LDMDQojvNsfPiynM9xw69RLeUiyxMNEW5atm13Wt04CE+OjkeTsU6NsiwX\ni1lVVT6rKaJsu92uRKUAcl5WQRRyKbRmS7VoKjJL6ceyopCcQSkajUYYhlVRSNN0XEtVHSllvdkw\nde3o8LisCinh5XC8ujGHEM4G+5ubm4rrMBgMojjVDSvP83feeefi4uJgf//O3ddqtZqazeZ5fnE5\nTLMif++De6/d+fa3v/306dMPPvgAY2R7rqLNb29vSskHg0HNd5MEOaadu56UklKt5jkbq2tSyqeP\nPoNAbG6s2a4zvLx8+uLpcDicz+dvvv3m5ubm0+fPsiJ9+vTp4yefe54nkaSaVpTs3XffvXH7joDo\n8OVxnhdCiCgaU13DEGGMh6PLs5Oj1f7Kla3NZ0+ervS7mqYVWaKetoL1eVkpV1HOuaIoU0oBAEp0\npF5nJaVVVpGMsQIyVpQYY4Q1JksogZQyjmMhBBfAsC1AaBqnWZZ1u+3vfPMb2+trd+7cS5Lk/Oyk\nrPg3vvF1CdB7Zd7p9BzPe/Lk2WAwsG3Xq9WUVcPZxXkQhSdnJ5WoCEVCSs45YxVBSCp/b8fpd9tp\nnIwNrV6vByVP01TXtVrNz5JEVKxW8yzLeu3u7clofH56RjGaz+c/+9nPzs5P11ZXl2mqwkXyPCvq\n9X638/qbb6ytrO4+f8H5ZRzH4+ms3mxpukkISdOU/OKX7wkIVATxbL70G/WCVWUqOYBZnn366HFW\n5AAASDCQKMryhMh6vR5l6bO93eF0MpiMuRRSSN00IIQSgpJVMgcghFeMnWs3bpTjUa1WW4bhdLlA\nFGVFPplN3Ubt9t07k8nk5ORMJTrlnIdBnOZlo9FKkmQ6nXMgdQDT2byqKojJeDpjQhJNFxCVVemY\nVqPRkhIOgyXPped5SRhng9FktoCSO45TStlfW1dPlQsJIcSa9t4HHzRMbTKfIYSSvCi5wBotWJXl\nRRzHB4cvEUKIkpXVdYKxoimurKy1211RsT//8z+XUraa7cUyyLJsNptd2bluWI5Xqxhjw+Hwzp07\nDV1PyjyO4ySMsrJotlu+75dlyYHs9/sQwtl4UjFGMFZYrGFbGtGV1NWznSLNFkXh2h6EsF1vep43\nHo8Xad7tdj3HjR33wQcfCoK3trY0TZMSKKbo6elpu911Xd8GYMzGXyoay7LUdf0nP/mJMlGSUipZ\nYa/XC6NlnueV4FgKx/cU3cZ03EajMRlNlO4ijuPJZOLXGyoko9lsLoKo3+9XVaVkaXfv3q04e/H5\nw063tbrWD8LF6elpGIZpmj578VxKaVmWaVuk4rNFoHitzVbn5+//OsnS63dubV67+smnD5Xn4mI8\nLRlv+F6v2YZIbfNgNBqdn5/DEqrZVFGV0/ns9PJ8Mpk0m03LsaMktl2H6ppyIyGEYEpVdNVkOHJd\n/969e3Ec1+vNq1vbjz57HATB1pWdMI6mo2m71+Wcf/7o0Xp7xczMosoZLw2N1F23Kkoo5enRca/b\nxoRMZ7MgjhZxjAmBErRanThOIUKNRrMoqizLJCS261OIKEQFqwouAMYAwTjJ0jhxWiYQUjMtgjGS\nwKBaw3NNSl7u722tb7QdY2LSJM1hUZqmjXRyrV2TJQur2XI0voyTQVUtJ+Ph+XkaRGZVJtOZgdDN\nK1fP9g9nw0Gr0TwORrmNaK9+enQUTs9zUQRJtMgjauglZ5UEACMBQSm4gBJh5DOAJAcAciAlkAAh\nACCXUADIIFSOvBxjCCFDSAAghUQIAgCkkEzBdVJl1AiIIECQCw6kRAhCTDBEjOcYU8XMl1ISIQAA\nFYBFkUspoZAVJkAyzkpljlHGuWqJlH5PSk4gopjYto0A1wChCGOIRCUYYzxnjmH7uqFneZWmy9HI\nMCwHYc5K3bE7mFS6zvNssQy5hIbjuAgOIJR5ORuNOefNZls1rwRijDGBSMMaEEKZqFNdsz3bdp2y\nLFWdiJav1m0cxzrRlXGN5MLQdMswFTuP6sTSDXU7a5pWq3ucvQI1KdWVwwEh6Pz89MGDB0KIfrOd\nJIlhGFd3rp+dnfm1hsoL7/f7i8ViOBwqIeLW1tbl5WVZlhsbGysrK3t7e++/98Gt2ze+iFUANhe2\nY9U9lxBSq3lBsFgsZq7rYoiqokQIWa7R63Rd2wmC4Pz8UlRse2MzK4sf/ehHj58+VkQkSrXL0dBx\n3Wa3c/3l4ccPP7EJ+cM//MPDo6P333/fcPzXX3/9u7/9O1/7ejGdTgeXoydPnjDGru9cm87Gn33y\n8PLy8s7tW2srfdsxVT5BYWjL5bKqCtd2dKrxiinvQuVzosqtgn7DMFSzOgWFKC8qAIDAUgigEaLO\nMRrVEMIqDYlQnWqahABj3KjV6vW6pmmj8xOKpOfY77zx+uVwQIAoq+rurZuvv/EWpprneS9evIiS\nNIhi9YBhMEKIxGlalpVpWRJh3eIEa4yxWq3m2jYAotfpmus0XM6ronQ9x7XstZXV6Xhy9HJ/a3uj\nWW+0m/XlfLG1tfXZw4///Af/oSiKVqt16/rN+Xx2Ol04rruytqoRahi6hOijTz797LPHTz9/Uq/7\nnVb7+PSUaIZlWf1O9+233yYlE1ESq/QFogdJmsdJ1u33RpOp0h5oplGWpWHanufN53OkkZ2bt8jx\n8cXFxSIIHcdptbvL5VLpqzzP0w1LCjEcDl8eHWuGuWZpUZJcDgdnlxdhFAVRfDa8PBsMllFIiV5U\nZaPR4BKGcRomsWVZ3/72t/deHjx8+NDzvGa7FcaxQhRmiwWEUDMMSghjDBKMKCnL8t13vqK0XABi\ny7HKvCCE+vVmUXGFO/r1xmw227ly9ff+zn9WFMXh08eNRmM0Gum67tdqLw+P9w8Ob964JiCo1Rua\nYWiEpGlabzTUvmBqepZlh4eH89mCUnp+fr65vaVp2ur6Zq1WO7s4p5Sura0JAFfXN6qqGrx4NhkM\nHd+jlI4vBtTQb96+BQA4PTsDUqZJwhkzqFaWZRYnmk8kF0iA+XRmrOgEYShg3fcnsxmqwasbW2mU\nco9fu7pzfnrGGNve3EKGKaWkWNu5cm1/f991XYKo5CKNE8/zTKoJUplUY4yxvNBtO0/TOAzVORRC\nqRHERaVwF5WKapqmQuj9Wu32nTtP2WMJwb179xhjH3300fb29uHhoWnb91577aOPPpnNZotgyaVQ\nLpWf/Prh1Y31+XyeZZnjOHmeU13TNE03jSAKF0FICPVqjdPTU8MwlBqtv7G2d7D/4OEnlmPHaX4+\nuIRC6papeoLRaOQ4Tpwkz549Qwg5jrNcLvcO9r/+9a9P57PpfHbl2k5/bXVvb+/s8mK2XMRZqnom\ndYgpy5KXVbvRjOahZZiffvLQcby/+3f/bhTFvuNqkKZhpGHKNVkkabPVMjSTS5YVaZrGQEjXslc7\nPVYVNdfj9Wp9bS3PSsMysaZTSoWUgMuWX/dvO2XFLi8vZ/NFv7fqOM7p6Wmn1SqTDHBBTN3wHM2w\ngnw2iZbB0GrU/YqBwcUoXc7Xum1YlsdldvPK1ePnTyAQ33n79ZOTk729PQorXeqnD36NJYgXwXI4\nwUy4lm1x1rLMQbDstZqMsYODg4bjxVkWLALHbxhN/+HzJ+vr60EZL+ZxyfhsPvcajVzwUkoBASII\nIAwFQlIChKoyV6b7XAoAEIEYQoiIQJRIJhDGCCFlyiARqXipYwwhFBAAKSGX6jb/EsuQrxpo/qVl\nvwSQQIQBBJUUnEvAAUIYIsdyuGAYQB0TIGRRsDzNlZ+U6inV1owxhoZmUFKWJYaQIIwJxupQxgUA\nAJSMUFCE6dnlxAwSXm+2HEujVE9tbpieZW+ajp4Xk4ux1GPP9aa+bptYIhQWZZEmJRdhHFuaDiVo\n+LVWs1mUZcnLvCzSKsuyrOIsz3PXdSkmHEjVIQVJ2uuuOJqmaRqvGEKIFWWRZqwoC1HYtqMsZsOw\nyLIMSGQ7JpuVcRyPxiMueatZV8zqldWebliT6dyyrLt372ZZNplMxuOx4zgPHjy4f//+1tbWwcEB\nY+zu3buclRAIJTfwfV+1Wd/97nf//t//+x9++IGUUjnq52lsm6bnOOPxuNdp8YKzqnIcx7FtVlW6\nRrc2Nlf7KzdvXCvKrKoq33dNwyZUn0wmP/v5L2eT6f/p//h/OLsYVhBduXGrEnzj6rWXZwOoWQcn\nZ5Jotzg0NF1AurKxaVqebeKdnZ1f/OIXQX/ljfuvj8bD4+PjRt2PkrjRqPmuDaHEENVqNQBAkiRB\nwJXUTXlxKEtzJb6XUqqDl+JkqSVUSg7AK1+KqqoMwzR0I8uyOE1MA1SCV5yVnBGEAMK8ququW6Zp\nf2X1d3/nu//+P/zgL/7jnzEB/vCP/j5GoFHzb16/HkXR0+cvCCG1Wi2I4pJHBKB6s0GpluZlmuam\nadb8Rpqmvu+zsrw4OxXXxM7OzsXZ+fPnz512a3N94+033/rJj39oGMaNnWuDi8uXR0cqTGg0mX3j\nG9/o9/tra2s3b958+vz5f/tv/5hSanqe4FzTNM7YJ59+lsbJxsZayXjJOEA8L4vBYOB53s6N68Sr\n1cMss1yv1mgcn184jmFYZhBH9Xr9+7/7O4yxP/nT/9Dpdn2/Pp/PDcPQTAogtB2n2+sxxhjnaqNU\n5VkZnk2n043NTappR8fHoOaFcXR4eLi6sX7zzt1nuy/GkwmiBEDYbLc450EQHRy+zLJMN404yRZh\nIKXUdX22mAOCS1aNpxPf94UUuqZvXdkeDYbKSu3Zs2ftdrvZbA6Hw5OTE0opBBhTIqSczWZlWR6d\nnByfnkopNUIEkJ1e/5NPPgmW0Xe/8700zz788MMoSrx6rdPpXLtx4+Xe/vsffvB73/+deq1mWfZg\nMKx5vmEYVZErrHFra0tRFpVkjVJ6fHx8en5WluVisaC6cXp6evPmTQ2RPE47rbbjudPp1LKdyeUw\nztLRaOR5HobINSxK6Eqn69vOaDSiGN+6cePp06fDywFC5PqVnel81q431ldXdc3EEOVptv/8RRhH\ngst+v88Rdl13uVyen5x6tsMr1mm28jw3HDq5HLZarZrtpmkKAUBcQib63c4iWK6vr6tFDyHc3d1N\nkmRlZeX2nTufffbZYrmMomTr6pU333lXhdJjjA8PD+v1OqX07OJiMpu9/e67W1tbH370MRNciX8M\nwxiNRpxzTdPa7fZwOAQQt1qtk5OTzc3NlfW1yXh2eXmpQr9///d/nzHx4MGDo6OD/s71rKj8eu3x\nkycbW5v3799//Oln3W7Xdd07N24tpxPlCnt2cb5YLP7zf/yP/sHf/Xv/zX/zf3/w8Uc3b94sOUuz\nrNPvXY5HXEqJ0XyxaNTrv/u7v7u3t/fLn//iD//wD7//27/z6aefPvr08euvv/7Ln/9qdXUVAWho\n+tb6RqvRLMqyv7EapwkkGEkgq3K8XK70u0WWC1Z2O22Tao+ePLl1+4aU8ujoKC8q0zRny6DVauV5\nXvdrIsmLIudCZlG63lupN5txHAsBMKKbV3oHu3uNXseu18ssu/band3TIzgPq4oXSTybLghn0Xx5\nFMcUsMXJoQahbxvn81ERRW0NCBbxYukwjgAUSYgRN0ydl1mS5a6uRYa+XC4FkJxqjw+OdEQyTJ+e\nnE2NEgh2/PIQa1RCwErmWjasuIYghkRCwCsAAKcQAgChwIToarQLCfjSqUAFSiomM2cSACSEFIJ9\nOQcGQkIACERcheVUDCHFngYYIkyQfGXiL1lVYYQMXacI87JCEEnOdU3DGGclq1ghKoYxRgB6josx\nLvLcNM1XGCEhyi5ecsaBhBJyLhlkumlxzoMggBK4xOz4zeFkURTl5WTCk5j1+7au6aJCRQmKUiDq\nVAAxwdIULIu6v0WKgmPcdryMc892AjswqOHXaqZuZmmapelkNsa61t9YmS3mVcl1zSwLlvNC0wzT\nMCVAhmkvg3nDr62u9pMoLrIskzzP2MraSgU453w6mWGENjc3ldboxo0bg8Hg8PDQdV3lPG9Y9v7+\nLiIYNGQcx71eb21tbX19XfnDAwAGg8Hq6urt27e73e7JycloNGq1WuPx+PDw0Pd9ZXO7vr7+9OnT\nfr/XbDafP3/a63U0neR5fnR0xHmFEJjP51lUWJbRaTZWe92Vbm86fRW3WrBKI3q33288bwAArl7b\nubJzlUnhmM7PP3j49OnTF3v7tuubtvX/+O/+eVUyQM2z4fRysnj0dFfX9aOXh9evX/+tt995897N\njz76aDae/NEf/dHZ6Qn/jHmeU6/XpZTL5ZJi3G63bdNiRZkXqW3qjFWK9KBIzl/CwCoPXg3qvjzV\nIYSoZfCKJXmCEDJNSwiR5pluGiay0iTHCDqOU1VVVhaEEk3Tau3mxcXF8dFhrVb7rbfetEyTcbmx\n0u93OoPx2LUtBEC4XKxtbOqmZVSMVaWiqggAg2ikG0aWFVmRCyBns5nkvNXptlqt5TLsdrtJkgRA\n2p77wx//9d6L3ZrjzpdL23Wa9cbq6qrv+41aXaULY4wfP3u6u7vrN+pCiMl85lp2t9dbzOeQ0pWN\nDdtxh6PB8en51vqGMlB6sbf74YcfEr9RV5HvAMKNjQ3P88I4khDled7tdj3PW/nowXK5zLPENDTX\ntfMkHEzH89lMdVGeba+trRFCLi8vMcZJkgAAWq2WZVkFq+Ik0XptEQaW4xGqJ0nSaDSwrp+dnV27\nduPWrVtZkT/48OOiKJrNpvKW+uEPf0gpbbSanqgPxyNMSa1RT7KMEKIjCBC0HNswDM9xBheXRVE8\nePAgz3MVwQQhFLySACiBl67TtbW109PTJMvSPP/ZL37xcn9/1fcQQp1O5/6bb/zqV7+ydfPW7bsA\niihN3Hqj1e2ZGg2Wy5fHR2WWE4S/+fWvtVotCOF0MTcMo8hLLoWU8mDvRZqXSRTPlwvGWL1e910n\nCpbdZivqr9Qcdzye2rbV9OvHpydJnrVqdQgh0nRCSBYncRAihJpebXN9w/f91ZX1+XyujMBM07Rd\nZ2Nt88rVNcMwfvrTn2ZlWffrnPMwCCDVkARxEFqWVfN8VeRWV1cJIYZO0zTFAMqqLMvSs8w4jpju\n37tzd319fbFYfHx5GYahZhrdbjfL8+Pj06KosKavbjSqqnr46aez2Wx4fGy5ju/7iJIoTa63Wr7v\nF1U5HI8IIZPJBBFCNO3o5IQQUm82R+OpUt/nVbmMQsf32r3uMoiWYTCeTiaj8fb29ttvv91pukdH\nR8OLy92DfcexhBAKwbpz5875yWm0DN+8c29rY+MCgslkMhhPIMCQ4L/64V8//eyZYZndbvfs8sKv\n1fKq/PzpkzTPXNcFCGqmEYTh0xfPq7ywXWc4HF4MhrPFsqr4z3/+S4Jwvd74iz//Tzs7O+/94pd3\n79xZWV39yU9+Um+2AEIH+wdU1yrEHz16tN7v1Ww3ni1X3njzzf/yn/77f//vlPNcWVWG7aytrWma\nlkVpxpLldOr7vue4geUAxp98+uj2vbvf/da3kzwbDy/tmjeez4hGV3rd49GlpHg6HGWRKYuC5YVN\nEZUSs0oDzNPMcDEeDGIoueSMIEgIEpwDBqSQJMl5WkhUIIAQK/O84JzHebF/djGNk0maaogWJQdc\nCFDKigMBIBMQAMKllIAixLkkEgAAlEs8BgAAAAHI6Ku6C1+5xwMgkYQASSClVF9DCSCAr0ov+PI6\nAABAX/wLCgkBkEIK+OqRFXBAAdIgpgBJxiEThBApMRKSYEghgpBgiDB+NWAEjFNIpJQSQKVNlhhD\nCCUmgDNFd2ICVBUnCDiOoxEqz2eOYX/1q1//yQ9+MFouXct8cnS00u81MNYlpFxKgWHB9QqYEhNE\nTyczr9tpbfRfjgYMiOPxCBAKdGRYZp6XRVnato1pr5JC/V0qHka9apzzvCoZYzrVhGQqkBsBaBmG\n7/tQguPj442rW5qmuZ4TR8liNs3zEiE0Go2USt51m1mWW6YTRstr1250u22WVQjTMEpGo5GyOVNM\nJc75xcVFt9tVrS0EYj6bmIbW7jSHw6Fpmq7rclEBIOM4Hg6HG+vrLw8Onj39vNFofGH8N5JS6oSq\n9jHP83qttrW5LoSACM2GC9OyTk5OdnZ2js7OHz58uLK24dX8T58+jz54kBW57TjLNLuYzbxawzCM\nhBXY8vI8X1yOTN3IKzGdBVkllIHg6urqi+fPfvCDHxBCXr93NwhDjABBmFIMhIyiSIHBOtUUo1tB\n7MrmpSgKxZdUxViVYc65soswbLvd7nDOF4tFWZSGYSgEStd12zG9WkNKOUmnVV6oVVcA7timY9m2\n6ygrEiZBp9stqswxzXkQhMuFYRgqy3x9czPNjaOjo7XVddN2CNWjJO52+5wJCFFSlJZhdjodTTMm\ns9l0vqg4yxm7uLiAEH/rW9+ZzyYnh0d3b9+5srVl6sZyvuASNpvN473dDz/8UKXPaYYphHBdX9f1\nSkgAsWHaEJFpsDBtp9Vst5qNMstVojmXgiyDgAtRVpUyFFQqacvQBauC5QIjaFFd2I5KTKKUapSU\nTEBELNPECBmarmkGQuj89IIQMslnijTIJCBEo5TFaU51k+raeDIdTCZcCs00mq0WhPDy8lIIQQli\nADDGGrW6dfvO888f37hxQzeNk7Mzy7IAwUwI07aUnCIvyzzPNUJN06zVakmSLOPsVYwo52WZK8wG\nQtjrdYqiYGXpuy7GeDGbXJ6f5nm+2Ww1252PP/747OJCNwzbdc4uzqWUluthSrgQyyjO00JwAADQ\nDH0wuDAMI0zixWJRq9U0TXMM2/Nrqv/TKb52dYcQ0mg0ep0uhNACGAoZRRFgvNtscSk1QnVfV7mE\nrVZrpdcfj8eSC4wJNozxZHZ+MVA+HpppaMvldD4Lgmhr+ypGACGU5LnKqtN0PZvPr1/frtVqe3t7\naZrqhDZr9TBciqqcL+a+77O86K6uVlU5HA5XV/qLxUJU6Z27t+q1ZpZlKvFD6bgY55P5kDFWVpVh\nmkVR5FUZhuHa5oaaEXW73TAMuRSI4MvLy+Pj45W1NS6lSgMEAKiU8iRIypJ9/Y23BJCj0ShJkjgv\nhuPR4PzCMIxvfOubru08+OCDZrO5nE877eaN7e3d/f1ao97v9z97/PivoQyXAZbAc7w4juM4NSw7\nz8oky03bmS6XPJP/7J/9s7wq//X/+D9cDAdciCRLDduClKZZvr3VcB0HcJGleZ4Vz56/eHl2KrnI\nqoowfuvWLaLRH/30J5989ghj/A/+0TdXV1cfPny4s3Pl6OhI00mn0+ptrQPOPn/4GTZthNE3f+ur\nuk5/bNmHpyerWxtCyulimcVJlRetRsvUDZbn7W5nEYTBdFrvdDRK19fXu/3en/7Zn0EIV3q94fDy\n/OJ0e2MzDJbD2cTSHZCnmFUWRTXTsKAkZUkAT9OIp6EBpWVQCLCUnLEqK7J4kUguRcWqggmBsK6X\npZgEYYUJq6q946OgYkHFEBBAAs45LSrOpRopK5hNyRmRkFBCKSUEEkkEAEAAAiAKVXN/o6ZyVYyl\nhF+UWPk3P1YiSaB6lC8/f/lzCKEq7VJKACAAACGqEZ0giqWEUhKEgJCAAQA44hIDSCCmkAgkFfUG\nIyyEEEICqabir35HJaRGECIYAcQ5hwJp1CAYapb1/Pnzd/6Lf/J3/sE//OzDX784PmJ5XllmRjU9\nKzyD+4bj6iYQLJ6F8TKe8BlN0pZj66ySBo11kjEepxETnZJVEEJCKazyLM0wRTXPRxDKL/KvFG0C\nQGQYBi/4eDwGXKz2V4htB0GgYsIhlLpO6/V6VbIwDDGmhmEofwy1XSiHL03TLNephEQQSinPz8/z\nPG+1WrVabWNjw/f9p0+fLhaLMAxrvuu5Nsa4qqp79+493z1eLOa+75VlGYaB8tQMlnOMgK7rq6ur\nGEPG2PnpWZ7nlmUZuqFy2FhVVWVeq9WKopjNl5ppmKaZlPnmztY0DD9+/Ph88onreVevXjdsZzKf\nZSXjAGDN4gCGSZZlhefpAKKKA5vQZrs7nS1eHh6ve/rt27efv3j285//fLFYvPvu28opdnNjjWKi\nsHMgmBqZKEtdxaL6EuZXbFBFuf9Nqp1qglXSl5LPiYopNF3TtKIoTNOESJZFURaZYFwyXnGxSF59\nP4liCYFBSJxl48sLYpgSIsA5gpJiSBBstFq3btz46OGvPdf/1ne+yxh79PhJraj+4A//aD6f/+t/\n8a/zPG8166ZpHp+fLWazNI7yokIUF2VJCak3G4yxtQ15595rWZL+2V/85XI2VznoEskSgFavv7G5\n+ez0RBUOhHGUxAXjVDeZlAhTiDCiRH3WMa44S+OEKPayer9VE6lTrV6vz8js9Oh4PplqBPfbbcXT\noRAyjIQQmmlompYmSRYnUsokitvtdqvVuri4KKryC1KPres6IsQxzeli4TnO/fv3Z4vli729Ws0v\ny/Lly5dqOgElKMvSMrTVfjeaL/1a42I4OD4903Rdt8wkixEhnU5HAJjnZZoVicgAQIAL23IN01Zo\ngRAcA4gwAVAIVtY7LQDAixcvHMfyfX84HFuWBSF8+913rl/b+Mu//utHnz/u9LqW7//6wYe1Wk3X\n9TxJP/70oWS85rhcSSgEmC0X9mysaWR1ta/MKObz+XA4DIMlIcQ2rbs3bwwGA9+1BSuzLJMF1ygl\nhGxubtbr9Y8fPoySmEuhcjA6nY6KnVDG31mW8UqkeVar1SAgi2A5CxYaNWqt5n/3//p/rqytxlGS\nloVbr0FKSs6YFGq6nqZpkkSjKcIAYowXiwUmiFUlxkjXtarKiyIry9wwtJX1XrgMLs7O4zTZ2tjc\nf3mQzecQQiGhlLLZagVBwAS3HDeOYw5grVaLoigIAgmA47rK23a5XLo1f2Vtw7bt8/NzotFut5sV\nOUCQCRmnWc6453l5eTGeLwaTses4mmmo+B2N0K9/9atQiqP9fcMwjuezRqt54/pOxdj+/u5iPNU1\njQL00Ucfff/b3726c63XXzk+P7+cT+qdVscw65rt+J4NwZvvvF188MHZxfm1mzdczxsOhwAjLkWS\nphghwzKpoadpil0vzuNpGBqa/mx/37Wdq9dvMMYQgO//+tdXrm5d2dkeDi9PTo6+8c1vnJycvPXW\nG/PJ9Nc/+/lqvXll++psNAyC4Ftf+wbGuEJAQHD31m1K9U8/ebjeX/vW17/xr/7lvwiCYBGFYRD0\nVtdqnvvZJw+zsoiSeGVl5fLyPA4jqmHLMu/dvfPkyZPo7JQAgSG3KPKgQEUKikLTcZXGpCwQBmVc\nZHkiBNd1nWCUVBUrOQaQCZkXhYZwxuUiirhmICFnUex4DY5RUXINa1xIDoXEAELIMeKccyQxBpBA\nzgGSAgiIJJBKfQvw3zS+qjmGAACAgAASKUY0AFyxnMEXVwn5tzpgVR/h3/6O2j2/aKfhK8BPAkIY\nxYRJJhivuOCCqyMgQghAACEXQCIuoJTqf6tmCECouk8JEYSQahrkomIcCLlYxGgSXL2yNQ6jo8Gw\nv3PDarWXk9nZdHwRxSutzkbHJJyVaQDT0oCw2/IaaS4HozPOvBvbtVptrXPt8cHLME3jNBIlJwB9\neWQpisIguMxKVjIppWScSQEhJLqm6zpCICvy8WzabDZN3TAM/ebNG6urK8twgSSwdMNx7TRNKdWU\nAMF13fX1dc65lPz04ozqprrlqyhVKQiO47RaLYSQoVPlGjudTvf3XnS7XTXVRAhxzl3XunPn1srK\nyosXL7IskZJXZe44zosXL3q93tXtK8pXJ89LhEie555XU5bsYbiUkiu0braYA0Qqwf1m62IwrDUb\n3/neb3/w4UembWFCgnA+mUy+9vVv/t7f/TuPHj/5j3/xlyoXR0JoaBrVtTzPqe2EYTgaD6C8vphN\nf/WrX52fn29vb9+/f38ymSAMbNsWvFLe0RpBpmlKLqSQhm2qk5bqfRFSqjOs6FfyCxcOTdNM09Q0\nLc6yMAyVQMOwraqqsASmaUII8zznk6mAAEKoG5RSzBhDABNEhRBZkajoCMB5nKUORhKgfq9zY2fn\n+PQkT2Mom2dnJ+eXg16vV6vVXh4eHxwd25aT5+X55QBQbBIbEHo5GodxxCuGMUqSlBsUQsQY+/TR\nY15WrWZzOl88ffq0ktJwnLTIjweXjuNQw4yK8vGL3QpKCLFlWQKAKEoghLqhl2Xp+c00juMk45yb\nutao1THGaZ4RRc5WonvXdTHGjJe6RhzbZEUOTMMxDQhhkZYYSA2jpGQIIV2nnPEiL6GUcRgvl8tO\nq1PzaovFsgoYAFAIKQXQqP7y8Nh13aKoBESLIIzTtCxLnRsKFdcIraoKSKERksbJZDRUcYQFqzzP\nC5LY0f31TnsZBsswQAB6jkN0DXKRpikUEls24FyUFQbAsh2JXvmZSSkF46ur/cVsGoZhFIQ1z/d8\ndzwe/+BP/+zjjz5xHOfevXvPd1/UW02qGYtlaBoakiCMElu9t5SoVQiBvrv7vNFobG5uIkTUIKVI\nszgICSHNWj0Og/FwUGTpWq9v+bU4SpdBUGs2Ks6KquqvrtSKHBKsViHRtawsClYZlmlQDREMMc2G\nw+lywaUoioJz2Vupb+1cnUXBZLHI8tx13Urw8WigiPuLYH5ydowxbjabaZoWWe44dl4VWZiF4dKy\nrPPLM9/1fusr7/R6PUKIyHPbtlX81vb2NhN8GYWHR0f3778hEeRCVJwhRK5ev3Z6eloMq2UQ1Gq1\nZRDM53PHcRzHC5OYSRGG4XvvvWeapuXYAICyLJVjgE51pGmPPv/cNM3FYi6ATNP03Xe/srra/1f/\n8l8CLla7nfFwUOZFu9nM85znRTRf/sUP/tyuef/VP/3fLxaLv/6Lv1wswytrG8pu5dGTz9Msu3n7\nXlYVv/rg19//yteklH/9wx/+f/6nfzuZz77y9a/90d/7e+9/+MFoOtnZvoIoOT09W+n2rl25OhmN\nz87OMiBjzojjuZ6fZkkyn7d6/SgOEUKHZ0f7xweu60IEkE4Ojw8vLi7++N/+T03ff/P1N8LhaLXb\n0wC6dfXa2eB8daU3nM0rIHq9XqvVGV0MltPZz3/8kyBajhcTy3ZX1lZs15IUf/70ycraWt33fNfJ\n06Tuu1ma7L/YlWVx8OL5qsgxBARISinCSGSJBoRB3brnVCXFEChPyrKqGC8kgkK3K1ByCDnkJS84\nRAUQJULz5RLp+iJJDK+OMc5ZRhEGUHCM1RbGIOASMAg5hBBKiSGQEiEJBIQSYAi5VIIi8Rs9MPpy\noPyqGgMAgADKrkr9A4nf7ID/phUW8svq+5uVWEAggIQYEUwMADCBjDH1qzHGKn9aQFXaAZeAcIEQ\nwghJBAGEHEghX9nZQ4KZABBC8UqILKbTKU5zNwiAaVwug4PdvVs3b772jW8//uzh2cnxZZxyNM19\n1jYs06RRnMzD5XqzOZnMJvNppcGaqeOGK2QpoYyLTBScSiil9DzHtO1ZMFssFg23qVONMZblOecV\n0TVKqYCgKArLNMuyPDw8NHRtrb/SW+n7iZ+9TPM8x5gbVKOUSsnV0BVTosxNozRbLgOEIKEIYyyE\ntClVPd98Po/jGEiu6/rt27c7nc5oeKlpWqvVUuPZ2XhkmNrqWl+5SBqmNhm/itne2dnRqaa2bkpp\no9GouR7GOM5SzTQs2yAIQwgVNlyreePpPAzDUsgPHn6CNF23HcO1CaVPn3xuWVa7Ud/cWm35uutY\nvuuop8erCkOIEQxnc9c0rmyvv/3G671eN4qine0r/X6/02kpAlBV4KIqJWeQixIIQTWNUAQhlEIZ\nx6rW7sswIjWR/nLZIIQMw7BtG+p6TTOV0xFE8lUuYVkWRe64ThyEaj5v6QZjDEmgYSKlsipnCGDL\nMDAllm20BEjKHBHarLvXdq58/uzpZ48fz+fzeqsJELg4H/yLf/mvOZfD0XjrirO7d3B0esol1DAp\nKx4FEZOCQGRZhm6aYZUHcUQpncymCMCSs8FwCCEM4siynLrbNh0bYzxbzJM0NSwLASEAgBgDCauq\nIlTHmg6F5BJAjCmlWZ4VaWabFqVY13WSF6njOJpOLi8vx5Oh5EK1C2WWQyEtqmdhLCRDEOoYFWGI\nLEshFoWS8GoapbTm+dPpVEqpkuQty1KThzzPNc0AAG1uX10Eywcffmy5TrPZxJQkSaJTDSIpeUUx\nYYwH89l4PCaGTQhhgkOEDMPIy9IUfHNz88WLFyrruFWrW7ohGUcSAASxADol6tDNOecQY10jhEhW\nhYvl9sbmZDoej8eW66RR7JhWnuTn5+e//wd/5yq7fnxxluU5ISSIo3a7jREwdMOwLC4hIVq73a15\njkbFaDSaTCZKX1/meaPR0HXz1q0bo+Hw3r17SZxhiF68eJFG0dbW1ng6P704v+HdPL+8TPPszbff\nenl8hDA+Oj0BAOSsCtMkTBPDNDkEDMi8yCoo944P682G79fj5fLF0cEkXKxvbAyHozDMkmVZVRXC\neHv7aq1WI0Lkh4d5nhdlSTRy9dqdXq/37MnnL1++FAwZUBydHm1sbLy18TYr86OT05bpqtBiCGG3\n283ysjitEEJ5VUZRdHZ+HkRhu9cnhDDOJ9OpgztlWVZVNZ/PTdNMi1LRU8uyHI4mnU5HHdsJIWtr\naxjjLC1v3LxdFMXZ2Qkkr0KRN7Y2bdPQdX18eXH35o3f+93vR8vgxtUrW1tbP/7wo//lT/7k+9/7\nbqffe/zpp/P54o37rz9++GlVVQgRhEgYJUleOJRolGxfvWaa5qNHj37x3q9q9frK1sbZ+fmf/8V/\nGoyGJavyqgzCcB4sHcseTsYqaChAMCwL3TZnaaxj7NTruyeHjqEnSdJq1CEA56PLGzdufOd73/nZ\nz362TAKOQDCb3bl6/Xvf/e2vv/XW4e7+7tMnUKfnp2deu+3U/SRJFrM9DOFiGTz+5FOn5wkOkI4L\nxs4Hl47rFkWhaZplWYOLCwwBpTTOiiBYJtMZwdDDMYGIAKixUueQl5kOoSbNZJGqhoAjkOVsGedJ\nniVZ2ljdZgBDJiUDlcSgYGXFpWakVSAEE0IIVmoUFQBgKDCUagYsAAASQCXRhVC1bghADiTEEknA\npVITyd9ogMEXxRgKAAB61Q9LqLpeDv7WlX+r3wUAcPHqAvi3azAAsOCMSWFQIoCUQgogAYJQ7bkY\nSAA45xzICggBJIEYYowJgRhxIIEUCGIphcKVWFEywQVjEEhCSFbkabgwQj9kVUWp0MxHuwd7pxdf\neefdtas35uPxfHQZDgZjXWsYui4BgKU5GFZ5YnUa0+Nj2m+NX5YlK5kAaZ5QSAkkSjbjOA6E2Hfc\nMi8US4hXjAlBiFDWbwCALM85Y2VZEIg454ZCgpGsKqV2RbquqyuVseLu7q5hGJejS9M0EYKGbqZZ\nbBtWwXiS5UIINbyllDq2iRC6dfN6u9VQIuA0Cn3fq/JskWdCsCgKfN9XMfLTcYwx3tjYmE2mQRAU\nRTUeDFUQcrfbzcvcNHXP8y3LYmURhiEAwLStkgnP80bL5eXl5SJNTcd1XDevqqpM9ZrTajeePX3y\nq1/9qmRCN0zJS9u2oyqPwiXkrNNqrHRbayv91+/e1gis1+srKyvPnz9vtVqPHz/2fbfu+2EYmrqm\nYyI4L8sSS4g0gjGuslxZUQIA8jxXsRCO46Rp+spqFEI16s+yjDJGiWFZNkIoSRJKsed5iiv+ZXaI\nYRhZluV5jiHSNA1hUjFelaWiUgvGIYSGSSvBNUOfjicAiDfu35vMpmEUf+Wdt9/55rd/9KOf/Icf\n/Gl/dc12vWAZvffBrwFAVDM0XYcAmJ6oN5pRHOQVcxwHRkyFMMY8Nk2TUDoejhqNhuV6jucihCoJ\nmJQZ42nFsJAagZJLxpgAkHEpQVWUFRdyHiyRBK5tCSEQRpZjaxolaqm5rmvb9nK5VNHKBtUowmGW\nhMFClEW4XBCElRYoT7McIcaYFAJJYBgGAkCVUjXgrdfrJCKGYWiGPpvNyjRdqTXm87lpu4RohmE5\njlOWbHR21u12GWNAMIKw67qL2bTIM9syL8bTWq02XczDJPbqtWA+H45HW1e21dm5KIo4jiXjBCKD\naoyxpuOAL0gHFWOYQAI1AECeZYv5rNPpNOuN+XT2BeQATNddRuGDjz/Ki6LIyziOdcvc3NwsigKW\nQlSMErLMCpYXNc/XNfP45IkamkEkO93W8GI4Ho+b9YY63vY6XbpKa74rq/LoYP/85HQQBLP5DOzv\nL4LlbDF36v5nTz4Pw7DRaqodpGRVmmfD2SRJkigIkWW++eabBeC+7yNIxsFiGUfUNispoyJLi5wa\nel4VIgcnF+cvDvavra8XVbEIFstwubGxcevunatXtwEG+y/3MEaaaZi2UW/W2t1WGIZwPDo42F9+\n/LHp2Ddv3pxOpycnR89f7NYbjSAIojjWDH27dXXzyjYmROEuKiRVRXednJ9B+OoOuX79er3RUuN3\nQki32/32d7+T5/mf/9lfbRgW1mjB+Pb6xmQymi2Wn376KZRiOp32er2rV7dfvnyJAWx3WvPp5KMP\nP7hz60a31Xz48Scn52eEkMnlcLlYPH389J8v/rkQAhDqerU4yY4uz5dhEPj+/ssDzrk61c0Xi7OL\nc855o9GYzmd5kk4mk2A6P3z5Mk/SN+6/PlkuoK43O91gOdeptrqy8vTzR0wICOQnjz979913OrXe\ncDp8+ytvf+f73/nRj37k2rXfeuOtyelZmeWHBy/Hw9H7v34vZaWk+Hw87m2s+bXGeDgxsHb16tXf\neuudZ+OXAIBaoxUlccWElKDRbszn8//zf/1f/7v/+Y9PXh5GQWhr2ur21TgKKML1co4BlIxThnSM\nABZEQlQVjqFDABgXRcWSgpcCY8N1DO88SqUQPC9hxSnAVVlWjBGNarYZxTGlep4mOkYFljoQQnIk\noFRWkRAgACjGr4w1VGcsFaNKlVYAAOC/MT5W/CkJBJAIQiiABED8Te+rbJ/x35C1frPx/ZKOJeSr\nX6AqsUC4qMq8Kk3LkghyxirOMcZFWQKECMYlZxVnqtpLjAigCEGIkAKRCUQCQwixcpDmZSUAqjiD\nXFBMkjzTfGewnH2+t5sDyanueY0gCP7sL3+0urqy0m9fuXvP0VG2mEaj4SRcyrLcWVCLQiZFkKQ8\nzw2t4RhanmYlY5Zt25q9yIswjIuiAAj2V3vjs7EkHBJsGEbFmRA8z3MppeO5SRgRQnRKKcJhGD59\n+nR7exsiqEzEqqpCX4wHCCGWoc9mMy4lY8xxHMexy7IECJpEi+PYsqzNtVVFWGGMCcHef//9navb\ntm0rf4bpaOj7vqZpuk5LzmazGQDAsqxer9esN6qqUr3vYhHUXM/3/W63q2m6pulMMghhUVUwSwR7\nZSnFOS9ZEaURY8xv1EuMLK/22ptvxEna0tBkNh0NzxGhw+mMakan3+eszBPZ67Tj5SIJy5Vum5VZ\ntJiHy2mr09UIee+99z744AOJ5HA4hFC22+0yTwHQEEIYUQNTUzcQkMpCQHViUkq1CSsbeXXyUJCE\nGkcr23kEM5Wzon4EAVbXV1UlEfyyjcYQqSm9SkUr0CuywqvkLiGAYFUBg+UCa/rOzhUmAJfirbff\nKSA1bQsC1Z+LMIkNIT3PW+10V1dXGatGo1GzUQMDtJxPsyJXhV+5yFWaRjRN083FMnR8j2jGIlgG\nYejWfMO1S8nTqkAAcybjNIEQSylLVoE8wxAJCRhnUkqAoDLnr4o8zXOiXhcllPZcV9d1iiHFiBCS\nhJEQwjatPM+D5dKyLMe2cwAAAJqm1T2/UauncTwZjFQGCBTSrflFUQAAVM6UpmlCSMb4dD6DEKpo\n3rIst7a2sixTIrYoiqAUwWKpXtx2u6fem83NTWLqDSmjJD47OzNN09B0gjCXIkkSKCTTDSGEbxgK\nwM6yhBBi6pbSBZm26bpukiQqTrnRqG1vbz99+lQUQggxmUxcz1tfX1ep5opghQFs1fxrV67yvJwO\nR2VejEajjY2Ndrut2kHf90+Pjk9PT4GQ7XZ7fXVlMpksprPT09OvfvWrH3zwwf7+fm1tY2Nr6/GT\nz72aXwk+mU6vXbsmIfj8yRNlM4QwlgAwzsuyJBrVbXt9c/PR55+Haea6br3Z0Eyj0+nojhVn6TwM\n2nrbdhwOIINyFi7xCdM0jeiaYRhE10aTYa3hd3pdgFGSZ3IyTNP08PjoV++/xys2n8/On+/pup5c\nXpyfn2NK7r32Wr1eV++gMqTEml5V1aNHj6qq8jwvmYz7/f7m5ublaBilydbWFcuyXr58CSBcX18v\nikKJPiezqbKBFAAMBgMhRJKlt+/e+fxzNhwO3/vg19tra71eL4vCp0+eHNC9d998s12vjxdLIAQr\nq8PDw7OT46IonWZzspg2anUCycuXLwkhnZXVCkquYUK0/uraYDA4uzjnQHa6XUJIo91SN4PqO7sr\nfQThYjxVM/laraaVJc0zpFOk6aPpuN6oGZaznE9vXtvp97sQo7zKm63W2eVZnMRbV6/sPtkzDAND\n9OL582w2B4z/9re/M42C3ZPDl5cX56dns+kCQvzt739jo79qaHo33xqPx7phlazK0uLJ8+fdblfX\n9Z/85EcvDw4Gp+caQk3fg6bt6OZ8OuMiBBDJigGIDNMiEkIJRVWO5yPT8rxGQxdwnubRbJlVFZNg\nbloEwDwtqBAG1cqqEozXHdcw7SAMARBZEmHTQpwDyCBjBEIpVeMIEMYAQgEAEIK8QlVf1WAApWJL\nFUj+//e1EgoAsWI+cyAUJ/mLKfUrOrQCj8UX9RthrLY8LP+mLYYAcAlKzl7lIymHWikIpkmWSggI\n1JioKs4ghIgQRDAUEAAklcs0lABCCBFWiUkYq8CcUsqyqgjCSZKUmrG9tfV8/wAJWDI2C8JmrQWR\nNguiII5G48HGSmd7pXulUy/jKIkC/b0TAfH+ycms4VRHR7dv78zSuCgKqpkIY9O2kGhCCcoyn85n\ni0WgNnRq6JqhF0WxCOZllkEIw5BRhHVNCxYLSzdMw7gcDbMse/2Nu9jFSZzF8TLL0ooLKSHnvKhK\nQohlWZh0xuOxlK3JbLqysrK6svry5cuiKCrxKnoXQsiFUGqiVqvFOdcwAgCMx+NGo9FqrhBCijRL\n0xxjvLGx1mq0X7x4cXx4osa/Kr+h1Wr7vm9Z1ngx5lVZVVWZpxQTTdMgkozLjY2NIEmVg/pyuZRY\nm83ms/l858rW7/7e9yfT+fsffBhGUX9tdWNzu9vtnp2d/fZ3vrVczJ9+9th37c8ffxbY7huv34Xd\nXhzHo9Foe3s7z/OdnR3XtWezWd13hRBVVeiaZtu2Y1t5kgZBADSiTiTqfK94goqkpuYESvz2alEh\nFEexoiVphg4hjKJIAm5ZlsopUjc+ENLzPMMwqqrKsowQAiSUUqhHQAgIwaSUVVk6jmPYDhPg1u0b\nAOLFfD4KU9M0t7a2BERpFhum4XleGEZ5WW5ubxGNVlWFidZsNhVEbRGEAKyqqtZo8ootl6Hl2Lgs\nl8slEzzLc6zppuWUnDEBENWEqBjjTHCMKcRIucchig1CEAS1Wi0KpKq5yryFWG5jughH04Vhe1DT\nBcGCUkExN3XgW7BmW5TqvBqNRsC2cs5rUUWpBiGEWVoAATh3HQJAhSjKiwAEGZASswqm3EUcIRkV\nsV2zVbhCnucEIs20FtOFrutplCJEilJcDmaWZZdlCTCOgBC2KTiPypIIgRDSIO3VO+q4VJYlBEC3\ndABAwTnR9PPJTCVsa7U6Y6ygOMqZ1vBs1zk7PrEtYzodJ/FSVvlat/P6zes/ffhJBorX7r2+s7Pz\nZ3/6A8HLaLpYX183qNZsNre2tsqyPBldnp2f+a43nU7rjbvr69cEP2KVCOepbdTeer0HpNQpXS7D\n4Xhyfn4exsH3mr937bVbh4PTTqsex8nVK1tVVdmmVfP9IIyxrq2tbT3d3W33ugXUoiKu0nJ1fXs8\nHuc5f/HyLMvlcjx1Nu2NxkrnZmcWLvNl1HT9Ksv6jeZ0NMYlY3nmpJnnrcznc80y06JiGHFdS6ri\ng/d/XQYpYNzWfMdyygz95L1Px+Gy3e9b7dXz6bTe6gZ5Lio2evJMuVzpXJRlaQBEOTt+sp+ECcbY\n8zxp1Tqb1+1mfdN0CERXtjdd0yRV+sEHH1i2u7GxGed8Nl/GWfmzn74XhiGjUlCwXIZRFIXLgGVF\nv93RCBVM9nure3F6OBileYabjb357OTkpMCAUtRfW716/caf/umfIkr+L/+3/+vp6el/+o9/UV9p\np3nWWe+Ypvno0ecm53qF65tX4jhO8mwZF99852uj8fijTx422j0NozzNTo4HFoG+55mU/t73v1dk\neevzvRYgfgFoszeWuJoGKMnW273f/53ff//995vN5uXl5dHhpWXW55P5xcVoc6X97tuv/XQxGZfZ\naTDvdbrO+kY4GnYBvAjiF3vPa75/6/q1q9srRZ5N59PbJl21bAYwdOvPJievbdw8NsZPD/df/uL9\n/b0n1za6X7lz7dEvfswK04V81TKsBHMhOAcSI4Eptp00LwfBst7tLvP0cjLI8nIRBss8KsqSEKKH\nGQDAVnWxKDQMESWsSDUANEAQQ45XLxkThpMDzCGXKAJ/wyN9RSXFEAnJFbaqBB5SSlXMjCx/1bkC\nBACQAEkEIUSMcwmRAAgDKAGSUirJL6m+wIm/rNZSSggEExgTAEDJKuWooPg1hKI0TcM08WVDQgl1\nXHNaVVXZwhOC5WUmuYAQEoI1ibDElYXRqyBCAIUAABCAkERYwDLJMSbLZaDS68IsY5rW73ZLIYJo\ngQGsQFGVBa8qoEtqIIThvAgne/PnJ8f9Xm91tV9fvWr9V2/oaXp9PKUnZ8v9k8GvPmncvZk6LnDr\no0lQZqFWyCpOCp4VUEhNoxgLIdIs1W2daFj1mqDijXqTMZYkiWk4FWN5mFhuLcyL8WhumibABFKS\nsyrJM9O2vbo/Xyx6/d7jzz7HGDfrjTyroMDLyfK44L5Xy/N898Xela3NquKOZQ8Xi/XVte3tzclo\nhAFst7vddq/eau0+f3J5fGqapud5RZoAzpAU49FFtJjWfdNx2owxguVrr13LsiwIBhg3ek1vOByW\nLDdNU534AYAECFGVHsWj0eiKb99befPtt98GAPzgBz9IFpPte6/duN52qvJ9wQHmWx1/aZHp5fH7\n7/2sKKo4jivODLeWcLF7fOlanuNa8zB87bXXNja2PM9r1vyjw8M8zg3PQQALIZjgSZ7FSZxVZafZ\nULVWhf1ZllVVTAiJEIYQFUWpaZptOwpeNAxT00lZFhBJ09IRgnmapWmqFh6lFGCsDoUVZyLPIIRB\nFKqstqqq8qoyDAMhjXPue/5yuaw5ru15ZZYxhouiKIIZydOba63+P/6DP/1PfxmnotNrx1HearUQ\nwD/9Tz969+23W7b/+SefblzddDx7vlxYuhYniZQijIOKS8+va6aVRiF2XbPeWG+14iA8OzvFCNVd\nJ0kSgAy3ZkguhBC6RiCEVV6IKmdF6XmepeNlWTQ7nTzPi4rZrkfKNJFCYAiRkCzP85QDACB8dbaN\nw0gIYVq6bVmNeh1jPAnPFEcJACCEKKqSc4k1LADAGqWaXpZlmhdVySpWappmGA5jjJcV55xXFdF1\ndRpi5SvvG4IwtSzF10cIVVwQiDSNqIrLOZdQapQyxjzfV0nOij+sjP0IlBSTKAo0TcvKIghyXdcl\nlNEy0CjNk/Qyza9srE/G408efMQ5vwgWuq5/8P6vP/3kYZUXX/3qV5fL5WAwsFwfCDm8HJRlCYQk\nEBm6vnP1quN7k/lsOBqPh6Otra2NtVXLMBWpT0JAK83z/ZxVL17sLcNAN41er3d5OVCypbPzy+vo\nVpoVlud+85vfnC7mSZa9PDx2PLfV6Xz6yUOv5kdRRDGRUq6srDiOs9LvraytXjy4PDw+wrrWarVM\n06zX65am11wnj5Iolct4uVwu670mxvjTTx6+99OfLkYTCGHFGCHk1r17ll978vJg8jyYTqeagL7v\nVkUZLOau71VVVVWFaepXrlxZW1n/5S/fG41Glm40W/XJeHZ+fm5o8Pj42DQ0LEWe52madptNBVLU\n6nWqaU3bKSspYDYej6MoiliGIbJN64033lhZ6WVxVDab4TJ45523G41Gs92az+cHh/svX77M8zyM\nIyzQ3buvfeUrXxsMBq7rlowdHBxQSnu9HmOs2+1++9vfllIOh8PZbGYYGucV1bUiWCKqPX36JMsL\nIViSRCXCURi0GvXV9fXZaEgA0HXd1A0uqna7HUaRyGPbMTGlBS80Q//5T39ydHLsu55KUhpeno9G\no+FwKIX3w5/8eDIaW4bh2x4k9Oj0BBIcJPHO9Wteo5ZlyWy5eLa3f/3KNhN8Hue1Vjsp2PFgvEzj\nRVYsgoWl6zEUr928/luv3dqoO8HKige4wQskRSkkhEggBCTIcpazKAij6WKelKxgFeOSSVBVXEgp\nIZIQASlfxaKJVyUQAIAQoBrRdVpVvKxyxWfmopISQolUVVTyIAggEBBAWBYlftVBUqq/6jx4JWxd\nFxwwKaAQAkilZZKSQ6SkSkIABIEAEGEJXvXT/2sflFKFd6rtT/EGpJQIYc/zEEJ5ljmOU1UiyzJK\nqTLoBwCovUn9YUwKwCpCCMXky6kjplTDhFKq2ExCCMuylsvlaDQCAAAIGWNlWWLwSi+U53lVlK1G\nAxOsU01qAgo5nc0Wi4UQbLve3Ox2b2/v3Ll97zJansoiCUO/1zmbz1gpOeR5Weo66bTXCslyVs2D\nwDRNRUpVpw0hhIQojmPDMDjnFStVDwcAqNVemUgX7FUr1ul0JIRhGCqr+U6no4wmVlZWTk5OlBkc\nQmh9fX1nZ4cgeHZ2FgRBp9NZWVlpNptRFCnPuMFgUJal53ml4KPRqCxLxWNK09TzPIUTq0AkjVJl\njJMkCYRQpRk6jqMQVrVhKtspheNcv369Vqv5vr9YLDDGey9eTCaTa7faW1tbk2XAoFxfX29V7Ncf\nfJhnJYTQs53ZbL7S68dh/PTp06+/eU850Uopfd93LTsIAsMwJGdlWWId6USP4zgIAgRAq9XSNE29\nAl9YjUq17atlozZ5BaKrAHKgKAKclyprmfNXvNei+JIZLsQXS0hKBX2qh1ItsuLkV1XFOVfrRyUv\nZVk2nU6RaxOCDKq98847uy+PL0YTy/YbtfrZ8dnOzk5VFYQQ3/fPjk8s357NJrZhcC4wIQhhUVVh\nEFRVRTWtLEuV3lHlBUJIpd2riBGpeIUY67oGheSoEhwoD9GzszNlWeh7m3k+zLKMGAgLJbpX8qyi\nqKqCA6nI4lG5VMdPhNC0mAghTEpVAZYIQowQwSVjmJLqFZuTcS4poVjTqlRWHICikIxD+jcfQEjB\nuK7rGELlAvOqnlVM1/WcIJUzqGynkqKUQmBdT7M8BlAhW5RSg6pAWA5Lbtt2lie67WCIpmlMLass\n8zhNLN1IeQYw/K133z1+efirX/xyNBpdf/1+o9F48ODBNM+vXr1acz0CkWScMYYglBUjANYcN7Gd\nfqd748aN6eXl890Xhwcvh8Mh1bWVlZXdly+PXh7cv3+/1+txIOdhNN3f/cGf/xmiRCnNu92uW/OF\nEPNFkKbpxeXw7bV3McZZlrmO+wd/8J998OCj0+Njy3HOT0/WN7d0XZ8MhqKoCALhcnExuAzDcLqY\nU03TdBoEQa/Zvn7t+t2bt5fz6V/99S/u379/eHZ0NhpIJBuN+snJyXI8vba5bVItL4rpdCqXweHh\nQRrHEiOItWEcIQz6/X6t5h2eHCsFYRpGsbP0XZsi/OGHH21vbt24vnNwcBAsZ++9997R4R4BgLOc\nYNhpNbkQaZZRLRESdPorlFJNr8qk2NnZsZrO0ydPTs/G6yurT548mY0n9VrNsIzBYHB5ebm7vwcx\nqiq+WASIwM3NzcODo88+fzyeTfM8t1ynruuPHz/O81wRCG7dvrnS7x0fH3NWIQjyLB1NZrbrSCnX\nNlaPT8+n85njekoI57punudpFisd6/O9XVGV3/zmN19/440//l/+5+liLoRYTKee4zLBm82m67qH\nh4fhctlqNPZ398IwbLfbSZ7sHh75tjMPo/F06TkOq3h3bSUrS6RTt15r93tPnzz+kz/702999eut\nZl1a1un+0Xi5ILbb297Y/fWv9w9e9Ho9CyMWJpOXhwUSME45ZFyIZRaLQlKqERWxJ4FkvJCSIXI+\nnHAgESTqDuICcoXXIoAwRBADIKTkUkLlDEkpsSxruQyzLDFNGyFYVeyV7uI3ZsoQvHLQcG1H3SBc\nOU8hBCGCEDAhueCMq7qOBQJIYi7+ps5iAAUEEHyB7EqowOD/nwL8pZRTg1B5/AIATNOkBjVNM8uy\n8XhsG6ZBtSgvMMZBEGAMv2x2CXo1Xs6KXEopgEQIAQkQRAghgFFa5Lys0jTVNA0iNF8sgjDsdbvq\nd6m8FoowJLhkVVEW4+lUx4hirBFq6gbRNYIJhFpaps/2dp8/fNTwatdef+3a3dtxuzYyaFyJgFeY\nIqwTJARACAgRLRYNz1cHCACArutq69Op9qoNLQrLN7e3txeLxWg0klK6rmuapswzXdOEEJqmqezk\nMAwppY16rd3qnp+ezWaztZWVJEk8z0vTlBBy584thcXsvdh1XCvNMyllkiSHh4dfbpWabrZ63cVi\noTzshBDL5bLdbuuE+r7PuZKuYXV20TRNTTtU1n1RFBBChZ4qEa0KPFBT6MViwTnf2dlp2J5lWVEc\nYIyvbG0UAFR5cXDwslarCSAn4xml+pWtzWARQgj+0T/6h7u7u/svdpWIdHWlr6+uhWHo2HawmAPB\noASYQMl4nueOZdVqNfDFnFktQpVppuhUaiqjBtG6riu3LAih6pjBF4CukgurIAd1sRpHKz2x6n2V\nlkdZdnzpaWoYhnpMFQ+sHLYnSUghisLlWq8XJ9nF5bBV8yGQnmuHy/lyxpIkWVnrO37vYnjhux6C\ngHMhATBNy/f0ZRTP53MAoK7rQb5IwkhKUZUlw5CXVZ7npm6pSbiuEdM0RcWKouAMUk1DCDEuV1dX\nVfrkfD4PgoCsdTpqQSvhK9O0stQrzgzDMCwrTdMAhq5pKZersih8ry4hqKoKEmzomoSwFLzirKhK\nxiVEgAnJJeeQFUJQTMo0Va+vbZiKVg4gUAJs27Zrnq/4U5xzWXGCicCoYAUvq0oCZZgspQRCWoaJ\nIMqSVAH76owDIXQQNQ0DQlhkmbpVsiTN4ohz7lvO5vqWbeoIkmazubGxYRjGxsrq22+/nUXx7u5u\nEoS/+vkvEID1ej2O42A6F0JIzjVNWywWtm6cafpwMhyPx1GaIUzH88XR2blGULvff//Bg69+9au6\nrtXq9Xa3P5lN4zg2Lacoym63S/Nstpivra21+t39g8P9/f2Dl0dxHIdR3FtdcSxT07R79+45nvev\n/of/kSCcJFEWhVgKKEEYRwIKy7J0w6g1anmWfSkNzLLCcZzxeDwYDADgSRhRhNbX1//pP/nf9hqt\ny5Ozn/7opw8++sip+5jSdrN1cnG+vtG6ffv2ZDIaDAZVmZVpKm17HgTHBwebm5vBMqRU31xb9T2P\nVeX21ub+fi5YGQRBkSS+55ycnBAEkyhuNFqbm5sQ4dkiiuMYIIQxJITcuH4NSxlFUZam4+HA1I0o\nCimlj598LoSI49h2HazRbquV5fn52aVpWPPZYjKe2rbteV5ZVFQjGxsbs/GkzPLZePLk0eP9/f00\nips1X0pZCOH7rm4ahkal5K5rX7my/eTZ51kU9Hq92Wh+elp5luX43nB4CYUsMl6yIoqCNI01g3Z7\n7dl8zjk/ermv67qta6/dveN7XjCfbW9taJjkWF/EIWMiDaM8yoCERVHMs9Rw7L1nj+M4vnnzRrvf\nuzw9e/Tsyfrq2tj1Hj15Oo/D63fv3mh4g/lwMh93G95Or3UyGcz290sEuq6JWGYauolxogF1akxZ\nxeKsqMokyaIkUfQYjCWUgDFRAQAglQATLJAEUEoAISFEkeAUMmpYBozCoix100AISckhhOgVKvsF\nNisBeJXcJyUTioYjsfjS8YBrlEMgIIcQAowxhFwIBNCXKC9A4ksyEYSw5EBJmcBvsJ2hBBVnigzP\nK1ZUpRDC87xWqwWhTNM0XCwBAHXP73RalmUpXogqD5xz1Q9ZBCOCNakplh8A6ulALoUoS1VyAEaq\nWiiz8WarNTy/4BUTUkIpJYIUa0BKolGMCROSVWVRVUxwgCBxXcMwJpPRZqtjaFY4nn3yi/fds/PV\nr72z8dXfWsTFKJ5JWrX8JhI8LVLNwO1O0zPdV0+Dc0qpbdtFUaj2hVJaliVBuN1uu66bpmlRFMoH\nQ1XrJE0XiwXRqHJCVtUiSZLJZBJF0f179wghUbBUJIzj41PJ2bVr11Qt9zxP+dgQBPI8b7fbmqal\nSXQ+HKRpquu6ZVn1el0huBomai/VNI1JqXpfJeyxbdt1XYUyyi8yryzLUnxbRVBSwLOyAcmWEUBw\nOBwSw1xZWRGUHp6cPn/+vBKccfH6/ftnZ2dpkgjJfu93fuf+vRsjx+x3ulevXv3owYeXl5e+YyMI\nMYaNRkOnGEqAEKAGbTabGMIkSQzLUhCvKpZqbqoO3KouKPay53luvc6LIkkS9fRezR6kVBVUGUqr\ni79sghUXXfGNVNFV7xr84uNLgy0hhGmaq6urNdZK8/z07CwJlnkSawiWeXZ+sm9opmC83+/bltZs\neFGWAiDXN1Z2n7xQbkgLGPj1GhDQ0HXdMBFCaZoWRa50B1BILjmhSAihTLwZAqJijDHOSiml8ppe\nXdnc3NysivL84mI4HlOMyUav+6oAS6lsSpIsT7JM5fXOZjMEgKmbpmka1JRSVkUCoeQASMGTLCtZ\nleWlRDArCggwRjhnRZZlUEIhhG3bFIGSVUVVqnXs2Y7jOAqGVJi8OrD4rhdAFEURkIRlRVVVBcFC\nCMk4QggCMB6NHNdVw58oigCC6vZQxdix7PlyYZpms1Yfj8dCCCBls9n8/d/9PcvQfvzDH0nOO53e\n6ur6aDZdX127dnVncHFpGIbvuIQQwXmWJAAAQ9MpIaZuCNcrsvzjBx/FvMyyjCK8srGJMd47PGzW\na5TSdrc/nS9f7D/vdDocgF5/ZT6fr29vK05EVhbD4fBrX/3GP/wn/3j7ypVf/fqD1bW15JM0LfK9\n5y8qwV+7f386nrx48aLZrFdVUavVWF4sFos7t27fuXf75fFRcc6yPJ/NZmenp4OLy26z1aw3ao3G\n5fBiESxXVlZ2buwMR6PJdFzmmFJ6+/btVr11enrO9w901250u6bvrq6vnO3uESAh51kUZVAsJuN2\nvbaztZllGWPstdu3kyQFAM2mi4PdSwhho15HGADBe63Wd7/zLYLEYjJRa/q3vvqVNMn+5b/+fwNC\nb9y6tVyEjx49Gs0uV1ZWrmxvP/j1B0mS3Ll1++DgQB0/IYS6aSijj7v37lGq/fSnPxUCNFptzrlh\naPPpDEL4ve99796d248ePXrvvfd2nz+Lw2C5XEIpKEFASM6qssizNNt78azm119/840333nb+nP6\n8OFDWZXNRs0xzSQMStOwDB0DePfu3Yeffnr16tWXx0cSgJvXrv/Vj36o63pVFKJi/X5/Y2NjOZu/\n8dr911+7/8tf/rJ/Z3vvxW4SJVev32h69d3d3eUyJJZxeH7qN1u1VvNiNPJtWyA4WSxX1zY+ePxs\nFgQcw4cvnu2PL4aTQbNuiyws87gOpWeYumA+ImFWAoRYyTk2mZRlWSZZludFWVVlWRZcYIwlBEIi\nUPFKCAEIxBASgrHaL6QqbwgRKaVkEkBBKdU0WpalcmkmWCLI/1fnw2oWByFUG5zaztQHIBQhLBGX\nUnIAgARSAIX+gC9tn6HSECMghRpNY1W8f6PdxhgqDJhzRhB0bdd2bYQAK1kcRupBJqOxZeqe5xV5\n3ul0OH+1DzDGIEJM8JJVuqEriFpCgClRhJeyLCUErKoghGESz+dzSqnv+4sweEUDJBhIIKSUGAPO\nia4JxjFGmBgIiFLwIIkLzizDaLcbBaswF51GHXAwOr/MH3zKDKN79cqA0jBLmecZusZYrmFs6Qbn\nVRgugyCQUqpMvTzPgOS3bt3a3NxM0ujl/sFHH3+oulXf9+MowoQoz/MoikrOLGQDIHu9/mg08n1/\nOp26nu37/snJSavVqjibz+eK6rwMFqotuXbtWrvdXi7mtVqtv9I1TVMF8GVZcnpxrprF+Xze6/Xq\n9fpgMIAQKmM7zrmy1rIsS4mg1OlBoQMQwjiOlcOSaZqvMGzTrNVqqn6HYWjZFoQQGxrWDc00SiEx\nAq5jzeZLIIFOSc3zdUKzrGBl8XL/eLVZ6/W6jXrt6PAlgSjLMtuysiRV5DWMsG2bNdcTQrCy1DQt\nzfMvfU7UKUHNitUTUCi1KrFFkmRZFgSBKtUKw1Y1lTGmisXfLOMvAAsF0qs+WFVZNTqFECrPIvWd\nsiyVybztOaIsm743jRJeFBTBNFgAzgwCJSSD8+Nur1fm+cnRwe37d1rdzu7nz5Whd1aWOtUAxFWU\nxFFYq9UQBJwxDoBOMIQQSK5RykpWVbCqKl5WknHBK3UnCiFs22y322VZJnF8fn5OqeY4DsnjGABA\nITQ0SojGBC/LEgkeBQGIUJIkFJMyrziTKrmdcaaZhkFIwQUTnAmONWraVj7jURSFaco5NzRTYRJh\nmjkm4RBohGKNAgAKwTTOCCGO5xKEGZBcClM3Xd9L8yyfFSquG2MMAcQq5lPTiK4FYaj2EUSwYZlY\no0IIDuR8OWOicl1XjVkQJaqfrtfr+/sHq6urN6/fiJK0225dXFw8ePDg/v03DMN8992vLJfh3vMX\nF+eDbrfrOM7vfP/3LNOM4/ji4oIxJiXUNMPULajZvdW1VqO50uuPBoOnTz+PksS17evXr88Xs5PT\n82UQOb7X6/Wa3d6bb73T8/ynL543m81r164dHBy894tfLcLg5PAoTpLFYnHj9q3bd+58+ulnT588\n0XX9cjC4+/obi9lsMZnplFBdL8pMUbLJ8LLilU70eqPRrNUdyzZNs+7Xbt26JSHwG/7h2cne7otG\no1H3/LOzi+PeWZak9WajNq+fDwaHZydeo9lstzY31h999ukbb9z/h3/vjy4uzvb29u7duwcA+OEP\nf7i/v7+zua1RmqV5r9vu9zqj0YgJZup2HAbSNJrNpmMaCMArW5uc87/+qx9eDEeNVnNz++rz3d2z\n04utK9tZGo4Hl6ZGDY2ureysrvaHw2G9XieEnJ+fCyCLinHOoyheX19/6623zs4uWq3WbDZTygTF\nZjw6Ojo/P2dlgTFO4hAjcGVjXdPJ2dnZnRvXkzR3TGu6mPu2tZiMdx8/btj2N9555/mzp77vb6yu\nnFal5Mw2aovFYu9gbzC8TMsMIjC4vNy1zLV+X92Z29vbjx8/fvD++5Zlba1vzCbjOAwWiwVCJC+r\nJM2a9aaEWLcdCdDtu/e4lEenh5P5rFGv37xx4/zoJExipLleU2dYzsLp4vLMINKhNA8mg/G8p2k1\n02R5VlaFZEwIMZhMcKOrWAtKBCkAhJpmaCDNSwggAIILIMSr/g9hTAjgTAgkEUKIUAihYJJDLoSA\nBFuuwxhjrKKUEoo55xIg8BsuGV9sT1DXdCFEyRhjpWopFCiYp6W6DH5J9QAQIgKQBEICAKTkr3po\nKV8pQb7ofTGA/IthN0ZItSBqqmmaJiur4WIJAcjz3HNdAEAcRePhSJ3e0jQFQAggKaUqAEc9uPzb\nPh6V4HlZ5GkGAIiiSAhRZDljrNFo6Lp+dnaGBeJSmFSvqkoyBiHkjOmE5GVB1VgbQQAkgBJihDQ6\nj8OCI1ACXSDCpCUFCKLR7t6dzc2Vej2rRlEW6Vbd1A0IQLic25bHOXddV6Ha6k+DAPT7/Xq97vu+\nlPL09BQh5Hme8mRVs980jRljhmlILhSCS6kWxzErq1qtlkaxSnCp1Wqz2Wwymei6vlgsZtXEMIyV\n1dWqLCUEjUaDc356empZlm3bAADLsizLUqFJ9XodQuj7vmNaX04BpRDqGoUB2vYrZ0BV6lRzpQjD\nSkSrmtEve0RlguEYWpaXcRQLhD3HvXPz1t7Lg2AZffD++xqhnU4PAPAX//HPNja2enXvypUrpmnu\nbG+trKxolGZZksRJWZYICMey6w1feS9zKQ3DDKJIQdGqbVVfq9ZWLUi1EvI8V0FJX5Ki1TWK2ad6\nd7XOFWD85cgkTVP1UAoE0XVdnUvSNFU7jIKHX/kgERIt5kKAq1vb9TgeT2bHh4dhFvbb3TxNgQB3\nbly7snOVmlqULmfT8dHRSwjlzRs3VtfWTk5OP3v8ZDydmZbVbLZZUWIACUQQStuyEAKCcUIIBxwT\nyDkXknH2Cvx2TMvur7Tbzaqq9vf31Ry+3+9TSoluaMo8AWECIaw4gxhrmrb/8iAvGYSw1ekug6BQ\nDlaWCTFijJWsqriEGAmAmOBZUVWMp0XBuUQIGRahpokZ4wWL8xRjbFqGput5nkdZWgquYWKZJkFY\nRyBnVRWFBWeLMKikQEKYpgkQVMMTRAkmBEB449bNqqpmywXIMsdxdF0PkziOYwsjgeB4PkuShEMw\nDWbLKNA0bTAeUUoJ1ebhcrKYJ0WeJWmr1w/j6L/97//75XKJEFrf2lQHsel0eue1e45pvffee4dH\nRyoFDyNUq9VG8VKzLGqah6fHhwcvgyDyXXdjq6Ob5pXm9fXN7Rd7u4yx0Wwax7FE8M72lel0yjnf\n3t5+/PnTxWKRlcXW1hbRNdM0T49PNjc3v/bVr/y7P/mTeRgSAHf3nqt3sdFoOYY5GAzOLy5a3c7q\n6krFqyAMsywLIEJCzudzBGBeZsvlkgOeJ2m70TRNU7U7/+bf/JvRaJREsQCSarqh6YJXjml4lMqy\n/Nq777xx95apYd+xm83mgwcPVnvdLI6eP3sCAb5x63aW5hcXF1xwxoVtmxiCLE3++oc/pBBUrKjV\natPp9OzyYjZb1Bstz/Nee+21NE2DxbLbr00mk2PBfK/earWm06kQrCgyx2kjgglCTdMQXD79/MnH\nH3/seV6nt+bVGkCii8szSnXO+ccfPgjC5cnRYb1Wa7ebgpWeY7/5xn3HsX3XPb4YFVFku06/0XA8\nL1os39s/+MpXvuL3VybnZ1VZFmF8ZW1N13XXduqe//HjJ4r3sb6+niTJbDrtdDqnp6e3bt26trPz\n7OlTwEWn2XIc5+ToWCN0OpnblgXrzeV84VkeQsS2tVq9XgrOhZAC9vurnHMM8bWdnVa9sQG9o/Pj\nk4sjz/McSSnLqslEhvOegeuEmJwhTReA607NqHvDMAAES864FFyKklWMiUotbEQgVk0nkFJCjACC\nEgKBEDYIAVj1vZxxAABEmAtBCLJdp6qKIAggkoQgXhYQ2n+rAL96PFly8aW8EEKIIORcAC44NTCB\nEEIgJOMcCiERJAhCCSXkUvAvKqIEXAIIISXyC6dJKSWSrxw6Xu2JEJqmqQhZSZKkaUoANAyDIqy6\nkCiK5tOZV/ODIJCSq8GVYRgQY4iQkDLNc1UGAOfKrDFN07IsFUlTbZp+vUYIiaKIMUaJUVVAQsxB\nqUbljHNKqeO6atjIhBRCIClwWUBKTINAginBOOO6FK7lBkwcfvbU6HTg6gqWvCgTjnyBEBAcAKFp\nmud5/X5/OByen58ri5U0SZ48eXJwcDAajRR7SFF11DMnGGuaZtu2ABJBEmdpFEVFUXS73dlszsoq\nTdNgvrh16xZB+HI46/V6UsrxeDxfzHu9XrfVPjk5cR1HcZROT0/jON5YXSOE2LapLHGklI7jKIzZ\n932VnOH7flVVWZoqBmuWZapZVFVKvc6qHuu6Pp1ObdtW418hhGEY3W7XrdcHh8cVZ7iiURxXEtQa\n9XajKaX0HDdOsziOh4PR3t7eb7377ubK2vPnz10NVlWxtb5mG3qr1RK8OtjbBwBYhqaqnWLIZlmm\n8g/gF8JoRW1T3CilnFb2PopjpQ4Nuq6rr8UXIcGqDKu/SH1TrQr1ykMI1dvxJaisPpS62nEcZdCk\njhoKZpZlSk1L83zHcyfbG+dnZ8sg2uh3+r1V2zRfe+21k8vTi9EwS6N5sLRc6+6t2/PJ+PT0NIoi\nDOXWxjrEJI5jTTcNw6AEEULazQbGOI1DznkJqy+NNlXmtGma9brf6XSklEeHh8vlUghBNEo0quk6\nefLsqWrSuRCMMSZlxVhVcazRIkmVLU5a5EII3TabrVYczbIsWwRLJoDp2kyAZRgkRUmoRojm1pw8\nK+fL5TKMMcZ1zw+zhENR8KpIq3AZVFXl2o5jWccXZ67tdJqtLMuSOAYAACEtyyoE03STUppmWZHn\nUjBYwkrwbDLCGEdpkuZZUuau71GN1lqNt27ehhB+9tlnssjiIlsu5/V6vdvtvnjxglXFrz7+MAzD\n85NTz/MMQ280GoZlh2lCTcNzXGoamqYZhlFw9h9+8Kebm5sPH31aSv693//d6XjyySefZFXp+N5g\nPIrjeDlfbKyufeUrX93f3b0YDM7Pz2/cuHH16vb5+Xm91fT9uu/Xi5L94Ac/6Pf7v/jVLw3D6PZW\nvvWtb336+NF8sfDqjeVy+c2vbxZZ+vCjj/Ms0zTNse1MsFazeW3riiirF8+eE4Rq7dbpxVnOy/8v\nX//1ZFuW3gdiy26/z9nHp7fX36p7b3nTprrRQAME0QiSEKmhNA+KidG86H+gIvQiPYwUelNQQQ5I\niSMGCHIAkGCLYKO7q7u8r7o2b3qfefz2dhk9rMzsAjijfLiRlZV58uQ++6zv+37fz5Rl6bquaRhV\nUWZZNplMCMKbm5v9wXln1MvzvNvtAgD86dTS9GngF1VZbzXU/SogQAi16w1QZa++8pJF9b39fSjl\n8f7+/vb2gxdfpJRqhOR5Xm+0jo5PhsNxveEZ0KiACP3AD6YqCDkH4tnjJ8Ph0NSNx4+f1j3vnR/c\ne+XVVyUEg8EgjmNDR71ON82z07Pjs/OTsmBzc3NVVZ2enynWqO/7rW6HVXw4HGKItuPtcOqrkajX\n65mmPuyf84q9+uqrrCqQBGkmao7bajU7rRZB6ODwpGaZGKDQDz3LWVtY2H76NBwOry0ufu+Nt7af\nbw4G5zdff10th27fuBmX5ebm5sxMdzod6zq9ffv206dPIZRCsIdffZmEwdLSwng4kJxJKRkrAaP+\ncCyZIBDVHCfyIz8Kjdl5IgUicGiYjuf1T46LNJuZnYumwe1XXhZC7B9sV1WCcaUhXqahAwWuGC9y\nRmjdrY3CNExDC4NcwmjQr67MAQCAUGICpUASKtUQlkAoUPdiVabrWNMIIYyJKsvKSiCEiMr7g1Cz\nTC3VxVRUoqLQYKICFF3Bcer0EUJIAJiUmmV5rut5nmVdxPmFYYgNByEkAS+zPE3jqiyFFIAjgqGU\nAEAE5KV7A7zQ+P6tORXJCzWwwgnVYkjlq7uuK/LSNq00TbMiNwwDChmGoeu6nucVRZaXBec8Kwp6\nOeUozw2EUFUytV3KsqyqKsG5YRgIQdO0Pa8RTP3hcGgYBkTo4pQVUCKEKYEVAhCmRcE5wwBSShGh\nUoi0qso4NuyWH8QONVuGVU6CNE5ww5t17fjkvDs3U7f0FOOiyIf+BJbcpKThdVut1vr6ep7nm5ub\nimR7sZAGQAjR6XSUOkBNbCYEjDGqaY1aHSHkhwFjzDYtRPB4PF5bWU2StGY7cm4+CsIoivKyGAwG\nlmW1220u2OnpqUE1w9As287SuKhKXddN0yw5Oz4+Xl9fvXXr1vb2NiGEcz4ejzHGnU6HFeV0OlUL\nuLIoFDFNXX9Fz1ZujuobDMPQdb3VaingWlUv9cZURV3tkgkhrGKc8yRNwqk/Ho1v3LjR6XQ2n283\narUiy8uyvLG22qw5zbpn2cbR4X7gTzzPC4LAdsw4jk3TLIoiCIK6487OzkZR5Pu+IgICAFSukbIK\nvsqAUs6UCkNW8ICiC6h6rCZdNcqrVvLqL1UM/ytwWyU9XHUhamGh1gRpmlqWpVCKIAgILx2EgmFu\nOO6t69cQJBUXTa8xGk1WFpfOjg6ODvYrwLIo7HYafhicHB+aht3rdXvtztHJaZSkiBAEYJpEhmGw\nsoJSYAgJAmVeJEli6QaSEAAVgiIABIQgNSZNJpPDw8NWq6X6JBU7TRzP9X3/dNBngjPGsqIUQmCi\nEY1KBBEkGzvPGRNeq2m5TsEqz/PUcnc08WGel0y4rms4IIqToijCJK65nqZpjAnHccqyrLeaSZJM\n0ziN4jzPm40GIOiof5anWV6Wg8lYp9R1XckFocTyammURmkCIYQEa7aZ5XmWZZDgCoiScaSRbnMW\nQnh8dqqmnB//3d99+PDx/n/8D0mSeJ5XSdGe6c0uLAynk/F4fNofCMHmV5fzPGdShnmWJomUcmVl\nZfXW9efPn0+ODtbX189HA13Xjz/52DCM199+a3t/L8syoBFelFmeM87Ph4OVxaXu7EySpk6tdn5+\nLqU8ODjY2trSLXNlZSVN0yzP1d2jKAaapqmqGQSB6zgnhweTICzL8vDoKEmSxblZjPHJycntB/cf\n3LvvOe6Xn3w20+0dHx426h7VtXHgE0Lardbe3h7FpNFobG1tff7pZ47nSiCqotQwgUJOp9NOpzOd\nThElrW5HwTt3b92mlD569Ojk4KDTqB3s7rW9+szMzOHu7t7WtufVPv/4o4WFJcAYxeTtN978CH6W\nJMlsb+asfw4BXFpZmi1nABery0uD/pnzpuOPJ0EQ3Lh5U9O0o9MT7dGj58+f92ZnpJRFHs3Nzam1\nnK7rgR/5vh+niW3bYRhe+JJXbH52dm6mt7m5iQDI89xr1ChpJEk0HvQRBKap51nWaTZOTo8oJmma\n6JQmSTIc9htuTYk9qix1DH3/2cas13jp1u0fvfXayenwzvr6v/t3/87WjVarMx6PkYAVZ5iSaeBj\niGZnZ8fjsWVZjmmdHB4FjnPv3r12u314eBgEgU4oY6wIopmZmTLJBeMbj56kaW45zsHununYWMPL\n8wvPnz3RMZFF5TnuzdX1nb3D093d6/OLB4ebFIrR4V5NCo0xl2IdgKoqS1FR28z8bDQclADkeQwu\nyclMcM6UuAggjJmQhEBECdG1oqgKzkQl7HYDYVrzvChJNbdWVXw8HGGqlzwTQkIAHK9RsCoNg6LI\nCCEFxcqTRAhhWubc3Jw6a27fvp3n+d27dzudju/7+/v7e3t7S4YxmiYq5j1PUt22OGNFmmRpwhGA\nAgEoEUbKuAOq1uDCqxkLcMHoQQgRhMIknpmZqdfrSZKEUaT6/aqqCIQq9tUyzIozCGVVVWdnZzNz\ns5qmIYKLoqjKUo0+mqZBAbI4UQhkWZaqCyEYI0o7nU6WZQjA6Xii0ofUaa60BopzVBQVxpgJLgFA\nmECoFFYSIYQB5EKEcdq2bIion6QGEDqlgDGUF+HpWWOyvHR99eujg2anaZqz/aOjglVbW1tJkhwf\nHzPGXnnllcFgoEx48jxvNBpRFI3HY8dxVKVZX1+/fn29LMvBYJRmmbJI1A1KKY2iqNPpqESWw72D\nNE2n0+kV8K4QUcM060IQ/UKo0+12KaWLC3N5nvu+77quH4WIEoRQHMfKvlGt5LI4QQgdHh7atq1r\nmpRSWWj1+33P865owGEYql8XhqGCcJXqRHU56ho2203GuPLPl5KXeaET2vQaTa/BOeufnvGqoAjr\nlqV5XhzHhk4xAlEQNhqNLMv86dhxLcCFpusUE9M0HddSuLEaTBVbXvkTp2maZZl6qisrK77vq5qq\nOMxpmiq6mQJX1GJblW319NRuUR2tirKghmk1NyuYXVG01PSvsPcrnpfic1mUCCEgRMHURxq9e/t6\nVfFgGloaPtzbnUwmSFYEgtWlxcOzE43gVqPZaDS+/84Ph8Ph3t6eqWtFxVzbZMIsy9LUqWmaUeAX\nRYEhaDU8IC7WQK7rCiGCICAY25YFpCyLolavZ3muaZqm61me7+7tEd2xDCGqy3sCGwwhRA09ihKE\nEcEa1IiU0rQN07JM08yjSVmWih2uU01CbhiGBhCreFVFdcclGHIONEMrsoQSfeJPsywDQkoEsUYB\nhJUUEkGz5lCE4zjO4pyahm3beZrtHOzPdmbSslBvdSYFQojqmq7rWVUAjOMwPB8NCSGV4EVR7B8d\n/j/++T8f9gcjf2qaZlFVlQRBGqNh/+VXX/n444/H4zE19PlOx5VS8RGqPGaMhWnSH4+Ojo+DIKi3\nmpMwmJ2ZkQSVkp+NBufn51EUEYh6vV6eJqr9H4/HQMg4CKeTydzMjGLB9Xo9jCGEMAgCSune7m6v\n7lJdazQa9++9FEThv/gX/4JzvrK+9vJLL33z8OHp0eF4NKzXG6wobc+7e/uO7TqOoX/9xee7O1tx\nEFKsPbh3rz8eVVvPqWkMh8NG3Yv8YHlhUcf0eZxkrHzxwYt5kiZRmiWpbVpREC4sLU4C3w8Cxlij\n0ZiZn1ucmfHHo+fPnxdxMDPT/eVf/7zmOsPh8M7tm5qmbW1tQQCSKPYaza+/+oqXxU/+4A9a7e4/\n/+P/QUCgRIRIijfeevPJo8f7ezsQwoJVzVbrH/2j/+qjjz768KP3dc08/uKLVqt1/dr1g4OD5ZWV\n27dvh2HYaDSIRv/8z/88DEMpZVlm19evSSlrjp3n+Uv371279QJj7N133w2nE4zxKy+/tLW1lWcJ\ngnA6nTqWLaVsN5tnZ2ee52FMV5dXVEaIP5oMTs+HZ+eapiEhv/7iUb1eH50Piqz87JPPLce+du3a\nX/70P0WyWl5a1XU9iWPHqZ2fny8vLHe73Y8//jjLCt8PFxaW1tevn56eTiYTgXHNtLIgqtu15kxj\n6/m2TrVepzMO/EbNffLsqWma11bW4vFYluyrTz/P4oRTL4oCBAsLMJ5Hs7rBgqRlGiJJINUARomo\nEi4KCCsI4jw3Ca4445xLCTEESMNQAEXTxYSmRSlAVRQV1bWXX3rlxo0bnz1+MjM72+3OQAg5F1VV\nHeztm5ouOANcYMCrLDUMo0hDBCSE8OlJiHRoum4URVDTF9fWVbydpmlhGG4fHD7f3XMcZ2Nn9+HD\nh+12W7dczrmoGK9KABEgGOmUSlMjWLJKskowDqDAACIEMUJRWkiJpERquObiIsTmxvpaJfhkMgqC\nQIGcBBMGgSJUSykFkBhjtWauqur89Ew3NcuybNMS5kUErOQ8DBOFPF/s8LSLjZjneRSTwXk/TVPb\ntpXslXMO/6YeSgD1G8WFtyW4SDNWBtQAyKoUBREZFARDRCHmgkiOKqYxPj440jRMgfBqtVqjRiEY\nnZ6bmh2EPuNVt9vtdNt5kUVxyJlSFgVSSl3XOGeaRnVdk1LEYXT/pQfr6+XXD78ZTsYAAA2TqEg8\nz/N9/+nTpwSi0WgEpOScLywsZKyM45gzPhgMEIKc8+Pj47pjR1FkWnoRF4yV9VpNxQ4yxvr9vpoO\nFTVJefE6jtNsNi90XGmqIsuUweEVQelKZQsvWVpqElUTp/okCIKabUdRJCCklGqCFHmKMDUpyctC\nx1QiaRBsaZQxhqRwTKNed8syjyKBEarXHEK8YDI9OTnRNA0YEiLJRSUqVq/XDcNoNBqqCVD3gBKX\nXpVbIcTVbljVzquEYHHpv63uE9U9oEt60BVNHQCgJm+FP1NKa7WaQiayLFM36rd/XD2+YFwioGkE\naRoUEnCma2Su2+EVu7a21Op2csE+/fIL3dIRwS/cfYVgbW93ezINFCe04dWrihuWxjTCK4YhaDda\nlm2GYdg/O7cMU0o5MzNz/fp1Sul4OplOp0paJoSo1+sKRVc6OsuyyHAylQg6jbra2IdBpPyKdVOT\nEGOMkRBFUfj+RFESPF3jnAvG1dXJ05gxBjFCEEnGLEMHAEgIdF1PksSgKGcQSgAgpJTqhKrORUEQ\nhBBLWFVVVZyFcaSu+HA0Usm4autTcUYpVf+atq06O0KIYzhSSg7kBx9/BLiYW5i3bXsyGmuGDgEu\ny1LVe90yuRSjyTiOYy6E67qUUKrpUz8gxyeQEIDxcDIBGOdFGYQRxrhW93TDVIDY+WBYQal2+4q9\nSSnVdW1tbW3Y7/tFIQTjXFq6YRumbduOadVqtevXr4+Gk88//1wJWBFCH3zwwf7+vuJxFEXxwp3b\ny8vLAIBnm89H5/1fnfVdy15fWtnc2Kiq6i///V/UWg2MiT+eLM3Ov/HGG//jv/pX/bPzl+/d/yKM\ntJaFEHrhzt2G5/3yr395o3utqBjRte/+4AdPNp7t7u6Mx+Nf//rdXrO9v73D8qxW9/7hP/gjjNAv\nfvHzPM12N3c73dbK4tLGxkbNa0ohNjc379y9Oz8/jzC9efNmfzT8+c9/bhjG7RvX/82/+TcHe/sK\nycEYr6ys/fSnP93Z2UnTtOaiMAwJIY8eP1YBqGEYWo4NMQrD0LbtOI5rNcefTnf3thGA08nIc2sr\nKysHuzuDweD85LjdakEIbt68WXPto6OjOPANwxC8Go1GWZwAACil3W5XcJxlGUFwdX0NQtj0apRS\nxzJnZrqnp+e+7wMA4iSL8yJIHm5v7fy9/+0/UgMfgtAwDAXxnZ+fF0VxenoqpXznt364tLT06/fe\n297fK8qyUXM9rykYhxLUbCuvWDD1Lcs8ODhoNBoUo++89cYv/+pnaRLfuXbjcG+3PxmvLc7aOj7Z\nez4YjKt0AtIQtupAcKxTLmUmRVxVuRAcwLxihuSC8YpVQCJIsEQQIAAkAoRCqmVpZru1lZvL6zdu\nLi8vV4wZjTY0nZPptNPpLSwttZpNRow0iGqOVaRJHvhRFMVpWuVlr9Oan5355uyraRBwQqIs02s1\n0/MKAAZBoBJEGGPz8/NZGIZFYTUafd83i0pUjHNOsNq8Ms4YEJwALCHiAEoEoIASSihkybmaSBRQ\nqeu6q2mYErVjS5MkiiN1oF/YrAIIMbr6foQQQoALwTnP8zzPsZLAqv+lTlKNUl3Taq57JRFWXLAk\nitvtds12VCqMlLJiBYK/iWmSUuDf5CIiZRmiIHMlyhJSQghZwXLCU4wpAUhHqOBCcFGV4XnfbXmL\nbp1o8PjwgAz1mmm3et0qLlVtSJLk8PBQSSrUzJrnuaZpBF0Qf5Sa0/f90A+Y4EIISnGWCYzxzMyM\nuuWklIyzer2eJkkQBNs7WzljlmXNzs7mSUopsTwvCkO75sJL4RMhRCXE1Ov10agwTVONrVmWKTP8\nKIqcrmVZlhqElBjkCrZVB716zmq4VMi5WjCrOqdaHGXQoWEMITRNwzQtxljFGACgYJwSggkpS1Z3\naxSTKIqSJJEIEYwRhBqlVVX5vt+se0okWZYlwVAVvCulmaqvlFJVFC/qnxDqulVVpWyf8WVUsBpV\nFVELXMZTXuEu6g9Rf9rVWqTZbCp5sXIgUbJsSqnv+1dJD6qyqL+aA57nFUeAQgNDlFZpVTEkgT8a\nCyE0amCMddtaXVqenZ+rt5rv/vKjKIr29g810/LqrlvzKsb7o6EiclMEeVlN/UlV2gCAes1p1r04\nTgVjRwcHeVnKi5yJdDrNTdOybPtC4qySLjEijU5HPVHGWFkxzdCdmus4Tr/fV18HAJSmlmclQdAy\ndMe262mqaYZe5JjSoiikkFww07YatbqlaYoNL5hwDB1K4Zk2qnhRFEAIKWVRpQxjjHHNdfM8N02z\n2WwyxoIggBC2Wq10GiOEGrW6YVtXcG6e54265zquMmhV630mBKW002wxxm7dulXmxeD0XNd1BIBk\nkhWMIqprJufc0C0hYZ7nZcnqlqXr+vnZGSVkeXmZUhoEQctrZFmm67pt22VZRkGoMBPXdVNWOrZd\nFEUSBIZGa82m57rT8XhlaTFpNXe3t49PT13b0TXi1d3vf+87X3z8qa6Z3/3ud8MwTPPMcZwsy66t\nrilxRRSGlJCZXu/mjRsAgN2dnbCM8rzo1OuyYrZpvfb91548e5pk2dK1xfPBMI6iQb9/5+atZ4+e\n8LyybWcwHW9WG0tzs7dv3DzZP7Zte//4eG9vb/naWpwkiJJOr0sgrMocI9BrtjElh4fHgT95+PXD\nu7du7e7sbG5s/eEf/oFOja+/+WYaBHWvubm5vbmz2+7NHB4eCihee+2V4+PjjY2NIAiU4yshZHZ2\ntu55P/3pT9fX113XnU6n3U6LUnp8cjY/P//eBx8+evL0xz/+sWZqCsSbn589PTlpNBq2ady5devD\n9z84Go2yOIgriDFmVXl6fLywsPCrd38xHo9ffenl4yJvNBr983OEUFrkC0vLrlNrtzrEdh99/c35\n6Zk/GT15+qTb7swvzCZZurG5/d577530+wIgolGIMBDAaTYfPnnCirLT6Vy7du3Zk6fTid95pXvj\nxo33338/StLj07NfvvurlfW1rZ2dwWRSVNVwODQ0nVUVYBxj7Bp6mhWGqeXnKaYozvONp88Yq165\n98Lq4vLg9MQw0pm216vZO5+8VxOyKkXLa5qUFIIzDEsAmUR5WeVVJRGmHKnwAgQJhxJAJADkADGE\nGZdScrvZnV1cWrl+fWn9+uHJ8eHhsTcz0+zOHJ+c9MOk7280Go3dozMdk5wJLDk1zEa7l0TRcDhg\njLmu2+p0gyiGmBBNFwCGcTKe+qrOAYQ7vfbs/ML+/n5WlHMLi0EQKAkfhhqGAAhRsFIIgTBKyxJK\nIYXEEAEMgOSMMcG4jqRa1ynE+MLPCF4YgBNCdMu6OuMopZL9RiKizlAhheq2OWdlFKtxRFFvNE1L\nkkIduKpCKEWKqBiE0HM9x6mlcaZm36IsNE2D4ip7WOmTf1ODAbgg7EgV7AAkAIBXoChZqmFCEQAY\nCG5UQvLKs+zMj9Lh1JzvDJJIQoBrdaVxUn+p7/vT6RQA4HlekeUKAVZkqKWlJTWMcs4PDg6qqkIE\n66axvLh4cnZWcUER7nQ6sAtnO7PD4bDVbAIATNMc9QetVsswDEJIWuQyYa1Wq9NuV1UhKpYkSa/T\n1TRyfHxsGsbMzAwAwPd9lYuqLpFa1l4toXVdr9dqCpNXo6RiPKlP1KVWFU6Nj+CSAq2IwVmWTaX0\nPM9xHAgRhNB13aIs0+GQEA1yIcrC0GnDm/F94/SEV1VlGJpt241GI/KD6WioEzwz0202vbPT06qq\n0jTlnHP9wvBZ8ao0TVPMLyVHVpoi9YTVzk5JFqWUV1bz33odwRXfSj35qwKsvqIMyOCl4k7h1Wra\nVn/v1R9+MTpLCIkAQDDGuASMcyC4lMAyTEPTBZCxPx3740rwhJfDYf9gb5cz8fJL98uKP9l4XhTF\ndOo3654yCQEYa5QyViVRPDPbvXP75oO7L56cnGxtbT3deOb7vmZYCg9XXUKlvK8v79myLImy6VI7\nJKUrkFIiAHnFEIBcCISQrRuOYTiOMzs7e354DgCydANjjCmJY0OJkVzTaNW8NE09x87StO/3a7Va\nFIRryzeTmpdlmXo3/mbrTkjApZTS1k2pSSyhlJIApAozJURD2KSaQTXbtlteI0kSyASqBCiYyEoK\nsanrQoh6rTYdT4okS6JIcm7rBs/LaRBpELOyqll2XhY61QxNZw4XQhicF2lGEXZMi0CEAcQAQgmg\nBLqmm7rBiwpJoBOqE5pGMXVNXdeyONZ1vchy5NRuXl9/8ugxEGKm242mEyC4PxoigiM/cBznd3/3\nd09OTt5//30hxI0bNzRNOz8/dRyn2+0+ffq0dGzXndnZfP6rX/1ydXUVQsjKqlGr53HS63SH5Gw6\nHFxbWUMaGUzGVVGurq/dvXW7Ztonu4dhEDimde3aWjANP/roo9HZsIjz/SQ5HQzMuvtn//4vBASu\nV3NNi2cZhFAn1LHN7//wt4QQCda++93vLi8svvLyy3/5F//etdwbN251ur0//n/9y7yoZheXtvcP\nnm/vtLu90biv2In90bBRqz948KDRaChFXZqm//gf/+ObN2/+6Z/+qeu6c3Nz3W7XrbcxhlleJHn2\ni1+9axgGpbiqKgCE708cy+61Gi/cuUOAePj1N1ubm2u37h0eHoqyKIpib2eryOY8r9ZsegsLc1JK\nBKE6TRqNFpOAA3jW7//8vfc2Np7OdntO01tYX4kD/9/9h7+4du3Gj37/d/+v/7f/u247v/s7P/rs\niy/Px9PrN2988fnHNdtRD6KYomdnZ51Ox4/Cdrsdp8nHn326f3ykGTq1jJxXzaZXsmJudt6x7f29\nw3rDcz15MhjYrrN3sEsQDqfTB3fuLK2s7G1vb25u9FZmJ5PTYsiz8XDJq9NGU0OyEgWjWsZ5yhnQ\nzUqCLMsI0DSAISZUIwjAUsiK8YojjrEklGi6brvX775o1erDJM0OTnb3DpudNq03sFPndJxX3Pf9\nTMAcYN2wFlZWEn/MktjU9E5vvn92nhdZXl5gfeotHIbh0dFRo9FQge2vv/764uKiWgpubm7u7OxA\nCBudtoYJoQgImWUZwEBUDEOUJRFnUkApASSEYESxDqCQGuPK0lDpXpRHY5pn6gxFCEEhlbpXlYdK\ncoQQhAgAwIWQgl+coRJghHVCgX6xJBMVyytmGDbggpcVk6U6JS3dwAYqiqLMizIviqIwqGboOuAC\nQyQAB5fnspRIAkVt+03Gk5RXFRpyACCTVSVjxgGVnAhBIeCSCKBBPB3705PThaX5ttcgNdetNziX\nghWq41TVQrGOp+OJckaMomh+du71118vy/Lrr79OkkRNYHmeAwAwJZqmmZTYthv1z3VCizILgkDl\nEzRqdce0TK9+fn7e7/cppQBCIYRhmltbz3Vdn+11wjjSCMYYKw8ACOFkMhFCLC4uqg202q0qP0s1\naEZRpNB7ZVGpCEpXoK6qx6qAqeFYrRpVTYIQZmUB40giZTII+SXmWxYFQqjIK4yxIBRJYGjE0Ihk\nPI1iirBCBOM4Pj8/F5ezu2Ib/cacOc9Vl6YADzXKq9Ws4i1TSpUhgaK+f1siLC7NJtUn6tleDdDq\n61dCONUaqoFN+Vwq1rT6v+oB1WNCSg1CK84KwSQAhmFgCEHFo6LCEFJCNU0zoRQE6WXuh/ELd+4e\nHB2ami5EoQKJEYKCc41SRSdqNhumXheS6YRKxtM4VL+XYnLt2jWM8dHJmdJ6VVVVlKUQAlHFzcZc\nCrK7u1+v1z3PQwCykmdJmvihPxx3Oh2CURAESRSJvIAQyqKwKVV0R900IGdCCCilspYs88LQ9CJN\noFdHgrM8MxuNmLPJaR8AwC+DqBgTRVEgJgilLaemmYYCVUyqUUrzstAgkYiAinNYEgkBAJhLA5G0\n4qBkRclC36eU3lxbr9frk8nkdHxaZenw7BxJMN/pddudJEmSMBqcnQshHMNMizj2A0yJrusapVjI\nPM0WZ+a6ne756XkeJU23zsvKIFQwLiuGIOy22qodOxuNTShExSbjcbNey/M8jcPZ3oMiSTEErm19\n/7vfMwzjs88+O++fFnkaBlM1ykMIX3n1FdM0nz59quBZz/NardbNmzellBsbGzqhnltzXff0/Gw8\nyl6+d//+nXt1097d3T09OV9YXUYA5mlmmxaG6KMPPoQAvP7Kq1VR7kbHAAoIiGPZ3Wbr6ZMNIcRw\nOGQEWl4tz/PR4DwLoluLy4E/QYzt7x8eHR3cf/Fet9OaaXevXV/RCc2yrNPpCAlmZ+ZLIU5OTnRd\nbzRbo+lkYWHhs88+U8aNS6srw8l4NJq89957v/Vbv+X7vmEYX3zxxcHBAZAyy7LNzU1qejOz3eW1\n9fF4/HxrIwj8ldWl+dk5Jb2FCMzPzbAyf/uN11fm5o5efOFwMH37rTeePHlyeHh4586dmZmZf/tv\n/y2C0LIshJDruhIAx3UfPX4MALh58+Z/eO/X2yeHQNcLKBJ/Yg3Ob16/sXrrVhiGD59t2O3W9du3\nTyfjCmNgmZuHhzO9OcswtrZ2Tk7OTN3AmD58+Pibx09s27YcWzOsmmVS0xpNJ3EcMykYYDo1bdeS\nAjRazZJV4yCYhNN6w2t22uPxaP3WjR/9zm9H4zHRKEAySEd5MCBx0qs7Gqt0DmPft9tOwlhSliGv\nCCR5VbGCEYkphiWEECEOABci54hDiIiBdNNqtNqzC1ZrJkyzMz9d7y6anVm92Tob+0FWjaPY85qN\nGbtR95rdWSzF+u07B1ubB+MJqkrNNBvNdjQZFkWlUxsIGExDQogQsshKd6FmGMZMd7bMq2AaDvuj\nra0tXoleZ4YxVpQ5MgwgSFUUaZ5VjAnBmWCIaJXIqpIDIXUIDGpomkYgqkOoDhQlIFHcVBUGpw5B\nhJBBNXhpSCkkBFKqgUUdlFcrQISAWiEpDTFUiGLFrg5ZKAEXUjDOIBQVK9LMse3UspMkgQBIITCl\ngvO/UWglAkBIoH4LUjHGUkqhop0kQICyiicV4BoSBErEEZQOwGkYmY5rQdJ261EejoJAYgQpsW0i\npTRNU/lYKQ5ts9k8PDy8GlR831dudI7jrK2v5HnOmXRq7nA8CsOw1Wm3Wq0nT56oaU8p+6MogkKu\nra3l8gIcbjabURQeHx/neT4cDpUbQZqmyDKvXbt2fn4+mUy6vXYjTauqmp2dtSxLuWorGVIQBEmS\nKGxfFV3VG307y0/VLXG5AlDrVQVKKwa7pmkIwclkUpZls+5BCP0koVTz3FoURYQQDGCSZ+NRUlWV\nrhFdM6MkVLp2hQ8XeR6FIaVU5TIpTjJjrBKcQqprZsUKhJCqjqonUCt/VZOUlEuRpSGEtm1nWfbt\nunu1xFXSrytGlQIUFR1Y8aKLolB/qeJ+829ZRl9djbIsWVkigjmQBWcKEocISQBmZ2Ymw1FVFLpp\nVqyMkpgh5JjWrVu98/PzX/ziF61ur+bajUYTU31vb4/quhDCMgxD0ymGaVoN02EYTLeePVUtDoSw\n5rgCSIphrVZL8wxjjDDJq1JKyaVAEEEIiWO6opKj/pjxUjKOIDItixBSs23DMJCQoiwoRlVVheNE\nlgwbjmEYtuvAMGRSmKZpApCVmRSsLDKNICg5QdCzbcug7Wad5ZVhGARJKaWBCCI6ZpISrcgLzbLr\npu1XjOUF1gHRdCyAYeiGriv9lkYpK0ohBAJwvjejbiAqIYSwbto21SMJKURz3Z6maQjguuMami6K\nquM1Lcsaj8c8LzGANdPFlJScFUluIrA4O3dhks6FY1qGpgNNV016o95I0zRPsyiKGo3GtZXVQTal\nBNmGjgCUQoRheHy4X+ZZZ3YOCGloWqPu9jqt4ajfbrfn5uZO+4O9vT2McRzHw+Hw0aNvut3u8vLy\nl198oWK2JpPJ4uLi3/m932s2mycnJ0sLixjAm9dvhP70zs1b9+6+8MHHH+0eHg2DaXu2t7Gx0e/3\nO53OFKAyLyQXjUaj22wFgykmEAHo1eum4+wcH+p1J8zT8XS8PD/34ve//8Lq9b/+j/9xfD746U9/\n2m633/meFwXh5/uff/XFF7dv3+50Ood7B9252dXV1ec7O7Oz88fnZ/tHh+12Ow7CH37/HbvmFkVx\n69YtIcB7770HMHr48CGl9N1330VA3r59u9VsrqysPHv2bHP3kBDih4GQbHV1dTKZEExbrdbJ4cFo\nNJrrdmc63fFowLOkLPKaawcb253ma9///ne//vrrV155bXFx8cMPP/ziiy8WFxcdx7Fs27IcjPHu\n7v7nn3/uui5vexUErW7bMDSmaf3p2B6c1+v1Dz74IErSrGLwcL8U0rCdw/PTmudJxhv1+vXr1+Mw\n8n2fUvoP/uH/KgzDnb3d4XgcxhExtCiJz4cDqmszMzN7+3uNRsM0zTxJ683W8dnpcDpx6jWzZjco\n9ENfNzVqaXwsGy0Pa3T3eNuFeFmvWTrGQYEYczXDtWrDScoozBgHMudFQSQ2JMKFiKHgknMJGICA\naKblmjWPuDVqOdCwH2/vObUmMF1GDeR4h8OJqGJXQqPm6W59PBgH0elst2cg8ujpZhn6FZcW0Vp1\nt4jijcl4d2//xsvvdButfr9vYAowsDVjoTeb5/ny3EIcx0TComRpEPWabV3XNzc3hY1ghbIij8Oo\nqiqNIClEWRS6rkuAmBRACMAgKMpKSZAF45wrBSeTQo25hqYVRaaONoQAxggSTX0PJoZCktWphxFW\nxyhCSEpeFoX6nCKMECIQSQkwwviyhDPGeFmpsM4oijrtdqvZTJPkypr/2ySsy7qr8hZ/83VVfdXT\nwwJVnBdFWWqIQwCE0CU0AXItOxTgfP+oNxxrdYNX7Pj0BBK87LYMQ7MsgzFWlixJIl2njmXrOoUQ\num7Pa9SOTw63t7fTNJ1fmM3iJCuLTqezvLJKdS2MY4TQYHCu1CZXVaHRaFCE19bWCgRs2z44OBgM\nBqPRUDIOIVxeXlbek5TSbqd9RfNW+K3SICVJQil1Xdd13XrdU1tSJbRVpVQtVq/wZyWhVmiW4nOp\nIVUVYDUZ67qu61oQBGpeVFA/IcpzTVPVGgNYMm4bpmYanHMmDfXIGGOCsbLZ6vV6cRyrWTaOY8aY\nrpmmaWqYqBdIMQkUQC0uoywcx1Gr6CuQ+apSqgJ81WmJS9Gawp9VA6EweYU2q80Iv5SS9/t9y7Ku\nRuerRgQAwITgrIIYIkIAgkVRVABQgE5PT6OJ7ziu67qlYKJiHEKJoEBlr9cbDkftVpMaJoA4jNPZ\n2Vn1hyhXxzQO8zz36u7a2lo8DfYO9h3HqSlcBMFardZsNutSMMbSLI+zVAgBEBQCVFVFVLnmnGMI\ndV3TCAVQ8Irtbm93Op2qKKEEjmUxxiSvRFlkDLiuKxivqqoSHAGIKRKCOo4DAHBN07bMCiHcahqa\nrlMtnqambiRZVpQFIIIASDHWMTFcvYhTn3GAkWs7CCEgZVWWSLchhMrHSyMUYiKgUF5ioqhs23Z6\nM0mShFM/i5MsTmzdnJubk5wncQaEnI7HVVF6tZrv+xoh7U43yfKSs/FwZNpWp91Ozk9fuv8gy7Kj\ng8OW1yCEjEajXq9XVVUcRQhCtbDZ29uL/aAsy5Qw2mhompamKYEIQbm9vc0rdrh/4FhWreYsLCyY\nphlO/SSM5nozb7/9tnJT+/zzz23bXl+/3u20Go1Glqb9fl/1gJqmDYeDfv/cdV1T02/dvGkYRjTx\nwzDc39+3LEsxgZcXFs/6w7OT0/XV1eF5/3tvvk0Q/vLk8UsPXvrpn/3lxsbGrfWbQojBYFCWZbde\nFwSZtvnbP/qt1+7fJwX/OYRUI6urq+vr68Ph8O7tO3BlOYki5dGj6/r5+fn6+vry+vr67Tsffvzx\n0dnpi/fveY7V6/WwRjnn/+yf/bOiqIIg+OEPf/jma6+rUXtvZ7vZbDY87+23315aWpK/+LDdbhZV\nmRcppbqmaY5jd7vd89PDF164uzw/9/TpY1Gx3/7hD0zD+JP/z//IqKOMe549fvLSvfvT6diyrPn5\n+QcPHoRRpHyyVlZWXn/9ddM00zQdG4iVFZBiEoSiLCJ/qmlaUZWWY//v/rv/7quvH54NhwM/ZABa\ntRqHYHl59Wj/YGlpaXlptV7zdV3/o5/8zp/++c+ytIAQCwGmQdRoNV95+bX169fqDe/RR788Ozvz\nmvVU04IgOD0/0W0nr0o/Ck9OTpbXln/9/vsnhwfff+31w+3dNM90kxIGmy0veLbdQ4YomWHpR0dH\n3MIIaxKVRVFAJjRCTaCxPBcGYoJVTEBKDcuutdteZ8aoeYbXGMfZaHJ899U3p2H86Nkm0vRGo2Vq\ntu/7fpwwgHLOq6JMsmLoT0VetBxLQsQEkwg79Vqt5k0Zwxg3m0116k2nU5V+7TjO6empbdvT6XRr\nayvLMtd1fd/XNI3ULQ2TPM8hRhoirmVLKeMwUt6ThOqAcCRBUZVlUrKykvDCu0rXdZXKoM5KBSqq\nsUbZIkKCNU2TCFdVxRm7PCLRhXZI0wHACj1GKlpYnaeYqL2vlBJJACFUc4lhGFmaqgw75WwqGFfc\n0SvA+dt1F0og4cUm+Go+lpdx9BXnjEPEgSElA1ioDCWAx4PBZDSGRqcsy4JVrmEFQaBkbwihdrtt\nWVae50dHR4ZhRFHU7XZrtdqVmjYIguVmExJcFMX29nYYR0tLS6ZtPXr0KAgCdWoBAFzXXl5eDibT\nKIqETpV2dnNz03GcpfkFKeXS4ny9Xj8/PZ6dne3Nzjx78vTo6GhhYSFJEiW5UTItjPF4PN7e3m43\nmgsLC7ZtI4SKPFfxBkrtelWu1IipaFCqSl3S4tBVR0UplfJipaqWCBBCwXgwnVYVU3tDFSCv+oPR\naBQDIBhnQlo109SN6dRXREhKqZJmpWlqmqbRsiilECFeMdVMSCnTNFUNnKrTURRdAekqrWg8HitL\ny6um7W8tgNU3w0tbN7UWgRBWVRXHsboIlmVdLGj/pj5ePZRmGnlRIEps14YQJlEsOMeUmppOGg3H\ncRFCrKw0zdApyXkVBKEQYnFxQdONxZVVQvX33vtgaWmJqWijNK27LsaYILy6uvq7P/rB2elwOp2a\ntuV5XlFx27aLqsRUV140w9EYEowQwlRTXiWECX427NuuYztOCZgGgChLyAQlhBd5w3aBbUIIvbmu\nRPOn52ctwxuNhsM8MUxNFKlNGCXUkBBWqVPzMKbT4aRkrNuZ0XVzNBnbllaWmUaAYdpFUaRZQii1\nLI1SCl1zMh5zzpu2o9SirJqYRJZl4dq2W6tdMDKEEKIiiFGdSplnWQmlgJIDwV2bAkJAmSZhpBZI\nBpaWo7MyMSnKKzbf6+4fHgAI5mY7SZYjKHXL3NzZNgzDcuwoT6uqKlg59CfqojAAq7wYjUYCYb1m\nwbIseHreHzYbDT+MFmfnV5aWWFYcHhz4k6loo153HiBjNImZIMOpP5hEdxp1w7H7/f7f/f3f//qL\nLyUXFGlPv3liaHRtfqnX6z1+/Pj86CTxw9u3b+tYs00nibPdnf0kSfI8H08nhmEQg0Rp0j8/nYxG\njXrt5OTA9sxxPCKEmCU42tj+yY9/vL29nebRYHjMi9JG8ujhQw7k7/z492as+jeffrW9uzPIMuzV\neRL2B8dffvXJ7EKn0+n855/+PE3Tt95ElRMJAAEAAElEQVR8c2amW/fsGzffzpI0juPv3ls333gh\nTVPbcbIkqOGaTmlXSqCR//a//q+zLIsPDz/9/AvdtrgEt994M0qT3b0DTTc7cxZjMcSpbUOTsESW\nL6zfsYDsOd7rr742HA4PRwfz8/PH5xOEUIWtCSve/eKzo/2DVLL3Pv5AcnGwtznT7bWbbqfr7exu\nZixhmOlNx+jWb6+9tP3oqRL5ff3115mEFcDff+s7aZFvb25N+/2DzQ0hxOTwwDTNBgBlWp6cU6/b\nfrTx9I/+/t/7/b/7e599/MnB0eCrzz/e2Xi6uLg432wsLC892ngaI+Deubn98BtTIJhXGGovvvLC\nVw+frLxoQUz2Dg7HJ6NrK7d/+/vfcRjtH+wfbmxtPn5iG/paSHSdwtGU2HQ/HlELUZwnMDaF0QAa\nz9jpeJpJwDT9VBS0Y8qAt3rzZ/7E7rSN+XnS6eynGWP5dH+rrLi32Ht6vJdMgyrPtTJL8iT1uobZ\nnob95HSkY1SvOYcn+ybGdUvPWUYJoLp9NvF1bF578dX3fvXuaLB75/a1jc2vW+1uKZ3T0SCuGKLa\n86MTx7TOz05YWQEpp9PpdDzUCKalgwkSKYcFoFTjhUySKEmSuudyzBFFACAppeCMUEOv2WkaG5ou\nMJYlwwAaVENS8LLSAJJMcMkhkIRiiREiGEIoyooiiSmUUgheMIkwxoahMc4QQgAjKaXKskEEIYSB\nAEJIrmDky5MWSEAJFToZp5HneTKmg8iv1+s5lwb+G9abAAAMLqJRL9IYAcIXVpoAQsg0hgQwOIQp\nQCUsIfAhQhpo6xrOyibE2fOt+Vad2TXWa54mARjGomIU4aWVxb2D/eFwmFflzMLc6enp+vVrtm0H\nYdhqNhu1epqmZZZPokme53Nzc0WVClFahlaWea/TrQoGEBQchElYCpCW5fbR4cAPEY8hhI7jzDQd\nIcTCbOv27dv7+/tJNIVQnp2d+P4kTdOSVSdnp71er9loXNl6SynDMCyKAmA09qcIoXqzoQa+rCrr\nZtO27SovFGkLIRRd+u1rup5lmWVZEoA0yxQNStc0iBDCxGs0J5PJ8fk5QqjRaBiGoQjVlmOp/qMo\nCg5BJUWcZ2rd6vt+GQae52VVmaZpp9vNs8y27TLLKcIUEyyFrWtpmgIhgBC8qrgUUgo10xdFDjCE\nBJW8Ui1ClCcII0ppmqaqWpdliSixbVvXKCRYjdffnmg107B1u0wzhY4oADzOUjVwl6y6moAvmkWE\nJISm62iWycuqSgvBuWRcVCxIC7vmUlMvIAyKJAMMEVRWeeD7/eE08H1CSLvdXO21WFneXmjquqTU\noKlZFAUt/YVuW3adIh7tP3vIynLO0+p1u931oiiybX06Tefme6ZpHhe+5dGJkEJUpkkiXumzNVLm\nxWy35zTqURxnaYJMEwGAATQ0urS05Jp2lkQAIQhRUqSu6w7GQZJlOqWEWLrXIAQp0o2UsiiqsswI\nIQAhhTaYuiHKDBOiGDGmbRmWqfClsixbrZbtOKZhIADDMHRMq91uU8NQfAHVrKm2RUqpqPaqs4YY\n61RTDTgDleqLTdPkjOVZqWNMMA2i+MaNG4ouSC1D7a6CIAj7/evXrxuGMR6PlTW5kHLq+7Ztp2mQ\nF4XrughjCYBl251uNz3ZVTuMubm5LM183793+66h647j6FSrqur4+DjNM9O2EMFciL/+67/uj4aG\nYRRF0Wq1xsORYiJsbD7/yd/9gwcPHiRZChB0XVdAsH90GISx6q/n5uYqzpjgRVEICFTWnmGaGGPP\n8/I8//yrL33f/9E73+/1erquv/rqq++++24YhosLy+eDfq/XmwT+p59+ej4cpFl2fHoCABBFrrEy\nKwqA0HvvffDyyy8jgjudztT333333fv3X9Qw2d3dXZxfWF1djaO0KIq8qNT8VJas3W6rV+GFF174\n+NPPABCPHz5qdFrv/uKXt+/e+eSTT8aTyTSdSiHuv/AilGAyGjfq9cdfffP6a689uH/fMkzbtFqN\n5vzsXJkXShc4127lSVqVpYbw4f7BTLf7zve+DwEosnxra2txfmFrf3c69Tc2tx+8/NLpyYlKptra\n2pqbm1N5Jj/84Q8hhB+9/8HPfvazOI4xxtfXr929e1cI8fnnnwtsLi0uZnE0HY+Pjo62tzcffvOV\n67pvvvlmlmUQoY2NDfWO/bM/+zMIYUuj7dbMkyfPPvv6YSXB8vq1JMtj39cIXpztznbbeeIbWJ7s\n7bIsxJoneZWnFTWIpmmO43BeVVUpBXRrHsZEMy3L5VCCAuK8zNO8oIhknPUWF73eLHKcMKuyrDAb\ntldvZllRluX56dnCzGwCIJZQp5qfxHmSVEXeatQxAmWWsrKym5ZBNZEXlNIwDBFjjmVRDTlO7fj4\neHFpZWFh4ex8ACGJoujZxpObN25blmWZlqZpGCKdWkWW5XnutNuKq6WsWBXnxTAMz/MYL9XwBKFE\nCHGOGavUkk9KCaimOM1lWdLL7S4AAEKEoJTwwrJDQIAl4N8qkPAy1uZqThWXP6u+jiG5KqjfZrde\nrQDBZUoS+NbHFSvnb30OvvX533gOCEIgpZRCCoCBAsdLzhiAAMKqZP1wAoisdZvlyUTNuFmWKVat\nUs3quj4/P7+2tnawt9/wvNdee+358+fHx8dxHAMAkiSNk0QBxQWr0jR988030zz72X/+ebPZVBec\nUqrpxLPavu+Px+PJZKLcmtRCtNvtmqYZRZEyJFEvSqvVypOYMWZZFsY4yzLFhVS+kkoerRC1K1x3\nMhxdUaaFEGpuVmxktaRXcIL6QcaYcqqp1+vqyFVAZpqmV7nCysAySRIFO8uKqS1+GIZJkgjGlV12\nu9WCEGqY6LoOhFSkKnWSV1UVRZGEQM2vipwFIVSlXXllqPViVVWUEDXXIoQU4nJVRxWYr2ZfNRCn\naUohUgbXVwxw9b9UUcAXkdjkyotDDcoEIoSQ4PyqQqsuB1zi23meD4bDk5MTP0wVRwoAoKxUTNt1\nbZMQ0mq1LjxnHLssSz+IDo9OFuZnmZQl50ICt9YQQgCIsaYPxpOSCd2wND0ry1LTza7l1GoeWV+/\n7ofT6WQ6DXzLMU3dyLMEANBqtWzTiaKwSLOF5QWIUXAYxkmSZkVZVRhjIaFOqW5QjVBCmNLzVFUK\noMAQlkXGqooQkucpQogDISpGgNQ0jXMWp4njOK5XBwBAAJRVioYvkjEYY3lRQISUma26uIQQ+S1W\nm4pD4ZwDDDjntuvMdHt5WhA8xRinaXbjxo0f/NYP33v/w5IzUFVpnldVFUtQ82q2V5MAxEU2CX1H\nMNu0IMHTMHAch5g0SGNlyBKk8fl4iLCwHbPfPwNcuLaj69R0TETgNJjMz87ppj0OxohBu+4kg/T5\n9vMKMNM0BSZff/21ZFxy0W133Hr9e9/7HiL46cazOI6poSuPm97sTJYfVlVVb3hZkfu+X6vVAEZp\nmo7H44qxpaWlC9qLRvM8X1lZUerDzz77TGWbtDu9W7dufed7393e3t7a2Uvz7OTkJMtzKaXjOJ2Z\n3un2FiHUMMy9g4MX7t37b/6b/1bTtM8++VSCr7/88uvJZNJrd15//fWKs4ODg+++/Z3BdPrJ51/s\nbG4hhM5OTnXdpIaZV+XKykqj1Xzjre/8h//4l7vbm0WVu67rLi+voIUoCB3DGvb7wXgy2+nGo2nN\ntF3Dkow33frItPzxZG9v7/79+6+/+tqTvd3xYAgqXjPtNIljP2ysr5um2Wq1JuNxxcQr9x7sHRzo\ntsOy4uj0RDKu1kUK00vT9J/+03+6tLT0xhtvvPTSSxsbG3/1V381HY1/57d+9OmnnzqmNb96Q3L+\nyv0HKytLf/7v/m3//Lzb7kRBeO3GdQBAUZZvvfUWxOjzr740dQMRHPnR3XsrTzeej4Zjx6sd7O2V\nZbkw00GCd+t21D/VeeXaNJ2Mbcg9Kpu1mh8GRZoBDEpecF5BCbCu+2EoAInyauSH07xklNrNplu3\nr63eGfoT03EnaQEEFFSzrVq73fODSDJQ8oIjef/F+8Ozs7OT02AydVvdIAhSf0xE5dqWhhCWoszS\naRy1a7Wb164Njo/HZ+ecc9PQrl279v6He2kSrS4tHR4cOzWzKIpnT552OzM3r62XZTkZD6uqciwT\nIejUvFan5ycRQqhWq5mmaZp6mqZxHHLOIcAK7RSCXSlVEEJFFDLBS8YMQgEAJWMSIIqh4AJeYppC\n1V/OBZAYaBgADuVVxZQSSAkgRFJCKQGQEAgIJJAAAAgklldl8tvwsrh0UZBSXhz930KV/2YxBurQ\n/PYXf1PIIZDKaxoJJhgDQiIJEEmSRDcNiLQoihpVZer6JEmDs/L1a9eWl5ePjo9Ho5GKEaw1vCRJ\nNjc3F+fm19bWlBH93tHOw4cP19bWlNmymhCklArH0jR9Op06juN53o0bN/b3D05PT9vtdr1ev7Y4\nkyRJEAQEYUppHEYHe/tZlkkupJSCcVZWCEDVvJq6EU8meZ5buqHregULSzek41KEbcMs0mx/OEII\n1et10zCLNMuTVEm0rzjA6roJFVR8uf+6qkboMgJLSWXCMIyiSMkvbdtWSidVDhljask6Ho/NSw6z\nlNIyTFPTp9Pp/t4eAMCg2tzcHJRAeW/V6/WqKi96KXgR0nWxYsBIkafUFwWQ6jIaWFOvuJQSfCuY\n4eqWgJes5pKzPM8BoapDUmj/FRFM3TOqEQHfisKspDAMA+vG1R2i7ha1EGGcMymY4FEUnZyc7O7u\nuo02lwIRTDSqzDUnkwlrt1WcBsY4SjKs0Xq97lZlmMRPNnd2D09arRYgeqfTOe+P+v1+KSAHEiNK\nqQaxXrIyyapazTQshxRFkUSpMg4lhI5GIwzRjVu3MJeGYWCIAsYnE18AzoG0HefR1hEXVVZWgOA2\nadiuU/M809Amk0nNq3Mufd+HABOCq6rKsoTqGtU1HWPOeSV4yRlA0HLsNM/CMGRVFQSBaRitVksy\nLoSogAQQqu5MvSTqbZmmKbrcD11IBtXqmmIpJQCIc8kEN03TNM2yrMIwPD09VWpFdhkJSTV6NuiX\nnKluC2s0yTOsUdd1oUZqzYZhGMV0WsqKlTxjeZZlXs1+++23T46Onzx8RAgJk/jdX/9qPBzV63VE\nSK1WS7IsiEIAgCSIEDLTnh0MBkEQdLtd13HKLB9NxseHR7NvvzEJfGXq7dRcLvhgNByMR6ZpZ0UO\nAEiSBBJ8+4W7hJCDgwMJgLLBS4tc9Zgq6fP09FQZ3wzOzn/wgx84Ts113Uaj8dZbb+0dHGmaNvan\ni0tL69evffrF52ma33nh7t7engBybmHhZz/76ydPnpqaXpT53bsvVlXV7/d1jdi1OqU0fPTk64eP\nJmH0+MmzYOovLCz81o9+Z319nRIShfGf/dmftbud3/m93zVMrdNrT0dDXSPJZLS8vPzad77X7/eL\nIJq5fbfdaK7MLuiYPHv0WL2RxuMxE+L0+MTQdIDg8ckxhBAKCTBa6M1mabqzsfngwYP57szLL97/\n65//cm55EQtga8bZ8cnS3Nw0DGZmZo6Pj3d2dn77t3978/nzyXh86+bNsiwbnkcwNnQ9jROK8NH+\nwenRcVXJd95556uvvjre303iyDIMKYWU4tE33xRV+cK9F3d2t8Mo1g1dN4z9/f3XX7g/Nzt/eHzW\nleD23bsHR4cJEF3HgbxMB/1PHn7hYU6hnJ9rRwZwdGznuKJalJdZlqVFLqEghFScR1EiJAaazqlu\nm05FNafdxboRI2y2ZlauX3+8sRFmuY4NVvCTw1NFtW22aywr0jDMklQn1KvXOS9nPLdlG5xzCIRO\nIRGkyrKZVqvt1VuNJsiLwfFJWbKEJzMzM4vzc2dnZzO9uUbdLRnzPG846O/ubL3+5hvj8TjLsjRN\n4zAQQlDTZEIUReF5nkImlU1VlmVxHOm6TiimlBZFpk5G0zRt2yrTpCxLJiQDkCIAEBRqikQC/GYA\nvZRsXi5liZIhgat1nlTv2auBFVxypFUtAP/Fhzpt1b+qFRCXMbF/a/b9Nv/q20eq+pcDKSEA6Dei\nZC6FADIpStuqcYijNKmqSrNMIHhZ5KPRCCJECKl59TTPdMuUUioi5Gg0+uijj85PzyzTtHSj1Woh\nAAeDQavV0jQNXdg+QE3TNMMaj8d7e3vHJ4cAAEpplRfNupel2enpqZoIldOAEuNqmna17jVN85IM\nRdTgqxi/quq4rqsqn2rW6/W6iq8IgsAwDBXzUJalWt+qR1P84StNjjr6FH1d1/Vr6+vT6bQsS8s0\ngZSTyYQzRgmBAHDGkjxXxlVKMgSknJ+b831fLYx1qrXb7brj5nmuLKkdy6aUlnmhNMGKua00QlwK\n5XemoKMrLSznPMuyLEvVU8IaVrteCKFaWIhLZ8q/VTLVLXExuQKgyFxXf6OSPoNL6TC79GPnEDDG\nGGaqMKup9+rBGWNMCqJRwzAcx2m32wzQycS3bXd9/TrG+PnW9sbGRqPRaLfbZ/3z6XRKCFleXgYQ\nJ2k+Hk84JGnJjYL1xz4x7NPBaDiacIirqlI9roIl0qxEWPMqQUaj0cSfEpO2mi3NNAbnVZFkJWez\nrQ4XAmIkER6OR5qha6ZZsMqq1zmvJONRkkKMBAQSQYQaXAApZcWYEELTCAawEpxixIBkRY4Qghhx\nzkvOFKJrWVYQhbZpqUtMCBkHgWNa4lKLrAATKSW5vB0hxgAACQDjXF0yTAiEiAPo+34URVVR1ut1\n3TTzsphOp++9/36WFTMzMyWrUJpOJhMqaafb5ZwHYei6rmlZvu/nRQEgnJ2dzfI8zTJKqfp6veE9\nuHN76/Gj0WDIOa/X67du3VpYWPji888LwUzbmsZhIVjOq5xVjDGia7Ozs/54lOf5/Pz866+//vVX\nXx0dHjbq3vd/8I6QrExiPwxM07QdJ03TOEurqrp+6/bm5mbBKst1dF3Pi+Jwa2tjY2Nubu769etM\niuPj4zAMKaXz8/MKVhqNRo7jNBotCHGj0eh2u+PxOAxj1dSbplmv11utTqvVqdVqKytLewdHnXZ3\naX5hOBhTzbj9wh3DMB59/Y2ibcdxnBeVRg2n5j159jyvqlu37wghkjh+8MorN6+vnZ70DdN6+7vf\n2d3def9Xv9IptQ3DW1mOoohihLm8/8KLZ16zDJP11VXbtiUXJycn91+8hxAaDodJFB+dHC8uLt64\nccNxnFLIVqtl6sZocD4/N+uY1ng0uHnjBmcsi5PA97Msm52bHY2nsmJIguXl5b/zd/7OX/3VX83P\nz7/6yivDweDu3bsvP3jpj//4j9//9XudZmt1Yen09PRf/g9/nGXZ9dU1gfAXn35SFAUvqypLv//9\nH3zve9/7+c9/btp2HMdpnsVBWLGqXq9dv37dtswbq+s3VtaqvPjqm68dSjuuszbTrfI4HE2D8zQ8\nP2lbhkijzkx7rbEY+dPT03MghEFwXgLOOSC44CKKM2o448k0DbMS4aWba9hxqetWQp5G6WtvvPHa\n22+PssLf3NY0g0gQx3GtVquSPAgTVhRfTaaOaWiaxos0z3PD85q2PZ4Mp6OxrtHra+vzM7315aXx\n+eDs6FBWDEhp6sZ0PAR1sLKy8tlnn9m2vbAw//DJE69BeVns7mwvLy9NJ5N2u5lltkqQ7XZ7UkqN\nXsB9KvOgKDKl5UAIQaSMhy5sNyilCGHTtpjgZZoBABDVMcQSCQEkQkQCIABXubxAmVAiIC7ORwCh\nqu9/u+J+u1jKb6lN/svvVOepauOuCjD4nynW//8+GBRAwc9AAiCZAFzIigtT18IsEZphGg3btgud\nuhTMz83Ik9Hu7u7du3dVLE+j2VAiolqttr+/HwRB02scHBxomKyurlqGeXp0try8XKvXlS5ISiil\nTAYjBb3Oz84pqjClhLFKSrG5ualGCM/z1N5E/aA6mlUeH4RQ7Xqbzaaqygq2Vcegeu2uvAxd1+Wc\nq7gIhFAQBIp6DQBQBBr1an4bz7+K51OaH0WTdl1Xkc6m06kyalWdvYIhFdbqOE4huXIKa3oNXdcp\nwmq2WV9fL4oCA0gIoZjMz88r8PLqBVWTq2oONE1DlFyx7SilRKPq+5teU0HT6ukqyZMikUkA1G2g\ngHSAESEECXkFPqsKelWbrxAUeamHxhiXgqtvE0Igtd9EUhVpBVkjRJyaaxhGxVitVhvH+d7e3u7B\nvm6ZQoinzzcGwwHASCKoaXqj3cmybGf/YP/oWCUuW/WWbrsCkWmUkPE0TDOJCeOQUDMIgmLqG7ql\nwMs0q4pSEN2x9KqQEER5akJJDDOO46ebW/gGPI5TodB0zmqUVmU1GPW7vZ4yIYuTsBhP/SjsDwb1\net11LFaUcRxrmlZ33CiKqiK3bTspizzPK8EV0M9VzhRj9VotjRPbtuvNRpUXeVlgjE3HZmmiLqWU\nUl4iD5xz1bOXVQUuM6qIrum6XuU5IaSSsioYF5ILGSdJEIatdns4HHutpm3bZeCDy7r+D/7+3z8/\nP//ggw+CIKg0jRDSbrcppcPhUN1JmJKqKrMi03O9LItXXnnl8ePH4dRXcVqWZTmuy4WQGA2GQ900\ndF2nlsGyjAPJoHRdO0mi4bD/1ddfbD5/3m403boDoLi2duPp06dJmpuWwySQCLs1D2P8bGNDBTko\nUl9/MIiiyDCMvCppkZ+cnEwmk7W1tR//+Mfdbvf999+PppPbt29vbm7PzM7ouj4cDvv9/uHhcZQk\n9XodIAgJnk6Dzz77TDN0z/N+8ctfTSb+7TsvIKrduvtCr9eRAP27/+nP4ygyTfOVB/ebzeZkMt3Y\neI4QAgg93dyqJHjl5Zen0+f/4v/9r3SNWIZ569at9ZWVPM845y+88MJ5//TJxrOT4+PFxUUCwEfv\nvTcdjX/585+f37x1//59jdIoDKTgN27cmJ2dqXk1CeXM/Jxpm2me1hz32tr62srKztbmxtMnpDfj\neZ5GqIRACuFaNta1VqPJKsEEHw2H4yjY3NxMkmQ4GPzJn/wJ5/z48Oj9X7+XxUmj0bh18+a1a9ee\nPX4ymUyatfqNGzc+//zzzc3N1Wvrvu/X3Vqr4c3N9P7oj/6+lBAR8qd/+qc3r99govriiy+aNbfT\n8BY6bVDkmuDJcPj1qB+F/vLiYlUk0WRAvFrTIGH/OOif5efmi7dvBP0znuYSIyZYnmZ5kWu2gzRd\navx84iPdaveagprLN+6M04xTYmi6YUqn2wuKMs4LzoVtWBqhNqZ5mloYG7aBbDMMQwMDwPI0mBqU\nBGcnoF53KPXmepZlvfLi3Zvr16oyzyZTf5B6jtPtdomEIaKsEq1Wy7btMi+6nZZOSJkmuobS2P/l\nL/6aUP3WrduYIsZ5HMe6YRRF5blWkZdcMABAURTqtu90OpZl5HmeFqli6Ki3WxzHiGgQUwnzklUI\nQINQCBCTQsNESgmAQoaFmkwggpJf+WBcVNmraRUK+ZuMYfUGB7+pp1c/dVV9r8YXNc2oI/Lbu+DL\nve9vvvJfFngpgQRSSo4kgBIBICrBC14ZxEqLimgGMcyFpcVrq4s74XiQxiurqxubzzElaZqeDfpM\nislkojyZVX26fv36/Nzco6+/CcPw7TffEiwFECldb5qmBweHGGPDsDDG8/OzluUwxr755hvXrSdx\n3O12R6cH9dpFvoiuaVmWSSGqsuSMSSmLonAcx7HtKAynk8nZ6alrmb/Zj1KqdpwAAMULUdkGKndP\nWQSWZanQMinlaDRSOiUljQWXWK5amsZxnCTJ3t6eIkYpe0FFC1DHOCFELQevXhpN06oiN3XDsqyl\npSVlxyGEoIScn5+zolTgdtNrtNtt9fhKUhXHMaYX/hhhGAIAECXiMl3RcRzdNFRQkhpqq6pCCAGI\nVKOgugRMiGJNqwEXaxfWYGrqVRALv5zN1IVSXxHfMs+6spySUoLLtQWEsKwq9b+4kIpT7ft+nudJ\nWgGIfX/6bGOTEFL3mjdv3ZmZmbl161aWZZ7ndZqN9z/6+F//638dx/H8/Lyflkpb7DhOVXJdMzGi\nEsLuzIzgII7OKOHwQnHHoygmQRxhQ9MsczgebB3sYYwJQCVjH3z++Wyz7ToXFt6DYMKFKDnL0zEA\nIIhDVpSOYwmI4rzkIIjj2KvX6w3Pc2vNujcejoosZ2UJCTYdW79MScOUQAglF2fn5xqlg8HAtR1e\nVl69fvvmrTRNwQSpqy+VKgkhBcIolzJxmbXHOC/zrGSVlNKrGZAigamUkgOZFjnAqGCcSVGW5en5\nmcI0FMEvDsIizYo0k4xrJrEsa3ZmhlJ6fHTYaDSYFJHvAwA0TIo8P9jfZ81WnqTqPn748GEYhpqh\n3757J0mSJEvjIqOUCiARQkTTSsbyIFhcXBSMHR8fK+FHkiQnJydcAKprswvzmqYlaUp0DSC0f3Ro\n6Uaj0VAyEs753uEBhHBhYeH4+FhRM1Syyng8vn79+oMHD3Y2txzH2dnZGwwGOqEnJydCgF6v53le\nxdnR6UnFhGlbeVxWVbW3v//i7Tu1mheGse+HWZYcHBwsLy/fvn334cOHnld36p6ACCJIqH779s2y\nqioh94+O//AP/16j2f70k49ExRYW52fmZrf3dpt1b3au12q1BK82wbNX7t27c+dOMIne/fkvDMPo\ntjuqTfY8D2NMNS1OkmkYHJ2ecAiwriV5tre3l2fVaDTiVWUY+vlwMJ1Ou932863NhcXFtfX1zd29\nsqp2dnYM06a65hBs1N0PPvggy7LN589XVlZ+8nf/4D/9p/80HY11TVtfW/Pcmk7oC3fuzs7Obm9u\nmaapYVhzrSKJDYLNbvv0+PDx48cvvfSSlLKoypcf3Pvggw8mk9HS/NzGk8e9Xm/hjbc2nj785ovP\nSZHoOnXrdnh6UOTJXKfZsU3Mi4zzaDyaHEWlP8UQzDVWwiwpi4wxxgXIOcdMCqxNs/w7r37nzXd+\nQGy3NjPzn3/9/sHZmaGhQpbbB3ub21thHDVqNSxlEYcmxK5tPbj/4q0b16fT8Wg08v2JpmkIgziM\nBoNBt9tZXV5eW1sjCFuGGcfxpD+gEM51u7qmEQD3dnYt19EwoZjfunXr7OyMldX66tru7q5OKZfS\nn4xM251OJ5bjzM/Pn/YHlZDE0C9OYQmpRkzT1HWzLHN1ToFLDgshhBCspgTDMuqwrhGSp5nkUkjJ\nEQQcQAmQGnMhAgBjALhU06/4W4XwauP4t6qyGn/Bt0DFb9fgKyoWvww+UpX4vyzA8Nul9zcmWRe/\njkEgVQCVAAQACRHnspA8BxUHUqMkq8q8Knv1ul7E/Z1t3c6klGma6pbpeV5RlhVjzVYrDIJWq3Vy\neLS7vbO4sNDr9UI/2N7e1nVdee8sLi4q9LjdbjebTQhxkiR7Z1tFxauq0nWqaURKLqVUcK6aMg3D\nUEDUZDJRuzbXddVDHR0dqeJxhVsqMhrGuF6vh2GoOFMIoX6/XxSF67q1Wk35SanEIUUfUfPW1RVT\nGirlaGGapuBcPZ8kSdRArKiOGGPF9uKcK2FknudqHo3jOJz6knFV5hGEhJDJZGIbpuu6SZLEcaxO\nrSzLGg1P7V8hRvgyRAEhpGZceBkCpChanPPRaHQRy6HrQlwIqdXofHXbqHtVMsg5B4yrDYXSHSmw\nXVUQ9evQpYn05dRL4QV18DLdS/7m3iuKIq9KJvhwODw4OMiybP980mw2e73e7Oxszau7rqtEwKPJ\n+M7tuxSBSRivXr/+f/nv//vz8/M//dM/jZOsqqoiz3vdrpAMEwgAQQCkcVyxIs1izphlWV69Pjs7\naxgGGYZ+kqW6bWVFnglmGVpRsXAazbXbxLUyximliyuLeVFs7Gz5QWCZLYQA4wIQotsORiCJApZy\nKPjy8vLszIxrGM1Go+7Wwsg/PzlNCFFAyjTwoyhSAIiUUtO02dnZ05OTPM95XrquO7cw/+GHH2ZV\nKSp2NQTDS8WhehtjhIiuAQCyIo+zNEsL27C5BEmaKfBBSuk4jtdsFUUxMzerZL62bSvBOGPs/V/+\nyjRNRzdfuHnb87zz4aCI00kaL87OSSmjMrI03TQvhPCz3W6ZZC/cufv48eOiKIqi2NjYIBp1HAdr\nFGDk1lwAQJ7nEsKiKEajkSFZmiWsqLIsu3btmmRc5aGGYUgNfXV19c7du59/9eUXX31pmU5vZm48\nGihXprfeemtlZeVnP/vZaDSan5+fmZlxHGdlZWU8Hn/yySePHj1Sy5hf/epXCKH79+4pd5hy76Be\nr88vLh4cHPhhoGsm46nruj3XOTg4sDRNOdR8+eWXhBDLME3TSpLk2rVrisSIIKnVncXFRcZYs9lu\ntToLi8sQwqOTs6Pjg25v9sb19WAyPTg4aNTrrW5nMBiwsqiq4q033mi3m5TSRqPzV3/9M8O2vvv9\n73388ccbm8/v378vEZQQBGmMCemPRyeDcz+L6/X68fnp7/3o9xhjn3/55d/9g7/zzg9+4Pu+bRmd\n2Zlx6M/MzEBKoihYWF7SLfv8/Pz4+GRBX/F933Wc2dnZm9dvPH36dDwY3rxxA0L40fsf3L556+sv\nvzI0vdPp3Lhxo9tuv/HaK91W++nzjfv3HzRaTX8a9jqtLEnSPP/q6y8++/iTqqqSJJqfm1t76QGl\nFCXjJpU3uo3u/duU4pmZma2t5xrBC7MzWLKdjacr3ZYphT84n0zG19bXdY2gFEAIbbfGyzJkLIjj\nKC9fefN7r3/v+y+89GqQF8SpAYgLzh2qO5QkSTQ8O59ptE1D50niIHLv5o23Xn9tptsmCO7J6odv\nvpJlmUTKtz07OjpCEiGE2rWaiocan55Czgyd2oapXObH00mv062qSlZ8be3awcHRaDRaXVne290G\nQkAAKEZlnu5sb9a95q0X7plRHEWR6zUYK5UQsywqTPDs7CznFaV0MBgYhmaZTsWKqqqqiiMETdM0\nLRNYlq7rIfLLJOMAQgklkFBwgjBGGJHLAZerJhupmijlRYFEEEJ1vAIhASAAQahYzRJeQNX/M5vd\nq8+vivHfKuF/63M1210V46vTQwLALwMKFYItJCy4EDqOk0SDkFfFs+cbxyyPCHQsuxK81vCmYYAo\nkQBEUaTr+urq6szMzMNvvllZWYnDaH9vr/FCXeU8OhZpNpsKuR0Oh67rtlqt8XgMACiKCkIIBFte\nnE/T1DFnJON1x+61W/Pz857rqHe0bdtBEECvLoTIkziLIyRFo+YGtgUhJBgjw0jTNIljxWcTnKsR\nuSpLKYRGKSWEVVWR5+dJQjVNOWS5rqu2yEpDDCG8yjZWc3a73W40GkWeKyFvo9Go1+uKg33lXnl1\nJfv9PgCg1WphAHVCGYBKvg/BhScXK8pat7e8ujoZjQaDge/7CmpW7C1N0/ClwaTqDyrBFf6sUsPz\nslCAuSrMijzFWKW2kFde1lcFVSEiQog0ixSF+8oMFSGk1itKvI4us6Su6j0hBCGsejshBIQIY6xh\nTTUHat98NTovr664riulRAQrVlqapv3hsNVq/+JX76oQKqJRx67VarWXXn71YHfr/Pzcnwzrjh0E\ngRBCo9QwjLrrmLqGhAj9cZaErluvmg1WFvDt//3/ARGsmYa653SdirK6vrKWBVE09XWq2aZONI0j\nMPGnVNNYBg1TU/E4hmEwVmkEQQmAYC2vvrK4dP/uXcmq2W7vow/ff/jV197aGgDg6Ogoz3PlB1mr\n1cIwvH79OgJwa3MznPqOZbuW7dh2GIb1VlP5wSpKOoQwjRPTNBHBSZJwIZgUmJIkz4ajka7r3WYn\nCALVNHEp1UVXr5njOAQhpQ03DEPxF8ZnZyryuqqqtbU127TSNHn27BkhZGVl5fjkMMuyGzduhGG4\nsrLS7XZ5WczPz+/s7/3Zn/1ZWZa263iNBkKoYFVVVY7j9IeDPM9rtVqn0xkMBnVK0zQ1dWN5edkf\nT+fm5nZ2dsqyfO21N1rdzpOnTzmQZck2t7bqDc+yLH88MgxjMpm89NJLc3NzZ2dnqvNV9bXdbvu+\nn4RRr9fb2tpS/d3S0tLc3Fy71bp/76V/+S//paZpinwxMzf/+OnTze0tJrhTr62tX3Mc53BnbzAY\nWLaJMX7z9Td2dnam06lpaMPhcDoav/HGG1vPN+ueu7q6amr62dnZ2TSYm5sDADx++Oje/Reura68\n9+tfr68s//aPfutgf/ezjz95+vjR//of/sNbt24EU79er4cZ+/Wvf62Qq9FwuLq6ury8LIRAGJuO\n/XTj2fOtTbdej5J4Op3OzM95Rk2J0NIk+v3f/zvLy8ujYT/P8063O51On248Pzo5kRK02t3BeFSW\n5YNXXiYYf/jhh5PJpFH3fN8nEKl4DAIRr1gQBI26Nzc39zs/+lGz2QyDEZeiVqvt7h/mZfn55593\ne7Pf+c53fvnLXz578tTQ6Wy3myaRa9kzs92qKGvjYyU3nF9cMC1HnVNFkXn1+mgw4EVuaGTUP994\n/Cic+o5j25KcDoYJYwkCJ9PpKEqkblDb/T/+n/7PBQdPnm8uX7/xFz/9/06TRBBMDNOvkjzN5ju9\nKk6SyWRtdu61e/e+/8ab40G/yJIiS6WUrU5zaXUFYnhycpIXLEkSpfrQiB4EwWg0klzouokxTqNY\nCCClPDg4mEwmnU6nyka2aY3H44cPHzqO5bru48dPgyhEmFZCAEh126nVm6Zbo7qJMXWQvJqBIIRl\npSYMlGVZUWScc6r9ZkzRdd1reXmWpXGSxUmaJHmSQCE1TICQQjIkwbf7Y3VsfXuWBSoiSVVZcfEB\nLi3yCUQSXeTKqSNVtdHqdlKaq3a7rXRx6jljAcC31skXyDYAF5ya/6I8T/PkrbfeKops48ljLIEO\nESzLmXqTSJxludvpmJ3OKz/+YaJT1PJSURkMmKbZm5lR28ooitRRYNv2zvZ2u9Gsu7WvvvzS1PQH\n9+6fnp5227VerwchrNVqp6enaZoTQlzXLYpiPB5rmuY4NWUnoibjYNhvtVrNZlPNIVfXSk2c/X5/\nMpmoK2Capuu6zUZDhetxzlW5UtOwsnGYTqeWZfV6vbIslQ0WJkRdN03TVldXi6I4ODhQzDvLshQs\n7HmecnBkjDXcmmEYCmVUFGU1UKo4W/Xc1C9Su4l6s7G1tVVV1dzcXLPZvEC/02xjY8O2bVXj8zzn\nFbs0ygAqccG0LWWycVHjdU3ZHaqimJeFGmFFwdQIyxhTW14AgDKE4EJACFX2GoSw0W6VZVmmmZrg\n1b2HMVbphGpiVjenuAw3xBgnRY4QMqhGCBGcq2NE0zQFl1aMTQJfDevPNzd3dnb0RjvPc0oppXqS\nJBXnrVar2+0eHBwOxyP1GkGAGWOmY9+4ceP26lKWZYeHh6enp0BKy7Js2zYNm3P+7PGTZrNpWbam\naY1Gg3PebrdJUuae3fCjMC4y16hT07LqelKUW3s7nuWUjB2fn2FKxqHf7fV0KXEpuaiyPLdtGyIE\nIAKIQAkkAMdn56ZpQkwMTT85OTk8OM6KCkynQojpZAIRalpNVUJ0XT88PDR1w/O8uuMWRRHFieom\noijinFe2Y1kWpbTIcsVHwBhzKSBCRVUCwQCEbr3mum5VSoAIprAsyzhOBIjUD5Z5MTs72+v1zs7O\nTo+Py7IcjUZJkjQt9/6LDwhBn3/y6TeffzkzM7O0vFi3nTzPb6ytYs42Njb2nz+fm5ubaTSW5+Ym\ngf/0yZMoil596eXu7MzZ2dlgNDw5PVW0rCiKeMUIwqysao4rGE9HoxvXrr9w506tVnv+/HmZlxgh\n0zRrtdp4PN7Y2PCj2K3VmOB5nhesWl9bW1lZGY1Gjx492ny24XmepRvn5+cKMFlfWbV048OdXRXW\npHIRhBBJkp2ePvnow08QQrZtf/bZZ9975wdra2vfPHrUbDYlgMdnp51udHJyMjrr67p+9+5dlU6q\nVkFBEDiOc/Pa9fX1dSjB5198yhiL/ODevXsdTXdd9+TkREIwmUy+DP3ReIwx3N7diQI/SZI//MM/\nfPHFF3e3t+bn59MkGcdJe7bT8LwnT57YnjO3PD8KxoZhsIwdnR+XrMjKrE48SKDbrCECp2Gg6zrW\naE1vjAPfixrnw0EYhhxDzjnV9bP+ecVFKWR/OFhYWPjBO+/8xV/8RavVeuHO3cFgcGP92tnZGcHY\n87yX7z/AEP35n/956AdSyv3Dw4nv376xnObF3t4ewvTVV1/95ptvtra27t6+40/HzZprmQbizADA\nsygpi8HJcX/z88nExxp9/fXXX3jxvtdsmEhKKR598TmG0HEcg9Qcu9aZWeACZXlepFEhpdtuJ2Eg\nKS0ALIrqB99/rTs3P/XjlbW1+fmlB/fv/+qjjzhjVMqeV680fXC4l/v+q/fu//idd+YazSr2QR7n\nvp8XGSEoC9H47IRoGqhyr94gGEahf3beVyCtKCuESJ7GKmfTsizHqaVFXgkOCUZYw0TTdLPdbsdx\nCIS4eX19c3PTD2NdNwBGVZHHcaRZds00NcOMzs4MwxAiHw6HhJBG05NSBsGUMQYhohQBCRiv1BRC\nCEEQXixiNaoxvaoqwAWmVAqBOJZSSiAEBConmHOuG8ZVhbwYO8Rlpg2AAACIkBISM8YqKRVSqjrm\ny62tvHLT/TZ1SFxE7HHwrQ8FJ4L/5Y9arabaWU0zCJA6RECiSgKIgFl3M84tnXIIzvp9A/BpEmkc\ntNttt1ar1WpZWXAg683G2J9qmtbr9TRM1KJUEZW73e6Na0tKI3dxRvFKFUjXdoos55wTBFsNryxL\nXpWT0dC4dJlQl6soiiRJ0jT1PE8RKtWiVBVCXdfzPFewsNKzym8l2F8S5ZAa+1QsB8L49PTU87xm\ns6myFGdnZ+M4lpdZhFeyItVhYAmEEKo0Kr60EuYmSaJ6IF3XlU+7+s9KcKUVVsQ9VpRVXiRJ0ul0\n4KXfMuccIAgvLVPU01O1Vt1XlFJILuIRL9KgWaXaEUe31PMUQmBykf6k7iXTssqyVLZfisAFAEiC\n8GpYVzeqIlupqn/VT6irp2maQFD9RsYYuuQZ5HkuEQQAWJYlEVSaKGVVLTRNcdYglK1WA2BUlfz4\n+Nit18I4yrIsL0vLchRKPx6PxxahlPZaXq/lEaKpTkL99iRa6Ha7jUZDZSaenw0Yq0itVtN1fTAd\n66ZZsmpjY8Or1RpOjQPY6nQ1QvOysl1nmiSNdgdAGAYDLjR1B6gcX0opwci1HS7h9s7e8cG/oAD0\n2m0oZafT2Tk90zStSDNq6ILz6TiSUrr1WhAEGqGe5+VZVrOda9euKWcMolHGWMmZzrmi5xVFoSIe\ndYKFlH4SZXGBNSoRFBDUajV1E5eskhAAicIoybLs7p1bw/Fo4k+hBGpRz8pKp9rKyoqU8vT0FGOc\n5/k3X38dhUGRZrZjIiENTV+amwvDMPXDrz75ZHB8jDTdMIxhkqZ59tKL97I4efr0aa/bPT09nZ+b\nUx0ipbTf7wPGYz+Y67YX52dbjWYcxxiiOI4AAJQQxcu3bTfOcgCAYRhxlmOMV5eWXdsxqLbx5Kkf\nRqp90yhFEL7zzjsrKyuPHz/udjq1Wo0Qcn1tfe/0dHB2ToiGEFL9bJZlnU7vk08+cWo13TSOn55C\ngp2a2+/3zwb9+XZndnZWSjnsDwAApmnu7W43m01LN+7du1fkqW7Q2dnZ/Z1dBak93d2/e/duVVW2\nbfpBEEdBq9OuefWPP/643Wy99uYbr7/0UrvZFKwqi+LZs2fHQXCwt1+v14fD4Q9/8IP5+fn333/f\nsqzllZUvvvjizbff+u53v/vNw4f1et2t19Shr2z9Hcfa3t6uquq8f+r7/sHJ8XQ6pVSvNbx3vv8D\nz2v+1c/+s2ma/+Sf/JNarXbn1u3T09PHjx+//cabS0tLO9vbr7766ksvvTSdTq/duH52chqnybPn\nG2ma7u/1AEA379x+8d6DLMsrxjDGH3/yoWC8XnNNjKssRlUenp+fTCe721vm+KDeaK6tLN1aXVlb\nnNM1M82zcDRqOo6UkFd82B+UZYkQMW23qDjHVbM30w+DIMsPzwZ2p/M7v/1jP0r/n3/8x7ZVW1xa\naXd633vzbcbYYDg8PD4a758sLS6UlDaajbvX1hbbLSz48OwEcsbLzNJwveFhSpMolFJWnDFIgZAE\nYcZKVrALxV1ZSSmJBjVN00wDa1jTNEIpF0JCHGUFQGh2buHZ04ej0eD6+rU8nY83niHJgERAsDD0\nmZAAoU5vxnEcpchQM2hZVAhDXTchzA3DIATleZ4klQRCVYj++TBLU+UkrGkartUghAbVpuOJQFII\nKQUAF9E0TAgBWHU1g2JVGzFQJx2+HIUR+A2krFGqvI6vkOQrXrT8lnhJbQGFEOByLLv6F/7Npe/f\n+siybG9vT1RllqQagoTqCMI0y1MpG51uWpYr7ebM/MIUynqvpyVW2B/FWbp7sN/tdqMoAgAsLS1N\np1MI4ezsbJUXWZKq1ZKS01iW1Wq1LMuKokhNjYwxUzcwxiocHgCg6zqCME1TLqVmGkLZm2gaxpgS\nQgnBCPnTqW1Zhqp+l8znJI6VyFVNeApMVv8JAFDbJYVV5HmeJImUEl2alkRRVFXV/Py8YRjn5+fK\nCater1+dG6qyystYIdX3XBVIx3FUIZSXQiBV/FzXbTea6vyXXBTsIpVBlXB1wigERdUe9fQUPnGF\nJ1NKLzIJOL8SCMFLEwz1DYQQauhXoqyyLJvNpsKWDcNQOhoI4bg/4Jc5jFe3jdqUi0sl2xXi8u1n\nQggxDUPTtIu0acGharhtS01Hqhk684MwDMNg6tZqc3PLlOqn/XPOeZallBJCSFYUCmY3TVM3DZW7\nowCGw8P958+fZ1nRbrfrzUYQBFjDF17QAJydnTHGiKUbWZYVaWYSXK81BOOirPI0e/Wll9eXVwjC\nZVnGadL0GisrK7fv3Hn22Vf94WA0GuVVrviQUIoqr4CErXa3ZtmDs1OIkeU4grHJaLS2uOw4jt/t\nMcY0Qx+AEcL41s1bT548GQ6HCKEoDDVNa7ZbRVVCCIlGpZSGpnPGFTXJtu12uw0AQARneV5VVZpl\nOpCQ4KIsJ4k/Gk+Vv4kymVU0Ad2wDg734jDqtjvtZlPTNF6VAMDezAzG+PSsn2UpJFhTDMAgbDTm\npJS2aZB229Lo/v7+7vZoeHbuttrtdrvmuKPB8Fe/+OVwMl6aXwjDcHV5ZXV5hVKaJ6llWSbROGOd\nemNpfs5za3mWHO4fTCaTwXnfNK3Z2dlPPvo4ThMBkGmajuNQ3cBJrAxWdnd3FYxcr9VmZ2fzPK/K\nMouTbqsdTn1/PJnrzcx0e0EQ5GkGIZxbXJifme33+//V/+YfH+4ffP31wzTPgiD4+c9/7tbra2tr\neVUmWYoQevDgwfj0jJVVFITr6+vXr6+HQbC3u70wO9ftdkfD/mg0evz4sWvZ6+vreZ4mSbS+vk4I\nYayUUtZqNa/u1uvusN9HAMzMzd6/f//k7PzRN994tTqvGMGa4zg/+clPTNP8kz/5k8PDw9u3b9++\nfVtZ/HDOwzC8d+/ehx9+ODs7q3h5c825g4MDhFCn02KsGg6HCkyzpSSE1Gq1Wq22vLiIqd6oe2dn\nZ4LxRt07ODh4/vz5ysrKyclJr9eb+r6maaf9852dnXavWxTF559/Pjs7KyE47Q90w5hfWIqS+C//\nw39MkmRpaXl/b+fa8koWBtPhOU9ilsXhaBSMh6ysFtvdmZkZSunTJ0/6Z/2FpcV6vZEE/szMTJSk\n0/HE930EiW3bvXbHc2t7hwfYNM8P9nZOz1JW3b1x69a9B598+mWcZMPRNEkSxza/+93v3rtxbU/H\nRTipmfjluy8Y9+93PG9pbh5zDjmsufb5ySmXTCeaFDBN86zIGZdVVYEoVQIYXTcpYgAAVlYAoSzL\nNKSrwPA0z/IykxAggquS+JORbRrNZtOynPPjg8l03G42rq2vnZ33x0EkMMXUiJOoPDmMouj6/NLV\nzHRFmFIYsqZpGEM1OsBLbSWCUKEmkvEKAAgRq8o0TQFBkAMphbIrghgRakAIw8gHAEB5odRUtRZJ\noGlaKaU6IzGAVxwZUErxLcnvxSoXwisjhatnqMoAhX/DcEN9/C9VX1W5kzBCQOqUEggwxrpGJBdS\nwgpCjqGkRBKEdBolYcnY/NKi7/v9fn80GiGCXddVDjBhGEohJOOu7bRbrSLNgJBZnGjaPCWUuEQ5\nGydJwhkjGAMo3JpjGlqSJEWeFkWBEGw0PCyllKIsC4SgplHbtur1mipXSsdiGBcTZxiGUcQUlHpl\na6UIX47jqKqjShFjbDQa+b5fliXVtGazORwOwzBcW1uDEJ6cnAghut2u0pKo6ogx7nQ69Xq9f3J6\nxYRSj3llLPht/o2aetVkadu2+pErhpTSXKlB82pmvdg0xbF6Ia7YyKoEqp9CV8bUnF08B8aVvApj\nrGBq9Tiqa78KbAYAKGT4qm9TDlnw0itCPbK41I6rGs8YE+BCZXeFr2CEIIQEa+rPQRgRBCmljUaj\n2WzW8+zo6IhSvLa2dveFeycnJ3t7O0WZMcZUOiTEpFarua4tAAjDUIhC8QaYFIPROMkLu+Ysrq0I\nDiTCJRfBeJSVBYIkznIIIZkOR0srK2rNmcfJbLuXp6kOsT+c/HxjWzI+HA7bve71tWvTwXiP7rz+\n+qsfffTRwcFeXhaW49q2bZp2FEVes5WkSZKkWZYDTTsfjTUEnVrdc2uU0hThJI3KsqzyAhIMpHQc\nZzqdLiwsMMaSOH62+TwOwuvXryvNK8UkzQsEoeM4gAsCUavbYYJzf6o2+QWryizNWQUzqNBgTElZ\nlkwKu+Y2O+3n21s6xd1ut+a4EEIpuWKW+1n83e9+N2PlBx+8V5TFO7/9wx98/53nz558/fkXZZl3\nu91gOm43G1EUsbJACGZR6CPgWAYl6OT4sKyqRrsleBVNs/3tLdM0nz99ZlmWrmmapq0ur8x0ukkY\nHR8cDgaDhtdyLRshPB6PX3vl1Z2DvTQvgyiUEjHGJOO6rp+fnam3rqHrZVGsLC6dnJwMz/uWZX32\nyafKhQ4wEfpBlqZ7O7vANldWVgBG0+k0TVNEqABypjfDGEOYhGF47/790XQS7e/duH0rjmPbNIbD\nvmFo166tGbq+eX5+89q6YRhSMMdxfv3Ld7/3nbeklEkcAwBOT0+XV5b29/ellGWVc1FJhHzfj5Lk\nlZcevPDCC6Px9LPPPnv25GnNdt568/VXXnllkMZHR0dff/WVRulcb8YxrZdfvI8QKsvy9vUbZ8cn\nywuL333jLUzJwf7+T37yE56IYOo7jnPr2nVC8MnJCRCsX5xptbptmEEQAiGPD4/a7a7nuJ/ufbRy\nbb0sSxVz+5Of/OTs+OTg4IBz/qtf/3plZWVxcXFldXXq+3bNlQg2Gs0oGGkQffrlFzs7u+fn5/V6\nI01Tx3F0TRsF/tHODosjC0lZZjM1d2F+ztJwFiePHj8rimJ5eZnqRqPR8mq1Ms+rLEWC27oGAOBl\nmpVlnufTLB2engR5PsnSmw9emVtd+c8//8XK+rWlueX333tvd2t7cXZ2cnaOy7Lr2HNvv2XXvaZX\n1yltNxuCV3kcG1SDQNheDQAAJJomSRwniGhU1xjgvGSsEgp4BBiJigGEDU0P4wiXJcQUAwkh1HTd\nsA3OOaG6AEgzTIjx4uIiElX/9KRWq62vLAMA0iKPi4oggxItSdO9yQTl1fz8vOM4YRgKIVzXLcuy\nPzhXOhblo4SVyINiAICohG3YGiaKSWuaJmO0KIN63VVlgzMmpbiaWgzb4peuQ1BIzjmvGOPcoJoa\nggEAyo6SSymFZCy/ovwokFOdpKrwkEsXW3ViQggh+BuA8yVE/Tf2vt/+sCyrSDOCoI6JKCvOpYRQ\nSGi7TlaV2DBKwYMkRhiP/CmH6O76jVqtZjn2aDRS0X77hwd3bt3mZTWdTnVC282WemRN0/IkHY/H\nnPPBYHB4eOi6bhzHNddVrE9TN4B+sbJVsEHNdso0lVJCCSTjvKwYRLqua5rerHtFUbCiNKhmGybn\nXCcUOW6SpBhjU9MNw8AAqnQ4DRMBkagYwMS1bIjQeDAMqWYbZiWFoimpJ//48eMoiu7du6d0zMfH\nx+pCeZ6nkFU1Xyo7iyvrKNVJqOp7VcZ0XaeGkSWpasiYCo5kTHKhm4YqsSqZ42qK1TStvOJzAaAe\nWb3QjP+GaauwFoUM25p5VUHBpW+lsiZM01QtKDHGcRwHcaRQaOUrou4QBZkocPuC5IyQ6jkuOgwE\nNU3Dmq6UNVmWaZgQQizXYYzleQ4wkhCoBbmmaQ2vFoVuHAVVVQT+JE5ChFC97pqmXatHQoAkz8qi\nOj4+ZoxZjm0KEcVxnue2bduuY7k13XKyUlBdi8pyctbPitx1XdMmBZR5nhEdU4NQz6kdShT5IRWo\nyDK70ZqOxhSgF1681+/3T87ORqfnp4N+MJnqgPvBxDAMTLUsS/OyIFQHEJ4PB7Zh1l2nUfdYlkkA\nqKbfuHlbFDnjvLSdoiiophFCxtPJwcFBEAS2bS8vL6dpur21Fcdxkmdjf5onqaZpOtUYY45tm6YZ\nB+FwOESUFFU5jcK8KjElmq5zCBBCtXq9LEuqa6ZpcCAhhBADznl2fJIVBaUUICgAUO9nz6198Nkn\nDIGTo+MwS6qiiIssZ+Xc4sLGxsbW/q4GsWXqt2/crHu1MAqadc+ybERIkeXNusekODo5jv3g9o2b\nz549g0K2vcahpvOyQphiJls1T3Kh/OQoJgRjjVII0DTwd3d3vYb3gx+8Ytdr/eH4+dbmk2dPJ5MJ\nCwNd1y3dWJid24qT8Xg87A+qorxx9+7i/ILySj08PBz2+xjCpueVOt3e3j48PGzU6t9880j1hteu\nXZtOpwJADcGDg4MgjprNZpFXz54+X+61TcOIo+j05ERK/vzpEyUWC0N/OhrOzc10Oh3bsg4ODpIk\nfvvtt77eeH54uD8/P6/RrtdshKGfJGmj0ZBSng8GGsIQ0/X19bneTBjGRcUoRC/cul2z7AOnVuZF\nMJrMz88/39hoNBr/6O//URAEn335BcRovjdza+3a8e7+Ym/ZIppjmDXTnp2d6bTahKJm3fvkk0+u\nXb8uTNlwaw+//CrPSs/zfv93fneaJ4SQZrMppcyy7P9H2X89SZald4LYUVcrl+EeWmVGZlZmVmZp\n0QpodE9hoYbAgJgBBmtczHLNyHmn0Yz/AvnEpyG5NsaxMVszDIFpiJlGN1qgq7uqu2RqHRlauBbX\nr75H8eFEBGqXsDVjPKRVZUaEu1+/fr7v+30/8dqbbxx3TrOy2NnfI4Z+5ZVr/dFwlsSXrl45PDxM\ny0IAdHh83BkMpJSGaSOM4ywFjL94+iQa9tPZDBWJ7jq1aq3uOQ3fOxiOJ5NZKfWFtZWVtXXNcAQH\nruumcaRj5DsWM7Qkifr9fq/Xi6LolMKdw0PkeCublxfX1yHRZmn2/MXLl9t7426/HgRzlYqB5PpC\nuygDg5BZLnhWZGl+PJuVZW4ahq5rp72+43qaplMmwoIVkpjEAlgvhDANCAAguoGxhiHK01RZ8zuO\nw9lZzJ9pWRUIkjLv9/ueEdTqc6apZWnUarWqnv3ZJx93Oye6hluNumlZL/YPBuMImZwQ3dS0Xq8H\nITwPv7Mvyp5lWYQgtbE7JzRBAECRpRgiBDAhuqZh3/cBAMTQLcsSginmjoIZNU3TCXY8BXEzzrnk\nQgjBS8oY0zBRiCtCCHBxsYfTv6JOuaij6r/5uXWwAsDPBmLKwf8/X0WasbJAhHABOGNSACohIphD\nVLDCMX2kk1mWII1oTINATmehgtyUOYZKRcQY+9VKOBpjiIqiGI9GkIm5uTmE0M7+gaV3u91T5dpY\nr9cD33ddV41TigpqanpGNKHsmhmD52aK6iqppF6ljpVSGoahnKhV822alprezoOVPAUdK7NlVUKU\nl4WiaEWT8WQyUfQoJUmq1+tq6aZCGpRXoJJHxnFsaXpZllICjJCGCUEYSiAYJ+hsoLyYdFlJjZKq\nyVWJo6DC1TlHACIAJYIX4LN6bvg8+lBKKc4iKc8W/FScMe/UCSYhAF8JGQQAlGVJxZmJlbosFzQx\nVeClFGVZ6pqmbqSLGqyegGIgq77hosPDGBdloToDCCE/N9hSKqYzhiAEApy5iRVFsdxcNbcu12pV\nzgVCoD3X9H1f18zt3R3GWElpnkMJhJr+DU03sQY0Q8tzjDEgekHpbDwdx0lQqRSM5gAi04aWk0mQ\nA8Q1gyw1W7PhePv5dpbn7fac4zjUKkxNFyDL4zSdzJJxRATyLc+/VBEA/Pwffop1LahULNs96fTS\nNHXsgnM5GU29ZQdIxBgLZ7NmtUZ0M6jWyukkyTOTaKykarNNEA7Hk5IziFC3251MJlmeLy8tzWaz\nk5MTXdeNsmS6IRkHUhZZHoczTdP29vaY4KXgChq1fc9hVDcNEIMsy/IoEgC4nmOYJuc8LmeLy0v7\nu3vdbpcgXA0qQEjTNF3LPs3jjz/9ZDabLS8tEIg6g/6P/uGn7Ub9rXffufvF5w8e3Jlvt2u1GibE\ntu31S5vzjdazF88RhO251vPtF5ZhLiwsVCuVuWazWW/Uq7VL6xucMloUnLJhtwcwu3LliuIKvXjx\nMplF84tLjuNkRaksAMfj8fPnz/cO9suCIoTC2axarZpBZXl5eTqdHh0c5nm+tLR0devKxsbG4f4+\nQoi122WeAwBs0zqaTdRHbnFxESGiaVpZlp9++mmzMXd4cmy7zvnK3Njb22u3273OYavVsm3TdW1e\n0mazGU6n1Yq/NL9QqVQODg6Ojw5ff/31brfz9ptvvfrqq+MoGQwGlmVhDF999UZZljs7O4f7B+Px\n5KV8eWljY3l5udVobm1s/uD7f/f0yfPLr2zFswhxubm2Pp1MjvYPfMdVYbQvn7+Yn5//4De+M5vN\nuBDNd973KoFFnGa1NosigtGw27Ncp0yy/e2df/47v2sYxs8//KiIUwMRDtnLZ89fe+01DODJ4ZG6\nMYa9/uT112azWbvdXl9fn5+ff/bs2c7erpSy0WgggjVDv7q1+ejpE10zlpdX7969O0viN27d/uKX\nvzx48YKUhYlA4PuBodsElcnsZDLciZigzDBsrNnd4Xg4GY9Go3olwJBDITgriyJLorCMp5gXBuTj\npIC64QTB1ZuvFgjZfvAv//RPPvzpLw539zY3N7/17nuX15Y9w3Bso8zAaed4MCkhhAKKPM9t24RV\nHM5mDICM8lJyykRORUq5wCznMIwyHxLLsnQdQwhN3VBzTBRFlaCmkl7AuXmv2g4KiCzbpUValqWG\nsGmaq6uruyw/ONhbXl2r1WtrAjBwPI1SiTXHcXjC+/1+mqbtdtv3/bJkAAC14pGSAwAUCq2Oe3Ie\nQQ8A0DCREsRxLOCZPFcCCDHCgEgIpJRcioKDJIrUQQYh1AmBCCKNYATLolQegxghKSU/P3/R+QCk\nqjghZ+mEpmmq2VYhkMoYBHwFbf7qDvh/5UsIdnH+WoaJAVSXrpRCt2xAMNa1/mCQAIEccxROiyib\nm5vLsqzb7SpDEoTQwcEBIYSXVJQ0nEwJxjUvUAd9URaGYXheoNIUFEibJIlyotA0zTEtqBMutKIo\nZlHoGpYa+9RKUqEFqslQ+biq5l28xRAiNQJeCHyVBbH6U4X6AQBM01Q0EXUgGIZRqVSKolDLoOFw\nyBhrt9vnK2ZdVW4AgDwXaKmrdAHVKpK8eg5KzIMxhhgXWaaaBnDOPJcX1s0IwvNQZ1VlGWPkfPmq\nds0Xe1/TsdVLOCu62tksC5lURF31vqsLdaZK4vxC1Ou6rm6ZURTZuqESLAghqtaS88xjce4dDc6H\nb9UBXBR19f4SiNR+nXOuASCEoGeLaQYh7PZOgyBYXljMymI6nU6mYVmWAGECUZYl40nIGFtcWV1Z\nWcmyLJrF09Gs0ZyXCCZJUpQlEBAaRGJ8PBj5lUCzXWLoHMLhaKSOcSIYX19ZRRAPwwlkAguwvnnJ\nIvrYHcST0HP8nuzbhlnkuWP4Dx8/8gNNCAEl0DTN8zzTtn3fD8Oo2ZrjEvaHg1a94Xie43uz6fTw\n+Hhjrqm6od5pp2B0ZX2t0Whohj5L4r39/QcPHlBKFaFa8ScvoPk8z2dhyCkjEC0uLjbbrYKWaVlo\n8UwiWJblJJxijbjA/cdLSYhpmpZl1eqV4+PjWq1W5qZ6LzVNy7Ls+PiYBjaEsORsMBwCKQvfPzg4\nKNPk//J/+j+vX9qcjIe+4wrBl5eXVaXHGF/dunLn3t3xdFqr1WzPHY1GrKTXrlwlhLCiNDTdDSqc\nMkPTOeeDabcoikIvEEKmqbdaLQ3jpy9fJlmeZFl/OJrF6Wm/J4BUVEMWx/V6XR03Kl5paWlpY23d\ncZy/+E//6eHDh9/4xjcE42VeKEmSruurq6vz8/O85Gma3r9/fzQaYYw5E5cuXTrtdhhjrmPnRTE3\nN4cxtuECY2xlZeXyxubf//3fc84VfTLLsmazORoOup1TXdfLvFASZADF4nyLS9nv95MkCYJgeXl5\n2B84nue67tOnTy+tbZRl+fDJ42q9Fs8imhe8pAhCXdNqlWqZ5bvbL4eDgeu6vu8/uHvP9/2C0SvX\nrnY6nUcPH77z5tfWVlaHw+F0Nun1RnNzc+Nx1jvt9Lu9GzduBL4vpbx27drcXPt//H/8P589fNza\nWr9586ZhGJ1OZzab/eAHP1D45AcffHBp6/K///f/Xq3P9/f31UE2jWb1WsN13ctXtl683MYQXb16\n9Yd/+7eC8zRNdQ2bro2hTJNIphnNswIHhmFjjUyiJO/MJKN5lHiOsbG2pBMoimIajuPZrCgzVuSC\nFnnJ/Grt+q1X7WpllGUra2tff/9b777ztU9+/pEO4PXNzSwMD/Z2eZnVAr9ME05hURR5WTBWtlpN\nx3FmSdyca0uI0rws8iSjtKQSG8jWTMeDSdZXB5BgjPjYcTxKeVkwVZwkBIxzmmcSAtM0/WoljxgE\nIooiIuVoOCGynJ+fl6J88uRJt3taUD7Xmneq1Zd7x6f9QZYnJrIBQGEYxnHcaDQWF+cdx+GCZVkm\nBFOHlDi3MtB1fTaZUkqVUgtrpCwZ1rHjONMwRAgh/I9mQ+rDSzlTBx9BWEKoESKxxBwLyoSUSg6C\nz9m2BCJQFOqNMwzDdV3LsjjnaZqq0QoAoP5VYeOEEHD+QKp+QwjRV3TA/79fGCJCCGCcMko0XSgG\nMkQ5o269LiGwbLvgLCuL+fm5STRT06eyg4AYOZrjed7L3R1alLWgIkrqOe6Vra311XXbtsdw2Nk9\n8TzP87xqNVBTrMrY4ZQpSzudYNXQnBU23+Dn/ogXFCf1MsE5I1eB8AryUXvzi8MNY5xl2Xg8Vgws\nVec0TWs2m4o64AR+p9NRM6siUQMAms2m4lEnSaJgZ03TFMOmpBwAoNaxF0VLsboU/n/hA6rozYq7\nqtK0LMtSDwQhVEaBWZFfCH5U2S7PNDwaE2cSW7VJUJVeVUTOufrXPM8rjq9evpqS1SOqN1qNqnme\nU0qVqipJknq9Dr+SIX3BdlYghHoyF1wwzrlu6PKcha5qssKi1WMhjKngJaPq7cAYz2azOI4tyypy\nun90GIaz5tzc4vLK4uLizdu3AEA7u7uTSajAiWq1ev2VhmVZk3B6cHAQRjMsTJgXaZE7rkc0PS8Z\nFAASlDEWpmlSloRXnN1RN+O5oaGGa11eWZ5vNjRMeoKelPlxZ3+STltrK1lJHx3tB8uLaZ6Zpr43\nmFQpl4LTvJhr1mo1O03TOB5laWH5lunYfVqMaE6ydO/Jg8FgwDkH9YqJ8Yte99LGpu0F8XBYqzXK\nMq8EwZVLlwgh00GvHnieZaoArNwkSZKM+qNSiLxIKMvzPOt0TqM8rdRqRDdsTLiQHp9WLdJsNbiU\niPBhf6+AME0zDcK2Y6QSGQS/+/qrN6698uzJ0+9///v9JKtUq5rjZGVhmsbJyYkO8e1r1558cXfn\n0eNJb7D86o0A6HWvJmo5z4onUea6rjG/SDifJUl3MNrf39/p9+fn5yUXlar/6rtv/ue/+Msg8DY3\nN99775t8Mp7NZqNwPAknxLWuXr5MCDkYnrAYPd59qndMjDFEKIxmvh9ADJEB4jw09ZU8HM851q1f\n/7W0KBnnD+5+8dndz+barb//xU/feOONyzeuPHv6tF6tiSg6PT11IEiylBACeb6y3AqqlafPnw8n\np3kxy8vCkiRJpr1+srW19eZbt7/88st+5/A+K7M06nZO6/WGct6o1Bvvfv2be3t7L3YOgyCIcnbn\n4dNSGkWRVQLPxO7W8iXHMLqFrNx+nTM27PeyXn/t7fcOj48++/SLNE1rtVqlVbt+/brycyeEDMaj\n/f39x7svNUMHAMRxXKlUszxnltnr9e7du3c6iRWAZhkmhDJozg0Go9/+vX+u6zoryu/82rcqFb/f\n7TVq1ne/8/7jx4+vLy+9ePGiouFf+73fUczMX/ziF/3hwOL03s8/JGni+/7p9vNkMtnY2BgOhwfD\n8PKVrZoX/PB735tv1LAQP//b/wzDoZaGLoGBbXAI+qykGJaulmKW0HCzsWIzzGepqzkzmG1P+w2r\nsVAxAWV0koow16QeI7TPeZ+ysLb4rV/7huu4aRRvrqx97ebbFQHKkv+zt98usqQsy3ERQ0uvteuU\n0rmFeS2Mt7e3sUOiabx/cvTeyntblWA0GsWzMAiCimNWHH0ymYzH42jYI4TowKAp830fGlAl7Ywm\nY93W3aqnl9rx8XGWZZ7vBEGgOfpsxBmAhmFP+ERiQw/sMJwS5K7dfHevG0aTYZElk8OdRtX5Z6+0\nDu34cP+gx22EMCWyYHLUT0qazLXmvWpVaHqalqamm5bGRUGQrmm4oLnbCBRwJaUMwxAhRCAJw9DQ\ndbWQU4wYdeoBAGq1WhRFZVmaumGaphCAc44BBJAIIUzdIISUJRNCACGTouCUubbdagXT0dgPav/q\nX/2r9fX17ZcvB9Nxo92Kiuzxy2fTIj3pdZdf3yzKcvrsdDYeISYcTUNlKcoCStBo1OI0EedG0VAi\nJBEEAEogMeJcagASTKCQEAGho5yIwsS5VraWF4eEZbzEtlkAUak3TgbhuD/0bAfrdpqnFiSdvQPX\nNN94460sjh7cubs0315st4gG2vONIosavq9JCQU/PjhUBbJkdGlpyXXd0WQcpUnBqAL287IspeyM\nR0ovW0KgAUAMA3BelqVu20meX7DPkKYBADgXOoCapoVhGBdFpV4zTZPmOQagzDKa5xAADGE8mxFC\nDE0zNM20rblaTeG6UAjXNFU7VaZpCUCaJJqmWZqGpURCSEp1TWeMUVoKwVWd03Vd0wilVDHFEIJp\nmqhCqCjnUkrP89SMGAQBISSOY6VlciybEqo6pzPbZ1PPilwRbC/aJk3T8ixHEjiOYxtmCVGappIy\nAxHBOCBS1VEkAedC03THcSzXyfMcQYgRUgGvNC8qnj+YjBhnTuCplTYDAgBBi4yYeimY4FRKySUH\nEhBEMNF4SSEhAkIBgZACCimg5AQhhC01QHMu0zTL87IswzCElsaKspf3aVGwvAiIUdfMqkSrtaZC\nU9auX+/3+/3RkGBYqwaGBTlPBJ229TJwQRhl3EbN9ZXHz1/MOqdYM/II5bREtKwg0KzXSJnns2ko\nSmoSjDF2PLdWrzNKNUM3bStAKGVsMBhIhJfmFw5PjoNadXl58eT4uMhSyzaJhcqyFJQZRBsmKWVi\nMpkEQk6ms6IogqCq0eyk0wmCwDTtIAgghDt7u4LxSqWCIPD9SuC7AOM4jrO89DwPQKz8EPKsBABV\n6jVK6TicjmehYRhMAttydd2EGDmOY9hWg7GtrS3LsXd3dydhqCEsIXIsW9f14+PjerV6detauzm3\ntLS0ub46Pz//o08/I7p20u3s7u1JjD3HRYIHQWCaummaW9e21jbWBZBxkUZZ8vlHX3QKliTJjRs3\nNF0vaXHz5k3Oebd7urOzwzlfXGhDCKezsNvtKpLhSiWoN+eWVlajKEryTDcMhNDv//6/+Lsf/jAr\nciq47wXLqytcinq9Xq1WD19ua4RcuXp1rlIb9wd+UOk83362/WL/+KjVai2tri0ur7z33nusKLMs\n6+Sd6Wg8nIx7vd4f//EfW459586dlZWVazeuq5kGCOnaTplkSALfdqbD0YlpViqVbqfPqFBoUhAE\nDx48uHr1qsqzrNVqo+EkiiK18XIrzvRwLAXTEPzyyy+XFxea1YBo8P6du71e7/d+7/dszy3Kcnl1\n5fDk+PK1azdv3jw+PjYM49mzZ4PBYOPypfX1dd+rnHROleBB03QtSSaTyTe+8Q2E0MuX+3met1ot\nLoWG0X/5wd8ZOql4/je/+Y3AdzHGv/r0V0mSfPPr33jl+vWr16798rMvt3d3Pvjgg8XFRcWG/e53\nvzuLI9d1x+Nxu91OkgQDKCjb2rz03/7Jv/6//t/+7/t7O9svmee5f/Inf/Lo7t3/6T/8v7MkWWzP\nx+OxlNLQcEn5dDJhgBFDbzYahk5EXpRlCYgAUOi66ThOs9mk40nKWF4WmuV6tudjHELw5u3Xbdue\nzWZvv/7G5c3NDz/8kGbpN77+dZ3gp48flmVZqfjVapWWLIojCKHnVW7cuJFl2cOHD0ej0XA4rFQq\nKqpL0WsV0GfbtjhzPkdqDKKsKMpMgW8QQuX60mq1lCWCcsLBGCvxj+/7EEqMQFkWaZpCUfq+jwR1\nLSLyrNcdJLPQNIx33nnn7uG02+2leWZbHgNoMhokaT6XZV4QmLphGEaRpUkUG6ZGoMakVKs1tWVU\nqhX1ZIQQyolQwX1qmReGIeWlRgyM5GQSIhR5ngchjJNU5dEWtBTiLF2UEIJ1TRaYEAIxai8uFGn2\n8uXLGzdubG1tbWlYYuTVq7/2wW883d+5//gRILjgxaR6MhuPBied3WfP645TbzZm07Db7bq+909O\nwIq3BRGEAkAAIQQEIgqhphGOsWWYUkrBuGbAIs+lhDomyn3M863RoJyOhmo5enp6bBLt1ZvXr169\nCqHsdruB6928eVMyesFUUkwiAaQiXslzGykhRBzHRVEYhqGOJnzubq0mVACAEgOpK6lEWUgCKWWS\nF4ZhUMHFeZzfBTp6Jqo5L2xqEr0Q0Z6x0BFS3w/OueVqg6s6J13Xo3DGv5IgpH4D/Eoiu5qJ1c1G\nKUUIy3PFsGq81Ois7skLjpV6LZZllazUdV3TNEXh5pwrbEw9YZUhoUZYpcBkJUPnjlcK/1cvIcuy\nC4KCbdtUEaYASNIEnHOq1ZVUqwEFKfNzm2gFUOu6TvPy7E1hnElxcekIOcurQAg5jqNihDVNOx10\nhRAaJr7va1WiE61WqXieBwAYj8dpmqpX1263CSGWZUXJjBDSaDSq9VrJaLc/yAsaNGqnnR6XgnLJ\nGfVsZ6m2ZDl2vdYgGiZnGSgYFbSchKHr2pwypBs3X7+9vbffmU4wxqNpCLGmIYyg1AgBQpZl6Tk2\nEzyZRcr5k1JqW04UhhCiLE0d18VAvvn2O5NwVhTFuNtRHTSE+PU3b58en3DONUMHEFPGICGm42Bd\nc6tBTkvDMFrz7TiOkyjN8xzneRRFiAhEsKZEEVLatl2r1baqFbWzmW+1a7VaWZaT8ZQQcnBw8Pr1\nmwiRcDx5GD345Je/4pwvLS3dunadCW7ruo4Q0bThoFek2Vy9cevWLQNiwUoqBUQS6KQ+33JqldM7\nD69du/bk6dOrV6/W6tWf//znihGAMe73+yenp6enp67rYoz7w9H3/vqv1mr15eXl+fl5DmTgVyFG\nJaO3bt3a3NyMkoRLmWVZtVrt9LoQwjTJAUYvd3Yc3XRv3dZ0PYrTk9PTPM+JoUdxcv/+/Ruv3lxY\nWtx9uRPOZkWeL7Xm5+bmDMPonXbG4ZSV9NnTp5ZlTQcjSPDq4lLJ6NHRUbPV8jzv/v37NiKTyWRl\nZeXw8FBKGcfx8fFJvV7f3d2dzeJbt26FYUgpXVtbu3PnDqUUpvni0ryhk0Gvt3d0CICwbD2Ok7jI\nljfWvv+jHyZJMtdsH3dOfT9Y3lj76KOPRtPJBx98kBb5i52XBaOtVivwq1cubzHB9/f3T05OZ7MZ\nxrg1NzcejYhpVT0/TGIGZL/bq1R9zbTCLDnudepzr1JW7B+fjEaDoF67fu0VJKUyYiW69uDRw5s3\nb0oIlGYfY3zt2rX33ntvOBweHR3t7u6ur6/fv3+flTkCIslTx7Lu37m7t/3i6++96+nGT//r92vV\nQEcoy5I8SR3LwLpblCVkLI0TmJb4zOdB8LyIZ7NHj55szS/MLy33GIjzkgkAdR0TTdM0IORCq12r\n1f7Tf/pPL589v3Jp8wc/+MHX33/vyZMncRxfurShtmJxEoVhWLLDVqtVr9fffPPNbrc7Go2KopjN\nZkrBqeSY6uxQVU3d257n2Y6peMV5no/HQyW01TRtfn4+y7JwNimKQtM0jGVZlhjDoigFApZpJlGm\nbvUXs8l4PDYR1BDK8rzMpBBiY31jYX7+5LSzd3RalNzzqxBrnZNTpWkBUGIADE1Tp7+pmyxPhBDj\n8RgAoHZs+MzhCCrLOQXuKX+iOI4NzVRJAzPbVp0BISTLMlaUWVZIKZnglFLKGaKoKIrFZn02m+Vl\nOR6PX7/92ura2o9+/OP6XLMx18xo2YKysdA+PT45Pj4GBKd51jTsS5curS0sDU87WRyfxJGGSavV\nSs4X5P90AYYAQoCUjyGEGCIhgY5Jo1rTTYunGWC8c3hMhaxWW1c2N4bDYTidxtOJ57p1P5iMh7de\nuVbx3Llm0yKkLArf94siS5LoypUrvV4vSRLbPrPN51IotMAwDIiQwg8ghGoqzUCm8E/XsoWUKurA\nNE18noV8Vn7OdVUSQUiwan3UhK3aF7ULP1NuCaHwUkKIBnVwno58ocxRpUuee0WpBZ/6haVhXBRU\n9VOq+F08xMVCGiFUFAXnQpHLwFcEbAqpVpCyMl1Q9dIwDNM2LyRJFytCQki1Wk3TVEHi6lepB+WU\nX3AIlNJXXYeclorzpfYRcZIo+2vHsqSUBCFOKVNhw5omEcIQarp+IUCSnHNKC84hQGeXTgguOD7/\nQvCMIKbaGtMwFIlMvUDbspv1esUPTN0wdd3UjTSKVQfgOE4QBCVnSZLMZjPOKca4GgSu70sIAr8y\nS2LL86WEx91OfzDq9HtlXqRRHIez8XBEsijSMNEM7NgmIvjh08df3r1j27Zpmu2F+W5/OBgO/WrV\ntu2K7165cuXxiyenxydRFFmGgSEqGQMYWYYJhGxsbJqmvb29HYczy3IMXY9msx/88O/H43GlUnF9\nzzJMCGGSJN3+cDQZSymF8OM0jZLYsiwmQZTmhmVmSVqtVluNpsREIqw7lp1Tv1ZjjDHBBQScC1ow\nAFGW5fVLdbU68hx3d3dPR9pisxUEwXy9ybmM0zQpolmSOZ6bpvmvfvWp43i//Tu/A9sLg06vVqve\nunbNNLSaH0gpl1YW41mU5anpOjtHB4PpMKJprVYLw7BSqQyG/dPOSbPZtG379PQ4DMNWq1Wr1Q4O\n9kpKEcae7wMIu51+57QXBAEkeGtry3adp8+e33/4iBAynU5102615vv9IQK43xuGYRiGA5YVw/Go\n2+nXg0pRFt1+bxLNWkuLg8lYNw2A0F//7d8e7OwPh2PHcVaWlr/2ta89e/F8PB5jAC+tbyytrtCS\naoQcHx+3G803XnutXW9OJhMswPJcmwk+125dfeXaW++8PRqNfvSjH9cajSRJbt1+XTcMLoTrea35\ndmOuSXRNM/S9Xufb3/41WuQvXz6323P9ySB5GHdOTlqtJgNy9/DoW9/6VlCp5oK/cvPGlw8f7r14\n4nne9vZ2r9fTNG1nZ+f09NS23Nu3b29ubtartSIr9vb2EEL/4T/8Bwgh8apzc3N5nluem9JiY65l\naqTX6/3oH/5hEs0IQtdu3dzZfrlzcHjrjTcl4J1et6DlnTt3+v1+pVKZn59XsTOnp6e+6yVRjBCi\nRbk4v3B589I//OSna6srly5dWl5ZKcrsh3/3fUnL/8N//29+9nc/7Pc67WrVtCyWF0WaOZ6tE52X\nJS/KjBUg4TbUpZRQQFaW8Sx5/vTZ5OB4was4ulXI4mQwcpYXf/fXv/3Z/lgxWf7rf/0vjaD6r//1\nH1+9vPU3f/29+/fvG4Zx9epVVYDjOI7i2enpaZTkquK2223G2MnJycbGRqPRULYG6kBRJ5TaVzmO\nmaRROJuoD3+lUnEcK01Nxth4PDUMbW1trVqtZlk2y2YAAAhlUWS6rnNWcgAMXWOMFYBpEOi6zgvD\nMLEoszRKpeBc0HD6PKjWV1dX2gtLe/vH+wfHDGCvUp2ORiVl9XptZXWpWZ+LolBQ7ro2qWiU0uFw\nqHi56hB3HKdWq6nJT01jnudVKhVKqeCgyKmu6wTrSZ6cHHfUeafcAdX20SBE9RZ6WTIoia5BjLiU\nV1+59hv/7LsPHz60LGs8C23XEUIMBoOTk1MhpIYJQjiaRo6hj8fj/f39jYWFqlejRZmmKfhf52L9\nz6OCIYQEIoSwY9lEN4hmWJ7fG/SlhDrBu8+fTafTRrVWcz0EoW9b1y69s7W5QTAWRZHEMULAtWzB\n+eHBwdrKqgoHFEKoSwQQJIREUVSr1TRdT9PU933LsrIsm06nGEBKqUE07GK1WFUF+IJipuRb4tza\nU56XBABAURQIITUCqwZOTbfqzrnQ+F6wjdQIrmqe6vBUPVZOlmoV7XguAP8zP9EzQTaQAAIuhep3\nEcEIIeX2DSGEGEkpy6KUBdB1HSBIGSOE6Kah4o8EkBe0rKIoVL23bVsRsBFCyDStc3NmdfMnSUIp\n1bB2hgSca6LUC1FGGfzco1cZj1iWZTuW6gPYuXuaom1fzOjiPAdPfZmmcfE7Jf1H/bgQQqHr4rwR\nz7MsS1MAgGPZigwUhuGYMs9xapVq4HoKS0AIjcOpurcdx5nNppIDyYXkHGlaJQhM0xQIX7uyVa1W\nw8V4oBYTBZ2GIYSQ6BCbtjsaDxLJzXo9oyXA8Mbrt7Msu/fgkaZpbuALKU3dIAiLsjA1fTaZmjqp\n+AEtclPXGrU6QghKYBkmZ9RzXM5m7blmyXhZlIedk5Wl5bIsw3CW6Hk18AWQ9x8+eP311we9rsSI\nYDyeRWAWqRH+6fZ24Hq6ZXUGA86573kuJsPh0DUdxhgVvCiKaRiWZYkILopiMBpOwxlnLEvSUX/w\n1htvNuv105MusmEYhuFonMTR/OLyytrqcDwajkeoFJDyZDJpVILm3BxGwNKN2WwaOHZvOBj1+wCj\nMIsePX+CdM0OPNib9UZ913Xn5+eDWlU3DCGEYic5jpPTEmAkIDBMU0BgOnZzaXkymfjVqmmafqVS\nq9WePtv+9NPPFxcXhZSU8itXrv3oxz9+//33x9MJY5M0yV3HidNcIuhWgsPHj0973fbS0r3796FO\nfv2738my4kc/+enG8urb7707HY3v3n+wvLq2vr7ZbLbC8LN+f+j7lffff393Z39r88rywopnedcu\nX1PTSafT2T7eKYqCEKJp+vz8wh/90R9dunTp8ePHqyvrL1++/Hf/7t/VarU4Tp88ebKwsLC4uFhZ\nmBeSH54cHp8e+YF7cjJq1Kpcilpj7vj4mJjGLM+6uyPL87f39g8ODjYWWlLKX33ySZIkrXY7z/N3\n3303CuPnz59jjLe2tm7cuOH7vkrv4pz/7N79k5MT17KTLLdc5/GTJ9dvXNu6dvVHP/rRTz78sD03\n90d/9L99/PT57t7+nYf3W63WNJqVnLE0CWrVjz/5lWc73/72t4UQhqY/f/58OBy2Wi0CUaVS6Xe6\nb772er3a8Cve/Pz84dH+tSuXF9utOAz/y9/+tW2YgjLNBgtzTZ3gKJmJsqy4Xik44wUHlElGOccY\n26Zt6UY0HU2ZlGmhE4NjDZgG1q2koJ2T49l0cnXryuXNS3e/+PL9997RCHn7zbdms1lwaWN9fd2y\njGfPnp2cnHAgAEKNRqNSqcRxfHR0pLzeFKI7nU7VkXHBHlIHE2XFBY0zTVMAQBB4juMU52Sl2Wwm\npVTkF8HPjmyiIdu2GaMAqIVf3m41bNvOopBzoWuGHlQ1goTgXBrjYX8wGDSa7Stbl5aWlvcPTo47\nXaIZZZ7PIEwrQaPRsHWjKDJBhVKgKb6PruvKm1oN7upJqpAcdfqYpnl60lVYnxDigk2tzkdKKROc\nCQ4A0AXXpc44m4ZpxQ/SeNaYaz559mzlzpe/9du/0+91f/nJJzXHEUIksxnGuOL5puvU6/XWqvu/\n/+/+d0c7e/c++3zS6fAid21HCIHIPwYlQZVHDIDyvFShhwIonx4IAFB2/q/euPGdX/v1k/Hw/qPH\nrOSLzdYbr7/1+Z27SZJUWvOGYehSuJbtmcbq4gKBAAtR0qJZq0EI0yRuNOaDIBgNRlJKx3E0TVN5\nLRAokcwZeq88JRQi6jhOs1YvisLQdIWsKtcLIKU4J2Rxzrn8R1MnyzAoYyoziuU5Og+Z5+exAWeD\nIz8bHMMwVOPTxbcRQgDGZZadicsBUG2f4h+pduQCfb2oweDcWEqN9Rdf+DxAAgCgSAAKr57NZo7j\nKALdxWKCcx5FiVr6qiKnbF50XY/H4wveOz9PJkYIafhs56Jq/MV8TAhR9fuMFE1Ip9MRQijfiLOq\nf+7nlWWZ+qCh8/hCpVBSI7j6yzNZsBBUUPXQuq6Dc8WwuggIoVqlatu2a9uspNNpWGQZYNxzXBU1\noXxD02iWpqmyfTY1EyMsKJtNQ6wRrOkQgCyK4zybziLdNOabc3YcjUYjbpm+XyHzzTnO6Xg0iOPY\n8Txs6tVq9fL1a1GUHHQ6aZoLxmpBbTwe777caTQapmdT03RdGwMYxkmjVq34fhSFGoa9TidNU8f2\nAt/3PW88CRGAjhcYjst41Jhr0qKchDMgeK1R/+M//uO//Mu/PD09laZZCqnk26WQYZwzDiXWXdsh\nBHEJTN3AhskA5BIKDuIkm0xCwzACr1Kv1vePj0ejEafMt52aFxCiR7Nk+8WLFy9erG9spGkeR2mc\nJl/cu9vpdavVKhL5P/z0x8Pp5P1vfn1jfe3+o4eT4ahWDfb39z/55S8l42+88wZA0HYcjsSLly/i\nRKyvr7uu+9prr1FK/+Iv/sI2zCDwDNtSurdqtT6dTpMsbTabl69sLVmV2WymUFNCiOO5r732mm7a\nlmOPx2PH93Ze7o1Gk6Ojk6WV5TCM5hcXlheXTg4On2+/iOO4c9qpt1pbV6+cjgeDyXQaRoyx2Wzm\nBr7n+/fv3y+j9C+/973bt28LIS5fufK1b3yj1+vZrvvuu+8CAKpBoBNyenr64sULy7Ju3LjBueh2\nexCiTz75xHXdP/3TPxUccCb//M//3DRN13UVftDvD6fTaRAEgtNf/vLnVT/4zne+E/juz3/2YcHo\n1ual49OTglLLcSDGK2sbq6urd+/en19YWl9fevz48dHR0euvv76xsQEAeP/99//hJz87OjqybfvW\nrVu3b9/e2NigeXHl7Td2dg+33n7nr/7qr/b29jiQUZTkebq3f7iwsPBn//2/OTo4vHp1y7Ttk07H\nsMwPf/5REAQr7fbS8nIYhsvLy4cHB1988YXjOFtbW5cuXcrz3DEt13UvXbpUFsWPf/Sjy5cvLy3O\nHxwc3Lv75Zdffv7uu+8uzS/8h//X/1hmuY2hqWm2YWoEVVxH07GEkgkBGCcIm46DJYaIQJ0AAjnl\num6alsMFmKQ5hSUzrXg4nsKd5cWlnZ2dZr3x1huvffSzf/jk41+yN157+823yrLcfv70448/lpKH\ncSSEWF9f39jYtCwHY9ztdi3LMk1zOByqaUNJa9SO7QItlFJmWea67ll4NudhOBGCqcPOsqyioHt7\ne6r6uq6raZplyyxPiqJAAEghgOAVP4DSxhAhAPM8hxKbtqnrJgJyOomlqTfrtbyk434/CuNqba7d\nrAEhoyR1TaNgtNvpACk9zyFIo0WpjlFd11WNuWCoivOUbmXxP5vNFLxpEMMxHYBRnueW5TSbrTN3\nLQTVgKjIrpQzxZe2dI0JXnKWZOl0Or17966qKwDCNE40x3Jse3l++WTYs13Xdp0Vr2657sOHD/v9\nvmeapkYIIWnKdIL/ycFXQHAB58KzagMkAAjCuVqjWW8IhLr1PuVisdlammsn6xvz8/NBEOy8fHFw\ncLC8vAw4w5zzomw06r5t+Z7LOTd0rVlvXOxfVXeyvr4uhJiEU4SQMrlTBTiO48FgUBTFysqKpVtS\nzijncZazoqSUm6aGiY4huii6Qgh4bsdJdI1zLiFQ9wwQQN0YauZWFUXh26ps5HmuFvYQIX4e7APP\nx2JwviJVt5wqNuA8P0pthcE5F5qf+4OqF6jqorpd1bStyFDqS+mjVClVBGy1Tlbgubr4F+qgNE3V\n3a72rBfDuupUFJauwi4v3jj1l7ppqhBfFdyEELpItlZ3l7KBVN8szxnX6hmq/1XiK7VNV40CBkAJ\nji+A94u1NCHECbwwDKfTqW1aq6urpq5jiDSE1edRmYJd4PPj6aTm+BcQfZHlmHIOZJkXkjICpK0Z\nEsEkgojLiuutr64QDUEpYNUP4iIriiLNiml8/P/53l8xKdI0TWYJQXhpcTmOItc25xqNjFNhGhrC\nWZqoQZsWuWPZAIDJaGxoOoJQgzCahlkaZ2lBdKPXHxZ5GgSBlAIAgDXtrbfeyop8Ek5Hk7FtOar9\nkVKGs6RRr5SM9ceTkgnT1MfTUMOkXq8LypRHYxRFjDHf9xFCYRjyNAyadde0iyTPGf/Fxx8hAMss\n5wI8f7njuG6t1UzLAunGyqVLlFJBJZOi3mr2xwOxB6WUB8cHz58l/8f/4X9gZTnodRZa7YyWV7Yu\n6aZhaPqXD3eKsvzj3/3d7e3tjz76aG15RdfJdDo1iKa0Cohg3/dd319aWmrOzfFJzATvDfqE6NNZ\nOJ1OZ3Gc57ntepRyCPDTp09d1+10us3mHGfC9/133nnnUya2nzzb3d2bb7XXNtZ3D4+YAJVqde/w\nQNM0y3Z1w5qfX7x96/W7975c3Fh99OwJY4xK3hn01lfX/ua//C3n/P333/eDyuPHjw8ODoIguHT5\ncrPVAs/QG2+9tb9/2F5Ychxn//BYAPThR79QHdzS6srJyYnjOLbn9geDK69cW2sGeRyOB30do2QW\n2rZdr9Q++OA38zy/c+fOeDR99fqrk1m4t3fAOT85PgZF5AX+H/zhv9hc33jy5Mn9+/d7vR6E+Nvf\n/rbjOMPh8OOff7S3t/f06dNf//Vff/PNN1c3ViqeLyiDms5KOt9q7+7u1oLK86fP4jiuBZWj44Pp\ndPr666+zkm5sbLzx2quO4+zt7VX8QAl/f/npJ91u17UdXdcXFxd1XXdsu9vpSC7KvOgeH50cHTx7\n8nQ6mZiGNhz0nz97ouuE5jlFJIliIDnlpaFrOS0moxEixNR13bQAB4wJVcbyLPNd6+SkIxgP6g2B\n8DRJNi9d+e5/81un41kSz0aD3n/8j//x3/7bf/v04QMAwHg8ZmV+fHy8vb29srJ05coVTdOq9Zpp\nmoZmquKkvAZ9379orhUv6cwmyTTVkVevtRhj3W5XhYUXWQ4lQAhF4ezMEZoQDesMlKZaHkMjz7Mw\nDA1NL8ucFWW9VjEw6JyeIEQcyyVYhrM4j0M/cDnngLNuZywkDIIq0fRe93QaRoJDx3F1XZ9FURZF\nka5rAOi6bpmmYZrJeFwUBaFUnaSu56mDrCxL3TBM04QIzWYzyphpWdVqVZ1uBCKIkLIvjuO42Woo\niAtCmJeFevkAAMAZQsD3/TLLX3311ZWlxV98+OHm5mZjrnl8PJ1fWa76ru95cZEtr6xJBC8vrwlK\nf/7zn6dpur65mYRTdXr8k9UXfHUHDM6yDxFCECLDtCbD0Z3PPm8uLnzra1/3vUpeFrPheHV+nhAC\nKb119ep8raYAz5XlxYODA84oIWTYH0AIg4p3fHI4m810zVIyS8Mw6vU6Qmg0GSvzNTVxqk0/pVQN\nYcqHWRVsBWGooggwAOAfcXQBgZrhlamFquUqJFIAWZSF7/uqhKjB7qLAKCmOlBICgM+dtNX9pv5J\nwSq6rivF10U14ueBfReFWf0UPjcBlWecMpHnuTLHVrmHCulVHuOqtKvSe9G6KVepf5TznkunVNNw\ngZara1XkhfpONcBcNA1KWftVIa9ickkgVP+hbgNFUJBSqsdVWikppVK16bqepakQgp4vttVAjAQq\n+ZnZC2FMYnlxSfM0nY7HeZoZc61KpRJ4XhoncTir1WqUUsV8KhjFGJumaTk2ArCkVA3HPI7yPNcN\nI/Dd8SS0dIMAGYbxdDigWVqp1+bqNUIgmkQxo5QWZZxnbjUgphElcVEUruPX15umps9mszAMV5aW\naJHrtlHmKE8zwbhjGbQokyTZunRpZ2cHQ1irN0bTCUKkLMuK5xMYZ4aOAPR8p8hy27IWFxefPn78\n4MGDFy9eHBwctFot03bSojQMg2jaeDwthXA8L0vio86JazuKppikOUYgTVMMIMbY8wLH8YbD4d7e\n3u3bVzdfeQVx+cUnn3qmTRA0sF5xPM2ybc/dPzp+sb/faLcAK5NJ3mw2kY6nk9lcdf643x0ms/m5\nlgAyqFZ+9KMfvXL5SsV16tXaaDKOo5BJsLGyGubSsqxf/OLDu3fverbTajUNw+j1emEY1qrVoFbd\n3nl5cnLizGbLqyuaoXcHQ5U+NtduCSFOu92ioNVqtd/v266bZfna2nqUxLZtP3jwYDabVebcj3/1\nq8P9/ctXr4Tjyc7ufjWc9UbDenvu+q1Xv7hzdzieVBv15eXlpdWVOI6f72+fDHpUsCiJ7j19POz1\nr1y5MpyOx6ORV6u4lv348eMwDC9vXpqE0zCaPX36/MmTZ1JKy7JWVlZM0/zZz36WJMnW1tb+/v7e\n3l6j0Xj77bfv3bsnBKvVKkUSby6vfvLJJ8d50W63r166vLOzc7C3X6/XdWJYplnk+WKr/cO7P3r4\n8OH169c3N5cVvKaoXpTSR48era1tZEna6/U+++yz8WB07dq1ra2tn/3sZzdv3tzbPnz26EmZ5uNu\n33Vtlhc1P9hYXj0+OYwm06dPnkxHYyLh43sPqtXq+++8e3R0pI4zhJBt29euXZtMJpPh6LPPPjNN\n89L6xtLi4vHx8U9+9OMPPvggCILpaJynmWMZ3/3ud7e2tkRZ/tbv/PYvf/LTSrsddvtpnjXqVQjd\nWRzmeaETXTd1rOkSoSjNsix3Xdd1HVOI50+fr66u6KYxjhIjMG+98/bV26/plkdg/M2vfR0h0Go2\nJKeLi4uu7QjJRqNRo9G4cePG8tpytVo96ZweHR0VRQEEVJYIw+HQ8zzXdaMoUtltZ6umPDdN03Ec\npb6ba7an0+loNKhUKu12ezAYKF9iFexqGMba2hoh5OTkBEho6JbjENd18zRzPZuWeZhGnqWXki8v\nLD4a9bvdrueanmNC19OInqZpnIyCINA0PUnzYhoRzax6blZQDAXgDEtgaToEIIln2PdrlblGq6UI\nrorKK6VUg45hGApOVCtGxcq2bTsukjAMAQAq0HoazTjnQeDFswhrZ/a/krMkK+J4RimtV4KqH8Rl\nRBCahhPH1IKKB5FEUMZRpCFkaLpr2Zsra2+9//54MunvH25trKdpKs5T+RzLdhyHiX/aIeuiACOI\noDwjBkuEVJzt0vxC0GhaugkY903bJmY0GyMIese9ZrOJgYQIWpY5Ho48xxn0+pVKpSxLDcMsTvr9\nvmmazJAq4UDhz2mahmFomuZFfL3qP5SXcrfbtQy7KEsppXaeEFByluQZpRSf198zQBhACGGjWeVA\naqZhmibA6GJKc103juOyLAtaXhRI9RlRa1f5FWqVulaK16vGSqWUVXVRYRJqb3oxKH91bP0qEK0s\nBFQ9K4pCQSNqclWzryrzqsrqun56eqo4E8pTDELoOI56aNVYXADg6heS8+wjyM9NK1Vdx0jNmgAA\nSinRNBUpWxa5aVm2aRGE0zQlCKdxMh6P+/1+WZaWZSmDFDWsAyFVHyM4V+A2OXeNNg0Dn+dxASHB\nGW2L9gY9gnC73a5Xa2Wed6NYMo4QSpJEXRxd100gAQAQI4QQp1wl1yFdRwCyonRd161UPNsrGKWM\nzaZhFs1oySATgHJydLhPOUMYCSFcz2WM6chyHR+TnEthGEaWpMNuX9e0MAw1TCqBJ2x7OOgnSeJY\nBtGNeDa7e/fufKuNANR0c83zDk9OGS39uTmE0NHJccUPSpqbumHbdp6mq8vLSRLt7h7Xao3ZbDaL\nEyGABChJskqtgWShVN5eUAFclIJZhgkRLhmDGPl+oAQ5JJ4xxmzbPup1rCePkyhOkiROsq3NS4Ky\nTPC3vvmN1fW1v/qbv/n8yYOIl9VmUwDZGQ1dCUZ5LKajSq22d7jXGw+rnut6/mg8CYLAJNp0OHr+\n5AmHYHd/BxLcydnm+gbW9aofIITWVlZd152OJ1mWLS8vf/L5Z1mRm7ad5hljDGK0u7/XbDYnwymX\nYjgeB0E1SZIkSxcWFkaTqQpHazQaq6urH330ke/7jJUvX75sVBqLi8vtZrvZbN17+CCMEyPJBqPx\n0cnJ3NzcdDh5+vR5Gmd3vvgiZKnjOJPR+Jvf/Obz589zIQ46Hdu0aq12zng0HmPDvPna5suXL5/u\n7Kwur9iOZ5pms9l8+PBhpVrnnHe6/Wq1+uLl9s2bN58+fXrSOb334P5oMjZtC2tk2O0SQlYWFpaX\nV5Tm6vL6Bs9ZYPs6xNF4am3p1y5d9n/fyePoYOelqQld148Pj/70T/9USrm2tlapVEaDcb/bE0JM\nJpPNrcscSMuyFhcXZ7PZoy/ulHG00m51gdzc3Lx/997v/d7vff3r7//4xz/uHZ9aSMuJ7pjW0tKS\n53k/+8lPR+EQY3z79u0onO3s7Fy7do1zfrC794d/8C+ePHny+SefjobD2WzWbDZ934+iaHNlZW5+\nznxh+JVKr9erVyvf+MY3rm5sfPGLj+4PBhjrlu2+2H5m2rbn+44QaZGZtjUaz6Iia7Tmbl1/9d23\n3/rz/+k/2pZrmJbpu1iCm2+/+Zv//F8UAsV50azXHMeZTCaOYZZ5oRGEMDg5PBoMBgsLC6qJfvFy\nu9frzbVavX5fUJFlme/7tVoNnCeFSCmVFfMFrBfHsRoaaMn7/b6aS3zfVxmd6nxXUTCqqVejpOu6\ny2vNosh2d7Yt29AwzJIUNhoY4p/+9KeCF81mUyMIQy4BT4uc6KZvnkXpISA1QhSRVkcQIgikMHQk\nJQacsUL0Tju3bl5fXV2dzWaz2YwQEgSBcsPHGGdZVqvVGGODwcB13Y2NjTAMT05O2vV5NecpOHQ2\nHSt6jpQy8F1N08aTiRJvYA1JwXSEszSZ9Ae/+cF3r2xuNqqVuVrVNM0ojg2M+t2eX60uLc4/3X4Z\nTqYnx8cL9bq6dJZlqYtjaHqep/CMRPyPlQMCgCDEAEopKWOYaLphSckZY7ppmqb527/1W9A0oyxL\nk0TXTEPTyySr+R5jbHlhHkKo47MYu6LM8zz3HCdLEsdxhGDT6bTVarmuyyUqy/IiVqher5eMKrMI\nAECv11Pgrdq2AgB000jzTEiZl4WpGxChLM/9IGi124cHB2rcLIrC930IYBzHcCIrlUqUxJNw6vs+\nLeh4PLZtuzccQHEGlqr+Qh39ru+pfijLMiX7VAN3WZb1eh1IqTBYdStKKXXLpCXnQBq2dVbeOOec\nm5ZZMJoVBZNCSWyzrIAQYkxsz1Xk7YVgSUmJBABxEiOEBJBxlqqGUkHNCnK4QH3UnawiHVX9u0CD\nFZwumFDgCiJYmY2cNW3obMzFGDcaDSFlr9dTTBe1zVHtoKr9lUplMpkoPPz09FQxvxRnql5vMMaU\nN4iu667nSSknk0mj0SCEKKqX6khUn1GrVIMgsAxT+XtZpikZT5Kk1ZzDGEdJHEWRRBBjLDkghGCA\nCSFhGGZZhgkxdSOLk6IobNvmlGKIlxYXy6J4ubMTjoYnB/uk3W47nms5znAy7YeTaTyDAhqGDiEc\nDkc91icIGaauYcIZo7TU0xRC6Pu+ZzuajjktWckRgAsLC8oSTEhoG2acpVE4S7K0Uatzzh3L9l07\nCsN4NnUsm3N+8/qNNE2LghJNP+n2JMiIbgohdE0HILMsq16vJ0kyHgwppdWgEgRBGE4KWlJaYgKV\nmH15eflweHTaH3ROTllZOoaFTZ1ToSGsbz+b0myap269hi0z59S0LL9WjQbD1soKwGCvc0wBmAv8\nbn/A89KU6OnTZyvt+c2NDVbS026nEdSPO6dIN3Z3d1VzWq/W4igaj0bdTufmzZtLC4tz9bmD46Na\nrTEJpz//+UeLu/uupvV6PS8IbMdZtKzr12/+6tNPJqenk8nk8PCoWq1Wq9XWfPv+/fuqz6jU3Faz\nPRmNO53OzVeuh1EyGI7nWq3BeOQOq75fSdNcfdTv37+vE61abQwGA2KbL3Z3Dk6OXdelQEgdB36g\nORZPpNQwIDio1zTLNDzHhVLX9Uaj0W631bCljLdc1+12+gihtbW14+Pjoih+8zd/U0pZcbwwDDdX\n1hZXVjzHvX///vHRKULox3//o62trTdee/3HP/jh7ovt6XRq60bdC8IwHI/HlmX93d/93VtvveXY\nNgRgZ3tX1/Xt7e3l5eWjoyNd11977bWsLPYOD/aeP/+X//JfLi8vD4fDP//zP7d17dVXrjUqztff\nfjcLoySJDIxuXn3l9u3bjuMcHR0N4pEQYjgc/vKjj5MkmYzHW1tbi4uLn3322SeffDJXb9y7f19w\n/vWvf70oiitXrlgIVfSaaVuzJE6y+PD4uFmtVRrNe48fY12Ps+zL+w8s27A8fxKOLcdGhBycnNbb\ni9/9/d+/ffv1Gzdfu/Ozn73c3r1x/aZX8x/vvNh69fY/+93fjYtiPMsW5pficDDodQghCwuL08mE\nCWEb5kKrvbS0RAiZRtMwDBljfhCoMVFiqSZIFVyjxBWEkOFweGFeoSqiqhyj8QATiLAWRdF0Om02\nm5VKpdPpTKfTy5cv37179+HDh++++y4AqNvtLSwsJWnk+U6r1eS0lFJWKpUiz8fDwXg8tjRkGpqU\nkgGBIEEGghDmJRdCXig1IYBASggkEBwhgiEQkiMIMYIlYGVZ2LatONtpmiptidpBKsqV2sOpffAF\nm0xB6yXNZ9GUcz7XaFiWsb29DTgjuubblmsarucoHu/guNOaa7hLixXXcQyyubZqaERK+fjps7xI\nA8fGQkbjKWSCpnm73jza2+NFroRt/zgtQciFUEYc5xUJYoSgBEJwDRNl0SGEgBAggpVS07btaZLm\nWWZbjhAgCkMgYJIUyhlbzZEIQkPXdI0gcBYTSynVdb1Sqem6MZvFWVE6jqMaDlVaVAW1bbssS3B+\nmk+nU4VSnnQ7qotijBmGYRBNkY2zIi/KUlUFWRTD0Ug5SwteTsJQefmpqVqco9YIIWW9CM+9LZVX\npWYYlhDyK0ae4jzxVxWVMwNnhJSHBsa4Wq1argsgzON4MpnEcaz2vhcbbtVSQAg9z1dKWUKI67pY\n0xRDUP2qC1nzBbitaEqK4mPbtiqZSkGn7hk1uytul2VZZV6qG4nLs1wmxenLykJpeTnns9ksSdPZ\nbFar1VQYlDKtVGwsRa3wfd+2bTXrqzWzejglqFMtLCFEI4RxbhjGYDA4251DqK6VGv3r1ZrCtIUQ\nCEBBGQBAJ5oar9VvTpIUAGC7ju/70+5A4QSmaWq6LoSklFLKaF5wKTQN6hi5lllxHSYBLUsyP98y\nLLNkwnEtEoUEaZPRmAmhm2aR5Y5hWoYpMOaUMSlMy7wA9yHgnAN1ylR87+TkKM/LOE1sy7VtE5Iz\nTBwzZpp6lkRlnhMELMMkGEIuh91OVhZLiysbm1u258dJliTZeDxebDcQIhdsciqYo9uO504n42g2\n0wmyTas112o2m7TIhRCNRoMVpe06nBqsYC8PDvMssyzraNAPHj+ahFOkEcf3SkrDMBpOpoIVTQwN\n2yq4YEIComm6qVk24WDv8CCdRetra2+99c7u3l6j2bp69ZWfPX2YRrFhGK7tMUr3d3aFEASicDw5\nQIcL7XkOZBzFCECE0GAwqM8tcClt26aUnp6emrYlhJifn9/d3282GxiT4XBY0LIoiqtXr0IIj0/3\n+/1+5+Q0DZMip8plzfO80WwmJWzMNY8ODnEF67phEN2xbVE16s2GAlIqtWqapkdHR9lgMJ5OWVku\nLy9rpvH4xbM8z13Xvf/k0StXXtnZ2clLGiXpk2fP6/VqmmdZkVcqldWV1dGDcX8wyPI8jmPdMG7c\nuDG03f39/fX1jTzPT0+6B/tHjLFWa54Q/cnDJ5998kmWpL7r5GlqmuZ/88F35lbmHz9+fPfu3Zfb\n27Qsb926tbOz0+l0KKX1ZuP9r3/to48+LsvSC3zX9ybh9M3btwLHfvLg/tLS0vUrW48ePfqb//yX\nt2/fvnnz5je//v54PM6yrNfrPXvyxLKs8Xi83zt65ZVXOienvV7vtdu3kyRJo/iNb3zjcP9AOc6/\n8847juO4jpMkybMXzzXGbc+tNhuu5zVac/1+N/B9xKjp+bIs5lqtA75LCMaWBTJ9FMe+5fz6Bx+8\n861fW7l0iZeclfQfPvzF4uLSzZu3BuHotbfefufb35aa1jk9FZDs7Oz2T/YODg7m5+frlaoQYqHV\nVujx4eGhZRmEkPF4PJ5ObMcRECytrkx6IwVOXig9FFSrOFnqGFITmzp81awphJiG4739nbXVDdd1\n1b+qmQYA1O8POee1Wm00Gj3ff96o1trt9snRcVnmktGnuztHe7s6IZrtmKbJRclKAZFECErBIYRS\nQOXETCBACAspAWBMMEwQQZBLoBGkmToXFAIhgLRdx68ElLOsyBHBAADKmYRAUZopZ0RwIgXWiOXY\njJeWZbleHSE0HPYJQTrB0Ww6357zPBdjzGiZFmk8LRNFHcryMooMXc9ns+PdPRNIXdeVPW27Vl9b\nWXD8YBCGrblGOBoORuPpeJRFs8lkotoXXuSqTnyFsgMugFwggQQSY4wgkIxTwQlBBGOAYKVSMS1L\npqmazPI8p0UZBFWEz/YCCpxACGVZHkVRo9m0HQtjPBgMRqORCmyQUip4WVXlLMvCMLRdR21kNE0T\n5wIzVfwmk8k0ztQgmKapZVnKH16bxdNZDIgmMZmEM1V4iiQluhH4Vp7nXAosRJrntm27ui6ESOP4\nomCcQcQIYkTOghMYuxDtqIUrO3euUCVQnj8xJs/8IJUMPUkStbFW8zH8SpYfOTdbBufbZfXaFf1b\n9WHiPBFBQb4YY900FWVMzaboPBTBtm1lFanuf9VOEUIopKqCloyqVuZioQsAUEGNRVGEYag+KQvz\nbZXTpYRt8DxssVKpXDAt1AdKVfrZJFSmHxdmXup5tlot1R9TShUnSyHnKi5MMKY2AowxxckIw7Ao\nCi4FIUTZYar+TD1DdS+qfY1hGJQz1TJKQjRCqpVKOT+fZpmGIFEuHhJiazza3T9kWWFrZmOuOZmF\nJIC2ZaunDiDAGjIsPUsLLhgrKSHI1AkAwDT1oFo5PjySECjMQTftNE3TLDNNqz+dtFqtyWjMyqIe\nBAADDcHG0gKEcDgYT0ajZ+WT095AMyzdtObqc2k0A4KxogzHk4JR3/eDahVjmJeF7VmmbmAgkYaE\nYGmaAighBIJJ1/bUej/JUmRopmFpmjaOZ3GW1qsN23JtCyiOvtDILE5Wm8233914cO/e/tGxCfCA\njdfaizXL9l0/zrIF2+6NRvcePbx9+7aOCbCsRqNR8YNhrx9OZp7ntS9vnZycQIj9SsUg2k6vBwmu\n1mtplpc0r9SCMJqapi0hePLkia7rtudubGwghMbj8Y0b14muRVGsonCr1appGKgNw8n0+dOnfqXi\nOF4YRhjjXq+nG6ZhmLMwGveGNS+Iw9kwypT2nyB87dq158+f+76PIQIABAsLBCEp5cLSYrfbVYax\nT548aTQaX/va105OTu7cuVOtVqvVerd76nneBx98gDF+9OjBtWvXtre37927t7W1lZVlVpZ7hwe7\nO/te4BeUUUoBggLIza3Ljx7cq1R8gtCNG9dbc42lpaWgXsMCHB8cUkqrfjAdjZ89e2Zbrhf4Qojp\ndHrz1Vfv3LnzxZdf1ut1Sukf/eEfdjqdcDI52Nt75513bt28ub29ncbxwd6e67qsLJcXFxu12mAw\nIIRkSRJHUa/bnYzHr968efv27Yf37pdlqTQ8lNL//Nd/denSpdWlZQjhjRs3JAC256d5Mtnfyxk1\nLB0AYNjWXKX6r//szx7fvcvy7KTfT5IIxDOjEqy2r7x67fp73/qmUa1MsgKb+qOXLz7+9LN//hvf\npiXr9gbtrfXn+7u9hw/SjGGoryysTsNxa65x+dLG/Hwrmoauaz+4fy8MQ90wKpWKgOC024niWAtD\nx/fq9bqaFNXppqT96lBT54I8T0FXJ5dhGL5ztttDEoz6AyRBvd4ssqzIss7JSbPRqtVqu7u7EMKV\nlZXj4+PJZNKo1trtuXA6jqeToigGvX5ZloHnWZajaYjnTAiBkRplBNFMJgUAEiGpIQwhFkhIICTl\nhCAIJSfIMHXLMoVguk6U/IkQotx/FKFGjbyKH/S/kKIGfkBpwViJEGIlhUBAJMsso5RymmOIkiTK\nsgwpZJjSRb8y7nYX5ts3ti6tryybmr63t3NyfBxnueMHXiVw/UoWR1GSupWqhpGu66PRSCUUYYyZ\nlEJKQhDBhIMzMY8UUkghVSwxAgQiAIQ4t5gQEJSMNeaaUZqkaVpSqihUUIIkSQwTXvRJQkqIkAK1\nwzCUUuZZkcTpbDYrC2ropnorlZZXCbsv6pyaoqCUCq5XrCXbtjkCOS0AAFQwE0GJYMFoXGSMMYNo\nIs+UxKtkNJxMmRCW3VLlLc0zkGeWZSFCJoOBwh50XefwDIFQNUztJtV0K84zlBBCqgCocVA1HOrG\nc3xPjTpKm6TuQ5U3rAati1AE1WhmWa5uACX1qVQqQRAoWFtVUHFuJK4gHx1jNSurFa8KFlQfiotZ\nWb1p6tKpIq3M0ZTtl3LnRhpR6mdVJtUCglKqgJkLQUEcxyrkQNVXhWwrTrKKynAtR3VLCuFQlDQI\n4dHRkaJo6LpuEA1gpJ5nmWesLCmlOtE0hCmlkgtCiLpWApwxuSBGqp/wbVd1D2VZSkBVWyAA0nUN\nY2xqmm4YKgf6jMI2CSeIYCp4FKesKDVCAESYy7X5lTCaRVE4GY80nfi+T2mRFXmSZwicOYc5llHm\nhYqJwMquHWtE1zHWirJM09Q0s3q9yvLMNU0r8Ms8lZTW6/Wq52xv7xBNz8oiixPHMk3bjZIMIIiA\n5FxILrCue4am67rkdDyOpeT1ehMI3j05TZN4bDucsWq1igBkea5hhCAipikQMm2HchbGsWDScj3X\ndVVUkaHpsqCSIA0TVvKlheV+t3f/7r0S45iJdDK7fvnKzZu3oGHun3ZeHh4+3n6xcuVyo14/PDzk\nlC3NL7TqjcO9Q8mFZ9lLCwvN1vyLl9ujwXBhfp4BoOk6wuT1N95wHOfJkyd5nl++vEkp7fQHeZ4v\nLtZXV1fDaTQajXqHB5ZlpWkynU6FoJsbG07b0jAxdT0vWZZlEEEAwHQatlpmq9WyNePZg0e9JGs1\nWkkYbT99DgDwPG82DZMoNjCRUq6uru7v7yuQOZxMOefqCJhrz4dheNLpcgkEBP3RkHPOgdzZ33vw\n+BEkWLdM3TJrzcaLnZd/8b3/XCX6YDBSONUl37d97/79h7M0W5xv5XleqdV+/VvfqNeqP/vJjy2T\n6Ppav9NFElQc77TXvXn9xudffgG4cF23Nd/+4osvvrx754//1Z9s7+68ePHC9Jw8z8PZJEmj6zeu\n7e7uAihsx1lbX9l++bLOa/1h7+joyHYdXdfzsrAJHk8nc/VG1Q/efO31b3/720mS9DvdarUahuG9\nB/dHo9GlS5csy/IqwerqKtE03/dhThHRo3DWGXZ3D/b9ijeNrr7zxuvzaysFozvPnwldrwULlDPT\n8976+tfW2ouHg/7uo0d2JXjvnffjl3sFY3Gary62B4PB9W+8c+tr7/3dhz8fnfZd0999uXPr+sbm\n5qbvuFmcnJ6eSiHu3btnGMbXvvY1CcDB8ZEiuBaM+hjnZaHALtWLqAKslqPo3ORPzQ2qmEkpITz7\nG9M01TJM0WcU4UX5UGKM4zg+OTnBWGu1mlLyojz7zjiOOacLCwvwLFxdqPAWTdcRAhJAiAhCDBCA\nIcIYYwAZYxDqhAhD16hAjHOiQYQl0aBunJkzEEJqtZpt22EYKuYn/opFPj9PSgcAzGZTSqlp6o7j\nIAzSNE8jlKVxHMd5ohFCgGBICIIwIlBDJBwOAQCeYQyPT45fPIdAzs/Pf/29tz/+1acH+ztPnj17\n8/33SwDjjL5y61UC4OLi4tPx6Ew+qyg8KnT9n6RgAXBGsj2PgkcIcSmBlItLS2EYxlkqMU6LvF2p\nWZa1v3vAp3mr1aq4jhAinEwwxr7vz823nz/fnkZxURSG7SxVawqmVrV2PB57nqfeLE3TVI0JgmA2\nmyEIgyBQu7lGo/Haa6998uChQn1t267X6xjjcDrNy8I0zcF4zErq+75mGif7ndlstnZ5U5U3RLBj\nuWVeUM7KslSCdYgRUBIaehaAoUbJC3WvaowuOFlKlv3Vtg8hpNYK6sooftMFC0z9x1cB3rIsVcST\nasXU6KkWKEqQxjmPokhKqQIqDMPQELoo+WEYKgGS+hF4Hst4IWsWQiCAhBBqq61+UDV5umXK89Ad\n1Q2ohq9IM5oXatOvvlM1r7WgwhA+E1kxLqVEEiCEa41GGsecc8E4L+nFbn7n5cvm3JxSoGGMAQNS\nSgnB2WTPuMRESinYWcawUuWVjBZFMRqN1CjseV6aZ+r6XDRnRVEU9EzOxxgzKCWEaAhbulGWJemP\nhocnJ1EUQYAR0XzLiaL4eO+o0SqwRnRNMzRdMzSs46wUgrKzD54EjLGcwrIsyiKjeaEc9SqVimYY\nEOIsL23blghCCQbDQeC5QKDZePTKtavXr12988UXvm1ZjifYqGClTgzXtizTcQMflelx55QxZuga\nQijLEnUqxXGcprFgXAJRr9cNDR8dHVFaBMQ2bas516ZATOM4C0OskZJRohkMUNWUAcYRIAYghsCD\ncTjXbp3sHErGS86qfpWWuedaOkKdwXD3+HAwGZ90TvuTgVmr9uPI1LUyLwRlC/PzjWqt6vqT0ZQQ\n4jiOFFJBVbpmOIZu+95wOPzxT/5+fX09CIJutysgWFtbY1JUKpUoSn7+859zZYd56+azZy8qlcr6\n+nq/1+kcn8w1mo1qI8uyMos9z5MYzdJ0cXFxcXFx1B9sXn5lrtJ4fOfe5c1LTTD/+eef37x5E2Pc\nOznVEaaUMkqn48l8q93v9wVl9UpVrQZee+01169+//vf//zzz3Vdd2xXN7QsywzDAkA8e/YsSRLl\nU7aysqLu3WGcpWWRcq65blrSrMjTsqhiVG02apVq9/RweW0licJrN66tb65JyTVC6rWaogshhDBE\nURQB1McamWu3hsPhTz/82UnnFBH87MWLRqOxd7CLEBoOh67vlKx4cf95lmXdTn97dwcA0Gw2kYbi\nLN7e3V5bW4vSaH19/Z133vny7h1Vbsuy3N/fL4pifX29VqshhKrV6sbGhhBid3c3TpPJcd/xPUEA\n1o2spDJJt/d2HMexNNIZDAQh61euJEnkBf7lq1daa6uD3uTu8ydTRrHjAN2Saba0uvLlnXvrq7/7\nJ//tnw559mJ3x3KcJMsalblfe//Xrm0sBEHQ6/VoWc6322rxtrGx0el0ivLsK8tzJgVERAqoW7ry\nQ1aooBKfqDZffbbVGokxpiLneFkghCCUQkgFrJVlzrkEABCsj8OxgrwAQGVJg8AR0I6iKI6iPE+L\nMkuTSAgBJdB1HQhZMiqExERxklQ0GwIQEwX4YQw4AwAQdGZ1JJmEGAAgOKdSngVnqYnEtm21+Ljo\nHsC5sf6FbSEhJJyFnu04jmM7ljYlZZZHtMzzNPBcggACUHLAOQeSCyqAlCZChBAdyEHnFAKpY9Q9\nPuA0f2XrsmVZn997cP/LO1IjTrWhY9LrnVxfXlLn7PlOFwIFk3J+EcaAoAoRgFACqFStQhBlUwwk\nwsR0bN/3JQTVeg0gfNrpRVFUqVTqjcYwHGSUDUeTOI7H4zEhxPdmSnZFz0MD1fsFAXZsL89Txf4V\nQui67nkeiKGa8EzTpIxlWTY3N+f7vhCi2+2WnHEgdV3TLRPrWp7nw+kEClmv17kQEkG1IcqK3HLs\noFpxfV90uwAARcDOkjRVwxyEF05PF5C7ehp5nmvnybiqSbrILLoAYNRNKISg2T96fQsgmeAlo5Qz\nNcUihACCmqFLKQGCJaOMc6JpAEJN13XDKMpyNB4DABzH0XXdcV2IEOfcME3GeRFF7UZD3R4XVi1q\nXr/YFl/wyM643/jMJQNidGGErojK6j5U4h8AoTIwwPLMQ0Jxzdi567Uq8BeT8T9Kqr6SyKRoX2rJ\nvbq6ajuOInOpX6LrumEYmGgaJgxSyTiF4gyK13XbcYQQlDOMMcZIJRhGSWJjXdBSvUYIARP8ork5\nM88RQrEoFPxO4jTRNK3RaKRJDgBilFaDSq1S393f84PADrxKEBiOKaDgQmCMNUIghEWWzuKMZBBJ\nAQHgQEIIIcEaIRrRKRe6QajQ0zQFnHmO6zmOoaPVleVXb1x/5epWmSb9fh8gbNsOl7gzGJZ5ATGh\nedHwXN9xsyyFEly0bLqueb4DAKCc+tXKpUsbgrEwDB3LtAtMCyoLBjHUENYQ1gwDQCywKIsijeKE\n6LCUsqCmHwSWwwTXJTI1/eXTbQFBe6EVThhE6Ovf+Oaw27336DGEcnt/F2tEt617z542DXM2HRuY\nHB8cBrZ7efNS1srG4/HjZ0+H44lONEPTw8nUcO2C0clk4ohSQvjaG2805uZ2d3eVTyzG+Pnz57Zt\nR1F6cHAwGA7jOP6DP/iDmzdvHu4efPrpp6ykZVkmcZwkiek5JReu69ZqtSRJJpOwKIqK5/u+T4ty\nrt30TDePMsWLCYLA1izXdSeTSZgUS61F13WfP3++0F5cX1/XNO3jjz/2PM+27Z2dnWazqXrP8Xh8\n+fKmEKLT6YxGI8VHmM1mjDGTaIWUXiWglHfGg6IoVrc2A9d7uX/wyjWzUq8NJqMf//D7K4sLjWbF\n85wvPvs8CALB+dUrVzzbuXHjxsHRoWZYJycnr7/5xptvv23adnthPi/LbrdbMur4Tq1WO+me3Pv8\n3ubG5aXlZc/zprPwww8/nE6nt1+/tXl5YzAYYI1U6zXbdcbj8erqytHR0ae/+qR72nnw4EGapv/8\n9/83nue12+0nT56srq6urKz88pe/VG5Ta+1lomnEMiZJUm3UEcYcot5ocOPqK5PkcZ5lrcWFh48f\nrTQb3/7ud5BGRtopffakAKB3csKE/Pqrb7x667Wjh4/TNL2+cmuxYh7MxjiK3373nXdvv7PcXCyS\nwXA0mIxHlUql0Wioc0Sdyw4AjdZct98bTyZuUPGDwPO8YhZfKCwv+CCKNKvwPXgexXq2bONc6SvU\nzAEAmE6nQgC1+lLGs6qWK1iPAYoxJhir+YMx5tq2EELXLcEuXPWhEEJCICEQXAAAESG6riMIhVTx\nc1A3CBMcCQAhkhAwyTQN+xVPCT3VS0AIeZ6nau10OlXTz4W4Ux18c3Nztm3laXp0NBwPB4yVtuVW\ngwotMsElBBBBiTGSEkrEoZQopZ5jaBCOej1DJ1XfgzoyCe6cHFcD75vf+NqT7d2do+MkZ6wsm7W6\nIjSVZakDeGEiIc9HNvm/sJwEAEJwMf4KIYTgjm01Gg1IMJcCCIEIYYwNRkOE0Pz8vO7pcRx3et3x\neEyLUum24ziem5tDiBRlNJnOBOMYY9mG6u1QVvCKl0QIsV1HgcO2befnK0yM8fHx8bNnz0i95vqe\nrutZkWe9rtLUYoyZFAojHY5GUkols5mGoU3gxQoZnCuXzjIWz3e9BJ7lFkAI0zRVskB17ivrKJUZ\nfOHsKM7dFimlumOh80xAVcuVOYaajFVdVI97UdrV263uQBVIrBTeil2sqNcX0HFsmkrwrW51JT5W\nqjZ0HoDIzrP/MMaSnz0cOu8V1BOm7My6S62uHdc9IzzXamqrfcEr5Jwr4zZVcfFZiNOZ3eaFUddZ\nT4AtgJFiVMnzVGD1lqklUZYm6s6HEKrt70XHqbgdhBDH8yhnivnseIZq1NT9eEa1Mwz15koplfI4\nL1KIJEI6OXtUzMNwZhs2Y8IkhpByvtXOymI2DaGOKo0qwGA8mTDJIAe6rmONXOioCMaGYcRZaieJ\nYRicSMrPVOFqQKxUKoJRgIFg/G//+q8//bh+7dq1JEmKgvq1eqXaGE6mWUkNop1ZEEDg+37JmaS5\nZZhYQ2VZzs3NaRhnWTqZjNQMJAR75ZVXtmrLP//4492XOyUQfqOm2r1ef0gIqddqW+ubW2uXpr3h\n7rMXBEDLNkZRNOgOrr16A2vk8OioWZ9DQrKSnpyczDWad+/edXzP8lwOZbXVnJtvi05f1/Vu9/Rn\nP/tZGifvvPV2WZYPHz486XYgJgACStnm5qbh2s9fbi8tLWXD7tHR0a9+9at6vZ6m6WQyWV5eVZL8\n+fn5wWCwurra6XT6/X6/3+/1es1m85Wr1z75+JcvX768fOmSruv9fr/abK6vrw+m4/39/a3NLSHE\ngwcP0iTZ2dnx09rq8spoNDJN8/LmJUVG0ImmYRLG4bA/KPOiLEvFHXjy5IkQYDQacc7b7fbW1ta9\ne/eGo8Hq6qqKDfd9f2GhrZx6DMMYDoet1nzBaLtayfLSBsA0rWvXrj16+OC023E984/+4PcHvR4i\n+PnL7YXFdrVa+fzzzzudzrvvvss5v/bKK77vf/Ob3/QrtfF08uXdOyVjl69cefbiheM4/92/+bNu\nt9vbfjYcjS5vbX3x5Zdf3PnccsxLW5uNueYvfvGLgtFqo4400hsOBuPB4sqi4ztP7jz8yd//+MXO\nS6VdaTQao9Hopz/96bvvvttoNIQQz58/74+GL/d2DcOQCNq2rRtGc3E+4SUySU5Lw9A8PzAss1Zv\nHoazSr2+vLpiul4pZM32QHOOCZEXRc7pJIqzvPSrlT/7sz/rd44Y545td18+HU0nVzZfSZKkyzu+\nDVWjPZ1OZ7MZY7zRaCjlX5plC+02E9yy7cWV1cOjo4ODg4V6U3n0qGNU1QzVyCuPaLWduqBiKelF\nlmW2bQhx5n9kmrZyHlBgbxynyrbM87w0ST3H0bBWFIUKe/BtB0PEORecQwQ1TUcISsAlFLpOZhEn\nCJwd4+A83B5JhBAQZ3QYgCCXEmMcBEHKmGoa1ImpcljVAX0BAquj/IwoK5hh6HEcq62n53maRpJ4\nRhASnJ17QQIgmBQCQAiBYEVZZJllGPVK4NhmnufxbNZaXHi+s+fV66alNxqNQRg+f/68Wq8LXVfx\nIYZuSCnh+fCHEAIQyIt6DCTnHAEoEVS+V+p5csk1TatWq7quT6fT7ngSVKtYI5zz0Wjk+xXbttUS\nQe0Oa416rVbjVNTr9aIolKzIMAzLMBX71w9c0zSTJFFS9SzLfNdRREIhhGXb6l2bTqf1ev273/3u\n49MTZbpyfHioBNOaodu2zUqqgr3V7cE5j+N4OBz6BgmCQEloDMNoz7UMw0iieDabcUpVK6AZZ7kd\nqhdUVUGthJULdBzHauupcGNKz6BBhFBJqSquqjVXkKxiTaulrCJRw/MLWK81LiqxulaKeaRiKNUH\nQd0wCqdV23pVLME5J1n5ZF3w58/aCEIIIVmRqe/H2lmRUy2FbpkXniSu69bq9bIsB4NBquuKo6Ae\nTtG1FLJ9QUNTFfG8TTx7INVwaJpGDP2iFRBSoURAnKvMaVlwzglEhBAEoBACK6y+LFVrUhRFMabK\nMds0TaWRU7O1lLIo8gtxs/rIEEIQBurDQgghg1mu6zpjmeG44yyzHHvIEsMwCl5QwgABGMPBYCCl\nNLBuY0sXMIoiRqnnuCpDrWC0YJICrTuaub4Xx0NN0+I0dV03aNaBYGESQggTjrMs44DwlE6fbJd5\nYRhGMo0ev9yrVCoGALyMDMRokbXm271eL4lj07EJJoZh5hKzTACCsNAszU9iVhRsobW6vn792uWN\n58f7h/1TU9d1IVcWV44PDzy/olo/NJt1dp6HYUh5LAmBkEut8Cw9SQaWLttz1aP9bco4l/D+7svi\n2bPm8lKcl7Mstxy3G9F3vvOGtRR2wx95XnVUFP/lVx/vRyGl9PBwH0No23az1gg0MR53X1u+DRbm\n+/2+bwVRFG0/2xnXp0VRTKdxkm4vLy9brvfo6TOnWj0e9gzXen3z7Z99+ktpao7j3713tzsd6s1q\n68pGJc/3Xu70Bj3T1OY8TzQaBqcP73wmhHBcczqdrs/fiOP46NmztbW1mLHT8TioVk8mE4QQtixg\nmoMo2rh6TWr6JEpyJogsKo4hisQLgoeff+Jaltuag0V++/btk8Mj33Yblfq9/ZN3r71qaHqSJLqt\nP3nyhI5GBkRFms0tL11yndLzdzqdpZuv2JRrlM0G08PjoyCoY835rd/+jTiOKWXNZjMM+3lWLjbr\nhmVe21wDefrk8bOsVr+9cfnk5GT/3qM0TS8trxZlaRjGK1vXvrhz5+Sks7N/tHnp0rVbt/Z+8PcP\nn20zrP34xz9ptBbcZtubm6dp/ld/89cCgjffeTfDMAS8mydrG+tavRoB9ub772ZxlE4mIpxotmNj\nLA0xjPoB9b757puPHj3q9/vtVitN097RSa1a3WVidXU9TfOdlztFXCQoKTj/o9//F2EYfv75577v\n20g8iIaV1363+fYNXde///3vf/7JF57nbU/uRu329evXy3H+/PlzTde3trZswxBYJNMwSuJWq+UY\nRjKeaEyUUXyyve2YpsA4mYWu6zqmgYHMsoxzqlp+dbRJKDjnBYWEEIhBFM3q9mIWZVggWjBJUEm5\n7toUyJxRAXIBRZFkgvNK0yMYxvm4JkBNM/r9/u69u+PjQ98yPBtTSjkrMMaCU1pCwzCkEJJTqGkA\ns5JxxCQwCAFISISFxBBLCiHQEcaaaVIgZrPwlVevL129cdQLkW5wIDHGJaNpGiPNXK5vZoAjKI8P\nDk87ndXlFSEYZ6VlGXMmGZ4cxOORq2m2ZWRJVMRFzXGFEEyCgpaMQYQ1SEwIgOBAmpQEZo6kbmoR\nl6ygnmkgRsPTw7VAFyKexYM5DS1fXpHZpOkvDce9zz/5uB54uoQyK5EQJtHjNNJMA0IgoUQQAigk\n5BAAKcGIlgtz8+lkViTUxIbrBpyRpdUthsywjIRrz5DUiJCQZSx/tH2/YruVSsW1DOratm0Hrq0B\n4fsWzSNT129c2RwOh4or22oErutOp+FoMIQQWrW65bmO4xS0VAT1NE1PDo9C111bXpmvNaIoggJs\nBJ7reWEURxglvMzKUgKU5ynEGsdQIrR1+SpnbHt72zLtjMoCwjzPUV4Ixh3TYlRiiAiGGKA4yaSU\nvu9JBHNa0jTJ87ygZVmW1WpVVaxpNEMIMSkMoql/FRjmJc9msZqPdQkFhJTnai1t2A4hxHLsMAyn\ns1nJKACAmHpBaZLEvu93RiPPcTVCkiieTmee485VmxCAaBQahmEYOpNCCGDYjm7ZWZ7Xmy5jbBbH\nioqVpmlRFEEQqAjhM/dsCG3bRhoBGHHOAJAYIyCEFAJDWKtUlOANQojO5d7JZCqlDCxbtSZq0kPn\n7tZqDlabb7ULOO9cY8e0uBAGIZ7rupYFEQIYS8aSJCklFVIi5f6h5FsQKDkZY0xypibyvKBRkSmd\nCxccE4wQ0pXzdlFSwTVNAxgXnEEIiWlCxsqyjLNMCAEZ5zzSNI1gAwLCOSeVSkVBYQAA27Y915uE\n0+FwODc3B7JMvQbtLB1amYhi5ainkraKoqCCK90VhJCgc0WjEEilSwCgWjMIoakb2LIxxnmaEUI0\njA1NU0FmgnEhBIZoY21NteGKjBBFUZpnBaWu6yq7UYSQZVpJkuwe7OsffeQRqOZjRVMsy3JxecU0\nzWG/p5hEavIIKhX1QjZW15QBck7L45POYDxikpd5bljm7Vdv7R3s9zpdw7KKLCvL8mhv/2tXtjAm\ng8HAcm3HcZ4/f97pdIIggFBubm7OpqFp2pyKjz76qOL5eZ7rvrmytgohnE6naZHXarWS0pcvXwog\nTceuVCoFLW3brjebRycnH3/8cZoW1WrVcZw0TR/cv48QmgxHlUplf3//jTfesCxrMB5ZlhUEnhSi\n3W53u6eUUijFdDzKsoRzaps6EA6l1DRN27Y5p9PxSN15moYpFfPz83me1+v1K1eusKI8OTmp12rD\n4bBarSpjPNd1q9Xqd77znSzL/vJ7f7G6umqZZjiZSsYvX75smibWyOuvv44JybJsaWnpD//wDzu9\nLta1+fn5OdcyDCPNMwUMpmnKGFtvNl68ePHkyZNeb7CRJI8ePXrnnfcWFhbG47HyED0+6cRx3Gq1\npJR3794djkaXL1+ev/+wLMudnR0AQLVa7Xa7EMLHT59cvnzZ9oNf/PLjLC+hRlbX13Rd//jjj29c\nv95u1JMkaTYa11+91T0+0hDe3t6ezWY7Ozubm5uWZTUbjUajMZlMkiS5cumybZj9fv/+/fuKZC6E\nAJKbprm4sBD8xm8o297nz5791fe+9+qrrxqGkcRxJQhUMyeFyNI06Q8hhL7vK8fmC+6oAtbU5KFY\nV4rPosQbF44BjNGLvZdt25qhK5sLNRx4nhfHcVGWVHBEMIRKIwQwgJ7nTadTXlLLsjTLKLJccOha\ndsV1Xr58+ejRo16vZ1kWIagoCgAkOHdnlOf5NkwIxDkQZ+QaICRAAEKJ1KjkOp1uTwGSo+HQr9ff\nfPPNy5cvr1yx7t279+zZMyGEF/i6rkdRNB6Pl5eXZ+FkcWUZAJBnubrBbNvOBh3GGJMAMsYY1nVd\n07Gu6+oAxRhDiBHWIMaccyABQIhLWXJWKH41IVJADqRl2VzQM04sJIQQ3/frjZoJkJRyOp3WXV8n\npIgzIKTr+iUvlRRJQgklkBKqC1ANgiLLhRDt5pyB9Fkct+u1xeUlAQHCGEkFFVBeFFgAickoGymY\nV6VNCAB0XVc37QXMrrQ9CCGoaYqTP4uicDbzqxVFHXJd9/or1wEAeZEPen1Fo1NaIM/zmnNzfqWa\nZFlS5jKcSUxs1xmMJghCyUU0mxKi+46LMY6i6OHDh9VqNfB8wXi/0z2UoOIHuoY3VteIpsHz0zWO\nY4hRtV5TgDNCSPGBEUIKUynLMi+LszJ2zpGmlBZZodBRAEDBqI6gmv5t257FsYSA8rOUIbW60pBO\nEKYYl2Vpa4Zpmrqml0WhVuMQIV0jAMGyLKM0KYrCxFBRtxQOr4ZRtVtUM7QS8gohFDgsGVP37Zn/\nxnlMgm3bKu9P1VrFbVSMiostOPqKJJ2cW1ydqdQgVKxmApGqd3meKwWwYjiqCq3ADyUIZIwV5Zmw\nG5yvNhQh8WLCvhid5bmLJ9F0NWqri6+2e+LchETZkqvnfPZGJLOoUqmYtbpEMI5jZZrhWGfJ2wgh\nBBECEKAzplwZpbZhaLpOKb3wswYAsJKqZgQICSGwTcvQdM55lmeWYRqGwRijRek4jmVZtCjUec1K\n6lh2HMee5wkhTE1Xdw8hRNN1ZVlQ0DIrCkWpz4pCvR8AwTzPj05P/vJ7fxVFUb1RU+YSasGGEBIA\ntuYXVldXoyjqdrvKd7Rab8wm44rnW7YdEK3MyiLPzbodJmmtUbd1IwlnlmZwyiSAgePe+fTz+z/7\nqWmalutMp9NavbG+sUl0LY5jKMHL3f2K725tbQWu9/c/+OHB8cmVK1cc07Jtmxi6bplxHCdpCijV\nTUMJoxHBiKNuv5/mueu6zWbzYPfQd9yTk5PJZOy57vLycjQNFecCY3zlypW9vb3O8Uml4nMpj09O\nZhklhj4/P6806Z7jSi7CyXRxcZFSmqeZ5Gd8SM45kgBrxLDMIAhWVlZqtVrvtHNychLFMYKwJAwh\ndNrtMEr7/f7jx49Ho9HOzs7i4mK1UtGbTXNh8fr166enp5zzxlyz2Wy6rluU5Vy7Nb+4sLO/NxqN\nihDoug4BLoqiUqu6XnB0dNTp9F68eIEQ2ri8cXh4yDlnrJzNpgiB/f19jPFoPPV9f25ujku5f3j0\n4MGDnb3dK5cvm7a9f3hw9eoVL6j8xV/8heM433jztYPD42Zr7t33vrawsvyrTz+lgg/GY5oXu3t7\nBMiiZJbjvb2+EV2+BIU8nI4nk8kXX3xxenJy9epVhUoZhkHzQukT0jRdWVnZunTZc1ydaEXJxLkf\npMLrvvnNb965c+fDDz9U6S6bm5vLy8tBELTb7UajgSWiURQniSKSQAiDIGjNt9UdrvZPAKPZbKbS\nnzTdAOcCGAVBX7w7F+wM9YPKi6DMygt2NCsY41wAiRCKRyPLMhzPYYxlSY4k0A0DAvCrX/1qf3+/\n1+tBCG1TV/e5YeiUlgpMlmcxOYIxISXVCBIQYgSk5EJAhT8LCCilai0apxkiWqvdtlyn0+t6jSXF\nFkEE67oOMXCANCwznExdL3jttdcG3d69O3d7px3VIkx6PQiArusEAgghwkgwoHi/qrFGiECEFQ0G\nQF4yluZ5WfIsKwST1LOBbWLIDQy4oLph1Gq1DMICAE7LPElfdvppkgMAKKUa0izTAVDkeY41DQAO\nAADyrAar4xJDVOYFVBneABecLaws+7XqMJwkrMyhAAgCRgWlBiKmSZQyW9V75bRg27aydAAAQAlU\nN+a6ruO60WSSZRlUtt4QzGazJEvVse55nuM4GiGz2SxN08D1lOQ3Y1mWphKguUYjK/KypCVnnuNy\nLk3TzLMyDmecSzWuUEqFBAihrMhFyUajEaPUNM04ygkh6yurhJDJdKy6N4Uhq+NR3T9cCk65UtpQ\nzpIkOQ9G09QShFJaFLlEZ2xkA0hd1yUEWZaVjEVJzBjjUggAlGw9yVKMQElzjMyq77mu69iWbZg6\nqSjTbwiRZVqapsVAaBRDqKsPgnJRvcCEIYQqTFAlHF/UJAXwynNll3pWqqw6nqcIB+oFKsNLAADj\natsKLiqi4nBdCK7UbwPnnQqAZ+oDxpiQUu2nKaUqGgScO2MzxqjgUko1Ul8sktU9rOu6mjQuNITy\nPFhCyDPQW5mNXNDMFMgPMQJcXOyhiPqZVqvl+35RFHt7ezQvKKVII2rVb+qG0her99jUDQozzrlC\nEtRSHWNcMKpeMwLQ0HRVhmfTMEkS2zZzLjhl4OIYYEwwbmh6lmV5krquqyFcCyrqUcb9YbVRDzxf\nXRHf9/OyUGJDxc2TUiq7E9t1sEbq9bqmaRgRiMksTjifJVmuuiHKRV7SnJaaaWBd6/f7/dFwoVqb\nqzcAABBrpm5okASeDyGeDEZpnOVRUm004yQRQjimFUWR6/ie53Epsrwcj8dpnk2noW3bnuMeHx0m\nM2dpYXmhtdBsthSEYJoOE1IDOKjUJEDjcCYAbLbnx+PxaDxl/aFXCRAi0+nMtK3eYKhEfu12y/c9\n27LgmY+5WFxcZozVarU4jpNZWK/XFfsA6DzLMsd2GGNFljqWCaXAEBgaKbL0LNaCMwBAWuRlWULA\ntre3W62W5djHx8ej0Wg2m0VR5DpOlmWXLl1yHIebPEriv/zLv9R1XSmGD4+ONEJu3XzVME3G2OLK\n8sHu3t27dwfjkeM4XuDHcfxs+8X169e5TnZ3dxljrusvLS21Wq1Op3d62nU870/+9E8fP37805/+\n9Dd/8zdt237x4tm3vvUtUVQ9zxtPwuFweP/+/bl2e2Nj4+D4iFPW7Z7arh/H8TicNptNiMDRyfFP\nsnhubu5Kc45rGpcyTGKFZLz//ns7z14MR5PFZnM8HlsaWWovxLPoWnsOQhhOp+qsGQ6HvKSe5zmt\nFiFkfn6+VqmqD9hsNrNtmyAsGE+SRMWbGIZxdevKXKOpVHqKXaW6acMwuqcdGyD1IVdjuvK0g5bJ\n0lR5PmOMITubidG50a6q1kVRlLRUH2P1ES0ZZYwpTYViYwDVP6EzdwU1RgMCMQJFnudJSggJXE8K\ncbR/sL394uXjh4Zh6DqBX8mCBef5NgBA+RV+LADIMrEQECOIABCSSSmZlBByWuZBtdIfTzJaXnrl\nlbXNS51ufxrFa1fLgpbthXnXdYmmKQ2SpmlxHDcajVarFU1D9ViM8ziO87wwlXExZ5RxXYMIoVxw\nQoiEAKioO8kBAKoxqFarEOIsy4o4hUJyWtDUoJkuWAEkdQLfr9Yk1mgpIYRlmT968DBJEstyMMDq\nxMQSAYm4FFLZAgABJLwgYZVxipGmaSRKYimgblurlzcpEHlRCB0ZmoEQkgRDTGyiO5aNMVaCziAI\nVAFI8xxMJmoeJYQ4lu15nq7ro+Hw+fPntXrD87y5+bZt20mWlp1OOBxOp9MXL15wziuViu95gnGF\nxqnzn5YcAJAVWcUPrly6PIlmJeO2ruV5EUcxQqjdbs812wiA4XCYUwwxTpLENi2/WpGU2bZ9PBqE\nYeh5nmVZ4+nUsizNMCjn4tz3CpxTxCUCmfL3oVR1hGdtEDgbxYIgOLtWGGmG7ngu0fU8z8fTyenp\nqYRA0zTKeRAEhmHYth0OxoZhNGr1K1ev6rox6vVGo5GmaRomBS0BBQghbpkQQks3GMJRnqshTc2F\nZ89KnqUdKHLMBVsKAACh5JzTIi8ZVR8uVfxEJKWUummo8VR9stQHmZ8HEV5QpuW5P9pXjUrUw0Fx\npmUC50xpNZFzKdRjUUqTJMnpmQnXGTf7Kx8r9afiealHv+BtmaY5iSLAhSJzqF14nuecMVWD1RB8\nwepCCBGNoLLIkhjoul6vVaSUg9EwimatVqssy4JSKAQC6qIIyRkHXEAhpBCSYYQxgQgBxESSRAgI\nQoihYQDOQCfBtJofJEkCGD/j6UmQzeIkSRqNBgZQ1zSCMaM0S1PVeM7PzxNCOJBJlrIs05kZJfFw\nODRtCwmsGTpCCBHMOZcQFpSG0SzLM2UgpSRoSZaapjk/v2BZFtE1AJGmG4wxw7QM0zo5OgZCMiF1\nXe92OqPhEEgZzuJZEv9/ufqvJsuyLD0Q2/roc650HREeIiMys1KU7uputK5BNxpD8AGvNNJI/gf8\nCD7T+DxjAxuzgdFgICEGwwZaFLq6WmRXVVbKyMiI8HB99T36nC35sNy9kvS3zIz0uOLsvdb61Hr0\n+K1RNujqShCmjL148+bw8DDgbLneMEGjJG7btlpvAcoI4+jJW08//+yzj3/1yXa7bbr2D/7ox6cn\nbxDBlNCqqc+vLyG5lHmi67o4SZI01c4KIYyzICnK89w5O5tdx3HMGRsMBpeXl9DWRFEkpTw9PX3x\n4jlC6OLi4s2bN3EcZ+OJ1WoyGlprVytEMcLODtJkvVxYawlyXHCrYWm3JoRQRpqm32xWWksppepl\nHMdpFodh+Prlq/PzU5+Ltm3DMHz73Wf/4l/8i7IsAWxglD5+/Hi9Xr8+OdFKffjd79BPKTwemBKM\ncZ7nn3zyyYfvvb/YFDuT6f3jY4yx1FoZ07bt937wg+vr66urq+985zur1erevXta6+fPnz++94Ax\nzzmXZdmHH3743gcfDMej/+2//Neqrher5adffD6e7Owe7M/n86Ism6bZ253MVuv/+d/8L28uL0bj\ncTIYTqc7Xdf9489/eX7y+iQI/vC3f6fZbl+/fPm9b38o265Q3dtvv/3w4UMpZSC88zensu0ODw9n\nV9dFUazXa4zxwcEBvfWxOm2F5wXDkdPG87y2ba/OL4bDYeQHAFW1bbtYrpIkScKIONTLnlIqb1cD\nQXJQr+R0OoV75HYUuIHyrENw/QHpq7S6E+22bdvJHpQyILbquk4piRCCDvhOssE597jI85w4FApR\nrNeff/75l59/sdlsRokvBEcIqb5HCAVBgJCDXFzQJdlbh+hNVUaOYEQRslbDBe0shm13rZKOksOD\nB8/eeTsbT8q6ysv65OSkaVvP87LBwI9CaXTVNnXbgBz64vwqz/PpdAq4dF4UgedhTBDGBjkpJaNe\nHEZcUK01M7Ch1llYnIAxxnj/6J4xZrPOyzzvjW06SZwjTglOjOqrrm20xiLEUTwdD0fDTAhBMcEW\nMc6Q1GWZB8IbTsabfGsJdtY6ghkmBN1mQWvpC35TVh06uH9/erDXO9OoHjPhEcEYw8ghi7BDTulo\nkFVVRTG5m7HgWofTSgiBTO88zzebjXOuU5IxJozBlERxPB6PIRcBfKtxHKdZ5qwVjENh28yX97yg\nk/Ls4jyMo6P7D7Ise/3mrK0bIfwHR4e+HwaeT51t25YR2nStUmq1WERByCkbptmDRw8PD/f/+r/9\nt1cnrz0uwjCIkni93Witd3d3Ay8Eow7sDqKCO+eMQ3lZQfGj1lFlEELYIoqIQ9haCzERUptOqoBz\ni9A2L7Z5wTwREdr3sijKOEVxHD99+lZRFNvt5vPPP0uiCDvY9ujq9mZVUVkWtG8558poAJbgXAA+\nam4DQ+B+g94UGlxoVT3G7xCju1oLaqw7Vba+zchECEHDcad/vitsdxjvnRAajqG1mlAqPI9oDaM5\nwANAHgFfLs1N8he79UxDqYY/AGMxvDBoGu6E5QihKIratuWcw+4AcP/fvexfvzV3I11kupezyyvI\nfkMIpWkaBaEvvNAPtFROacZZHIagoANH9h2IYW5laVJK2EeBrAujkGESRZH05TBOq7pIoiBNU48L\nkMkRgtMkItjFUZBEsZSSEVwVOcZ4MBiMhtnp+VnbtsoYzClm2BgVhB6myDqNMMIES9UpozBDXFCM\naZYNjTHT6bQs681mrZRiQixWm/39fSAJgCOx1vohrut2sVhRztI0jaL43uFREIWYMO57wC7Irhce\neXT88PL6qimr4eH+AGPGWNnUFvW7uzuU4hcvXozHY4/zJE2rtnn+1YthNmibLk5Sa22e55eXl8vN\nGnZxcCHatu36VllDKe2l0lpfXFwkSZJl2YMnR1999VVdVbCuIE1TbA0hZLVaXV9fH+zvep4HwS6g\nJCzaKvD90TCjlGrVl2WJjKWUtmVJCMGMjkeDMAzjOJZSGmc3+frg6FB2fV3X+/v7+WZrrZ3s7Jyf\nnvphkG+2z37wg65unj9/PhgMfv7zn49Go93d3d3d3dn19cnpm4uzsyovwjD8j//pPwWhNxqNIOf2\nWx+87wj++OOPF6sNIizMkvvHD0Geqq0zzn76+Wey68uyjJMwTePXJy8//fRTa63t5M9//vO/+duf\n7e7ufvf73yu22+vra+LQt9599/jhw3//H/8DFfxHv/mbP/npX68+XR4dHb0+PfN9P0rTf/I7v7NY\nb9abzcmbN9ZaYt14utuXpVLKIPfq5cu2bqLQ77WajsaHe/ta6/V6vdlsFrP5wd7+aDRK01QrBRT4\nwcEBRPiGgiPnBOfDwSBN0zzPV6uV73nQUHdte3119ebNm+l0GkcRRgi4KEAawGwdBAFhtCxL2HgD\nJwKWBVlrhee725w/kF/p2/Q7OMB3nCJoMjUz6JteGmRvhLzWDbO0b7vT1ycf//Lnr75+yRjbn+5g\nK83N5jiMEOq6FmNMMbEEMU6cw1prRDDGhFqKMbZaIoQs4RimHkIsIQgTae1is3309OkPfvNHXhSX\nbesoVUZfXF5ba5nHWtn7vq+t6bpOS+X7YraYF0UxGU3efvtt3/d/8dE/RlFkTV81DUIuDAJkbkJ9\nwaBiMAzlFjmLHIFXVbYdpdQirBHGFimHlLW9wUVVY6Rd33UGYa9OEHHOFUWxXa0ppYLRru08ROI4\nBe2xQ8hhZDHBCFtMCEwqGAVcWKWNdZhxQmk2HVtGpNVV13JsMaWcUp8LRjl3mKIbqBByJODqgEXr\nbV1Pp1OMcVVVq9VqMhoPh0NjzLoojDFlXdVdmySJxUhrvcm3eZ7v7exiRmErQJamxpiyLHenO85Y\n2XW+8ATjfdP6vvf+O+9ShB3Bw+GYEFJVzWa9zvPc87zhcBgFIWNM9X3fdgBfPTg63D84CIMAIUQY\n1Vpra3olF6tldPSA+x5uG+0sRRgZ0yupte5kTzEBUFQ7C2QkIaTve0RJEgae5xVVWTU1FRwxWtSV\nAz5YcEQwFwI0CqqXYHiz1vq+PxgMmqq+uroKhAdGLKWUuU1OJujXsC3keEBbCc/DHRV6B4n3fc8J\nvYNm73jcu4KHb+HcG6k7QnfpcvCS4FjdkdwwJcNBgxIoOP8GPoQQQtwTAz6A0gZd8h3WDaMtHNib\njvYWOQBllrldjA0/Sinm+zcn3VlqHJTLmzLk3N3fq24N3CyJY2st4NZ1XXdtizGO4lh1PTJWUMaF\n5wuPEMIIFYxjSqG/4JRC8KHqpdVm7/6h06ZpmlB4UkrZ90VROOfaqvYGA0GYUbprWmet5/sIIdVL\nwRhByGo9GgyA62aEbLfbYpsTRq21WCPOeUxjPwqbrpW3S6ehDfF9Px1koYjAxaGMYUJ4QXBwdCSE\neP36zWy2WKyW9+7de/r0aZSkADWEaVJ1LZGkV4owhhktqyqvSj8Mzs7faIviNAnD8OGjB+kg+/zz\nz6M02xRluVpzj3mBb5HzhL93cNjW1WazmY7HVpuu69u++8v/9pMPPviAMbZYrxbrFUzqeVnwjjNP\naGeXyyVlbDKZHB8fI4SWy2VZV0gpztju4SFkp3GCAQbhnDtkgig0xgBYOt3b/fzzT0Gx1ba1M8YZ\nRZ31As/zPIxuvH1JFAyHg+nuLsj3t8Xa9z2Pc2N0EPh1Reu6W29Wb7/9LAiCxWx+dHRolNrmm53d\n6ZfPv6ir5tGjR+PxOBsMXn79dSd7wtlqu9k7PCirHFFy/+FxOhysVivAYMfT6WA0Kor8xcvXwOsv\nN+u96c5mszk7O/vxj3+8tzsFadVms5Gy+0//+X/Nssz3/d/+7d9+8ODBz/7ubznn77797ODo8HI2\n39vbY574+7//+5cvXz59+vSdd975m7//B601obRT8ur6Wil1cHCEEOrrimEikuTegweDKNyf7HCM\nsiT99MtPt+uNYLwoivVyxQitunK5WHz26afvvPPOd77znaOjo0B4nucJxkkU667t+gaaDKfNKBsQ\nh0LPhwPstEmjeDIcRX6AjDVSVV1f1zXcR9DCI4TKuoK8SeCu4KtsmqaqqjQj+NZMCecWUGV9m68L\npwn+kRDCIKTeAV5rnHPIWIuVYPz64vLzzz75+qsXbVWPB8Mw8BCyZXkTMcgYh+uGUioEx8RB/w4k\nFrmzDGlJCHHEOEcMcmDdMchqhA7uH73z/nt7R/c2Zam0dYwShBnsv0Novcm7/gquS3AogVCx73vZ\n6yhKHj9+fP/+/auvv3r96uu664IgwIwqLV3TyL5N0xQTRBHFGBNHncXgDbqez6IoUsoYhwjBxiFp\ndCedU10c+YQgKaXUmkZJWRbrbfHJJ59YY5LhYNN01tkszbTW681GRAEh7s6JZBxCFmGMAGpHFCFK\nmC927x12zjSd9MOACO55XhSEWRCEjDPjrDYn86u7S0YpBYlDTdPM5/NBmoJM7/z8HLKutDWYEoKR\nUmqxWCw3a6XUarOuqmo0Gu0d7IPAxWkDD0ndNt969my5XBqlJ6ORFwRKaUHo8YP7bVV//frV9fmZ\n54ej0SgOdo3s27YdJ5PhcDgej7WUdVmdvTn92d/+7Zv93WGaTadTz/PqptJae0FgEVqsVj7zsuEA\nU0I5w4QoY5q2VUo5hBzBDiOLHEXIEYwtstZSwZVSmJIwjqTRyppOSWV0XhZMcI0dRC6DlkIIQTlF\nFgpVvyk2lGLG2GQyKopCWYURttj2Xde2lnMuBO86CXf7nfUWYwyrvaBo3eVG3ZVJGCjhtgcQAhw7\nd1AwvnW+qds1SiBwU+rXCkfYCIIQgjH3Ti3FCIXglBt0Gt9wulJKRzAsfLwrMebWaA6/E/4Rqju8\n1LuGAHQSxhjVtlBiISYMzji8BUII+wbh7SglhDDdtZTSOAzAzqiUKopCda3sW0ppFPqEENW30LwI\nIZI0aqu6aVvoEwXjDUZG9cv5tVG673vOiDOWIGeUJIQc379vrW3ruus6X4jhcKi1vrq6EkK0SkH3\nujOZOmPLsqyKEgXhYDAYjkfX8/l6u4mUMtZ2fSc8AcgDKGVULykmsN8RlmwURZGmKdSAy+vZk6dv\nBUFQt43W+nq2uLq6gvSDg2FczpfGGNs2URRlw4HW0hKMCNk52F8sVkEYjsbj84uLV29OpJawKchY\n62EmuCjrerXZVEXxp3/6p8ian3/0kTKSMdZ1knNeliVh1GEUJTFAIk3TGOQ8z4PtCEmabrdbSNjx\nPI9iMpvNYLO01vLq/AxoRWutQ+bJkydCiOv5LI2T0Wiws7MTBN58MQMOOwiCR8fHqu+11mVZCkYh\nmUH4/mq1hAQ06GFXiyVYCauq8n1/Z2en2Gy//vrr3enOcDh8+fKlYCwIgt3d3aZpAj9cLpd/9md/\nNplM6ro+fvDA87xXr159/4c/ePHVl5eXl6vV6urqajqdQvAhpfTdd989OTnhnHuBb5wdjUbf/t53\nf/nLX4J3Zf/g4OTk5Mlbb332xadH9+89vv8kiqI8zylnXzz/Umu9v7//5VdfbfLtX//sb44fPfzn\nv//fvz598+b0tS/47//W72iEf/rTn4LEV3DOGfvgvffv37//kz//r19+9vn9/b3D/f00Cn3K89Wy\na9rRMCurnFC0Wq0oJt969+22bZ8+ffrWW49l2yVhoJKYENI0Tb5dp2na1o0xpm3bLEn7thNJksZJ\n17RxHMOOy9APDvcPCCFd086vZ3EUlmWZpCmQgiD6QwhB+ryUUggRxzHoKtu2xYSCQOauH4ejCHcH\nYRR0KNAdaq09EdwVAEoQJ5RQzAidX13/8hf/+MVnnxNkszTFGHd1g7ANAg9a9bbtGaVpEgFYdSO6\nvL0j7gqwMxhTQjCzGCPnLHbGGWVxNBj86Pd+b/fgcLndaoTj4dAhFMTR+cWVJRg0KdwLkuQmzKis\nK8q9NI2LqlytVvl644UR7eX3vve9siyvLs/rujZaYutYSIXnAYgHNxxC2BHnLAbxDOMeFxhjgqyz\nCLVKIa2xRwjlCFupVe8QhAK2TdPWjZTS4zyLE9m0m+2WEBKniUHOYISQA4IZuG1iEbJIeD7xhUSI\nCL57dEA4a5o6TGNEiNVaS2UZd5goZVQv4czewY+U0qqqwC2zXq8P9vYePXoEdP5msxFCJIxhjKu6\nvr6+XudboBJHoxHMu13XMULjMKzrerVcGmNevnxprS3LUi0W2XAwHIxk179+9aouq9gL4umOMUZ1\nbdsrLVUcRrPZbHZ1LaUMff9w/2Bvb2+9WGZZ1rVdnue7u7s7OztlXcP+Ii/w56s14cI5V/fyBi91\nCHOBrLMYW4etg01RxCJrrOvqdrVatVL1xvZ93/X9bLXebDaNVISypu0Xs3kQBJ4IOPNqr/U5gpZO\nCLFar0/evMnSdH9/3yJXtw1UkJtIiiiaTCYIEWgKoRTd6ZZvNM/OAbx8V+1A1qRuU6nvMsVgNgVu\nBVpAGD0hHRra3zueFYolmHHvKJg7wSP48sMwBIE3vDyllBcGQgiAS6WUQLRB5skdrG1vLdHyNhT9\nbraGIx8PBhDMAsF2hBBkLLQgnuchxgjGd1g055yNh6M4jtfrtVPaKEUQGmZZFEVlXe/s7Gw2m7Is\njTEE4ygKkyRZVwVjbDqdNlXdtx0JsFEqSRJnrHKIU7ZdbwLPw84JxgaDQRxGRVHIrkfWMUIJwhST\nKAizLFuv15yy1rqiKIwxsHLcH/qo6y7Ozh1Gh/sHzBd12zqMlFLOWIxxGid93zd5SRFuymrRy/Vm\nSSm1BoGKe7leeV4wGo3+5b/8l//Lv/k3f/u3f//y1cl0OoVu67Ovr4Ig2N/fv76+7quikh2lvO5b\nxEiWZXi7QZQ8//oFpiTLsrbvrLWQJ+f7fl6VjJG2bb0gePfdd9M4iqIoDaO/+9nfFkXx8MGDLEsg\n2XG73XqeV1XV8fHx1Xy23W5hp43se4zxZrPp+3673T548ACp3hil++6zF19NJpOqqpqmmU7HP/jB\nDz766KPVasU5NU7PlwvQRQ+HQ9imaZTGkdVaC8b/+T/709PT048//ph5Xt91xTa31gohtLEUEyAg\nOeer5dI5Z6TSWh/s7Vtri+1WMPb06dPxcPTxxx/nm+3Rvfvz+fzk5ARISkzQj3/847ptPv7kV8ia\nZ2+/LaV8/erVV199BbVnd2/P833G+ce/+lXbNM+ePX306NHPf/GLoih+67d+azSdfPzpJwDYfvf7\nP/zWt76FlPvss8/W6/WXX34Zx/Fbb71VVdXTJ0+YEE1ZXZ5fnJ2eMkwGaYad+/uP/vbx8cPLs3Ol\ndJokvh9eXl6ul/Nys6YIPz5+WOfb1y9fPX30UHbN/fv3X774epgNCCFG6SSKMcYe43EQLmdzKWUU\nRbPrazDwWWPgsIF9Dt+u/l4sFvCPkAsPUESSJPB9QXFN07Rp277vwTWU53mSpVmWQeQZJBhgjMMw\nXCwWwBJBcr26TYEHcQB06HDXAGEPiJ/tLOfcGmWkToaZM/bs1cl/+bP/TcouCjyCMMWOEIw5sdoh\n5wyEzgODpTWQZ/DLIZpfaW2MSZKkaZqAe5RSEQRl1fDAo4yv1ut0OPnub/woHo7yuvbiuNrkgokk\nTZMkuVwuYXudHwZCCOtc1dQUk+FwKBhrqhohNBqN1oslRshidP/4wZ/8yZ/8x//476+vrkLPCwIv\nydLZ1bXvcd/3GScOYGJ805F4Pq/rkjGBKdHGYOcIpmVbESR6Y4THu65NRpPlanMslTGmqUuK3Gx2\nNc2GWRTWVVWWZdNIxKklGBFMCMGIUoIpIxRh3ZQipJPpdFFXw73dwwf3W6O8wK+qCmPMoiQZhYxS\njPF4Muma9rrcDIdDSulqtTo6OmqaZrVZ9203m82gp4Hd8gihg4MD3/d7Y/I8v57NlFKe57V9B9Va\nCHF6epokyWQ0zqW6kwFDidput8Bf1LyOMR6mWRsFnJFeaqN013VNXXucUuwoJl7o5ZvN7OoKWffD\n7/+g3NkdDbPFYuFzcXl5mVcFxnh/f3+1Wfu+X7ftF189F54HSgLOedO3GOOmqsMwNNaCa9Q52ned\nMQZRsn94oJ1dbzabIt8WOWOskz0mmDCKNB6Mhh4XeVVut9uTk5P9venDhw+VUsv12uNc+MFqmxuL\ngiCIwwgzNhmOuOefvHrddbLvFYD5w+HwTh3W9/3Ozs56vc7zPIqiJEkglQKe3v62ARqPx1Twdb41\nawOqW+ccosRa22uFjSbQoiLk+z5M1VB0oUxGUQTTNvRSoNWA21JrzQQ37mbVUpqm8WhopJzP5wBo\nW+R6JTnivu8T9OvffIeKo9tgrztQGkTXCCEW+JDXDT00jMX4dsUhlGR++0v6vmfIaNk2sm2wNZxS\nRzAhxCh5/2DfC/wo8IoiJIScnJw4JU3fYWQDX0RR4BTsiCCWM0qJcZYHHiGkrWqELEIWosTiINws\nV1mcIIQWi0UgvN3d3b5pN8sVpsRau7u7C9/EYrGAvmCz2VDBjx8eI0JOTt+UdRWnqTM29Py2bYvV\nxvO8NE4EY1JKR0zfS0qpFwaDYep5XlmWbd9dXl7+h//wH16/fk0p3d3dTQYZVMRsNMzzfL5aAuCg\nEdZGB1GEGC2a2gv8vYNdwvByszbO7R8e5qst7B7GxAks4Ilp2/bf/bt/e//ontbaPzxijCFsz89P\n53NxdXUJjpSjo8MwDFarpdZqPB4VRTEcDuI47q6uZN8NBwNKcFNXz568BZQDrCvBGHse11r/xV/8\nRV3XWZa89957sOC6ruvT87PF/CqKoiSMmroWlEVB6Pv+Z5/+ajQaxXGolJLYRXGQprEjmFu7uVw9\nuH+EMS7L8mh/D5rB4WDQdR3D3DnX1s1yPmvrqu/b4SC1GNVd+9/9yR/PZrPT01MvCP7Tf/7PEI74\nw+9/FyHkjBVC/Orjj8fjcRzHv/zlLx89evTVV1+dnp7ev38/yVLuiX/4h394+vRpWTVSq4Oje4yx\n2ewqiqI/+6//ZXY1930/i5Mgin7wG7/x9MmTn/zkJ9/+9rd/8YtfUIK6uvrJX/7F0f17xXbdtt56\nuZju7r/91tM//eM/+fO/+Muf/vSn4/FU1S0V3tWbs8l4+K1nz4ZxKrte9XK7WSVRsNk0BKMwCNM0\nBaHQfD6/vrpijIWwF0FpZOwwzYB2GiYZIMnSSIIwpQwQpPl8Dn53yNzXUjljnbUwsHq+fweCSSmB\nbRFCwDG7icWmlHOe5zm/XUd6h4/d8U83RC/Gd/wWI3TbNHEUCCHqrq/Laj1b/OVf/FerJbHOOQji\ncTfzLCUOKUIwIdTdRDH+WsDSSymViqLI830oogghbbFy1khFPb+RJs/LwWT6/R/9ZjQcSuSKpuHG\nOcqKpi2alswXUpnhaMI4gbUz8JuRs2EYKgg6CCJwAGqlyrLcbovvfv97z58/Pzs9TadTStB6vfZ9\nn5CbeHrnIDDyJhpQGWmtcwRrZRhjjODUD1wgyu2qajuulaN4d+/gbLnSFk139u7dO1wtFuVqM+u6\nLEwD359Mp5jR2XqJb8VmGDtEMSQbxWFYt01zeREMB8ePH1HOlGytdRAiyzGxSnPP45w3fbfarjvZ\nD6MQuqLFYgH2kKvZ9euXr370ox8NBoPZYhGG4SBN27aN41ha6/v+8YMHnPMXr15aa7NBBu7wLMsE\n43meR35wdHjIOV8ul5vZfDKZfPe734Vc2O02L8tys14zTBDjCCFGMRc0DLy2k13XCUqrqvI8b3e6\no6W6PDvXSjmrx4PhZrO5urpabddBEHjBzVe8f+8YEhHavivqpu/7pu+SJNFKY6mctc5YrWwSRWGU\nRFG0KYvxeDxfLq7mM20NFz6ixCmNCVltckrpdDzljOWbbVHVyFhM7HK9Ojg4GAwGdV13Wkmtv/z6\nRRJFz54903W1XC6n4/Hjt55oqe7ssHmeQzJUnueMMZhBd3d3oReJoggqtFIqSZKiKGDSBVHVzZNO\naVmWGGPomOu6hgFA9xJ0o0AGQcWF9AzI5LqTZUHsc9/3iOA7iNs5V9e1Qc5au16v67r2Aj8IgjiO\nu667vr4epNmdihvd7m6Cxh1EUXc+4xspljEYY4SRRTcuBhjB8S08TkAgeHsFMEoIJcT3PBiS2q4L\nw1BjjIyttwWipG+7vb29JIqDIKjLyiCrte7KWms9HA6n02m+3a5WK8DZAuEJyu4ybLfb7Xa+TNMU\nOSOVyrLEObNeL9M07rqGcIaxU6qXsuOcck6B3QwCL0oTq1XTtXEUDAapw2i1WiVR2JbFpix2JtMk\njpWU5XYTTiZaK2uNZ4Tv+SxlmDhWs/V6+ebNGy6E7wtrEUT3YYx5EJqi3JRVEARIWxYQmBJ2B7sg\nomn6blPkjDFj1TZfJ3HMGEMEA9za973wGEFe0zSffPJJUxVnr19VZTlMM2OMMzcbKMfj8ZMnT1ar\n1UcfffTkyZP333//xYsX4CtdXM/ath3cS4+Ojtq2tUpBolt48+MDn0EwjuOwKIrz8/OqqiA7pu97\nRqlSqmmauq4141mSDrIM2sC93d31ZtN0LWQIdEoaYz587/03b97Ac6+EgFiJtqrH47Hq5Xa7beo6\nCkPOGMGYErq4no3HY8ZYlmXj8RhWwBpnwzC8XszHgyEoxf7hH/4BsqNn81Xfdc+ePXvvvfe+evHc\n9/3xeHxwdO9qdq2Mvp7P3v/2h69efX1xcQGOwFE2GO9MX56cvPX4ycHBQdM03/nOd5qq1LJ/cHB0\n78F9Zc23P/wOQXi2mCdR8Gf/7//4+K0n/WTym9/57leffvZP//APj4+P+6ZFXXd0cHDv4NCjRHdt\n4AuGyWh3yjm9oYIQQs4h5zBClNJBkkZ+wAmV4Ba1zhlrten7HhBFgLwAbrLWgooNFBl3wBd8HUEQ\nZIMBkExALqw2a2stLIeoqmpbFvB/SSm7XsLRuCGWbksvHNdbs8yvXYxt246Gw65rdC+Hg8HJi6//\n9mc/Xc0XUegTZCljhGBGKKGIUOIc1lJTcrMY57YGW+cQIVz2/R3rdjcWSKmDKKybplUd4ny8v/+t\nD7/94OnTVkoRRtzhvleM86LcQmjfaHeyXq9BzgpzlR+Go8Hg/PysqWrB2CQb1i1GlIVCcM4Xq5XU\nlgmOMMaMImv6vo+CkN6+Qoesc8Q5QwhjjBHmJNac06ZuDTK16om1qq2ccU0vA+INBpPv/+g341ev\nq7Z7/vpjZPUgTSLO+6rpukaqzvd9Hvg7e1NtjLLOGOO0cdoga5xzhPNBknTIBEk83JnMFwvpTBin\n2LpBnBDjOKFhGFprVvn2ajEfT8Zgbtk72AeyEC7GBw+PkyS5d+/e+fk55LZiSufz+WgyJT7OsqyX\n8uXLlxYhmJniOAYMpikrIcR4PA79wCh9uLsLWYmgVa6qmnMOtJp1LjTGYgSb+FbrtVI9xUhL2TWt\n6mUgPPGIe0LMLq90L51zw+GQUFxU1fXlldQqiiKL3Drfwv4+4XuMEYqsJbiUHRaMEYoxarV0lVNK\nGWejJNbW9FrFaUIona+WfdsxTwghusVcCBGlSRrFgeczxrardTocLhaL8+vrDlyw1iJGWeDzIOCe\nPxyMurZdb/Ou6wLhGWOs0SAMBr+otRb8AvCWLy8vm6YJw7AoCgjwStNUCAEmQJgsAaZWt5uD71aK\nwZGB21JrDZOu1ppSCh4haI5BJwUENkDHgFoDj9spuS0LtV4BdJQOMmst4J2w76hr2js+GKopXBE3\n6gcp0W1mCPxFAIPdUM7IgeQbY6y1prftN5RwOKtskKZpmk7HYwgG0lJmaSKE2KxXvu8bZ7frFbLG\nauUML7YbHofuFjGLwiBLE2v0drXam06LolBKUkrCMNBawyXDKN3Z2VHqJukUuozxeAyXzt7eXtu2\nkFVknDXWyk5CUlWe59siP7x/bzweX11fT0bj0XCour5i/GBnN42TPM+7sqYEGeyU7DbrDnwCFmNM\nUOLHUsqDg0PG+dnZmVEWY/zuu+9ezy/29vYA8YD4HmttVVVv3rwZjUYwiLdVvbe3Z63dbDYcMWvt\nYJAmScQ5n81mXUMwdkrKMAyfPXvGCG3qyhhtjRlMxkHsrdfrxXJWlNvJdEQourg8e/X663fffbft\n6izL3v/gW3mex3Hke7xva4oJQdgZOxoMCUWwRKOuqvV2tb+/zwTvZA+szXR3OhqN5tezqqowpTvT\nPcFYFCW+FyJHTl6fcs4598Iwppxr7Jqi7LouCbaUoMePjj3Pm19d675znNVVcf/eIQkDo6VTMo3C\nQZpga+qyCsPw0ePHr169klK2fZfn2/39/fl8/uDBg6vra1h62LbtD3/4Q87YT3/60+l0dzqdHh8/\nsNb+1V/+BSHk66+/llpnw7Efxienr6uunUwmk7395y9f/fjHP3ZGNVU9nkyU0b2Sy/nCaj0ZDUfD\n4fGDB+9/8AEibm//wFj19evgyZMn5bw4//rlu4/e4pT+4W/+E1VUe9nwuu3fe/psOhpr1a/ms2GW\nZGnMCXVa3zs6BO9Q3/dNU3NCx4PBeDAAzlV2HaXUOlcUOfBY1/MZ8ENCCMIoIhicfUEUgsTGOFu3\njbWWUGKRu7y8jKIIEwJLETzPS9O0auq2bbfbbdd1TdNsivzOrkBut3PjGz+ivRUtE+ecvU1N+bWg\nA8AuQo3Wq/n8008+uTw739/b6eoGNNOEEEIh8slihJkjQHxijDGht3+LUUbCUA5mql4r5vl+FEvb\n9Nott5UXhfsH946OHxwePyrafl2UR0mWjkYXVzOpZNU0aZoK3+tk74dBnCbOufV6XVXF3s7u/v7+\ncDyx2gSeF6WJU9r3fau0VCZfzP/tv/23X37+GYQtc4r9MOylZMx3typQfBPhbDHGVktAffzA40xY\n6SVp2jNSLDvuBckgmy9W//iLXy7ycnJwRBlvmjqJ40Ecy6gt19umacumtHXhJxFinAlOCSGcMsE9\nIgRl2/X8aHJY6l5EQRjHVdv4YYCtO9rbH6ZZVzeCC+JQWddFU2mCuq6bz+eEEOAd2rohhKRpqrUG\ndRVc9PCMcc6H4wkhxONikGXHx8d1XZdNbbWx2qxWqxuxMcbXl1eTySSKojiOL07P2qZzCGPkKCWU\nkr6/uYgoZ9zzrLXr7YYywjiVVY0dcsYygP2FsEprpbRSnufFcay03BZF13VHR0fvfOvd528upbHK\nIaeNlsoiV/d9I+VqvZbahH4QcCEwlc7ZXhpXt0oXddW0bZKlZdMutznGWFgntQnj9HBvf3//EFvn\niyAIIobZfLVmwuukKqp6PB5vt9vLy0tr7XA0+duP/nGUDd55++0gjI1xfhR3dROFwV0eNaUUErOh\n+AFIMJ1OwzAsyxI0EIAewUxibw3NMGWCfuiGao1jqM3AGYOsGrhhKSXstirLEswvN1YFQqCxvpNc\nQGMKSyNgygJWGD5YxljTddA0wJ+HdhZ+D4BeMHDf9bhaa43RnRbsxumAMEIImgZkHbR3d9cCQ9aC\ne5lTSjjXcTxIM8bY7OoayngcRnVZEYwF4zuTaatllmWA11OE66LE1gVBMJ1O4Z3g2ziSIAgODg62\n89V6vYYALFi8c//+fYTQbLmAt1FVlcMINhhDR1PXNUirpFZ1URqpis0mDEOrtE95lI32xlNPCGYR\n20PJMITk97Jplew454x7lNKubyjFeb7xAh/AorYqfV+oXhKEOWXWWtn1XdMapbFDHmXX5xej0WiU\nZnuTqbW27/ud0bjve6V6YJeD0HPORFEUheFyuUzC8GB/zyjdFAWjtK5LZPTOZMwIvrqS6+UiDoPp\neBSG4cnJyWJ27ZxjBE8mE6tV37Va9tv1ahBlxhjhsTAartdriIMIggBtEeTprFYrSklRFHluN5uN\ntTb0g+FgkMWJ7vq+7cBsAzWSewIGgqptrLVSq6vziydPnsAjPhoO+75v6jqJYqP00dG9UTZYLZZB\nEIRhSDFhCIdDDzxdn3/5RRRFb3/r3cvLSz8Kv/jquZE9pfSr588pwu88e/vJ48dpmlqjnj198tE/\n/N2nn302Gk3AxkM53xb57v7e29967+/+7u8evvX0/Px8Mt0lXLRK/u4f/lGxXVebvGqbxWJxfXl+\n//BoZ2eHYXJ5cbZYLP66/m+D4bDXyvbyW48fn3/9dcL5ers1TRNF0eXr15PJ5LRtBSVd2VJnOUZO\nKj8N+q4DcQcnlAgPTIe+7/uev1mvoYm21lpjIKnRwUIYIaAjBj0IuAtATjUajZxzi8UCHqE4jpGz\nAEbBgQSYWhk9n8/LsgRZ1p3uQwgBSUbuNgpDO/tNLBrduinuxB2h568X8yxN+7r5yV/+1eXpm53p\n1CpNCcLwf8Evgxb6dhvrjb2SIkyw1s4YwxCHKwBsWp4XQHted6aTDRb+2x98eP/RY0NxJXXZNrPV\nmiepEKKqG8/z/DCm3NvkZXG5PT4+9sNws9kgQg4OjoRgL1++3J1OhR+EgR9FUVfVCKGLi4vr6+t+\nuzo5edVUdRIFRVFGgcimkw6krc6RWy2MdTdvWWtJKafYeR7HiBKBpNFt36ejsXGIMr9su5//8uMg\nG77//d+Y7B/+40d/h4yulaQWDUfZcDis2iZvqqqphe8j4jRCTlrikBGe83xH8LrIKyPffevxs3fe\nrvteKdU3/TDNBlHSOgLTTFlXGrlkNNhczyEl8auvvoKLeGcyBeI2DMOyrmTfP3nypOu6X/ziF/v7\n+8vZHC7rwPPfefvt84uLzRdfZHGilNJScs4D30fWbbfbyA+Gw+HFxcX1Yh7H8YHnJXFkjFFdD/Qk\ngGdhksjb7YFJkqyrJg6jkHs70+n+/v7ierZdb+IknM1mnucNBoP93b3pdLotCkLI65ev3syWlNJ4\nmK23m9lsZZFDCAVxFCSxo6RX8gZQtcga03UdaVkvJWF0WxbXsxkWbGd3d7leLWbL0WC4e7A/nkxW\nszns8Z1Op+vTwhc+55wI0SqtEXaU9X17enmlu75puihKDvb2ozhlnCeZNx0lUMNevnxZ13UYhpeX\nl3eAMGRkLhaLJEmAiyyKAhzY0ErelTGg1cltBg66jbKJg/CO1rnbSAGV6E7DDMf5Ju3L80Afl1fl\nXTgX5xwRDDk8gCp3UvIbvsSZ213FQAPflNKbWDdyN/tCKxCEIUzG8OcppRohq2+2syujIWmH3BqU\nGcXEKA3wYBAEaRxj5+qyhBCGoih2dnastZ3s4S6znfO5sNZSxq1zTV1ba/uuA60WJHtpZ6VWQojB\neBSLmzVMeZ7XTeOc22630mjAe6/nM2tt07VgqhuNRqaTxpi+7z1KOGXy9qetG9n1upeDLINeO+Ai\nmExZhJ3VbSeg3/ejmFKqjRsw2rbdYrn0PG88GU7GO2dnZ8vZvCqKrusgrqstq7lUzrkoDD0usHHY\nuLase1pXVRUEAbYOCxYEnjGqKIuuF3EcB75nrcnieLPZ/PKXP++aliB0/+jedDT2fX+br8PIH0+G\n682y7Wpt5P2jJ/u7UxAaGNUvZlebzYYxNplMQl8URSFVB7oPMCKHYXjv3iGmCKR0ZVmMRiP4tgBp\nuX/8YDwcIW2KbY6sC/3AWjscDkH1XTS1y1HVtdoaIcT+cLBcLHzfz7KsUSrfbAkhWRhThD0unLFZ\nkoBgQUuptd62PWubvb29/f39yc7OweH+ZrsFBfX9J49UL/f390PPv76+vnd09L3vfY8T+u6zt1++\nfDkaDj/44L3/+L/+p8lkp5Nyb29vNJ0wLn7rt//Jtig+++r54eHhOs+TJDw5P/3y00//4Hd+97Mv\nPj958TIJ/Kurq+988OEgiauqOn19cnV5eXh4MPQHBKGH+wf/8n/3vxcIvXXv3snzFw8ePy7z8qpq\nXNdRrSMhkKNtWbdVlUVh6Imml1Bo78x8VpvedQD0KSnzPAfxJEgx8W10O9TIO44HjmtVVdCxQp6l\n53mc3bTP6nZhKvRJYDsGxgsEVnejrf5GXp1xv46NhQP+a0gKfoxN4rgpq88++fTq8tITQlC2LfIw\n9J2z1mlnMCIOI+yc0c5GXFiLvskpw6sSQjTqJmYo9HzGRJ7neZ53KDq4d/zWO28/fvbUCbqp6s6o\nVlnmB6s8h4smCYaTyY5S6vLy0hB3NZtdzWYIofF4PByP+7a+zreb1SqJ4kGa1XX96uuvL07PXrx4\nIdvO1gVCCEBdQinBTCmTJEnX1LcULUIIWaudg6RbxxhRSmJM26YVjBVFUW2L9GhvvVwESTwYjpDw\ngiRlwvc8D2NnncbWYUIQIYyQmIZeHIZtQz2BGVNdX+uq73qrpFZ9FMdFWw92Jj/6rd969913rxaL\nYrOVnjx58fJobz8OoyiJJNJe4GtLpVI7OzsIIa11XdewlkoZDcQKQBoAdUCBXK1WHuXjyQQhpKwR\nQmCEqqoaDAaEkMlksjOdhn7QdR1YNKuyzNu6kz2u8WKx6PoWRLZhGJbbXAS+8L2+64qqBJme53mT\noaKUbtZr59wgSWXdql4ShPZ2douiyDfbvu+E76m+J4zNZrPFtvAC31f9crspmzqMIs45F8IhRBG2\nxhJGGedO6a7pG9NAwQjjyAsC5gnjrEXOYcw9b73dfP7lF21VI+d01we+H8fx0f17i8WCM18Z8+bF\nizRNHz5+vNlsKMa/9U//6cWb0zevT4QQofCa5dLzPGS6MAwhTFsIEUXRnYgaiGHGGBgmoXY6jLQ1\nRt045u9UVIRRbQ3nfDQZAy/Q9Z29TWmGKgunHh6wzWYDiUlQTUC4Ckk7lFJwptyFgTDG2r5L03Q0\nGnVdd3F1VV5f3239giuCc+7frla86eOhDXbO3fqjOOeMc3t7nOHSds45cgNKU0q1c9j+2nbFDg4O\nwEcBtT2IQrgyPnz//V/96ldQyYH9Ij7u2pYxarVp2xZSwYBIUErNZzNtjBDC4ptPRCk1n8/r5RYA\nZ1iCobWWUoJzN0mSPcEhEZR5olMSM0oIybIMzK8IoSAIMMbIOoOVzwX1/MQP27Jy2oBFfV7OpJTI\nOme1MRQZTYUgDBntpOy1UjCp5MVGSvn69WtBWeRFo9Egz3MXW+/WxdS27e/99j+hlH755edVVR3t\n7j99/OT09PTl5Rl8E/s7O9pZUFIUReGMioIwCUfEd7Lr26qMJpPAF8LLKKXg6A/DcJCksFZsd3eX\nMaZ6yQj1hWetRdZRTLJBAuoJEMjdBSp973vfq+t6s9lwznzfHw6HcIMzzzs8PNJSaYuiKEbGCeFx\nzgeDIWNstlxuttu677Q1o8lYBBwgnGdvPXn06NEvf/nL1fV1HISMEYJd29VVXiCEKEaya42SjNzs\n7l4sFoPBYDAYzBcLaM4IpU+fPpVtt1mvQ88/2NuH6Zw4+9d//RNk9I9+9ENC+XQ8efzkERP+/eMH\nXzz/arlefev99z76+S/3D44eHD9MkqSqN7/4+OOnjx6+fP3q9Vdf/1/+D//HLAr/6s//Is/zJA7z\n7dYa8+j4wXQ8Mca0dVP1eG80stZibX/8u7+7Lavjd++/ePFiMhy1Vel5nlSyrSvP40Wex3E4HE+b\n26AMZJ1DsPQOU0rJLRXq7n60sYxKrbS9DXHECP4zaK8ur6+AcwJ2zd6G5ymt4d5s27ZpGiY43ClA\nFN05Ivq+x+TG2nhH/cKP/UZA1Td/lO6HafbVZ198+qtPIj8IfFHlW8/zGKHaWGMtxo5SRggyiGDj\nkLnJeb/hgO2NCoFSaqxiLMCMcs4xJvAugtGDt95+9t0ffF8zfH51bTHpje2NGU0mRVnWdZ1lw7br\nsixLg2C6uyNND+A8HMnNZhMEwXA4XC9XcJmevT77xT/+42q5vDy/GGUDbEwcxh5nqm+tVoRgKWUU\nePQbm2jdjSQNjFKGYNx3XRilPcW7u7t928VhsF5vECJN01ZdX6s18sL1Nr//6LFDhjHCBWWYya6v\nm45Q7kchYwQTggn2PMHpgFgnMGWUGoyw573/4Yff/+EPCKMwRUQ8WJxe6GzE45RiQjAZjEbCqpOL\ns0E8BMHj/v4+KLCapkmi+E7mQxgFE/x4PIYhbLNegyDABCaKotFwKITwhPAhMTcMGSZlWW43m81m\ng31BCXEYNX3nSYGsM8b4XEgpReBLKdfb7Sbftn1DCLHYJkmipGzbNl9v9sbTyWQyGg6fP/9C9xJj\nDFSl7/vwlNZlGYRx03etqjqpKRMOk6ppm66P41hbi40V1DlCCSPCtwThtm0JoUXVJJTFcXq9mJ+c\nnhNCkiSbNbOvX7zKN8X9/cNBnChpulZezRfz+XxnbzeOY6lNWTdJ2ylj9w6PrMNFWS+W6yRMju8/\niBNW5PlFuRmNRkopUOrB1E4IgeudUrp7cLB7eLhZLLbbrdY6ThMove42Mt1+Iz/r13JohKDELBYL\nqNxCCPiyoGTa2/0H8L/fiaGMMcwTURQRQqIo2mw2VVUxwT3klssluFegoMLgR5y7C8m603Oh2y2c\n5jbak94E62FIweNCkFviCQHQrG9wL0KIs+au42eexweDtGkq3xdt24a+Z4xBSXR1dSFlN8wSUCTV\nTfn4yUPG2MtXr+L4RitUt03ft57nZVmCkEXYdn3T9j2UtK5rrq4uBl5ydnY2mUwopZdXV1mW7e/v\nz1dLrTU0HU3TjHemeZ4DSQ79zt38DnI1irAfRWEQwKLTxWqluh5ZpyPpJYAg8vWaVE3dtoR5Igzj\nq828aZrBYCA8r237rmn39nc456vLxc7OzuHeYdc0JAzTOInjuCzL2dX17//274xGo+Xsui0r00vk\n3HKxODo6KqtivdmA7M14xhgzGQ2MMcNsMB1PBCPOWIowIWSz2TDxa86vbRvnXN93jNHNagWigPF4\nTAjuul5rFYYBpQIegjiOR6PRe++9t16vMXaAsaxWK+dsnuc7OztRFI1Go06ppu+WV7M4jGI/yPP8\noiwF49PpFJRicP8KjKI0wRgj1b//rfeSJDk7OxsMBt///ve3221Vll3XwRkWjHddB1LVw4ODmi6v\nr6+NMUNvJISgPQV/he/7v/zlL3d3d0Pf94R3uH/Qd521drNcboscPMcIkd///d9/dfJ6vLs32d2R\nn312eO9otlhVVTWeTg7v37t/7/jTz//xyz//c4rx7/zmb751/OhnP/vZB+++E0WRMxbeb9u27773\n7jDLtLW+73cXi+1qPR6PkXUIY0HwcjZ/8vBRURRnZ2/CLAk8liXxZDxsmspa27Wtvk1e7foO8CXP\n8ygheV33t8s8rNIIoTiOW6O/yeXc8T11XYNPCeolgFqgGxC362LSNC3LEjzNVVXBier7vus7EEvj\nu0ArfCu2cjflH2ZNWLRwq59C1lqP8fPz87Ozs65vCXKMYsE5Y4RiYp0x5pZb4gRDA24cpwzsGUpp\nhBCn1LtdUc4YI5xprY1RnucdHx8fPvuBdU5Z17dqk+erssjbWkQBJkRZpx3CGJ+fn1tjHh8/fPTo\n0fNXz9NBBj57a63Hhe/7BFnP89bbzaenn7x+8dVyNh8OBlEUDQYD09C6LP3hYDAYFNuNNRogQcEo\n3Kpw9RhjKCUY4zgMmRDttrK33lAAMAghnidW623dtZP9o2fP3qFMbLf5aDSq8qJrO0EZdBWw0pEK\nbpE1BlGEuWDMEQKr3Rn1udjd34uiaLVaMUw8Ifqife/db+2Mxhjjoq5r06W7Yx7EZHZVFMXO3l7X\nNGmaDgaD0Wh0eXlZl1Ucx8+ePSuKAmPscfHFF18sFouDgwNsbsN+CeGcPzp+CMyaEGK5XOabLXaI\nIoycg+09Rd96QgBQEUcJJbhtW0FZpyR4ZJfL5Xw5Y4J7nicbHfjper02UsHqLUrIcDj0GA+CAOIs\nCMGA3w6HQ0LIX3z2pZQyjKMgCJTRUuteqSiK3n777TIvVrN5Xdeq64lx2LnQD6Ioun/84PT8fL5Y\nxINsMBiUTY0ILutqNBqZUFpj2raNPL9r2jzP865gggMgPJ5OyrJcbdaT0fj0/OyrL76EPRyfP/9S\n9fK3f/Sb4/F4Oz+HuQssCUVRwK4wkPWtVqvZbLa3twfjH1z+d1onCM+CnzzPh8Mh2PkwxkASb7fb\ngAkopaPRCKZqOJuAUUEjfjeJtm07nU4xo0Az3ZnykyRZr9dwM9ykals7nU53dnZeffUCgLS7UC1w\nHAHodTejI4RAltWjm1UFyLm77Eho7e9aTymlVTfXDv6//d//H5PJBGRanPOu67awJprzMAxBzzka\njWaz2XK5PDo6mm/Xvh8ihLZ5PplMhBCvX7+mlP/BH/zB1cXl3/3d33VNTwh5+uQJSJa4dF7oY0r8\nOJgvF17sO4S472mtsywz0mxWW4ppGsUEUcARwC/U930ch52SUsrpdDIajc7O3sC77foGhozhcNhL\nHSYxpfT1yUnTteOdKSFEW2OMAfn+g3v3u66bXV5lWTYaja7OL9qua9vWYZQOBwihBw+Pq6q6vL72\nhYii6Pr6ejQYckKrqiqK4vjx8Xq9hg+ubdvRaDSZTJqmiaKICQ6TfSt7YwzcrJSQO97iBm1zzjkH\nRkDjrL3NPwJCwhnbdV1ebEI/ODw8wM6tlwtjFTI2juO2rQEth8Ush4eHq1Xbte18Pn///W+BOnez\n2QjGHbJnZ2f379+P/GC1WkVRAAscWVkIIQ4ODkCMkKYpEMkg34WPKI7j1Wq1Wq08z+O+B91fXdfw\nUuG0RFEECkNYbsg5h8H9bJG///77X7962SoJgVnX19c//M0feZ7XN+3P/+Ej3cs6L46P7uteTicT\nKvTXX3+9u7v7z//ZnxKH/vW//tf7e3t/9Ad/qHs5Gg6vzi+2220aJ4wxThksOoSzCjEj8L0758DV\nAPEXQBEBsJwOMkC07rApaFFvkmgYM7fJdpTStm2xc9vtNgxDIKUc2BLcTbyctdaRGy4Ktj0Wqy1c\nE1EUdbIvisJiVFaVMcYRrLWG1dwIY7Bf+xhpkOZigilxFmtrtLbOmb7vrdWCc4qxdZoiTCn1dPeX\nf/mXb968gdcMGl0wLhtjCMJ34VnYOkJIpU3oexQ5LTtslMcZZ8xYa5ztETZMVNr0iB0+fvKtD787\nnE5eLxfC44SQ7XqljRSMWmuTNGJUVFU1Hk/rul0tN5yLJ0+eSimvyxXDhFjLHY44DzHTTdOX5er6\nanF9nW/X+WZrrRZCGKd936eug1vpJk9GG8YY1B7VSzgvUkpIQ8u328F4JKXsmlZK6awlmBGEnMVU\n8KKohOdTz9/d3/s//Z//r0mWXl5c/+Lv/vzv//7vfS9s2xYhYrWFukUJbprG8ziy0jkbhJ612jnX\n4lEcx//qX/2rR48fK6Xqtum6zguDvu+5J6TWAOZB9arrWne9UiqKIngSRqPRaDAED0XTNLLt4CGp\nqupGsRFHQRBMJpPJZAKJS5PJBC4feIS01hcXF2C26fteEwRVIUkSSJqE3w+7coMgqMtyuVxCHWqa\nJhkOjDFnF+fnl5c/+tGPjHPLzfrg4EBKuZ6vr6+udifTe4dHo+EwjeLLy8v/8jc/k1Jq5IIo7LRy\njARJvMmL/cPDYruVUlJMqUUUE4qxlsomIaVUKtV1HcTCaK2LokiSRHa97HtOaBLFSRghhJSUJTFg\n5PMpj/yAc66dVUbXXUsobdsWsIe+rO/vHfz+7/5edfESY9xrpY0Jw3A4GQOYtNlsRoMhQmg5m9d1\nnaXpKBtQSlvZYIx7JeuuVdpa5Kqmycvy+dcvHjx44CxummY6GsdxCpXCNCXcjZ7nhb4Pl+owG1xe\nXoJsCPpm7BBMq1VVQ4RZFEUA4VhrW9nDbvubHlpKebuOab1ZgX5zNBodHBwQQvI8h9YnDEOAcuu6\nvvvzBGFIDnHOVU1dVVXXdfp2SaK2N1lalDPo+FlV19Odna7rzs/PJ5PJ48ePJ9PpxcUF9z2HEEDe\nzrnJZIIQms1miFFGKKU0S9PDgwOYCzeb/Ksvn8NWwf29vb5T2+3W9/0oCN/78G2QQbWqM84aZDrZ\nE2SNVMjYNE4Yodt1vt1uBeeC+4vVcjKZWIKDJPTCUNeOCeYF/us3J1EUQFovD/yj4wfW2jzPB4PB\n9fW1NBqOAaakqCtKaTZInbHGmCovNpvNarGsy+r89CyJY2C7j+7fU9a8efPm7OwMjH2wbBLWtzHh\nDYfDg4ODIA6stQDfgaidUgoKSdhWbe7Ml7DdglKg8WGcwhhb54BmaJoGAn1AvA4D1maz4ZwzKhxG\nm83WaoUxmk52F7MrrXUcp0kUrtdr+IVt20KYhu+LNE2vrq5WiyWl9OHTtxBCyFjV9ZU2YehPJhMA\nSAHP3263QCnBfFyW5TdFhiDbAxkhrFHbbDagmHv77bfjOF4sFldXV5zznZ2d8Xh8enp6dnYGIRUP\nHhwXRXFxcZGNR2ma9m2nlFoul8hYo3SapgETdZzs7u4Wm+3r169buc2y7MP3P7i6umKY/PEf/3GR\n51VV+VwopXqt7lAQwYXneVVT32G28HlCBQK5I/S5kCoH21q62587NvQO/Oz7Hv4M1FoYs2TXAUlx\npwEE8wC6DWu9ESdbCzXe3kbtMMF9grfbbdXeoF4wht681BuXEbIIO3fLFVmLHLkRYzmHMRacO+d6\nKRknlDFj1GeffbZYLIwxAGgDENK2rScExhh9A7S2GJFbn4Z2BiFEOEMEa2ets0R4DKNG6ngw+uCd\nb02O7lEv6JQGtW0vO3gviAhOqe+FcON3XbfZbBBCIE/FGJ98dAp7G13fa4ka3V69efPqyy+botRt\n53tcCIYxJxSZTlljPAEDtyGEMEzMbQy9tRYKMLQyIH6B6x4hBAo4Lc0tWI+32+1wNLEIJdnwe9/7\nHqhjjh8/+OlfNNBIMcasRZgi+CopYSCSyJKEMVzVhTE3AcK/+7u/+8EHH9RN0/d9FEVpmipr4O+F\nJwdmVniuwBLjnIP/VJYlp4xSenp6ure3N9rbA3XPeDwej8fX19dFXUESE4CfWZZhxhjnA9/PVysQ\n+kIlhgiXr09PIBAKMgellIzQLMuurq4IIYPBIAqCKIqstVdXV3VdV107m82kVlmW9X1vnAOgCFQd\nRmtnXVmWaZJIo+u6fvbsWadkWVWN6pt8e5dTDLBW4Hm+5zOHBeMEoY52uZS9lHDFgR7NOQeV6eZ7\nMRY0YoMkTbOsaXLikEPGItfKHiR+Frkojm/uPUKiKIq4Rzlbr9fNdhsmMeyPb/puNpt5gR9F0f37\n92ezWde06XAwnU7rqlpu1h7jrWyCIPDDgHC2Wm9X61VZ18Y5q3RVVb4XxkEIIyZ2iFKqb8MxrLVt\n32sprbVlXtyQHfomYp0QgiRyzlHOquYmlAOezNvELtQ0TVEUbdfBZwt4MjxpcFjgwQAUDWMMTwLg\nYXA/x3G8v7u33W5BEWXcry9YKByA8sKExgTnnLMwibdl0bYt80QQR8wT2Wg42d2J4/j58+eMsTRN\noaEDBflyufRG1BOBlHKzWkOXZI26urpijE0nk+FwiC2ez+eDNEuSZLaYcyEWy1ndtg4Z4XPZ9xQH\nR/t7eZ5vuz7LhuOHA2PcarmezWaHx0dpmi4WC+dcb3XVt0LwVb7dVmWnexp4lpG6bGfLxXA4fPDo\nYbHcJkkC+xDvOGylVN+0FGHOReD5gwfH3/ngQ5+Lr7766uzyApYkl2V5NZ/VdY3pjc0LQGDBuJTS\nY1xrPUiz+WaBblN84RaGNSPZcHBTj/mN/wzBAkuE7r4hpRRjjFBqrQWKgnIGMm8ARuq6JkxwzrDA\njFBEMKaMEYwQcphut8VgkD46fkgpn81mRbEyyh4dHEL3vVmtYeGjx/lmuYJLranqJI24F9RVhRHS\nWhPBITwdRF6QzQTgCb1d7nFnnmOMbTYb6Bnv3bsH8s71eg0WMviTJycnVVWBI+L09NRoyTifTEaj\n6aTTarleSdX9w9/9TCk1SLNHxw99LlRLCUV7+ztFvtnZz9577704jpVSquunk8nuzk5dVl3XOWub\nsgLzPsbYeD66bQHZ7f7wO9IFBlkw78ONfEOFWgOP+DfFxoT8Og4MGH1YD1cUhZYSIZQkCeccSiwo\n3WB61s5i4+C9QzbWMM7AhQLfct21eZ5jQjDGzmJrLazRtLcdgwMT4Q0NjJ292Yx2i3tTKXsppS9C\njF2R5y9fvqiqgjHKGEGWgOwZYYuxw9hhgjFsZnAGajDjQqneGcUoppRZoLkJskZhP9DaDrLk4bOn\n/mB0OV/prpGwspBiIXytibW2bltl9HA4JoQpbY1FYRRiStabjXPO97hqG+p5WRj2Zfn1Vy/efPVV\nsVz7jGkjHeADyCJEOSGeJwS/wZBBeoJuZWjYIeDMoFw552Tf+77fdTcxhEZZYwx2DhFOOJtOd5XW\nDqGnT5/+k9/9XT+M1tvNfD4/Pz9v25ZRcSOCce5GZVNXSZLk+YZTnCShtdbzAkqx6tVbb71FKF2t\nVlJK2Gqs7E1ngykF+haWDgkhHMKwbCNJkjiOkyQhhKyXK2MMBNh5jENtjuP4+Ph4WxabzQYSA33f\nH41Gm+VSKZWmKXCK9+/f39vb8zwP7Nq6qwABAABJREFUBimw7oCkA57z8/NzIcRgMHDOMcYCz2vb\nFmgp3/ejLAXn25OnT+FD67quLMskSTjzlNbWmPV2QwiJ4zivqyBOue9Z51RtCSHGGThEeVlyzp0Q\nSinjEMaYICylZIGnjfF9fzAaYow3RQ76/3pTCyHiJPGEcNqoXjZ9Bx0JcQg7RKwjCMMwhxlFUjqM\nHEZd1xWYRtyLosgPgxK5ruv8IJhOpyNvAoY9KeWvfvUrMAdPJhOPcShmJAgiHgFVjynHGNd1vdls\nHUbD4ZBYQhyCuhiHCUhTV9cN5xweKt/37W16XX17k8ByQEqpsQZjDIG7CKE0TTnnq9VquVnDnaC1\nLqsKxjMgjKqqAvkYXPVQthFCYRjC9wiNPvzAsorZbAZqnjhNQDtljGn73vM8xhjl7K4fvYGvqSfW\nRW6MGQwGytmXb05Gg8G9e/earpVaOYwQwW3TrTZr7FAcx4HwRqORQU4r5bTp+36QZsPhsK7aKIri\nKKKURv5NGt9ms2maauSPRpPJYejt7EyklGdvTvq+jzwv10apDicpLJtECC03q3sPj40xZ1eXSinh\nccewiAJj7XBvvNlsqr4NQ982+Hw5k8TtP7wvL6+HwwxRcnV1td4sE50gjDmn8/ncE8Ihcn11QRyK\nnj3bGQ2zNHbkYGdvNwxD4XnD6yHnvFcSuAF1o9gyceAfHx9fX13N57NW9oC+lmXJOY/jGBYkA0LY\nKSmcuOsc7+zed7Fz8C9BZgxpyaBthiemKAoehMpYrZXHaZJN0iTqmnZb5M7hIAj6XhVFlaapL7zr\n62tCyP7urhqNkLV1WWLn9qfTrutOXr0+PDwMhWejIIuTqqrOTt7cu3cPHM/Qg0MUdtu2MBbA/H3H\nTcJwbIwZJzE8QPCat9st+B2hCZNSbjabMAyHw2GSJKenp5eXl9a5zWaDKOmlbJr6+9/9XhAEX375\nZVWU+Xojubh3eHRv/4ARupwv9vZHcRidnZ0NkrTrOkYpaAs1woDrWmsZZfB5wg+8QnhkjTFQXKGD\n8X0fBve7i55TZrlwxiqkEEI3qipjIQPVatNUNcxbjFBOmR8Lxtje3p5zbr5cgOwZpmdlb5RxN4oP\no3vZI4S01tsi19bEcQxg+GA4XK1W0ui+7wFlcnc7xn8tvELOOmtu/j20PvAKBSOMsbapTk9Pwe8B\nHQY078CN3X1Z+BuKZ4yxdcZajREijDpKjHEWE8JZ0dRhGMWTcTwZF1JutpttVxMhmqKOoigLYpJh\nrbWUXd8pQqCF55ThOE2ydFCW9cnpG0KIR7A02jQmb+rlxdWrr7+q820SR2kYtHXFCJJdb52hBBOK\nBCOUInjBnPz/UuAIAW0JXygYwGC2MFprZe/IAiaEECKK0zdnZ2+/++4f/Xc//vDDDxElvVT/r3//\n78/OzowxjApCiNWAVThrTRAEDx7ce/VKFVVFCCKYwd6qo3v3hqPR1dWV1no8ncBXGUVR23em6+C7\nhu8UCpvVpq3rtm0RQnt7exCuAkzH9fW11jqLk93d3cFgAML4sqnjON7Z2VksFlVVLRYLCKWHsgpd\nL9TdsizPzs5GO5P5fA6ph3Ec7+3tBZ4/nU6jKLq8vFwul4HnAYcSRdHjx4/XRT4YDMI4und4WLet\nMgYeS4C1GGOT4cg5tyq2TdcKT2yK3CHU9h2hNAzDsq0Jo0mW9bdZj23TEetQnAghpNayR1JKi1zX\ndQY5OOO+71PBMcaYkiAMMUJVXtRlVVWVIhY5R4zDCHFCKUbEOYBbqeAWI21M23cck1b26+3m6N69\noig2Rd70XZKlnud5vo8xHk8mWuumrn/5q4+hvxkPhozz/b3dqqnrukWExHF87949P4zKugrDEDni\neV7fdXVdyzhjhPRdJ3zvzqEA1gYmJSGEDQdAwYJoBr5lnwsA/zDGQRAkSdKpG66NUhqEYRTHdV2D\nFzGO4yzLlOydc1oqqbQjxFkL/+hlIvQDSajgAt92xU1VE0IIu8lKApS7btuqae7G9LtrDSYKZrAL\n0xhjrIxptxtCSN0255eXZVkOh0NGCLhyoyjquq5uG9er07Ksm8YR7IcB6QUhxGGkjdbak0qFnIdJ\nLALRVnXdNogRjQ1jxDmDrbNSxn44HmQXFxeJF/A0NUqen71m3DMIT3bGs8UMISSdRgwjRgUNROhp\nrY2zyXCQDFOMcThI/TTmnF/Ori1yZVNTzjAlhNK264BfGY1Guzs70/EEW3d+dpbnucc4J3S6uwO3\neRRFu7u7lNLVZk0pXa/XWZZNxxMp5fXFJSUEHkSNDWUYYeL5PAiCMArhXJVliSjC2iFkMSYIwU1r\npOwoxYwRay1C1hiFkQ1Czxjj+dwTTCpFCMqyJE1TjJ3E1CrdK5mXnXHYGCO7/vrq+vHxw+MH98/f\nnL569WpvZ3d3MmWEyK5bL1eDwWBnONZaC0KgYm02myfHDzjnm81GStk3bRz4oywdpomrK1Cep2kK\neQJwucO1AgIB0DuAljKvSmjw4Sia2x3vb7311mq1Go1GMP8tFgut9YMHD9Lp/ieffIIQSqO4QNV8\nPo/D6MmTJyevXic7YZamFOHDgwNGWRonv/dPfudyfrrdbpMwWi6Xfd9PxuMvP//C87zdyZQzBm45\nLZUxBrLc6qYGsgcCHcntDk44QpCRiW4z3DHG4OpmhDpinXMYYWSdsToOI194SqnlfIExHo/Hw2wQ\n+gFhpO0742x3ex1jjLWz2N6MsNZaTG9Me5TSoiqBB0IICUitS5K9vb2qbVRVgfjgDlqAJw3GX4uQ\ns844dDf+YmSNcggh3/ed1cvZ/M2rl/CBO+cg6BFG/7suhBCCCEbW3RU2raVDBoYGg51yFjFGfOGk\nRoG/++A4me7Milw6QnyPYWy1Ub3sWtl0jdYaYeeH0XgyYow5h621EaJBEGw20JSPqvW5oKzcrs9e\nn6yvZ8y4LAqx0X3baNkxT3icEcIopU3fyK4lgaAIY8q+CeMThDHBEIbQNo015s5W56w12hGEuBCU\ncIwxoowxnufF06dP//RP//TJ06dFVXJPdEp++tmvuq4LgsA67bHQYEMwhU/p/v37h4eHeZ5bqy1G\nVmkljZTyyZMnkEDAPQETSV6VWZZBl9DWNcwxytzk448GQ0KIca4uS0hy2NnZOX708KsvnwdBUJbl\n5ezaIDccDrnn5ZtN13UQmDUej7Msa9v24uIC8Mzd3V2AD8F2CAqMPM8hJZHersgFxqRt27IslVIU\n4zRN9/b2MMZZlmXjEdCTSZJoa6vN5vr6Wko5nkzavku9VAS+MaZs6r4qkyQRntcrqZ31PC8iqO5b\n51wcRZCOCZ46RimIvJRSZd8qo/taQpWykNeGkPA8c7u3AFkn+94aDRC9MQZpQxximFBKLUZWa0ew\n0hoTEsZR6PnMkdl8fnV19cc/+k42Gg4Zret6tV7DQnTOeV6VRVG8fv368uw88P2nT5+mwwHzRFlX\nTdNUTcM5H00mk+nOeFosFou8LDwRpEmy3W6bsjKqL8tyMZsLD2utWdeKVsR9BFMEYyyNY4yxHwaI\nYGNM397cdVIqGKwX6xVmFLY8tW3b9b02BmDLdb5VSzUejw8ODgD3AkYf/jDMacvlklIKFh5oHJum\nWa/X3BMgdACCIxsOQU+glNL2ZskKdAwAszEwCwJH7ZwLud90zfx65nkeF0wppXs5Go2SJHHOKqWo\n5znnMCEi8KVW26LEjAL/JKvtqtju7OwI3+ulJII/eHzcmd4qLdumWG/bulJdezDdffz4cVeWUZRU\nTb0sCoMRYZ20hhDWlgXnfDodA9jbyX61WWqtoySmFCsTw9PGGOO+xzxR6q3WGhstrRlOxqPRKM/z\n7XabRnFV14yx4/sPHnveq5cvl8slISRMQngQr66uLEYQaFzXddd1F2fnaZrGQQidFExOwzTL89xi\nlKYpaBQppVmWdUreXYsYYxgoGWOy7TjnRipzG/evtfaZjyi6IQAQiqNoOBhkg4Hv+y9Oz401iBJl\n9Gwxl1IOs2w82RmPp1k2ULtyMhoPsoxhlMbZaDQSmHdVVZUFxtgaUxVllqQHuzvDwYAxFnCx3a7Z\n3u5bjx4Oh0PQWBFC7iRL0HnBVdg0DThcYZoEG3unJCEkTdMsy6SUq9UKaJK+72FvPDzifd9DL3n8\nJJ1Ox5zT4SDF2BVpfHry6uWL50II2XVVbsej0TBN6rK6PD/VWqdpqDCBrhMjdHV11TVtvt7EQeis\ntVoDNgjF5maavHXootvt6KBtJrf7Seytfxcuizv2946vdbdBzeY2zc7eqp37RhZFAepWjHEQR9Jo\ncA0ihCA2FsZu6FSausEYd0p6SjZN0/U9MwZ4019Pe7ejH8wcd//J3TGcGCPrMMZGa0YQI7zYrs/P\nT/PN1sc3XkZ7a9W31lJ843yA92WcschRTDDGSClGMSPkhmUmBBNqEGNhKKIkHAxFHOdlrTH2KGuk\nkm1vjHMOtz0sicOEM0SYcdhahzFBlCjrIMe0131AyWa1uDo938yukdaCMYYxsggZ5axBRoP6gRLE\nCGEEAesG7/3mgHzD9sU515xDyQTcSPfaWUsh4oBw7RAhBBMaJfEf/7N/9sG3v7Nardx6hQj+6Bc/\n//M//3NGaOD5WmvsY+ecccpZjDGuquLk5KQotpxzxmgjZa9VECVREhtn274DNV/dtVrrPM/TQQbk\n+nK5zPMcETwcDrMs29nZAbB6MBjsTCa+78PN+9azp1qq2WwGUZRfEDLKBgihJEu3Rf7q5PVoNDo6\nOsrcoOlaxliSpcroum0opdsip5Tu7e0FUbh3/wiIPNhF37YtMMHW2uPj4yzL1ssl53x3dxfUatuq\nBN2G1hrmPFjrsl6vrXVgRXHORUncdV0tu+nOCNW1q0rYPk4Yu8EVGNN3Cz8YgwtHGU0ICYLAQiQM\nuiHUm76DO8FiBOMgsk4IzjlvrEHWIowoJphSRIiz1jhrLMKMemFArNPKOKMpRpSQl69ODg4OBqOh\n0rbpZS8lIR0wXNbhbDCaTHaGaRaGoVSmabeRJxzBhFDjXN00DiHYg6SVdaZFzt2EliBMMRKCpWkM\nmn+tdd22GGNnLGMMIud6pRGh2DiptFIKEzocDDjn0mjYxkEI6aXcbDYQd8E8kQwyzChs1dtsNlYq\nY0zbdpRSzgVYw/u+L8tKCGGM7XsJELcQHmN8Np8PJ+N0MOz7vqwbbV3bdoxxhBC6ucQwxoRSRghF\nCLG6bYui4JyncUwI0c5SwYfj0WQ0BkpMWbPZbHzfT+OkLMs4DhnnVdsoo+fb9Xy98ONIO/T+++9L\npd6cnOj5bFvkVVUxQlngdabvm3aUJjuTccDF9emp6tv55cXTR48xxq/PThnFaRK3StdlG0Q8Dvy6\nrkM/bUB7NszyHBFK9/f3z87OICWuLMteq9FoNB6PN1UhhKCCS2cMQSIKPKNcVYx2p5vV+svnzxeL\nxe50hzIGz/H5+TkhZGdnZ7PdgmzVOAs5R13TMsYgHhkZe3R0lEZx3hRVUQrO0ihe59uyLG8qkL6J\nVTLGCMpuhM3WQRmD3PCdnR2oc5TSru7MXTCT71NKlZS+56XZ8PrqSkoZJmmCcBLFe7t7aRL97d/8\n7LNPPg09/+njR7qXjqBRNtidTGM/Pj8/75pWCOFzIVXHCMripN4WXdcMBoM0Tigmg8HA41x3rccE\nQLuAogPfBvbBG5LSOejXQBsSheF6va6rqmtbSmkPvGkQdF0XR1FdVaCWP9jfv76+LqX8m7/5G4QQ\nouTy8rIoiv2dXUiN9ggbjJPDgwPB+Ndff/365SvsXBSEk51hHMfr1Qpm7nyzvX//frnN6TfcONBa\nDgYDUKvBy7slTRmMwvYb2/2gUEFnCpvt4B755jCqbleHgpQBbuGyLC1xIM6CVerYGkCujLvxERpj\npJTKmJvfiZyzN6uXt3kOpojZcgFKbHiR8FQYkIFYiwhGEHr1jSKtjfSFp41B1mrZXV2cX19eMUqw\nu1kgam83nUH3cKcI+3U5x8hhJAjBlBJMjLUOY8aEJqSRCodhOppiJsq2w4RhQtteGuf4LVnueQEh\nCN51J6WUEkQiXSeNuUH+q7zY5/jVbLaZX0WeF8RxVxRG9mkQWaOINZwRpZSzFiPLCA79AJSJ6G5t\nKibQTjnn2qa5e/DgW0YIIeuwQxhja8BFRMIoHoyGbz1758nTZ23fl3WVDQfLzfpv/uavO9kmnFNK\nq6ry/Zu0QnipV1dXCCHnDFzHQgghPLCKgXJeGl2sV9BEWuQYY7B57Ka8WQNHALQUAP77YaiUuri4\nsNY+e+cdffsRrVYroCrCMKS+2N3dRQh5t9DxaDSa7u1dnp29efPGWjudTvu+h4v74uJisVkDoD0a\njfb397XWm9V6Pp8/efLk8PCQcW6UQggJIUDTBPIF+N+rplnM5sQhwihCKEmSbDgA9jQdZITRqqrq\nrrUYKa2NVgDPOoTAIwc1lXCKrQO7aqckgdN02xhaa1vZg5zbZ1RwjjkKcMAYM0q3bdvqnmHCGUMI\nmdvnXCGrnOVEeNRzzrR9F1C+O92djsZouzi9unj+6uteSsZYlCZJlvpBULT11XLe1s3uZNobvbq8\nsNYOktQTjGAKWeJ93+dV3TRN07ac8yLP1+u10zcQEcE4S9Od3SmMsLAD8S4hB753KaVgnFJqkLMY\nWYwgdRIYX6nU3cdStY1zjmsFsASltO27dt6N4hRjDKAguvUlw/3TfmPTMOccXDbJcCCEgOulKAq4\nH2CtO9EU2nF76yl3zrEoiiAqkzGmpUzjZDAY6F46Y8MwFJyfvHy1Wq2ODg739vZ+/vOf+3HYK7nc\nbqqm3tYl8riIgqooy771fL/s21WZByIIPD+vq/p1Z5zOt+u3n7x1//Dw8dHROEl011olndU7u7uY\nEiZ40XWr6ytD0HuP339zcn59dlbFcdN3BwcHv/GD38CUDAYDKvhPfvKTV69e9VoHnh8FYVNWn/3q\nE2utLnSapoyxVZkvv9gSh8bj8dcnr3d3duJh1mmlnU3HQ2Sd02Z3d/fk5GS1XldVJY2+uro6PDx8\n++23t9ttIXKGiVZqOp4cHBwkYXR6ehrEASxSBGEXo9Tzfa21zwX16c2HyJjvecAsAnvUd50QYjwa\neZ43m80QxrP8yloLDWwUhHVd55ttFEU//qM/+MlPfnJ1NRuNRuDH35ZFXddJkmGjfd+vqqrabt//\n1juDNFssZ7Hw49A/3N0Jw5AxBk6JQRpXVbVeLgdpGgXedrlYdu1gMDjY27eyr+uaImwdioOQMbZY\nLPqmHaYZcYg4hAFfUjoQHog5IZYEFhXv7u6CZAnG967rwD7RNA1Y7jzBRuPxZDLJq/L58+eMYozs\n0d5uEATYoclo6DG+uLqMAm88HHHOKcOB7//whz/8/PPPOWX7j/eQsXfmP9X1zjmCMAyg31wUCscA\n4uIgrh1OArhcEEJA3jjmoNwCpHxnASSEgHoOMAlrLdy2wSC21oZhuF6v5/O5lBICdyCP0GEMulMn\nJZwchqm1FhPiEAKIHjMKWAJCiLCbnYB3PQ3CCAHr+c0R2aFeqSgILCFGaS379WpV5Nthmqmuupvs\nQcaPMfbCEETa/381GGPMCcYEW4e0dcCgauf6XiYDPxuPEWVlUYk4wQ71XRfGEWVCa123jTGGck4I\n6WTHK5BYE4UMiIniIAQz5fbsSyQ7jxKitUOOU+IssUZ1TeWMDbwAIwqRfwQjSjCE88AV5gtPE4ox\nBoKgbds7pbqGbHrrbtAm2E7obMDDyWTn/oMHf/iHf4gp2W63fuBLKb/88vOPPvrIOUcZJTfblA2I\n0TCmQgjBKPDx8BiMx2NPeEY7EfgQzQ19WxRFmJIoiqbTaVFVCCEAe4qikL3cbrfj8Rj0GXVdr1Yr\nQoiW0jn3/Isvjo+PB9NJlmUHBwcIoaIorq6uFosFaGjhqYPJKc9zYH/h1EBJKMvy9evXUZYC5Jbn\nOVRBz/MODw+jKDo5OcnzfLteHx4ecs4hNr+R/cXFBSzcLctys9kkWQrXAuecYiKlbJoGEVJVVdu2\nFrEwDDHGWimBvMDz6rbdrtdMCOhHOaHGGWMtZ8z3fR7HRVGUVWmtZZxTwYG/g+cZApODLEujuKqq\nTb5lgnHOAy6wdaqXIHowyFFPwNvxhRcmceIFUZoI3+PZQOc55iaNYj8MCKWYMOsw417byW1ZxWnm\nhZFGGCOCGDcIy15xzv0oJIRo1PpB4AfBnQguDsLA851z2+3WObf5agNxV2Aih6EWukwgYrUQYRhS\nzihnYRxRiwilcH6hNQziKIgjWBBZFAUcDSjShBBjrRCCcW6MaWFty61UE+5z3/OMMU3bUsbCKHKM\nzJcLoCTuP3igjZ7NZqvVCp4BENPY29xKhBADuXZVFPCsaK05oa1SRumT16/vHRyu1+ssSYfDoed5\ne3t727q8/+D+uirO5pfU8/qq41Eg8/WnX32eJBnxBcWIcCqdssgVTTUaDcZsx1j7+uQEabUzGDx+\n5+18s55dXzvndnYmjpLz2dWz+Fmn5OeffRLy8A9/73c553/1V3+1urp6/tmnZVnu7O2+efNm/+jw\ncHenrG5uqCQOr66uWBz4QWCpa1Q7mUzOLi+QscSjVVvSDXnw4H6xzaVTTrrLs/MH9+5PJqPlcl5W\n+WAwsBgppQbDNIz8INwdD7PT09MkiRgji9nVhjFrDMUhdm61WB54h08ePZ4vF+t8mw2Hd77sQZY1\nZTXKBkkUU0o/++wzxtjedKfrus8/+RRjHIZhEEeT8RhmTYjx0lr7vr+/s/vu0YPmO9/9L6v/EvnB\n+++/f3py+uWXXyJjiXMHO9PJcKC6djSZ+MJrmyqJ4jROqqLc39mNomi73eLQd0ZdXl6mcXLv8KBv\nm7osAt8XQhCMl4tFdBtYBij0arUCFg24qDzP4ziGHFBwKsdxDIsRx+NxEASwSprc7gNBCM3ncwha\n2d/fb5rGx2QyHvuet1gssHVt3aRxIoSo83I6naq2O5+9cdoc339AKWWUco/FYWS1uX90r65rj3E/\n9n3PAw/6jTeOUGMMUAZw0cDDCScEBjhgsuFb0FoDGUMIwQ6BZhvYGkCeN5vNTbZ+28Ltf4foMuVF\nUVRV1dXsuqwr3/cZwUVR+GFoEVK3jkBtzU3TKg2o2Mqy1M5ijJE0N6Mq/nXw5I0L1jnnrMMI3TLK\ntzsXHMWkreuuqbMkOr+cv379ihFEsOOUWK1Apg4lnDFqjAKpAcbOWu2wJQxTSjBF3NK+k+C0LTul\neoW45zDf3TvsO+NxHMdp3fe9sZ7nM4etM74vYBOocQ4RLIRf1E0c+G3b+p7n+6Jvat/zZNtUZVmc\nnxfrte16jEnfG4YIxbhrKl944/HQE6JtG9X1kJZcF6VEzvf9vu1k1weeD41alqYEY8I54EMe4x7j\n0Akhiy1yShpE2SgdHN67/9bTp4f3H/hBVHdtGCdK9Xm+/pv/9tdKySiKiLGql8NsoHqJMQ48H6aT\n6/l6Op3C8q4oiTupEKGwknI0Gg0Gg8VqmWQpRB3d9QSTyQT8Pw8ePDg/P8+3+WwxB44JwGdCiOZc\ndt1qtUrT1KvrqqpOT95Ya99999133333y6+ew73//PlzMOm9fPkSTjpYAYERG41GwGvAKppHjx6V\nZQkZc1YbSimMbkmSAGy23W5Bpb/Kt8BZwtM1SFKptPPcwe5e3fbr9RpTEoYhzLhxHFtre5Axd21Z\nlkxwxlgSxU3XBp7nvrFWCIAc1TQIocgPDHIE5H6UuNtsRcw5J9Q5ty2Lrm7c7QZAiJK4f3Rvd3f3\n5etXl/NZmqZMcGV0VzUeZYyxvu+v6wZVW4xxGEfC86SUzmjMKHKmaGtlTZyls/m8quu3nz3LN9uP\nP/0k8gTnPIyiyWSSjYZgNxBCMMHjOI7C0GO87yHxwmmtHXHw3kHLCegFcN3C86BwSqUIpZ7nYUIY\nISBpKoqilX2WZSC+K4rCYQSiTrgt0yzrui6vyt3dXWt0r9WmyK21w+Gw6TuIDdbOGuSiKBrvTDHG\n63zrhwHYKOq6hmwvwDPgA2lvY4KgjXbOMYqd0bqpysHBwd7OjnPu+ZefHx8fx4NsdzzCGCvZjUaj\npipk11Dsvn758uTsNIijvaNDzCla89PLCyZ4mMS91NPJ+Oricr5aDtOsaetRNnj6ztvEON21SRDW\nTff51XOr9P50kmaZEKLVMgi8/f39+XpFBf+NH/xQVZ0xZnc4/OM/+qMXL16cvT6Zz+dpnOxPd2Xd\nPjg4Er5njPnoFz8fhIPvvP/BVbmpu5YQQgUPk/jevXt5nl/NZwyTxcuF53laqd/+4z959uSt//F/\n+B+CNM6y7OnTp5fXV8fHx/cfHn/88ccvXrwA+cPuZEoQxg45Y4aj0c5k2vf9erlgCE2Hw1AIo9Xh\n/v5wOHj15gTaXsYYw+RsscjX652dnaP9g+EgAxCsaZqGcwdQm9J748lyveqNEUJQ57qua6TcLBb/\n87/7fyqlsEN1WX38i18uFktO6N7ewWa9klIu5nMr+3GSZFkmm3q1WlxWfVUXfDjExGHisEOCcZHQ\nIPCVlMi5wIclIVKpXlAmCaa3yzrgW78TDUIkTZIkEPVgblFWGDGhhbxDPiEcG+4aOBVAYhFKdd/V\nRlmjDg/2jo6OfN+fzWZvFjPf4z6jRvZh4E13xn3brVarGMWzsorjeDAYeIzD+iDkHGNMUKbdDbgK\nkWd3G0iAyYZaC/AmQKbA7wKFdkP6ImxvTY30Nh+OMXZ9fY1uKS4ojVA1ldFFVYLzBLpg4fvgGYui\nyAt8gLbupjoiuDTaKssYi6OY3e765p5Ad9Yj5+70ARYhjIhDN+F5kNeCnMEIKaXiOM43m/OzU49T\n7ayWHb4lislt4t3dsGuRc85ijCm50TcppTxtozA0CGtHoijZNLXGZnd/n3uR8APu+RghYzFl1vf9\nII6oCEHgBjw5IhiM7BRha3OlFMNIUOZRqvu+3Gx01yKtOEacEmQxxQ475Cg9ONjb291FCC2ur7e9\nBP0/pRQrdbC3X9f1xcUFGELgIwKnQxiGxKG75hX83lpZqZvA999+95233/nWeGf36N4DzNjp6fP7\nxw8+/PDD/+l/+h9Pz96MBgNrNUU3X/odra6NdBZDPgxsvivLOgzDJEnef+9D4Xt+GGhrRqMR0E/W\n2iTLvn71CrgGgEmAggX7JiRsQHWnt3bzKAgAE4YAACllVVVCCESIH4ZxHPdKpWnqh2GUJEmShMYY\nYwhjSZZhSjHGVdNoa7XR8CiCFCMMw65pAbABUSG73Tvbtu36VrWUZRlCqO07Z1FRFNv1hnvCSOWc\npZQSzowx6+22ruu9vSN0q30DFQuQH0ZpzBhhlHDKvyGqlw4BBcAxoZwzzqEAQxfOMNEYA44E9I0E\ntSMh2KGu62AnaQAfDgj8kQM/j2o6p01MEcZIG+e06ZR2zhlMqFTW2k4bZGwnlTTlbL6klIogvJ7P\nsixrpFoVRbbKsixjjClj0zTmvqd7qazBGEP1NcZobRkToLYBvPqGU3AImD5pbvT2hDtk3WiYWud6\nrTCj1FA42hA2AN+v8Lw0yyBXS0pJKO+l9vxwd+8AVGOz+RI8kNCjCNFJZbRxIKYpmzUkzIPKIQzD\nwWDgC2+xWFBiObMY3WhI4a5gm9niyZMnDw6PPM/DDk2mk8XVjBhXbLZ916VpGnr+eDBcrVb/+A8f\nDQaD4+Pjl69frfNtmCaqd9IorXU2GcGodHFxZpSdDEfO2sgPHh0/9L2wb9tffvLpII7efvT46TvP\ndnam15fXYeAhTru6J5w9PDhI0vTi+ioOQu6FL1++rKP4+9/+zh/93u87jP7+o4+yLPvks09fvzmV\nXR/Gke/7jx4cK6XaqkYI+VxASsZmsyGEPHr06J133mnKanZ1vVqtkjj+yU9+8vHPf/H4yZPhYPDy\ny6/SQba/v1+W5X/+z/95s9mA4fXs5A1MVHVdT8fjJ48eR37w0UcfHd+7991vf6eoylcnJ/l6syVb\nxvnj44dgMmOYHO4fBMLL15t8s/26rJ1z4e7ucDhqg3BLt/B0hmHIPBGFIYRPaWP2d/eUUlcXl4WR\nURQRa7uqXC+Wfd/v7exhjOMgVLJjlHieZ4xaLmaqa2Xf9rrrmpZTBqp3YxSlmFHad11dlwCyCcoc\nwpgQEDrepQ0Ainuj/2xbaBshpYjdrgqpu7atG1i7NhqNxuPRNytxnudd04KICQ5kpyRIkKzWEGfD\nGKuD8snDR8i59Wq1Wq0GaUYxybIs8oOiKJpeStqRDDHPM8bA7hdjDPpGPDKQrwDA4m/YkIAVZreb\ni75ZTUH0v9lseiXBPmeclVphRYyz4GnGtwFV0KUKIZbrNQw6g8GAcg4xYUIIi1yvZF/1sOAzCIK2\n76SUPvPs7TpO+FswJYA829tgkzsVEsZYakOIwxg7jCwG26px1grGMHK+YC8uz8/fnHqCYaq1VIz+\nOr3rG3IuhDF2yN2BbHBHK6WkdQFPpZTKWOoz5YgjbPfoAQ1Dzw8595B1nDvmXCA8n7OiKHsloTYw\nwQkhiBKKcNV1nhAUub5psHUcI61VV2xd2yNlGCaMYucsdohi7CiezWYYIWvtYjGHoETozPwggGYO\n2jVrTBLHk8kEtsRXeSGEuPNWWmvX28Lzgr29g8Fw9Oztdx+99bTrFeEsCIL7Dx56Hp/P5y9evPC4\nSOOoKkps1d0HQhmmDDvnjFVta/pexXHMuRdFCcFMSfP48eP3PvhgvV5fXF1FUUQYS5LEWlvX9WAw\nAJ/ScDiEaQYWotR1vVwu1+s1eA45valVyhhQZo1GI7AbGGc3+fZWgCOCINBaQwgDxni5XALKBfM3\nSBD29/c3+TZJEvBfAao0GAzudAnWWuZ5ILmCDAbiizAMDw4OmqpeLBacC84YzfOqquIoFp4HmkGj\ntGAMBQE8dUKIJIx6ray1WinZa0EZRtjZm0bw7jN8cP9+13VN2/ZKWmul0V3TSCnjLBWUwauCWZnA\n8l0lCWPEIan1Yj5fLhbbPEecJsOBlQoRzDlnFimljJXEuNFkgBAigmNCpNGd7Jm+IVOY4MYYjry+\naWer5f7eXpylm81GO9Q2rZRdp5XBKE3TyA/KqqGMIk1U1zNKGSPOWM4541Rr3ambICpQGDiE8qJA\nGAshqrqu65oxJrqWUupj7G5TWpVSbd/BWI9Ahw8OOs7B9VvUFUW0aurAWV/2xlnKmVWKUR7GEbpd\n4tLJ3lU3V1bTd0YqELjADaO1loQgsPQTAkjejUzEGMYcvjo9xxhzxobD4bPHT3743e998elnMOaP\n08Hxk7fm8/mb1ydhEOTbbbIz/s6H3/7q6xdV3zJOf/OHv9Fq+b/9f/5sOBwmcRJ6/m987zcWV9c/\n++ufPji6p+r26+df+x6vq5Y49PXr1/v7+502v/ryc0rIs2dvhX5QNe1qtXLWJmGCjT3YO8jihHmi\nbSqleiHE+enpa2PyPM8364Oje//8n/3p5fUVQujjT351cHAwoSjP8812W5elUkoajZQ5PDy8f3Sv\n3hZOaWTdxenZaylPXr9O0/RH3/uBRQ4yk8MwzLLs6Ojo1atXQRAwQlkUWamuL6/+oZfvv/utb737\nLnfIdJJYdP/gUDlbNbU0Ok6SoiiQ5zhjglBiHNImCcKDg4OyruIoioJgNBhMBsOmaRwUtrpOong6\nGG3ybVVVWZYppfLVmmuk254Q4gchQdj3PC7YcrHwGHNK7T24vzcZGdksZ9dJHL779rOu1qBMds5A\nCBFEyw4GKWOkbVunTW9u/LKusx73vNtxFk6R1toaI/seOecJQTAGvVUQBJyx6XQKhxO2hUBduZt6\n8zxvmgYedFgewn0vz/MOEMiq+vSTT2B6zrIs32wF4w8fHGdZ5jGupIKeFHQuWmvkXBgEoPCK/ABY\nHOgrO9lrqUALc6dZAGAWyhLMf3fwOJRVxpjUyiJnkYO9Lr2S2hqlFSLYIme0rpu6qirQlAY2uLy+\nBq5uPB4DElCWZd02YCkpyxL8vpjeJIxKrRDBhFGpldpu7yYDGNbRN37gc7vjoe8YXDiIGOMgDGGd\nat81Po/w7VpCd+e2+saiJEwJuR2OnXMgKsGMUkQNxpqQXjuktYjjZLo32N1tpbaE9De7z5CzTqu+\nq3TbN5RSzLDW2iLneR5yThtTV4VIM0oJQ9gXLBSiXi23y8XQGoYcJYhapIyFJS8YYxD0OWullEHg\nA+APX8pyuQQLAKVU9n2WZQ8ePIDgs7quoX+CCQ9Zl2QppfzBo4d7e/v7R4c7u/ur7aZre4QJpFX8\nt7/6q1/+4hdd2zol6zIfihjjmw5FCHYH9SOMkyTK87yu2/29Q+NskmXf/u53N3mulHr69CnEL1xc\nXOzu7mKMAeOFiFMQHIC81g+DwWCAbgl+QojHBWOs67pOSs/zojSNomg4HBZFsVqtMKUgR4AJBPDM\nO4Lj7rGs6xqU9hAFA5a/siybpomCECQ48/m8bdvxcDgej5fLJSQ0vXjzGhoamA04V5yyMAictWmc\nck9UbWOkwmEUh5FFzmB2I4zwfWAy6q6tXIPg4GvrbjP7wEAv2071vdGaYsIE444zxnrOjVSaI0op\naPet0pCnKI1mjAlMA99nmEij0zT1k6iRvdGGUio8nyFsOonBWyF85xxm3DintG07iZDUzgZBAEsb\nPRFo45peIkzDKNk52K/rWvYdER7CNC8q4ywTvGva8WBIuVFd/2v8VggsbsJlb7A93///cvVnzZKu\n2XkYtt7xm7+c9jzUXHXG7tPdaDTQQIMUSFAERJGC5GAwQv4FDvt/WOGwr236RhdGyDJNkQQJgaYk\niBO6AXQT6D6nz1xz7ao95Jz5ze/oi5WZp6gKXGyc3rUrd+b3vmutZz0DnqKu66jgnpLO6A1E2rVa\n62Y27w36vV7PgW+6Fum3g+EQp2SkuayrclUW+DALEYRJrJ19c31FKR0d7AMAOsDTndSQgNeEbM1/\nLHgKXjtrjad1vVsnOWNxavf+G4kjf3DrDhJG7ty5c3JyMr+ZMMbqonz+/Pk/+Af/4F/+y3/55PHj\n3/md32mbBveFq6ZqirXqmq5pbQshF1mWnRwe1nUTEPa9b330q9/56E+ub476o9/9T/6mEOK//Uf/\nWOmOUprk2cs3r/uff6ZM9/zyMomC4HV8uLfftq3RetAfZXGyXC7Hs3Gv16vr8md/+VOjXZwmH3/8\n83zQ39s/3D867A161jvc01xdXc1Xy/t37t45OUtlOOPSWjtfLcevL9t1+cXHv/x7f+/vja+uxzc3\nt49OxuNxU9WTy+u/Yj9HCs9oNBoMBpeXl7/4xS8opbrtqqI8Pjz68MMPL1+/+eyTXyZB+Nf/+l83\nRfXxxx/ff/TwwbsPPv7lJ5yyk5OTFxevqrLknDMgVhtnDLE+DqPjvYMf/tqvv3r1qizLXpL1zs5X\nq9Xl5eVyOhNCLOfzPM8HWU6d76qaCfHg3v2fffKXxnZpng2ytGKqqTtGKHGOEsKDIMsSIdl8sioW\nU2eHdV32spG135iMAwCXjFMGAMhnaeuKUorBI9573WlcTGJeCt1m02KriGxA5IzgT6u6FiUTcRzv\n6CSIgOGVisIt/IuEkCxNKAGTJnVdK9XVZRsIEYeh1Vpy1u/30WRKa912DeM0S1O+DdTECy4Mw0gG\nca9HplOyjbBFaCgKQhziUb7MtmEJCBbhr5wkCQAgA6Wu6yCNmRfAKJKCsCdzzk3mGzMvBL2R3o9S\nDUJI0zSTyUQIYb2jnHFKV6uVAw+UBCJwzqEQME3Tcl3uoG88OAjm222OIY6nO6rk21PsbuwAAEZI\nEASff/JivVikaWqUIuAE59YaAE8IYFaBcdY53P7iXyTOOWU3Mi3OhZBR45xlTIOzngyOjk7uPWBR\n3OnCGeOdZYxxQginRuuuqwEgy3Iq5Gq9VkoBBNRDp7soirRqnfdZEGRR2BTr8eWberU8SUPUEe1+\nK8YYpRwzbXaFtu467GnMNrjGO2e9R9FnWZZd3UT9PrY1ZVk2Ve2c6/f78WDUdV3aywejERDGA3l8\nclqWdRyHXdednp7Wdd2UFQEfxEGeZkQDgCeE0A2tzaNOjVDKGIvjOE1zbY0Q8tvf/na/NwzicDab\nFUXx1VdfXV1dMcbeeeedBw8efPLJJ4vF4tatW3EcYzTqdDpFdWaWZQhEo0jPONsUDRqlrYrCbuM9\nEKeN0xSXFIQQlITmeR6GIWYPYGFAdi4+sVEc7Yo0ioLatr28vNxxLLAMIJczCALrPe7RkRVLgRpj\nBNBhf0AIs9oEXKT7B56S1Xo9n8+X5RoHvjAMLXjOOQPAPa6nlFHKhWSMAd0ICqaTKWIyVHAhJeVM\nUAZSLpdLuz10oZBBHGyCcJZzyTjxEArJOWdKOQJSBm3X6a06wAFx1oLzwGhRVx4g9A4oUUajBxn2\nx9rZRnUMiPXOaae9i+IodX1HaGOUtVaDa5qqbOqqabIkybKMc0Y48wDKGnBOEmibZgPFdV1Vb/hT\nTAouOKLK2hqEqYyzrep0UYhAoioEMRi35W1QSvElofAJuyVMDRRSdkoJzvuDQdd166IYoqVr13Vd\nh5ZteCfg5262bqzOOaUUbusAgGw2P5RSyhkDxvio17937x7S5Uej0R/8wR+0bbtcLH7z138YCvmf\n/s3fefr06Ww8+es/+q3nz5+v12vr3IvnL+7fud1Z8/rq+urlxeX4pluXeZzePj4dhMlf/fjPTdnc\nOjz86he/fOfhI1SvB2FYFvWqrDprLWMiiTxjtep4FBzk+c3VeDqZRDIwxvg8EYEkXfvixQsZBLey\nO9mgXzfNyfnJsNtfFev/7r//7169eXN6eirjSGk9uXhz//79vSSLGAeAs4PDF69elmX50bc/Wlzf\n/Ief/NkPf/jDs9PTv6rqDx4+qory2eXFeHwThuFqxXhbD4cD3EtNJhPdKW2UEPyjj76dRGG5Lj79\n9Jffe/T+ydHxwWiPOF+s1oti1TTNm8s3dV2fnJwkvcHh/n4exqtsUazXXdt6Y1XTlqt1wAUntCnK\nuqzaupG5iERAgXRN660LhNwQPUCNb6brqjZNR4zljEQy4BnhnAoCWuvLy8v1YjbI0kCwZ8+e7A8b\nunVeNMZYp7GGTadTKTcUO5xQ0adpPp0jHR/FNghHoy0AYq0oY0D2E0pu0Blg55CM5RMzJdF2HC8a\nvEmrpkJhVSDk4f5BcieJwxCvG+QzT8eTruuQs22ErqEuigKpyzhS50na7/dh66RBt5lfQRDEacLZ\nBqzDwRrbTJRmYhePcDQ2BFpr65x1zlhrrPXeK613PukbhpcQG5jUuaZtUZQFAFrroioppVmW5XmO\n5BqEp8IwdADKmLptgRC95XAJKZ21qNPfrSR3hRb/ugg2sij0GLfegXNYkNfr9Zs3F0qpQZYWXcso\ncELcWwESAABuU9ffJm6gIzT++oqQ0rSeSicEjaJ0by/s9wqlWucseHAgCHApGAFvjbGWCynCQErZ\ndoExRjvNHLHGRDIAa0JOkyisVstPP/7F5PKql8VRIJwx+FyRrRgaAIy1gmzoBZ1SVVmiGXtZVU3T\nsK1jAz5IbdvuZl+ttTOWEJIkSRzHo4P9vb299z/41tHRqTLOOjc6PhjswctnzyiFn/30p//8n/2z\nuqz6ebJeLikQzgK6wQKcN1bDJi8dHGmb7sGDR73+8Msvvz4+Pv7+r/xgMpnQ/dFyufzyyy+VUlES\nv//+++iDOBqNUNqOVic4rQboYmHNjuOKxRhVf7h1qus6CoJ+v4/uGSII8Lbt9XpIHdhx9Pw2+BkA\n4jhGsi4GO+IdjZN32Xbr9ToIgrOzM1wtF0Vxc3OTJAkh5NGjR1VVOWPato2CUAjZVjUNqNaaMx7E\ngYxCyljV1OVq7az13mM3gLUBfwVGKOOMOUsIEUEIlHRd11R1S0gopGbWWuu8N1o7pdBMBjcI3nuw\njkgSygBJjlVThzJomwbLidXGEN9qJaQAR4GS3Slwzlmwy9WKUurACyE8JUgKA0qttVVTIwoC1iHq\nGyeJdnY/jqjgk8lEGU0p7bSuJ2Ol+pTSPI4YpR4IBUY5Z4wQSwghQDa6Ca11Z3RbVd77sq7wI0Ok\nx3vvwOdJgjcnpTROEoT6sb9vVLdarVArgb0+UOIITBdzXApoZ8lirpQinJ3eOm/bdrVa6fm8rWvt\nLN5OXdc57xnngnO2zSUj3TbE0MOuO0c6Jv/tH/01pCdYZbgn33r3/eVyeZ2MOWWBkN/7jY8YoRcX\nF4+/+vpP//RPP/rud379+7+ahtHx+dkXT76uizIIglGv30vS8XjMHaiyDin//d/7O7bp/vWf/K/d\nuuRUPHr48L3333/56kVZVzfzaf/m+uT2+Wef/PLs7GwwGgnCX724+Oqzz6MgfPDg0Seffnx4ePit\nb33r+PxsOp2OpxMRBo1Ry/UqjBIZhXvHh521Bvz777373nvv/dW/+tfPvvzaenf79u0oifN+nzr/\nxRdfXL541XXd3/8v/6ubq+s/+f/9T9/7znfSNCXaEkIODg5+67d+azwe//uf/Pjs7Ozk5IQBkVIe\nHRzOZ7Pr62vVdlmW9fNeGieqqbM0nk5ugrq4f/f2q8s3T14+X8zno729o8P9Qd7TXVuUK/C2lyaH\ne6NPf/kxTm/Tyc1iPjXOeufyNJac7u2NtLOTyYRSOhr20Yn+W+++/yJ59ez5S+NdIGXERJxEHadO\nmyAQcRi0Xu3tDd97+LCfRrPZbD4rkiTZ2J9G0mw95cMwFILjx+qtXa1WdV1675Mo25UfLFro8ohD\nJNlmTadpGkURAgPr9RrD25FY2DTN8+fPUZ2CzExs8JGUhECWYJwEIKVM49g5V66LMAxxabSTGNV1\nrZSKohj5C13X1XWt266hDDE6PPAoH9rVy90CeFcAdn4gZMuLxsUw1uyq6/BXw9eFfe6ut3gbvkaj\ng1W5llKGcQRkw3xhjIVxdHBwgD+8aRqgFKMRqqoKRWC3RpiEEPR8poRgH7ADl74pmVvIwW40k44R\nQgkAwPOnTxH8b9uWM8KAGGM4pZr4b+Zm53cFeFPUKeGU41vhva9Uawi14IM03Ts9i/v9om0VIZaR\nzUtgVIP13hMGknDCQ1w/RXGAqD4hJMuyrioHWUadnY7HVy+f31xeeq3SYORM54y1xgAlu+Yd2y8a\nUk4YoIdomiZxHMdxUZZGax6GiLJuPjjncQ+KT4Lb6vFwW3nvwX3Oed22xvlnz55XdRcEQZKm3pk/\n+qM/+uSTT+7dud3vZ7PpWHDqrQcgdJvzSgiOdjTr5Yv5sm3b+upKCPFrv/Zrd+/eXSwWs8kETwcK\nQIMgQHLAq1evuq4bj8dIs0IesjGmvzeklIpAIsyDCuw0z4zS+Fw557y1yM/ftVn4yZZlOZvNnHPY\ntBVFIaWM4xgnXcZYXdfKaHQeRuKn2Vqyn5ycnJ2dXV1doa9W13UI1PcO94MgmE+n0+k0EDKLU2sM\neuxILuIwElJ2Rqu2Ix76WZ4N97MkRQnNZDIBgMFgwJiomqZtW+sd8V4r0zVtpxUhhHFJCAECFAgA\noYxyzgmjXdd58MaaVnWq7bqmxRWVURpk4I0FymUkKaVcikarxijANQ0Q4hxQCtQ7ax11FDyq9TCc\nAGdArXXZtpxSC44LHoZh07VACaqPGtWJYt00DnsjHoVN117d3JhBf9jvU8IopYxCq5V1XrctXg5B\nEARxxNu2LMt1WfimttYaZ/Gd3PT0waaxCMKQMoYMas454Ux33abBiiJPAPdW4KGqqjAMEcyYLxeE\nkNFodHl9ZYyp67qsK7yvJGeEUmRgYUAT7GRRQvjNg+Lc1jUIzycfDYda66PDQ0rp5eUlNq2r+cIb\na+6oP/vzvxiNRgcHB0+fPj08PNwf7Q2z3uXrN+uq/PBbHyZp+uO/+Omjd9+5c//ev/23//bn/+Ev\nJ0dXP/ze958/edoWVcjFx3/1cw1O8OD999+//+DeaH/405/++dePn/zw138tybOyrn/6H/5SeBJx\nmWXZdDx78fRZRepnz549ePToN37j1x8/ffZXv/gFXvQvL17de/DoxauXDqCoqwePHiqjP/vi86Yo\nXzx5evvOnfcePJqvlpKy9x4+OhztffLpp9PxRBD6g+9/P4tiY0y5XI8GwzN9tlgsXrx4sVwub9++\nvb+///Lly1BINIeLoijgIkuS1WLJAnF+fs6bbr1ea3C07W7m0+l02s/yw8NDNFi/vrp2xiZB2M97\nq/nixfPnQso0iluusN6EYRgEmzxBa21b15zQKEkQZeWcr+slcX7Q73uglhBjfcCF957JIInD/f19\n3UTr5dR5Y4yhDBD51FpHWqLJGQ6snFJ8krIs013XtrUxCgdNfCBw3aW1Xq1WqJDD9SSWZ9T51HW9\nrqsoikajEXbBQRDM53PULOJThS9gRzGI49gorYkOgsBb27atURuaDCqIkFONBynLMqU0zgqr1Uq3\nHTLUkIyapimyYDA1AQDQaRxr525MR8zw+fPnm8yvssSWfzOZCWq8U9YAo5zKHRbdKbXDhfA7LXiU\nEHRadV23s9bCe/bRo0dhGI7H468eP0a+K92mGeJvtxm4MV1gC0F/c7o2q16KGDIi50hmYZQxSsD5\nly+fU0qlEMVq1s9S4nzXtWEY0v9olfwNcI2NM6EbgiX+W9qTII2UhbSfn925qxgfr9YyyQmxhFFG\nKHhrjHbgJCGc86pt8XMJ49iDw0iJIE1xNz958+aLX35imnp/tOe1KotVzPmOc7frKvDTBABlNDgM\nQOVNqy5evVms5sPBADVyaIcbBMF0OsX7J0kSwXit6yAITk5O8jz/1g9/+O677/7ik0877e49eLgu\napzhhsPhz3765z/72c/u3r3LCVxdXkaBNMYwT6inuwZlN2KiVL1pmtW6/NGP/trf+lt/yzlXlvXS\nqZOTkw8++OCzzz7b39/HBg4Vd0dHR9hX7UjIRVEgWogfGUrDcR6Kw6iua2QP4CWJN/Vuv7Ch7azX\nGAOKsrpNRNtb+aTdaomHDsF5xpi3DoEWrXVZllmSYMQcTm8vXry4e/dulmVsaw/OGBvkvVDIYl3t\nLDZRRxB431KKVu2bvQ/OzUGote4Isco45x0Avg9SyqbpgBBOiPHOGOMIEEopbGjP2Nyotmvb1lmL\n/wUJ/N46sE5ZIwJZNDUNBBGbxxKTqonzxhgZcgAw3oExSqlWKa41HrSu62SWUUoF41RwPMhBHDVN\n06oOQeOqWAdBcHx4qLsWMysBwHrnjFPOlGXpge4kG0VRMCnQe99toREMN8N2nDAGrbLWegDO+cY8\nUogkSezWsc57j3kqiI0Z56SUaZqWZVlVFX4EiCvA1rllR0NxzuXRxniyrmvVdUgzCoIAzWt3rnB0\n62pHVvVyuVwyJvCOi8KkLMvVamWt11pPJrPf/u3f/v/+o3/84MEDzvn+/n5r7Ndff/3uh+8Twf/8\nL3/27PWrZVn0Bn1gFNmwt8/O33/3PWvMm1cX8/m8EgZDTF8/f/nXf+u3Pv3FJ8v5PI2TIAgiGcRx\nXDb13t7eYDR8/vz5fLkkZdcfDt9777133nvXevfFF1989uUXy+USY0lMp5xzTVXfu3NXCLGYzZrl\nJM/zKIru3rr93e9+d7FYPHv27NGjR4v5/F/9q3/13nvv5XkO1mH6Vdd1T188x7set6RIuLi+vj47\nO8Pbv9frYdiItfbi4uLk5EgpFclgf2/vydePf/TD3wik/OSTTw4PD1er1Zs3b7QxGAPHOW/a9vjs\ntKjK9XqNdm5cCAR+AYAAeGO996EMsjiJwpAQog0YY3Dh1O/3nXP4UeFnjB8SOkEWRcEYW95c7e/v\nv71pCMMQAbHd1b9bQzrnlDNZliVRtLutvPeq7bDbwEPOYPM0cM7H5Rrv4qqqsCHDUQZHBMbY3t7e\nwcFBEAR4Bw2CCHt85CRjFV+tVsPhcJdFsRtGi6Lo9wfe+6IoMHOJMSbCIMsyjGXEGF283/GaS8PQ\nWouMMABAsT+O8siYwIOHn2nbthX13vumrJRSgZTEw86gSmttnCWEUMaMd23bNl1LvMe3F/U/FEhd\n1++99x6egrptKOdhGHoCndHGGKvMbij33qOjJP5BvG43rW6GvzBu27YpCwCIQknBe6NDwR9/8fnN\n9dV8fEOskZx5Z/HZIDwh1EvOGCfOdF1XebCcYx4DcRasZ4wJxgMAaqx9uraHx0fvvPfBwdmJcm7d\ntrVRrbGe0zCJ4yR0AJ1qTNfh57vuVBzHnFCvjela5iCkTHgXc267+i///Ce2bRlxtqvrcj0aDENP\nkQcuoxCbGFQczWczyXiepKBtJCNO6MFo7+LiIs5Zq/RyuczynHM53N9rWuUpAUJFEDoA47wDePfd\n949PTx49ejTIDy+vrvYPRoPRUAixWC8455RCGsX/8B/+wz/8J/8kCaMolG1VM0oZoSBpXZZpmhrV\ndW3bz3J89pgI0l5/WVbak//m//p/Gx0evbi4MB729oaDweDg4GA6nV5cXDDGiPMY6Xp+fo6NQtM0\nYRh655bL5dqpwWCAHv2r1artcDuugiCIg5ARSgDiIOxluda6Lso8TDGSAT/3pm2jJA3DMIzjqqkb\npcMw7PX7wTZ+OzZqupj3R8Okn6+rcjqbdW2z3x92VX1+fLJYzPBEjGdTEYe9weDNi6umaQZ57+zs\nzChNAA5Ge13X7Y/2gji+fPO6LMtH77+Hl9jV1dWsLVerVVPVaPfhjR0MRjc3N54SxlhZNcroMImd\n98qaMAyrutt0BlptTsrmYdt0WxY2wZp4WokjhBBPyY5GhHULZdP2Lf4/1qoYWBzHXAilVFFXCkOT\nKLHOcSnQxhj39xa8tXaQR4vFYr1YOmODIMjStBenSRTpTjVVnYbR4d5+FITWWkxlsK5hjBFgzjlP\nNhVRiKBuGtx9AADnUgiBeizrGiFEGqWxDE2nqrIkzodhnGVZa/SqLNJeTmVwNR0roynn3FFKKWar\nKKN3FgJIF6BAnLVOG0JIFIRhGCLHm2y51rv3DVdyeMO8vU7i/+Sf/4vT01NswX7wK7/uwX/yxWfr\nxZoxFoXJm8vL//Vf/+swjoqqnM/nr15fDPcOrq6uluUaONPg9oajsqnbulmslsPhcDAYVEX57OnT\n85PTPM2IB6fXVVWZTg16vXJdNE1DPByM9pAY7Jwb5L0gCCiQu3fv3gUormfOuevLy8VicXB0eHRw\nyBh78eLFxx9//ODBg4Oj47Is63UpOX/n0aMsy2YXz4MgwEZea53n+Wg4bOpaCPH7v//7YRi+eXVB\nBe31emjmXNQVxpXg8cOeLs/zy8vL2Wx2eHjY6/XQgEJr/fDhw65r4jgOhey67vbt2/huHh8fIyhx\nfn7++s2bsqnjNDHGYAaZtRa7VAtea+2sVd5naUopJc47Yzmh+NQyxuIkxTqKBQlHDfyAcRTAXrjX\n6yFtKguE9x7XkB5ASAmErNbrNE1Ba6WU0frtZWrbtmEYQhSJrQ2C955ThlUTzQEYkA0rFQAIrNfr\n169fI+E5jmNsANu27ff7/X4flXk4heOmBC/oHUkKJ1Q8fvj8uW3kMKUUg1exswYApVSr1TfSICF2\nEyoAILcW3xDk+PR6PZwmERdCbyyGSeCUGmNq04F1TdM4aykh3rqd5HTTpaJbJAG1ibCkSE9Noqiu\n60BI7MyUUk3TrIt1lCSEEG2N8RtK9u7wOOfQenpzpN7SeGxwY4CiKDihSZKA91p31hhGAdltbd04\n5wSluMTy3+QdbYDNDVxHiODCE7DWApOBCAgVHSb+Abzz4fuHR0dJrzcvVo4QGkWSs6YqpZTgPToZ\nUesFE5QA8RBypuqKcNFLMxqEktKuqFIpq9X8yRefV8t1EgoB1Br74M69wWBw+ew5gAcA6oFRitww\nZ+0g71lttNYB5Vp3jvBWqyhNgohmPamNAaCOgDaOCs6FBEq4DL0nD+/c/vZ3vvPg0Tt4fJ49ft3r\n9fb29ijfdHhSyn4/v7m8evniOb4DSHaLoqgqSi7kZjWrg5ptfMestVEi8QH+zne+M5vNpssVFcIR\nCgDL5RIfRc75bDzBbTRj7Pnz5zgkoUDZe1/XdZgni9m8bdvD4yPJ+OvXr+ezWSSDal10UTwcDCTj\nRuk3b94EXDDGpos58tFwF269i+N4MBo9f/ni6upqsS7CKErTFIk/vV6PcDEc7VvqPv/qy+cvXpRl\n2cvziMuzo2PCGAC11geUBkFQty0tCnxDhBD4wFBCdNuh6ulmMsbTvVouUbSKa2k8XISQgAvtwXsf\nhuFsiZ0NjaKIcW6sddpVVQWEe++td7sDS3bqc9xgePAI9HvvnPOebLYpW292FDEivLpD1Hc7AhFF\nxtpOqbprtdao2SOEeGMopWTr8IPDg3Z2PC5QxhPESRgEkQzwZSulsLu11mKvj+1+27aMCsYYExyn\ni7IsrS0wBBbBBkqpBY8v24ONwgRXzrh0oB66rjPOyTBAWaZnnDHmVKfaNuYhvBVu5rckD1xgUSAU\nUXfs741J2GaY2R3h3Z/Ne0iAOL+r0Pznn312cXOTJ+n5+fmLy1ePHz/9N//23+V5rjt1enp+5+H9\nMAzvPnqQxslkMvkX/+KP+v3L8XQipMyG/ZNb56CJ6VrneBwFqmvmM3NzdQ369ocPH44v33z9+Rcq\nYlJK3XWq7V6/eLk/GJKeRy+bq9dvpJSHR0flYpUn6TsPH93c3ETKz5fL1WrVNLUzep2llLGjg4Pe\nj36U57nROo/jg+HwWx98mCRJuV5jbLg1Zj6fP/766yzLBoPBnTt3dNsNh8OiKBbT2Xq5okDuP3iw\nXC7/y7/3X7x8+bKua1xB4ROTJ+l8MhWUHYz2IhmkUcyAmE5xQnmSNGXVGOudOzs5/fnPfx4GAZIz\npZT37t8fjkbrqqScff3112VZdkbjzJr1ckLIuirRL7RpmkgGgnHKOQMiOA+ElFKiWzou+fEzRvAH\n/wuSMrTWcRxjW5CmKXqw4dWDKDH2ertl4XY9Rnad2q4pwy+QioVPDKUUI5DxgYizRCvFKB0Nh48e\nPsSLiRAyGAzwAeq6brVcItkkjuOurHFkRxnPDqLZmbL6bd4wwtHrdYGvYTOLW2O0wUOijUHjt934\nyBjT1kjBLfiirrSzaZq2XTudTgkhsm0AAG0jvfdpmsooNIsKjcZQpaqVwht2N5VqY2BzRVAppVKd\n3OYsIWyIUBCaCuEumXPedC1SpvEdI5gxsPXcAABEETa12W12V3gWnTVCBN4ZqzRn1Hs3n89wdU1R\nQkzAebeZoYkDQI448d5vXyn1nhDGiAiBi07Z1oEMg16eH7//Tm/Qr+q2mFciDAJKjPUyCpng1lrT\nGApeMi4YpQ6tNCGgIuSBLurZeBwS9vLZ0wCAenf54lkihKkaQuFwuPf973x3vVg8bRqtFJHgrAFj\niPXgrQPLKOWMeWOjKCrL0jhTtU0YRfPFeDgcrqs6DMNBljvnlLVN22W9PiHst//mb/8nf+N3rLVB\nFC7my+fPXnSdjZIwCIJWdV3XJUnEpIiyrKqePHv2DKumd2CM3alEDvf37969WxXrF8+fY3rrwcHB\nuqyLsto/Pvm93/s9HobT5erk/Lxs2p///Odd1+V5fu/ePWyj67rGhTQKh9CIBq8CznkxW1jvqqrq\n0qwqC+qBGGeJOTs+mc/nbVUbyvaHo7aqozSMosgajyIlAGhVt67KVpmLq8vrybgoirbTvKmX6xUV\nPE3TflWGWh8cH7FAVnVrPYRxEidJ1usdHB599fkXvSyN43g8nWZZr8f5xZvXSZwzxpgUTdMEUkZh\nuF4skfZ4dnbGOX/z5s3FxUUQBOPJ5PPPP49HffxfBWWOMXyekySpu7bTyoN3zjaVAkaFENoaAhSr\nLx7z3RWxK8AAQOCbAmyMo1sJE1ZBXFpHWzMfXIRhWUVMW2uFSBVhNOAcGHUOJbyCUqqscWhP4z14\n3zUNIzQMwxj9CQilAM5YbzcUELxPvHO407U2Mc467xnArvYD2Sj1hRCEbGbrbc3ejKTWGZxKLYC3\nVoYhpbSp6/pGWQJ1WwspQiFU2eJBdm8N9/i0OOeIB8G5lAGl1BprjOEBx59PKfXgMVRtd93trgt0\n1fHe84cffPDm4rWI3OVs9sU//+dd12WDfhDGIrAv37yOsvQsz+bLxU/+/M8ePnz4n//+37Wdef36\ntSMwOtjPh4OLqzdZmnqAq6urOI6Pbx1Q4yRhzBPhycFw9LqYFcUiCoJR1jNNV5TNdz766NH9B1rr\ne7duf/HFF21Z5XlulX757Pnr169zIQWB4/09LoWypi7W1jnO+a9897thGDZ13bZtsVxRZ+v1ympt\nVIuC9zxJpZTHx8cA8ObVRVs3g16/LqtBr/+j3/hN79znn32W5/nZ+Xk/7+lOqbbDGuYYIx5Oj0+O\nDg6TJJmOJ4PBIE+zKAjH47EDa4zZG40wvvD1y1eM88FggHl88/l8XZUItMZxvFgu4yC01lIPjFDO\neSQD6oFzjrbgUkrqgRKCbouqaa3aLJywcMLWtwz/X1y1brZ9OCYSV7VNFEVUcNW1EnycpXGWzufz\n3UOPm07BBRciSWIsaVihce1EPOBpwZnDM75raVEuGUXRYDC4ffu2c+7y8hKjCZ375gwQjLIx5jDv\nV9WGhpBlGQLC+EPctj7hsXwbGHfbdKNd0xBFUb01nAI0KQSgglutMJKobVvR1K3qmqaZTCe9Xg+v\nbPxmIQRh1Fiz6zQRBNtZHXnvldFaa2MtAQaUbI8rEUJMbsZN0wx6vaZpZrNZ0zQIs2NoKGOs08p3\nnVIKnEfRC3a1zjmCvyVjAMAodc6Z3TEjZNTvzefzpmm8M87bMAxVXV1dvTFaATjBKGOM+A2ORyl1\n3hKyyaUgHqhnxHuwQCjjQegILTpddkbG8ej0/Ojk2KZhS/3adj4UMssarWrdZXm/a1prvLOOAhAA\nNF4GB4lgeZ57a7/66snnn/3yZO9gcXMdUpqGQT9MskiqumyKtRZs/PLi6dOnGxCPMgrEW0ed54yB\nA911eZ476tB8Snm9KJdCBGXd9IaEiyAI47TXa7sujdO837t7/6EI5MN33uOcf/X1Y0KIJ6C1zpI+\nAFRVpa3BR8IqDUp//vnnNzc3aZxgaoVq2q7rgijkxK1Wq8ePHxvVee+jNHHaLFaFJyCl/OCDD7/9\n7W8XTQtcCCHa6Vy3HfFetx31kGVZkiRYd7E7xFoFW1vg3TRpKZeE2VaZpnNKU8ZPj45tq7z3Xd24\nnjVae+t0p4yHVnVKKSaF8U4bo3RZ1FVZV2EUBXFSd63xLqC0advVq1ffuv/AM74qq0VRGvCEkmVZ\nXY+noYxOT091211dXu8fHVrvPv3yi6yXSSnNtrCdnZ0N+v1PPvkEb57FYrFYLMqm5pxXda2UOjo6\nenn1BpeOjdncGM4BAlerYm2s1862bcukEIEEbzGmGnY5Y+B3feSuADNP/JaCgNWFcY6wzUZ0YIzY\nKnnolnWIVaduG+ecA085Y1JQwZ1zxlrOOfHgnDOdMkp5uvEIikVv4/uBHDBvgVpHrXMOnPPGaq0Z\nobsdKlo/YrO+GbvdN0OnI+C926lvsXYiY0ZyQTgzjfUWpGRVU4cUtNbag6PEWuuU103DHZ7Qb4Au\nhPo217XzSEyhlILbXHFv/3EEnHPEbpqb3bXgCeJKwCeLJQmC8/v3QyHDJL17925dVv/yj//43Xff\nPTo5vrq5nk6nP/jBD777/e8Kyvr9fsCCtm2qpiYEdNfuD4ff++ij5XIZct7v99999E6xXjdlNczz\nN5wHhIaUHxwcDYdD4uHunTu3z86PDg7//Cc/OT4+fvTBt14/ezG5ur59eraaLx9ffp71eixlewf7\nWZY5AjIMhBA34/Hz588/+/gX5+fnR4eHt09Pxtc3xXJVFEUvyw9PTnFALFZrAED/yOvLq36v97Of\n/hRZSG3T5Gk27PWjKEJKESHk9PQ0DENMWOKc4wCHe2KcO3G21koP+n3G2HQ8mdyMceFa1bV1jgsx\nn8871e2EOkprtJUAQryxnjFOGQjJGBv0+owxTqh3bsNfaFqtFI2SnQoNHyMkleDLQKPmXQkJgkA1\npduGyexIwpTSHZUJcZW32U/GGOwA8WtcXcBWsWqMqbSp6xpR3I4Ctrda68lkUtf1dDp1zqVpiq8T\nH7gdqMIYw7oL2+wE55xSCmVLOIhjxcWSj52Ec05Zg1M4/nfKGL5+bD4wbIppprWqmgZ/rDAGnfBE\nEChjOOd4GhyAtnZVFGVZagJYEe32H0W2lFJKGa20ds4R8A68p8R7H8fRcr7Q1sRxjLQ4dMaGbf7S\nDnqilLZdy2F7PQF476kHt8Oc39LXb5oV2Izd1ijqgVPGGauUWi+WWmuydc4i3n1zeVFglDBKKDhq\nqafee2+NpwE1zldWF61mcTI6vzW6dSsa9C+6OuFEMbCCGgZKg/ZgwVvvKWWCUO4J85RaIA6oo1FI\nTVlObsbPvvji+vmL2MFekh7uja5fv44Ya9frfhZDU62m818sllYrHstQBmmaUE9tpwhAQBgwiITM\n42RdFNbaKIkDAovlery8SaNQe5/2ekEYB2HsCD2/e++jjz46Oj5N8uz16zePnzwd7R8Mh8PJZHJ2\ndmbUZooSQhDil8tlGMrZdPrHf/Q/5ml25/zW5dVrfDO7rkmSBJyv0ArY+SQOKaWd9Q609XB+9953\nfuV7ymjCKGYWLZfz/f19lPniEurw8BAXKLu7Eq9v9GcVQhzvHRRFwcP41ulZmiRfff21oOz4+Lgu\nK0wrmapJXdfFas0pY0DCQZ8xFiQxY2xZFp3RSZbngbDgmRTWASjiCFjwHrxjJN/ba7vuzc14slgG\nkcyyrJekt+7crYviaLQ/7A21tgDUOUMpdc43TdO0rVLKG2u989vo61TK2Ww2Xy211kJK3Psoo3H7\no5XiUdTL8zRJlLZBEFjwQRCElHfWdNY48MropmmiMPXbnDFCiLJmB5zuqgWllDuw4I13ImDee6U3\nVDVKaZyEuANinG0vB++9Y5wwLpuqZoxRQQGAMQLUEwLUgfPGWO+c06q1xsggiKQIgiCgEe7dnLEI\n8FptPFinjTWm6zpMN5JCAIDTpnPdrigqo9tG2W0GmvHO683su5napfRONU1DAeLhKI7jal11uhOB\n7OU5FXxZlE3XAmfWWUZxIqI4+wOA9d/UdqSjgvNk625LADhHgQLxBBx4siPJewfOkrfXVYQAI+A9\n98BkwK6ub6qqSuK461Tdtv3B4O///b//9Rdffv311wf7IyFZKKKnT58+fvx4MVnUdQ2UACWEsaOT\n48HeSDJ+fnLaNA2xLpFhnPFelJiq/fqzL87fvbc3HP7qr/7qndu3vbFPvn5ch+Hxwf746nL8+jV1\n9tbR0Wo+q+v6+GB/NBqdjYYikFJK5LM573Uvh1vns9msWC6oMYkQsRQQhcy7k8ODW7duPXv2jAIZ\n9PuLxeLN69d5nr//3nt/+dOfpWnqtKl0EXHpjZ3cjO/cuUM5s8aA94N+X0gphejalicJeI9W9w/u\n3yeE/OxnP1uvVk3TyHCzLZBSzudzkeVYltI0PT4+jrM0CALErBhjVV2HQgZCWu84Y9RDwIWgbNPX\nMweUMkIl41RQwXnHWIeUwreMKWAbWIv/LsrUEDHDNa4DX9aV9Q4o0dbMFnNsQTyBIAqZ4HhEldG6\nNIwQKWUchrvCiW0YiiAppW3bgnU7cq/VJoli/EcXs7m1Ng4j5N3geN11XVU33vs4jpMsxqsTLzUE\n2/FZx8rnt24huzkYv8YYA+y1jTGdUtqYHWxOBcd1stYaKDG4beLME1BGM8bCOGqaxhPw4DmjlDNw\nhDAKlDilN5wvrRHAxJ5dW4MH1RHwBLSz4MA5N53WZVl+76PvHB8f//jf/6lVejTaQ+FrXTdVWcdR\nrazptGKMEQcbCREAcZ64bY4bAGy1KJvh3nnrvCO2WkytUUIIRgCMa6t6tVqptjNKM+8oOOuBEE+A\nACOeEIYkae/A490ncDdmPWka1QIJsnzv1u2DW7dFmi21aXQXi74AWNVzXRYiiHgYNG1HKeWECqDM\nA0M/LE8Icank15eX41cvQLX9OB5fXPjhILCuWix6B/tFaWyrJCFZlqmuYTLpGARBEAhhlKbWEk85\nEO99FiXeuqqqHCPDg0MZBhAEClwUJMrAcO9oMBg8fPcdIYLBcHj33oMgjrUxbacdkCzLzs5uWU9a\nZTwGteKuhLLZZHp+fjq+vvn8i8++/71feXDvTvXv1rrtwkg6YxEIieM4jmPVds65tlHOucFor2nb\nb3/727dv376+vraEKqWbuo7j2DtHCUGbNgLQte0mUn67rCGE4A9EYkFApQ0TAFCNGvSGjx68k/d7\n/X7/xYsXNrTOOcpEEmfxnTTPsq7rRG+TJk4M6bQijAopjep4FJRlaT2J89R7X1UVUJKm6c9+/otG\ndU1XV22tiXdAukZlyVVAyJ/9xU+//53vHR2dfPzpx2mWfetbHz158mS6mGPEsuq6x48fX0bxdDrN\n8/zFxSsp5eHh4Xg8Lqvqww8/vP/wwcuXL99cX11eXuLvhTzn9arUWkspY/CtsU4rQoh3zlpLt+ga\nADApCKX0rWUwbJv73foGtxi7qry5MazFo4pD3m6hi0WRcka386L1DtzGuRNfITjPCOUySOIky7Iw\nDKvVAhMqBWcCWU7eemMF5wRgA+RuVzz4Q6x31jgwWmsNQPv9fm84uL6+Jp4YYzwA3XqFhmFsTY2r\nnyzLCCFFUTkCYRKPDvY7Zch0po0B7zwjUohYhq5VhBDcARtr/FbpgFstQoiz1hpLCOGUMcxZ2hbs\nzcVANlCZ957B/9aTh6OEo22VUdoZ/8knnxSrtRTi//J//m9+9Ve+/+EH74F1F89enN86pd59+dmn\ncZymaYqwg1bts6eP91aL09NTMJooZawbDgbTm/F8fDPq5T/81e9/+9e+DwC6bqeX13Vde21001bL\n9eFw79WrV9/54FtBEHz88cdpEB0dHbVte7A/quuaeMfBrxfz6XTqKdkbDO7fvmWMmU+mlxev2qYR\njO/v79+7d8dou1wsoii6dXoWCrlardaLpdPm0YOHi8UCN20/+clPjvYPzo5PGJC27XTbTadTTuit\nW7ciGZyfnPZ6Pe99lqR1lvezvG3bYa/fdR0n1CjdNe3+/v77779PGavXxaeffopO/ctiPeADHK2w\nrpwcH5eLFW5HcPvCOcdVR1PXnHNgHIAQ7gMp4yCMg7A0Rnet1gYAvDWEcHBetY2UUkihu3bRbuhF\nuFvNeqlBtY+1cRwrrVvM7HMOrW2iOKbbRLydoBb/7J4DD4B94gYs8h7bf+ec1gSZxvgNeZ4zxsqy\n/Prrr6MoyvMc9VoIEWutk0jQrSWb3Yp8GGOo6NjRvqy1G2mvFG7bxYdhKKU0W2dUfHmtVpIA8sa9\n94R9s73GfwUBJbt1M8CvsecVQihtgiCw1jrUbAhOrfNvIUiUUk8Ad7hAyLoowiBgcrMGbp1F+WYQ\nBEjpFGFgGocdGGMMgaPdLeC2J428BbATv2FteO87ZRijFDw48GCrslhMZ1optgH4CAEgBCgh+BOZ\nIN5ba6y3lgIJuKCUU8KMJ9pDkOeHd++Nzs9JGBfWtsYSJpRSzgOOLwIgCALdKs45AXAOqPMWgHpv\nvQfnry9eTSaTpljncZQHx59+/IlNktlk0kuzPI0l8U21wnc7juP5fCp6uXPOKG2VJgBREARCbnAL\nQIQAgii0BPr7o7ifj5JhGIbvf/BBHMfvvPNOlKbr9ZoKwUUwmc4Ho+GBCKqqKaoKKRreeWNM27ZC\nMM75er0GOP3Fz3/OCM3iBL31nTeUUiaocw59/+fzOTiP7Kflcr1crb73qz/49R/+BmeyK5uqU1zK\nMAzDKKKEWGvRQObm5mY8Ho9GI0qIVsoDIAqNzeVqtZrNZpmIB4NBmmfz1TLoQm3NYDBgUhDOGq2W\niwUhhIVyfzhCifzryc14OmmaJo5jZXQQBkEcNUZhkCUTIowjrbVaaeNcEEVxFAJnveGgMQrdMCY3\nr28ur+6dngugf/YXPz062GdU3Eym0+WKUI7vgG47awwaZgnG+/3+e++9VxTFmzdvmrallP7841+s\nivX3f+0HxruNS6j3qAMu1pW25uj0hFJqTKeUAkq8B+tcEARK2c5o7z0wutt27dZMQOmuBu9wLGxw\n6TYqe2dLt1kbwWaVBs6D85j9B1tiF9mq28F5D945x4BwtgnIEpRRAMEYB4LVDJynHoAxzlgoZBiG\nkguzVZM7AoRRYj2C3OApFTxM4jzPx+Opde4bWiNQ50BrrVWHmzguAs5YnCYIH15dj7kUPJAH8YHn\ndF1UxjhrdUg5IcT5/2h43dV+9GeHHcHKOeeYte6bFoRQQihs3FOJ8Z4Dce6bfHDeTzLcV9fa2k4F\ncRwNR8T7e6fnf/f3fvfq8vL5k8dZlklPmYNf/c730jyru/bi4qLXz7Ise/r0abVejd5/r9/vX19e\nEefv37rlmkbV1cnhwa9856PTO7efPH3y6aefHo9GltKybV49e7per3tJ/K333j04OJjP5++9+8ha\nO5lMJGOqbgSh2pj5crIs1qgWn3Rq2OszxsMgSOOE9wbW2mq1fvLFl3v7++88uN8bDObT6eXl60DK\nKIq8M5SRfp7OJjeCc8Hpar04ONwzVvXz/tnJabkuLl6+CoQ8PT3dG44QC017vfl09vL5C875tz/8\nFlrJNF1NKa3r+vGXX927dw8AqOBMCkdgPp+jRz8hBCNF8zxfTmZSSmtdVVV124RhmOc5D4K9vT1O\nmXNONa3RGox1QnDK8n4PiYv4B/e1yA9Cs/gdFRkbN6SO7+BffCxQA6C3f3CzhVodivjSVqm2mUoJ\nRb4f9q2UEjT60Vqfn5xeXl7OplNr7XA47KWZc+7Nq4uj/YNNB2edZDzgAlFuvD2xJdwxt3c+GHi7\n7Wx1sTbjamrzX4RAId3GrKNrkeK4WTUxVqtmRylEehoibBT9zRkljHpnldFVUxdlQckGw8d5nRDi\nELvz3ljbGW29QxUeIQQowWCAH//4x4yx/eGo1+tdv7lM0zTNMqRY7w9Hq7JYFWsEKp2xm8PmnXff\nlHbKmN+GwwMj3jmw3nsfhgEFaNsWrBGUqaatirVq2iSOiEOo2BNAeqez1hJBnPPGGKc0JZxSzhnx\nlGkLJJD9/aPTO/dEr3+1WlVaB0ksdFsuV5TxOEysB+IIY4SFIQB4bTTGxQBQD+CNd+5/+Rf/gnNu\nlJGMD/p9AH/r1rmkpKvK15eXSRAIIQLBl/PJsD+QYQCEwFbELHiQpmkUhE3T1k3DgjAfDL1gltCb\n2XRwsLd/fHK+f3p4ePg3/sbfuLm5IYyh/a+xfrG+IZT10l6e53XbMibKskySLORssZitVquqgjRN\n66ooi+LHP/5TyfjjJ1/VZdU0DQWHnhiUEEohDKX3ge6QNghCytFo//u/8qvf+tZHXz55HATBqqpF\nEOBROjs5nUwmqu2G/QEKoA8ODvI8f/r0KVLisZvEgyOltM4RyY9OT9hUzpeLn/3VX47ns6zfu76+\nLuuq67osSafLRWs0TjPX45u6rhljnkBVVWVdsyBUSkkps17uHNR1XVRVqxRjTCllGlPWFQ+k854K\nNtwb9bMclHn0znvTy8tqtQZ6RChdLtZE0t2lj5lInhLdqjzNZBAIKd//4IPpbJYkye/8p3/r4uLi\n2csXFOjdu3cBAOG6L7/8sixL1RkRyPl8HqcJQf0xD8u6WhWFc44Qvmthd4D8bv+CKy5KiEd+AyEE\nCG6yNisYSsMwpEA2fHsgiGazbbXq/DfaSOySrTaIqOMh9c6B90Zr3bRem0BI9LwE552x+G2Cc0II\nZ0xKSYGgxzU2uKpTlFI0d0OG3c3Nzbqo9LY1t9Zb8MTYumsJIaatACCOnVLKMkYp5VJQJsp6yYxo\n2pYHIfXgnOOCx3Gsynq3+sVABb41DcTOm1KK6WS4b1LW4B8AkN4D54wyZLEht9J4x7fjsfee/L/+\nx39ZFEUchEEo6rIizsdRCM47o+7fvTcc9pMoYoS+ePHs5YsXQojewcH19TXh7PDwENtGKWW/3z/c\n23/16hUFEgXBdDzx1t0+Px8Oh4+fP4ui6Nvf/jal9NNPP/3lL39Z1/VHH30UBaFSCldB9+/eDYLg\n8ePHbdt+91vvTSaTq/GNtdYTiNO0aZrR/l5RFJILay0FeOfho6urq8n1DSHk+Pz83r17wFhbluv1\nGnn5DDbwi/d+tViiQHl/f7+/vw+UFcvl5eVlVVVXV1fn5+cHBwdxHCPmiWypsiwRYZjNZlVdqC38\nSyllUuR53jRNb9Bv23Y8HgshRqPRzc0NOnt0ZY0bkc5oQggGXe3v7zPGelneti1xnlGK9FFG6Npo\nrfVsNlNKoTAXV7+7WjWfz4fDYRRFl5eXYRgSBnobjYcfIYooUKCJkytWXwS+BKV1XQdbl4mDg4Ne\nr1es1jtI2TlHt1MdAHjGnHOvX78ej8dSSqSooG9llmVYcQEAAxWUUrbrsPTiP409hJRyuVxGUQQA\nGFaPKxOllKd0FwPXdh0hZDQaHR4e3tzcWPBlWSK9XEqJ0mplFCFkt9jGtbcQoq7r/029BwClFCUM\nuwo0DFqtVrvZ2jrXaqWM9pRQxjwBpGcDgGDcO6eallMmhHDafOc73/nss89ms9nDd99BXdbJ2Wld\n16vFEruKb7A7ILsVvnOObjpuwNOvvALr0jjp2tZrNbm8/vSXHweMSca9MwCOAnHeaK098ZxzbRXn\nHJw3xgVChlHsgFSt6Tzceff9kwcPjAyWSnWEOCmsJ7wurbUOPOVShhFlQlmjtDFKp2nalpXgLOKc\nAgSCTyeTf/8//L8ZY01Vc873+oNhf3B2ciIp+frzz3XX9JLE2c5ZHUnZqWbQy6tOUQDBeLEsBr0+\nBRpwsVivwijJ+4PzB/dWTXXnwUPH6fBwX0hJG/fo0SPkIoRh2LZt3XZY4Y6Ojvb29rK055y7Gt+0\nbbu/v5/GMhDSGDObzaRg/X7///l//3/84R/+M+8cIV5KGQUbxr73nlJAT4M87RljrAMhRJJk3/ro\nO/+H/+P/aVUU8+UqylIH5NXr155Ar9cLqBBhgKK7ahuMk2Tpq1ever2ekBLtNXZbf6sdl+LOnTvA\n6Geffz5fLQmj8+VCBEEcx13X+a3rJDgfxzGWgbZtf/DrvzadTv/dn/7p0cmpMWa2WCijgyBy4Ber\nFecb92zQEEThZD6zzoVJbLWKuIxk0AvjVEoB9MMPP2SM/Zt//+9WdXlyegrEdF1XrgvifBSGbdty\nQo8Pj6SU3/3ud5fLpXH2zp07jAttddO2P/+rv9JaDwaDKIqur6/H47HRzjjbqM4TAMIMeE+JA2+c\nVcagL+qOUOK3gcF4GdLt8Eq3eiFDNyj05vvthhvMCXXbfpRSivxGAGis3tGyGKGMMbBOKeXQ+HoT\nEi1wswsAghPs1xljcRDiLsxoLYSALb3KmW/WusrrXRMM6DJtPN6BjDHtPIrTsBZ0XRdLtiNtxUEo\npfSeGGMIZ0CItb4z2nlPGEX+FHfAGEPDOwcbmhUuyxhjgnHO2EZWipnf8HZhps45bywu8gghFKlb\n9hsSD39469ZisYjCMIrC8fXNYjrLovDk6Hi9WA7zjBq3nk455wFhe70B5/zi6o33PuYSrBnk+fnJ\nsVJqNp2+fPGsWhfeuoVzztp+lndd8/rVSzDaduTrr77IsoyAy9I4DMRsOuacHxwcOKOaqqjr8uTk\n2OrbV1dX6A02yHv5oJ/3e0mSfP7ll7PJlFJargvB2K1bt/LBQLddW9WMseVi8eb1a3wm8ILu6ma9\nXh8dHQkhRBBmWYYGiuPxuKqqqlOr1erg4ODhw4d5nr969erVq1cffvjh8fHxZDJhjO3v7wshrq6u\n0MgGZT/ofTocDrN+T0pZ1tXFxcXdu3cZY69evfLeYxa31nqncNBaB9vMXb+1ftw8rJy7rSkoukAg\nh+Ls7Az/6W3ekSfbAEHsNIUQ+4d7WKS3V9JmQ/M2J8sYs6N6oo0i7iTwBpnP51EQIoSCuDS2q5um\njDFjzHA4RIgJu7+d4QtqDfE7sQ5FSbJDYPDpxDOM4kXE4Xf8Z3x2pZRciLZtcX2K2CDSL9Fdi0uB\nzGf8TXfTMN16tKKUk2xFVghE4xuitDo/PycAVVWdn5+/fPny+vp6MBjcjMed0cpoC15ISSnRSlVt\n4x0JhPAhIR6sJwyoc6CUefnywhintX3z6k3Z1MY474izIMMAV+942sF5t4nGY8QRat6CpACAEEEY\nYbxr64CLslTTyQ0n1BvrCThjARxQCgQIRRfdrZaJMsadBaiVNUA6Qh5+8EGyt6cobbRujdWUggMg\npBcljDFCuXK+06pVrQPPCdHgQiloEjhjrTdAwTivrfJgwyhC6wkZBtqar7/+WrXNejnvpUmYJqtl\nY4w2zhij9HLJqSCEeE7CJJZxLCjT2lrGamMOer1kMNi7deud998bHOwtivLi4iLwpNMqCII4zRhj\nlIu8P0DjMwQbymqtOoM4im47lkWrYp3GSV3Xw9Pj50+e/umf/ntKCA+ENxacMQZvf1xM0nJd5Gm2\nWCyGe6M8TBaL1b0HD3/4mz/67IsvwjghjEoZEkaTJGm6tqqq0fHZYrEolqterxfGET487WSK82jb\ndW3b4nWMF3SYZcvl8rMnX1POGqOCJNLWWgKcgKXgwDeq82URBWEcxzwMqHGIjjBC4zhmhEzHExkG\n+F8opULwfp7vhAB5mnAp27gtm1o1rXUmFgGioPPZdL8/XBbrpmsdI8a7VbFm1BFCuBQUCBcil5IB\n0dY45b96/DW6q15cvrHWhlFU1/VisbDWllWF7k6c80616OjuCXiglID2zlpjrXXGeCoQYvXbFuRt\nTNW/xcPCL4xRBDV7uNklhGKxIdT7zSqKk2+syhw+P96TrdIPnJeCb4oQoRRjCQC8s845zgSSVclW\n6oOX2zdfA3HeOfCb2dwRhLI2c6qnjDqHHE+HwmXvvNeohJSyrgsUeaLtT6M2sgtnNABV1iit0dAD\nc5EZYdi7o40PgnBv78Ud2SRqb2wm6UZHyrZEVxKwAIi1lnriCQHvrXfUw/Zq9TaRPApELGUThT6L\nBkkyzDPuXBLIqqqK1TrgQjCWJ6kHyxnJshxtibRqGU3TJFJ1tFi0USiVUpyKfr+/PxwBABoIO+cu\nL15j5mUQBHmer9fr27dvJ0mCthXT6bSf96Ioev/99598/UWe54PBQDs7nU7rukZPR7xnsyQ5PT0F\nQoJgYw6+ns8R/cB3RGvNgKDValVVQgjBNm/31dXVfD4/u3evbpvFahlEYRCFeb93dXP96eefJVl6\ndHLMgwCcM85GSdyqblWsR718k/tBKWMMqyBjTBuzLgopZa/fx0KV57n3fpj1yrKsu7buWusdFoyi\nKOI4RumLZFxwboEwxsD5sq6DIEiTpGma9WqVZVmeZVIInOallGmSYDeXJgkANHW961IZY/jsIssX\nz9umjd36HndaJ0litwInFO1lx+mOk+yc44TisBsEQas1ATg6PDzY38ecBnR6u7m5scZQQrI03aQv\nBAFjrKvrHdkKWV07qjOOp2VZojMfDhnaGC4E2zaJCD6vqxKpGcaYnUDIbzMJ8DVgExMEAQCgmwde\nK/hDEFuTUs5ni67rOGPYheBrW6/X+/v7VdtgmiTjnDCKbj5hEGN1151SSgFzltK6bbBEBUFQtY3b\nsmTDMJwsJl3XOeuEEFRwsA7/aecc8cQSlCm5HUzNiKOEtlqHXKyXi/F4HHDmOgcOWWmWc04Z7GB2\nSnldNUzKNMuUgaJts8Hg1u17p/fut55U1rfGWUIBKFhPGGUOkPohAQyhgnh0E7RUEXCMACGWEcIp\nqK6uysXJyclsNguE3Nvbe/3qVT/vhTK4mYz7vez01vn5rfP1L9eMQBTKOI7K9TLkkbWWcT4cDlVn\n1m3LhLzzznv5oH//wcMwzZTRry5vCmWAkCTNTdlM50u092O42UlTlGLvWPpN04QywPyl1WqF4i7G\nCGPsxz/+8dMnT26fnQM4TbR12jnn/YYzhbwBZGBIKReLxfmdu7/7n/3e3bv3L6/HedYnjHLOLQK2\nBLz3N9fXQogwCKy1bVU7Y3BgFYGklPqtNGBzpTJa1A0I4QBUp5XzreqUMTKMgRDwFCj3hCllGLOR\nJ94TKWUSxZPJ5C/+7M8pZ2mcCBkGcbThJXAZRGGWpFVVWe/iMITWWq+cMtSDDOT+/umj+w/6WX75\n/PnNZefAv3p98eb6qlFNYxS0LGIUJy3iwRiTpmkUhqZTaZouFosgCJgUL168KMpyf3+/qqowiQkl\nRV2hfypsjeK1s1iAHQFmjPdeew3Oe/IfldsN8rzdcWKrTQjBiugJrVULABSAobYVNt2/ZNxvjeE2\n/CzvnXPa2t2+kwJBHipnhApKdsKeLaztnffGcsYIJ7s7BEdkrKXOObOlQVFLjXdMbEIOCDBKGRDw\nlFBPqSbOOQ/AOPfGGGMpZWEYCdh0QowJAFC6QwUH4QLA73T9nlLOOCHE683UtCsxZPsHC7DxHt8E\nLMCtV4jGGeTEeBCcA+fee9iFqby1M+bEqjwOgkAw5o/2Bsf7Q86Y0Z0zCnOeGSdCMiGEkIwQcicJ\nsByGQnrv66IUQsRRZI1Bl6soitCuCBm8kZDKmkE/F1J676Mo8N5TTsI4CEPpvR0O+87Z65vLNE1P\nTk7QOrWoq/lyoZS6c+/eaDQibLPCrJpmNpux5RI70Lqu4zQOomBrcm2M0SKKMpk2TdN1rdZ8OBzu\n7e+NRsMgkJyzpmkwCOX169fYIuAF8ctf/vJHP/oRACzmc5SuO+dwexSH0ag/qNrm+vp6tlwkWbpc\nLquq+uyzzzA5p6qq6WSC6S71qjDeIYoClERRhJkbKG7bMW8wEMeBN0aladzv51p3NzdXi8VsOBwO\nBv22rbvOE+LDUFIKxijOqdZad84h+z+M2FYOJLnYG45wEDTGNE1TVdWWSm2yLOOUEkLQspFzLrlA\nLw6ypSLDNvF+vV6joRjC2oQQbHSOjo7wPCA27rcEqA2ITSmuhMnWSxIvNcylYIxhAcaTg9M5vjzG\nmPEOP1xKqXvrKsBnPZQBRqY4a7umRb839DAxxqi22/0K+LeGw+H45gZdVmazWRRFDx48uLi4KIoC\n1zOdVtRZHkgZBH0hOJfoZoWgHCJLu4kfUXQquFKKAIxGo0rV1rmu63AuMNYSAEfAeOedtd4Za9xb\njjnUO+s957Qs15PJxBsjhHTcAqBcyjnnKNuQXDwBb70IQ8Zla7wBkoyGp/cf3n7wqDKmbFRtLHAh\neWC8d0ApIVrbrtMOPHDGpaCSG6eNMSFjpmmc1RwcZ8S1XTmfVoupt27YG12sL1TbEg9FUZS+uHXr\nzpuLV9PpHJx/+vT5YJgFwag/GFrvpKOUibZt6061yuwdHeb94eHRsQMfDQd5b9Aqs1gtnzx9fnBw\neHx8vGxv0NQXu7Q8TZ1zi8UiDEPVdriJMEobunmElsvlYDBommo0HD7+8qt/82/+dZIknFNrHGeM\nUfDee+J2YI8MhDFmf390M5kGMvnPfu/vvPPOe9r6k9PzKInrrnXg20a1bYsJPOvF+u7du6gwrOp6\nMBgM8h4uiRCkwQWTMYYHUkq5WJe9Xg8I0W3jnKvr2jjX7/fRhVhyTuOYUxYEAQPSlFXVNFEUZXFS\nVVWSZydHx2XdeOdvn5x5StpOU0oJZ13TqrrzoSMOmKcBY0BEIMNEhs7q+WS8WCzCKPKUFHVR1IUG\nR6VggaDOK6WAewBA64I4ipgUYRgqpUQYEEK4EHEcizBIGMUoa611WzfeaAaEMZHneVFX3nsgGwW8\nc84qDVyUzjFPyFvWiTtEbVN1kAb1Voymx6rtvAdHPVBKOVBMREVTKFzKIEmKubfwIO+8t8CAEkLd\nJk2SEgoEiAdGKGXE2m8CvxEyZFsLi92xIpRi+edCaNMBYPU1qK0AAOc2dRfbc6V03TbGWcoZD4Ki\nKIqikkGLBizAqLVeYrQrJUAJAGFo0+39zp9OSslhG8GyC160zpNNI4ErXg/UWVBIANlgfp5rF0oJ\nlBIghFAPloBH1hgPIyGEoEAAnIwEAFFt13UdIb5ta+z9mRTIKkzTlK3nV1dXRnXpcJBlmbcOE8fi\nOAqEaKUEgKapsduVUoKxndHHx8dhFBnvgvn8+csXzrkXL16cnp5yKQa9fiQDdJf9/PPP0UacMg6e\nVE1rvc/7fREEJycn4/H4+vp6PJ05be7evcuDYHlzEyURrnaEEEm0IQC3xiilAi6QvgSM8iC58+D+\n+fn51y9eUkrH4/Hp6Wm/3//qq6/QSPnm5ubjjz+O47htW4z6oZTu7+8f9voiTUzXTuazi9evN/NQ\nEOjlEkPRNx7aUcQYm06nhVijRTvlrGlbQimiBdj+WO8wnlYr5bijHnaZMOj8gGUJJbnYwOLZ2LEe\nMNQBwW10vcCFx87s6e1OzRjDWMg57+e5cw6H0eFwSIGUZYmr4iiKJOM7vJcBcUCoB+I8WGeV1rQj\nhKRJ0kDTdZ3TxhuLZY9RSqTE3SdWVtjKEpxzaFCF5GdcOSPdbHPfocOcNbvvEcEm1N2+bSciOPYB\nfhvuhkE6RVHsJm+0K9m0zM7tNljYO8dxnPd6l5eXTAoRBgZ807XKGhkECJJbazll+IZzyqSUUoiy\nqdMoxvkbmxXM1ONSEEYdeG2NcbZrWudc23U4BHuPxKotNZoQ8M5bH4fhi4s308k4CkM032eAJxFQ\nzOG9d+C985TywWConB8vl0GW3nn0aO/s1qrrGusrayxQzgVjDFWSHKgl4JDE5QC089RiG8DAe9VG\nnFFnVVGvl4vlZOzrem+w9/jx4zSM7t25Ox/POOMHeyPiIUuS6+vr9XIRhuH52W3J6WAw6Pf7X/3y\ni34/0sbV62J0ePS93/gNHoaT2dx5MqtbxUrVdGEYqfHcO7KYr+zWLBpbt/39/X6/P5nceOucM0KE\nWZKGUmitwVkKnjDCOWVRpJT6p//0nz55/Hh/OGo3EZloIGqdI45sgNCyLPu9QVEUUoS//7/7r37w\n67+2Lss4zZyDtu3argu2WZld18kwOD85jWSA0tJAyk3gR9vgM8a2YSQ7PGY4HDrn5vN507ZBHCVR\n3KqOERJKabXx3sciiKMojmPioWkaybjTJg2jLE03qbTrKu/39g8P2q6bz5d113rkO9SNoEw4kcQJ\nTYmjwENhdPfpJ7989fxFLIPzs5Px9AZ3w21dWjDLanUQ5ZtzRJlSCjHFMAgGe6M4S8uyvLy60loj\nJ5QQ0joTW+PAE0aZ4N467Sz61XjvCXhGmKCMMyaF4IyVbeMIAHi6NQag2zzQTX/vNyUUD3UgJA52\n+H/EAwXCGaOEIKyKPCznHfFofSp2zSgAECAMCAOKC1PvvQPLKaWUclxUWWv8drfDNrAESpAteCDA\nOWeC47pKCFFPcCNmiCPUbRpx5wlzCA8TyjnZ4hzGGN9p5GTie0IFxynEGINjHgBxZMPgcM5JIMYY\ni/xKRtlbFgjOOe8cEMIZLsu9cy4Mwm3nDYRzfFu898Y5QYgHwDBRCx7QHtV7rZR1znHKtCZFUTjn\ner1BmCZN0+jOaOtVa4U1VAqUr4RhyCnjlDljOedpmoZhOL6+ieM4y7K6bZRSaZ5tvMrKdjMGcc4D\nmfd74TjiQhwcHtZNU5VlGIYHBwehkBhSjdapQRAY7168uXj69GmM6XtBEEbR7du3V6vVdDxB734Z\nBAvMMzeGMaat6bpOMI6HHxtYrTX243jYbt29M5vNeCCTPDs8PXEErLVXV1cHx0eU0mWxbpqGcBZn\nqZDCG4MwrDKaegiCoNUKyffXk/Fm5RlbQoiQMpAShTcikGEYWvBlVRVFYbwDgDzPd0oVQ8E6h+Zm\nuqq89/gr43yAup3Dw0MAQPKX3xicWhwGAi7iIAxlANaBdaZTnfPj7hpLlJQykDLqD3ppppSarxb4\nFxHCRVLVDp7Cp9Dxb6RE6MOFhYdvA3D8VtJAtpr3HWUDN83Yb2G7uoHotUbSNdl6ZuGvg/ocQogQ\nwlOiW4sAvrWWGIMQJV4BKKxihOBJJkAYoU1VG6XbugHnKZBOqaorG1GnaSqlZITOZrO9vT3c8PV6\nvevr65cvX0ZxbMFLwTlnznttTWeNMcZTgg9nHEZ5mjJCsftklDZNk0Zxmqar1cp7jz4n45ubwrW4\nE2Eb5x3rnHPaAyUUHfsAUAuIvwXzDIh3zs3m07quh3lP1RVoy7jAy2s3u+Pdl6W9qmoUwP7h4f75\nebp3UDtTKsuiCIikjgBhznpwngFwT7TzPAgCzq21nVZOm0DINA7L1VIQnwjRrMtmNmsXc1usMy6W\ns2XAxIuXz4jx1EO1Wn81mR6M9vp57+bqeu2Wd26dccKfP3++Xq6GwyEhzDrYOzrOR4Ph0SGPI00I\njWMhpEyTxprxZHqwd0i5yPN+16j1en12dpamKRCXpomU3HtLgTRKeevAeSllIAS2Yoyxjtr1eh2H\n0U//4i/+5E/+F77xCSdWG0a4ow5hI4bkF3Ccc3yu/s5//vu/+7u/a50DoKozcZo2qqubBvPVN9OS\ntwAwnU4ZYxhfVlXVfD5vtcqyTFuD8Ey/33dkE2+Vp1nTNJILGtM0TSvKdNt1ZZ3neasMAAm4iLjs\nhYlgrATKKdnATlWt2y6Io/3RXt7vNXVTVVW5Luq28d6D91EYEoB37t49vXW+qIqya5I864y+vH5j\nu5Z6GI1Gr169KtsqylPKiWe0bJs+C7W1hBAuWRRF6FdDCUHTm7Isb25uOOdpliL/9Gh/qNpuvV4b\nZ5m1jDEGzGB2sjXblSlwQgMuCCHh1qbRgd/ZqZJtO0I9WPKNi5MzNgiEJRQAOGX4nYwxQZl3HjwA\nAUKAAFDnnQdwXlCKJWf3Q6jzjBPsmHfN+jeTwwb02HTbG3CLAFACnmCfCt4ZY7U1O/0nfv+mNAL1\n3uHNJsMQKMVOHe/tfpIcHBxQxoqiWBZrYwxlgjGqrWEEAIgFj0g0TgJCSOec0ho9CXAdtrv6vHPf\niKwIEEI8xY26J5QyyiiKJ411zlkAINR77zZKa+JRlcQYcdooZIRSTymToTDOeAKEUe+N854TqNum\nrKu6LgghURIDuNlsorXO0jRJkuVqXpSs1++HYYhkxTCOlFJK+4xAURTL1SqIIxkGuI07v3P7+fPn\njPPZbDYaDG0UUUr3Dw72Dg/bqmq1CqJwMBgEYVhVVdnUXz7++mC0d3Z2Zo2hnN1MJ8cHh+fn5y9f\n+zRNnTFBECBLiHIWCIkAddu2zmihNX7ezjkSomXdB8vl8vLNmzAMB4PB0dERlvDFYvHq1SvEaeM4\nnk6nLZiqqoyzSZbu7++HSewJEEoRKu/1emmaIg4TR1Ge52/evPFbI0YAALZJy9qQ062lhIDb8Oi8\nc41WSDFA+BcrE4K9vV4P96Y4qOG1YsGmaboLSmKMoYkV6vNwpYr7J8SiMYItEMJ7j7Cqcw7TtlEr\n3HVdHIT47gEALp6RmYIqXmzAsafBt3FHemrb1nuHtRbvU/xlAfPtiwIbVRzrhRDGGM8YthTOOec3\n+JJzTluDeQNuawKwa8N3wz2+D6hc39/fR5Ltzc1NURRlWWKlF0Gwm8IBAMl3e/v7OKAb75TW2lsh\nBJOCMcYDicpIEQTgfLkuvLFhsEl9x02E8Q6buaZpVrbZ4GAoBOSMOGKdQ7IYpRTI9iJC7qjxUojp\n+KYsS06oVZp4sNvUws39Alvu6CZdwCW97M79+/nR8Uqruu1IFBkghDPiOfGEABGUEU/BWCsoZcQx\n4oA4A5RSIVkgeccos9o0ZTGe2rraS9PEe2f03p27FxcXuuk456pusjjpHR63bZul6b3z21VdxGG0\nWi7rsgplIPk64HEcp/cePRwcHmhOXl5d0TBMst54No/ynDF+eHY2zAahCIf9kY1tXV7HSYiXaRyE\nSAsqVmv8EOum5AvI8zwQ3BjDKLGcG+uePHnyx3/8x1VVHR4cUELjOPTWEeK9dZ56KSUT3FpjVHdw\ncOAdfPjhh3/7b/9txtj1zU2a98uy7A0GndFN0zRNQ/hGZcc4QZeMwWBwtH/gKVkul1rrLMtwVKjr\n2lhLCNFuMyRZpamHfpYD2x4HIQghnNBYBGEYhjJghEjKkjDmQCfTmyAIOGOBlNY66kFyPr6+sd6V\nZVk3bacUAMRJjAchYDyN4svrq6+fPpZxBNTXXRtw8f7778uAc8neXF0VXRMmsePUC6I7vUN3BoNB\nEsVoqPTFF19471Fsk/V7x8fHxpggCh2n46YxznpCOq2kF0kUCiEapcE6RzeMfU4Zk5RznkmOb5q1\nlpLN7Eu+YWORXWHbROk5Q5AvKSgj1DnHwHtvCQDxHjx4fPYBCDhKNvY7BHV64K2z3jughHEOZFOw\nATy4jR20E5ttK74A4yzxjnqKSyLnnXcAylprtbUAEFK+61+995jgiz+BsI3TH3b8iAj2+/2DgwMh\n5dXVVd21AEAoc1sDTvtWOd/RMoQQXIiu6zC+BdE1v/2zG+6xxnedwafFOWecxt6LOB8FIaApxzfO\nPd45x5Xq8jzXWhflKgxDKYOu6yaTiXOOcxmGYSgFZ2IzAYzHdbVGnPDw8FAIsVwsVstlGIbe+/F4\nDIQMh0POeas6pjUC5cPhcDyZdEZ3pZFa9Xq9umufPXvGOT8/P//qq69WxRoJ/dPp9MXFK0rp8fFx\nEARCSkKIjMK9JH748OFiscDY9jiOZ5Npq1Vfig8++KBpGrST3IzOxiilZrMZst0opRh1maZpGMel\n0pfPnx8eHl5eXWVZdv/+fWOtEKKsKgwOG9X1ZDKp6jpOkjhJ/LrEIOs0z6SUrGvxY+j3+4PBIAzD\nsizLomCMWWNwa9h1Xd00bdtWbUO2eaUoZPTGYqqa7jp8G/ePDgkhSFFBWpPWejweX11dnZ6eLpdL\nQkie55jf17ZtLAM2GDBKsS4mceysXS4WSinOGGUM3VkZpWiXj+i0altK6WAwWK/Xq9Wqn/ewYiH3\nKokThFibphkMhkjMVkrhjmTXPCKqjEJkDBgWQlxdXdptTCk+l+02H9sYs1PsoKY2CIJm2wxVbQMA\n6JeptZZy88XusOMQg+O4e4uzjXDCfD7v9/tHR0fD4XA+nyulkOteNc2XX36JED0AFEUhhKiq6rvf\n/W5RlTfTyWK5NHaTTti2bZrmXd1skDe2mVzxg8A1YZqm66pE311KqUjEbg+Ep8ujwJoQQTdUbQDw\nAISAJ2CMDqSYjidGaZQqxoF02jjnPGzMaXcFmHNeFNXZrfOD8zOWJk3XUik5JY2xylvCJKWeU8IJ\n50C88UbpeJAaY1qtnLEIUBhjKqMDIU3XrovVfHzTT8LbxyfrYDa5uV7MF6P+oFqX19fXgnFwRHeK\neFBNd/v23fVqURSrqlifHJ48eHCPC/ri6UW/3x/u7y+KtWHMU0I5v55Ogigq6qZYFreOT/HJmU7n\nkQwODg6SJEG1T5qmTdM0Vd00TT/vMU7qolwsFpKLMAxx4gyG+ag/+JP/+X/5+c9/js2i5AwJfahs\nJ3h2wkBr1WqVxsnDdx797t/+vTAMkcJ5eXk52ju4ubnZeVAkeYp8wE41w+EQw0vqusbgyzTLBoNB\n3bUYy1NWVVmWZVNjmxjIpCyKVnW4IQ6EHPT6lFKnTRCEe4NhIGRbNxwIpzTk4uTwaDabKaP39vbq\nup7N5kEUa61FEGwOBWPaGE6ZYLzsCqO0FMIZu5zPeBMwKdAHt6zWrnAHBwdV114/mYo0UMq2VqcQ\nSynrsmysPQqC0WhkOtW2rdG6rutomzy2Xq/XZaG1bokryzKN4ixJu6bRWhuxCTvBRw2/5owBeuQB\nd87hmbWMIDEE+VOU0m/yGDz4rcABbzOK4/KmbDqEf4gHT+CtKrNxftpEd+AEjFkIW1888lZ2p3PO\nELfjYGIu7+b7/Ub1RylFlJzjXzRu92MdeOo3EHEURUAJIZsQBcaYpwQ3hkops/VmoUwwxlrVEUIs\neLv1BPwGhPcQRVEYRUqpsq5Q4ki2pkDwFqkKB3rjHefcUUC1lVEavGdAUIa0G5TxbSWEcGi5Jj6g\ncS9g4CFkYRTFdV3Xbd3fz/r9/ubybZWk9HT/cOwg6AfG2tn1LAzDWCZFVzjlwTMCvC7b+XTJpWBM\nEM+ccywU63LdqVZy7gB027ac99P0+vr64OBAG3V4dGC9rU0XDjJkzbx584YQcnh4yIC8fvkKi+iD\nW3cSEbx48QIhZSnldDodDofGmOl0SinN+4M8SXGONMoQQiO5cXiIo2g0HAHAcjqXoTzbG02ur3xT\nr5v6pdEYQdgLpFbd5eXloN8/evjg9evXy2vT7/fHWvdHo739fW30bDZL09xa29Td1dVNV3dUcM65\n0qZaruI4Pj47Xd9MGGNFUXHOJZNa6/VifXR0NB6Pqaej0YhSWlWV0jpJkjzPu7oJwzCSgWS8qxvn\nnFZat12e506bYa+/Wq1m48kmbYLxMJCEAOeMsbAoCqU6QiDL0qqqhsNBVVWEQBzHOxqR6bRwJIzS\njVKWScu0VSYMo+20SoCxJE15EChrRRqt2w3tvPWGAPGSOeOJF43TzrlCNTvxN+dcOZekKc6adVmi\n+weu3A5PT3f4/81s5r0/PD1dr8vJZGKtjWTUtm3XaSGE1pZS3ujWOgceg8ycMaatO101+MqttUyK\njaCz7pynf/XzT+I0uX//YW94UFVVnA3i3mg6n8znSy94C/TVeAqMKwadB5EOTw/PX0/W40WT57lW\n1gF0nZt3S+JpWbbTxcvD0d5geDC7GZfLut/rjfYO2rZumqZqagLs7Pz2arV642tOQAhOPHXaGGM8\noUQEnBLjrSVOUMsZIQS8a5Wx+/n+06+/urkZW60ktYRZZspexL3VyjhPmfNgCYMgBCEKbdR758uj\nI9IfAmUOqBCBA2+bjoLnhBJvjG6t8xsRCHOgeFPXAeURpbqqEiH6cezaen59vZyMH9y9BXF6ffnm\nufXFcuWcY512ihxkQTMHJsmjd++rzjx/9bIxxeWsjeN0//adr75+fOvs/sk7333y5EnHw9sffJSP\nRrUlVOu9fj9Ok5mfHR0dXV5eZtocx9FqtcpDGnAdSe6DbFWVWZwkcVjUhdNmOOyPRgOtdVXXZdf0\n+rkS4LkzIX39+vUR53/+Z//hn/yzPxRSVm0z7OcilOPJVRJHVVEGQeC1N1oQgOVqlec5kPRv/Pbf\n7Q0PO2vy0f7N8xeVbrmp23J+++698/SO1rouK2NM3TZHR0dXlxfGmEE0WDSLaloxLod7o46ZebMs\n67YoirptOqW005o5T/1Ut4YTD8KADwgEQSgkWGsd5UKIqlOLokS0I9cqTdOqMwtrgdCrdaGVElku\nwtC2bdk0b65v+v3+4eFhFMcvX740xgwGA78fTW1R0JankaeESH50enr77t3PPvvCe//y40+LopA8\ngpamIjrMksMsJ4Tkt1PO+eHhoVH68dXjwWBQFI1ncnhwHMbRx5/+8vEvP+v3+zyQDjxlQaOdKipK\nKSPMGR0Soq0hnHnvrep2JaRVXaU6o7VwnhAKzoMxlG82rIQQAL/Rx3nvvCOMCBYIzoUQnFBvHQFG\nGcVoGSDgwWOoht0W2sY6xhgjFKxzzlEA4r02RkrunHMUCWAAjjjjtVOUS2O1M84ThMGJJ9QSMJ4A\n4845bRyAAwAccCNKsT0i3oWEoxhXCuGNxp/gvPdWOdsJESRJ2Fnz+PkzKWXdNqtije5+tjJASRzH\nVNK27ZxzIgxwloDaeKbStM8GGSF03VTK2Vp3QIjHHgSIcYa4jdeGoNwZ13XabxN6jDFd0xZdE0vB\nGQPrkNdmnTNKc+89yjmQRoSQoBACrTIxaQ5N+Nbr9Ww2u3V+7pwriqKqa2wH8PIlnOEMBNs1PtaA\najvEJEnSaT2fz5E1gw1sGEfIgfrlxx9b70ej0Q+//2vIUt4kotcbItiXX36JMxwh5PHjx865k5OT\nIAhevHhR13UYhvP5vFytse8eDgaU0ouLi9lkgmBUWZac8zzPjTOj0QhXoW/evHnz5g1qW/f29pCr\nmWUZi6JjayeTSVEU2DGt1quqqhaLhacEyWho3E80C4KAULoRhzl/cHCArDQc71B9nyTJ+fn5bpJD\nd3hKqbVWty2O9Xmeh2GIJGQpJRKasJjhT0jTNM/z9Wq5c87CdSmSm/AfxRQjQjarTWvt+cmZtRbj\nwDY8I85xRa2UWiwW6Lw4GAxw5muNwrF4x4iO47jf72MrSsgmOZhtMxP39vaQR4ZgAP5bKBRBZzvs\nZxGmLsvy7OwMYckNNRo2gM+mf9xB0NstVNfU6DGS5Fmv10MViocaETnr3evXr9u2Vcbg/5r2+qjt\n67puVayPDk8Oj/rPnj37+smTe/fuPXn2tG27vb29VqlytRqNRuA7Rijz4DotpaSUcM4JkE6poii6\nrlFGK2OMs1prCz5iDN8F7x14S2BjPNlpxSnjjBhHnHMEcHnJl4vZJkvKWiCeEAJIFaE8jJnS3oCn\nXLbGUsr2D47o2e0oighh2jjrvfcaCCGEeWS1EMYBCHWMcU6J977uGkGJkAS0Jd4yIoxuyvWybsq2\nq54+fQzOGqOv3lzEcWyd5ZQGQcA5zbKESUGBaNNJyduuMWW5WKzefX9wdnZ2cXGxXC739g7SNH35\n8iXn/MGDB865y+trq83Dhw+ttUcHh3VdW2vjOI7D6PDwMODienljrVW6dYVumsYbGwUh3uZ5nuNz\nKBibjifL5ZJL8fTxkz/4gz94+fLlaNA/OT5aTMYcfBxGeKh7vV7TNF2ntLFRFB0fn/7X//X//v79\n+54StVoiokg5w2++urrK8zzP8/F4TDwAwMXFxeGoX5Zlo7rY5zKIPIGnT59e3lx3ymhnO62891Ec\n93p9yZlSqm4a7z3CvM5aBa211luXZZm1VjutlLJK4yy4Xq8dp1VT020ssQewzpVl6ZzL8hwIKatq\nNp8DJcrobq3eXF3OFvOXL18uizWaBFxfX6/XawcUy14YhgCUUCqlzLLMWpemaZxnZ6eny+Wy0d1f\n+5u/7ZzTv/hFHyDv9yz4vNdrtPIAZVl6RjCWZ3MjYe4Z13QzAhPPKNvGbe3m0W253exByFtWzzus\ndQvrbqjRFqy3jnhPPLi3wl1QkosMo52owW1zRwA2G+W23bCdCfprUUIpFSLo0FeZc0qpJ+AcaGu9\n90IEyG3ceunCVleyecHEeQveGo2CadjQsDZUL7r9s1gs5vP5JoL64LDTym3jU7egYIAuKwQgCaPD\nQV419Ww2sxSqru2ccZRY7zAPaguiI0z/jR0vijuUNU57BoQJTsiGSLhdkhMKwBjj+GBhAd5tEAkh\n+/v7iEMKIVBB770vimIymSRJkiSJ8x65PP1+P47jxXqFJQQ7GmTto0Xi7kNF7njTNOv1GgWppCEl\nL7FWtW27mM0A4PDwEBmnAHB0dISfx5MnT7IsQ9Pms7Mz3M8ZY05OTvBxN8YsZ/PNgidN+/0+kjA5\n59hbaKWrqiKM4Gnp9/t5nmPeXBCGV5eXk8kky7KLi4ssy0ajESp5Dg8PlVIvXrxAkqGMwqqqKGPI\nlO6M7rqOUIrKH6XUw7v3kKaLwA5OmaiXx/cWQVdkqOltYi5+jdiOcy6O4xcvXqD2FL8fMU/sY/CB\nRt81fG+xZ8LGnBCyQaeTxHt/c3ODDlZ4ZbRtW9c15/z2vbsbZYWUu49YCFE1VbFalev1hmtgbVvX\nK++llIhjR0FwfHiIr2e1WORZD+mIeMCQlY2vAVVPuJBG+Hq9Xu/v612L5pxrVYd/3W0N8GDL5MK+\njfdyrbWyRimFUAcXQRAEw+GwPxx476+vx6uiWK/X6/U6SZJSt2dnZ8vlcnp1OV8sPFAmeKvVarVq\nVeecY0KMp9O7d+/u7e1dXV3xVILzXPAgjAbDUURpXZTVch1wUVZVpxqHLlrWtlp571MUOjtvvKOe\neAd2g9dxJgTjHJy1RoEFxqmgfDZ5Va9Xtuuo94QSRKgJYUqpgEoDBnUcjJKsN7xz/0E7OlLWaGWd\n9eCIsoZuAlYoWEB6JnHeWuUIAeeBAWOcgwPiwiRMg6AtV7PpDTE6DJhum7u3b/XS4Pnzp3EkiqJ1\nFhgVUZzcOj9tVXd19WY6n6VpDs4SCkrp2WzWddp7W5altZ6D+erzL6SUd+/ePTg65FLe3Nzc3Nxg\nX0sIqeu6l+Wcc7Cu6iqlWgpgDLXedHXjrWOEeufatsXG12gzmUzQ7i0Mw3/y//lvv/z0l3mahEFQ\nLFdKqY4RqxWjXAjJueDCtl3NCdy6c+vXf/ib9+/fR63RarVqjZJhjIuGXq/XdKptW855URTO2DiO\n4zgJ4kQ7XxTFuiiapmGCv3p9+er1RZyleZ4ncboui9lsviwKlJh3hrLt/h7tnAIuRCDLukIDpg2y\nSkjbat/UIg47o7XWuFbAg7Zerz/88ENcqXDOLy8vg0CiZdt4OvXer8s6TVOEcwQXTdXWmAfFWa/X\ny3sDB74oirKuLm5u9vb2rmaTII3ffedd1bVN0ywWi3VVWvDT1aKq67KpkfYsoqDrOucdskywdfDe\nN5SmUYzI84amsGU1M0KBMsLBoZ/iru7uQuOtNW9FDTLJULaLQnZGCBoub6ogo8RTT4h7S4y3+8J7\nb8GxjV3lZt+8U+N58J4AWM84o4xhA+Q8UACHG5+tnGnzShgjjLq6QykgYZSCd5ylcXJ8eMQ5X67m\ni8UCBRexjLlknLIsTlarFZY2AHDGauusA1yfwRZmx7VgHMfvPXrv6fNnV5Ox0dZt9P3gnKM7CHqH\nt2Or4T1jjHC2Zf144FwIgeC/B6BYgBHl5owzKYhjHgCtE3Ex45zrxjdYAGQUYjpNPugDo9PrG0pp\nlmVI1cFfQyklGd8NPd57o3TXdTvLQLQSxFqIg5eUcnS0F0UR/pA8zznnq9Xqz37yk729PSTs4Pcj\n6fTk5GR/f382m718+fLBgwfIqTk4OEAXDmutoCxNU+89MmDR0TAMQ4yQRE5vLJOiWKtt7F2v18NB\nv2tbSmm/3weAm5ub+XyeJMloNBqPx1hO2rbF+507V9d123X9vNeqzleV8Rv3QaXUcrlcrVY4leKg\nn6ZpXdez2QzXw4jQYrOMTYPwPs9zdA7x3iPBar1ef/TRR+iKjCvk3Wvu9/JdQ4N1fecmvylpbYsu\ngFmWKaW82bCf5vP5crnE2XQwGFxfX+PHjccAP/eyLHuD3nQ6bZomTVPUc9d1PZ/Pj4+P9TaXFA8k\nllhnfVVVb1tR4g4VtUZIbcMXgH/94uKiLEu9DYDC9wqXxLvVi9hmKTLG2rIwfpPS2LbtYrVUnRFC\nACUn7UmUZHXbcs65FGVZikBOZ7Pf+M3fLJq6bJvB3r6y5vX1lQdqveOBzAd9AjROk/5w4Jx78eol\ns8x7L4EbY8qytIJ7AMIoD6R21jiHIUveE2U0UBIZo6xTRlvnPaVAKABxQLkIPGMOKCWcIDvagDKu\nWMy7ugHnBVBGCXGOEOaBEspbYzxljrBO27jfPzg5S/NBoZxWzjnPWeCpV8ai6Ycz1hFPiKOWgHdo\naAoAaRJ7sNxDFAZpFEoPN+up7ipqDSfOUsuIZRzAm66rdVczQ+vSCdk/2B92WhXFst/Lfvgbv3n7\n3t1//D/84dePnxTlqlg3t27f+f73f3BycmK75uOPP/7qq6/KsvzVX/vB7bt3NxvH5So+iqIo6ppm\nOBy2bYsHOQoCAJBcIFcFqCcASql+ljdlBeCtMfPZ7PDoKE3Sn/z5n/3iL//DyfFhKCRj9PXFy71h\nHw3uj4+P27Ytq8ZaK2TY6/XuP3zvw4++syzWIpBRFGlrnAPvfaM6IURRVEDJy5cv0fWlaNv56zd3\n7txR2iptF8u1sg4AkiA0zrZax0AIZVEScxmsy1IpZaxnjPXSDFn9+Ot47+VW4I4Vi5BvjGKcc01R\nuG3qZRzH/b1REAT9dtRZ4wwJwkAIQQQvyhLXOmjMyQXPsswYYzoVByFhpDaWBYEUEp282rZZ1WVd\n1ywUl7MxpVT94q9EFBJC/uR/+p+LomCMOQI7figTgsFmKtioHgiA88ZtouyNMJRSQLYwB7pb0npP\nCQGUFG6haSxCuPS1xqBtJMH6jUQr5621SOjadSSegHfOem89QkDIhCDwDaULgIBFKpLzHLlVnnpv\ndrcBtt0EiFJKW0cIYYILKox31IMnhHnYJQ0RD44RZw3qcRxjFIAKHkRhv99P0ijNsuVyWRSFsZY7\nzpggAP0sd841ZWWtJYwSQrTqEOoLwtA5j8wDDMBmguPOVkpJvHNGae8IIajx3QikYbPH9uAJZ8A2\n/cFu4gdGiQcHG+kV8R7cxhqaI5TqvccvUAyDTRYKWPEjCYIgSZIsy5IgRBsKznmWpjWqdJTiW+NQ\nt7Wkd9piGCSil7iStE0TRdHR0REG6w73RsaYp0+fPnnyBKdSBDwppRuL8+2ivmkaBDxRFrJer+u6\n7vV6eG8SQuI0xFEPy0lT11dXV4yx09PTLMtWq1XTNFmWee+RW6SUWq1W6KmE9SzP89VqJYRYr9df\nf/310dHRcrlsuikyfTAjCCWtfpshSAjhjGOcGSbeI/iMtu+IoRFC8MAgCwkLFb5RWmtnLVJtsb5i\npUGMejdE4luKNbUsS0ppHMdRFO3mThyFd/g/vkhjzGw2Oz44CsMQAW0pJe48+v0+0j4xMWmHzyDn\nOYoi/OG7uRw37jiklmWJGrDj4+P79++/vnjjtkYcsJUYYQ1+m5m1azjwDcd5XUqZJAkSuyilO/B5\n8844Rwip6gqR9iiKPAFKOCHWE3DWXt1MKJ0tVssNlEVpEEfZYFh1ar5YAWFpv9c0TdU0dd16Rqu6\nXhcF5+JbH337q8dfP3v2LMsy7yzxYJxbrdbT8SSPIw4kTBPPqW4UUOIIACGMcmMM41wo8MZa4xkA\nocRT6ggHCq0xXmsKRFIWUE6A6K7TbafKyhsjCDAC1ONKylvrkjRb150IY2N903T7vcFg72heNa0E\nay2hXDLmvGPOUUojHrSqoYwwIIJTTjkFwhgVnLeuIc5SSjlhXnfTxXx8/Uarpp/Eum2c0V8//qqt\nK3DGqDYIWBxFxpi6XHdNRRgLJI+TsN9LkzDYGw5u8ow4f3R08Nd+60cffee7YRifH+11qvmLv/iL\nP/uzH9dt9dsUCGe9frYultZpp43WnTGqrUsrhGA8TVOjtLXWKg3Oh0EgGW/b1hm7WiyttXm/d3J4\nFCXJ0ydP/ugP/7nr9MHx8dXVVS9NjvYPwNsoipJoLw5jALpaTZTWR6dnD997/87de9b52WK+f3io\nrW9bxaXotKqqKu/1ZrNZpxV2yf3ewGj76uVF07avL9Pbt+7cvXcfGL28vLy8vm61Pjo8YYKvirJs\nu9FodHRyWlXVarVquo5RhePRTiRjwVsCURQ5INaDtcYbvYNk8U7wnnqgRHLHiKVAJB8vZlEU7QV7\ny+W8c2bdVFmSEkLiKG2qmgKhnKm6dkq7OPPG3r97DygpmnaxXL6Z3NSq8wTCOKLgi2K1NxiOl/M/\n+Ef/fRyG6He0wa6iYJTnWa+3XK/W6zUTG5GC36YBcs6BAyMUGAUPznvs1IExIIQR5tvOe7/Ltwe0\nNN54n2wYvChPklwILrA9wm0ubFW/iCE7a7W1xlkLm/EQt7A7CBp2aUgASinnqEOo2WNjQCih6DHg\nKfEeAR4CzltvYbeKRqh5G7USCG6d0+C8NR5DHWYzXN/u7+/fvTtarVbPnj0bj8d4ldV1i1MBbkk3\n0GzEatoiRJFnvVAG2H4xxl68fDmdTtu2FVHovLPWEgBOGdCtIcn290LxIX/rGuRCAPGbJAYg3nsD\njnrw3nlrEeXmlDMuhbUWt9ZMcOo9UV2SpYSQpmuV0Z1WiUsIowEPhsPhrswg5ZgEAe5xAxl4+o2D\nCQ6OeZrgLJskyXq9fvPmTZqmh4eHDqBt2/VyJaUMZRCHUVVVRmm8fKMoiuMYANBOSwgxmUyQGPze\ne+9h+G4QBMvlcjQa9ft9QRmuS3EbRClVWuMbGsdxdBKlvXyxWLy5vgqF2ClusULEcYwrZCx4WMZe\nvnyJVeT/T9afLEmWJuehoOo/ndFmnz2GzMipKmsuFAACJHivSMu9LUIu7qZ33dJvwQe5/RIt0ptu\nChcXhJANkgBBEGPNWRWZGRmjR7i7zXbGf9JeqJlVgO2LkqyIcHezY+f8qvrpN2SDkdQqNvvml+m1\nXd9vNhsl9tVFoYhqT+3j3aT3+4h7ltuen5/zFWuahkspr3+89zpNPMXgHRvx1N3eOor9Q3SaqMRw\n080N0P3tO++9C342mw1GwxjjYrG4m98z/OC9Z/C2sz3ttnXbLDfrIQ2VVudXl6yNXq/Xt/P7QV4Q\nEfmAkYCi9V3XdW3TgCj0IWuMtYbHwZSre57nXLN5b8SVnpswOKC1fDy5fdTSPkvxuAy+vr5GxLdv\n39Z1LYLnDTRnCXOr/L5AUArgXI0IVG2qruuyIp/NZjrJqqYOISx3m67vkyRxkdrOolH/8IufbZqq\nGA/vF3PvYlmW3WZ7en7WO3t6frZeb77+5tnLly+54zSp7NvOJSkS5WUxnU1d2+3WGyLqba+15ANL\nKkUAtPee3ZOdIwoSgoRCpL6x0UUkEEmaKSEi9L2ttzvftcI5xZMyh5cRIcgIKqLzEaPAtCzHs/Ns\nONzcz2UiOKmJYmRyqVE6UUqlKVCQQFIAUMQYZAzSRymCUlIS+K7tuvb+7U213WSp8d4GbyXCu7tb\no8TVxaUPlohMBCVE5+xqs0uzrMjNdlf/3d/8de/CYDJ79OhB8PCj3/vJn/zJn1RV/erVC/Tdkw8+\nTNP0T//0T7frDYMok5PZyclJkWaLemG7fjmft22bJelgMLBd33WdbTvb9VKIYV4URaGEXK1W0/HY\nhcBA9N/+/d/96Z/+6ZuXrzRiZpJhnu2227Ozk3c3b89OTgeDwcvXr9I094FMln/w4ZPv//DHl9cP\n7lfb4Hw2GG6rumrqgR4hUVEUZTnsOtvZ/uHDhx9/9Ml8PldK8Qy9XG+uH8ZyMtpta+vC65t3IHA2\nm7Wd9REgUCBo2/Z+seLIFgzQdt3+IS0LHuwYfWEZjI/+6NAkpdRKq9SQQ464v7m7ZTb1gwcPyuEw\nLYt3d7cu+HI4mJ2c1HUdMba2970LIWQmQZ0lxnTOX19d3c+Xq8XN/WYl80QZ7Sh23lXr1WQ2rZo2\nTZK8LKqqmk2nAoDPliRJRpNJlmVMgW7blkJ8/+UJLdhv+XfBee8pbQKQt+7wdO+LowAEQE5fDu/F\n6kkUSCDgMNciioNumA6uk72zNnjGkKSUhCgPhGHai+72FYvNbQCEj+H4vBMRuMDuSYz8EQjvQu86\nAGD3QEAhhOApExF75ySiUBJRSKlijHXXudvb5XK52m6uLy7T1LBgZ7VaVZvt9PSMmT18nvddl6bp\nbDb73tXVL37xi/v7+8SkLPlBxGyc1nXtYhBK0pGVLSUeBtwYI0bCvUvM3kGMjzshpZIyUogxUgio\nFA/MEgUgxr1Prdiv38J7UfAsD+VfwFcWETebDe8jr6enk8kkxshL3LqunbXGGB71EJHVeFww+Ajm\nIgQAx8mPuRhEtFossiwbTSY//vGPb25ueNUKACcnJ6PRCACUUizam81mq9Vqs9lwpXn48CGPqrbt\nmFvEwlPeAfMYnef5er2+n893u91kMuHaaQ4ANW++WSSz2+24mSjLsu/70WjEMpuLi4ukGHCKw1Fh\nAgDeOWYzIWJne77iruudc6aQZV7Yru+a1vuwWiy990xf5CrFfZNRmoiC8yQF66aIiPfx7IXCYRJp\nmjJ9yVrLNAGJ+yLHtyxfXqY9hxCqAw+Zh1T+cI/wLxzyKrhZORKpjqoA5n9JKfl38THEE/YHH3zA\n36K15uzF+Xz+7Nmzq8trNmrmMnxconCTe3wB3E4qpbrOwns7YNt1AJBl2ZFZduhz9++x83Y0GhXl\nUAhBEa13re3v5kvuiKenJ8aYXdVkuVba985W0a9Wq/F4XJblru3QqKTMp3AyPT3pnP3eD3+4WCz+\n4i/+Ik3TDz56slwu2ZpYS1Xm+Xgwmsym28Xq/v6eiHwMWmrXsQehtMFrjzaIgIIUAIAD6iJ4CDz3\nRBFVBISAIfiubTfr3XwhnBcUpUCJQgKC0EIIoWRre6VNa30w+vL6wWgy7n0waUoCIkQixEgSURgp\nBJHrtKDoPUKUkTdXNiKQElmeU6Rqs22bSgGCIyN0ZszbV8+1QKSYaH1xdv748aPNej2fz6vdChGT\nLB0OyzRNsyKXUradLfOMgh2U+ezk4vrywtvOtu2jhw/u3948evTo0aNHz549652zXf/8xXNr7Xe+\n852iKNq6SU2CiMNywPWg2m5CCN4663qJwntPIVIIWZKwUGe9XD57/vzf/bt/96tffaGMFuAp+tFg\nuFktN6s1n1+r1Wq3q60L0ujPv/P9H/zo909OL4XUgCoKTwgmTc4vLwHABX8yO3PBDwaDQDFL8xhj\n3bURYXIy01pvd/Xd/eLdfNE0zcXFRTkcNU1z8/Y2ACFKpZOm7qq2Wa1WjIE9uLxarVZVXUujkyQJ\nFK131tm6azlZndFdIQRJQVK0fS+1JkSZGKW1tTYISLLMQdx1TfOuXe22bdsOy8Gurquq2nUVhCgi\n+RiLJJOAgsB731XdZrNZr9fOuywdmTxdNXVV1wRUFMVms1FKPf7wg/nt3Xq5it4z15KIepbwAg7L\ngU4MX3Pe6WhW/oS9N5wAjIcCGGI8NrvH3vo4ob6HoMIR9ttveY//5iAR5seWwt7JxMfAFd9TBEJB\ne+ie/yWSAAFExIdGjJEiAokYApvTSwLvI8h43Pb+7viSQikt1e+8gIQQm6ZPTUJIPgZ200NEIGra\n5tXr16vVajaeTKfj4+UalQMt5Ip1m0oxSDmbTCej8dnZmXMOYmzrOnrPgxxKqRNDFghRSpmq/bpW\nHeLVYe9GCayiPr7Z48Xh/yuJiLNWlIIQiUiEKIRQR9NgvsQsIOF5hZ8o5rUezRG3t/PT09Msy1DJ\n2WxmjLm/v+/alk9qY4yOsYuU5Anjw31dj8YjPkwHg8G3vvUtpRTTpthcIsuyYVlmWdZUVZFlEOJu\nvZGA5AOjxGmallk+GY/Hg+F8Ph8OhkxeYEkSU2R5+OOPiq8sW1Kfnp/Xu93z58+ffvnldDp9/Pix\na1suCfwew3suZVmWzWaz169fszlXVVVVVdV9v14vk0QPhxd1XVdNxc2HlFJpIRXqKHj1EKPhUHEG\nWnmPpZR69uzZzc3NYDDg6sVmT/zZdF1XV9vRaMRWEufn59PpVErJNZgO5Kw9jyDP8zxfLeZwiChg\n75uTk5PpdDqfz/mDm0wmSqnlcrnZbKbTaZ4VQkogYl40M02yLAvW4UHjy51Tog3kBQAapYPz7AkV\nfZBSut5+8/UzRJxMJmY00lIl2mRJGvPQtu0RDOcnURyiEbje89TLHwp3VPf391VVcaNDAququru7\n20NVB2TvWIzHk9l2u72fL7MsG03G5+fny/V2sVo2TTOaTrIiF1I3XTsYDUWiA9F8vdpsNxEoAk1m\nUyFE13VCyX/4x58OBoMf/uAHl5eXzBLgDxoiZlk2Ho+9tTe375ztlJDlYNA2DQlEJdmFQ4bgnItA\nFCUpQUJ2EJro+kh+byJJAIQQMdjgbb/Z1Mt31f39CL0AECgUCikApZJSSm1aVxeDslptiWh2eiK0\nWq0WWVmA7ZmlwdOVlBics30ngEQMSgBqoRFIBqOkMer1u/umaV5+83y7Xp+dTIss76rdyvUSdGIS\n37WT8ckHHzz58PEHm/FKkJjbtqqqJNGJ1k1T7+odAI5HI5DKR3FycqpNdvPm9QcfPBkNy75tgvPz\nu/uTs9PHjx/3ff/y5ct//3/86Xe+990syx5eP+i6bliWADAajpD2zJ1Em0QbJAjWdW1Dzu92Oy3V\nl799ulgtX71883d/93dfffNsMpmUZSlCv7ifs+i867qLi4vlculCHI/HVdfnRfnd73//k299e7Fe\n11ub5UVovNR6dnqaZOnz58/vF6skSV69eX12duZd+M1vfrNYLE7Oz5gUPRgM7pcr9qTcbDaD0Xi5\nWiEiSJUZw1rzXdNa65QySikUqsgHu23t3NYTKJ1IrZWQEmHXdod7kj9IDATBRyM1gPDRex9coLpt\nrLVSmflixTTJYTnoOmuMa9slg4KT4Sg32WgwSpWOnRUEUmimmxSD0jXVblf5urIQldG+63/72y/P\nTk7buvvVz381Ho5SnWbDjP3+hBCCpIxiMpwMi6H3PhuW1tro96OObbveOR5zEVHv5zAi2je4ggh4\nbQQgDtG/BFDmOfNOGPbj3RkdPHHfr74xxkBRwN5zg90WCQgZ8iZxnOIIWSW8T81hVrMQQmoltVJe\nhxBs2wWg6Fw4JIgTAiLmeUHigJMf4j699/ztvg9N03rvsyRVWkkUSikJ1Ft7c/tuvV6Px+OiyK6v\nr9+8ect2EUwDvL6+zgclkPjpT3+aZdn19fVms2VysZRyu16ze5r1XmqljDaJ8SF0XRdVJB+YeScQ\nMVJkXrSjSJHH83gA846T24G+I4AoiqiFVMfAuPfXeEQ0mUx4iOGNyBFLRE+3t7ec0xfzXEo5nU5Z\nq2OSBA85RVJKjKRQjM/Pj1Mvu7Qzvd4oPSjKruuCD+vlypeOQjRKo5De+/V6PRqNLi4ueBs9nU61\nMWwz2/d9ORpBjCyVYaL1YrHYm8x13XA4PD095V/aLxZd15ksNVm6a+qqbYTzvDxgFJqJymwdYIzh\nd3oMLbi9vf34W99iUdDez9Jodo0ZjUZN01DYNy4xxjRJvPfOOlYz85qzbVse5Zl+fHl5OZlMbm9v\nGXe9u7tLk5QnY2Ydv3v3rm3b8XjMV2mz2XDvxi1VlmU4nTIoxHFJJycn4/G4qip+PfyEc77hycnJ\ncDjcrLdKqel0enV93Xfddrtl2lpmEv64u66DSKenpyGE169ft33PsD9zuNbrNT973vvr6+sjFZlx\nm/v7+7ppEfd+Q1xiefz13hdFwQMNC6iaptlsNrPZKd9gp6enV1dXQqu2bXe7HZO2Ntst78jdIdOU\n+eTMCCWEy+uH5ZBu3r1N8qxum9dv3gaKQqvFepVmWZ7nJ2dnLLxvnVtut4OiPDs7A4Cf/+NP+77/\nq//23/7X/+V/4ehJfv3nl2f1rnLOFXn++OGj7XrZVc222gXrhoMBHQLbm6aRWsUYG5EJIT1C62Nl\nvYWoEpUkxtlegk8VJujdrtrOb0K1HOqoIpKPUgqBQESJ0ShEVddKCe99UWTFZJJmWipKUhmjzRPJ\n4JCgIEIILnrvMfoiy4KPfVcZSDbV+uxk9rd/899W80WQJ763w+Hw+vzy7du3xcPij/7wj3/9y59f\nnJ1iCF/8+pcPP/jwg8cfvXnzanF3v93WFPxoNGB2RWpUIAwU27YejSYCsK0qn8RyOEqkMALXdcWo\nWFs3n3z08U9//rOnv/nNv/pX/+ry8vLpb357cXb+rU8/ffny5Xg4QgLudbQSRVZWVWWkenV/849/\n+3dKqWpbjcfj9Xr905/9Yjqd6jQ5Pz+fnsxev35dahFCyLLsxz/+4S9/+cubm5vZ7LTdrLe72uT5\nH/yzP758+PDVzZvZybmLISlK6+pfffHrH6U/uhgMs2KQbKvVanV6epqmmdLGWrtr6qJtr64e3Ly9\nvZ8vdWKSLGV2hfNeCJEk2ezstOu6XVUZk6rEzOdzxsCSJHn69GnbtjoxOkk2u21a5JvddnpyQgiR\nKC2yRJvjgpBXgMv1ajabWe83m3VZlkJJF/b0w08++UQpdfP6DZMf+7YbjSYns5Nmu3v16hWG+PDi\n6uH1I8Lb9W67qXeV7YTWANEFh0pqrfNygAQPrq4fXF19+dun89u7Isu7uoE05Yc9TdPz8/MQ466q\nASAp8yRJIIGmaeq6ds6lxgyHw/V6HX3orVVSWgBmrWqtlcTjuHakK/MzyFMmHjyhjtxP55wLnmFt\nHvgIQWoNwQf2lmGqQ4ziIPEIFKXYB/k551j9xTQ9k6UgpXPOxwiI0hhUKs9zpiVFgCRJ8eDAw69Q\nSblPHPI+SuTE33I4kChC8D4GJSSFgAQIUQsZEZigw6Ap47tCiLqu3717N+zHWVqwFQnhntxDRLxT\n21YV7iHuPcWVX/a+9B6I5Vrso2BDCPpwlRBRSyWE8NaRokjRWkshCjpoqADUvlcNwVsnUWRJOh6O\n9CH53DmnpeJRlTsO7noYxeWNoNkHMLRd25okOWbP0cFkn/cNzOrmcXO3202nUwmYauOc00KSDwrF\nqBzcr1a8gGyaZjabsTlO3/dd23ZdN5/PmZ7DeWSM2XJzt9ls+NI4597e3fbe7Zqa7aXOzs64nJRl\nmUvFlaDrujzPGSe/u7vjmseFBw/2VSGE58+fM1LNMK/3fi1ECIFBac4kcb0FAG9d13XlYMTbU44B\nAAD+yL/3ve+xayuzr5ksJqWsqirPc8Yeuq4rioKHVG5BxuPxeDxmGyxE7Ps+AoQYXQh12/Z931lr\nvQ9EN+/e5Xk+HI/5xOTudb3dAhEbYvNbYHvLtm2HRSmEsNZW211T1UmSTE5Pn3zyyYtXzzmfABE5\nqoGfGd7ZcJd2vNX4Qh2NMnh/z/M9v32ed5kux5N6Xbez2ezy8pIt+z3F0Wh0dnbGuZPw+jURnZ+f\nTyaTpmmePn369OlTrXWSpYTw5u3t7WJpjIkILvg0K4aT8WA8Cgjz+Xy+Wqdt59IEhQIEH4JzbldX\neVNMRuOPPv1kcXc/n89fvnz5x3/8x3/zN//92bNn5+fnfds55xKtXW+32+1qtYo+CCEiovM+kA8U\nlVJCSUbFY5p4BI+hD+CFCDGA96ILknwqQUXX76rq7rZZzaX3WaIwJGCAncu8dURBS6m19IAAwSiZ\nJVIrkOQkeClV29Raa5DovXUuSikzpQAExA6CLY1IFK3b3bMvb+/evhAEUp/WdS8HMk8LEfD519+k\nSitlvvzy6yIx3tFms/vyy683q3V03pjUSsE6tOFwmCrZtq2PIk8ShUKnurdWCZVIsby701qfn1+8\nsXd5ary31nYfffjB6ensgw8+iAj//s/+j3c3r//Nv/k3//O//JOXL1+mJhkUxV/+5V+aBJ8tvgwh\nvHn1+uunX7969SpPs8lk+s033zx/+SIG+OjTT5IsXW3Wb2/vlUm7fhecL8tyNJpcP3y02VVN15aD\nQUTx7e9997NvfysvhynB5YPr+WJ1N79XMvoIT7965iNIKU9PT3mvf3NzMzs5mc1mzc3bZ8+et53l\nZz9KyZsRqZTWejqd5oMhkxw7NkJ3ng6eCUVRdLs6SRKpFWOgKIX1fr5cpHnG5CaOqhSAUsoIFEJg\nl0E+lISStmqTLGOclCtxCIHVP0S0uptnyggApVSMzvrQ9l2g6CFGgShkZLvjAxXR7urJYPjowYPL\n84vV3Xy3XCfGTIcj/rGN85tmxXIJ51ySppAZRpC6rqvbxvW2hprLAxFJFAw+8/kMUigWuf1TMAwP\noscjQfVI7/AxOu8pBHFwBeCazXwRrXUkCnuykhBCCIkKJEZOMOIl8z6OiQSTrWivCSFExCjARkJn\nGeSXSgmlpKVjQ8AzJe9TMRIJOM4nIBBICoogsLW9FtIojUoCYu+dDV4Csmkjc2WSJGltv3rxou+c\nMcbudUB73ayUMhD1we85zkCC9i6Xglfgh/W2OOSgAwCnpIAU5EOIkROPpZTBOqX3WQ500IC5rlfM\n2WFI9gh78sxx1GKy8zD/FfSOCyTjvUSkhOiJ2JjXH1Liee42xvByhbvL2Ww2Go2C3UuNj8zbEILr\nrUQxHU9sjMYYrkbOufF4TERN09zc3HADZQ7RsNvtlrGFsizLsrTWciCgi4GZ0nRw6Lbe8U/oftt9\nfP1wPB4PBoMjwZgJ3jwKc02FQwYWOz3t5VgHl2MjFc+ULJ3abrd1XTMgzAIbREyMMcaw/DF4n6Up\ns/l3TcPlqu86Z61ATPNsV1fcgA/Ho4uLC2vtcrnsnb1fzAFghJBkKUoRQmj7jkLg3TPT0PgzYkSF\nOcyM7h6fHNQy4r4dBgAOLeDPN8YIce8IvVqtODj5mMgkhOARljf9DPsfm2K+h4wxkYA/EXHIED1y\n3Hi8Zg4z+0g3TcNOpbxjBgASqLVm/RgbkrCfxnK5XCwWy+WSEHwMWqRZMQiELngSmBV5JOQsNm3M\nYDxZbXftcqWN2dYV38xKKaUT5/1isZC4v/UR8a/+6q/KssxMkigtCM5PT+/u7rx13joIcbfZKqUS\nbYRWMcYQAxFpqZRUNtjgfEh9IPI+RAoCyQhEjCIEQSEBwL5rVst+u1HB5RJSAbWLOXtw1k3twx64\ni15p5ckpKdJUaOGijxCsUEZT0CSCj5GD4rUOEoPzw2HZ+t5HT5aMJBdsIrGu64FG8GG7XK3u7+bz\neZLqb776uiizrmk7o7XRu11V76rgvZSYasOonhDCR9KEUmofnettahKJYr5ah8yPP/qoSPVqtfHj\nyXQ6ZSkgRJpOp2y/2jTN//3/+n/7sz/7s//0//3zm9dvvHXL+Zwtl//9n/6H5XI5GAz6pr24uIox\n3rx+U5ZuV1dSaJTws1/8PBAKJZVSKMR4OA4hbKr6v/zXv4rRZ3neOa+S9Pzi8gc//PHs9Gy+XNRt\nV0wmNgadJG9v3uZ5PhgNH3/4gff+xYsXWhgGh+7u7gDEeDwmgKZpXAypVt47PjZjjNyjFzE0TVNV\nFcVoUmOMGdgCQtRKB+ustaenp3lZbJt6VW1jXQeKSmDTNBFASgkxQiSdGAFYN80wyfIkRQIlhE4S\ndk9BxDRNJWL0wXa9t1ZqE513Xf/w+np+d2+tfXj9oJgVfdvdLRdCSVVkhdHo+tZZ8A5I+gjRU6KU\ntfbZV19v5svtekO8/wJkUYYQApW01vbWEpFU6v7+/lhBo/chBojkwRup5CHbwB/oI/QexfK4vBSH\nLzzGGxy2xTHGPnhOhRJEEvH9b0m0AilCjE3XBmeBhZGI+9qLgkdMPitIoCQClD4QUfREgCClACV8\nCBSjJCBAKRUJ9EAxRqmU5EWV8zF6IQQBAEkEQLGXKRMiE42FkoACBEZCF/fMcIqR0+QAoBwOB4PB\n3mM/2XOYY4yexb6InGDDOiUCOPhjw5HCclyTISLSQWoVaR8eQwCRWIIkhLDeSlQC0HuPkZSUEtCF\nqCSgSRKR7U9PRGzqhmUzwTpuE5QxCgUBCQEm02ma+rjnCjFlNzrP22Jr7W677bqOByM+jo+dFPcs\nXLmllBAPCuYQw+HEv9AqSZLNZrPb7ZaLxXA45NKVJIlAFIi9tbvtNsuyGALFyP4YeZ5Pp1N27u2c\nZY8OY0zbd6xyCSHwPFdV1cnJyWg6NcYsl8vtdsuv83frDSGOjAOllAwuxrjdbY4wAOPtSqAASpIk\nOOttz4bmfdfpZF+ojo1CCCHPczYfOPZxeze74RAEbbdbIcR0OmVbVyLii8bZDGwxwcy9qqrGw+Fw\nOGTKGPPOuDP9/PPP+75fr9dVVTHpaf+w+X2aHoTITvSJMURUZnld1wJwNBqNRiMk4AainI3gQKOn\ng0cVt2j7AK+D2Iw/xKurK9Y78Z+4QybSp59+yl3aeDzmH8JvxLnAaDyjZ9Ls9UhMf+M7Z7FY3Nzc\n8LN9fnm1WCyqqtJJohMjgvQUXR+U0V3XzReLrBykWTYYDpebdZKlSSThXFPVJjeXZ+dN02xW6+22\nyvNUa/3wwYOXL1/+7B/+4eTk5E/++b9o27YLTkbwzvMM1LU5v+wkSSBEHzxEXmPtnzTvmkCRiBQF\nKUAAIICK5K3F6P1uF+o6R1EMBuicbZquwyLP0zSFyJnHGIK3ts+N8NEbqVMF4No+9D54QYmizLZ9\nCEELbfbwQx+82y4XMTgIwdlmWObjq6vMmJubm5vXW993QUnrumGZa62Wq7nzAyWwcu1sPHHR+74r\niwIJqrYx6MuyEEI0TdNhX5R5irhZbyVgViJSpOgVwKjIu6pez29jUvINppRSQjZd261WjCr963/9\nr29ev/m3/+//z+PHj5UQP/3pT3/wve/3be1tp8V4Z+2rl8+9i9fX1zpJFqtl52zdNiZNbYwuhPF4\nrIyuF/PZbCa1WW03k8kkz/Pd27d9Xf3eB4/PLs73roMCb27fbbYVES3X66ppeK17cXZ+cnIaQpjP\n58vl0rpweno6Oztdbzbr9RqkYMwQEbWWwdvVZi3Fft5wzqkkzbPMGOOsBQp8jnofAlFnXYwUQmx7\nK6XSykSuHAQRYjbIpuOJBFyIhQ5AgYSA1KSM4CYmjS4QCJKy761tOoigUAoQkkS73l2fXSDiZrPb\n7erLy8u8LOfzOQgRJSIoCTGRwgjp+fEphtvt9uXLV/P5osxyk6Teus66uu2UUiilUSoCGSFACp0k\nu2qrhNxPWiikQBDAdUtKpYxhmVGMhEKikIElowCBcx8PRVdJGYmC93SwZ+f7v/cO9iQjQYjA2YVS\nhhAQ2IiZkEACRmQH6WMUUgxhP9yTQCDBfhTMsQASQggUirSgEABFgBhDFMEHEtYFikF4D1Iy61ji\nfpTEvfWWPM7uhERExWAAMUYffAjek0ASQkgh2NuRyShSqd1u13ZdnpcuBkBk2RUfZfxz/4dGRBBy\nSOL+eDzYcrG3CRHxdAI+QCTFeUiA0QfODySiYJ0Ugp2Ag/MqMYYBZ3mIsjFaAxFPh945gaik3Eum\nlLJ1m+d5prW37kgAjjHGg6kTK3lY21rX9Ww6EYeYHd9bay03I1mS8n9wliQTu7VSMngpZZ7nXE54\nEGcnh+OYz/Ra5rDtqoopXUy47brOBs/0h7ws+HuVUiFGbUwIQfaO//1xzclvoSxLdci4CAchDY+M\n/KuZibfPVCCSrEyIkVfI8SDVlTrlLFJxSALm0ZPB2+NOnv+DiLxzw+Hw5OQkyzJ2wGD7Dob3Ly4u\neAe53W6NMWdnZ7breBxnIndd17zSZkdGIhoMBkybPBiEBce+05OxkYprMyOQzFBNkkSiYKrXHhVB\noRLDIynfBsE6f3j7EH5nWcWzEVduLlocgcAoOmuuGF14/fo1t0r39wu+UIiotU6yLITARiJpmtZN\n8+7dO756eZ4zJZAbUu99Z/veOxQqArXe9tZum3biw/n5+Xg6WayWLoYYgbFBZ0MEsd8khZAo2XWd\nVuqjDz6s6yo4f3p6GmP8y7/8y+16k6ZpnmbDctB3Tde01lpx0PtzZ8bpp6k2BN0xypRpJhgCBh/r\nFmOAuofWYggIGkkED4gyEjKYubc6EKQVaCVCoMRAqmN0letqAvLUSVDkfaL1YFBqnXRdZz0pwjTL\nkLLeNhoBSXgbhsUAL658b4PvY7BSAQCsN/MQwueff/rbp7+RKEajUksUEpJES4mRbN+GHJRUEpXG\nSAKl0nowGPR975puOhwlJlu8u1ud3Ssg37VRpkpIrbWwlhkS0QWVyZcvX85ms29961ub1brabhGx\n2u6eP3/+3c+/8w//8A/LxT2AaNr2yYcff+tb3/qPf/7nJk0vy8FvvvoyOGfSNB8Opqfnv/7NF1fD\nYdX1SilQSiZJY63JstnJyZOPPxrPpsvtLgJpY3prN5uVi9TZvhiUw/H49c0NRfjWZ5/d3Ny8fPky\nxnhycsKECa315YPrGOHFq5fDYRlj3EvJk7QoCqVF01gW5SdKersncjI4CVG0bXvz7p3OEq21TEzv\nbN/3g/HIOee63junhTRSKSm1UonApusMQJImu6b2MaRJstlsbN8nSRKlCs4ZqRJtUpOoIY6KrCgG\nLoT1eiukyMrCUphvN713QklABBBSSi1QSiUJmr7TacJSTJAiULTRa5UUo4G11sUQI3nvI4JRygvI\nsoyRwuB83/cu+L2xFyIqKYSIEI8z3Pt73yOaytNzOGSYHidgLkKWc8+EAGInSJDs+dy2gfb5YASg\npQKBUkjm5cEh8ZqRZwEYgYAgAMUAhCjEIbxIAIIApWII1nkCr1Exe8tTBE+CGNYVMQTvHKIgBCCK\nAYFAyD3HTBkTPU/XEYAIEEGQgLwouE7lRTEcDlvb95u1cJaX+kJKPNA1eIZsvYX3yN5IJAnYtCRS\njO+5YHGfoYQEAiLSUhpjUAnnnO17Bj4loBRCoVBKaakEoBqVg0MxCKjIaDUZjoo0W61W++OPF2Ey\nSCOlkGDM0UkRmPfJPp/OK6P5JmZgmR1wmMbMJ2z0fg+cSsUzVgzhCHcIAgiR5SisdSGivu/ZPoJf\nJN9bPCox5Yfdmhjq9N63ticiY0xn+27ZM4FeSMkPYd/3J3l5d3cnpeRFbDxIgbn88IB7NNkQQizr\nnZQSD59HPEizGCc/Uq+ZTK619nHP4+dNMFcXFjUxQB0PRiW8OOldx5Z+bBXCw6K19vnz5/yLGBLn\n3bYQYjAYMGDLkzoXY2PMYrFg4H00Gmmtu4O8Z7er+IVlWTYbT5xz3UE/5r03SkspbddzxhEAhCoe\nZ1xeBHAF4prK8DWTD3nRu9xsGBhgwhQz9XjIWK1WXdcxhslWl0IIrRN+nWy0wlc+z/PFYoGIbAOi\nlOKXJ4S4v78HIYwx+7lTGRSisz0q6b3vdrveWpQiH5ScT973XVmWWZbZrr+7u7Nd55zL0rRte6P1\n4u6+eJSNBkMl5W+++IKIdtstECkp+65bLhbb9YbVX946IqIQY4wS0JNnYCODKmKMFLz30cfofLSO\nXJDWSyHARbCxrVtSziitVFqkCSLyVj7GKCQoJfM8lZJSKctMGRWdrTC0KJBsmxdXKivyvNSJqapq\nfnfPWqmf/OQni/vb1Wr18MFVnqV9U0fpBxfj4UA/fHh2P59vt1uhxXCUWduhiINBNijz0bhAiqu+\nWW0WWWrqth4VpfdRKTMaTrz3fd9KKcu8GA8n97d3pCFL0u1ysVksh8MhWW8mhvUYVVXt6vr09NR7\nX9f1J598sl6vIdKDBw9++8UXu82WjWL+7m/+lg1tAFBK+fbdm7bvuq47vbwYjqdv7m+3VTOYjj/9\n7NvXDx/crhbteusjZVmWpibLS6IQYnz61Zc/WS4+YJ0CxfV2Z9LEZGmulEmwLMsHjx5qqVNtbt6+\n/e///b8/f/7829/6jrX29vZ2NJ0URTGcTOu2cc4VRca2VlmWjcfD4XC82+2Ct96Jg9WMFRS11hhD\nXVUXFw/Z/VulxjcUiQAx0N7rxrBTMMq+66quX97eX0xPNIrgvEhTI5V1LmJgcigLz4SQABR9EIrK\nvPj0ycf3i7kx5vHjx7u2uZ3fr6udR+qiB+sRUUqt2EohskFjUEqBAAreBt/3XYxReqeU6iigElJK\n11OgaCG2XZMrw/PZ0bkC3hvgPEUKIRCbN0MIAQEERQT0MfB3RSDnHbm9blAIgQBHLZCL/r1JjwQB\nSeIVANd7YC/GQxXXUsF7X8iaWZBEIbKlG0TBGyKBLvg+iBijohB9cLaPxiAQSIGgAIh3vgB7T1bf\nWxJSCOF5zhZCqH1XgX2P7EKllZAUYwwxek9NW/F0UQwH+aAsu/bt27eb7TZJEogRBSc1ihgjIHLH\ncGxW6CDTOC5936et8f+WWcZYvdAqTVOpZdu2wToKkXwQSmmtJWD0oQtd8F5xqdh3N9Yet9OPHz9e\nr9er1Yqv+9HNfzqecAfBq8dAkV8iAHAew3EXCABcHJIkUUpJQHsYnhi91EqFA86phaTDbpy/nZeO\n4WCePB6P5/N50zR93zNuzA1viJFLbzy4xDEEOpvNFovFarUKMQIA5/5OJhO32R2r+G636/u+LMtj\nPwGHfQYflwAgjWJyVnrIweUv/i6u1rbr2fOWI+KPFOjuoOhn0keSJIPBgJfE3NIKIZqu5hw9Xngz\ncakoivPz8/3rD4E9Mp1z3MoIIVhTxJQu/nQ+/PBDBuI2mw1/ZHmes2UjIfDK3EjFg2nbtjAcee8T\nbX63zDjmdvETdrAoYRIWAwN5nnO0AH/iUsrz83PuP/jfMFpOB552VVWLxeLy8pKB6MVi8fHHn97e\n3rKwrWkaaTTzz1mcxgVbSslvPM/z3vliMEjTdLPbuhi0ViHGbV0NRyNUWgHs6grevr3WD5M9bbWc\nTk8GgwErsKWUw+FwUJZ5kgokI1W9q7KT2Wg0evHihe8t35xK7ZmG+/U5oH/v6eI7k5iBSXOIiETC\nRXAh9B5sFCFqUIIiWdKgUGYCAUgKVCZLfW/rEBAOyEGIEgmBlKAsURJj51qInVbaeycC5lmmpQq9\njy4mQveNffPm9eXZxd397eL+7sHllVZGl9L1Nk1N21afffbxo0fXne2TzFhr3969ff369SefPhkO\nS9v3ZG3X6mqzTVKMZIMnT05InaapUtA34FwnACejXEoZvW12lRLaKFmY1IK9ub+1thuNRiG4rm9Q\nUJoaKaXW8vR01tS1NvL0dPbjH/6A3Si/+9mH1trf/OY3xpius8v16le/+lWaF3Vd39zdk8Dv//AH\no9nUR9rV9fd/+IPm7byu6+Vqvr7b+BgePnz4/R/+AH4lv/zq2aMnH5WD0XQ67bzrnAMS7D8zn8//\n4i/+4uri6pNPPsFIDODd3NxMT2bshXd7N7+df2nSZDabBe8TY7xzfGN3XVNVW6VUjDF4a3sMgbRS\nWZrWTbNYLIbj0+F4NJ1OPcR1tXMxSK2I0DlXZvl4NJIoXNeTD8F5pVSwbjqZrKothXh6ehru7zbb\nrVE6NUmiNAIQAblAIUjAyXA0f3d7cnIyOTv51Ze/ffXqFSQqSolKJmXunMOAWmuMZLs+hqBQ5LNh\n27au6wFACiESLRE9UNM11tqsLHRqCAKFEJXwFHgyYZoIXxnaE5X2i+FwMHbm2YkOe9xwcL313rPM\nku//Ix2Vv6IAAUjI4UaRAVskYJJHBJ5v8ZgvyLhrPCxWeZ+6n5URfqf2VdK7aHtvteq6LjjrrYMY\nByHnvCHwQSgphORtawgBIwkhrPMRMVB0MaAQymg8hBALIZQUEgVKFACBAkRi0kk4GIwUg3I8nQhU\nHPfrgucayQ1H3/cBQRDJAwXqmP+7v4WOaccHI08GdH0Ie4Q9ElelEEIMwQNIQCDq+57bIlXv9rmw\nPKRaayGSlgfVIgpU2hym3uP65Phbf8dtA+i9Y7SWhyeePhnwREQE4JkVIkvDgzo0ShAiCMnfyLtA\nnqKOUQQ8aCIi862OJYH/cH+TCaGUUonhYszA72QykUpx9sN6vbbWYtvz+43vOVsdCVZ44JrzWRxC\nEJhwaxKc28vOmN94CIZkvSxP9kKIIskQ8Riay394ZE2XZdl1HbuB8+DLnOTjKpqdvB4/fszC66Zp\nGJdmq9IHDx5IRObEseGzEIJ/2vPnz3l5yV8MqSmlzs7OeJIDgG1daSG5M4jloGmarmnrXXV4VAQd\nKNPqEKXMP4TVaPxIxxj3sDAbdxwUwCz2raqKR9uqqk5PT0ejERuXcnZh3/dMpru+vo4xzufz9Xrd\ndd35+fmDBw/m8/lXX399f3/POmx255icnj148CDLsqdffbmpdr21Qkl+1zrNRqMRIVh+3zFst1sc\nTGKMUu7NvAQAATVNc31xefPm1Xg8Xi9X1W43HAwUisFkcn9/z3dmmqZFURijMO7drYHIE7FrbvCe\np9jUz4WQChURgiPliYgkKC2Fa6zvbSKT4agUQjhru64TRJ2zEjAxHGzsHTnvrRZKSRACIIboO4Co\nIProl4tFcEEnhgSOhpPp9ARALJfLrrPT0TT6IFC9fvG6beu2aYzR2mQ61d77JDMEoeubi8vz07Np\nVzdFmb19c6MzPTudai1nk9F2bV5+c1dmuZSyksC5vNZB0zS7zfZkOlVKbVbbSC7RejgqgcSrV282\nm81gMJhMJtu6qqoqxMipmm/evMmz7MmTJ/V2Nx6Pr6+vq+32Z3/31//5P//nh48f/+hHP/q3//bf\nWe9Go5FQmtGdBw8eRISvv3m22dVZkRfDwUUxDEAPBh+kqenbOoTw5JNPTy8uhZRCiNvb27QcKKU0\nQCSMMd7d3Z2cnLx5+fqrZ18rpT7+8Ml3vvOdpmmUNI8ePTLGZHk+HA7TIvcxvHv3rq7as7MzY4wU\ngm/OrutOT8+5c+VnIUkyPhC0Us9fvjjvz+fLJSjhnEvyDJXcrVeI2AJKIYLzzXanUJR5MRoMQ9vP\nZrOqbQDg7OR0U+3u7u/L0dB7z3ijBAQpFWBRFOdnZ9R0L54//+2zr9bVLivybDxcbjZV26Rl4UNA\nEokQkgnEkYwxu7py/Z7P0VsrDqxVaXQMzgXv2mZT7aSUZTpMtIp9tR89tZZGM/MgOM8qxyOYvKcR\nwe8Q5nhQDfHRlx0muf9hfpVSELE0lyOxIwQIKDabjfceBGqtEWSMEQGO3K79eMPILUIk0lpzxPC+\neoGM0TvnAsm275uqcn2nAAWgkgguiEhSJHs694H5pbVurUNEH4MLHhAJQQhwMUjQEGMQAAAEKARK\nkCSEbRsAaNv21ZvXPgauC5PxjBD83sDESClBChu8tXsKNB4tNQ4FWB6csA59xf6Lhy7+C+ec0JIr\nZqJNJO+cIxRIAEQ8g+EXv/xHpVSR5eyQ7JyTgMaYtm4YT27qmsc4Hp6EEPvYEHajTFNeUgohsiJf\nr9f39/dHBw+QQmstCI7VlL/Rdv2RksedAzdZzjnrHC9u5eGLT3ZeJTJAzRwllkL1zg14QtpsSKAx\nZrPdhhC2dSW1stbuqoqIkjxjFHc2OyUfpNzXEu+cECJLkuFweHlxAUI0u130jn+XUqre1uzD1ff9\n3d2dUirLMq7uWZY553hRzfWyLEtMM+4feS/i3vMJKQYlv0etdVVVvN6udhtOITTGnJ+fb7fbGON3\nv/vdZ8+e9Xb/xQjw+fn5+fk5WH9/fz8cDlku9etf/5r14+/evWObaP5zVjSdnZ1xSjnvgRjgTdO0\n77oj29kYg/F33qKW/BEyNcYMy4GUsu/7k8mUiBgU5frEfmHD8YiI7u/vX79+zXACEbEHCBNTeXU9\nGo2Wy6Uxxja9c05qlaZp1dSr1SoflA8ePry9ve29a7q2qqreWu6NpNH3i3lRFFdXVyfT2W63+/LL\nLzlBcjQZN30ntHIxRIFCyfPLi7//x39MirOz8xMt1Xa7gWgzrbzrbdc/enCdJMnifr5arTOTeB8B\n4Ozs7FV7jx4lpAmk6LTviAiVMt61fbcBanPjE2hCu/D1Kvhe4EoKI2SCYJxXzqLzMnigKAVIIxUK\nsl3b1DtrewHgiLIs8941TfP48cP1dtM0lc60TuR4NkYJta2lFtLIEJ0PAXsTAQejk+Hw7Ha++/UX\nX6/WTVEM/vAP/9D19d3bl8v7N4NcXl9MTk+Ho7IEcd+2rXUdIjpnu65hPsR2t1bSCCG8j845IWSa\npllaPP/ydd/31gWtk7wcpUlJlHiHXRPGo8mgyL1rbb8djpNPP3744ZOH9XKU5oX1/uT8/Mm3v7Op\n6mcvX8okXa43fFwIwP/4H//jv/wX//zxw4d/9Zf/9R//+s9fv715+PBRWZar9fbN25vhYFy1HQop\nlFEmQSnapq/aRmtTlmUZ5aMPP/gvf/1X2Wjwwz/4STmefPcH3y+Kgnzou267qYjIFFlE6KMXSvn7\nJS9ZWJ3BQMtquxmPx8zQRsRXr16VZVlVFVOC0zTl4eHIjs6KvGkanRgpJafdoRTcRIZydPvunXMu\nU8ZZKwi0VLbrWdCvtY5AUkrCfXrNqBzY4He73fWDB4PB4NXNa26XU2PauhpkubcuN8kf/cEfPrx+\nML+/f/rixcuXL5u+6zub5llW5JtqZ5JEp9l2t0NEkyY2eNt7Bhc5r5MQtJZpnmmt+76v63oyGbne\nOmvJB4NSK8khg9qilJLXyQEoAsVD9g4jxhAJI+HechJ6Ew/bzcMuM8YYo8T9WpCH1iMUJEfDvt3L\noI3WiMjRjRSiQiGlFIcyz2N30L+D66TRROQPFxxZXMvWPUryzm7Z2RBC17VN00CIWolESwGYG10m\n2SDPc6MlgQiEECVgLaT3vrc2hBCRmRaCRzWeJRJt8iQVhyCKLnokOFJ5mJlERHDImNEHChuPdk6A\nPHggkg/H9iW8x0niqUyhICIVvDFGC3mk+zAgb5Rm1g6Xcw7kjTEqYwx/cnuio1ISkCsud0M8X3IZ\n8N7z3MY/NBwMxrjTCSEwBMRMHwalD+jm75qF42qBP6dwSLzi9y8OKhf+CXDQnzFUyLJdZgxx9m0E\nWK1Wi8XCWjsYj7isuhhevXq1q6ssy66ur5MkWe+2zrnpdHpxcdHVTdc1jANLIRjTbtuWQmCsODjX\nti2n287GM/7ViDg4ODPw/+VW9IhI5Hk+m83muyoctHH0nst5CMF2vfXu+MWt38OHD9lnLoSwWCyk\nlJPJnrbGwAPvXImobdvb21t0YTAYXF1dMSTCglqepDmX179n8nV3dyeNFodw0CP2zpYd/C+FEEWa\nsbZku92ikfxXdIgSY4ib/5BvEo533ENVWhVFwWYsm82GqXzsF31xccGpG3meZ3nOHNc3L1577613\n+34F0WRpkefOOalknmb7lpl380nKOcoAsN1uAYDNxZbL5en5mU6TzXb7s1//crvbnT+4ms1mP/rB\nD/7r3//q8QcPu66tqurq4izTan53q3XiHV2enTw4fxBC6Dt3c3Mzv79vqlYQgAekQODJxugwRoLg\n62YrwBH1Vb+t+o1wu1TGPEmrOpL0MkpAEaMQwhilSUnfE6IEAh6qDuREn2TDxXxlEjUYDNvWxghp\nmrvgKIpIQqKUwkgpBKoAAiGAUMH6tnHa2DzPP/30U6ny6XQqhChOBpdng665MtJq4ZyrN9t77+69\n90JAkiT85HrvI3mlVJqaxGTOuapqWNttrR0UeZYY60MM7PfQK63yrMhTY+Q+FFIIRZ763reN+8nv\n//j5Ny+/fvncQxzOZkHINE10mjx8+PlmV51MZ3/+538+nQyGZf4X//k//fKXv+RPrW0brfV8PufY\nHK21NkkgVAIj7VNKV9uNc+67P/gJauWc802dpumTJ0+klF9++WVmEilEDCD1fonovXd9nxsNUgit\nQoy7ps7zfHp6cn51uVwuV6vVer3mzQ6TAa21i8WCH6Usz/lUdTGgFO+L10MIfo+ieEeCMdU9R9IH\nJDju0bz3zEUIFNn7sOk7KWWIkbn6tusGRZEkyf3tHQe+nlzMyjR78+bNzes3SZK8eP1KJ+b6ZLar\naqnVYDAIQOvN5mw0zkNYrlfz5UIlJs/2dAqp1R5108IoLZXiAavrOiSQUgoQYh/Ut0cBGVuORAEI\nBAqt+EfxUcxekvuNJR2h4sialONhrdOMSwUARKCjBKepaj70xEGKAwdGSwCCEOgQ48h/6N9LfvN8\n6WIEAC3MIdAXuTbzI9Ott845CKHMchQUfVASE6nTRGulhRDEWUoIIlLAQ34aXxaKEAkEMHYIAHma\nJUmiUDANSynV1D2fnPzrfG/57WjediPy0prod+yqPfYeI/n9G+e3B+85dyrcv1/OCVRKRef5V/Dn\nxS0Lz7FMHgp7qy8hj8gDIibsURwCROIJSWstDuE/7KQYD76V/nA0G2Nc8KGuGSLebrfW2oigDmMi\npywc66jMs91me3jaRfD+6FQiOQVW7WM9eOCWUhZFwa/7+Ld7LBSR0VGTpQAwn89fvXoVgPI831Y7\nAODQ36rdM3IZCH3z5s1ut8uybDqZpGkqjUFEPuKZTcD4c9/3g8FgvV4fs4C4m2aknbVVo9GII30Y\nsI3LNUtx4nuRPnxtQwjeOncIWuHnqixLrlshhKqqBoOBUoo3oEeQgH/C3uprW3322WdMEWcaNgAs\nFovhcMgXhD81vmiMk6RpGn3gxKH9IRLCPvwA9sALfy7OORbXxf8/biT/CRdX7gZ4Xdo7CwBlWXL0\nMn9G3Gnx2oJPOkDkLoQDJBiXZt+Zqm0im8uwRagPAlAZk2dZWRT3mxU/9n3fT6fTDx89fvzg4a6p\nf/vb33700UdnP7n4/Lvf+eUXv/7m+fObl6+Hw+HF5fm7u3fMk3x3c3t+cvrg6rFtu5Pp7PPPvnv7\n9l1VVT/54Y++Kr/6Dy//Q6LQ1Q2SEBiFRAEaKTofgvUKQpqAECr2ykeh0KQqKIGJTlAqBO0Dkicf\nPYIUuGceROd5FcoEkEjU9y7PyzzPQwjLxfoHP/qhStRf/tV/HZkMyIBQSguhlNSC0KOKWZZ3nQ0R\n29aBlFlRFsVgOCp3uzUKJbWX2ofQ2HbT1OvgulRjCE4pFWNAQUYpiF4gpYnJszRNMucUOQ/eIUot\npTFCFjkids42dd/bxvVeCKdk5sFMpyfj6aStN72t8mT8yZPvpFr50AXbb1bLL774pUrTbDAsymxQ\nZkBxMh509VpE/8tf/PSv/ut/iT6M8nQ4HBZFcTo74VjPECg6h0DRu4Borc+KfDqeKKUuLi5UYp5+\n9aVOzA9+7/c+/uzTAPTu7lYpRQIBEQT0fe8gamMAwDnnfFwul3meDwaDvcAhBF7c7GnMXGWdE0Jc\nX18za4SHhL7vXQyM6sWDJtXHGEJgqrNz7iDGRO89T0UQKR9kB6YqcVaYC97FPW+fl1L8iyKF1CSg\niXfD0Yftai3HoJTqmxYAIlGIURp9fnnhnNs1ddO2qGRVVaPxmIFQk6VZlrV9F2OMvU2SRGiBBP5g\nA5maZLNZacURtwJ8oBCjAIkYiOU/v/uiw9f7YPJe2IpwKMz7nAAhhDhs9Ph7ecDlGszHBZcrrljh\nSJY+ZBFqkocKtR+FuYEGgPh+Vh6H9yFy9K8g4N4901oS6SwbDAZSom07oJAlqUTSIBCRLckEAIGI\nkZJEB2Y2KdX3fedsZ/clNs/zdJDwMOp54CE47raPb5w/bnnQyioUjFPuX+fxWoYYDzeHEGIf0Xgg\nZMWD/zPTm5RSQitzQOC99xGR/UH5l/oQemspRsXTkjw4dPBXjNH1+7yI4ynMr48tAwGAVT0s3DSH\n2Hk+l1erlQ2eMe1wsFxhC9BwSL0Qe2ma1Fp7zoSSkm002MnSWsum50maaq1XmzUbNRRFYbSx3m02\nW+dcluXOOWn2Wl7rXN/3niKDtETExpDkg6d4f3//xRe/xUjOHXxbuEMJAQCaquJ6f6wfPEQyaMw8\n3q7r6ro+OkdySeOBj+sud0PAy/ZDeePSdfxvbkeOHTo3R3wptNZ1Xa/X63DwHeOXlCaJ0VogngzH\nJycn8mARxy0F/zfTo9iYjM+Loig21Y5/UV3XvDPmFxPec5bhXI0YY1EUrd/7VMcY27pxveV7g+Mg\nB4MBe2PxvZFlWVbkvNrngHHONmDeNduosu+SUorXb9FH9kpL0zTNMxbApEWeJEnbtk3buqHbt+Ss\nu/U+xlhV1Xq9DtadTmdsvSIIUMjF3b2R6ruffTtR+n652IU1Udhuq48+fDK8Ln72jz979eLVxY9+\n/PDR9eff/na13aUyjTI8/fUXZZb/i9//w5///Kcfnl9NRuPpYAaO5neLxd28DY4UuGgRfPCtdxWS\nk4IPwx5RQsRAMXp0jnVPKBBjgL31vfMxRq2EEBgoBBCIuFisAODhw4f/5//1X2+q3d/9/c8EJgAp\nkgI0KDShFDpIxFRnylDwYD04H320fb/cbFajcd7brmsX9e5OQKOwV8aVpdFRWStD9MFbgSQhpFpx\nrBTE4F0bvFeSyiIxJs2TtFm1UkoCMEJiQAi+7RtvXTnO+85RiIN8ACEu54ubN/O3r+Z9Dc53Z+dT\nD7httqGtIgXn+5s3L6q67rtuu1nYrvqHL36eKHH58Pr+7U2WpqPhUGs1Kge9dwz7BOsokkrAQ1QC\nsyxBQddXF8+efuNC+N4Pf/DhR0+kVirNooDoQ2oSCRgCgRQgUCWGKFLfRR4VhCgHAwbxNtvtYj6/\nvLzkuDBunXfrTZZlp5dXi+lisVjwQm632/XeMUEyTVOTJlJKNl6IQHzrzm1ItOljH3xQUoJSEkWS\npYOiDCEEimmaEsJyuWQHxD56Z2MAEkoKFL63u/XGt32RZhKFdz0RtV2ntbbBLxYLzLO66dx9LMuB\ndW61WrW2L4pisVzOTk6m06n3HqSgCNGHLEmbruUDuw2W+/gjMxkjEdOYiIAIYvREwXqllNIalUSi\nQHFvl6R+x0aOCBiJoWcUgh93RCQOBASOPGJl697ZGVEwGyLRmg62lAoFRnK0JyKFuE8wI4EK92eI\nD/toJhLINE84cL649jGvlY8IkGI2Zg6HTNMUkXySUvRaquitYFFRjCw/JoAY934g4jC2YYO2svzR\nJNqQD0GG4L1zjlU2wqhjX4KRSGsiYhYIL5UlIC/++Ihz0QshJPzOtITXpvReaoU4QPSIyGcpA5x8\nWSDssWFmqjKOy+WjbVvFVZCPZrHPF0allO32HB9+NXg4DYUQXELxPSsrkyb8CkIIVdu0tuc8Qecc\nJ+zy6pEHcz6guc7x+M8TPrdCTPTd3yiH7b1zjnNky7IsioKI3CGykISICPzwDIbDy8tLrXXTd3Vd\nM+XYHXJ2u87e3d2FQJPhKMum/FebzaauayRCRNt1SikutIz9AkDTd0VRjMfjNE3btu121sVQDAd9\n3wcgH3znLHb7Jccoz7Is4xuUS12wznnPaK0QQmnNLRj3JaHv26biD0MeHMfYQu84hrJJBXMi+r6f\nlENxkJPziMnY+NFx7AgPOOfYfJsnA1ZDMQDAH/qRCsjx1wCgta5ty/dD9KHrut1ux73XsCi5Kcmy\nTJ5K3jRrrR1Ea+2m2vFf5YMyK4sYY9/3qCQJBED2nAtAre27ulVGJ1lq0uToMs3ICiYpX3ZmRjCO\nghrhQGIfloMQwnq9FohskXZz+26325XDwZPHH4wHQyL68v4u+O7ls6/PTs6fPHzc183NN69375bf\n/vDT6+lpcnH15uWLNzevBqPy+rMPZgODZK8uLmeTk2a7+/I3karFsmsceaMxQN/71vsm2oYESSmV\nTrebVSCkKCJpiooABQBBIBICIglCpL1FAVAAqHb1eDwui0EI4cunX/3v//v/w/q43baDyanABFDH\nEIMTRCKSVEptepcmuUoTiIQuoI/eWxfcdrv2KVHshAyJBi2ElCJPVayER/DB+xAUAgoSCIL/pPe+\nByJSiInRxgitaDrIrHPWdQFckaISSiuyPSQGgg19u2uqelAMH1098c7+3d/+4uGjsyRJJienUaD1\nvSfYbZfvvvxt3Tb39/erxfK73/2ukZgqvLy+nkwmm7s733dN09zf31d13XV9MRgxKGdd0FKpXKZJ\nQsHVu+2Lb55nRaHy9Or6ejKdCva7B5KI9a5SQmZZkco8AMnUUN9ba8n5NE11mrgYbF01TWPbLhK1\nXceJJkQ0nU7ZLpiIIpE/2PZ1znJbT0TbapfHYNKU73aT7r3kdtvGGEM+OEV5lmFKEkVRFEmWOufI\nWmtt7+xutwshqMGgqjYQolZKCQWRfG8BxWh6cn5+/vbm9fXV1e//wR8sl8v/9jf/fbvdtravmipN\n07bv7pZLZm7mZdH1PRHt6oqfWZAiBogxsvxBcaK2df0RJpSyKDMKEUIkgL3RW6QY9km+nqIIQMhH\na3i/ABMChUhEnMmDqaCD685h+IpElCcpl6kIxEkCPNQabdjQODoflYJ/GvvjYvAYgwdJh2LsA3Oa\n8LCLFkLsYxgIAkXvfeP9vpvPskQZpVSI0fYtn0hCqhACE6klUQBAFB6IWbMUoieWq+iU4VUpK2MC\npz0i8rtLlI4xUoj+wGjDQ67i/4AQHAdi/l8ZA9uO0oHLHUIAJpERSSmN3EN3/O8FKT7TjsIcvtS8\nANJaK7OnNx3HWoWICkViEj61+WRvRCMOoux40EJxxyQOr5tbG85K3B/HzjFKw2A3n/s8BzO3mbnj\nvAAHgcHvxbJwSLcYjkdwQN7x4JEWQuC4Q56M+ffyGNceZD+b7Xaz2RhjWBJ6en7Gy392aWFrraZp\nTk/Py7LMsoQpu+ydabQ+OTnpmoYHNS0FALBFJRF679frNV8WeZA5MTHqiIBVVcV9BrvS81XdF1Ef\niIhNDPZkkMPWJMaIh2LPAIAQguE1AOAro5QySocQgvMUYl3Xu92uruvRaLRH1ZxjzvNkMnHOcXw0\n11rn3GAwiDGyjQazwxhb41U93/dJmsJhWyNRpCbhwBCOSeDe4kg7Z/6CSRPnXNXU27rih5MbmmN7\nwZ8pk9g5qkFKORwOm11d1zVblGy3W+5bvffb7dYfjMZ2ux2T0fbceyHNUKdpOsgLpdT8/n6z2Zyd\nnZ2enn765CMh5W63W61Wtm6Hw+Ef/f5PfvGLX7x9efOu6R9fPfr2hx9F677+4rf/7v/1//y//G//\nm5O0effi0emQ4u7uxasPH11Ha4Wv2vtaUnxyUY70wxevwuvbt9t2JyWYDAdJbluwdRucV1IlOrXO\nu0AxBhRKogAUQKjUfgkkpZQoYtybOA2HQ94KDwaD6+uH1ruu66bTEwQdQVFUIQRHIrjoCLRG5WOA\nYMgDyhAFUUBEBNxsV7YHpB1Si+SD6AXYGF3iNEQrICKC0igFEoUYvZGM+fHpLBAJqPd9l2AKMigB\nWWoCxaqx3vad929vnuXZzCizWi20UCcnp23bLu7nv/zFzz786MnkZCZIIkFmkkyoftAixC4rLr99\nenV2+s1uNxmUXVMtbMunj+vauq4FYoxRCUCjx9PZarWqmybPCwFEQKPBoGuq8eSkTM351eXVwwde\nwKZufAzlcNR1HUVCKUBgvati19gYOttLFMpoG31n+7IsE4rMq2KNIo8y1tqmt1VVLZfL+XrVNA1I\noUPivd/VlexargHb7ZYQR6MRB3jXbdM0jRYaQpRSKimTJGHf2SRJGGGu65ppHG3bsvFt5lrvfaYM\n+dB1re36vBxcXVwWWVYX5YPLq4fnV0TUdK2PQRiVpoaBynIwYJEIAUQilGKxWLRt23tXFAUcPGSO\nwKSSMktTPveklEYKDz6QRwKFQgpkGpVI9oE6LngiirgnE/E4EQEEAcE+CJCInPVHKJVlKYfU6oP1\nBE/MiHtSlfMcFczb/f1MLUUMgQQCIQH4EPwhz1srxbthOEQUAwDux+89rB1DiAdujSKJQpKzXVVH\nhKIolBLBOud7iQIEAgq/l2xEFJgZ45xzwUfnjzAqbwm5eDnntJBSqeiDC25vOX1Q7nD6UzhMRAAA\nYu+ByC8YteJpiqssV99jwyEIAuydG/hn5koBbxt5tXyotX3fZ2nKiQNN09RtE2P01ilBYNuujvuJ\n1h2sBJMkYTkpV98jdk+HvDl+uWxS33VdkiQRIQAxusjotFKKQwndwaP/iLWqQzJG17T86+TBLuOo\n8GElzJHS5b3n2kOHBsRaq9K0KEvN6VF1xUHNaZqOynGapr21rC5lXVOepG/evNkV5enp7PT09OTk\nhAXdSHR1deX6nh2djptzKaW1jl8VQwdZlq1Wq91uh4gsAuYXzzjBZrPpOue8g8M+gHe9Ru73JezL\ndWyXvPdJqpk/xZYUjOVKKcu8qLBiB5++7zk9AhF5EmWJF5coOOi71MEjev9QSBljzPN8s9m4rufZ\nmjvEGEJd1/wpWGu1kHmec0lWiZZSMrrAEAiLrGy7dz6p65qVu1zRm75j5Jxvd/4tdV1zK8M//+3b\nt0mSlGU5mUwYJGTUvWka1rcQkUSx3W5rWwvAQVHmacbSoC3ubch8b/u+b5tmu91uNpvz07O3b266\npv3ggw/0aEw+UO+a9fYH/+Inp4Nh+EnY3C9uX7+bZPo73//u51fnN6+er95+9ej69DtPZk27UdKf\nD5O+e6UCtlW9bbvc6OlkMns8mA0vL87Ez3/zm3W161qb6jTTOkLb1l0XwmBobB+6rg0BpUKTKAE6\nEiklQ3DB7T/6EAIiaa0DiCTNh6NB13XO9c47Yww/DonzShuQBlH4vW2vVCqxLljXCykBBFEkIATI\ns0Jg7zqIIUoBiuUDQmiMiCTkHpeTkoHJIBVKFEKAAOD8DiIUkUIkrYTUAiW4KISUWhejkXrzZq1E\noGBd387n9+v1lq2UpOmdDX3TklRKyvFwNJmePH78+NWrN811e3F2fn9/W2b5nXV1XSNiCMj34cnJ\nSYwxSTNEFCiNklrr6OskMYxpfvThB+v1elNX//Mf/Z+efPbJYrdZbrZJUWphXr15PSjKSF4I4by/\nXy4a2/MMmk1ORpOZ955ATKYnztrttqLOLjYbjHR6emqMQZC7uiWipmk8klLKmDRJsnJI1gdEHAyH\nDx8+/NWvfjVfLdM0H40mVVXVdeucdwgAYA7b5YgCAOq20VobTAJF7AUffVVV3b+7TWYD0fVCqr7r\nY4xpkiBB37bRukFR3t3d/fXf/83rd2/rus7Loum6y+urzWYTqmo8mSilbm5u+FG11vd9T2LP2ZZC\n87lnlEIigZhqI1OpDxCasx1GkrgPuuOXpIWEA0sLI+9Z9xPq8VBlZhV7SxGADR4R2Smat6BExMVV\nxH1mABergIAAZB3g3i3Adb2PQWttVAoAKIQ6mFd4ihEiIeVac30KISitmb/JmUnee0HA6AhvxIgI\nvHPBMwkJiVzXxkNd0FJJbUhQAIo+SkQhkKdMLVWEPY2JYM9bjjGydYNUqA5yWXnoM7iUxsPUv//3\n1qH6naxIHGKO8AA44wEMAACMFDGGA76CiEpIR5FLlT9qVhEFIkt1ytFQ4X5WEUJIrVSMkZs7RsCZ\nDIWIo8lkvVy2faeUkijZiOPIgOVzHKVglIMBYUawmbu73W57Z/OyAERl9JFi45zruq71gS37vfdt\n3ykh2YCC+whujt7nH7H66OjxtFqtGCseDodJUUSEuqlb23N7GGOMQOwIb63lgL/pdDqbzay1nfNt\nVYfgOSCMjZEhxt1ul6cpRxxqKaqq2mw2m80mBGI3Sq79PN2Ox2PvPRMvjTGci8w9hwt05E/xu9Bp\nYoxhYhcihhiP7VIIQYikruvT09PZbPbmzZsQQpqm1XZnLjR/Lkop1/VtVTOtYL1ec0YCb9z5wjrn\nlstl0zTD4XA2m6VpWtc1c8o8xdVqlSfpZDLhVyWE6Nr23bt3s9mM17S+t8aY4XAopbTB7T3F2pZL\nKSs4M5PwPXTsPxgAqNqGXcAQkdOreEfAfQ+bfjx//rwoiuvrayJ68snHNzc3DKmxboov5unZGRwi\nFweDQfSBUy4YkCciDpUalOXZ2dnVxeXd3V2WZdH51Xwhpbw6v/Df/jyEQL371ocfYaT+/AI+/UwG\nR9XiaqwfjT+MvjZhIakP1dttvdBaKC22q2aQF4NE2rp9tfrSGFOMRh89GpflZz/95a+/fHbf9e2w\nnMhyoIL01ta7+XZTrXcVRZnlQQhtEiPYqchZ510kz8+1kCJJkoiKzeC8t0Ux0KlUJr27n0MnM1dK\nyqRSKKQXSEEpk0AMtrcUMU1zkyVaSICI4PuuRhBO9IKIKPogKEIIYjigENC5ECkYgkgCIQTyEAAl\nAmFkq4RISimpZRIJZADw1rkANBwNP/zo4Xh8+bOfff3sq9u23s1mZ4NytFpurbPD8VhIUW3rp0+/\nUiaZnZ6pmRYgEcRsdppUVVd321V1enr+4puX41HWdrXtHEjRWncyHDVNsw/6TEzbtlrr0XhwdnZ2\nf3/fNjVXms+efHp2eeG8773rvasWC5Bit9t567SU0/FMH8LWIpAPvm6bC6Wcc/PVUiXGdf1iuUyM\nObs479tucjLLk7QoislsmmizXC6/fPlNORyMJuPJZDKOk8FgoI25urr6+OOPF4vFrqlZv1RVVVs3\niOiRiCgxRgjRN20Qznt/9JLjPLEY43K5XK/Xfd+HRnZta1C6us1NUuZFs9m9efX6hz/8oVLiZ7/4\n+bMXz0FJpVRWFCZNrfdZUTRdt9ysGZtNkmS324EUUsrkYLqeZzrPcy7AhyEYhRAQqevbvu8RIuOf\nzH7y+wxawStYoRUSYfxd3nk4eA7CXgEMJBAjSFbWCgxAyF5D3ocQyryIEJETimLkRTEiAoGWSmjl\nve+6rrN9AFKJITZbRWRlMIR9cBCfcm3X8dpxv90D2otwIgit5CGXHQCi31OOlRAx+r7rAEBI6b2X\nKAKQAAEUQ4wRUBAttouEA3CV5JBjOOxG8aAY3oPDTBnD/ar0yJDlheaoHDDIF9+zwQcA6/YBKvHw\nCvfbYsGBZvtehPlrSilO47A+OOcFQQgkpWOweruptpvqWOYUx/vefvM1f6eUkklxTA/j0Yr3hTwN\n8wk4GY1jjCZNxIHqPRgMkjzjSrkn2gCpw53EkUGMXjKYzvpdLth8IXi5yMBdEMBiPq5efi+O1qxh\n3W63y+WSLy6P18KYb775Rik1nU7ruu5sz/+YB/Esz5Mkefny5bNnz3jPf351XW93Somzs7PJZKKk\nzPN8PBrN7+/v3r1LkuTk5KRvm2OeUozAW+Gvv/7aGHN6erper7ld0lqvVqumaVhgw/YUVd1573l5\nM18th8NhmqYvX77cbrfT2exoYAkAUqssy6SA3W7HyiJE3G630QetNVPY6u2ORbes/+M6x3gDM7CK\nouDmKcZorR0Oh1rru7s7hsQRUadJURR5knIPwbBEnmXOOXbJWK1Wp9PZaDQyxkwmk7queF/Ab+fY\nSax32yzLTk5O2PaSi/1wOLy/v6+qqixLNo8sioJ/O7cjs9nsm2++yfP8O9/5zps3b5xzSmmt9Ycf\nfvjp559X6/V2tb66umKRjJZ7LJoP68FgkOf5L59/xRj7drv95ptvlJQnJyfsKzIbT+q6Toz5/PPP\nl/dzdtK4qdcUgoikyKdEirx0Dfg6EZ78ztp18FuiFrAXMqAgKUZKShnBW4dEIEQE6AJko9nLd/Pf\n/ObZ85e33mKZjDCKrul7d980bde7bdXVTT8oZ5PZWQTUKuv7Xikdva+qSkuplKjruvGeJYlKyDRN\nQ4gEoumsTLLJ+flwdhakqnvfRwClhZLCV1LoruuyrHAuAMDF6ZlzfbVbpYnC2EXfAti2WfdtJYAu\npxVRAIgIEUWUCEqQkDwhBYEghNBKKGbMCuG2PSAJhcrICKDS4uz8weXlR8++ul0s+jev1utVK0Uq\n0Bhp8jyfTlPvfQTYVs3J6fmHH38SCbfb3fWDB0mSrddr7/1yOb+5uXHOrVerNuxvG+9D27YghRTa\nelcUg6quhRBlOSSBfd8PyuHFxcWDz74TgKISjbe7rolCCiHatk2lbuv6u9/5vrX2l1/8etc23/vB\n9yPQ2xev+r5//PjxaDBcrVYxxlQbIooh3NzcSCk/+vDJo0ePxuMx+bDZbP7xlz9nFgURmSThLQ8H\nn7y9u3369Gld15PJJISwXC5DCKOzS1Y50jF+42D2dyQtZia5vb1l1OpVvQrWdU07yopBllfL1el4\n+j/9yZ88vH5we/v2v/zlX6x3W52l22pn0gSlXHYtH8HGJFprHi2UUs4FxpYZC2UNNx+btPd1AlbI\nsGgzM3syFCtwnLN8qqBJpRDMROHHUB1KOA8GPKLwoWGSpHa9OKzDYowSUErJcQ5HhwZxlAgDxN5p\nrQOQtTYCaa0jgnVOGc21HzjYhiKXFbet92M0IkNlQgjC/WKbv8LR3gKgWVXGGG1kJLLeEZE02hgT\ngmOOp+/tYDCQQvRtq5SC1jFQLqUUWiFiPFCLpJQIwG9Ka81xkCD2ckoeZPkKe+9ZEgn/VAASYxRa\nHTfEx+EQQmQbYyLah/ke/MXSxBzRYnGwWGaokn8RxD1DiH+F4ganPwTdSCkTbYSS3u/NU94HpaWU\nLnj+FOGgtNFagxRHl0QQWNc1M3IZgz3yqlwI0O/n/a7rtJDH9QNP1cBiMoBj5PWxf2H2DetzuCL2\nfV9VVe0sSqGMXm83DGkaY3hl21vLHywrX5mX++LFi8wkZZmvVqvVagVERVGMBgOmAEgp67r2dh/n\nJ4QIBFIrRPzxT36PiF68eNH2XZ7nWZF3XSeUHE3GEejN25uyLD/77LMI8quvvlpu1jwgtl1nnTNJ\nstlufQjKaH4ZDPNOJpPtdm2d22w2xyrLO5iyLF3Xs9CIEz/Kojg9OXnx8mWSJJPJhDsMfsGs6+XO\nkQlcx101Ec1mszxJ3717x5dOa921rT4kQ/CnxqOq1tp7x1omfzDu5kLYv3ScV8EfDU/ey+UyzTMf\nQ9XUUkkBVDV1XhaMQDRdS8tFORwkSXLz7m3V1Nw3vH79+u7uTgjx4MGDs8sLMCY2ze3tLStJdGJ6\nZxl6ybLsk08+4QP99evXz549e/bs2d3dHY/I7969267Ww8GgSLOqqowxWZKWZ6chWiCrKBoMMjSu\nW7hmGbHXsjOyibKKvgbsjZbSSOvRKG1QgiGICEQ2UBTU7OYPLiaJ+Tw4+urpq10X82Sopep6LwUG\nb40SlKWr9X1r+4+efGq9N0YJEJ4jkw9xJiQCgAfwIXrrondRaiUVovCub6rdCkwaQIBQ3gXfxzIh\n5/uubwCAs16apm2aGqIMUghIAZWWBGmG0EgBN/O/NsYUaZJmiVKA5F1wsffBxdSYclTmienadrvd\n9sIPBgNUmiCAkqgVELoQlqudCzdnVw9/+ONPhuX57bvlP/z9L37+81/u+nVaqvv73WQ2zZJ0vlw7\n59qmByF8oKaxPgoXEIVJ8+Fo4ojIpGVld3tfcRVkpBhjWuYjk83n86uHD9I0XywW3vsnH3380Ucf\njcfjV/NNFxxJYSG2fRdRMMTauS5N07qq1psNIn73888/+eST+XJx++oNI0DHkU4arVBYa3/04x+3\nbVvtdu/ubrfVjtdDIUZADDHymXB9fb0fYTdrfmqYlti2LasG+rbjch72+Gtk9SojpdzppkV+fn7O\nO9rVfJElqYQ9FprlOQi8vb8fj8cvX7+6Xy6EEKXSSsiuaYfjUZnnAGC7rq3qyBEZvLCIRD644zKS\nBJ+H+6pjLdF+/AIptZAxeiI6qlHxaFAM4EPgyAT/3sKSDhZXTdsyEqm1zmMURh3qBMWDRIV9oeNx\n9EaUsC8n0ugIEEMkBE5TECi01s57z7MvYgDiT+fYwR9fZAiBl9OMq/0PXwCQp0YIsQ9iCpGNNaSU\n4/GQVxutZzZ6DEQiklHq6FgCMbKNBNt6CKLIbwpRBAFSAhHGfyrSAoD3eGTHr4hAQLAHYf8JUUsC\nolJ7hBkFAXFntm9WpKDDuLx/U1IIKfiYPc7WQgg2QlFsWXVU0XAhFBSPBZjnZSEECQQptNpbD/K9\nGxGYhIyIaZoqo5XdoxPMoqID/4jv4KO+SkrJtGf0LHjfdyUk9oLRYxU5wgV7GtehT3HOWWtf3b47\nMnpWq9VkMhmNxz4ETijiusvoOt8Hg8GAieY8C5ZFQUS817w4O9Nar9fraruJMfIOcnpyiohN0+RF\nYfueO4AQwna7TdOUM4VYU+u9n8/nII0PgQBMkgxHo77vq6YGgT/5g99frVaL9UolZnp6wrtSdrDz\n3jtrq6rivpWRAPagybJsOBgwAsFpPB999BF3NsvlEgCYm5amKftq8UU7TuTcG93c3CgUbEldVVVV\nVVmahhCYFn/8XLgVY9YVd9PHSszcK/5n/A+4YdxsNhxU3DQNW2RYa8/OzvgV8kzMMwcvktM0XS/X\nSqm3b9/+9Kc/ffr0aZZlH3744fn5+eRktlqtNtWuKIqsLExICaDqW++Av3E6mXz80Ud1VTFXhS1T\n+DMKQM65pqobY/RgBN5J8FpDZqSUoFzQzqVJkOAlegIIe3GjJR9DpEgGpBagQAigKAlUCMIkeZJM\nnpxPRyenk9/8+hdfVdtdnmSDInGpqetdwDgaFJvNZnH/djKZjIbTJE+JsO9Jqtx1rm2DUiqRQqeJ\ndo6iB4iAXkmtlGxd711rQiZISmlAEiolSRSFttaGYLSWMQgA4Zzte5uaJJIKMQhCISUIhUoRYlKc\nAUAXvG1AK9RKG2WUzlF2rW3izgqRCT1QKoQQeodCZjEGBAAyEcF56mpXu11Wwvn1w+Tq4/FFrbPy\n8sHV06dPnz59+uD09PXrl7PZqdayqqqvvn76wYcfP3jwoOmsCzECRQJHSFK74Emb6egsyWsppTKm\nabq2bY0xSZaqNDs/P3cx1H1/Ohh8/r3vnp6e8j3f1955TxLx4DegUADuOQ0PHzwYDAY6T1+/fLXZ\nbW3nhsOh673rK5Z8dJ3l4+/04nK1Wr27n4fN9naxrOv68vJyNjtdr9fOVW3bR4Rd0za9ZRKDMSbP\nyyTJtNZ5XvJP61sLABGInRRJoCIBANvdLsRotGaJoNaaBaMno0me587a4DwACCXX1e7nX/zqq2df\nay1nJyeI+NFHHw2Hwy+++OL5q5dyNIgxaqls1/REeZ7jIdeE34VD5BNmT6OVwgXvvJdIkafGPcvR\nI0DgFwkQgSIQIhKCDwGc5T6eKwjDdXyWsv0yIUilUO5doo81UvD8FwkEsmMwo7hBCIVKoEikYs9k\nrlLReyGlMhq5AjJp68Cx4hD7PfdK7OMZWKy0twcAeL/yAUBhkv20rUBICQL5PLQH+wRE5GGcHSwQ\nAHwMQBR44f27OTUgMZNMIkYECQACKRIcXMCQAPZI+e9m3/2g/57B5PuvUxz+PV8l65092PYdWD5p\nPPhThRiRmxshWtuHwGZ34TgcI6KKIQhEfVjdc72MXQSBTNLrug7knrfMA1bbtrwNBYD9WOwctyXv\nl1gOEtZa267jEsUX3XpHIbJIlwlQcKDghhBMlvLY/f4UL6U8Wh83TcOOmNxhPXj4cL1eb3c7Akiz\nrLf2qJxh2jOzdkejPbla633sNtcqRkotgHPu4uyM3w6P4HxHrlYr1trutlu2SG2aZrlc8t6Xf2ZZ\nloPBYLPZfPXVV0k5vLq64pKptU6p8AuywX/06SfL5TK5uWnbNsQYYuz6PsaYKsmLGb6evMjh4iel\nzLNMcsPrvPOuaZqkyHlWZoyBIyV4W3w06uLlOg+Fj598KITYrtZv375lLm5RFMyC5kGWEQKeAADA\nH66MUJJ/+G63W6/X5WjI9Df+KJMs5eNmT3kbjcbj8XGJwu+Fb4bnz58zNM0f6KMHj05PT588ecK7\n5LZtb96+lUoxi815f3d/z0fh9PTk4uIi+hCc77pOa/3pp5+eX1ywInm72eR5jgTDojyZzbbbbbBu\nOByum0CuE9Fq0YdQ2Xpr63XotlqQDxuKrUkpy1OQSXBdZ9u9B2EgzXKLiAKEktKDqHa7NOrZZPz9\n730bAjz99Zfr9SbJbZZkk+lgu2tD9FmufQy7zaIoilzm3kci0kIGEYhI64Q0CaFIIIJSSkAkAUQQ\nQ99RUQgkAeS8tdaSVNIkVb2NAZi3HKMXJPheDRTxsB5KUQCoiImUcjL6qLdtW1eNbaC3iZF5KhKU\nRqe9VXXTxdgn2hBlhGSD1iIN6CiAcwhCAmqlCqGG61345W9eXK5CmhSPnjx58ukn5bi8uXt9P7+5\nur4eTWbfvHg5G5/opKiayt+9bVonTSKkFEoRkMpTEaPMEutaMAkqpZIsV4nOciFEoPjoyRNrLfXx\nwcOHl9dXw8l417SL1XowPt11TfROGpMkSRReKaWFTJVOTaKEnI4nfd/fL5a393dCKUTM85xPjOM8\nQQC73e7tu3dd1wkpUYiu761zBJe5u50AAQAASURBVOCCX27W4/H45PyM/WWZAYeI0+n0SP8ZDodV\nVd3d3dEhjVQoqY1JDqgmA5tszsdkTDbW0EIG63zbK6XKwSDL077tgnVvbm5+/KMfPHrw8NXzF03T\n5FmWpen1ydkqurqrE6likjLVKJCXQgQfIyKvdR2id3G/DWwbjIRyH2rPlTk6j0ghRnaZAgCOUuE1\nIm9zefSUB2NBntg02+LGYK0NQChl3Xd8zLJ7AcDeKouLNI/URARH5SQKG7yPe85UCAGBRJR01Ma+\n/xUpUBQojw6RdNitHgvKkUp9aAIIAFCJTCiOfPDeW+v2IRMolDJSKIF71rcNfYjB7znMxJEn+5UB\nO1YrKVAIKUGIGKMkQAIByNMtEalDPebXA7zOOQh/GAXhWsB94b5OKX1c1e1FtkJ2XedjjOxwjQIA\nuZkBAgQhBaIWKKM4XGEAUDyacKHHQ7tERMEHBhtdDOkehQ9HFk8IoXOW5ye+lC547PsjaxqE8DGC\n9zy/AgA0DRykNVJK3XU81zKhV4k9UZ4vH+uguZbw/zLPizUtzrnxeMy2lOloyM4Vg8Hg4uIihMBs\nKR7C+GUTES+AiWi32yVKj0ajNE2ttdVuR0SpMXme88QGAOPxmCnBRVEQCqZr3d7ehhAuLy+Zc3R1\ndcW/hdnCfGN1XRelSIvce39z+46IpFIswvnZz38+nU6zslhu1je37xBxOBxOJhMVAq97GdQVgDLR\nCkXbtnmWee9t2+0fJAJvXec3aZpmWcZtAfcQfKAwPsZbpbZtuYxtt9vZbHZ2doaIi8UixljXdfC+\nKAqmWcYYSQXEfUgIHjviuL8dxcH/nUWW+4FGKSEEH1t8ljVNw+Q4Jj+/efOG5UbPnz/XWn/22Wdt\n2/LRyW/HGPPhkyda68Vi8ebdW34U+75nA6A8z5uuvb2/0yCSPJNS9jEyU4xZ4p9+8mmkuFwsmqq+\nvbuLIXDLUreEEDJJIDASgISsSM1w7NuVFAkCCUHei+Cp72XvTDEeUYhEIkQBJIGkQG208jbkeeFj\nnC/ulE5//w9+cH15+tsvnn759U+b2uapUUrNF5tEo54MEKGtd1Kq4KnvnZHGOc/3dgThPFkbjRRS\n6iiIQrDeKSHJOdvUIpAD7DyxEauQQaAaDoeIiORRoBCQZabvHQD56InIk+KNlzamsilEgyYz0lFo\nfbDruhM7V2Q6S2d5qaLtm7YHkFopQTpEhZiDRCkloBAqTbJRmo1MdvL189vVKn788ccmca7elaPy\nn//Lf/7yt7+8vn747u1db6vhtFitq29effPt7/2wsY0IvckLGYGEIC2DJ1BK6TyR0ntfdx0iDkYj\n5j0EAR4xGw5PT0+zstxUNRGNphMAEZy31motpZIZSqWUlirR2ijNGZ2b3VYqlWWZMsbXvZGKY7/5\nocvyXEq5XC5vbt/lea4S07hepuZkPJSpsX1/dnb2+PFjIvrqq6/2q4osU4dcGeccywj5EQCkvu/b\nvhdAymieLylGrfVms8myrBwMLi8vY4wvF8vtdvv5558v1qu1DyzE6J3b1FVVVemg+OLLp/f391qq\nMs1ePPtmt948evRogPG3v/2tcy7TBgwqpequBUAiCm5PnY0IRHsqr2QTWRTIITY+UIzcrnPB8J4T\nUInXf9wrkEREZG8QLmwsTNDGRKAQgg3eh4CILNnYI5oohBDyYO3E/hJI+wxBrgtOCEb1hdwbfRCR\nO1hwxP34yP9JQgj9XpYfHQy2GFg9jnxCCCUO/sTeHYdifC/1D1GSD6AFD8QEsDdePcDmEQHZjStG\nPsdYcoJCgBAA+1ouaD/n7AdZsd8E43vkX/71XMj2Y3ckpZTQe5vIruuC3MfX5nk+m0zH4zHXtdVu\nw++X44355+z363vhwv7F0FEHzHoY55w/cMH3yiqOpcTf6Vv4GuV5TgK5l2SkWmvNORH76ftAXWYK\nAMcwWO+7pun7nmv2EVjeT6IQ2HOz6VpWKyOiTgwA9M4Gii54V+2IyMegEzOajPn0f/b6FQkcTSes\nheUXaYyZz+es8BsMBozW7lF4pePhcEyShEVBSog0TefzOb+dYVnIgwO2UJoNZvlCsRX2yclJCIEX\nsfw2mdS3WCw2ff/8xYvdbscGk4joYmAPWLZm3ey26+2GBfiB4iDLuO2QTIoTwhiTasMc5uNtAZGs\nc13X5eM96M3aKq31eDwejUbMUfcHm8kYI6/eb25ubm5upqPx5eXl+fk5+2b3h5RfOBicMT9CSqkP\nFZ37BqEkf3yBI7QQ0zw7buCyLHv79q0QIkmS+/v71WrFC7Y8z5ltd3Z2dnV1laYp9yuPHz/errc8\n3799+/Z+Ph8MBptqR0QmTXa7XVXXxpiLi4vBeLTb7Z4++7pf78qynJ6enF9ejMfjshzY6Debzc9+\n9Ytqs3379u1uu0WCUTmYz+cUYzK6NgpGuRoVmIvGUFWYfpiDQqHTIk2GfHt7H6UZlpmOGCIQxQhB\nUAQKgEKTlBRRCFOYVAothEySfFh8+OD6pCjcr3/zdLPdmLQcDnNArBq32W6VMiCUlAoC2mBjBKUU\nEiJoikhRCKWNzITCEJwgm2SZD7Gp6gSVyUuVms57H8g6b0Pn09RFa63VOrG2k1Knaaq1cgFDCCCj\npxDIA5Hvc0QSohA6grboO+HaGPr1tkbMjM50hmkBRgrvXNu2qFIllUkTpRSgBKFBFj7knU18FC6o\nu8VmuV6VhR5Mxh8VyUfX4z/7sz979frtaDJ7+ebZYrEj1H1fowSPIVVoycWAgahqa0TMslwmiTDG\nuyilzIcjKWVjHRGYJBFa7dquDzFJkjzPTZaBxyzLXAwgpUdA3BceCnGxmgcbJpPJoCh77ySK6P3J\ndJamad/3qTYcv8a3PQkMIUitbFu/u7udTCaj2XTb1KlS5WAgpLy5uVmuVkWes020EKKqqjzPp9Pp\narW6u7sriuL09LRrnZSS9rk6goFE7/22rpq+Y5Dp/v5+t9utFovBYGCbrl5v26qGEqq2IaTW9X1w\np+dnr14+3263n37wZDabhbZ/fHn9R3/4z376/OtXz55vul4ISIzRadL3fYjx7PSsaduma733AQhB\nCiW11jI1IQTvfLB98J7j6GE/D+83gwKAkPA990ciCkAUoxCHvFeteYC2jbOs80EUQpg0Y88MIgKG\n3xAFYFO3LIBVQrLvFiDGSOA9CBQoQCACSpIuBuKAcMS99X2MAQIvE+UB3T3W4PdhZ0aDeSm7b/cB\nPMVoPScucRiRFpIIe9tTiEH64L2Rio9iRCSB+w015wsAxQjET90BVt63Bz4oofF9G2dAOFTKI+aM\nB8YZv0jeV70PREOk1rY8jeRplqYpO6jsdjsfPUPu4r3ugSdPKSWTpY9/CAB7qhGyfN45LwTxUSsZ\nkANe+u7p0FmKjKdLyTQwLsyd7Xlk5AGXva6OTMI9xfqQIc/jFLBjdYzcDfHCQ6HobMcs6CPUHg+x\nlNylmkO4EA/od3d34/GYnZBdDIjI0+F6vT76NnOBHI/HQojlZlt3/Wq14+jZsixDCAyS923LdWW7\nXh2tZdes/ynL6+vrruvmy6X3XtZ1XdcPHjxQxqw2m/l8zn4Ld/N5UHrX1N57xVkrzgkhdGJ08Lu6\natu2ampltNSq6dqwmJvxdE9k4zJ8+PC4yGGkvd2H29tS8gfJXfy+X46R2wsuybw94p/TNI3QSim1\nWCzevXt3fX39ySefnJ2dvb25SZJkPp+zdSU7GLPk6fryEvF33RUPAQxYcddCh5wM/r2T2cw5VzWN\nj9GFMF8ulVJV01hre+fmy+Vut7Pz+WK1EkK0fX8yng4Gg8ePHwPAu9vbzWZTtc1wPPLeZ3meDUpE\n3HXN/MWKp/PLi4vVej2/veMoJBSic3axWLx58ybGyOr7sii48FdV9XZ7I9BlKpbGCr+O3VzTrkzo\nfFqkiRqWeVkMs3KQpYM0G2idbLs5UJQCFSr0YK3zLkSAPlLjNsUglMOh8/3i/o0AHA+Hf/AHP1GJ\n+uk//rKq66KYCKXrdk7RO9eLti6LkdDaWo8ojDHeeooiCiHQSGmEkABCCY2JRLHPvYYQow8oocwL\nbdLnL79ZrVZ11fChOR6P+ToIMRY6V1oILQCitdZGTyEKNYUYPAWIXoASwpgsFxgbWjV9jMEPy3w0\nGKSJ7kVrvdFpiVKilKCMFBqkCSSdlZ11mclai89fvC0L+f3vf1oMkte/fZW6JUh/fjE9Pb96+erm\nu9/7bLlt/u6nf3v98IMoNBj+UVqaBL3QWq83ez9XechLQMSmt9PZjJ/0qq5LxOFohEIsV6uT4SzP\nc1TSCmptj0pkWZaaZLNY9k07Hk9PTk50mtwv5kTU9B2r6ZSQ4+mkqqrVdlOW5WKx0Fq74Kum7rrO\nel81DS7mbdtmUWit3759e3d3p7Xml9G1La8/mHfJ5wwfXEBSaz0QIhCRRBJIANJo5jwWw0G12d7f\n3zdNIxAfPHgwK4ZIpLVuXD+fzz0EH2Pv7O1iPplOXdu9vX338suvQ9v/yT/740QKgWi0HpUD5wND\ndAIRAdM09SH0zsYYI8XjbtJ5b/u+bVtwTvE2imIMATk0XgqlFAiMMbC0l62ZHW/0rNNSpUnCpyLP\ni96xhAellKikECICcDmXUspDii2wawevw9+zhbfe8xXjRoFPLeccu9rxwRUPHsYS957JR0YSF8Ij\nmCoPAzodAhIE7gszD9MHd2rZdbbve1IxMabve1CRs8xRSRGArbWAKUQgOMBDChlxb/DEkF4IIUEQ\nrJd/j7+Gh1Bk3Ifb7nFsIpKAwHG6B1tlXrodgxKklAw3soeEzpLjj91fNIFIwA6+iHikgDGWrNiQ\ngY4hkQflT5omUkrOE9yDq0A6MQFC0+8d0Vi8ywjw6elp3/cdV0VrmV7Lq2mesEMIJk21lMxe1lof\nE4J5/yelVFph9F3XsYrUGFMUBXu7M4qiteZI3fl8zmZbLFBhTh0zgzi8mm0xdrsdb2rLsjyZzWKM\nb94x29Yw0M06YO/9er1OjWGbiMX9XZZl5+fnWuvRaNT3PePPq9Vqs9l8/PHHnEj48uVLpdR2u331\n6pX3njFtfwh65C0sD5Gd7Xmm7J1lpTVrigaDwbt37wCgKIoiz+EQrBusU0q1bcv2F3maAUCe58Ph\ncNPW8eATwtssZi+zvQNfkGPDW9e1ArLWsgv5/f09w2hZmtpDUMzp6akyhqtvWZb8sZZlyY4tzLFq\n27azPd+jvO+ng6M6i61XqxUPB8vlku/OxWLBP4FfIQBwrC97dU2n08l0Wg4GLobNZpOXxXA02m63\nVdtY73a73Xq3ZfElX67RaKTT5Otvnr199y4AccOXa4OItu32hFitjDG5KoLvBXagFEblY/TWBttX\nm3lwvRJyPJ6enV8PRicIS+v8t7/zGDVo1EpqcFGF1nddpJikRZQUY9xsNgSBKPSuv73dzWaz3/vh\nD7rW/v0//KzvWwSZp0l2Nbifr2MUWVpKw/s2JVBaax2kSlKIFDxZ623vtJJSKOecMgaNsd6v5vOI\najSbTc/2avgYozFmOp1y2+e8ffPmzdCP8yJVRoMQoKJEUgZtrRAEgBQgIyBFjD4KCOVgFnwnKPQW\nF8sdQsyybDQ8iZpzBSgGgUJLzIhECJClg846F3olCISKhKv1+vnz59//ePRHf/SHv/71bwbD7I/+\n+A+KcvLv/8N/OjmbpZnxJE2iPIkAAOS7vvchFIPS2YBCAQrnfYg2y7LReAwH59QkSdI8U0aHEHpn\n2QFNKRUFCe+UMqPBcFiWi9u709PT89OL3W6nrJ3NZp98+unt/P7+za02Jk3T2WSaJIkNnk9ATres\n28ak6Ww2Y6dMAEizwVHxKYRYrVZ1XXMeHB8pVVVtt1shhHPu1atXk/GJUkoZLRA9xACklFJSsIxk\nt9s1dT2bTsuybKt6u92eZIMkSYosb70lomI4mMymQqsXz74psiSEkKeZCXC/3r5+9eqv/vK/rUWE\nECeTyW5bzZcLnky0MavVqu06ay1KIaUE2iO3fLg7a7UUuTGJ0sF5Z20bnASUQgshUAoAYjIwoPQU\nRQQfo+8tqXhMTcB/uqLlVXHvGj75mdMU2CY6xv8fVf/RJVmWpAeCInLJo0qNuDmL8CAZWZnFuqpR\naKCnF9OL3vT83OklzsxiBhigABQqKzMjM4M7N6b08UtEZnHVLLLsxInjHmFurvr0vSsin3zkVFBT\nVeOfJ9eJvSVElnTaPPoQKKXkYY58nJoAgB+saU7WEXiiYqVFVW6zR3pwOlV8OIUZ6DQBPgz0CYPM\n8zyzln04nZMx5rMiCkuQlNCQnMNJTmWLQ4x/Rq0SkcgRABQiJ/xA0qb755KJiAg/Y+b4ECLHD+E6\nSiljs8TyeTzqk6xrPp8P7IV+rr7px6qHNKrHAToxohARf/r2D4nUE2P045SKqBsnY8wjccYY0w19\nipjNF/M05qaYOQBourZt29VqdTgcDsdjmpzcQ/oS4Smv0Dy4MKZvWK/XyTkyLSPTB9a27fryom3b\n3WYjkVGgKoqLiwuJrACTOUYKWqjns1ThNkObNFSImFxbrbV+mrbb7ayqF7O5QmzbtmtarXVdlBNB\nms6rqqrLKrktImJ7OMYYX7x4kef5jz/+KCJPr65ExDxZaa3dOO22275pUznUWidyryAwwvc//DB5\nF4TzPN8f9ykvaL/dJ1z3sG+KLKvr2k0hs3axWPz045ssy7RSIYSrZZ36x2SgEUJItiTw4KXFPqSr\nlPqYYX+oqgoQnXOQNjxG52UhiMM0Nl1LRKT1Zrft+365XI7HDhFns9n5+XkipiWVSAqtapomfUxp\n4bFYLErG2WxW1XX6OJquTfgegwzDkEzPJ+/SyL7d7z774itm7vu+aQ5+nPghkSnh2xEky2xRFInT\nt1wuL5dn0zR9+PChruu6rpJDEACfn58DwHa7vb67BaGk+X737h3YUNd1bvXQ9cfdvm8HDsBRGV3F\nKAKIChlDkBGNWKvt4anEiUOnabTKaZwk9NGNLC5GzxxBCVAEJaCiSFzp7mx9fn71cra8mC+f5vNz\nwGp0GAIFJo06Rg7OW60JcOwHmv6YOpuvf/e73//+9xI5y7LjvmmOQ5gCiiqLeV3MQHQKJLwe8qq0\ngNGH3lhWOgoEVExaCRoWEsxIV6jyaZKuG3Yenz17dn5+jqeABxWi67rm7dvXn776ZL2ej1Prw1gU\nGaIMYx+LeQiBQwQRA2SJlLASjm7MNBM7PzZDv1cU5rNiVlX68hfIEUFIWJhBSJvcFHNj692xJ7R1\nUVrCKtNG4Ljf/u9/1wbPv/nd71999uXg+di5cZIXn/3iD9+8/ub7N6uLZ9Vs2Q1R6Wx0QRAmOgGD\n9CCcRVLp8a+qyhb58dh2XXd2dqa1fvfuXbUux3H85JNXTdv+9//+3y8vL3/5y794+/at9365XM8W\ni8OhGcfxxYsX7969q6rq/v39fD4vqhIRGUQQGSQIR+b98UBEeVUO09h1XSIl6SG8/PTTv/3bv/2n\nf/4fP77+SWU2r8pkBFjPZjHG9oGzmY6g2pqyLA+7XWasyWxRVffbjSg9eBeFjTEWNfmYgcpRhcnp\n9eyvfv2Xf/rTn7bb7WI2DyH83d/93e395u3bt8bapu/ysgKiD9cffQx1Xa9Xs2T+ut1uP9zc2izL\n8/xwOEzjaE2eGWNQaSJN6bYOE8UYows+QtRaK61dDNM0Zbm5vLyEyO2xMaRYYt92wJLlFQCQAiJy\nwSWiZZ6aewTvQzdM3keljNYaiXShQgjb7XYxm2VZ5sapKIqU144siQKddsN4ihd0wqyUyozVSPLA\nUTqpaUJIIcQx+UKHYGz9yAUDgMQbizEKB611MnA9lToERJycpJL8qLNKy0oSTmU4yzJFFIJPLUWp\nbTKUFgYiSqJhZbRWNgqnOScIE+o0ZBfAZZZbaxOlRkSKLMuyLE2OUURrLQiTdwn2S6t9pZR+QErS\nEG9IVVUVYzwcDkS0WixFZLfbPaKYJ4yQTyTwxDWjxzTDh+upT85nCRCA06J3MmYaxpQfoIxGpoQe\nA0DynSCiw+Fwd3eX53kqA2nak4ccgp+33PKzMzA9mCQnVvMjyBxjfCRAFUXBzEPX+cm5cUrDNAHa\nIlfDUNRVGs6GaUy8uNvrG6VUVVV5UdCjo4jWn3/+OQpEH1KHm24sIWzbJrUOMca7zX1yvdBaH0Bm\ny8WTZ08V4Nu3b9u29SGUZfn1H/4gIpqUNUbjqQ9KQprlcpmXxRT8MAxZkRdauxgA4HA4DF1/PDZJ\nQcshBKUuLi42d9sE3l5eXCSHzpQEnO6q1BUys9UmvaMEcZA2aaBPOiIVOTVf6ZBLIBIiamOSy7wL\nPjBnxkrG6ZIm9tN8Pk9sr6IoEid8Pp8nW8fkqJX8n/vNHgAEwD5EEYcQUCsXEtFdQgjd0J+6P62T\nKmMcRzf0qZHq+z6dsE3TpFCsLMvSH8nz/Hg8pl37zc3Njz921az+fPb5ft8kgtjx2O73e9I6vcI8\nz0nlu9tdc9xH74CjQl1mRVnNjoceOSnjCJG8EPsJmQ21xoAigijsJwmtwpAV6CcMAhFRCLTNUItn\nHyMMfXjd3n7/5h5UWc7OL5+++uyLXz959mp1vh56733w4wQsymoFqLw6X72a3FAt2BRznVVff/31\n8Xi0RW09Arq+H4fjfvB+Xi2R1ORdWdY2U85PITillUYTQ4wOqlkhQswSJGr0RZaXZbVazhZoV6tV\nlpnm2LZtK3Lys3358mVRFCKoVQ4APogIA9joAUQRkCZQBHAy4h6thhidc21wXWQncToex3E48mQA\nuM6z8/VqtVqAUNO7w26rsgkxs7mOEobBEdtqOf/005ft8HuT2U8/+8pW82Z3FERbZa/fXG+PnQ/A\nAlEUoIjSylBkQUnrwp+FFqeDRuspeN/JKZnY+zQi3d1vX7x4MTnX9/3z58+7rv/Nb35TFEVRVOms\nSoyEd+/eNU1zeXnZFO39djMP/suvfgEAv/v6627oP/38M3ZOIjdd1/QdKkr+8C6EOAQO4Ycffvj4\n8aNz7ny1rKo6xtgNPcfIDxTcFFCGiJhZN47e+zR8DcPQdG1W1SJSluVqsSxtLpNHF2M/Tv0wy7I/\n/vEPh8Oha9qLs/P1ev3TTz+9efPm4slVsmE/HA+scF7Pkn06Cgxdn2Ypq4hjdNOU3AgMKURFgkop\nlRzQUJxzqYA9DqH6ZKwRu64jgRACSyAEYwwKgIjzniXpBlVyBUiLMDyZbRkAEsEYI3t/HMbFYjGr\nqhjj8XiUyAmDKWwGiKk0JMFVOgqU+ldkZ3kYHx+x5SAseApdSOJPfPAt/vPJOFXZRP99pCkBsFJG\nTqpUjwD4EGSuEWKMmCS2MYZwksmIOmG36ZWkIysKRxLSp3VemBzIKfQvkb2ZmUP0wSfDyzR+aK0J\nAAgTNy/GmHTWaWHr+YRLn9bKxhjnHn87TCOc4Pqf19unNxv/7BI9OBw/Phon1VB6oTqztsgLH5xz\nm7hxzhkyhij+mYVKYN7tdimVL8/zLMvc5Pb7fYrRTTdWevXpDedZkUai+JDv+9hEJNgnfU4JOE0u\nS+mHB+f9dGLKaW26rksjZp7nDCmVxAHRl19+mey3mqYBZgKY17WdzZKxHCLmeS7LZXBOa20ye/3d\n9atXr169eiUib968Sa5SzrmyrqpZnTrrajkHo+rVYjab0c3bR7aw0VoBunE6Ho91Xd/f3y+Xy+cv\nX0zTdGya+/v7++0mr4pxHBFpuVwul8vcWEMmy7Lj/tC2LYfYt51SarFYrBdLALh592NyD/8Zh39Y\njXddF2NczuaLxUI9pGcsl0ulVD8OURgxZdESIiYxUgq6V0afrVYicmxbFgUswNK3nRun3WbrnAvO\nPy7p/eT6tru8vPzkxcv5fP66G4dh6Po+zbiTdy4G9OjTA8icWqjE85rP5/vN1ns/jn36xPEhkGCz\n2aSbKtX4EMJqtSqKsmn7tuuKojgcj9M09cOYvr+ua3pw8ElbeefcOAxdy9MQjZ49u1qtFpVFLPJ8\nWc2Wy7Ubp2manO+H8Xg43h/b3eRGUscYnB9bN+z92IKMllATxRitzYrcRkEfnXNBUBRpk52Pbd8N\nXijuu+P15tuf3h/X56/r2eri8sknL17ashj95MeuLovZut7u9taWJtcXT1d/k89VPv/tb397f3dD\nVVGUVTDNfrMfukNUmOdlUIGli2y9H32Ycq4sFYg68OQGEoDAHFBAJiiKMgObma4fGHSIDmg0GRud\nZVkBqPK8GIZhnIK1VpGZpkFEZ7kRSfKBSCCKI4IIBIDAwUfX+KlR4ssCtco4uhCG7ngHHDrAw+66\nLspZvZqtzi4uzw+d01p5P7gIuVaBXdsdQYrW2P7YCyrXt/tD5yMVdfHTx9t29KyySJkDFYgUKlYq\nGTggJBvqn+eetL7NssyYrCjLyHw4HFwMh+MBtHRddzgcnPOz5VJnWd+N6/Nz5xwzjKNLZltt25+d\nnf31X/+tlq/fvXsXOAJANZvNZjNl9LNnzzabzcePH0MIL65e6Mwmi7osy7SxNx+vv/nmm/lyeXX5\nJMR4f3fHIrnNCJDlJCdNO5qyLM+Ws8Ph4KcTinNojqiUUVoRKKQQwsijZqiMiZn0SqUFnDVmtV7O\n68oYrRDndV1ktmuO4zBUeYFaMUi9mGmtP75/0/c9AyLi5CYBwCxTCgubEREKIIBChUR8ygZAZbQi\nUqIEALXSRNbatjv2TXui1DgfmTUpTilDiPhgIaGR+EFnS3LK/1GA8YHVXGRZXZZYVSGEoetDCJmx\nRunofPoRp60wnKKM8SFmRkSYfgZvRSTRj6OwIJBSSitEFCD5+Ss+7jofCjMm2t3DJMZID26MHFL5\nt8n/i0MM4YGohVab1OSdKGiIafzgk3cYKBJileox/JnVhtKKUwpyCoMCCMzovdY6UdsYHlodRYpI\n/2wFKo+7P0li3bSS4ygioW0Sip7Rz7GP+KDmSkU3XSL811dAT975GBSeZlNEDMIuhin40U1CiFGl\nKJuyLJmZtL6+vj4ej7PZbL1ep7M41VHn3DhNiVGVJuZEr31Ez1OLxMlZ25i0Se26LmmKTnvc+TzL\nMgLw3g9dT3Ay6rq/v0/A7Ga3DSGkrJnofZ6VkmW5tbhYIGKWZdGH+/0hYS9FUWRFnkpsjFEQl8vl\naT0g4kNQWq/W6wS3DsPw9t07RmiG3sdws7n/cHvjOYLIMI3uMOVZtpzNUaDv+0RAv7i4WCwW3333\n3f3d3TiOubGLxbIsfZ7nicRPRBdn50+fPm3bNrcFAJRZHmOU4NMrxIfg+sedCgBMD7EQj41SIhVP\n02SqymilM6vjiQcfY0hLZe+90ZpB9tsdEc1mM4MUtU61LW1/U84SAOx2uyStToy2NLYy8/MXLxJT\num1bm2dlWVrhaZqKqpym6fb+vmmalAF8urOBY3AhhS4iklJa68Q8X6/Xzrm3H9475y4uLmazmdUG\nrFibOxeyLPv7v//79+/f//DDD1dXV1KC9yEGJlQ+hhQtN45jTlfPL558/tnzT19eVQXFqdfIZZ6N\nbYcm0lwZO1d2DnARwhiC2++3bXPYb+/ahqcOu1YO20176Ih0HK03BRqLSmlQAhCDDL6IorOcbDlX\ntu593O3dzeaHrKzMt99fXFw8ffrk4mx5frayZRaiV8VlEOmHsazyp5/+chJz14yOTNsc8yKzsxkb\nc9jvd66z4IlIR6dMLRgUCJEmtIRaCfqBowgjowJUIbpmGKYQTF5khAgwZpaUAa2IkFkQMAYOPgQk\njdoIitLK2MKI8t6F2HNwjNGQV1pQ4dR3MXYIvbZQFZnREGL0IwmJVsaQEg5duzvst+r2Ji8Xy8sX\nNsPJsUSmsorO7bdDbszn//tX29evP17fTj6OU1Qm3w79ccLAma5rMFUQ7SBqISDlhW1yv0wgKhHi\naTRx3tus0MaAVtJ3TdsxSFGVaOn99XVZllVVDf20Xp+/eF7ebbY+crvflW6q6vmrV68+fvz49u3b\n/+f/9X/9xZe/fPL0arPZ/PDTT8mFJoTwpz/9KSFPyRZYa40sKFBk+fn8rO/7tm0+ffmiqKv3Hz40\nzVFZUxjDIBw8hCCIEcAaXed5VVXRh9LmiafivReEYRi0NSGEaRgwQqVttlwXWVZV1bv7axFhN33y\n1VcX5+uhn/72r//i/v7+66+/7ts2TmNV5Cazo5tUCIiwrGZWm2maXPCZMcaYvCyNMbv9PrNWKYsp\ngVeiSBQSRQZPq1MUZnnYaJLAOI1Wm7ouB+n9NKFI9B5VSvIhEQnOA51qgFWpGkXvAzNoZZLJIhuO\nPhhjjNJe6+D8MAzmISYgOh/BIyIBpiOdJSbsJZlsIEBiX590NYqA5RH6ICLHIj93APwIjTCfMNHU\nJahkKhWZWThEDhEJUvU9uRRLCCFEf9KeqaRRFtFap/gHPk2qp18T6tRCMTNpZbSNMTrnwBQiwixJ\n3aMe0HUfI6WUegTSyoJNkRFJ7CQCQX7eJeODtBoRU9qeS+EKSp1SLhDSFXtcA/+8AEaUBygbAE4u\nzV4EvRvdlBDLRyNJVBSFm6YhIiDUWscpJt1xKodJlZvWGOl1xAcXrvR3NE2T2hB+8FNNZeN4PF5d\nXaUg23Sv933vnLvbbUUEmOu6Xq/XdVldXV6KyP39fYwxcEwsR2utzbPMmv12H2MsiiJVcaXUfr8/\nHpuqqphlGMYQ4uP4j4jzxcJ5v9lu9SntBAY3AUAkOPTt/WGnMwtGZZlxHI/tsaiKqR8SsTM5gSil\nZmqW6EVff/01fP11jPHf/cO/FZFvvvkGrC7L8sWLFyLy4cOH474xxlRFiQIZaaWMURoRh2H4+P5d\n13W5wfTDU48SQnAhJj7z2dlZWZZ+nK6vrxMCgYh7jjOYISJpxUG8C2nPkYINkuftdfux6zqrzfPn\nz4e2Twzn6LwqynlVp33/9u6+d56yfFHP/DhxiNu7e6XULz/7/PLycjabNU0DhHVdM0Lf90VVJmLz\n27dvnXM2T6eHAQarDWenHCQ3TSJSFEWiXB0OhxTh8PTp0/l8Pk1TFEkqiOXZ+Wdf/mK1OmvbHlHd\n32/HoUuEcGNMXVV1VSmlXi6fnq9nZ+taq9b1++gaxOAcKBAIPnrHXSDFwpMPg/PD+cWTVUUvn5yT\nnMfgm/3h9vp2u90f9t3hOBzbTpzLqpkx2eTjNAxULZSpvVA/IjHqbF7P9RiCybPj8Xj46fW764/r\n5eyzVy9evfpkNq+xWB0227b1M9G3+80//eZP33+4K+qlQYUKdSHneabqarvd7ruGmS9tJqCNVQqM\nMQoYICoFWVXmkx+c75HYKlYwRTdxYLHlOOwEjSJrTYkQORoXMPJEqNMaKHgm1IqMMGnRzJElDU+M\nEkAmlF7RSMYjiTUCNEUWDlPksa5WwtEQ5DaneTVO8dD6/W7TDH6xvtKmPFFfnVMQ89xg/uTZF+sm\nfEPjGNqxLOsf3rwVKkWrLK+iyhiUoAqMyho0QsJEpJJ/DqpEcWGE3OTMvG+OgaOPAY2q82q9Xt8f\nNtiP88XKWvvhw7XNC22z169fX11dWZMjKOddkrZX1Uwp/buvv05NZEr0csFP03Q8HoVwPpsVZZm6\nz8vzi4snl1mWbd+8++rLL+bz2hb5frcNfsozg4iLWUVEU1IBxcghGq2Mpv12JyLz2Sw3J7VF23f7\n+w1Zo3NbZDkzD8Mw5uNiVV1cXGz6TUJuY3Bllhc2mxX5VORhHJZ1Hadpc3NjMpuVxShyODbPnz1Z\nzOu+73eH/egcKRW9j973TUP1zJQnwlSMnKwQiYhFgvdTmOSB+cg+GKs4RPaBYwQWAlBIRmlAApYQ\nvOdojDakA8fkr4mIgQVEFKpHZcoYh6IoZlW93+/dOCELc3AQVFGkoU9EFBI+UKh6z8KACBwhwomF\nopA8e1Bak8LUIiAgIz/AsAleFkT9YGkJD5VMo05+VgkEjnIKt9UEVmlEBBZQoEmhAoopjhfkYTtW\nrPKkfD4NeJJ0sBBCQEXpEwwxcpzggcidbkgFqBL4AacCKSIJWSFFOrPEHB9MLB5H+JTMCADamFTR\nUCuMkZ2D5NM5nb4/vU16gOujJMbCQ/8BIMzArJtjm0C/VDUjyDAMKcZE2wyVjgKCxFFi4CK3XXOs\nqoqIEl1LREY3peyd1A48ki+YeRxHjpGIUuvmfQDAGOM4TrvdbrlcnZ+fx8j7/b7r+oT06jxLWMQ0\nOgdu7EfnfJjc5ZOrRFUgbSwpF7yKpqpnuc2TOWJ7bILzRVEQYJkXiSZOSgkAGQ2Y4BewNmdmFxkU\nmLwYxnG3P47eVVWFxlpjsyJXjwFYZTTajOiKoppVdWJjaVKL1TxZ/9/f33/48OFwaK4/3CilgDHJ\nhE4wxeidcwppGIb2cNRaV0XmvQfmvm211qvFYhrbJD5Oy+/0shNygIjTNDWHg3Mu8ZNTE2gyqx/i\nKtO2P0EO6Zurqro8Px/relZVRZYZVOMwBO/zLAOR4+GQ6v1hv2+aRpjPz88X83kIAUQ4xm+++eb5\n8+dnZ2dlfcIkiDBJJ5fL5Zeffw4Ad3d30QcC7PteCwWORukECvV9zzEmE+MYpZovfrk+S388xay+\nu34XvF+v11VV/dM//dOinj179uz+/l6T0qSMpvl8PpvNsuyUW32pDoCDG6737a13e4PeUxijIxQl\nAiwongi0QRKvo7v5sC3yqi5Lo43WaFfV+epLJHt3vesGt9k0H+92t3eH3e7ggoCQKKrn89Jk3eAG\nx0qEMhLM2s7rrKyyhfPDj2/fvr+5fvPh/ZOri0+e/8NqdXX1yRf9cPzjH7++OfRgKlvXAdU4DTH6\nrKiXNmOj3Y0cj8cgzvlOUZ5lZZYZApIQTW4Wi7ptQwsEKmQKjWKjgYzcj3fBMwDm2Vyj02qmVGm0\nHcbO2pki6wNACAIkMbgYOARhRxAVCSILTNE1PjaaPKmgtSgSwogcEcUaoyEwBJQgQYBMZrOnVyuy\nsw93jfdhioNWNsuyYlZZQmPt//jjm1/96ldPPvmL/aGZ5DqfLz3cgpDWuc5mQdigVlbFGJW2FpV2\nIxE9BiGedsAIgGoKvh8HIMyyTEk2endom3506/PLrKh2u13b92p3YKD5cn1ztynLsiSMgB9v77z3\nRV1Za3fb+3HqLy4unjy9dM51922e27Oz1e54SGlF3vthGGJw1qjFvP5+u10tl8+unvoYrq+vbz9e\nE9H64hxYiiIv8yI4n2YjZDFAgxsI0I9T8H4ax9xYszAsuO+aU+6952EYWtNerc/Xq9UL//S98OX5\neXT+/u5Ga/2f/uN7AFjM51rr22s3da3CaggxGFMas9/ez2az6CO7QCxxGvtx9DFpiwJzxIeWhUUY\nGJQV5iQCPJ34LCJCgBrJTVNzOJIAISilCpsx6eQRIMxFXVWzWTrPp2FURivSZIwio5RhZh8Cx7ic\nL87Pz5v9wQ1jXdfJEDQkzXEi0f0Z/wgRIwKJRGFkFEQBQHVSGyORTrl+wpAC+yBhug8yIUh1V7Q2\n6fYgOCUkEhECaJVprYE56XWC86JYK4Uo6Y0rIqVUWowmHPjR+fLPp0znXDU7hZoPzdG7MVFtErBP\niCAQhTkwAKCAfbAoicLEAIois/PeCKaX/TDUp/sZmTkII4uKEIUZBER8DIqZ+edB/wQ188N7x5/R\n7NME7x+C1lMwJBAKgjIaFJk8OxHMEHwMx65NKVRppRdjTHHr8ODgSg8uJ+oh+ynRuKy1pFTyX8Tk\nGYboQzgcj4vlMsvzyNz1J1fk/jiln6MACZFsZq3NtEm2xp6jZkRFyJSyfqu8eNTsnnBmkQTJAqI9\n2crwFE579bP5OlWyzXZ7PB4ZwVpLWkUUk9nAPDrXDX1CpKfgFUOWZWWe9+OAAkZplecC0Hadc+7+\n/p6ILi8vlVIJJyDUHz/ebLd7P7m2bWdVndts7HpmLotiOa8Ph8PYezdO5bI4Pz8/HBURVVVV13Wa\nZQGgruuiKJJzHvtQ13UabbuuQ03YdelmSCqv9PGdnZ0NXT8MA4d4cXbOPgzDcP/xJitLRKyqajab\npQ1rAr0vLi7quk5oRELC0/Xx40haMUjaOCTJmVIqcNRaLxaLV69epc1uYhloo8ULIpLRWYyTmlhQ\nRA5tk1yrkp6hbdswuTzPx3EsiqJp2xjjd9999+Lpi7OzlSZ1tl4rhVVeFGWeGZvoDgLRDG+HofXj\nXnNr1KgpgkyoJDdWkwYgCSASSaGIKAJjaqUUCnfd4CcPosuytoVdn59d6OLpCzy/2//0+sO7j5uu\n9yB0M8AwOkvWljMlFEEFQBSwmemGIUqwWTZbXgbX//D6/e//+O2rF9Mvvvri2bOnt7fXf/rm23EK\nJp9vj21mClASgrBjrbPZ8kpUbquDPd75GJ3vlTJIwTvv/KS17bpxnPoYWgXATMhKk8m0XWfKOxAm\n0gF9M04DgEWVkyrARzClQUsKY5TICEAQHEIg9ASeYGAeIg8Se8RIKigURaCRUCujAABC9FWel0WB\nEZpuGtoGDJtSv3j+ya51oxOlLQOSyhDh0PRvdm/GYFar1fY43u773mvGTEAynSlt/DhCpq0xwzAg\nMKGoNLWkqQJOXgpEynmvjLZ5hqCUMX48Nk3TTaO2GWkzTK4bRlQ6HT6ffPIJonrz5s2PP75Os1py\nGtpsNk+fPdtut5E5WR8k5kHf91bpqR9IIOHGHz58YOanT58W1ly/f/fqi8+t0fOq1AqBoCoyP41Q\n5EgU/RRCSMpZjj7LCz9ObdOQwG63K+pqsVwuPzv76f3bY98NXa+A0nPXdZ1EVogvnj27urp6+/rN\nh3dvh2Fo9of5fPlXf/VXWuv9Yl4WxXK1ur+/H920vjhr22P0IU5TZlRli2Fy3nurtSTp4EORUyqF\nI4SoNSCQVhRO9q5WaUIM01gWhZ+cG8Yiz5VSJKC1FtSY5TGe3HbxITs8hJBGvfTvRyKSG8fr9x/8\nOJ1O9cdo29M3ng5zgJMFozKpxHAQBgYAIDnZlSQwV0RSyT0VLAH5M39mgeT0CY9RS/LgKIAPhpEE\nIEQAHH3wIYCIIoJElxMhQEMqyyywGKWH4JJlCmpKOHR6AQ/ruYdMAXNSE6VZBdVJIswpthgxWT+h\nIvFxCl7Cic9llAEAhXR6Fw9S3in49BdRJEhmpcxTDHOdSTIu5Zjg64cPVAkLM0cAZEz7fgDQ6c4e\n3ITjGIWRSBuDRo/TBIqmaUqWp0Pfi0g/DrOqPh6PMcbFYpHO1iTVffv2LfPJkQz+TBAmD7ENqR1I\ni+HkhDVNU6IBp6Y1zX8qt0ZpZh4BOcaQh5X31trkl8Qgbd9pY7IsG73b3VyfzVbJ0yrG2PejtXY2\nmxVFZY5HH4OLoR+mfhrbvhumMca4vz9+8skneZ5PIQ7O+xhi00bmaj472arF6JxLslelbaHMq1ev\nlFJvfvypaZrzszPlw3b7cRzHv/ubv31ypd69efvh/fV2s08yrWxZJn39YrG4uLiYVXXf9+/eveu7\nbr9YuCcjsJRlmec2Brfb3udllmSsKTN4GIboQ1VV6eoZY2xeJID6VCCjm7wLziulTgm+ziXl2Gw2\nq/JCIVmlhRQKGGPaaUxRg2koT83H4XD49NNP0y+SMT0RJfON5Ww2juPNzU0yu360McnzPG2+rdZV\nUYhIsiCt87JpmnGaUmx3DBI4DG5ar9dFWY7TtN8dE3h+bLr37z++/OwTZv5v/+2/XT15kmVZlpmu\naQlxvZgrpQhBvOuHDlGM1ZqU7q6pP1oes1wA3Th1SFLk1dhPkilCCp6YDRGlRO4QmJCUIgSrdCWs\nhhG6qe+HCWiwWXn+5Ori+WdfNeO793e3N5szU91ttrtDQyoYWwSBwCikzi6f6Obggo/Ruwkja5st\njJ1tDvfX/+ljpo1IbLujMaqu68zWzk3GzARMe2xg4qqqLy6Xi6ULH6hpmrHrA/sxNH3fNoej1UQg\nkQMR5LlVznoyRpWglMReAxqTKS3BuziNUcjYGuPkuRVTZOXMKOOFkw0D6ozFcxwkjkAjwaDVpCBq\nHVEiM6PoiJI6axEhhVPXu34wyiiVFUXFqhA0zKR1viirwHA8HPpmLHPDMajq7Os//fDs2bO2ba+v\nN8butdb0aBwoYgitopEj+3Tin+JmGeFBYakEkRGqqswEBze54CfvlTGr1cpFODZdURTz2RKEEux8\nbLrDfk9Ef/VXf/Xy5cvXr18nv7lUa7334zgmlt+XX36JiL/97W/hwV64aRo/TsvlcjVfkECe53d3\nd7e3t/vjYZym1XwhhF3Xff7554vFwjl373xwHjkNWHEcRz9Oimhe1d576oepKMr5oizL3WE/TNOT\n88uL1doC7XeHH374YbHOPnnx8rDbTmMfnb+7vpnPZm4ajKZffPkLY8zt7e3ybF0W2fuPH/quWa1W\nzrnetYhgtR7HEaPkZW7zLIowMDMYY0irNFclrQekuAXm1GFk1jZuKvIcBZJMUT9EOLgQEjgXY2zb\n1j+QYdMJHFlCCMApGejk2P/69euk2l/M5wDgnJvNZsmBMqGy9EAATr04Phr4J9dLZlEP1VV+9n46\nzX9/lrCbZL1pGZiQUaWUwCl5Nr1OF5IDys+CHzhFBClJO2mOwflkFzlNE+jToJmcoyjlVHBExLR6\nS9RORYaZnXMOogWdWoqTBR4ACXjvUw1OyS7JgUsIE9Plz2KRTkYa6cAhOQ3UpDSHICGYh5Q5SWZk\nIBpO8AAjRGGJ/PNkjIgSpj98/fWHm+vJu6quTZ4d24aZBzcpwOQcmduMBNIZ/eT84v7+HhGTHChp\n8oZh+PHHH733/LCliDEmmlV62+kET5T6s7Oz1Wr14cOHtOlMk1kyzciy7Ha38ZMzxqwXS2tt8B4A\niiwfxzFwHIZBAFJgA4NYaytd3N7eZllW1/Vuux2GoaoqpXVeFrPl4nA8fry9OfatC4G0ijHW+mRq\nkRV5Wg9M09T0XTWr77fb5XIpCLvdzmQ2LTUv56t/+Id/aNv2N//0PwAgSbAya8dx/Lf/5h+qqvrn\n//5Pf/jDH0SkLitjDBfKap3sNrf3m6++/MU4jr/7zb/0Xffs2bOx6+f1bL1ec4xJZi3ICWGez+fJ\nkza3WYot0lqP47ioZ0+ePDkcDjc3N0VR9H48Ho/e+1lV13WtHgTsKPDIsCfA+Xx+eXm5Xq9/fPd2\nPp8fDodkl50238k0IynKkhfB4XBISlyrVJpTR+9S4U+BNmdnZ23fvX37Nu3Mksh4vV5ThGPXPrm6\nOnYtgxybjhFefvJJ3/flbH5/f7/fbK21h91+s9nVdZ2V9NNPPzWHdj6fX6zPLs8vnl5dLepKOKJE\nhWANWU0i0U3DNI2fd/9Fwhh4Qh2ZAgMzIFAumIsUka2AYVEMJxG9ZF4pTZiDKI504qygnJ0vdofD\n6uz80PRdH54+/VTQDr3/6f7697//w8ebe5vNIqtj54BslleARgjHcQzBZYUFkH5onXPmRCcQROTw\nc6w3AGTWPhr+MYfT9LB/iyRj13bdLlNiNGzuPrx7/ZMIKIQ812VZ53lZ5NV8vpjP59EcMCFRSgsq\nZvBBQsTAgmQFjQACEKlMa03aYCyZPYhnGIJvQYYsh7o2Y99wiCiglFFAMSCBIlIIAwoopRUZBBsh\nQzuHbMF6HlQBOtcm06Sin4bm0LXH8uwqyfeHYXBuTAr4LDciAg9v/IRVGJPnOfED85lQEACVskYb\ng1odu54RlNGpTqTVVV7MkrnV4XA47Pbr9frZs2dN09RVdXNzo7X+xS9+MU3TD99+F2OsqioElyCf\n1WoFAHmer9frN2/eXF9fJ88cZk6S967rEFE7n3r3vCyQKDFgu6FP88NqtTruD9vtNtMmJn2L1hJi\n8L7Ki+iDjyGvynac2qEfo//0s89+8fmXY9vdvP8oPhhST57MpmlKFvluGDnEJKRZLBaffvrp1dPn\n79+/3+x32/1ORI7HYzp6Y4x3d3fdOEThYfJlXeVloYxhkNEFADCZjcLjOHZ8GhUlhlMB1toqPQ5d\narWN1lpr/cDy7SZPRCIxhIAEmCx1gzfGjG7iKDrLEdQ0+dT3m4zSXBhjTJE8CZAzxjT7QwqzSS5O\naQZQWS4P61t4cLCSeMpfsVqnu0UiK6WyLGtdnyYHfOBdp/skVddT6SVDRI/lFgCMMVaT995PzhpT\nVZUfh8ToExEOkTmmax4I0q4XgaZp6qcREU1mvYuBTykAoEgY044Z/IgPrteQdq8+JEat1jpV3EQo\nC8IxRh0fRnkindm0+h2968chTbqMD9JerRAxC38Wl/Swck5/PGVW/sxQRoox6u++/f7mfkOki9wE\ngTj5ycco7HxMW97oQ12U5+fn86qer9ah7xPmnGzNjTGJpZXsbIy1yVcrocHe+ywr+n4chkkpwwxd\n1/X9eH+/XS6X9/fbpmmSLdowTF03xChVOZvUNI3jfn9crVbzejFN025/LIrCGpMXVbpGPgRrTVmW\nfvDVYskhdMPISG03bHeHalbH21gvFy6Gth+GyfsY6rxYXSyh8yGEyNC0/TiOyenG2FwrW9fzvKyc\nc6h0CIwoWtvtdv+P//jfhmFIzsZ5VXvvI9J8sXrz/sPZav3801cR8McffxxjLObzfF4m0nXbdN3Q\n9+Ngtbm8vPzu22/fvn07r2pnM2PM4uxsu90yc1kXcLJLO7lIjiwAkADtGGOVF6nlH8cREcmQ1jot\nLYqiyIwBgMQVT0B9+rWIdG079P1yuUxscK118jzZ7XZ3d3fpKUrhTsnhqyzLsiw3+93z589ny4Wd\npnRTpil5HMfr6+uPHz+mKt62bYoQrrNSWfMf/sN/mC0Xf/nXf/X0xfOu79+8f3d2celjIK08ix+n\ny6unF0+umsNxe7jp+94Y9eVnr7784ou6rJAlBl/mVsIE7JGdBAGOEEfkEXyDwgaCAJCoSUjQilQh\nlqJrtHOta9AZkgEgBqCsSYguYa61UWQEAuN0HA66mu+6boqhWi2vd5txiC9evPrF6nk9N7//3R//\n9O1r79Vyec5sd4c2RMjyUiGCthzEORccW50j7/hERj1BXoREqIl0DMLuMc0iA4AYIC/PJTqdYwYe\nYhtxqJb6U3uB0T3oJZRRSCh+cu1xqBcPHT0AKhFAQtYKAjGSAAYRDAzAnQQSJqXPWByLJ3BaTSKe\nOUy9J0BBJFSEBkUTCoBGNBq9iIAQgBZRAkpEIVggI6w56gTnKUNlTdYUx2lKB+g49jEENoZQONqq\nyFlO4TMoAUWIiThqnaWFZQgchbUGhZaMbvshndfDMEzeE2lEpbVNivA0TK9Wq2fPniWP3839rfdT\n3xz/23/5z0nFPk3T3d3N+dmZc67I82TYu7m/b47HFy9ebLfb29tbZi7LcrfbJYVkMpmhzCSo08Wg\nEJXRCU58+/btzc1NXVZ5niNL8uRqnCvLsrSZtRaN1VqXi1k+jLo57trjMAy3t7fTOLrg14vFerma\nuvsUKKeRKM8VUp6XWuu+7+/u7sbJbw/7fhyOTWOMMdYmrC6EoDObg7Cg0WG+XAaOAEqEETE5SASO\n3nuTV+mdCoghpZWySmtSudGpcqRpJwX4xBitLYgoBOdiCN5jCCkH0GQWCF2IiCgspE/8uPQ4PxJ6\nhDnJ+kVECJU1qFQEiRyFUGc2rRUiyEn8Aydg1uZZ9CEwY4z0oP0NIXjn4kNCT9pMJAcKHyNAKqkY\nEsPoYWwTEXHCQgowgXMnepBS+iHP4FFopRQlnc+joRU82ko/KNFDjMnTJo2dihQSSWTvfQwBWfAh\nHCKtfiWRrQBRUW5MurYAkHDmNPdrrSMzMCeOdxQGTp0SPa6i01fiYZ3IXoTmYT2cogxPYhJtjAv+\ncDiSNajIaGsyS70qqnJ7v4kgVVUZa+fzuVdKaz0MQ1KCpk+rbduEcqQ9btpVpPpxOBzSGJ2KfyrV\nZVkOw3A8HtPbXiwW8/k8qZtShoFSShD7vpdTnhMwswu+UIXWZhjHpu9opG7oc1vkZd43rfPe5rnO\ns27oA7PNsnEcez9NMQChAAVgZTSr6Ebvhz5d1izLtDEQQpJzpUJLD4bYeZ7XWT71AyAkfsduvz9B\nIsbc73dpRbrd70yeaVL9MDz/4hMRaT9eH7tWK+sDT1PrYpjN52VR/Ju/+/u+7ZBkNqt2u818Xid5\nQ0Jgkj0eyoldlaar1GOe2lVjhECTihBijBwCGJMZa4yZpsmaVJItACQtdd/3YE8ZR1VVJVV+et5O\n99CfGaQ45xCx7/vvv/8+eXCmTgsRr66umqZZzObn5+f0kAiZHDZQq/l8HmM8ts31zY0pms1+x4B/\n+u57RNTajuMokemV/uSTT2b14q//5quz1eq4369WK6MUB4/CloD9iHEiiIpYIQM6LSPDBNIDChAh\noQfxTIwGKDf1BdIMzJJ0BZQFwBglChd5FZ14j0ploPKIMk7d6AYBUxY4dpPKbUQ+NHtFRWDf7N6f\nnc3/l//lb88vzn73++9/+uknQHt2/mJy7MPkfFRGm9wwARNarUiAQGJkYYgigJBEj0VeTpN30YuI\nNVmaA2KMEQomrXIuVBgn76dO53Q+X6KEaRjD5EkyrSpFuaJckxYfAVEISQMCArJBIAiEgshAHEUI\nOAqAJDtB4uAEYiqAKIFjdBJymyEqBEJUAoRICAqRSBmJDEDCwAKMSKJA1OQ4gMQYFWiQSCjIAEqH\noQdIMa6RCKzVWZZZrbyf0tI9QWmAYgg1gmhSoEiE0QPjg1GMstY2bTu4iQVH76ap0dZUVVVWs8Ph\nICLe+7Isbab3u006RjXS8uJi6Ntpmo6HXQjh2dMns7K6ubmZ+i5M49nlhbWLvu+fPbtqmsM3330r\nIvWs7LpuGLvZbIaI1/t2Pp9fXFyYPBvGcRzHQ9tsdoeyLGeL1Wq1csM4TVOR52VZHw6Halafrdbr\nxfLJ2blROsY4cWjH69SFDMOwOx6mfuiPzdgPfd+fz21d11VVaaS+G4e+b9tWaV3X9fbYbA7Htu9Y\n5H63zcsis8W+OYYQsqyo6/n5ee5Owd5kjfExIKDWWmIcxjE50Jlk9s6ikbRWVmmjNCGOowvexxit\nMVmWlWWRQNH77QH5FFLEIISotFKox3GMIiHEED0AaW2VNYknm+d5GpZOhRMxxOi7jpkFIDLHh+NC\nax0f6go+8HsZIRniSIDgQ9pSqYTGhWgIFZDQyRkqNWcPnCFUSp1ah9TVggBHEogSQxRjTG4sCAzD\nUBVFqiDio0RWipIrHxBG4Rhj2v6eHEuSVIkSBC7sg/cnlrFGjojAEGLwzsVwQqpiFCFUoNL2hIgE\nARglxU6lF48gfFpyK6USTB05iggyMCYW8wmweIzF4NRoPAQriYim03aWmXVVVbShcRx3h/39fmer\nwmSWAZTRIYSz1VrbY4ixG4f73bZpmi9fvlwul33f397epjGXY0ifIhGl5JAELKQt7/Xd7Ww2KzPr\nOY7eRRCd2Wo+q6oqK4uPHz9+/9OPo3fPnz+PIJv9rihLRCwToXGc0phYVdXd5r7rOpNn88UiggSO\nwDGMw1TC6IOfHAAUef7k6bPZYpmKRBBW2rphHNwUUSKOtfOu7Q+HY8Ic6vksEZH2zdF3Q9d1ApAQ\nGCIKUyRR/TAqpfKyjIHv211elfP53DO34xRCGJzf7/eH7e7y8rJeLu9ubje7HTN3Q2/zbL1cEVHX\nDsrorCyePn327OWLj+/e3lxfJ5AgKXTl5Pxy8uTSdPI6T7v21OIk56ksy7RREiMwS4zTNCk8GZqT\nQLqzH+t3WZbW2v3xmFy1E9MtxkhKlVWVHp7IbLPs7Py8KEvn3P5w0Io2m01iGDZNM47jcrm8uLjI\nsuzp06cicnd3Nw1jXVZPnjy5ODsHgOvrj8uzdTf0/TS6Yfjn3/2LtrmPwbuYWauVHbru+vr2bnP/\ny198ZZpptZhdnp+fr88Mgp+cAlEKIUwaWSu2ihUGH0YXG3GjpwkRQRGTmpgcKTFG57WaLZhmgkWk\n3At6jo595Bh8IRFYtOLcexuDa1rXj/1ipftpQqNsbu/ubgX1k6eX2+29qGPYjsbkv/zi5fn67H/U\nf/j+hw9+PGiVc8o9BQuR/dg5NxAWdaEIJQQQxqgwBBBOOyodozALAGhDWunUCPcTaGNsPlcWQUen\nAnvxcbIaTSZKWQ3WqkKrQlGBSHGKgiftJAojCkMU4GRaAMwIoBAUgiT9pQxaMQAjCREgahAFACII\nAoInXiSTCDAqFMIHd31gAEEFSittg5NAAKQQlGcJrg/TINFrq5iBmUmjUSbLMmuNJur7EREJ6YGK\nz1ppInIMRAIIZDQBkFKeZezaRAThcej6UWs9n88TfpaIVHlm2ubQD+00zHa73WJWAQej6dNPXnjv\nrz+8u7u7m6bpb/7q10VWumnabDbee4i8mM+rqnLOZVmW6CxVVQFR13V9ivTWShR54eBdBMlnlSlz\nlZnNZnN18fSTTz65v727vb3NiyLP87wqe/aCMI6j52it5RjSqKCsyaRIMSpZWYzD0PbdNE3377vz\n8/PVapVpE0JIadllWUfAtu/arju0nbG2GUYHoLzPQE0uaMPL1er8/Hya/OhPz35gBhFjLINLk5ah\nLCmISAAUaqVQIJ3iY9enQ8M550OY/JSGlhTPF9kn0+M0HQpijDHVqn6aAChHUqAi8+7YVjHEGEc3\nJQUg46moJOKuPCxcQBiEU+I1gzwuMlMsUuAYhKMwREERUNoojYSGFJA6uWRExSBpVk31ERRBkqeI\nVhoNkXcjKgUi0TtIIQqRp2HUmkgAEZXWoIEAHrxKThtP4ccoBWEQpXX8M+VuQhm992QQmVEhIiaj\nLvjzgfVnqS4k1KQd+kcykxJ10lXLKXsK/uwLU+zCQ/lnEEDAh8AJAfAhpBi6LMswy1Arg5lOnm3H\npmmHPlX+bhj6cfAc0yHuQojeH5pj17QhhE+vrlI0gnoIZI5yyk1M/zE5KHnvk8lGlmXpYUvVOn3G\n6bfJ9z8NnWlcSyveGGPwnog0UgpZQsQUijKMY9M0nmPgmDCIQTApx/MsizGu1+t1db7b7fbN0WYZ\nWj2O47FvdZ4x4RR80zajm5RSCbJPWL+IJF2vMYYebD+tMUWeW5P7GIosE8QonBjdU/Afb673zXFe\n1UVRsKbb7cZxRKN+89vfiYjV6urqqqyr3Wa73+6rMr+8vASAf/mXf05RkCmsKc/z5DD1qH9VSpE5\nrSvSWEwPRt6pVNdlpUmVeYEPRnFp6agf9EhJxaTplJiUrxa3t7dt2467bRp2E3XupOqbRq01aZVX\npeeIWiHh2cV5Wtj045CymG5ubhIpOg3EaW2fQhdCCE3X/vKXv7zfbbO6vNlsX3zyyaFpyfuiSlM1\nlXXd7I+3d/dfffXLn77/YT6fn6/P8sywmzKjMk0QJpsbkAk5SBhcHPzU+qH1bhzIAoCgFjTB6Iil\nKde6OBshD6IZiNkzEGMULWhgCgSkSWUEBYMCVPlsZWti3nmOLKOOohDJoFYi7I2GojCj881hs56f\n/5//x//9hx8+/v4P3717f40iJDFM4zD443EfhRXNRmWYObEVCYiIBQiAJzfEKIiMiMzeS0iPYlRa\nGw3KC5W5vaiqauhu2sOtuKBJa40KCZGAAJQHIVSWE5cFBTkCpUR0IKNAhCXKKSHmJA4JkBaxJ+Ub\nAiYHIuecCAKkszIIIkAUZEFmiIAJDyRUShlSVuVkHWaiFCkM0Ts3OTcgcIaFICSLhEjsY8AJR2Ei\njUTaaGOzpLtjgcAkBoMkD3w2xghg8L4fh67vnz59muflfn+s6/rzzz4XkZv7u8zqqszzPG/bFliI\nQKVE3q5fLGYEfNhtUPjl82ebzeaw24Yi+MlJ5NV6BSLTND19+jTZWz558qRt28n7sixdSJMlLOdn\nQaAdpzQt1XmBxppxsnn58e4+Mhil86ICpbXWV8v1+/uPXdMe94fgfWEzEcnKYrVa7boGpvF4PDof\nyqLI8hyyrMxyPkiihgVr67rOykpEbJ4dmmM3uXac9m2T12VUGAj6oa9Wl1PkMcTN/jD64L1vmy7P\n81PwgRAJcYQQOLJoLdNDkooihSxRojBLiGkhlWrAFHzoozFGGW2MccGD4MkfI20DhefzuRDK5NB5\n7+M4TenQzuy/CuOLwiEGkZMIIoTAMT4GEgiC9/6R5EwPAbVpulVKkQEOkZkZGRQQETtWShESU/If\nRwaJIN6HIAwcBEAEUStjtDFGOKQ0PDeS935yTphDDPvjIbdZXZRFURhSMQY3Tt57RJ0KMMjPhG0Q\nVqRi4EdwUfQp7i8zlkVIRFuj8xwie++Tj1CqvmlGR+E09aZicVp4M0g4QdzqgZVGAgCPe2CKIdKD\nd9ipR9H6kZ0TmelhQ5wuuE5Hatd12+1WZRYIGURZEybWWrsYUFGYuOlaAEngc4rwk4d1OirK8zw5\nK7FIKiQiJ0/t87JKjlcpbychq33fJ2cra+2nn366WCzST3v27NmxaVarVZESFt2oiFK47PrifH1x\nfnt39/76Yzf0PgalVD2fd27sxl6T6rrunplBZlV9e3f3/MWLtu+m4IVwsVrW8/nmuN9ut8BRWZNl\nmRCmjE/9QD0gopQonDyZIbJGqutSEBaLBRN278a7+/usa8no7XE/jqPJrKUCtRrG0bhxXtWXV08+\nfvw4TI5BsqKIwseubdrD//rv/r0bpx+///by/GK1WNze3p7X1ZOnT66vb5JZmDzke6SOKQUwaK3X\ny1WaFZLCWEQSy/HUvkVOlin91Kfu5/FRSf9cPnmSgOWmaVLrk5ROIpJGh1REU9u0Xq+bw14erEnT\nluHUvTIrpc7Ozi4vL1MSVPpAbZ599tln9XK5bY9T8C74f/e//vvf/+FP33z3fV1Xbhf7aXx6eXV1\n9bSu6yzPX3360lprjeqbY/B+UZZGoZv85CcII/s2xhZ5QHEkPtNxoitO97fJWeekKyhWUJx7r6PY\nIHQCgBCSW48iA6KFtQ/AHBViXhbGYtu1eV7s9wc3xSdXq2Y/HXf35+uL649vyrxYzerbfnf38f3z\nZ69++YtPq7K8OFu8/3jz3Q/fH9rGZDqzAMCa+rYxIkKkjQEEJUKMQISjH4kINQJiFJ9aYiQUKiPi\nEIW9FDa3Ns9y5Qc19TvSQBQFmAFIRUARBMrPkkCEIUCKGAdIBxQzJ1MsQRTUMRVGGBRpOKlEBBFj\nsoMEDRAAACAIolAyLlUMCARpgZeQadREOp3vwMieffDTFCYk0Vp142l3e3IxQARFBJTWGag1KgtE\nIjFKjCxlwjOn0YcoEY3Wcpp40LkAAKvVarVcpoZbQnwMBLRaEYFC1Fof97vz8/Ory0sC8dNYFMXZ\neqUIQbguyr3SVumLs3MRafvucDjc3t4K4WwxB6IYY14WdV13XccgkWVwDpTSmVWg2nH03u/2h+F0\nfBMzS4irxbIsS2vYJm+40Wljmr4Lk1tqpY0ZhqEb+v3xYJr2bL3OjLVKK2u++otfp4wvpdT5+bn3\n/ubututHJlWUZSCgrotIaDRo4yf38f5WAWZZPgzjdrf33o/9sFyvSBuOICIupqonMUogTuxXo7RV\nigBBBCKLSHJJVFqffKcUWmu1NTGAEhYyGhERAkcVNQC4GCSIT5xexCicplAGccEzM2mljE5MqFMt\nEQ4cQwxKKYUAhJE5ZS6lYVEncAVBAQqA0gqVYvCS0smIACDXJr2WEKPjEEL0MUzBC1A8wTQASmsx\nSCQqZQgrYwwRQA9hcgn9ns+qxD+epskhJiEy/CxhOvl/nIwvHgKGTxIgrRJhOT4Ya7BSAKAMIQAz\n+xAeOWUsJxEzi8QYkQgehL8cozy4Oj/O1ifOBxIhIWAEkJOwGfBRB68oBacmEZDSOjU3MUb9+vXr\nfhr7cdjv97YsmGDwrl7MSakszwGgLEs/ucPhUGT56KZ0lCfnwsR0MNlJWbTZbNquSxvHhPLneW6z\nLIGo6a9PRpV5nr969SpV4hTMmZaUn376aWRO6prddnt9fT20XQhBKfXjjz9eXl4mLlJRFKUiH2NV\nVYdjO1+uo/P77Y5YDk3nXBidz8vqbrefvEPSdTXLitLfb1jcwmZpS50+njS4e++fPbm6vr5O3ivj\n2Kcr23VdtzusVitXFM3QbzabY9dmvsiKXBlztV6nKRC0mi8X1tox+s8/+SSV0iw7iW7zPHdj771/\n8eKFG/sULJEXGTN3XZe24OohqEv+TDeW53lRFMmCIwUlee/9MCitNZJGIiRRJ9Sl73t4sOZIOsUE\nT3V9l/SX4bCHiHFiZk5bnxIrH0PKScyyLHXuadGVmqfHUp0ar+SeYYxJXpVpNXDx5PL2/v7bb7/9\n4c3rJy+fmyw7tM3N3W1W5MpobU3TNMe2Xa/Xy+Xy2LXLdZZM2vIyV1DkxrAbhr6T0CrxBJNGNlYp\nsopIoXj41EcBQjQZUhYwj1IGVwuVggoYQAKIA3AsDiSijiAkHCMgR4zAgp5xzPPMGD+vi6E/ivdV\nbpqDw+jrstrc3M5qX+VFnPq+a4hMpuB/+uu/PD9bKnJv3r+JEhglMJNyQ8gSBwviaT2UjhpUACiA\nCekVOA2mQkAuRvFCrKYJJLCKZVE+NVgiThB7kYG0GANIHKNHMhIjw8ktD5ATrcMLAiohItJEhKBi\njMzgo1fq9D1EOsktvA/WWkABiqgISUQCIKNSCgpGpISnAKACIGFkH10UYcxQA1MEDABRKZIADya1\nmTXG5nkSlSmtJUQWCAIkIEjJhCcIk1ZWbOAYWMB7EWGR8/PzxWI1uCn14nd3d+M4rtbnm5uPSXAa\nQvDT1DSHzOgGYF6X87oSkadXT9I0VuUFIp6vzzSp3WEvIQbhEMJ33357e3dX1FVx2Jsss3lmrU23\nX9d1VblMfbZMIyLmVVkUxXy1/Hh7M5/P54vFYb8/dG2CkUIIh/FYl5XNM4gnpdcwDNvjrZeQZVlV\nVah0lueEGEMMIWw2m8vLy3TiHY/HfpiaY6eMtmURkQoik++ZMAobQp1nze22LIoqs7bUWZZxkLQD\n7rqORRgpInByXFfKGGPAEJHVWiU7ExZQSpPKlksRCTFOwfsYokQcekHM80pE0hzoY4gxktF5nt9v\nN8wMgqSVJS2CZLQxZuqOqYZlRW4yO00TEJrMpj+bKlZgRqWACBAVGZAYOQICMwQBiiKE7KMkUFJQ\nK2uNSVsYeghTYmZkEQ7BeRecNlkEjpGFlCKJIFPwKJFCYIQK0mLEhBAQQBtVz2beuWkYp2lCAJ2o\nTIQiknAc4SgPCihm5vhzBmVay6ahguOEiKdVaWRmjs4nM8cEiWOUZBdyApO1AsTI7GMQEQ2itaY/\nyw9+pHqlqfc0gqdajoAPTUCEn6t1uqqpROr7+/vFenVxcdH0HWYmgLiuTVkWZVmWVVXkudXm9vo6\neW4cj0cRORwO2+12tVpVVZWW3S9fvrTW7g8HIkpZsynmr5zNRWSapjTvxhi11ldXV+mnbTabu7s7\nZp7NZhcXFxcXF9//8EPKqS2Loq7rZCiRWt2zs7MExs5msyi8/fixbVuYL88vL7qmbQ7HrLBpwp7N\nZv/4j/94bNvV2XpyU3c/4o7atv3si8+xd+M0JSJYURQpRrdt208++SRJ0dMcadNGpx+eXlxeXFwE\njnd3dyGE8/Nzz/H67q6u67ws0DsfAxB2w3C32cQYt/d3InJxdtZ07R+/+dPt9c2sqlZnZ93Qv3z5\n0ih89+btfD5fzmf7/f7du3dte/LyTA0aEWlSCUJIL2YYhmSVlf4jP2DO8THUWimlVEIRUtnO85wR\npq7rxmH3449nZ2epJCdhnIicnZ2lGyVNwOmv6Ps+hKBEkgVm2gQng8/NZpMgjUflwOXlJTOnMMem\naYqqKOsqvfjf//73Ns9ciN0wpG4gIQrL9cooW2Q4TRNwADIxxs6NcRqnaSisKjSWmc2yqFUAcRAn\nEa/UFybGAIikA2jvwU0mTpnOKkmESmJEBzQiGoI4uL1BIVTGKFAKYhAZnXNlKX3Xrpb10O5ev/nx\n5bPPZlVxe32zXGVH7owxdTXrmjFMjosQ4ugnfPXZi4ur5bc/fPenb79+9/7N4MayzMviWcL5ARWg\nAhIgREVwimONAKwQiFJNFKVVlEhKWWPZu77tDdGyXK7n6+D2U79xTrT2pFnEhThqRE7Zrmn0BUyF\nPQRGREVGkSZtQDCy5+R5wIxEWts8K609KceAEhyOSIIYAQVRiAQRCAFBJTsgRlYAAuyDF9IqV9bk\npDh6JT4AnrphfDhxEisHkjNEOvIgao1GKaW1MWbXNo/Z4yH4JFhI0tKvvvqq6bv/9J/+0/F4XC6X\ny8UaWNbLVTq2lFJT8uArytzqu7u7xWweOWhS6/VaQhz79vr6+rDtnj9/vl6u/vjNnxhhtVr11n72\n2WdN37ngZ4vFfLno+37qXdu2bz+8X8zHcRx1kkQijOOYcr1MZvu+dzFcPnlirW0Px+1+d2H0fr+X\nyBAiBrbGnJ+fa2M2h6NzjqxRxiSsOITAIeYxjiGk6nJ7e9t2wzAMeVl8+vlnXd/3kxuCi8KRwceQ\nU13WmTt0LDKOI5XlxWyZ4uUPh4MAKGVQQzI7zLIMSCulmNMAiijMMSKAQlJaRfbpEACALMvSPgQA\njseOiJTCwLHvO+ecLfLZbJY0/YCktQ0M3p/ydYDzBGemEybZd6R3JIiQ7pgHLwcigjRBgiR/riRF\nY+ZpnDQpQjSkrM1PBs4+9H2fM2tr03iQKULSEJQAsSS+4en9MYiEEIchDal1mae7CBCVUpvNhhA1\nqRTkKnIqnMoaOlku878uwCxw8oNM42oayoWYHkwiOaYcw1MUUpIhpcW5PBKqCVnEx/CvzKa0Yufx\nz74eJm95nKQflsEQHxK30govnR5pCFRK6fX5ZVEUxubBxc1uG0Xm5y8iy3J9GXyQxisp53q+532/\nG2szv4NuH5xCMot549x083FWVmVRpFjEIs9ijFHT+my1Ol8TEY7hfretjIluOo6DMUpbc2wP6RUc\ndnur1NnFeV1WzeHw//rH/7oB3u/3Z8vVq08/1aSCUmhs23Xj5H98+26xWi7PzrvJVbN6cXa+2Wx2\nm81f/PrXeVn9//7rf/3i1Wf52fL+5taP/d6Nz1594mJYr5eHttlut0+fPx/G6WxRzM7q5Nv+xZe/\nEJE/fv31vt3/89e/Q02Tj74bsizzKB4EM3vMdV6Yzea45aAX823fN02zWp9nWRYiZGQWy3nXdU07\ngDKLxao7Np+/fHXYbca2J5bgYnVeX129uNvc/r//43/87NOXu/Z48/7D5y8+gX44U/kBu2PfLc7W\nNst++v6Hi4sn64vLD+/ea62nyRtdbHZNCOF8vS6KQthgoUmp5DawXq+X68U0TcdjW84qq03f97vj\noRsHY0yyoCMBe4aa5eWTq81m47RpurY/HmeLhUI87HaCUNfV3d2dtfZ4PJTadk3rJ8chLmZzFBj7\nIXl9Z1mWPuW+7xPFNMY4k9rp8ObmgzhomuH792+psNVi3sZ+t9lWWa4JKm3nhpcYzhZzE1hCBB9t\nCZk1YQyDcJYV1WyGxnhlRiQvGFCJPpHRgE6udQBAGgmCwgjcPXaayAJ8Uh3Mw4thbHwYTDmdLYvM\nhrHft83NcN+AuNujF5D1ej76/eDHnvqc/x/1RTuZ7QBv6ekN82EfQzbPS3Ul/ayKy18/+2xtl9/U\nl+/u3vdumBzneRE8K9CE+ng4uKmbX6xyiM51gKwAeQKjrDVFjHJnMhHF4gOzzWyWA8S+C3tknNwu\nxkYrEcLgAgrluvZDVxjLIjFEIogxBkBVlCrLxxAbP/DQCI+GfF3oWWnvI4UQFLHIVNS5tny83w9x\nyikDJEKLlCFQCMDMiGolzRQlr6tJ7P3Rl6uz2fz5YZBBOIwcuz0AZBoyMmgUcJyc00qdn5/ffPho\nrYUoVlulVHST0QqUAkRSKIbYkENelmft0LswDT50bgJFqNWoVRz6//ynrzVRzKydzWbrs/OzMwUY\nISZSvbZ2s9trazbNXQihqvRtP479MK9nC1Z9N+x6hmyx1/r25vr169dKY2bsmcLIvMrMqxdfbe/v\nop92NzcS/fn5+Xme8/F4DJMGxuC6/QBCVVkqa/3kLsr5MLpme2TPQdSEShAOPoDT99cHY8zZan1+\ndXHY7ReLbFHVFqjM7cXzV8PYHfcHIpw4ynYzGHP9/t2TZ0+fffLs9v7+6fz5ze39dmqW56t+s1ET\nlWX++vVrFFA+OOfIljHGQvB4aI+Hb4uqPPbdfmp1ngEEJcqCUixWsEDIUW1Cq0SliFIiHX0A4BRw\nYbNsJLSKEpLMAOM4Lp5ebbfb3eGokcpsNsuJmWMTqqoq5uX9fnc8HstZLcjdNOnSDpNXSlllYpCh\nG1HIoAmds9oQC3lUnoio8ipXSik1mNj74KbBS0RFLsletSrr0o+TBizLTGkKPNm8ODs/a+7ZOddP\nAwAgqcTeMsYIUHAASMZmqJSPHAIrpWy1cOPUdg6ZMmOtyiUGDCIMdVWJROdc5MAAUSJqypCiC0FY\nQCYOYRxBa5NniVUDoAbnQghJvxSDhM6VZWmzjCU4ZkClMoOInmPwbEgZpTIiDsG7GEJocgQA5yZh\nropCkwIfDKBNKUlp9iUUhBhjSJYjJ6qzFpEpOB2VMWaxWPWkXd/1bgIAynLUShB107X9OKAi0Mpx\n3B72eV6enZ83bSsiJgRtMhTQmQ3CAhA4js0YQlBI86rOsiKEcH9/n2wOvXfJhaSqqvlyOZvN4uCW\nZ+vJuzdv3rRtm1clMx+Px5QHDCJJNduIaK1X52dlka/mi3Ec37x5Y7V58uRJYbPj8firX/0qCH+4\n/jibz7MYDs1xvV7HGHNtfvOb30jks+VKmN+8edM37Wq1SkDZcrk8Ho9j1ydLkLIst9ttkVcxCGs4\nHo9d1+2PR0G1b45lliOitlYZAwDITIhPnz795ptvUp7Po6J8HMcEXCffD4ATTGeMqarq+x9/yLV6\nevHksNuJ8MXFxWw+n/zogv/Dn/503OytSNM0y6K2Sq3mi+7YpCCENJ5K5CSFrKvKu5gkvFEkxrjZ\nbLz0ZVkSEWq1b47H45FIW2uHYWhCAwCk1eRdN/RJCz+bzVKMRBqU274DwoQqG2Pquh7dlLbI6QWM\n3JnMKpM4hKCMVkY750xmb+/v0h5hmMa37989e/ZstVptXm/IGmv1bDaDwgLz8XjcHPaffPJJcJ5Y\neHRa62q2yItKgBg4K3KOfvQOwWSZ9dF1fYt0WtIwnUgMEpkfbPMAIG2AkpdsukqppT1RGh6ojKiA\njAIkAeiHoeuHvtu1zVFr1lqRIgTDCIjKZjmp2tjahTiNFrO5LbQ1lxC8jMR+Nk2ZG1VRzH7917/4\n9f/87757893v//j7b3/4OAxj3015XtVVWczmtizK5fL6wxHJ5EWmlIpT9KxB5VHEGsUsKALihT0n\n9S7RNI3ee46CxBgFEAmJEZkGJscSREWliSltb5EBbVaZYhY4uKkLY9eNfvLY+na9WAKw1SZ0Q9f1\nPI05CAYHAEgRMIoQRlGEmqyxJbAIKGZQKhPBcXTTxCkMJu0+jEGjiDDRsGkcx/1+n8CVFBOOeLIH\nT4suZpYYT973PuR5XqgSuvY4dCF4qwut9X6/994bpSRyVVVFUcQYp8kdu+PFxUVRFKObZrPZ/nho\nmqYsy7ScGvshOG9ItU2TnOZuPnz0YXpyed73fXS+ORzT3HZiUAL4yTkf27bNsmyxWla26LpuSlqG\nrEyTpLGZtVaZbph80zT9NPrAs8V8NpvFbvzkyauh7RDl9evX6Vh7+vSpn5wmWK/XzdGcrdYikZkV\n4IcPH5J50cWTy2cvnpO2/eQ+3Fwfm2a3O40Z6/X6wVFZ6aIEkfV6TYApf0wRrRfLdhyGYUREU9V5\nnqOPkdk5ly5UAqWtMVGp4HwIgR8gzcjs3ORjSO4/SfM5n89JoMzy0mbRhxS6miggWci01snmoWma\neVGmqU6YnffpsTJaP4YQoCJFChUlAvDDHWKIDBBGEUEQwhMgJzCOo1DItZmQ9vt93zQAAIpIK0ES\njsmgkAUFkLSCNG1LzLKTgZdRmoMLIQTnlYhFpbUeh8k5d1L2IUWRE8vvJD1CjgERtTIRISkqh9El\noMIYo7QSkck59UBU5n8dCxhioIfYJiJFWhOi1rrlERE1Ka1NmRcEGL0HFqR0Lp2IjsnLW4TJmHSU\npdMsOB8gQdxlWkeiVt57Pjlnk37z4f35+fmnn716/vkrUxeH3/1uiF407Y77tJ488+Hs7Gy+XmLT\n9NFp4vlyYZSehjE43/d9bjQlNAPAGO2CT7rplPR+uTwriiKLIVlO4jQlERUzT9NUFWVVVUnQVpfV\nYrF4fzwmkOHu7u64P1R5cXZ2NpvNPn786GI4v7zY7nae49MnV7f3d977Yjb/8O49M8/K6ng80ZK7\nps2MzbLs0xcv319/ZBFlTZIboqCPwQU/NW7yoe/7YXL1fOa9DwAC4GNwY+STZYn+wx/+kFhad3d3\nRJTSn1arVYJtH9e3iW4XQmCRsizP1svlYtU1Td93kwtEVM1mXdftttvFrL5cLhe2uFiugeV44MV8\nTkRVVa2WS6317d31drPnGF+8eLHdbZe8TjbR1to0RSUc2E3hcDj0fV/X9cXFxaos277PssxYu7+/\n3+126TkpyzLGmNqRJPAnIiBKmVcp4co5Z60tyxIR+2NzerAfFFAJak5Y/Xq9Tv5lqQXpuq5a1ECo\n9toYw0hKKROprEo3jFbZ5WJmtVlVs4snV6ose+e5bYwxRW6MLXxwU+806YunT2OMaZQFYCGd6CYi\nnCosQOLtwiPDMPCJRqgeducJ6mEKypCyFjE48d65wbEXDYBGGZUZSV61adFQah1LhuhC8J4C5xNF\nYKSgQ09ns6fnF6vJc9MGtPzk6rOzqxcvPvnuw4fr7394fXd7uLm7RWVevXr1V3/zl4f/T98NXRuF\nUIPOjS6Z7AReSdAkCJj89RFEkTLKun5IkRXCxEpINANDFDZdUAgcQUc0uSaSoETYT8FUsyyfG9BI\nI9EQg2Nhbm/MTO+292fLVT/0htAQqPQTkJEDOc8gKKhAGR1RnSuikXEKpGwBqPvRBw+CihFSndCa\n9EMB3jWt9945V+VFlmUKyVr7SMElOCXeQAQlGhEDCMcQA0/e2SyrylwZ3fZ9NauBJYpkmVVKbbfb\ncRjGcSyKLM/zZDrx6WevlofDu3fvEg+ozIuh6d6+fXv9/oMwL+qZVTpOY27t5dn5t7tv3DhBsJrg\n+sPH7tCcna2MUiFwjNG5YG1+cfGE6lnal2XGLuarpml2u521Wdd1LKy1VghktA8hhHB9fb0oqqS8\n2O+3zrlpGqoiP1s9a5iHoUvEl+dPn4Xguq7TSOdPrkxmf/jhh/vtnkFEUYzxeGj3hybG6GKwJl/M\nFun0szbvI4/D2E9joS0JxBAVg8mzaZp8cvFkHoaBnTdAmOXJV+uBZ8SJFKmMXs5mTd+xm5RSuVYy\njc3hMDpH9dyQQgCWU8YA2Uwp1batj8FPLlVQFQgRg/M6r9LD7pxLkqcyyyk3IcGtSpm05DL6tExl\nTNg1K0RFgTkFk4uIVhpF4uQniEoAWIa+j27SWhujHmk36b2URTkEF+LpsRURlhPMaxSyaDeO7ILV\nCgyKkNY6Id6QUrQf5B5wqnYgfLJBZZQYQz1bpDLk0TPgFCIz+8gFEIP4GJhD0kknvR4zA6BPixlS\nymitNQLYPpEYgBgMkkLyiRmHJCIgyQ9bMLJElhj5wXZDK53UKKnQtm1rs8zYk+dXcAEiIKJuxj5z\nwxj9PLNPX75opuH9x5vr7X3Xdak1OI696jNCnIBZOPMhz/N5PdvLbt/1McYsW87Koh+GZMVnMhtj\n9DGmTcnxeFRKaWuSoCUZDqc0w+B8+lSSJImZm6Z59/YtAMxms7qsFEMyfCiK4v3799M0ffnll8fj\nMZ3+t9c3pNW4P5RZLiJlUbDzl5eXBJh8YhWS994qXRZFiHHqh7Zti8wyg/d+dK4fnYiQNqQNCQTh\nafL9MJw2B8xag3QhLUSbpnn69OlsNuu6LimjkhQnNeDhgUcHAJ9+/mmY3PuPH1CpVLH6afzmm+92\nh20Yh6vzi1wZVQPutxnpJxcXubXDMGRZppROuVKKwLtora3r2oWp7YUZAsflejWMxzQoO+eGafQx\n+BiarkVF2/0umWPcbe6Px2OeFwBwsVoPwzBMY9/3+/1+GAYgcsPwQK+ISYdWluVsNsuKPNnZjM6l\nmfvQNEkVEJjHvi/rOi/LmvkJos3zcRwXZTVN0+XVVTnOg8Ip+O/evl6uz7786hfffvvtfr+/Pdzd\nalMUVb1cvfj0U7ffTWM/9v3oQmHIFiUHn7ShiABELMARANOToBEiSPKQeTTBSUf/z2Z4p4NJBACc\n74nAKEKkyMjammquiwJRlNZKa2bgKBEAwBoyw9iSpkzPg6NDo6J3mckqWy9W8xhp9ICEzvlmvzeF\nni1nf/nLF5+9uPzFZy/fvL3+8fWH65vNx+u3Tb9PQQRRkNEyUCSDZCfEMhwJCSkSikpqIwQCUSik\nNIMmjiASAQgkCkrWMxArpwSQCEVF8Ry1R4ORxOsIWcSCsrXoGEL41S9wUc+2HxoJhkcCS0pj9L6u\nihAcx0AqKCIkIGINYWSDpKfALiqTVagKjiSotLIIoACVIkQQkchR5DSthhAMKa21QkpD4Wn8RSRC\nkBNtFACYwPswOtdPIyOYFAAsMjnHzLnNdFFEkL5r/eS0UiJyc3ebPGeev3xRVdVyuby9vR26PjP2\nsNsbUl9+8cVqvtjc3f/4w49oNTG/+eGHMA5lnh/3h+3mrm+72Wy2nM1tYV3wCMRAPkpB+ti2LoTR\nOY5Q1THJI0OIZxfnwzAc2sb5aPKsqirvfdO15cWT7X5HBCGEr371Fz9+/y0QBuG+7900DtqsV1f9\nOGzv725vb59ePrk/HJTW79+/33eNj1LWVVbkLnhEtVyfT9PU972crM1IWw1umrzb7XaDMpaUMSaG\n4PvRKj1b1dqaruv22x07v1osi7rq/ZAutveh9z45P9d1zSzjOEVmQtLWlHkZA1dlvffT5ByHaIA6\njsAhM4lQObgwueBRK0VgjCoyQ0QcTocwxaiTblUhohir6NEekoCRA0b6mQv/SG5CRSc9Z+IeK6VS\nCEFIOQpGK61FZHTOx4hEqE1GZn1xfr/dDIdGYjDasvDQtk3TaKQyL5RSwEIKlVKJqiKcrLI8AChF\nCVpARABMom1SCjVFBgbQyiYKcJaXJ0uiccCT9pJEJHBMgcSMgJxEdswASiScZH6otCbAIiuiD14c\nhxh91JoMKKUVCkhicYuwCIqwMAj6ENJIduKBq1MIwna7Z5EcINmGxBhTFITOymJz2N/+438p6+rq\n2bPl+Vnr3B+/+SbGuFqtsixjwc1xjyyJljW0w4fr21u6jT4YpRezWZqNAMCH4EMQEZaISqWsJOec\ntkaJRqKk8k6lscwLmAsRee+bts2sJaLtdvv0ydVut0OBWVXNq7osy3k9Y+blX/7lx48fX79+nZfF\nMAz//N//qZ/GPM+d56SkXi+WdVFK5Ajw4tnzruvavvvdv/w2RTx6jopIRHaHYxWi1lprk5IHx8Ht\n9kdlNIU4js6FWJaZNkltQmVuP3z4kGXZ+fl527YhhCdPnjxW3HR/JD1uanxslXdDv7m+PWy2n7x4\n+eL5sxDC3eb+/ccPm939arG82dwbpavy1bEfri7O/TAWxipEa63Wemi7lOUwn8/zMjPWfvz4se97\nk9l3H94WRbHZ3CXaBTOPkyMiATz2/RhC13UBQDs3hpDXdV3XwzCkRGfv/X6/T2dBZszhcMjz/Ng2\nie6htQ4hROEEVifj+8TbSpP9er12zl1fX4vIr3/9a+dcIqY+ffr0eOyOQ7NYrj9u7gThV3/xF2Ts\n+cWFC2FoR2Q6W1/EGF9/uL7bHxez+d9+9dnl2fnZYt7sdk3X5BwVwuiihaSwRwCdwr3IKGOMeAb4\nudgCM+DJD/0R5zkdCg/SKQAVki+OACht9JwIhFkYvYAIRlQiEKMOQhA2hjKyBUFpo4lasizLrRXg\n3h0U+Nk8X6+hmKAZt8fd3Znluc3PXi6+eL76n3/9xbvruz/86btvvv/BCxOprKhEQT+44FBbMJry\n4EQiMSsERYLi/TS40CEHlEBJDiSAiMAowEIiKBASSuYiK44U0YuSEMU78cBkKm2td6Ed+l/96n9T\nml6/PdZ1HvwdYPTsQhiYqiDE4g0pk2VKY7oejjPCjInRGjI1UwaMhEZrQ0AKBU8hCjGdbslOJ+HP\nCdATkSdPnmw2m2ToSErhCdITAAAinWeZ1a0b98d958a8LANHfnCJcdZqOj01eZ4jSUJ32r7705/+\nlGA6rfVsNrPazKu6rqrlbK6QqrJ8cnlJdVYUxe9+97u//tVfnp+f//a3v727u7s6u+j7fj6fpz2f\nUkqA+mFiaT4cNoi422xjlEc9vTE6sV6DsHQdnlLmEFh2+00S7EXnATkri0NziDFMXQsihTVZnr9/\n9+6w2/Z9f/7k8v3dZmi7cr5wiNWsrmeL2809AGlrV6tV07RN0zKLMtb1Q9N3ZjEv6ipThqJoUrO8\nBB+H5qgzu6hqWxYcYqOUrUw1q22RTxjGrk8e1zEEEakIM45B2BhTZdmxazebDSIaa58+fYr73X6/\n9xKNNSKy3+81qRSn5oJnBKV1wo2sNoLpiQNUGgotef64VlAqDbEn5RKL6OSahxhO5C9hgpiCbzUp\npHEclUCR5RqJnY/M1lqQAMmGIgbvAymlSBFiEuEwh8goIiE+GGpG0YApkdBobRQRovdhGAajdYxe\nRIw5hbGmwj8MgwtczWoUcm4ERUVZDcPoAyetJhkLkSOzAKIiTMmdmOgjLADCLMIkkAKe0r1wOv9N\nFlCx9cycTECZQeGJgC0igMAgKAAsgSA+kLwSqT4RrdOQkBBlBgkxPAiZWLsYnHOb3XZ4/+7Qta8+\n/0xbO18uuq4bgmunwZCZz+dZmQEkZ7MTDJsZtZwvUKvI7EIok1KST7JURpcQgMJk+UMOlLV2ebZO\nfDNrbZISJoFU4mqXdbV4crVeLNPonFLlk0Jmtpjvdrt+GqdhRMSz9Zr2ewBwIlVepHeLAvf39wqJ\nQySirmnvtxtrbVGVhlRWGEYo54tHKq9WFgijjO04mcikVeAYiVipSOS85xDa476u67OzM0RMZh2n\ngIo8Tyhuel8picU5tzxb/vT69byqX776VJOanOv7/vrmgzK6qGZPnz/DKMWsLmY1upDXs8PNdZZl\nKMAh+sjD2I99F7P8xHhSaphGACiyum3bY9eOY8/MBcdxHD/eXFtrn9lnhS58DNoaH8O+a5q+LYpC\nxr5pm9v7TV5Wq7Pzbhi3+0Pf91dXV2VdT9MUQhSRruuttQI4jc7UtqyrpmlGN2VFTkje+yhs80xb\nc/HkEgC2+93NzU1VVQzCIG/ev7u5ubm4aN6+fYeKvvrVX/zlV7aez65v79n5/XZf1pUA7ds+3t7l\nZfHTN19fXFz8+pdf/eKLz87rare5DyEszs66YxMZIZEhBQAJGTmCEogpuvPPDGsAABU9Ug1T9U1t\nkBCd1sUcGXRSBwtiEA6BAzOhRbICIAGFVJl1Hj17L1jmZY2olLDIMLhdXQSCdmh23XEyVmUi4Cbp\nh4CW8pmhfK3zyy/Wf/Xq397tfvH//c//5Waz3TUfXaCCsqxcGU2TC5UeY/AxegKGyDF6N7R+6oxG\nTUzIwsnTWVChRAmSISoAAGGIJIGBEQnYO8oiKiFl8jK3ZS2DF++//TAVZRayp95kUmZBJoUxNzBE\nF3SBKKa0mGWCKQotcpxHVLbMNGUBTRSNRmMESMY0JAoACQiBkBDh4vxyt9sVRfH08on3nkMEgF/+\n8pe/+c1vXPBB+FS9+DQNUGb6vh/G0QUvCIE57aTOzs76vveTm6aJlUbECDwMw9n5SpI3kKK0qlws\nFuvlarVa7Tbb22GEyDcfr/uuO1uufvnlL7bD/vnz5/fXH13fHbd4tpjnVluThxCKouj7Me0oASgI\nuyBKqRhjFJim6dA2ZZaXdYr+HLU2ZVmGELq+P0xDjNH56d37w2w2OzR7o/Q//+Y3V08u72437bF5\n+eLZ7n5zaJtkprteny+XoSiKv/+3//DNN9/10zg4f/Xk2WK1nILvh1EIvQ/d0I+TR9LG5j7sbu82\nJTCwzItKM1hUuTZOaYM0dH1/aNLUOJ/PtdaoVTP2WZY1TdO2bVoDJ7+dNJg675NSNLeZzbO+74/H\no0KSyMiSZ5kCbIbJRy/MJsu89woQAILzzNEoJYgqPsBL6mQW4WJIjBB59KgHiSCKIwAUxj7yLeAU\nKw/ElFyy4ETJUg58eja9c0Ani4wUhsHRxUmm4H1kYwyBTJP3IeR5PpvNpq5XSMAMIsiRWSmljFHW\nLqxRSbIhD5E/zjmFWfLWEjkZWYMgRDbGOO+dCzqzRVGQUl3XDeNYF1UCJBgohvBogxU5ooACRIwY\nEVAiRgDQxiqlyrIUkSLLgWWKJ1fLRzAgzbhpBkv6Q5REjOBHsWuSUnvvTw51p9hn0VZpyul8feaC\n16SOx6My2eX5xccY+74/tE1hi+SYmD6MoiyDdjbYTBsi3fd9UNpovW/aTKu05yej+aTmViGEFNuA\niHVd11XNzGkRLSGmTzrLsuSWuVwu22OTMOfdbnd3cxt9yLKMtGr7DhG/+OKL+/v7KHxxcZEQTmKo\nitJ73x6bpKWZVfX79+8Xi0VK+4kxZsYm+hVp9eTF09vb22matM0CS98PzgWbZ6C00joiifejd+D9\n6BwAnOd5VVVN08QYF4tFjHG/3yPier3mB/eM1M2lSzRMYxBerlfLatYdjtvttu97AVLGZEU+ulDm\n1gvcbXeGVLY/fPnpp33fX19f3x4PADC6SVtbFEXTtaiVEJo8A8SiLBdn69vbWzT6eDx6AdAmMLh+\nHCZvi3xyEyCO3bjb7fq+T5SrEELGWFTlYrVcna3vt5vr25u6nwFA3/dJmbDb71PoQgghnYOoiJkD\nRyLyMfTjsDvsF4vF6mzNzO8/fmiahkG899v97rdf//HDhw9ffPHF559/7l0cjq3rh3fbQxSOPipE\nAPIcA0sQ0IDd5L77x//yL//yL//b/+3f/8Pf/U/lbB6ncYqAJg8huuCJFCmjSMUYXWALHv7sK/Wt\nAEBwygh7/F/pgbfGpHteMPkHcAxJIIQhAjOh1ihKGBiIQIEWiCGKkchAUQGLjJEPZzMf+nfHzY/9\n4S4zOJ8vNRo/TBl55yOFpTJV14WJbLVYPa/M//FvPv/uJ/XT6+l+305Tr4ODaFXvQQ8QI0VmiSQM\nEgw7Ug44GlKILBCAWAMhSISIsSIgQQXsQJAiKyBj1DB4QiYtTF5MoBwMghnht6/3eW5Z5lPQqswR\nAkDUdTb0R0SxmdKZYUTnx5CisqEUpHy2MrbcNz0yZVkhLhBpAMCkMwJJfhtIUJT17d1GTeHmbqMQ\n1+v1u3fvlDLL9VnTNN0wcIpdE0wrbRfDvjk2fZcAM2VMCgOIMeZ5bpQOzsUYC5tlWZYoP0VRTNNU\n5kVd13meZ8YmjtJxt//48ePLZ8+fXz2ls3MRaQ7HV58/r6rq7//mr//4zbfH/fazV1+Aorbth2Ho\nuqFpGmWsybLJ+xCCVtlyfb7dbpOkPoGxCUifVfUwjX3TbLebcZy0MSbPyrzQWq/Xy2kqFNLNxw9Z\n9jLP87LIzs/Ph7Y7O1t57+fzeZ7n0buvv/6a8+qH1z9tttuu66bgi7saELMsY4S+H7t2SKN/4lIQ\n0eCd6wcruMyrWZ5ZbTJlKps75467vZ5GU+anNJeTKX0eYwRFCk+GJnlRrM/ONpvNOKYy79fr9cWT\ny/fv3w/DQMaqpDkLEbQ2xhBi4tyEEFhYgQrOR2FlNCEJMymVIiRPo62clEUn0xWjEU/e/mmaOyF/\nKrklx/QwJgchRITIEdJhyNP/n6o/a7IsO9JDMfc17fmMMeZUmTUAaHQDRIvgNfJSvOLli4x/UzI9\ny6QXSWYSqUuJFC/JJoFGFwqFmrKycojhxJn2uCZ3PawT2c2wtLKyzLCIc87ee7n7599gLXHUnG4N\nRCUFYqAYQiAEoaTROZ0sKVgrVRYFusDMACRBALH3XgBlWTarm7wwaf0XQkp8YmutkiLPc4PAAN5F\nATIyd11nitzbEJlAnhTqiIIQJ2dBoBaamdPBkM4QSqtoFIJFZHKBU+KhDDGtRwHABh9jjI+//SMU\nj4CAkN4jRfp4IqWqLBhijO7x7xPTCxN8hKg+efb85u6WfGiWTdXUBOCcRwQgropSCRkC7R62281D\nSv5SSltriQmkQCF8JO9HLeSsaaSUAiHwR69twcxCqu1ul2VZckAcx7Hv+xRskKIXlsvlYrEggHGa\nQoxGaSVkVZRPnz4VQhhjhJLe+3fv3j15/qzv+2fPnrVt+/bt26qqNpvNYrHe7/cfyVAxxqZppmlK\n0+rl9dXNzY33viiKzWZTVZXaH2/vN0KIJ7N5ZJ6myUfKykIppbSOANZ760Nabmitnz17+t13361W\nq1evXr1+/fr9+/eLxWI2m202m7qum6bRWidOStq/Hl0/W8wPx+P29v5svS6qMlD85PNPrZ8Oh8Ph\ncGAsCPAwdM8ur01VnCwnjS6KQmqlXMZ9b71ru65ZLibrI0I3dB7os88+i8iMwvpQVPX55RVKdTjs\nSEA/2QSsgUCpVZLkps2usPHu7i75xV9cXm53O+vcfr9XSq2aZpqm7W4XY0xXJC1X034l9Ubpf47H\nY1EUKTQ0aZC22+12u5VSVk3Z9scPNzf/6l/9q8399puvvw4EzjnPACGul2eqzHdtN/o+MkWmVy8/\nubi+evfTj/+3/8f//fe//2//87/4n/7i5z+XShFjCJMLXgjKlRaIIZBzFuXHfKG/Zz2fAOnHoO90\nLqQ2SIJK/gHpqGWAZGBiTCYQhZJSIjAxkAQhBUyDlLJQog5kgmMma4xtMj/uv6f+TRbuqtySI7rv\ni3I1X1wCPYRuhwKhqSoUMI0wRkCxqrJ/8sXVz6+b1z+++/KP39zdvmNUGZpe+BNkzsxAUmBmhFFq\nHK3WLBACBGZGEYAYOWIsMcWFJ1NliEYIIZWWrBVE9NbR1HHA4AONvq1XX/jgtBSOYpErJt+PLYRc\n13VudFEUQuE0TaPvPHmQQlBkZpnXpmh4IBBg8pKETxedgSMzxsinfa44dG3aiRwOh/Pz89/85jdK\nqSTct973dqIQk3AZQTLAoWtdDCbPlFKjtaOdknGbUmo+n0sU283muD9wiHmeC0BvXTOfpQQUiWIa\nxu3mITeZlPL8/BwjSRRt21Z5MaubEEKemb/9/e9fvHixms8iQWZUJEjGMtvdoe2HqqqkNvtjOwwD\nATbVIsnQl8ullspPNsXgOOfGfgjON2W1mi9YYNd1h8P+6ScvQghNVcUYZ7OZcy7LdVmWX331VXT+\nr3/zaw7RGAPM1Wp1e3v/n3//v2qtUYrFakXEP/zww9X1NREVdeO9T1juOI4xMhHM58vsYv7uxzdd\n19UqSxufaRgT2H60Y4yxUCoSdUOfPuTdbsfMaQIbxzEw5VV5+eT6/Ory/fv3zrl3794dj8e6rt1k\now+r9RnF2B2OCf9MgQREVGWZc46AUckYI0RiQQCoGDVKKRURBWYAMEpLrfppFFIKcUqql1ql+Zgn\nn+oKKhmZIEDyjQJiY0yyqkYALWWM0Y3WFOoEVtFpQ5wasno2o5PLnixMhsRI0Y0DB4+IWqo0EgQ3\nBdR5nofoAAwABIqBKDeaH1NqqqoCKbqhjzEKKYhi33aHriVGZXQKOEpTX13XdrdP3UOkmPZuQggB\n6CmqU9rhaSYOzEBkY9Rwcq3SjwbvxhiOMRVgCSf/S8aThhs5aQOYmBWKk790JFQSEZGZiDzRKc7p\nP/6X/2y9u7+/z8pisNNgp7fvPqTYzru7u+V61dTzlNi12+0Qcb6omNlbd9zvz1ZrI2SmDXnHzFVZ\nhhC67pheYlmWdV23+wMzpwVnWl4mRdAwDLe3t4nTlMJoE1hEoLTWr169csH/h//wHx4eHq6vr4u6\nur29/eSTT5JHxIfbm81mkwrtfvREpIxOO850T69Wq/fv35dlmfzZd7td+pS3222Lp/CfqmnyPG/7\nYb/fe4rzxcI5b70LyXAAT/3LdVUmhDmFEzBzVVV5nt/d3ZVl+dHYK+HtZVkOZNeLZbvdc4gaRabU\ny5cvm8X8+9c//OHLL02mnlxeXZ5fzItqaLtCm3/x679MU/X9wxYAZou5VGqwE4OwwQeKf/jy7w5t\n+0//6f94/fTJZrP57pvvLy4u/vqv//r+/na5XH733XebzQYAzs/XD/f3WmsA2m63KWB4s9mssqqu\n6yzLVqtVXdc//PDD999/n+f5crlM8o/Xr18/PDykz2S1Wlk3JYJ36pnS32utQwiHwyHd7ojY9z0z\nF0WxH4ft/SbLsl/95a/tMG4226aePzw8TCH++PatroqimW1224CY11U39Oe5vrq64ujvbm43dzft\n7vDZq0/+1b/8n188fSYQY+BpmohAKZX4nxk7kOLjvocfPVRd8P+Qk5UejMisgnos2MCSY4wheB/D\nxyp+Cgh6DAZnckySOWOWFKLkrsn6ZbnfvvsbtD9JvzdIORfIjaAaIeflOE3OeVAyz0yplMEUXmTU\n1LVKKVVVu9vtf/2bP/z4+h0ztgbTfjThJSiSAEx6bwEAOVFA/75rHuWZiBHJi2hFCIiIIiOVO1FS\ntoim8ZhZFCwNAcYYAzyRUmohBLJElghaSaVElRchWRV47+MJtEfEeSmcc6uz8xfPX37z/fddP1rr\nE0horRXAZZUJAePQOTch4tWTp9vNQ4yxKav5fP7yxSer1WoYhnfv3o12mrxLD0uIMXn9+CzbbDbK\nGCHEw8NDijw6Ho/L+WK5XE7D4CY7DEOZ5Rdn55vNZj2fNYv5brdTSq3X6/v7+67rLi8vX734ZOj7\nqR8E4G677Q7Hs9W6qqrVeb3f76dpMkWhtbYuhMioZJYV797fCKV9DCEQMd/fP8QYyZBzrioKrfV2\n8/Czzz4XgNM4IuLxeGzbVmm9Wi/Kukr8rGq5Sr2CEuJPf/zy008/vXn//v72rsjyWV0apf/1v/7X\nHOJ+t2uapm3bv/nT1wDw5s2bGKmez1Lwydn5+fHYjc52XVeWZSTquqGeNWVZ2hxdN9DkZjK7aBa1\nyYPz0zS9u/2g6xIzPQY3ThM9mkgUJru9vU0Jx+mHJznlYrGYpim9hcTYSFJDkEAxptDutL9DxJTI\nHmM8tEepFEhBREVVEpEZw0dgKaXbgkBA3LdHlEIaLaQk4BgjKmmMCccpDQypD+vHIVFGUjtljFEo\nKMZM6ZS6RuyTxQfBae+bHGuUUum2TCU5MTmEEBmd9BcnnleyUI4+UUHhUX1kzClxoNZVstEd7RRj\nZJQu+H4cPBMqKZVBKVwMPoQsy8qyhGG01rLALNMg0NrkSIqZUYKBIwmGsijKPPfe9227n2xScCUk\nI5W2TOmPyy8lZFqqplfr/Hg6qSJLKY1UIQRrLYAAKYQQxBwohsRskUK9ff3jarUqtOmPnaMQnIUQ\nQwyZ0l989nld1+Nomcg7Nw7DYbsb7HI2mxVZrrNMShkjTc5Ow1jl2eFwSPLnsiwTjbDtu9HZMsuT\nmJWIlJTBe2stxfjk+rqu69u7u+PxmGBqG7x3rJRCKbqu6/t+ebYu6uphtwWBo53uHzZZl6WJNsZ4\nd3dXry/7voeAVVWlPnGaprbvqqbmSGlfa4zpui6pinXwx+MxXbxhGFyISqng6fbmpigroaSWEqVM\neHvS6qWtw2KxeP78+Xa7PTy6faXvSZd/mqZxHIUQqjIf7xuhVSKgH/vum2++aZpGahUZ69l8GqZ3\nNx9ePn/x1TffJKw4xJhXpS5KIaVgRik+vH049t0v/upXm+32d3/3h29+/GEcx+442ki6+Orh7r6u\n667rfLBVUX7//euuO1ZVNW+aFGuYBu58rstGEIpD1+/b7nbzEBjyqq5m89lska6vECq1QdbePnl6\nmYQBKYgbEROTs23bqqqapknapNlslrw42p9+ur6+njczAJjP51Lqr7/++sfXP33y6aurq0uVZfu+\n7bsOlNRaknedHd95W1XV1dXVi2dP3r756e2bn/4P/8f/02//8T9++fLlJ598UtbVNDlrrYhBSeOR\nUrzaqe9OzSZA+tjhkZ6VmlaJyJ4ZGAQTopCAyBJQSCEEEAIkt+NIiYlIRBzmeV4aUyKDyp3CCWw7\nbH+k/kMGh0JMGWgRiS0xo5DZN5v91eWzKsu3D8d9R7NZYaTou1arIEB4F3TsZ7PFb3/727pafP3V\nn3NDQugYo3UOAJRSIUztYTLGnCxr8e+rLwBM01ahMMAABIKJgWKMzJBngAbBAGuFBiEDgQRgo1VC\naKmUQCGElqglSin6bs+MzIwgjJSMCT2Qlm1AGVF4BFQapU3LvxgjIguJKAUDsJBCG6XU23fvsixb\nn58JIe63D5vdtjCZ975ZzInIx0DMqUPSSiLicbKMmNY0OjPe+/ZwrKtqGIZ50yxm8yMc3ThVRWmM\nkUK8e/u23G5NlmGe3324cTHked4f2+12m2fZYrEQgMfDYRzHpIU7Ozuz1h6Px36ahBD9MPXDFIGV\nzjzxenVGRP0wiGQreHLOJ6VUU9Xgo5ZKCqGVMFJpgZmSiFgV5aKZp1q161vn3N37d1prb+3r778/\n7PY/+/yLy8tzO44P95u/+7u/u7+5PR6PSeDHdT1Nk9Dq7HJVVdVutzfG1FU1DsN+P45dXxSFVgqR\nM63OVst33U4IwYg+htHZXGmUArU8u7oELS1HO0SUAuIp9+94PF5dXc1ms3fv3+/3+ydPntRN07bt\nw3YbY0xpu0qpTOlgXQBYna+OxyMy1GWVbAG1kIvFIkV6N03z+eefR6Kvv/764X4jpTzLKiGERAxM\nTKSUzIrcZJmLISUXpascY0xos3pMbzsdcYCZNmjwJMkFpBidcxLwlLuT5RTZOx9jDExCCCUkSuWC\nR2ZE5ABE5CkRY6UglkqjNpD8tjgyo9YyEYa89xRCwvMTPoeCpUIEKYOMMTJEKSA3maKIUopMoxTC\nC4gUQ5jGsUA0xnwMHEz+DQDgvVMoJAqtFCKmxhURQcmIiaZFIRkQeOcT9YFTzhgmD1oFnEZNSB4G\nyApPi+EYY5IcEwIwi8c8MmRQs7LKtNlut99//918uTR5VuZF6FqjdWkyO4yZzpRSDw8PwbqiKFwI\nCToAEMQolSxMZpQ2UvV9i48RPd77cZqIg5ZKZUYa/RGHS6C/lDIFCSutm6bZ7LYX1cXnLz/56c2H\nrMjTZ7S+OH/56auiKKavXN/3b9+9K8vyF7/4xfrsbL/bTdN0fn6OeVlVVV4Wx+Nxd9hPdhrGYYo+\nz/MqL5TRIDDtVIBYKUXOJtUTpFhKIqkNWs6ybLmYE0Pf90icwpaVEH3fJaZGCKGqqmRKgIjn5+fW\n2q7rxGP6tJSyqqqoT5ZMbpx8N3CMD/cb693qfI1S1rMmhPDnb7/FSBJlO4y1SPxnnVVV3TSmrp33\nDuCH7793gbKyvH3Yvnn70/541H3vnEPCcyk2D7sf3vwEAFeX54h4aI/OudlssVrMyrKchrHrjkS0\nXq6AkZh3+/12u1VK1VX16aefXlxcMHM/jbvjoTsc5/P5kydP9vt9COF42Gqt87oJITzcb4wxz549\n++STT/7Lf/kv4zjaccrz/OLs/OLiwhiz2Wwuzy8+/fTT1Wr11d99+f79+6QS/if/wz++uHry+z/8\n7duf3ixWyy9efXJoO5Ti2dWlPe6i84UydVHmmf7000/Xy9XhcPg3//bffvrpp7/61a9evXo1ny/z\nujoRGAAFIAoBQiTORyqcWZaJx7r7DytxZkwgiuSZyFNkjhE8c5QyZQ4xIErJEpklM0PvLEWwcYh+\nzGXQWRftu373jaRtJnsjSBCEoHz0WkmZ5/Xl/6aN4HW1fPnFONrj/mAEnn/ycuz3QK7vDsfRrrJq\n/vT6RSgOE3734U8xMoBQMo8xehcQVVU1IQQ6Vd/T+0ivvyiFABKROaXSsI6gAunM1CgblLWIGYAS\nkAkQjGx0J4RQwiEiEgABe4yIMrIQCoQSUgohGdLDDwNQRJ4otEPvonMxePJ8ciBnIbSNIYRgvUNE\nkJKFDAzj5LIsK8paa42IAcYQGVEwCBscRMpKDSBCjNa7qqkJWCm1Xq5ubm7u7u5yY+ZNE5xvVmeK\n0XaDQAzeF0WRAfR9X9RNlmV93y/n86qqbm9vf/j++9lsdr5an63WZ2dn0Xlm3mw2f/4zD8OQqi8K\nNdppHEdUWhvMMgMCfQzOOaGVlJjuE4m4WCyW84UGQTGO7REBrj/7bF7V1lpPEYDI2X4aTzAsUX84\nXl9f//qv/nLoej+Ol+frly9evHnzJoTwzTfftG2b53lsWyJSWvb9YK0d2i5FBJZZ1h/bMssX80ZJ\nbMrKU0SAFOEq6izLMuvC2A47HyGSVso6p8s8AAeihL0RUfQhhJDsIPKi+PnPf77ZbNq+c8FLrWhi\nRFTJWyPLyiyXUlKIggGJyQfHU1rlqqLQQjZNk7rq5AcshShMVhRFHBwrKYSIFIlIIkoURmulVKAY\nKcYYKcQQg8DE7EkrnpjWopwsfYSEU6wgpgyDNOx+RJ5PjHfEx41vlGnGT++UAsaolMyVBO9OQb/J\ny5pOwFUSr+Z5ntjgH19DPK2lI3MkCoioUKJB245IgiEKqYFJSWQACRwjJSI2UWBmAYhKUYg2+XSa\nLBGnvffR+1TOToxEISWCjyEwheCSIUEKv05GfYRAzJlSzEwMjz6yIBC1UqlkIkKifUk89d3ql7/8\nZQIbt9vt8uyMEVSWZ0U+eaeUGqepLOsEsSYA+eCGu80m0zo4b4zReHLDZYFFUYkKThRzIqWUc5QI\nz8w8TRYRdZ4rpYosn8/n++Ph3bt3ZVWt1+t26E9caCkQMfVKQknnfUQITJN3x77LyqJs6vVylQQn\n6/X63WZv8kwIcWiP2+0WpBidDeOwkvLTTz+tqqrdH5JVRdu2Yz9YOxqjhEBjTAKxj12npcBAWsgQ\nAoTAUkhGAJFJ3YeQ7tphGN6+fQsAdV2nWyqB6ol+lWCWoigGmkLwWsm8yMAThSilbObz+4eHctac\npcrX9grFcrEAFEMIE5EQQgY/xgiH9th3u8P+4eHhfrP95a/+6ububtd29Xxxc3NzdXUlGUHKfd8V\nVTUMfYhM0QmGsizLskSQbrIcyVnLzKvZ/Kd3H1DJ9JxcXl6mTN+u7ynGtm0Ph0Pf99cXl4vF4sWL\nF7PZLLrpyy+//PHHH6uqev7sWfIUm4bxxbPnv/vd76y1P/vZz55cXaempMhyqXR0/uHunpmrqgCA\nrMwI6cefXl9cnDWLxvlYVOXV2drFoJRq7WCaJkFqXdfN6ub502d932ut37x583/+v/5fluvVb3/7\n21//+tfz+dxTECnuG4GAklwnhX/YcUp1V+J/98WCE4skckgRPcREFL0PKEgKUCKl7kDK85zPAmKM\nwSoYtJiQj8i3meo1egAKwJbZI5LRWJZ6Nhv0E5VpS/BwCErk9fmVFHTv+nreRNejmMnSDUJbq3D+\n5LO/Xjoj3r9/v9tvhVRSZgGcFDLL86nrAAgY4KQPSop+0oWiEB05YiZQUhYim2m5FMUKxYKxYJZA\nAjEphkBrh4iKBQIyM5xiWrgoSkQCQYBpRwuJKxW1CEzdONDm9tgehmE4IWlKKa1BC09xsJNzXmoF\nxPP1auqHfdcaO81msxTXEZkSB34KfrJWGp1LQQKsPcnzkjVVmRfL5fLq4uLFs+dt275785O3rshz\no/XY9cG6xWKxXK1//PHH4LyWqszyZEqjlToeDkTEISZJqCnyaZq6of/pvZ3NZmVVeR/bvttut9bH\n9dlFNWvGyU3TKKWs5hWwAIB+HJqs6kPo267d7rtjW+eFVqLM8vubW44kJHyU4Q3WOed0mdezBmNY\nNvV6vZ6qehoGLZW3buyHxGt5/vz5s2fPEhg2ADdNlWXaW9t349nyfDlf3NzcKKWWs1mZ5aOzdugB\nyLvpw2F38elLgUICDs7FyWmtC8gthbv7W5YCBLJAVFIyB+djCKYoJmv7vv/5z39eVOXvf/97IiqK\nIjmRcaQYQqL5IENiHWfGOGsP+z0gzudzKeVHU4fD4fDlH/6OiEY7VWWptXa9TUSkj5BvWhVzSNFH\nMeE0QggJKAE9xZQ0LJICMql4AJ1zUoi0tEqfUvINjMElDVueZWmyZCJgFsakppkFK0CSpJU2QgZE\nmXoIBGQA5gRXuRhSqoTW2gsBziX4OkQ/2WQA4JiikFIKEIC5khE4uuDBs0AphNBKK2mdTftQ78lz\nPFV6JCNPSVDpo/iolNFCAIBQUilFwNbatHb0dIod1CmZ8fH8IUq2WASR6SSPPrGukkwgVf1kRwgA\n6v3795fX10+fPp2C64bhj998fTh2IDAri4vLy9lq2XVDO/SEwAIPXSsr0/X9AFiXZZ7nfrLDMCDA\nNIxVXlRVxRwlwGK5TEugcepPr3iyZVEopcq8qKrqcDisl6uEZhhjXrx4IaW8vb9TSj/sdyGEQHGy\ntptGqdUwDJ6pXsyzIn/95sf9fj+bzbz39/f3XeD9+3eTs33fp5zByVrvXT+N1jkG2B72uTaJ2R8o\nXp5fKKV2ux0wzWY1UXDTlOf52O/H9siEHClBB6hUrpSaz621WZbFGH/66adkFJByC2az2UcbvPRG\nuq6Lmtvt3vaDCFSojCM5f8pR+eTly2PX3t/fF0UhQNjgLy8vt/e3Mcbk3ymlDJGPfZc8qiam4zDs\nu66azz/74ovB2of9/sXTFzebh6nvPvnkE5BimEaOdLFaKin9ZI/Driryi/WZYDgedtMwJgo3Iq7X\n6/lqaYM/7vZt2zrnjNbJ5Pm71z8cj8dnz57N53NjzGefffby5Uut9fF4fPfuHQAkyjc+eo+EEO7v\n79Ne+d2HD/d3d7vdLgn4PfnZrL65vV2tVrNZjS1P/dZU+WqxSPd3FpdZls2qer/f39/cuvk8rRJQ\nileffXrx5OrDhw//z3/z//pf//N/+tU/+ke//OUvn16cGX0iiTjnyMcoo9aagD+6Yp2GYGIG6EfL\neEpBQSkVYGQhWDpLDBgpxuiAGFP2G1Neeo5RSShywtD37fupvZF+ACUj5RaQRRWrBeszLM+hWrFY\nWwIXAwMXuvCmcNFOkbvWaczyui618db1gxO1Ojuv/8li/tVXX335xz/sdjujjK5UCG5znFBUJ+I2\nJXLyCXKE1jMjkBGgpM4xm+n8TJjFxAXLKrChFDWJqBAQWLAQp/eaBPYAAEwQmAiIICRb+ghIjIRA\nKD3bOLhjt/M2eO8LkymlpERppJAqWEvAoJUwBpR62G1TUj0i+hD2XUtELHBwNsbYjYOPoTIyuRK6\nEIZplNYaYyjE3W53fXn59PqJkcr1Y992u+22yguIxJFctNEH8kECkvMTQN00Q9u1bYtKJuEfE+92\nu+C8cy7PsqKuIjupDAGPth+myUfWmVmsV23bHo4dSrG+OK+L2lobSOW56duOmQXDOE6ZMXVZaYnI\nYIfRuUmhUDMsm0xnQiI4JWeLpTZGEoCPr7/5zjmXKQWREtNztVoJIdbrddXUN3e3x66FwhRFUZcz\n5xwyaCOBY9ceiGB1IumAQNBSKJMhYndsc21iCIEJACMCa4kau8MDSKG01kIrKSUBZlkmFSiZ53nb\ntl99/aeklJVSHLpWKVWYTBlJMXJIom1ARIUCFWZJdCRlnmVpK5fGJ/EYcWaU1lJNwyjlKc1Fa5U2\nlC6Gvj8ZrQshEjOePCVFOEZ8rEzyZBnLnFIiPq5FJZzIGSfQmOg06caYsM/cZEmqAABCysTYAgAK\nIdeaOXH6QAiUKCJHF2La+m3DHoljjAIxjf7ODt55DpGIdDKfQmTm1XJBxM770VkfA1FkTz54LTMt\nkzdIFCRACmZGYpXn3jokZiIhpJbSE4lkaQugQRhtQCAycCRkiBCZGVMLwiweo8sihXTQiTTyPiJz\niKlBYoFIAAJPoUlqcq4b+qvF7LMvvvjp3Vv5WrngWQqFsG+PIPBwPO52u7QCvH7yhHKBd/d2nFLZ\nYGaQykgxDeMkZR5zABJCJKrO7e3tdrtNuL8ELPI8QcFa65ubm67rCJiIrHMROPE1qmbZjcOhPQop\nUUkXvETIy3K2Wm6320Pbpvl7MZv3fd/uD8Xy7ObuVilVz2dZno/OEsJyvRqG4bvXPwCAn6wUItcm\ny7JMm/PrCyJqu8Px0O0etsfj0U1jXRZ/8fNfJLUAdjQMAygzm83KvCjW8++//56Zm6ZJhTbGOI7j\n2dlZXdfJDPIjl905t5gvXD8apYvCXK7OM6kOh4Mw+i+/+LWQcnfYp6XyYja/qM8DEynlYnQhEjA7\n50KcrPUIRZ5/enm9Px53bVczHLr+5edf/PTTT/0wAKKL9PCw8246X63reRkjAQcjZV1WVZ4ZraNU\nEjBat1iv3rx5w8zn5+fH4zFJsFbzhRCCT7GV4JzbHvZ5nm82m1VTeWtDCEqIpqrsYrHdbm/ev7++\nvn7x7FmMkWPsjkdrrc+yTOuL5doU+Ycsb/tuu9sBwKvPPr189mS73e67/WG3M1pfna3Xq1Xaqe+k\nVEbned4fD+R817aJ/hNCAIHKmOunT5vl7Hg8/v4Pv/vd3/633/7mN+dnZ0+fPl2v11mecYjRh8k5\no9QpAvjEL+aYBO8yJHY0SRBCMEMkYGaZ5ciRIwFFYAIMDIzM43BvxwEhFAbZdeP+HrxtTONijYhg\nKlksqDjzej6ZRWvK2qyOxzbPiuXlWrDYbrcUuZmdHw/3Suee0U1EUauyynSO0lRr/at/8rRav/z9\n739/e/cBUMpcAnUn6T5/rL6n0ZWApNQm10pmQmYgy6hKJ6oxKEQFQhBEBaxlMJIkkVcLBiBkEIIF\ngID09PsYGSECkwCCVLQFIk5+csEh8TSMxhghOculMdnkHDP7YMfgPLPQCrWJKCZn87IQSgIASMGI\nUukEF3sfkxGb9f449DHGY98xc6R4fn6ODPe3t8H5sevf3P6w2WyYaGg7149KqeV6liaGWVHlL19l\nWdaPAyHsD4fNZvP8+fPR2STwy/N8vlxorQXg3d3dvh1sDDFGqbPrp4tmvpicq6qqG/oIYeqczjOl\nlI9hPp8vlvOH+41gKIrCjVNdlFmu/TANff/Js6dc5EWWL5fLssrTXlkQg/d3d3cuhidPnkioH3Z7\nKcRut4MdqMw0TXM8HruhH3+aHh4ehmE4P1um0iIAnZtuP/Ru6N045XlO0c8W87P1Rdt33/7wvfVO\nS9GPkyCGSAmtHe0UBBBw0dQk8WReGAkl5EprqTxinufDML1/fyOUEkJ6F50N3kUtdF4WJtcCIE1d\nHCJRCN5rIS7Wa0Kw1lo7MUJRFIBslKyqGSJ2XRecjd4JEEQgpZBSSK1ijOSjc1ZnhiIjsGAmBAYK\nPgBApgp4FL/i44SXNBdEJBiITjqltK0YBytRCECJgjgG5yMGiY9hBo/yNQbgSEyssyIyQYwEgFIA\no6D4aGsRPk7elMS7MWrFIXgKARGFMFoiInBkEVkpqZQUEq211oekFtV1kWwsIwVixkcg3SgNj5ZY\n8TGVLsaIhGloFTGlLgiJSigpjCAfKESMAJ7pRAUnQk8nu81Hg7CEHwgJTDJyBBZCMAqRSKOTsz+9\ne3sc+tli/u7mg3VOZUblmdTqz99/q5QaJjeOIwokieW82Xetyoxzbr/f5ybLpZ7PZoBY13W6JM7F\nrjsyc5Zl4zhCiu6CmCkNAF3XRR9ijKvV6uHhISvyBIyMzurM1HUdQtCZ0Vr7EKJIXZCQWpVleX9/\nnyTMiZ8FxLPZbPRuNpst1qssy3wIgSkviyR7cM5l2sxms77rdsfDar6YzWaHw6HrOu+9kPCwvafA\nq+WyrqqL8/XDw4NROpNq6npyNpPCCFRK1XWdLkmy2knQR9JGp3siERASjvfDDz8gw7JqSp01Vb2Y\nzQBgcq7dH45D75y7urqy1tbVTJv8h+9/BI2p/DCe8qp8CIgyq+pj3324v6ubOSL+3ZdfPXn+7MWr\nT3/4059ns1lm7aFrOfinT58+ffp0v3kYh64oa6Mlu7C93wxdH8mbvNjtdkQ0m82Kqowhpnn9eDzO\n5/NpmmIIWuurq6uqqnJthmEwyF3XPTw8JH1hop3vdrumaWaz2cPDQwoPTvvvEIISarL2p/fvAsVm\nNrPB/f7v/iAE7vf7X//61198+ml/OObGzMoyOH9/cxudN1LNy7p69amScntsAbGqKutdoqBLLapZ\nI43u+35y9v/zH/79YrF4dv3k+fPn11dXq8WyygujtPdeQHLgSSLG0yZYZEiAJ11STA8FMIOWClgK\nYJQkBCOfVq/IrREmuAmjl9zMKpUJUerMWw/SsKmhWtusHrCYVM4ym+22y2ahZDYc2hi5zgsi3e53\ns9mS2Do3OecRJSrpSbpIYcTl8vqLX55FOaO//d3DwwMBlIvFNA0ABMgABMkZM4HQYmaUUkqBUAzS\ns3AsHWdRSlQaBaBiAV7KqAQJ8k6/pBA9R6bITBwjEQTywhhCikwB0APFSATEzCKOHAkRA/s6KzmS\nNBIkCQkE0UdyzgWATChGsJHmy6XJsmmavPdVUQKAtTY5VSXvFwoYKB66Nsm9ymY2dH3btkCcbmxE\nzPPcO3d5ds6RlFIXZ2fz+bwoCmR4ulwJKReLxdsP72/ubgettVRCiGEY0vCEZ2fr9TrZoW/3u6Jq\niqJywQshVqsVCHF8f3O3uV+slgT8wd6mtl4pdXFxkef59cXldrsdun632ylG9i76AJHsOFVVdXF2\ndn6+FkK0bSsYoIHNbns8HPq+f3p1/fmrT5vmfrvd3m0efAjn5+fe+GmaCDiEgFLOFovFYiaTX9g4\nZUZFwCzLzs5XSqmyqJuqXp8ts9Lc3N+47eRCFEpDJAFosoxiHL0bo/dMeVOhktIYCRijiyEYZXJt\nUKC1J6IcIoYQuqFvmmYaxmGahBCkYqY1MvjJjuNoNCCiMjo11tM0MbPUJy7uOI6JRZyUk0QEyXYX\nIW0W0kWkE0kxMnNKm9VSCUBGmDWzVMDSQIcAmIQSQibWkniM9iMEF8PJkuIUmcAKBTNzjCwlctK9\nPU7GgFKp5FbGJyc7CkzpvPXex0jpXsq1iTEG751zs3mBj2oIhhijlygQ5WSHHHMppQYRUGgphNCs\nlJbSez94zxARkU++zZIIMqVRAUfiEDmJrokFQ4zEGKLy4IGclwTKmCLLp2lyPHEkbx3GE/JM8uS2\nJtUp4uLjy0sSYGJiAEZm5kCkuqFnxKKqPMW7zb0NfrFcnj+5ev3mx8m5QsphGISS19fX7eH4xz/+\nsZrPyrLMVyb6IIRQmcmyDJmKqow+SCmTZ+HhcLi8vEzKlqqqvHUJH5iGMYkQVquVMWa9XHVDb4xp\nFvPRTsfjcXBRStnMZrvjwdtJKMXM1rtxc58V+Wqx3G4edt4vZrOmqtfr9devf1osFtWs6fqeBV5e\nXm73u91+n4D+1WqVFK7pee77/v3bTXpty/niw/ChKLIXLz5h5q/+7su+76+vr+fzxX6/t+OEDN66\niVyqVX3fJwOsRDt89+5dwnOqqprNZsMwpIKUZdmzq+sXT565tk/chGmaDm0rjCqqsn3/1jl3cX41\nDMPXm6+HrldVyunE1DD6QCykVOrb774rimq1Opu808ac1dX79+/fvXt31sx3u52bxpTmZq3NsvzT\nTz/dPtxrENFOvXPeuTzPi3xhjIp2TG7Pu90uCaWSReXhcACAuqqapklwhRunYRjmeXa+PkOGb7/9\n9rg/SBTn5+f6THnnE67orUOGw35vrZ3VTVUWd3d33eEoc3NxfbXZPnzz/befffH5P/8X/1s7Trbv\nlBIItLm7Dc45O52tzw6H4/39fdnUVVV1fd9blyCTOEBwI0hhtFZGZ0Uegn9ycbHf7797/cOfvvnz\nar549vTp86fPVvPFxdl5ksChUh/NV5HYsgsUiTgyp+x6oRUiciRgwcCCkJiBmAAEkwSdZ1plNXI0\ngJoZI9FEzXLmMXMyn3TpwPSgrchB5Z8tRdv2Y+zLolG5sdYCxNVi6fzgnAfkuq6FMNNo22mQQmd6\ntjtapdST558PFoa//d3DwyYDZMwBo0iZNpIf7TVB4hkgRkJmIBQeBAktlA6IQikUhOQRIqJjnBi9\n4yyCJ5aAEZFZMGEkaRxEYnDMPoQp+tFZ532g+KTSQgilpBBojE6mSMxcFAWDiNaBQIlCGc0oKbjB\nDlprqbUQQmcm+pAm9RgjAaOURojIFGJkAJNlp8OXyChd17X3/ubmZmi7q/OLi4uL/XY3b5qrqyst\n1Xq9XiwW4diGEJRSMcYk80t8i2Sdkc7uh/0uESfzPD8Mx5QpwsxFVYVwCgNIT6WUUgjQWmudMfPD\nwwO7OAzDYjaf/+xnnz7/pG8Pdx9u+mOb53lTVYnU03VdsqxvmkYIQT58++23tzc3s6YJ1iX+RJKg\nTNOUksGSFggAdrvd06trY0wvu9VqZaRazJYnPYiR0zTd3dw6CmWei7Ozbuh3o0NEJVUiQ/kYPEVE\nsT8esqpUSnGSYHjvCKI2QzgZ0ex2OxCiqMoU9bNerxP+G2MkKQVgKrEx0HK5lFrt9/uu63Se5XnO\nCMlTlpmdc2mo0FoPw6AYE4mdmb3ziWMrhBjHMYXrKaOFkslJSQiR5E/TNEXnExngowFDqrJJrSCE\n8CGM4zgvCudc13XWWsFARFluyrKMPgUZIocYnQ/eo9ZCiGkcUQiUIjAFip4JpUAhjDF93zvnY4xY\ncILNhRDMEZFBoWBBRJ48SKUEZNpk+kTKQ45KyEwrIQSrzDkXvSektPNONDfvrckLJaW3LvoA4hQj\nrITgRENLyQUhoJRaqqoogChaFygSBx8JiSnEYGLqGBRKIQT/A8+sEwhPMekRiSgQqZHF9999P7t7\nePbk6aI5CxaUUk+ac1q6d+/fz0zz7PPrh90uR12sz+9v7o7t9Pz503EcYxBdP+22x/v7h0XVfP5p\nEyhO3sXolZRGyGin/nh88vkXRZZ3XTdN0wSiubwqY5Qo9s6bZr66frr77jsQJs/q3bZdzNa33f6n\nn34KIczn86oodWYQMbmIGWN+9rOfHa+Of/7zn7uuq4z89u2Ps2blnPvw04fZbCa13N1t8yJ/evV0\nmiYh5esffwKBWuuYmVjmu+A88my17IdBaz2fz6PzU99N4zj0rZJSCECMLKJD52XYtjs7DE3TSCkz\nJY1R3k3HtrXBz2aLCKDyTBjdumk/9KOdMuCFyqusvrvf3m3uPUVIBiNMNzfvklFis1rfbDfjMCwW\nCycYVD64QUpp8loIEagPIYCST56/9N5HHzKVGWUQcTlbTtPUT62UsqyLyY0CgFr/X3/3XzOjZkW1\nXi28t/u+nVXl9fW1FrLv+3nwRVGMdtq3ndLKKOEjCyE22+1f/MVfPn/+3I3T2E+H7W6z2bWHgUJM\nWkNTNbvd7v3dRmZFXZdSiNvbu+OxzYu8bVvr3avPPn3x4kUIrtzmzawcx/EP//k/nZ2d/e//x/8p\nz/M5aKgyqE6rX2vt/f39puujMOM4DnYX3t4kADPGyIgC5CyfVaZ2wUcXAUSOGUue1eWsOlvNu91u\nd2zbP/75x29ff8hy/ezZs3kzuzq/OD9bNVVdmExIKRR6IIYYKDCRYEACIUgwaK3pZHAHUQIzJBql\nxKcf91V4WqkAGhZCcIiAJMHJMM2jl15qpx8y7UQUAkFaiR7kydLd+ygwk7KUoJhBKRSCGNGHozGm\nG49Kms//4vPOdu0fBmNyFwOAiCmaiZFSGWTOICCgQAEMgCSEyDSgpJlSBJ6IAhCzmcBMXCPiyO9Q\nIguODIjIKKdo23E0WTY4z0qBkn0Eh5KM9DHsfFbkuSJgk+0HNasXKssBqJumyHH00UuV1bmschtD\nR+486hCSjpmFj4hS5iUgjoG6wboYiqKQQkXnBEKWZXlgOwU3eT1r8twAQGfbiYfPX76UwOLojvsP\nfNasztZxf7Pd3ehVE6KfJjzev8PheN7MRg4m+KKpL58/tyHe3NwEG8pFGZ0Xjquq2u12m80mRTVc\nX1y+vLySQnRdFw7tZVkHJqU1I+TAD7stTNNyNov9oVkuYuhRcbkoZYZH38ugdXeY/OT6USA2ZRH7\nCaW9uJjl2c+2260fW3ZjqWD55PLN27fns6qeNRimH17/KITAWFprz66u2/ttURTB2uP9w3y2LM8y\nqw1EsqPrpsP3r3/wMag8K+qqns9qHQPFfrSTmwjF6GMELqtKyCz44AZbL+amJM5EbrK7+1szP5OA\nYbDz9SJJAJZNnSs5q8uu6yY7kdZaapCCSALraINlMCCCVFGbqpmpIm+7LkpkZmyakTk10wWKfLG0\n2yNHiEQs0EewgQhRSKWEwhinaQqjr0qdCl5dlHY/AoAk5YCm4B0HgSwilGVplGDA4ANHAAYJOCuL\nIi8S54sjZmVhtGaBRw42WkS01nKIWZYJk0/MjKzyanQ2BkKtAorRWWIyuQYhKWdtGBmmwLXSRms3\n2TyY8OiJEZhsCFaw1iiAPYRZVSsEN/aZVrOsHMeRalo09byuvPfW2pgIsARlPe/7/uD79E6ZWWhl\nqnIYelSSiKYwnrRVSnL0ITiOQUrUZZbUz2mDKeCUiSckS4ksBAuMAi0EzyEioRJEFIJPa2/16ovP\nD3337s1Pt3d3z58/f/nZp9M0/fT+3TAMRV0RcD+OQkkXPLB4/vKTdzebBEAtZvPgpoN1xpi8LI59\nV+osz3MOPs9zFqi1Pr+4uL+/v7i4yMtCagUCT9SAqjwej2Sttfbs7IyI7jeb2/s7ROzbtszyel2n\nfBKhlVIKiNOgOaub/XYXnAfiaD0y7Pf7xPS7ublJQoL1+VnTND542/fDMIDA8/PzatYkR6cs06nt\ncs4F56PzXdelciilvLu7u7u7O/bdq88+XSyXAFAY0zTNOI5CyGQT3/V9dL4oin4YYoxJ1Y4MiUy+\nf9itz86Sam0YButcjFFoldrYGGMalJumWa/XxphDP50Uro/oTZowpJQc4hCSQjimX62UoiiT7C+J\nnwSiiwEdHYmlEBLY5Bkq3XZd4ub5GG3bAoA02nrXbW1KEp0vV7vDXghxsT5bLBZD2yVew+vXr58+\nfZp0SqlZTq+q7/u6ro0xKCDh2DHG4/E4DN3xePTeV1X1ySefXD19Ejz98MMPD7vdcrms6ybGmLCp\n+XzeNM0PP/zonLOPvuQ+xhgjCOynEcXJNCcCAxIKIYV6eHhI98BqtSrKchzH0Y0uhG+++SbP89fl\n60UzW8zni9l8NqurvDC10VJprY0yCEhEwQUKUVj/keqJiIwolZQAHBE/pioBIhMipujT5E4gmNMC\nNTJBDN3oOcRE8pRCIDEQWyHSRSTgYRpBiJNcx3slhdQqiwVIYYw5v7w4e39+v30QSgKjkEIAEAgJ\noJgBQOOpGwAAECiESJmlPoZ44lOCkB8NCiJrFFIAM/tovWcULvGQY7DWRu9ZChsiKGGyzIhMuYS5\nCRBSMLgQACaJEEIY7WRjkLlJQ+Fgp2EcvSqT6QAReR8S2RCFSCsYJCQigJPmBBEVotY67YzdZNPy\nqKnLt2/fZkpqFIvl0nv//v17I+TF2fk0TX3b3b378O7du6oom9ns3DtCAZk2xuhcLpdLCXJydji0\nx+Px3fE2z/O6rmd1wyEKIYL3IOXTp0/Pz88/3Nzs22NyAw/OrddrGobkX5EGYuu9tRaZtdZt27rJ\n1nlRmGzezLKyiM4rFHVdn61jgu4QcXJ2mlyKNcuK/Nmz59pk9/f3RJTNZlWWA4DROlqHDH3X7fd7\nirEoisDAiVRsR0wWn5Gsd03TkJDHzT0LWZbV6Ox2u5Va5ZmOPrx/+ybT+p/89W9Wy+W/+Te3m9u7\ntFCryjIBDwpFVVXJ+l6ikI90nvSclqboui7GKI1eLpdVU3uK8fR6iMMJWE7jcoKjE5XndDudCI0n\nO7wEDhd5XlVVQtojUQhhdHYMLnJAKaSUSkpvbfSAkYLzInJmTGVylZsklkkjOIeIxgBidA4RU2q3\nTW9EykzpLMs0ZgTsgo+PcqbAlDB/CtFIJaVKDKZ0sFCepf41gdmOIxJyxLqu7Th1djRKa2OGcQwU\ntVRkHT9SlrMsOznMI6Rs5nTcJXYGx5gsHeEjv+zR8/kjTZqI+KQ0F2kRzjEkG+30hDIzJawe0T86\nFn+8XkIIdZyGIABzE0Pog9scdmla/ef/4l+8e/fud3/7+27oL66vgnV3d3cs8Pr6uVTIIWqtfbA6\nMybLRmeHm3Y1X6BgFLKZzWKMhCLLcnC+6/sEqmRZlkwnELGpaufctz98L6UsiuLzzz9fr9fee9CS\niPI8j0wxBMngxmm3eaiqalL6m6/+9MMPPxhjfv6rX8UYv/7666KoPvnkk77v37x54ymO47jf7/f7\n/eWTa4qxrmtmrut6Pp9vt1tfFHVdMnPQTkkpUaA2WZal8N1xHCOR936Vmd1uF2JMDcHLFy/ibHbs\n+s3dPQgE5l/84heHQ9t3HTNXjy7ZzOzBSaXatj12bdd1AJDneZqD0z0dHjOUkkViMkVK8GMILvlp\nAkgAaNuDYEgAi5SotUzppLMyO4E8iMishDBKK4lE7JnyqmhMRj7cbrfTNJVl2e/3RFTUldSqnywK\ndYq1YQ4h3N3dHba7Mi84xoSup+1+uudms9lquTTGJNo554xdLyQmEdEwDJvN5md/8bP1xXmzmCfd\nPbAgClJKF/zt/f3b9+8TWpjsUIQQNngfgwdi4BCj9dZFImCUgoGSYMYzxZBo4acTPz0VxhiQoIMm\nosPhMDk3juP9/b2UssqLpq7zPF+cz8uyXDSzpqrzLEsBJgrFCaIUImkGmRj/Owv1U7C8kKciraVI\nrQ8k9x2A4CP4KMpCGs3MHIkJlVQsOITorc3znJkn5xBRR+rHcb/fD12ntU53YGTeH9uATMACJSbN\nCaRreSr5ijE8RisKIUggITOF+BjvhIjJECC9vDGQlJJBpBCUyCiEACmdCzZ4FhJBEpEAgYgChY+O\nJgpKpBHdWpubrCoyoeTUua7vdcwNBAaIyGVR+MF/ND1I/02CpXS4QCQkZkwQOiPyMIynXiR6a20p\nZVkUWaYlYKZknReFVGG0dhwwyydnj6PlSB8+fOiG4fLysqqqCyk88W7opmmykbq+D97vSUzDaIcR\nALz3yX5onOxuu2Xm9XKlhGyWq/v7e8kAKVjF+fPz81AUX3311dXV1WKxCCFUTZMkDMispaqKUjAM\ndkr5Y81y8fDwITntLJfLdOH6cdrv9+Uw7Ha7yLxYr5q6Ppl7NM3D/ZaZpc7mzUw+/SSEkEutqxpR\nRuDEDmEE56ObfPSUF0X6+6vra2Ey6wP0ndI6bdlRyUybse++++67/WrV7g9YzIzWyYouxsghQnKt\nCvHjFYk+JJZTpg356CaLUjRlabLMe+9iMFpLKbXQmKXkqlOt9d6Dfwz0xf8u3zPJYZ1zMYRTaQlx\nmiajSxdDsp+USqnMqJMrVpAoCAO5AEwQiSEii2BdlmWQtrYhZJGIwDmXdgrJL5PwJDzJssyPpwSD\ndKsnradQSkvl2VKMkw+K0QiZFWVZlo4jASWmVAAiBESIwMe+m6ZpCr4sCg8UERxFQIwuYtoBKKW1\nTudwoOick0b/fdaTFFLIwPQx9IWIgoCURJGktgm9+1iMQQoBSj4K+k/mfcDAhMTJWjr9SaMRCiGl\nVP/uP/9HwVCu5kx0tMPmu22M8eLiYgouAOkyzwWwFCH4vKmWy2We5eMw9EMvAZUSrz7/bDmb/fjD\nayEQlQwxlkVx3jxx09j3fdf3QitPkYGFlCHGYRz3+33btpkx6/XahZPhyGqxXCwWy6J48uTJdrvt\num4cxyYvm8W87/vb9x/yLIvWUeZfPHkqpByPnbX2sxcv321bZrbWIuJqtUq9RvqxzLxYLKy1wfmu\n64ZhWM0Xw9Cl1UUMAYiTgF1K+fDw8Jvf/OYvlPq3/+5/SaUyM+Z+s7m8vMzzfL/fp5WAG23bd/P5\nnIghktSqKsvEV3DOBevqLJumKaHxDCCNljJpd6XtOhCYcu/tMO72+492j8l4JT3Vxhgk7vteSnm6\nF/l0URNFD5K3uZBCSq2VyTKjNFBALW0k2w9te3i4vweAtRJdiIkTLyJMEZazZrlctm1rpyHL8xiC\nnaybbJFlTVMxs5TrtMVPJJeqros8t3ZMPpTH3V4blcb0xP0moizL6qZJut5+HOq6/vTzz4wx292+\nbduiLGOMfd/v9ntmJMmBAjFR4uhKBAREkee59cF5Tyf9TGI+UJVr7731U4wxzW46y0HgRVVFH9I6\nyk1213YPhyMAmBud53ldVU1ZVUU5r+p5M6vyQkqZPTYBqZJJKZVSSoA6DZkimUAhMiM4IkrkTEye\nSkKiIAo+BFAKmV3wSQdFRME5IgJnUUpG9BR3+/bu7u7+/n7sB2Z++fJVXtf3m833P74enJ2vz7q+\nB0ROZl1/nygBHsUp4j59ESfrvmQzywAUo0929kTM3GMUiGk2igQykVmVGpxHRG2MNBojRabo/RTj\nTGU+RiCWWjIiAunM1PPZixcv3n/48Pb9u3177A7HiCC10lpLaT4qO9PckA7K/X6fHjFm1iiUyZIa\nPjBKKU2WsaCmaZpFU9c1eXfcH9goQWwjGZQX55eLecMhHm/vry4uy7KWqJLRDQiUSkmvHva7u839\nZruXgIXOc5NVTW100R3bcRyDdd45N9kYY6kzW1ZGqkIZuVp3XaeUzqRSKPK6BoCrq6snz56+f/9+\nmKbEwTTGkKKqqrwPdpryPHccV2VRDMV3331nrf2LX/4SAKz1yZm1qipEESimUO00L/Z9zzbayWOA\nBAom3pPWWYCAQmRKF0U1Ou9sO02Dp9jMUn6fLpva5GXoWqVUludZrtvD0U+2mTXs/Q/ffLup6qos\nq7PzLMuCdZN1pyNCyKTLSlNgsin8aEsgiLWQyhgjFcWYFv8xRjtNyQY49QTR+eTC2I8DJvckoxVi\nZIoxUIzJTc8Yk1akwbpxHK21Yp6negwSWCAKIVEkcQ4IEICZ0ohSCvDW+WFKW+qUfhiZ0gJbAAbn\n0/h+kqcopbWWQkw0EQWiwAIFg5SIMjlzyAnZW8cuAFAaS6SQ+/aYJtpkuRySHzOxtTZT2nEcjnvB\nUJaFQOzGUQsphFCIJCjGSKcHJ6KSQogQ42AnIsqKXCsJAAIEM0dMhh9sg0fElP0eQyBgmeTKj0Pt\nSQ2IpwAoevSg9TEkSlcSLCUmBQCo95u75XLJ3m4fHoioLiutDEvx//2P/78UY9As5skZXCrVD8PQ\nT2nBPji3nDUvPvnk/Oxss9m4yQbgbrI2+DLLrbWH/W6apt77xWJxdnaW/CCPfXfsu27oZ8vFMI4o\nRFVVRPTu5sPN/d1sNnt59XS/3SW3qcVquV4sC5OtF8vx2C3P1nVZpYW/tXZzPI7DcDh0P0Icx1FK\nWeZFP40hBKIgI3tvtZYhuu2u83d+mqYiN957SslFPpxa9UdzlmEc07jcdV1SXr96+bJ92G7u7ruu\nq+vm6vyibdsT4KzNrG6EklVeCCEEqpTSKCXWTZMQ783DQzv0INBok7TwSikXfKZNVhbkAzNH7zlG\niCSFMFJppQGAgGazWRIWp+cfEZVSRVG07b7Mi2I2q6oqAWvRu34cmHlwfhr6w+GQZH/n63U+m5lq\n/vDwMDFkUkUpe++NdRHYurBvOyNwvVqBj33bUl4knkuinFhrD4fDdrt99uzZ9fX1n/70pyzLEhqc\nStfV1dX19TVLSM0sMzbzKfn5bbfbb1+/ttYWRbFar6y1+7brJmuMGccx7WySB6wyUoksGb6Pwblg\nGYVSSiiZCJBumk60filP2cbOW+/zPAcQMssLbbI8eB+ccxTicTp2zm3bVjBIFLnJ5lVd5UVmTOL1\n5CZTRic+nTEGw6npUUqJR2UxIsboETE15lJKqQQoQaRCjEDEkVyIgoEBgdmGIKW004RCSKOn4G8f\nHt7d3x2PR0nAzIOzm+P+7c3t3XYHUoDSoHV6bh+lSCen69Qe0OO8e2q9mZg5edS44JMNKgihlCKJ\n/mRLJJQSQmtptNBKTDZVUJ1l5APEQERAZGMgH1gJrTUxx+BhHHSmALGeNfN+Ptgp2qC0ElIysSnM\n6chOFT65HRGFEBBASZn+SCnTR+oiuxiYQp4X9ayZzeoQwuZ47PuenDIV5kU5r+rFalllxTiORV6d\nrS9sN439IIU6HA4kkaUyudntdg+7Xdf1ZVmWCqumPlutLU1lXhy2OybSWq8Wy6Ht+rZbfvEzpdSz\nJ0+Lonjz9qekSxRCfLh9z8yJaZhKZmJxt207DMPhcEjLo/lq6Zk80/Pnz9M/FUV1PB5H67quO3ad\ncz4vi6IoeOA+QgjUHg+bzeZycea9F02TAEdv7cPDTh87RpCZUSZj4FQd2U4xxof9brlchmm6ub+T\nOsvLwgY/TdNyuVzNZ+/evn3Y2Mvz8ybLcmPW6/XBRQDorXWTlVJmWZ76oWR8QY8ps4XJIMsQcTlb\npL9sD0edmawsFJFtrceT08DJQJEoDc3p4hKC+AfheglmiCEwUVEUuTbTNI39AADd0EuJQgtJyocQ\nrfPeCwF2HJWQEoVGKLTRUkGINnojVfBea13lhYvBeseIhcn0TCYVCTOnMHhkiD4opTJmRJxiGkoi\nCAwqJB5lbjJpcmA2SjORtXakIFEKFATMwBGIiYlIZ1pqE0N0FLWQHohcmLwDodJbTnzvSJQWPalY\neorMLJQUSiZOuIDHuBfgJEEOGOAx/RAEohCMQHDywDFSiY8G9QIFc0heIs6nNwspmimVbCZ1/uSK\niNppcBQLk0Um78NKivXF+cN+J42ezWYEbIwxWXY8Hg+HdrlclmW5s3Z3PPz0/t04ju9uPnCIeaZV\nMpOioLVWQkYUQqlD24aEKsdIAvOysN4t16v9ft9P4+TdxcXFxfXV7e3t2w/va5Xt93sfQ13XHxWi\neZ4Pw5BS9mazmUwBjZH6sUu2GNbZBDEl/mRT1ymCylOUKIzSwflUV7RSkUFrPYYoGKSU0zQN45jy\nDd+/f/+r3/wjrfX+ePjxxx9/+ctfVnmxPeynaUIUs9ks+SE3TXNzv8mzbLL2uD/Uda2EUEKYorB2\ntNZW0DSzWQAGKUY7dUM/TuNsNhNCPGwe8jw/W609sLNTdDFBfB+N1j7KHxMQlEiJp5RlouC8rOq0\nQk4eNw99fzweEjnTOTdMU4J8LfLBjmW1Olgfh2GxWNgQH25udsfjvK6tdUbrYZyUOBiUVVUsl/OH\nhwepFeNJWDWOY4qQOjtfNU1TFIUxpqrKpqpSMkff97e7eyklgNhut33fL1YrIvr++x8224eUeHhx\ncZEV1TAMk7M2eFQpRxQiA0QkBIEgCIu60XYSIunXKTCcSAqIjEApAjUKT9FHchwhRICYTgxQEqUy\nShNRAZKZOcTgvLNu7Pu2H5SQSKy1zrM0BpuEPRhjktIsGZml1jWtgZN7uRCCiATQR6KWNDqdX0nK\nKVF8FA62fRdjVJmxzt1t7nd9S8iBQSm17bqHtt3ud6y1lPL+cCiK4uSMQxhOeU7MzClkIjEn0+wC\nJ33SKbE3xmgpAIKSyEqwQGIIxChORnc+hohCaIUupsKJHCUKnelk+ZRSvVkgEU3eTdM02eHQtSl4\nWwiRPpkUdUfEMdLjCux08oTghcDCmFO/DyCYtRC51llTtW0bgbVUmVYC0E22b7vMmLLIV6vVk8ur\nUhs7jvfdRkv18uXLxWJx3O+BOJ1ZMcbJ+dzIGCNKUVT5rJnVZVUUmTEqM7PCZB+E3NzfI8Oz6ydh\n7e9ubs5WKwpxPV/Us0ZLiYjL9dpaG8gPw5Cu3dOnT5fr9Xa7tdbe3d0JIYRSwzAM01g1tc7MYrXM\ns8Xnn/0sxQPc3t95760PfT9Mzk7O1tVMSl3lxWCnZI542O2zLLu+vFquzgDAxcD4/f54OPaDcE5n\nXuZGKlVUFUlhvM9nNQD0u0M/jWCnYepTrGZ32J+t18umlihmZTV0MThPLkQfmTlNCylvLaFlmTk1\nRkYqZs5NltzRmbkqS6XUse+GaZwJrOp6MZuPdkoE7zFE5FOhNcYU2jjnXAzMfEJfARDRTlPCV8ss\nr6oKGdIR2jnLwmiUUsr0/RwjIeYmkygUoBaYaVNoA4qMVAl5RsTMGBll0ltmxjR1nUgk1jnLJ6ct\niARSpUZBxsBEHCJIAUJEihyJGFEIJGbJaSYpdXWicCehcHKWAIjMwzSmNNssy8d+SDgH+FOlhMiB\nYiQSSoIU3qexFnRm0oM2OWetNeLv5bwJqQqc5M6nJGyQIom4TmiQTOiyAABkSEBp4hYAigAkHz3t\nT3qtqq6HYQgq1LOmzIuh7ay1Qojb9x8Kk6Vqd3N/BwDX19dPr669j0KIQKS1brvDn/70p6ZpNtuH\nIssjcFMVBGx9aObL9Xpt7QhC3t/f9+OUrF1mi4aIQKhvvvuhLMv1ev3+p7fj5BbLdV5UiyWQlKxU\nWZZnFxdKKRuiDdGU1V9/9vm3334bCa6fPNtsNt9++6114Z/9s39+czx+/fXXQ9enitWU1avPP2ua\n5m/+5m+yLPNdp1CUZZ7n+UcWPvmQKQ3xZDvmnBvHsW1POcQp+7rI8kEN33zzzf/uf/in3ZfdFGn/\nsC3LMkElP/74o/dxNps5a9vj0WiNIDmSMRlRuN8+HLp2sVymaJFUPoUQp8M0sRjGcRiGsiwzbaZp\nAuIkV7fep/k1wVwfjTzT/pgFFiZLP7DrOkTsx6Eb+n6aQlK9SlHNZ8po7/1xmuz9vTpMnXccotvv\nMZKbrA0+hLBqZuuzs/6wH4YhCLy+fPXs2bOuPyqdJXaG1Ep51XXd27dvj+0+aUvu7++rqlRPnwai\n2w8f9vu9LLLIrJSy1vZ9P1qbl6UyenV+lg9D3/eb/WFG3DRNXhbDMKCgNNGmuG/nAwA451Lwg0lj\nWYzeTjFGKaU0OQdwLjjvAyIgSqMLzFGKGMjFQMSCgZOxBYAsinTrZ4HSqIrJd2mcHLEdRhhG/Adk\nisrI9CQkyOijiKJpmkxpIYTzU4L7Ug2WybWHWEopToJjRkSdmWmaXPAEECiOzoYQhJRGaBBi23Up\nNKZqGkBJ07QfhoQx86OdUPoanE8vJrViPp4GF6lVZGAiEEJleTosAkNgIgRUUoDwMTrvNEGGMjIR\nQQjhRBIUSgmZ+BYxRgEspQQpM+aEpG13u7IoEoDBkYauT7/XsTfhhBVprQE4hCAYjDwBIcjJ7Sgi\nkBSwvrjIjEnhM8jgJgvEdVW9/+mtOL8Yy3EYBl1LOzlnbT7Pl8slAGQmn/QYifI8tyEG7z4CPwkp\nYebAFJlKpaQAo2WZZ2PXd+0hU/ribN0fD0opBJp6nDd113VhGjmEL774Yr1ep9O5rmsfYwghafBM\nni3XqwTY7I9HnWXn03i3uUfEsiy3+904TPv2mBW5UHLZnI/j2E9jOlvLLEfCSU9E0Xk/hRiYZov5\ni8sLB7D/45eayAU/2VFSACl8DBEBlFws1w8PDzb4uq61McnaMM8L79zUd+frs6uLc3ZhbI/Bh4e7\ne58XSc2SHCrT1DiOY11VRVEYqWIZkcEYIwFDCN3hmBV52otN+2nsemOMVEqiSHQhfOQESSEQQCot\npRRMzCyYIcJJ5pvaTUBm1lIVRRG8DyEkPmmMkREEotGSWSBimRe5UQYlEiOxBEQhhcYxjFqq1Kcy\nkRaSEChEUoSIWqqAPllaohRaqd66xCY5oSyI+jGMLmBAgOg8ELPJ0rcxxMTwSn6LH7ckFEJCZYos\nL8uSQwzeK6XyNIAmARLw6bShmGKthRBKKwIerU0bljT/4D8IXkvyIS0kIsLjAjg+IgfuH6wDEsbO\nQkYU2mgLFoJHYhasHttc1R6PZVmS8w8Pu3ytr6+uhq7nEKdxzLJMo9DGXJ2dj+M4dX2YbFmW4zhO\n05TlWYNNepWX10/224dAkUCA0iKGvC6zqjgO3W6zSZXG5BkDpM2ZULKeNW3b1r6RRpsij8Dbw56I\nHva7u4dNXpX1apFJtM6GGFiJYlbP1svb29v/9N/+Jsb48vNPtdYyN2EbrLVlWT579oyZp2ly4/Tt\n+w8//PDDkydP+q5Ln7XWuizKw+GQKx1RVGWJAFKp9Pwnmk/f9+dXlyGE5XL5xz/+8fz8HKVIIQTP\nnz9/eNi6cZq8e/LkiZKy78eUS+UnW5gMpU7mt5fXF0KrtF8ZnRVKLpfL9fnZmzdv+r7P8zxZELjJ\nOueePXvGjj5OvQAwDaP3XmqV2Grw6PIRmHRmqqoaY3DOpf1iGqFCjCkl1Mfgoy9MgVrHEByRYL65\nvb26uACAw3YrGJqyQorH43FWlKnG13UdnT0cdm23QsR0W6Tu0lrb7vfOOecnY0xRFHd3dzGeWNlS\n67ws69Xi7du3yfdgtpgfDse2bQlBa/3Jy5cx8t3m3jnnYwCAyVkjHxkKUkCKTyESyO3x6F1IuDFB\nRGKFItPGBs/MQkotpACOadATcnI+UIwpS1cITHbwSJ49AAgGpZWSUjGmEyHLixBCOkRSC+BjYOZp\n9PjoFZfedfq6fdgURSGlTNhDWnAKIQRAMh1Mn1LaI2itIzAIdCG44FPqqhCCYswVRmuTLy4zd86h\nlIjY9h0injJBUeLHTCcpUCuhFDMxEAoQIqlCVAiBiIUUKknGvXfOBaOEUipRu60LgVAKZXQ/DjHG\nx4MGE6+T4ulm894CsRJCopCAjMACk3WrTmcHYF3V6/V6d3ufoEmBKISIMfjJWqKyLJWQRsuTDQgz\nEAtApJO1iJ2G8TDFGLXWQgAQ12UZffjw4QOfx9xkmjNAMTpHPqQFvLc2NTpa68mN6QiepkkAKuA6\nz5SQYz+0zlOIT6+ubz58ePvjG4nikxcv7m9uF4vFCP2eeXm2vr25SQOc3Ner1YoD7/d7a+27Dx8S\nm2G32yUHghBCXhb1rCHgY9fmLnRdV5Tl7ngY7LTZPswWqzzPD+0xXUSJarFYXJ1fpGOwebr84x//\n+Ic//VF/b55/8vK3s9lE4d3m7vrJE9u2Xdf6aTjFNUZmZvv2pwRjTNYujFmtF92x3e12q/nCO5ct\n1LyZichnyxXE8NVXX7X9oJSKzgemGKN8RErSHifdq2nzmggizDz2gzdaKTWfzxO/d5ym0yLlMTUv\nPToAEJUmIhCotEYhXPDR+cm7oiiEEDHEaRhtUSbaUX9sxbxJtxAjCAEy+WkADG2nq1KUpUT00U3B\nCQAEiD7ozEgUwbpwChHiRMxMEYrJxCNtmsuytPcPHwuYj0FEobTOsyx4r5VKbk4UotEaAKLzyRJy\ncnboexd8ahMRwGhzfn4uAKPzZV4UQiXKYTGrT0QzYE6NnXMu+KwsOJ7Y4C54O02MmGWZoFPSPCKm\n0TndlnlpTj+HGR7dNoQQo7PpMBFCoEAjlUKBxFLKAI5CTLgORDpxUKZ+IOuZeVE3frKbD7dNXTdF\nWVxed13nR2uEKoQm4YkoE2rft8MwAEDf90qJpq4DxbIsQciqaSZnh2GYzWaHfths9zHG3W5LRFlR\nlHVd1/Xm7m7ftl988cXd3V064ouqdMG/ff8Opdhs7n0zmzhC8H/3p6/6vv+Lv/iLFy9evHnz5vZh\nc+i7xdk6GSu+ef8uy7I/f//dMLoUtPDm9Y+//e1v375/9+WXXwohvvj0MyFE13VlUdRVpZS6u7tr\nmuZifRZCmLxbLpdFUbx586asqsQqCkzjOM5ms5Sny8xVXiyui3fv3n348OHly1evX7+OwNM0nZ2d\n2cn3bfezn/3sm2++ORwOdT0TAO3hECAIhu12O18shBDDMFRVdexa8bjtPgGYACnivpR6vZzv93uj\nhNZyklBlhbVWSiRKrGnWWgsG723bhkxqKSUkGl7wzCxNlhsTQhBKFEpKKYfJOh9QG9SmqORmvzNK\n50UZvButLY2u6/r+/r7QKlcyIsxms4fdw82///cvPnleFMW7d+9OCefb7fps/eLZ85vb913XKaUu\nri7dNKUO+rRR49OIpjPTzOfTZO+3D3meE/Px2JV1ZYy5ubuz3q/X58rkGZL3/nG+10YqEhxjHNou\nRk4CHkmAxDGyI6dy7axlTDgPgEIQcnBO51mYvGMXgk+5KojIDA6ClFILyQzRhSmSIEZiN1mttdBG\nCCkRjTHaGETsdvfpSHrksbMLLkwDABynCf+hw8A4MrN6ZDmK4e8po+kbGOHk/viYq4qIGE62ujHG\nQJSqi9YalBZSJoAkjbypiydAEqJPEpHMyPQChIjMHpgRFKJPv1GpuigGiF3X+cknp9VcneCvup5N\n08QAiTyIgMG6YRhMVQCcsuqCcwCQGHwxxjwvyizXSpE3Q98zEf69CVFMR7CUIpG9jZZ2Goxu3Dj1\nbbtaLzIt3dD3AByiQqG19t576/ppvL29nTeNECJGzjM9DIMdp+vr6yovPnz4YIcxOG+EFEL0/egp\nolbe+2katFSqrICIQowhbB/umaORSms9DkOujWpmRZ4bqVx0b9++XSwWy+Xy/U9vd7tdamrFVP34\n44+pUA3D0Pe9c2609vLysmzb/XaXQmEfHh5evXr16tWr9x8+HI9HU+STs8Pkeuugawc3NU3DICbb\nBXBE1A790A7M6BiqxbIdB/T+8M3X77ebsq6XV5e3xz1K4ZEdQFGU0dphPKKSKpyckuazWWbUr//q\nV4ft7n/5d//v4F2ZF8H5r//41Yunz5qyAhBNNWs9gcBpmq6ePvln/+yf9cPwu9/9Lq1I0rBlpOq7\nfmRQUqYlnVIq7Sb7aWSEsqmHcTwej4mj2ratEKLI8/TIPPJLtDZmmk6wU5M3ad+Zam3fdSlcTjBA\nVQ3DkAynBAoKkUNEoEwqJnKTlYAaUWidcgnTBjN1vVLJ5HXl3ckiLcY49YOUctY06bgex54oCK1C\nCAikJCJFO/TkXQIgnXPA0XvLwRORZxZCzMoqV/p+s5GMhTLjOEqpS52VRbHbPOzvH4o8b8oqtctJ\nQpnI26xUWgMrpVAIFn/vYs3MUojcmLRjwhM/k5k5gQ3wMQv1xN4QaebupzEFtqpMUaQQgpIy/bTC\nZClSQhntKVprVZycrLQxmQDMpELi4PzN2/dGqXEcJQqNQhmNkSBGcieXsjzPT4LaxGUHuLi6fLjf\nhBDOzs6Uku8+fAghPLm6unpynXK13rx5k7z+i6qKMU7TxAiRaJomCjHpg7332+6YQiYDBQc0BdeO\n/aFv3968t9ZeXV0FoMlO0IoGmgjknD0eo7V2tVoVRb6cz9fLpVCyLMsPHz7YYSizTDBH56o8L7NM\nABZZrpS6ubnZCtRapyQolRktNCImPUBqwbque7I+y8rCe2+Dr+ezYRjevHnz8uXL3/zmN9vtduyH\n5J6zXK5SsMyHDx+MMXVdF3kulUpwcTLVSgGoWutMG4kiUzrPc9+PH/FzKeXF+iw5rXvn4DE+jAVC\nPJ31XT9qrRNrSUoZgROW6yla73jiLC+11lKjc+5waMtqlueGI0XnIJJEVFKWZYEmq6pKMnXHAwVX\n17Wcz5xzf/jjl7/5zW/Ihy+//DJlW37/+odx6H7+85+nKjKfz4zSwzDEGJfLpQMqy9I5f/vhVmpF\nREVRRKK7uw0IbJrGhSCEKqq6amoQyH2HSfCrdaKIexdjZGQhkQGRAyNhpnPQIKW0HBlFYHIu2uBN\nUUohCcH5yAipbU+UYSEkIg5+YmZAEoCY0oEiIXFW5phkkExKKpDCA8UQ0ajUu0owUuhTKxZCIuIh\nIoUAzCglYGJOECAm8WVC7VJ7HJllWmAzAREAnx5mgakd1ognAnbCtbQWJ55ktDEgRQAggYEJOIIS\nSmqTZTFGGzxESlc5bWLxEcMHRBsDESQD//Q8IkgpNUD8CO2wQIVCaFBapFDO9BqS44oLnmNAKXwM\nSdyc53lZFN66h5u7aZqSa1KMMXqfKZUVRabN9uGeiMosR6A801VRzopKKbW5v0/PFBO5cdpvN0nz\ns5jNL88vhq5/2OxmVf306VNm/vaH7y1HozUEnsZRIOZ5bhAGZ43SRZYzs3OBGHKljdJaSGAY+t5P\nVilVl9VivZ7XTVEUKbrbOdf3fVmWny7mbdve3d39dH+fZVmRZYfDoW1bY0xVVXmen61Wf/XLX+6P\nx7dv3zJCjHEYhj/+8Y9PZqu77S6EQAhFVYJAEshS3WweZnWj8yy6eGz7+/sHIrpYn+0pyCITHAJT\nRNyO/d5Pk7WeYpk1pmnCMIzB2eBA67wotJTphDFGZVlWZMaV+WqxpOiBQt8eONJ3333z5PIJEG+3\nW0bMTLZYLJRSt3d3fd9HpqIqu65L8lmR5cYYiBS8jzGWVZ3eDj5G6RVFsVwuQwgoBTyycyNRGqB9\nCC4G6V1eFPAYsy2E0JkmoiR2SpCS1FoA7sYh2Cl6n/Z3KVxPIUQOAVAxokCXHjoARByGweSZ1lqC\nisDpVaGSKQ/Ge58uZRJKCSHquiai6AMgGKUTNCKEKIsiLUckClRK8GOyEAP5ECcHMZpkaI0CTeYm\ne//hpshyJsJIQ9txJEmQpsePyyaQIrWJzEwISimhhQAUBN6HiEFpEEIoFClTjogiA8tTXw4frZ4f\nAQY3WmJW+kQfASKBmEqbUurj5/9xSlZGKm+dYpzN57Oq5khustF7AWhQCiEybQiSZy1TiCnI6HjY\nZVlWlqWQMk11KSwMEX0MIHC9Pluv10+ePGkP25Shu9/uUuUmInh8xcksuqjKTJ/c3UiJYRhc8Iny\nerO5ByVBCBCi7Xu4u3MhLNfrpmkohJubm2DjL37xi8Sl+vHHH+fz+eXlZSJFP7m6/s2v/5FS6v37\n9z/++KPOjLWWC6rqZrFa7vf7169fV7NmNp+/ePHi7Yf3KWS+bdvtdsvMi8Uiy7LXP71JfLnb29v5\nfH52dvbmzZtkcz1MIyKu1+u0I+y6TkpJIZKIWsq+75fL5Xqx3B0PifVjjEm0wzTRBg4pQqTruvl8\n7qyLWTafz4dhAGOklDnRaQ8XTwJirXU7jMwxnnzckAEEsyc2Jk/2ZuluyIUQLCx6b11TlTFSQMyL\nXDJlSi5ns9V81h/2CDifz52f+nGQUrjJSmkStmmKPM9PFmZPn16nrWS6yQh4tFNaqp0vl6Ozt7e3\nbdtmRV6WZZ7nMXBd1z4GRDQmXyz0fD5PU/Xd/W0IgQm11oIwwIlqFCNLpRI8EAGFSKsm8kyMMilA\nQmRBDMzBE6MTUmutpJQp94yZEIVKeBGgQIEnHjEgsNI6eB8CEYLWCpQkIhtDkeWnuoWIUrJAF+IU\nPCl5KroAgABSIqrU7QgpRbK0DZGY05MHMaZtJVIk74EpJaBJLRPgkW54AHDeR+8JWSjBQsRA8XHW\nVFKGEIkhxiiVkcqEaIkxodnMyAxEgEmSxMiMMbBApaRQSjMxBZJ4khETUQyBpRQsWLEUSXYlM228\ntwBQVFUiQCBTyutN/XRp9Pn6bOz6r96+m69XOs8SFB9CMFIyc4iOkvN+9Inkxd4NfSuECM5KBJIC\npcwzXeYFES2fPvuX//JfKiG/+eabzWbTjcNms+n7/njsHEejNBKT81oqY4ySymgNUiijXQhumqIP\n87Ju6pp8yPPGSOW0zbJsuVgsZ/M8z7VUVVX1fX+3uQ8hzJYLk2UMME7Ty/XszZs3+/1+3jRnZ2cc\niZkBxatPXn722WfffPftd998kxgtEkVRFAygMsNKeGe7aTz0A5gsr/XonT8ckfjF8+c///yLh/vN\n13/6091mK8/mqixE8H4aGeLQtZN3gFJoBcYmQlkiKxGR814RJTkDEn94++5vYrR23O8e1otlpk1w\nrqlqJWSyyo8xDs654JnZ73bDOI52mrzL87zv+0zpdDQtqkYqFUPIsgwEJvWREsgILng1TURk8izd\n50KdfCsjotJaKZWOlxBCwoQTp0kIIVEEBoqRfIgiGGNUloEbtFL4iP0gk1JKKyUAJSAgI4oYA4VY\nFMVsNgOCQDGBKISAABFODS4leR2iAhViTJzT9NZijOnMBIC0mn1EYshIheoEIiJiCGStZR+EFGVe\nIKJR2iidaTONI/mwmi90XrpxMsYs5vPvfnx9ejR8kI+8DykEEAuBSSOkUXBSHTIzkZAyqaJDQskQ\niU8K748UEHzMiwAilEJImUiOHGNqRARg4j+ntTEFTtIG9cmz5/f398CcKa2EZMZyNiuy/M2bN1VR\nJL/TwU4JoC/L8of9nVYCVPYRvji1SEKkTjkRiMqy1Jk5du1uu3fOeR+zrJBSH49d3/dEoKRhZopj\nkVfXl1fGmLZtvfcHNx67wUc+X69DoN3uIIS6vLy8u9us1+fPnj07Ho/t/vBw97BYLM7PLpEhWV6c\nnZ1tt9vb21shxKtXr/I8r6rq888/f/v27XfffXc8Hl+9ejWfz//qF7+822y0VM+ePCWiCLzf71lg\nGhfSKZMKqgSsi9KOw5Ory4eHh67trXNVXVd1fXt3dzi0Qohk42WtbdseAKqqmi1n3ntiPrTHpmnO\nzs76vgcUZSJTMCsUmdKBIT6qje00OWtT8R7HUSklWY7OJmosEbkYYoyJuKtWq/TUhRAiU1p/JvQG\npUCQ02CH7pFnJITSMA7dYbNlCqtmjjHoqqqLclbV2w8fpIC8mXnvhcCiqEMI69X6yy+/nM1mFxcX\nDw8PaSNujGm7rirLxEuPp4pJwzQ+bV4c3h7Grs/zvK7q0U7T6EyRr1ar0U4IkvDkQJIkVYN1p1sW\nJISYkH8WkqVQWS6EsM5hjADCe2+tcxKUNkpJTRCSoUzkYRqzLAP8+xzT9DDHGI1R8HjHy7S2QTr9\nKxEKoZSURoOWFBgiRgRmSvw4QZGFmKZpHEettWIJCI+/Q4JAAAxMQgoSgiN5TB5ZAEoAcgoLAmAQ\nyIwsEsNbJwWP8wFDYuEFBqZAjFFpZgRUp6OAmY04Mf/947o6FW8+ORTBx23TR1JYWgADnWisAdE5\nJ1GkYxQfVUNpGZxLnSsT7AQUtVQsiYgkPiqhGa21A0JxnRVLUxflYrEAgERZ0EplWSYA7TgVJmNK\nP5PyvDDGcKQQPRKPXd/3vVKqruvz9ZnW+tWrV7cfbsZxvL29TWfrse/27ZGIQInD4SAi13mBGvb7\nvTamqEojVVbkyasBfJyVlZFq7PrO9koiGgUc++OBg5/PZkVRXF6dKyMZKbElNg8Pd5vbiDy5EJmU\nUlmWaa2lEcv5Yrlc/vDd9+3h2LZtU9VZlhGw914Qo1GL1do6N27uPZGjOHqrp2mYrJShqWrP9P7m\nbui6oqwR8QgMUkzRT95Jo6cQu8nqzMjA4dj5EBL3x2gdQrDThCzy3BiltJZ913Zdh0BnywUCr5fz\nYRiAYD6f2+DbtpVarZvGeheYAHFylgWaLAsxNrOZVmrqh67rIBKF6MYpWXZ81J6mReFkbaCYlUUE\nJj6lMFnvBGCe51IrTfoj6+rjugTgFMebvtJ5KADLLE8FzHsfnCcORunkxRgpSEybIE7CmcVydnnx\n5Pb29u37d/00GmO0lDGE5ClGRBJFYtKkofxUUJgFYqJ5hxAgRATUWhKEZPyecuOYE5ZzIkZJJfMs\nS71OIhumTPTE3tBCLubzp0+ftuNwPB4/pgQhohZyXjcuPkYtgUBEbfIoNTP7GLSQRioAoEc7M0z5\ngyhQndbDCTZzzkujGQAERiKSgoAln36RSE9ijNaHBAagECqRM5WUNnjp7LyZrRbLTOvZbLZYLLTW\nt/d3P/zww7FrpdaO4tD1y/liPp+P49j3PUWyLlA8EJGdvNF5Zorg++3D/rBvQwiZwqoo8zwH4mRh\n2LZt+sTThSyyPHUTp3PHWi1lIolpqSjE6ANHgkiFycosd3J8mGzXdavFclY3fd/v9/uEiCY7jhjj\nfre7uLi4v7sD5uPxaLReLhaL+Xy1Wu0etvvtNoSglMrzvJ/Gtm3zqmyaZrvftX03q5urq6uEGMQY\n58vlfLncHQ7ri3MiIoSXL1++e/cuqZ4Q8fb2VkoZI19cXBRF0bYHZjZaC0CIFEI4Hg6RqKoqihRD\nIBRKSgVIPgBAWRgAijGen68jU9+3ZVV578dDDwDJngYFZFoXRVaUmTdahoDOwWOhSndACJRJLYRA\nABDqo4SG3Bi9rzJzffXsan2+ubkZu37s2gNSmpA+3Lzz3n/22afPnz/fbreSZJZl5+fns9msbdur\np09mVX1z8/7s7Ewk0af6e3sQpdRuu3XWpuaMEO7vH45tW89nBOxcAESQIsbYj6cwc1VWp8IghIuc\n7Ma0MUKgUBkzU4ghEiKAkkgaASKgIAAWhCISRAoxRmKkEBJRXEoUQgXvQ4gpdl4AsBCcLAKYkThC\nFEIkHXOCWyNFEDh5e0o+AWGUUlJq4JBEehIZMbJgZiJOCyAFDMACmJg8RSSOiBQCMkQkRPRMgTkS\nMyR5ECcWFAM454lPRE0AjkwYUEqptEgkeeecVDmiPMXIokQkRJmcV/5BGUYhTpizQjglrDAgC4F0\niizVMtlFSSmtc/Fx2tAokldUoJi0iUCMShyPR4kCTRZj7Lqubdt5Vc/n8xjZeztNE4VHQyWllUQ7\njCiUEqBNtl6uzs5XwToAGMppHMf0GFZ5So4vPnv56ne/+10KLGnbVkqZ1PZt27KWbppkCt2BBDeK\nNC2pIITGQhlj5Gq+yKUepCmp9N7bYUxijaosl8vlfD4fxjHLstly4YJ33g922rYH59z65YsXWndd\n561rmuazV59m2ty+/6BQvP3xDSKezZfNYj6fz4WSfd8fjp1n2nXHu+1DM5+ZqnDEN5t7IjJC5EXV\ndsPr714rIdfLJYXYWe+CH8cxRjZSK5XcTTgCWzsCgJbKaJPrnA075zQCcwzOV2V+vj4rq9yNA2mF\niFdXV9MwfvjwYTab3d8/POx3s9ksKilJCqF8CIOdGACksNYWTAVnniKF4GIQxFrrqqryoji17EyE\nEGL0FCOwpiydt4hIfGrIfAxMAh4dtbz3aQ1BRFoqwBQqIDJtsiyTQjKzUSeGlLPjBBwjGqm0kIAs\n+aQsCIiR/OTHfhyMMacsy0Tl0ypXUihZFMXjPIkciXyIMVrmtJxO304xBu8BIEkUMmNSAzpNUxoD\nQghSGZAihiCYpVIcwminE2ATY9qLW2uBWAiRb7dnZ2fJLCWpGOxkmTkvCxFOoYEpH5mZA2AIgZLZ\nZ0p7jHRiGgqRRFkoRIQTLpggriF6JHYx6BCkEEqIRN2SSjFzJHIxWGcDk0zEhH17NHk2q2pg7rqu\nKsrJ2Zubm7Ztr6+v5/N5NwwsxWy1rGdNXdcjhwh8Mp4+hVTsDvu9kKfPdLvdJjBZKNm2rQBsmsYY\nczweU/Oba5OmRqVUpo3W+ng89n2fdDVPnj4Rl9d934/HTmt9tlwhA1l/vj7r2vabP30NAMtmtp4v\nls3s9vb2/0/Wfy1Jmh1pgqAe+nOjzsKDZ4IUUHS2u5bczauu7APsE+zdyFZLTVdvV6EKBSAzIzKY\nc+M/O0x1L9TMgZFxQUJcMiPczX47RPXTjzxtN8vlkoFxRLy6vORBbNd1u93up59+ms/n7CM9jqMx\npm/75XwRMa22u8fHR5KiruuXb14750bvrLVXF5fjOD7dP7C/8eDHu7u7u7u7X//6rzjP6+LiYjr0\nV1fXj4+PXde1Q391fsGX3m63M0papa02UojNas2jgrIoijwPIRBDFkh8KhNRXZRMwFksFsyrzPPc\nOcdbggRIyU5Mgr2sAx5JQEJJFr35FATJ6XRqlQYSSimWKDjnttvt5rAiorPF4re/+tX1+eXnzD7c\n3lkpkvMCMMXERjwR02qzdt4Z1Jw6zl4oQgj20xBC8NF5tlwURcE7pK7r1Wq9WCyur69H5zabnWaD\nt5gippQQBNesyrsRE1hrbV3zxktEPvkxeiFUppTWJiTvHZ9l6ShxyYwm5Zwbk/MxxIAEKLSyNodT\ngq4QwvI8VQgpZcTAYUcAJJUQUigQyHJhJZl9HVL03sdj1U9SSPaGAylIS0nWZPzkNRFFCIhAICAR\nIkaVTAJJkggROFANKUUpJSTkM45d9EhAIowpaq0V2yNLEb1ARBCktVVKCQkgBYFMiM77YRiMgb/U\nJfONyzI2HjkwpC7o2KBgSgqEEFIAkCQtMimlFsfdLYTQ1hCAT0ewSkRECiIiEQ59z2b0UkqMkfG4\nTJswDg/3931xiD7oLOO7n62A27aty6oqc8CopbJSYEzaSC1kEkJL9fbNG14wXBaflMP061//+sOH\nD8MwNE1zfn6ZUvry5dvusM+qssqLTBsBUmu9mM+zLIsphRS9cynGTJuiqkuTzeqmyYq978ZxHLQB\nIjaF5lSf1Xo9mc8QqB8GodV0Ppt1h0+fPvV9v16vh7abTaZnZ2e5zT59+Pjf/umf3r17V9f1999/\nP5vN2q5TSvVuvP124+jIZnfB6xB9DCiAAIo8H1y8ebwXEaPzV+cXiej29s5VmXPOjcHmGQ/XyyxP\nIAAgJMyNLWxJRBBSVRRNVng/SimdGyjhOI6UAqZQlnlubN+3lGCxWHz/y19ok7Vt673P8qKaNDbL\n2r4LgGMM2hqTWRY3G621sUWWZ9pkUhdFcRxVHnbjOCARSCG1MkqFGNl58VjDKXkEn2Lim0OczM64\nHRKnOlFKEEJAwoiUYgQtlJRaS0WZQEI8CltjDJL3rBDBSIhycO5pvf7Tjz90XedT5GEl2xVUdZ1S\nAiGeVQlHYSwAESolASgEHwJAQmutVcr1PdMVEyFiAiAhgAhRCptlwK4XWgEqDECECcnmmdUGpQjB\nU0xpk9qhPzs7Y+UOY058Ez3rTQxILYUiASBSxDR6mWkWFhMRO88cYSghuEMLzjG/h+noERMgQQQv\ng1ZKayNBcGTyM8xAREgkmFN5fnmRUiqKEkNctU9f72/z9Wq73gAASLHv277vu3FQSqX2sDnspZT7\n7TbGmFIqy1Jry7laL1++tFl2OBxWq5XWWpmju5DwDgC4ZpFSyiOQBkVRcBGhtR6GYRgGhtS5XR77\n4bDbz2ezelo751zXe++zEy8jxhjcWNrs6uwcFQlJZZ5XdcGR3UQ0nU6Hoavr8unpybnhYnmWaXXY\nbobl4vXVa1Dy3/79d/u2Xc4XtirarlutVmVdZVnGeQObzWaz2dR1XRQFKhjHUSjpY2CON3z6NAxD\n00y5566qiqTARN3hsN5u/+oX3/d9L5RkJ3cl5KsX10VRHPpOKcVvH2PiD4Mho3Ecsyxjs8w8z9nh\n5UgiDQEAhD7Wp957kecc7EhEmJDpqfIk/caUgvcahBY6+hjGUGSZG4Yw9E93t9gPwQ3L6WQ6mYxj\nX+aFkzCdTqez2f6w+/jzz8aYxlRs8sznMouSZ03NLw8RgfDs7IxX0jAMlLAqyqzIOWF01ky45bJF\n6YJHIk7miBF7PyBiSGF0Y4jIK3JMCTGMmEw0R1w9pRQJwfM9VJjMhc57L6RUykgpOJsMOeYXgDCG\ngIx9acn5FACClFTsSvM8qmEhB2HyMbgQjn4jIIkHM0SUIt9wiVAqC1ICkVAaIMFRqiSRhEdSQAqk\nUEYqAMG3oaTEV7KQR7yaL8vjvAoApFTa8n10zM7jrpp7juOcDB2jFzFGRnQAIIWorGUeJh7l60fk\nDUM0WZbbDNgbD5FJZZk2PZOwtFJKWYAElFIiwIhotRYkg/NH4omEoqo4myTXxlaVcy46b7VZLBb7\n/Z4oSQWE6L3vBRktjTGVzY2WQ9cLpBACxmTrfDKpt9vIfhFPT0/PnYFS6uHhwVq7vLicz+e3t7e7\nw34cR1MVHNxSaFvXk6Zp2Ku87TrnnHNe5SAKEkgaSGlVL188087ZOWS73a7Waxbp+hR7N2ZFPpnP\nqrq2Wfblyxet9bt3775//12dF24YF4vF//q//q+uH+bzeWGz1cPj/dMjY4P9od1FnxWFtma2WGZV\neftwH2KsJ03Xj2VZdof2sNvP60kiABAvXr38slklH6QQWqrkg5Bi2sxIQJHld3d3kMAImWKMyaPU\nUutxHJuqtpwgjmh1vrg8/+7tm69fvz7ePxiTvXnzhi0+bJbdPzxi3y+Xy6IsD13b9b1PUQavjL68\nvAzOCyRF4LynmFCbYRimizlzITkOTqkjlSHFqDOrxZGRoI3hW+E5kZ6D84wxvOSiD0opKQSGyCa7\nvHCjBIFJZBkRaaXoyBk+DjvSadrNQ1NEfHp6cjGklJDIp4jB2WBtlvF1kFLyzkkpy7zg8oXniQAg\nT24hzI9jyjf/cEqJP3ru9fM8J4whBAmGO1i+HaVSoBQQCClBQwBMQx/u74LzvCCLosjzfGg7Zo9L\nEOzrCcbwTEgrBVIxGi+E5NkzLz/LTEMiQmRW3XFgpIGjTiKh8x4SZlJLIfgkP25erRQegWvtvb+5\nuanr+vL8gs2B86r8frl8enoqqlIppTPbWGOtHYPv9vtvn79IKc/Pz1kr7dxgrT07O3v16tXd/T17\nqhVFsd7uhBjev38v/MDOecvlsiiK6DwiTiYTrfX6aRVPpPyiKIhoHIbPnz5xOysAJlVtpNoc2rEf\nAODy8vLy/Nw5d3Nzc9jtBcFiNt/5jh/K2A9nZ2dsJ8vt79/93d/x8G0+n0sp//mf//nx8fGf/D9d\nvLj6/PXLi5cvL19cjSm0bcv2ytvttuu6oet3u12MkT8k5kwtFguum4qi2B32iPjhwwdr7TiO0+l0\ntVoByZRS0zRMttRaKyGkPs4j27ZNPAb4C/4bZ4zwNVbJ6ubmZhiG12/fsDZ/tlz0fQ/jQES2yLnK\ncc51MR75rjHxIMFam5lcCGGU9cmNXd8f+qEbtdaUUFCqivx8uWyqWgJqqTDF1epRCTmfzw+t5Ea/\nbqqE6L1nsgPTMbhO8t5vNpujhbVzt7e3iFgUBfcWF2cXu90urdeHtj+y+YUIIQhtGCPSWrOogFvb\nqKjrev4VzNJMkZL3HtkxR2mboYxhHN0YfIpG5ewYV5RFJiUCJUgChZRSHT2QOd/m6O0sjlEmxLXO\nEe19dktOiRtTYvmwlKMLz7xEAlCChBDS6BjiM3TGwKgQghB88AJAEEkltVIShDzuT5GIKB1JcPIE\n1INQfJXCUbXJv8ukFLSUSsoQHF/AiKz5STyEG8cxxmitBaTnNcNnpRBCgVAgBAhKaLUpyxKI+r6n\nmDjoVCmDIbrg2VpZSpnYV0sQEZnMKIA+OCFEbmyCZIwZun4cfTabTyaTODpJsJjNZ4sFpxfkxtos\ni1ICoPcepFBFleeZACzLsqlqPVUXFxdZlm+3W+9Htq5rmoZtpxaLxWw2I6LPnz/f3t4WRXF+fo6I\nBzd0XacIZssmz3OWXBdF0Q9DSimEAFlOCYMfu06KiEWVHVt2RA75PhwOXdc1TXPzeH9oW59iave7\nriUBUisCqOuazatb2NVltVwuLxbL9XqdGeuG0Vr7q+9/sdnvPnz40HfdgLEbBqF0UVUvX78aY2A/\nrJDSfD632swm07/7zd9YbW6/fdNSVVU1DAMQSiH86EyW15PaGHN1ddW37X57EARGKokUQ4ijq+pS\nStkfegUkpZxMJvP5fDabNU3z459+yPOcbV+H3iGitXYzDM45JBq8y7JMy4yIhJKjd7vtFkJSUoqI\ns7rJbRZDDCFoe2QUM1+SCy+mMgmlIIEksNYSciDukTxxdEeXhtc86y+kEB7JDSOGyLOubd+GUFZl\nKU8dsyRATMaYGGLvxnHs+RO0eaaUqsuJaJn3w/krcXROtG1VVUc9HoAA0NYIEN77w+5IWdXqOGTx\n3rth5PQt7qEBQFnDNWuHKLTy3vfDcBx4AQkATJHYUEhKI4/WU0LKtm3zPC+y7Bi/0TSuH56enoL3\n/MMxJkpYFEVmrJbKiZMrO4AESAQBU0iRiwxmInOVwCwTqQ0bj0BC7z2JSMZapY/BwAAM+POWTkD6\nbLF8/fLV//yf/9P1w+vXrz9+/LjZbDawMVIppQ67vRBiOp12h9a1rSX67m9/QwlXq1UgsdlujDGz\nZlJP69v7G2ttVReH3R4o1YUFgP6wBReur6+vr68/fPjw+Pjove/7oWkm33333b/8y7/c3t5KPrJT\nstYO3p9NJnePj2VZzurm45cv8/l89KGaTouiyPLcpfS03Zosv34zvXt6evfuXdFMuYkc4/p+s913\n/Wq1mk6nMi/uN9t122VZ1iE+3t8HrYUxqtajBlkX1XJGRt1++5JlmWvbw3orExHFMLrDdnd1dVVV\n1dPTky4y7330MemYGbtdrQGgyPND3xGloipQoKOwOFv2bhRad31wRKvdlpS8eHGlJvV+u/108+23\nv/3tZr1W2gTnMxJVVnSHtqjtar/e7Q77rq/rWinTd6O1VkrdH3oAoAREYKXVoN3owhgKjCmNQkkF\noBLVdT0/Oy+KYvW0cc4hoCmzlBIZQZlCkJLKoqqCNvXVhUh08+EDYFo/PdV57qVIbow+ZDf3dZmL\ngLEdBxWzLGuKvC4rbsGllJQXlFAbLYTwiF3wA+AhOCqyx67fOK+MTog+oA/BIcY8E4X1kvoxbV1n\n0FBpfNB366d6nAmlUhQHNyqTEkWfojI6VzokSsllCquqKKqs3R/a9mCkUgbAyJhGjBQwRUwkABGJ\nLaK0yjIbMTnvD0OrQVRVldsspTR4LwJIKUmA1tq5EFKyeSa1gRBACLB6jk1KKYZIREoCl6ZWCB+S\nIAApEmEgpONVDhNt9vv9bLFczOdP9w/joavrWisVvGf9QkpIFCQQp1wdhg1vXSOVEaQFCHbiBJQp\nSSmstYEweCdzU5XT8eBcQkRMQg6jdz5mxjI807edcy7TKi8KYxQQCQlNqcO4RwN5XrroEUNm8hhD\ncmOZV1pbl2LClBWFVtQPHiZm6HuZsKqqyuquO2Dw82YSvF+W1SgkjmN9cRGF+vblqyB43D5mWXY+\nbYhICZmVMy0B45HnYoyilBMKpW2e5/f3TwXRPM/avssVLSZlNxy898O4XW9u3333vsqLrkvb7QpC\n/t3L5Ww2u/n0wIP8i8UEAdu+Qyj7sfXeN3Wx34d9u83rbIdj52JRFONuI4TI85xBo/vHR0RsZpPp\ndKpK+/Hjx2G7LbNSE2w329j21HdkzLBaHW7v5tPp9IUBN9bTqTqbgxRD8FHQIbrPu/s7t6WJdjvQ\nWgfndUDh6a/f/vJMF7v1Smh9hvRyNtFSnUnMNCYDDw+39ayR88oNY4xhmut6UoIM683T//j2QzVp\nLt5Mg/PoQwkSgovRLTIrZQSZ+rb9xXff//3f/l3b9v/7/+d/+/Vv/ur/9nf/5eOXr//6u38HrZzG\nUCmZiqKT+7FdVkscI4WQQpg0zXazNXmRR6SEmTaTs3mR5865znX7p1GupRCiqmuQwu1927VKqSzP\nMUSBhEAgpTQ6pLgfe6UEIQJArkxmVaaVJCBEq5RMRwl5bnUQFDABkJ4WA2E/HPDEmSqKoq7rg3fN\npCmpHNcwOCeVkko7xNS1BCRzS94H5wIhShACDmOvM1vYDFPyowv9KIVIIQSQ3oXOx6ZpqrwYx9HH\nVEwmQSkuSbmPjP0gpczzHKM7DL2UMiuLcRy991IINkKWgjtgooRCgBJSCzmfzSImKaU2crNbf73/\nBgBZlrWhBwAhSBhQVplMKyFjBAMqpRQx8YgqCpkSUEyjd2qUoEBoIY0c0YMCm+VcNEgQhIRKBCJM\nYUhBSYlEfBaNMTjvhRA6s7rv++VyeXV+sd/vb25uOKvAe//m5avLy8tHKT/8+NPnz5+5HFNK1dMi\ny7KmaXjbGKmcc+v1mnm8zrksy6qqYmNC7/3haT2dTmezWVmWm82Gq/hv377d3Nzs9/tjgeNcnufn\n5+fz+fzjx4+c38kjRqVUXhbcJfPLy/O8aRqWT3z69Km5OuPvY4wceHB9fR1j3O/3nz9/ZndJ1p5f\nX1/Xdb0/HLibZGSDz5Gmafi1SSnLsjw7O5tMJkz/+/LlS57nwfuiKAqbycWCyTKXZ+dj8M+SOwCg\nmIYQMjRElGWZLYsY493d3ehcXdf/+Z//2dR1JnWZF8YYZjv3fa+sKerquSzi4TormvKqZFUAwwPH\nDg9JapUi8tXoUxzH8YhnKqmAiDQAKC2Vltoo14UYY+v84+OjEvJwOOiTO2YIwSilMsn9VpZls8lU\ngWBGm9Sq0JphnyzLmukkpVQeDkyJl1qXZZlSip4YShrGsRtdiFFoxSAY923oYx8CEUUO0D19KVYR\nCQVRSim5CxSn5k+CEEKUec6G7DFGAtBaM2E4pVRVFYcQ8EgC4egNmymtlGJHWJ61UCI8KRnohNzy\nCDn64BPBKTuMm2CGlbTWkRATkgAJApFACSlEirHMi/l8Pp/P0YUDSKVUis/UKhDilFskgIjYMEsB\nt+zct4vTx310Bzx+xcijh3Sy/lBKSymlUkS02+0kiLIsqzzjjebGMYRQNSXjjQDARxIgjf3AxItE\nqAhRgPdeKFnXNW8uZrKcKGxqGAat1HGPC8lgGqORjLPxYlPqaCpni3K32znnlMx4R4/jGLzv+z6f\nTkYfpLa//tVvssJ++vL5p58/ppQWZ3OmUKREZVmXWc7ocdM04zgeDofb29usyDn7drvdMgTFp+3j\n42PbtpPJZLFYdKNvmoZzFNIpabSZTsZxrKrql7/8pfd+u99/+/YNEa+urvQuSyntdjs/OglQl9XQ\n9SxOvXu4z+vKlPmX25uU0q9+9Ssfw8NdCwDjOATn7+/utABrzJs3b4o8T8EnH7TVY/Bt224Ou9G7\n3J6pSlRZ7kcXQsAYU6Dg/curFz7FYRj8MCgEaaxR2mSC35Q8JX+zJxRrqD59+vTz5y9R0NWbVzMl\n9+0BEbv2mGJ0Nl98+fKFz4e6rilhVVW5sdbazFq+Dr33qHRVVUoppo8URcHWs9zhSSmFVkcTRNRa\nqsH1AkDB0VACEQUINprgcQynBQsheI9gGHn2rKx65kK3m50QoktkjMmNhYSuH/wwaq11WcUYn1tG\nLS2d4hRjjJ6tLo2RBJhSjLFpmmcfyvV6zUc059g+02zFyRAjncx9tdb8NMZx3O92fd9Lm3GQCium\npFJGs6mlRe9SSnEcQ4zMrmCkk+08vXPOuRRibjOmmyEiIJEEKeQpuEGWpmC7eHbS/stXxcJiSGi0\nLrPcGquU4u3GDzPEEEJAAQZIf/36tbAZb7NhGPhozrJse9h/vb3ZbrfamovZNMa42+0enh4PMnFQ\nj/feD2MxnYYQtpvNmzdv+r6PPhhjiqI4ama0VhE/fvzIWCsHkrAMjnf+4XDggHprLY8elVIXFxdS\nyn4cyrw4Ozu7vr5u94eff/750HUS4Pvvv18ul+v1WmzE09PTAT2zK5mLURTFxcXFzc3N2dnZ09NT\nlmUxxu12yzjP4XBomma/3x8OB/6XPPTN85yPpM1m03Xds+hWa82qMjeM7W4vCbRShDgOA/ONbZ6N\n3vWHlm/0vCz4DC2zCgH2bdv2HdPThmGYNM1ut0MfUpbH0c0m07ZtozkarCCRySzbxGitbZEzSiOE\nEFJy9UdEZVVrrdu2jYRZXkoph2HQxmhrdOKIupRSGEdQITjnMEUi8jEc9m1VFiGl4IJiJ1gh8rIo\nbZYZG5NXILIiFwRuv4sx5kVRFoVQ0hpdqNJaOzpXlqXQanBjApJC+JRCQte7YRic9wlIaauFFkJQ\nQsZmuV4hIiBZ5JU4El0lSJFlGQkEABQAiFJrSIgp+eCU4FS7HLS1KY3jGGK01uZVSQKccyazMoTh\nRKBgJrOUkoQIKTH6TQnhL/BnrbUGiIh0ck4PIRhQQgjg+vRkkyulNMZENx7tC6QkIokkjTJKo0Dv\n3PrxabvdJh9KNu1L6bgJ4Qh9P4s4jk4fcHwZkoCnngnZHisBIiPn7CTNa0lKaY09zuQoIaKW7MYM\nR3dMpSprMUYtFSKOXQ8AZV5JLbPMb7dbYwympLU21h66th9c0zT8uJRSeJQwAhExbB9iqPNCCdl2\nHaZEArx3WpmUkuarHWAcxxRckeVnZ2eSoO97P7rCZsaY+WxWVVUch8lkIpQs6qppmnk/LNtOG9m2\nbUphMpnMJtNhGKzSs9nMaL1+3LVt+/D0yLJRrfX5+XnTNL/73e+OW6ksBYixH7z3T09PTVFtdjs+\ntbm2Hr3T1pyfn4/jyAacWZYBIjtyFJN6v9n60VmptFQpxEAQOI4QceyHfdfefbtBJeq6ntRNmKph\nGJQQA+F6vYaE52dntsi7rndjn9tM5wUIFQA94uZwOO9Ha0w9beRM+NEhkEuRiJbNdN93OHqhbZXl\nk7wUEcPo8qKYTabvX79JIbIR5tB2POZv21ZKWRYZJdzstvvDgVIyUk2qui7Kpq6ZlRaQqqIkkbi7\nUFLygmEH5ggEUiCQd55R4j/TIEIgABUVzy+4Z4ghSAIQUkTsQ7RCKSkVCJ6J8q3Mpa2VkqTIKR2x\nEGOFEEEo51wM0Vrr+gEyLIpCZrDf7wnA2Iyt7H0MeES8gdKRgz0MQ5TeGpMZKwkcjyO1Yiv7sXfj\nOLKrREhRW4NACMfhK8PmXFgzecJaO5vOQggxhK7rhBBSK620fKZNaHVkthKbfB1DP/mA4lhYeZw7\nC67bFRHPuRBRSsU0saiUkUqoI1maXYefKV3sJiYI8iwr8lxrjQmjc4jI+cEJjjaix9LBSPX161c2\nYWdal5Ty7bt37969+/Dhw8Pj43Qymcxnh8PB+nx5cT5KQkSKCUMsiuL6+rrvusPh8Pj4yKNpjgzy\n3vd93+72fDzt9/vVatX3/WKxGMfx48eP//iP/wgA2+02pcQgxnF7p1TXddM0PFja7/chhNG7Fy9e\ncC7vMAxfvnxhX+WQYrdeM1eI5yh81ocQbm9vX7x4waXl4XCYTqcvX768v7//8aefQgh1XccYeQj/\n9PQkhFgsFk3TMHkET4aRXA1orZkR0NQ1UwSVUqvVigBmckYJM2slQSSOq8SqmiujNvtdfziAEgJE\n1x8uL86qIk/jmFIwpppWc6P0IbjDOPCCCICFKthGuMqav3QkRyIOvhVCCKm1yaRyNhOL5ZJ48keU\nkmcG03FpIsYonHMJXRkCE7hm00lRFP3eS6XyssqyrCiqqsytNtHbsW+fnp4m85kyWkoZMLXjoEAw\nGnFze5tSyquSV3z0qJQah0FI2/f9fr+XSlWTJs9zJBH41cTox9GPLoQkhNBGS61BWCKSmISSWgLP\nJDGmosiICEWKURDFI69JCGJ/ZmNiSqyOFULEGEGK5/d7bLWBiMgjUvA8BtacuHCMF0w8cua+WQIg\nG6krBaepcEKSUnLEj9aaRsKYlBBSAhIAEjeyKaXtdhudH7q+sFmR5yde5J+/CACQAAkSIgjJfssE\nAjEBCBRRqITIiDqPh0EqKSWdOnIpJXvVEhEQ5nlOCRHRx8TnF8+fHh9u67q2WvfdEEPIrM2Laqqm\n+/1eSoguKgF5Vo1O9p2HFJnzqJRqmgYAGTSaTqeAMXjI8lyB6A+tAFBKJkKIMYQA7CCYcOyHIjNW\nG+ecJADCLMussYw5KaWMFOc4zRU4AAEAAElEQVRlOXj37fbuLKXpfH7hx8PhsPryraqqxWIxqZuH\nh4dMm4uzS2stJllU5cXVJTdYk8nkzZs3ZVmO48isCBYuEhH3Rht/9OW+uLgoqnJ/f3/3cM/aAQDw\no2Ms59X1y8PhMAyDHI4RaiwVE0IUWTZtGm3tm1ev7x8f7m7vvXPr/W4Yhu9/+cs4hsNmrbVuygoS\njkMXo1+tVkQUnXc+7vuWtRIv377TeTGOnhBIBqm0Aam1LvMi02YcXKmtncwwpuV8fn12oRD2252a\n5HVdT+q6KsoyLwTSZrNbLBYfPv0MhE1dmyLvu+7Lz5+2h33dNFJIrVRhMwmiLiurDfdLKaXMWkxp\n6Pvkw5FWUhQsMQohMMspEsYYj4Z6HKuH6J1joz0AUAQ8xyXCGBNB1EppISUIOjZ7UgvNakcAmOSl\ncy7FBCLaLLNZXphj/x0IJJJIaIQsbaa1buqGTobnfCwnID6gmMWCbOIhpUDidjMROedYO8Stf0pH\ndwR/auKfIUzvva4K7z07oLFTND8HjuI0Sj+/6xijE0JwaBKA1keKh4uBb1DPXoFSZmWRacNRKwKO\nWsCj7uDUAo/OmcyCEEyiVkZLraI/smuN1ibPpDryPzDEY6YOIQPR0mhuQvSvfvWrr1+/plMKFffj\nVVVN5jOTZzqzKrP7vtvsd9Pp9Pr6+ocPPwEAnj7v2XTqxhERm6Zxw5H9ZK1tmqawmW7kbrWez+da\n6xcvXjCqMAzDy5cvt9stEU2n0+NzT4lJTF3XcYzdcrlEoP/8z//89OlTWZaz2YzzXLf7PcNN9WSy\nb9vgekaxOOfg69ev9/f3/CvOzs7YT/H7778/Pz/Psuz29lYIMZ/Pz8/PHx4e2rZt23a/37ObFQvp\nmDLGSB2jrGxCkllblqXrh2EYhq6bVPV6t3XjmBfFd+/eK6MfHx+fVquqqFNKo3eshsyMTYSuH1OI\n0YdJ01CIWZaVdf10/zD2g8gUJv6PIZz8RXOlRuZiec9lTYqRSb+DDyiki0lrk5UVAPTOj8EPw+CH\n8YRuySMVSAKSSoTDMKzXa74qQCrWQJss4wZ6pCEzFqR2Y9sPgy2LsigQse06JaRNkQOuj0wEKfnz\nYlQqJBRS5pxUWJQkBYYECZ0bx3HsxyEGPPKVWMyiDAJFTAhMWkosRSiLLCEKJA0ClJFMIUaMKTFA\nxCuEL2AiGvsBgcRJTkDEdhoJBSAiJORuGABAiufYIkISHJwkhZGShPQncpw+NuYCBRChOikxiEgQ\nnPT2kAIKkgBCKzuZ2MJmQsowOiklkGRKNAghSSQgANJHZaHmYw7UUQfCtUPCRIggpJaKhAACqbUW\nQp66dhdYwk9HpYTSWisrJR+yh8MBAHJrlVJSjQb0c0MwnTWYoG1bl/wE68pan1lJKNSz6gSeQ4hT\nSlYrxvoEgOyFlkrlmSQQ+pjFFmP0oxuHwSjBnwgkBAItjxE9yPEAxjxtd904OOcutJ0uFw/r1c3t\nHYHIsszoLPjkekeWum5o275pmtevX3Mdudvt2Gh6u92+fPlyOp0KIXa73R/+8IeHhwchRF3XXdcV\nRcG8U5YylmXZtu2//uu/Xlxc1HWtteZykyv74fZm7Adb15mxgmDaNKwbTimFlIqi4Hz74dACQLfb\nhwF93+mybOpFVeZ9X/EZWhRFsH+2Q/IAWZ7Xi0Wx78d+GA5tn1AQlGWZVYUFGRIVZeHA7bodjn5R\nTc5m837erVN3d3f3x//4vRJyuVzOmkmMyEOfcXBZVWfahBStNlbpPMtyXQz71jfTTJv3b95u1ms2\n9F2tVgrEOI5De/SNYu6PUOSi88Ero7TWYRiEoElVPjd//HZiDLx/jc34ahUEkoApS1JKOmU/Myf/\niBsjWqESCYwIkIRCa622mlusLNMAIBIBQJOXSimFsOkPiY1uiIhIAmilpbHOOWL5rDjyUnlddoQs\nlk1A0mgGCRCRpEABTAIXTiHiyIbSyfJx1LZt8kFKSYh5nh81gXCSQJxufVRHZiXRkWbNneg4jgxW\nHbcH19BSAIJkPSIfJkiMg2IfUzhGjR0RL6KAif3+gEXVo4scm601SQFKCpKQEkmhleJ4b83XLb8I\nriwG777cfLu5vxvHkdNh+3FAIGW0j2Ho++N4hghT4oFlCtENx4BM7tv4yB7HEZS8e3xwMfz93/99\nlmW3D/eg5P/yX/8LX42l/rN6eN+1fd8XNpvP58aYb9++hRCU0fxmnp6emqYRSlKEoipnsxm3KZYs\niybZfov/cFEUiLhcLt+9e8eQ3X//7//95cuXxpgCgEdojOMdD1+tEXG322mtGYJmN22um6wxfdeF\nYfTD6EfHJ3JdVt77+WSqMztpJgFTmRdlUcxns812e+haJaUpCkQMMVlthmGw2lRVNbZd3/eY0nq9\nNsag0j6mKChhcsORApqAeOWk0/UjhOACUEgdIsZEJOKhaxGRHcS0li54pVSulOTZGRFS/O79Lw6H\ng3Pu0Hf3Dw+ECX3QUvCAAIH6fefGfrFYNFVNs+nHm0+zZpJolkLs2tYqXRQFxjSZTOBkzR9jZNeF\nLMue7u5TSsZY3io8DslsNo6jQJKgrNXGGO6qhRBBCQlCKQFJMJRCMQmk5ANXqkrwfXXM2Q2YUIAQ\nQlmDAbgENkrzZyek1FoDW45E5nlqgQiSWEhASDwB1lojUkIkFAoUgVBCSaO2bmukMkoKpbRSgBQ5\nOjsnBuKIiBIqZi8nZBNdgSf98Sll8tiqwjGaWymlQAAIqQ0RQUJxCkEDgEjAyg0D4ImZMSQQIiEl\nUkoJrXllkhBGKmbK4EnOxMUAd/91WR6BKxBZWWqt+rbt+x6kzLIMUyAiiKEsMu9s17VFWdd1ebxI\nWBtK1Hb7SVUf6xsgBFBGG6WFEETJGGO1NsawB1bbtndIV1dXFFOKXhDkxhZFwbHqHuDr/b0QoijL\n9X67Oew+ffn6tN4YpfOitEXh2n6/OzAXp8jyetJ8+PCBXfv7vufqeTabWWtns9lkMnn16lXTND//\n/PNut/Pe+xh2D3tjzNnZ2Xa/M8ZYfdTybbdbQVBVFWJq9wel1NnVEmMcuk4isc+lUsooHZzPy2K3\nWs0m09cvX3768lmCWE5nYXQSRFWYPLeZkjIzRolEQkppMtuPo9ZWWzMMw6Y9PO1aIro0mcxzq01p\nj/Ts0fu+7ydlpbRpt7uHm9v2cT3LSvkKJdLkfLLbbEMIj+vN5mm1WCzOzi4mk4lzrvPjbL7UeeZT\nnNS1lPL87Hw+mf/ud79b3d9LxKIoMASr1GI6bXc7JSQgemuZzIGYnBsp1zwT5eGalBJDrKqKXRak\nEEpKa4w4Xa5KKU5i5qGP4WwiKVl48uf1JgWv8xSiINBSKXa5SQiSpBSZsfzrmMHA37jRsR8tV+2s\n5ZOnJFB1+oZi4m4bAMZ+UFyyEvtzRFaHssMXARAANyrG2izPB+/olA3DPs/sOxYwUSB+Mawj4DkL\n7+iACUNgdxpOhWeEjMNex5PYxFqrQHFxgACA9GeuSZZJKZk6zkgV+xUqDXxAHckc/YCIXJZLpY5l\nDCFgUgJIgL69vY0xlmXZNI1Sat+1KaWHh4e8LDhIsh+Gtm1TSiqz2/bAwFpVH6+6sR8EwfX1tTHm\n69evXdfVRem9H4iqqqrrerfdMmPrD3/4A38SPODhuoT7qrIsq6pifgGG+PbtWxbjEtGvf/1r55xz\nrmkaZk+s12sAYFSqLEueG02n03EcV6tVXdeTyYRL4G/fvsGJ5MLwddM06/Wa2U9Zls3n8xDCZrMZ\nx5HnSYxjK6U4/Ge9XqcYZ7NZSik6Lwjqul7M5lLK7XZbFeW0mYzeHfb7tusQcVIcufVGaRI8QgGr\nNBkzqerpdGqNkWXJoVTsNb0mh45sngFAd2hBCm0NERVVSTE91we8+qWUUivvPQIllx7un4SkGCPG\nZEwmhJAKtJEpqRhjSjEErzNLnairSfBjjPFIPoqorRkGFyQETAjkvR/V2Pf9br8fnRu8y7SJPiSd\n5En9wlQCRof6vlcxGGMS0bHhwMD2okopMKCk1FoXIKXRSmsi4LXLX1yPM6pjlBb6yIBitYAWUpzy\nSr0bWADGRZL3XgiRZVluMzyOL489Jf9kUFIIUFoapQVRwpiABBHbd8cQGEJiBVdmrLGWN6RIAo5K\ng2MKXqZNps0YPBFpqRj0BgBJwN8AkSOSBAwJ4qlsEs/m0kJovuoSZ85oIURAOqqzlCKpJAVOvOd7\n3SceYSd19B3TnG+krfXepxAZFFEgGFfMNGWZ6brIFUCMMWLienQyacqyaNvWjUNVltO6GbueiCSB\nJEh/Pl+RTtE3w9hTOqbanSZbxz9ljDGNliCG7uC9/+GHH+qiLIusyHIwEGMc+r7ruvrichjWdV0m\nAY9/Wu33e+ecj5GxTCVNWdaz2Wy9Wu02O5hC54btdquUqpqaz0Gu7/m9sKnA1cXlcr7gQvPHzz9/\n/vy5qqrrV6/6tr2/vzfGMC0uhcjDP6t1bq0QAhCN0kWWs+tAdzhsNhuOfjm7OMcYzxYXWuuzxXIc\nR6O0AkEp5cZITOPQlWUpQSAla/OyaZKQ6+3GrYKLoe07AbJpmhBdkWXXVy+uLy61VF3X3T8+9GMn\nBQnCPLdni7ki8OOwXT8pIbthczgcrDaTyaSw2XK5fP369eXlJQDI7eYo6Oh6LZWWMoUgCKqi1EoX\nWa6EnE2mgNTuD4LAZvaZT/c8v0skpT5GBPJtlJAQMcV4JBZoY7XhgF4gMCATJUyJpAQpmQbBtxGv\nYQAgAeqYNkYUjpxT3nfcFQCAtqciWx0TR1IMIUV9Sv6Qf5EyhClx8cr2iCRVlmVCyhgCb3YmYfCb\nAgC+QfhfPr8qfbIyxJPvpoCjJaQUAgACJnHCt9QpqiTGiAKezzTepUoIMuYZ22NesFIKiYzikZSS\nRBERiLRSRknMUQjpKUkpJQEi8vnG8RVCi2el8jAMY/BW2CNWJwATCkbmQejg/TCOXAt779frNSPa\n6/X6/OJiPp8LIXyKTHpkbwRxCsPab7ZbvY7eL2dzPhTKLL+6uuKfwxcGf5xsq73f7/M8n81mDFPz\nauOyJZ7Q1zdv3jjnnp6emJYcY5RS/uY3v/njH//IG7WZToQQh8PhcDhcXF2iALa4enp6OhwO79+/\nZxybL9SLiwsOJru8vFyv1yzbJSJerPwpXl9fT6dTNt/oui7LMg5dmEwmj4+Pd7e3s9msLkp22mLc\nbxgGJn0459rDQWrlxlFKyVLapq6llOvtJva+qCupju6+RLRarSZVXRRF13XVpHHO5WXpYyzzXErJ\nelYhhHe+LMskjpshnjaP1nocHb94jDHGmOd53VRaqnHs+Yi31hJhSppn2Mwqr+u6bqaEUSKlkyR8\nu99JoGlVF3mFiPePD7e3t4vLJdu8iTy3UgqCBKSF5CfDn1dMkXHO1KQXL17c39/zQKGutVYGEV0/\nxBgBj/MSImAWBkkhZS5O7s3yxD/USglBoI7XwXPdrZQq6+pwODzLspnExGBpjNGzxv9oLoMA4FOU\nBFJLkIIQSAAhgQBtDPU984n4EuWGvmrqYRgYv8m0MUpLAAZyM22UUiqIxMwsISNSSklZm3PrADAM\nQ0LMlEwpEhxpXH/ZOjAgdKRrCpBSUQoJEVJiXBokj5gECCGlzLR5HmwzEM0McmMM26hJIO6FBSgA\nMCazNncuREw4DLwGZmezuq6X84X3/k9/+tPhcJhPZ2fzOcW4H13fdUqpqq6NVPvDlg84Ywwg8k5k\nVPBZZOK9Z6bkbDK9uLhQ4pwN2DNtBCBLkvI8z7NMa73e71er1WQySQjjOIboScA4+vPFeYy43+/P\nZvO3b98roR/u77tu2HXb3/72t9fX10KItm0Zpvrxxx+Lojg7O8uyTEtVlqUxhp1xm+X81atXWZZ5\n7//z8ZGh5oe7+2EYXl2/tNbKEy2WSVvX19eXl5dni+V2u/325YsgYOz6px9+/MWvfmmtzWL27s2b\n/X4/7NvLs/PV/YPWekxOCMjzPKV4aLtucJ9vvtm82O4Om/0uywtptIshHHbn87m0JivyrCy0kD4G\nk2d5nm+7Q6Hqy8vLd2/e5sZmSksCSLjvthwAnGUZ2yfUdT0MQ1YWm48fum+3DqPNsrqs2ra9u7nt\n1odpXV9eXr5//34cR5Nnt7e3X758kVJyfXb0lWOOodYjkVE6xsi8VE4VdONojGEnRaVUYTNEZPZQ\nZm04hZE/377I3TZ/AamT/bgQx2nOcaTqXEjRSlBgBIjRu+e7LaXkU0jyOFt8vlPFKbSAEgKIEIIf\nRjKGL4jIRI1T6cCDCVZ7M2zJhbjgyJbTFIyPRyMV6CPMFlMyWqeUIqHEY2gg18e9G/nq4VfCTTAR\n8V3ejj3XzdLohDh4l1tFQmjJ4WrH7COttJHKY+LJIB1bc1JKZTZjk2Y+snh9ipMRB/vz8Ndxvl4U\nhfM+hPDlyxellLKGX8FsNru+vr66uppMJof/b8cJFWVZvr148fnzZwVCIPEWPT8///z5MzM7ZrMZ\nq5KWy+VqteKekgc2/CaZAyKlPDJj4Wh/8fLlS0aVmRf98uXLq6urzX53//QopRy8G8ZBZ5YHq0M/\nnF9ezM+WD6snhs25gDg/P2cxkrV2u90WRfH4+CiEqKrq27dvl5eX1lqbZd77z58/c1u5Wq1msxmr\nLM7OzpRSwzCwUcDFxcV8Ph+HgYup5XLJjqCcFswQ6ND1RVFETC8uLr/cfNNapxRiJG3kYj7d7nYX\ny0U79OwcJAD3++3Ytd65t2/f3t7fGKUHr4lovV5zbwdIh8NhUjdVVRFRsNlqtdptt5yh1nUdKlBC\nOj9ae7RiASQffVEUxhhtuHIkrhyLoogg09B776d1k6LoD21m7ayu235USllt9u2h3R8ulmfT6dx7\nD6d9cn5+Dgl/+uFHo/XLqxe5zfq+11rP5/PNbsvz8jzPd0NXlJmUCw7ZlUKHEJwLWkiVGWU0CTl6\n5xMbztkUHS97pZSQpEEAyRiDUuY4JRUMWhyvMY/B5llGx3daFyUvm+QDC4RiQhAglYLnQa+UKaXe\nByWkUUoqFUNs2zYvCm3M4XBAxLKp2UflEHsFQlsTnffeSyuMtcYYN4zSaEjIIA3lORewTTPlrXvE\nwfIi+bDZ7qWU0+lUggghMLKXQkAkrhqzLHMxSZBINDqnMxsTYYo8RgGAEJGQpJQkhQLlvS/LUinV\nd50QglJiRN0YA4BjP7CqgWGuh4cH/qydc0rr8/Pz+XQWQvh2e6OE/Md//McY4w9//OPq8XE+nR76\ney2klkoKUlqWeRExUUJQKIhJZxJj1FKUTbVdr70fY4zyBDNYa6siM0q/fv368e5eAO4222EYiqIg\nxMlk4r1fbTff7m63h31Zllpro0RZV2PwVVW1be/7YVLV//AP//Cfv//9v/zLv4AmlkWs1+vNZsNW\nKs+Kz4uzcy0Vj6t+9atfpZReXL7go/z+/v7i4mLaNNPp9PH+Yb/fbzabxWIxmUwYsbPWhhBev3z1\n8PAQQnj//v1sMgkhzKezm5ub12/fnJ2dtW2bZdlvfv1Xxpi2bSOiG/o2hLJuAGlou8l8Zm3+6dtN\n58abH38yNs+b6mmzJgHz2ZJQoARh9d3T4zAMi+msqqoX19cmz4YPP4UUAUAo+bhejW1HPnZta6b1\ndru9vLzs+/7Dp5+JaLHobZF776VWu8P+7/7u777cfPv97/79N3/z109PT5UtOZnx4ux8s9mYzMLF\n5b//679xhBEROe8nkwnDv1LK0XX89LTWFBMBcJBzU9VGaUZrpJQcADMMw6SsjFRIMYQAha6qCpQc\nx3HftVwl85Os61pLkWI0ucUQBEkC9GNKQCn4XdcWdcWzg+hdCCFiYsSRqex8m3rvj8xqpJSC0MR+\n+MxE4TOBdwSX1/v9npmGMUbmYbEeifsHfnlExMMvSGiM4TTDvu852kFKmRU5z+8YxXkeFXEHzJkn\ndNKDcXhoSumEnIt+HOqyEicqtVLKaMOOQ+PgFQhTFCYldufo3ViaIjeWh3QekaTgj2b0LqQoUDBC\nyoOtGJOumyam9FxDkRQhBEx4dnHx7evXu7s7frm5sbPZbLvdDvX0bLm01mql6OzMGqOkXC4WLFzZ\nbrdMSObK5bvvvvPe7w+H543Bvs0//fSTG8eqrsuqYkdfJNrudl++fn1xdSW0YkMTBhlCCGyCeHd3\nJ6V8+/YtEj0+PfFlkGLkW7mqKh48cEPMtdKJIXx8g2VZGmtZgJRS2u/3UsrNZvP58+flcimEWC6X\neZ6zlxZbQAvOKLV2MpnwAIzXPR/f4zhO5zOuJ5IP1tr7+/s8z5fL5fn5+WKxIADnHNOjhrZ7ff2S\nQYnVajWfz799+6bVJJ3COzEmLpHYS0sLyYguX3XcUQXvjDF5Zvn2jdHHo8mUvby8LMqs3e2d88ZY\nxHG1Wqms4vqxHXpIeMSClBqGIfpR5GWeldnSLpfLsixH51AlIgreb1drjKkqy+VsnmWZ0Yb5BXz0\nV1WVVyW/cl5hjGmGyMZzCRGVMZFwGIYheiQRQYzjIBTwtpFSPmenEJEQR/I2nyOIyBw0mJZIRCnx\n7IMlPfy3lJDshMczVBCgta6yAhGj9wkRgLhUDiHw3pFSZ1mRgJQyIeIwjEklFEKByPJcEfABIeUx\ndj5i4pKU0e9nYJYEsBkIEPARXBYlKDl6H4NHIEMEQpgs874HkNJYkcZhHHVmOfFQa52QJ8ryz0My\nAD7vkj+yeXlsFglFCHjk0RxZ0NykeiVdiIgopVBaV00jpdzstj/++GMKcVI3FxcXNZv1BC8Il/NF\n1x+cc0fqLEEmtdHKDYOWShAgpKoqzs7Oovdf2zYrCkTUUoYQhmEwSktANDbGuFwuD/utMebFy1fG\nmNubmxACGfPmzZuu6/hjvbq66tv9169fnx4efT/MJtPz+awpK8a6EPFPP//w6cuX9XabW8vMjOl0\n+u7duxBC33afPn3iXrbIso9KhRDqswWfzsaY79+/t9Z6743Su92O9Q4XFxd8IfExzfauTFxnRO3b\n7Y3zrgxhv99v9/uyLJvp5Hx5FmO8vb09OzsDgKpqlNGJQGudF9n15dUffvrhCFgSQEIfA0/Bfuw2\ns8k0U/pqed62rdXm3XfvX79726fw7fZmu9+BFIMbv379SiHOpzOT2WY64eXUdd3tw31e1fOz5as3\nr/OyePX67XQxZxdDI1VTVsOhrct8t1n98Mf/vH24b9s2IVqr2127220YH9aDTJiRRGkEDAljEES5\nNUWW82kTnO94VVsrlZBS5HmW55lSqtAZIrrg+bpKQK7vD20bQuBCHBFjSj4Enmm1HGpkDKACrQiB\nAFAJzrYS7YGN6xMQaNWOg1Wal2tRFCwxh4RGm/1+XzBzs6q4VGI3YiLwJ4b2M3rM/w+nDMTnncKs\nhUlVm6rmxcN+9UKIGGNMSSBK7/leeG7NuYPnixYAjNby1Koe59yERCSV0sZoCUmQjwEAJJzc6BJa\nbSgmBNJgBUAYXSQ0UvlhZHBCChFP1GattQrheNM9y7GIiEiz29ER8pJSwhE01lIB0jgMLNJVUmZK\naxA8Rvr88WdjzLt376pJ83zD9X2vlZpMJsYYpdR8Pu/7ntc9x39eXFzEGO/v73niu9/vp9Ppmzdv\nuEIJIbx58waIYoyMMKeU+OKRUmpjXlxfs2BptV5zKbTdbt04sh6O7wYuc/hW2Gw2KSV+GdPptKqq\nvu+n1gJA13XDMFxdXRHRhw8fOFXwcDhweHVZlt57vvuVUm3XBe9TSk1ZvXjxoi4rBpOn0+lkMomY\nYoznsxl7COz7jhnnu812u9+t1+vJZCKVqovyfLEcx/Hq6urnn3/WxhhrX7958/nxgVv2oiiQBIuS\nnXPd/vD8IQkAdjUZhuFseSWEGNMIIUghmrKaz+fjOLbtHhJKlHlW+hS7YfDeK2tH54TURKLrOibZ\nM0u3amrXSqEkCiCgMfgSyul0uu+30XlIGJz3zhU2a5oGY2KJNmOzXJQwdU5VmTwmMlFKxORJpZTQ\nylibYhii9yGpzALB6KOF4xwo+hCInjcY+x0SkbE2K3KhVYrgMIoY4ERdFqe6lcX1iQhPeWmYklAS\nANTpRiciBnXlieiYUgIlSQoBgvMJXAzSSEh4VFlIIelY5KJCPzoehv1lUZxiMOLompJOaaBKa6Zo\nIpCyRmo9jo43Dkk1eGdilhC7cSi1FNoE7yMcxYjipDjnt5biEYXr3chPmxBTClKDPCo+AwLxFosx\nDoAghZQqpaSktHmOUm63u7wsMcbtfvfv//7v06bZrjdFUZRZ2fUbEZmNFpXRWikA4uImpagImaYE\niClEozT3LoIp2c45Y62WEsRsNptUdQzOarNcLqWUKcbb29vB+fl8PrmoWay5PJvf3iLH2HXdYT6d\nsEOAEOL169eTyeTs+px9NpQxjbXr9brrunEcF4tFCvHx8RERAXHt/ePjYwjh8vVLVgaywWTbtkPX\n/+pXv7q9vWXNEjOWWbqtrW37rsyLtm0fHx/rut637ZcvX5qmEUoJpYQQfd+zZkEJ2VT1pKlCRCFE\nIoxIjBZUVdVUdT96JEExAVFu7LQqdZZvbj6mlBTBq8sXRV21u/1ut+vGgQupfXvY7/dlUXz3y1/k\n2lwsz4IWDw8PHz58GMZBarXarIXS3dDPVvMQQpYVbC9/eXm53W4BYD6dKSE/ffq0Wq2UUjzyfPX6\ndQIahoFNnTa7LT9VACjzghIyXWDAIYXIfIIYoz2xKPiaKbI8yzKBAhE5LAiU5M4tYAqYAOXxJiMk\nKZRSFBMqAVL4GLz3HOkTY/SYhJK2yIbgjTDSaJCqWcz6vrfSsHuGMUYJmXzgkKKyKIwxkrN4AfhF\n5nlurOF26wgmn0aTvJzwZAMuTvLcwmbcW6dTggsPehl2Timx59TxB0qZQpAnWutzD02IfAmiYCdn\nxa6WKEAYjQI8JUlgtXn+vQCAMUklqywfYxiGQSJIrUPvsywzSqIUiBhiVABRCGMM64D5Iue2ISFq\ntu/iH8qwNYaohLi/vy/L0qCp6/rr16/W2r7tBMHj/UNd1zzk32633vvlcllV9e//+AdGG9jj9+zs\n7OXLl//jf/yP6+tra+23b9+891xjPj4+vnv3zjm33++fXZx4EjyZTMQJHOcrOYQQU+KddnFxkZXF\n4J2L4dWrV0qpn3/+eTadIiIn175///67775br9f/9m//Vpbl09PTxcXF2dnZv//7vy8WC6XUw8ND\nXhSbzeZwOJyfn5+fn+92u9ls9ubNm69fv3JLcSyCUmKP696NRVVBC2xlXFWVUHK/211eXNR1PXrX\nti2nnwKAi2GxWHAiBSLO5/P6VXX96iXX5q9evvyn//bfnhu47Xb7/fffRxBf3VcJMldm8DH5AMYK\nJK48eFkoKRmfqet6bA9sFdk0jdSKvV0O+60Ugl8hEXkXY0AlTV6VIR2KohAAzg0pxEzpEIKPQUsh\ntDJGA1LfOz8+eO8Lm6XR911X5PnZctkfWoxJS0USLAtptJZSajI6s8m54+VHCU7ZixiPSh+TZyjA\nxxhi9IgiBSSKIHIpjuSLhPxqtZC8JOGkGiIpQGphrLTJsVWNkFpJDVISPBOdUowhxkRISsCJFSyk\nFwRKSJDq6D8lj0F+CSh577xnSQMCHZUAxmBM4zAoELooecjEe1gpheyCQezpAUAUUyI2D1GSgDj7\naIieG/rMGCFlAgIlq6oqcntze4tE0miQIkQEBVEQxiBAEbBgmEAIxYQJNzI8wCN/HkyUZUlEp47k\nxM8UMqU0Dp7h9L7vQ6JEQoJEICnVdDkDhPV6Pfa9ICiz/HA4GCG1Uoog+kAxCS0Z9W2qeuxbSmiz\nnFJ6enjUUl1fvRgxxhjTMSjiZLcUU9d17W5f5JaBHGvt+3fvAEDsD/vdrq7LssrLrHx6evKjWyxm\ngDj2Axe1+/3WGjVpKqXEi5fXi8Xi4eGh7/uyLOfzedu2zjmWJF1fXysh2E0aAOqyWszmVVEiYpHl\n3NsJIabT6a9//WuGvpTR/MlqpbIsG70jAWzm4IInAcrovCwQqB8HbpGPZtd5vlwujTG73W6328WE\nyhokgf04OD+p6hjReR+Q6izX1k6r2ha5uliWJhMJX1xfvji7uNO3QOnh9mZMoW33d3e3DKRnSvdI\nGPy7v/5NPw4RU1lXTdPc3Nw8PD4e2vY6Bq21W62NMVVd40kYU09mzjmObznCToiLxSJgurm7xWFA\noO7QHrqO2aMhJgkit0frKCLKjOHHTifSKwt7OP9tnjeDG51zIIU0mmOFtDUkQCjFNAuIAeQxJWla\nTYnocDiM48jiwwQEAPWkyfP8abNOQIAIQsxnM6mUTZBlmVbKKH2E+rSW8phVgyfawXEiqWRZFG4c\nY4xCSgGAKQnWrYyjerarQ5Tq6M9uy5L+TBiU/K65DcNTwAkfU6zgyE+uR/p0DvMsnDeassYYA0K4\nGCKm5DHLFLJTmJIgj2NgQTSOIyBlueWo4NxmIUUiCjGhCMeqATkZBiChNFrhUVzN6CaDAZonSTxJ\nxVPI63G2H1Pw3gmZnLd5URgbR2eLwlr79u1bKSWXn1ulYowvr17U08n9/T2j1l+/fv3pp58eHx9/\n85vfOOc4BGq73Trn6rpmzT6bs3/69CmlxAK+/X7fdx0AMCJqjOlO6kAhxON65WJYLpfcd/oYiqrk\nrve5LGL+KkuSlstl0zQctbRer7kQa9t2s9lcXl7+9V//9cePHx8eHq6vr29vb6WUv/71r+fz+f39\n/e3tbUppMpkURfHl7iYRlnlR5cV2s/n69SsRWW2m89nd3R3/9cXZMoSw2m6I6Pbrt8lk8vLlS+89\nYyzTZiJBrNfr29tb79znz59fvnx5e3tbluXnz5+zssKUCJFDjdhsgnFGay1KKQCyPD+2hllG3UhE\nVsnMakQETIApOr9vD4v5mXNhu92iAM6f2G634iT04royUGSsZjgcjNKmbsrMirpmO8Be9XWmqyxv\n6mZa1gpBIM2aSQxhMpns93sm/XvnezcyQydrqhSicy4GRMSImCIlIImm7YfDOAzRu4QhjCgkKHm6\nXERKiUgZqViTXlZZSslTQiKXEJOLmEBJzgIWiIkIBFmhjvswYaSYUuJ5DAKkFFNKIkSWpgQCDDHG\nSM/xoojsfQEIIAVIQQIwRFUUgqAPIRFURUlE/dAz+qKFGMcxEWpzTCgSDB2nKJQURktWiyEbdSDF\nlFLSQpKA2Xz++tVrq+R2t+NRkHVFwEQJSQjQSptMKcW0SQA4BQwSnwV5nitjxCC0MVVVMAVSCEGo\ngY07AAhTJEiJIlJEEkKQkCQgkegHxyi3UApIaK04mjczWVWUe3vous6noJXWxkgprTZgsxQCIBII\nTJjlsqmK0PdME00paXXkxaQQlVK5sYv59OzsrD+0iHhxcXF1dfX7n376j//4jzC6h7v76XT68eNP\nk8lk2jQAkBlrlNhu167vCPFssXTORQ1nZ2dSym/fvhGRZD3JMK5Wq5cvrufz+Xw6jTFOJhMtVZ7n\nusxZVPP09LTb7S4vL1NKf/jDH+q6ns/niNi27dGNSAieLjN92lrL1NbXr1+zV+7NzQ07HTKmyuUF\ngIgxDaMLIeiUjy6klCKB1KrKizzPE2KVF5EQQxi8P1ssp3WDo2ceeFUcdRnO+81mAwk5+2G32Q5t\nNymrh4cH9hiYzufT6fTh6cmFQRo9emcIf/zpQ1mWr1+/Zs4j4xyLxeL169d5Wdze3iaghBjpmIjF\nGMbovQt+9E4p1beDtqaqqqZp2MKWUQGWMDDZ5RluGYZhnjeM/URChUhSJMKEiFKAAJICpZBsJ8Nc\nJ6WVUtEHRORMJ3aZ4GWshYx0dMnlq0RgKstSK+WGMTqvj8on4b231hptOD9xlJK1FUKbMDrmWkoC\nI5VWWmu92+14gIhHoyFiIDeEwG+WqYI8jjz6xykJKAnxKJLQCpQssqNuOEmpTiy2GGNmLQEwKBKB\nIqYQQiTMldFKcZ4JAERMEoQSIoRgtVZCjv3gglcEUuox+DIvAICQSALbAScg5AhaIn5ErPJgJFBv\nD3uBxAgGnUBqa8xyueS3en9zW9hMIL2+frnb7Z7uHjCms8XS5hlH/G63291hPwzD09NT2dSvXr1a\nr9dD3xtjLi4u/vjHP/7qV7/K85yZGtzLxhhns9kwDGzF+YwZMvjGYmI+ZcyJHW7yzDm3Wq2kVhET\nY8hCiN1mM5lMLi8vtdaHw+Gf//mfiWi5XLIy6v7+/tOnT8zyf3h4ePHixWazefPmDafN393d7ff7\ni4sLhi+ur6+VUj/88IP3XmvNNh15Udzf32utv3v3ngD2XWuVXiwWHz9+9N6P4+iCRyCSgh0AhASb\nmdmkubu7u7tZl3Xd9x0RXV1cPDw9AtBiuVhvVpNpUzXN4XDQ0pQmAwCZyEglkKLzIYSsLHhx/CUa\ng4jvXl7v9/sEZAS0o5MZlNPp+fLscOjY8lof04fQB+dDihDTEe08ymPGEGOMVd0ovjwI2XQ6BoeI\nmVT5tLZKD22HPkyn06oseZDG3jpcCa532xACEuWiFn/xxVyhBORTdMH7EJBEIHQxkSajNJ/1vA0R\n0SrD0aSjC+wVFQlC8InbU6s1iMRCq4RKSKWt0TrTJkCQSWp2h9Y6ELKlVHBeEJBSrMR/Jh0yeiq0\nykSWCEkcrTBECpDlWiljDPudhRD6cSiynMdOIIUkqVjySySUZIdpKYSQAggSEQpKmLRUICUC+RQp\npmEYDl1rtRq8IwEWhNBKJIop2TzzMbFsg+dYSaAQERGzIqeT0KI/ae53ux1vTz5zmQzIRbbSth8c\njY6IiqJIiOhpcN7k2TB6UPp8NjMgMaWyrLQ23aG11l4szsT5OTuZt227PewPXVuWpUjYt11T1ZO6\nJKL9didY62IMs6OVVJQwpfT09FRm+Wb9tH5aXSzP2rb9l3/5l9lsRgCz6VRreTgcUnB1WTZVFYK7\nODvH6UQSDF3fdoe2Le/v70III6SyLLMin81mXdfdfvt2f3/PMeEsBWSh83w601o757brzdD1XAfw\n90LJEMK7d+/Kshy92+53m82G0zNjjP/wD//AxTfX/c65q6urQ9f2ff/t9obZpkf+8DiGEGyWS6Wq\nqmFF+zCOiFDVFR8RISIilkWhlCIUiChVIMQU47efP8ez4eXllQYhIn788GH7uIKQFILV5vriEhep\nyov7tt1ut/045s75GBBod9gnQqHkZDZj7JcHoseuLqIx5uXLl1VT7/f7Mfjdfr/68iWkiEA2z/np\n7buWD4qz+YJndkrIaTOpqmq73d7c3R6VcohCHQ1NGe0bTzpajteWWlOKY/BCSQABUiijlZDKmJTS\nGHy3P0wmkzLLtZAJaLfb9ePALkwARxkhL85xGIhoaFshhFaq7zoMsSwKlvif9BEUvOcrk/1ZWYLB\n5TKdRlQ8QmYqDGuE4CSxaU/ohTzZa4cQxuCPo5MTf5vvWq11YTJmfTtErm/YEUEI4bz36YjA+xgi\nIYOakU4J34AykRJSKa2lIiEBsTu0gxu1NbbIjVQvXlw678fgQ4qRuAWIPgZjLSAKIhSIHB+QUBJo\nvmX5Ijy+UKWMMU1ZHWHVth+GwVo7qRtK+MfVf7558+b6+nq32/FYaL/fv37z+vHx8fb29q/++rfX\n19ePj4+TyaQsS+ccI7080GXaIatisix7enpiAb466aCn0+k//tf/ylzoT58+jc5x5jZTw4wx6+3G\nf/vGUBUIobR+//4989R5jMq6NKZfMiRlreULmOfwQ9vyfIWlDldXV865V69e/fTTT7e3t+yquFwu\nWXAcY/zrf/i7//iP/9is18wRMMbElFg6/ObNG9ZErVYrZQ0A7Ha7ly9fsu9m27ZEdH11tdlshDpK\nKaSUTdM8PDz84le/AoCqqiZ5c3F+3vc9T6xtXnAl+P79e5Nnj4+PXL0y0y+l1LctpbScL5bnZzf3\nd4fDod3tD/t9mRf79gBSLs7OpdHb7XYYR2vtSVaahBDW5Bg8YzJVVVkpo/PjOEYZMm2MzfPMqL5X\nINw4aq3ZPKhvu+N0bRyNtdWk0dYkoN1+P44j52WdKjdEBCWV0XocRq21ybPROSChMyuMllop/Iu6\nClHAsWQehiFJQCJPxH62goSQIsUjMAPHf46/Bjn4NstASQTiPya0smAUCAwREfWJY8xPwABoraVW\nFENg62YljTQxRiVllRdHNgMAr6UYIxNZlTEAwEeeRAEkSQBIlQhiTBFJShUxaa2kFIJACHIh7fZt\nTN8UpMGNSimXkKPMBZBQkhJGRIjReQcJpFECABELW/AsnEVuk6qu6/rrl09a60BgjFFaESCrGpRS\nMrN93xOSsjoSbg8tIg7jKACsVovp4mp5LgCtVFbpT58+DbvDfD6/uLiYz+ZVXXvvP335PN71PoyT\nulGZTCEqQZSOUzFTFsYYSolzacq8qIqiqWprbfJh6Nvtdnu+WGZZ9vXLl7ZtI1BRFEqpVCbv/Kvr\nl0Tp8bEdhqEsCoG4WMwppbquD10LSF8e7/xpysBjF5YzzGYznnOxhM9qo5Rar9eJ0LKZvJRSyp9+\n+kkp9e6790VRSK3SkIQQJsug7wfnQgi3t7dcuL94+bIfx2/fvslTYiYjbWxQz9a5RKRdVEpFQl6l\nKdLonZEKERVIHx0iTMqqrmsWvD6sbyCkpqzGfev7wUjV7w6u661Ql2fn53AGQoRhnC6WhbE83t5s\nNmwGF2O0RY4AiWi2WLx48WI+Xz49PY3B9268vb3NtEnzJYfWTOez3W4HSj48PGz2u/lykWUZSCmU\nzMoii6HveyHlpKpAinEcx75t90Zr6f3YHfbNdKKUyDIjjoGYwKUGDaiUghi894CpyozQKhGWNk9A\nMYQEZLSyecZ2FhATE2IEOxzEFJxXE5lnWXDeWBvpaJvs+oHZVYfDQUlJCY1Uz6RLo3RmrAs++MD0\nZg1WCNF2g5YnlEuSMkdwoswLPtUlCEFHsRMiBkIO/jHG8BkLANEfhX/qFH3BNAsppU+Rp5zAqQkh\nKBAkj/PgGGMCIs5uASGkTBJi8NH5aG2hjAEJghIc2y0lZG4tIkql2I6mqeo8j7n3g3cueAKImJRS\ncHIswJTiyR/eWqtfvHjBJinR+VNbTABwc3MznU79eDRwf3F5NfbD6vHpzZs3jCczbGut3e/3Wirv\nPVdb3nul1HK5fFqtiqKYTqd/+MMfGETabDYxxsvLSy5nzs7OhpNycTKZ5Hn+PIdmT5y8KN68eaO1\ndjEwMfKnjx8QsSgKpTURTSYT8FEIwZcWP/Sqqoqi+Pjx436//8d//Ece9ALA69evN5uNUurHH39k\n5vDZ2dnV1dVut+NCiYXCy+Xy1atXv//978dx/P777/u+r6pKSZkVuRdiUtUpRtcfp0fDMEwmEw6k\nBAACuLu7K8vyl7/85W63++Mf/7jb7Z6enr77xS9ubm4O7SHLsi9fvpyfn/OfL4oi+cAcltVqVeT5\n5dUVAKw2a2utBNF13Wq1UlpzAEZKCfISUyLC4Nz68en24X4ynbdDr01WliUJNY6jiEoba5GYMMUt\nICtuQ4opRiK6v7+/OFvmxng3tP0wCh5Y5lIIN47e+xeXV7PZjIsJAFitVv042CxrZlOQgkdKMUY/\neGOOA6dxHENIShqVW+ecLkujBI4jAmlrpDUR0/P1mVLCGIFE78a+701eAGEkTEgIFJEoRQSiFKUQ\nWkhtrRFSkIgxPqsXjNak5Oid9z4RSqPPZgs+TOFkhcFTCR4RSSkRE69wqZWWJpcwDgOmVGa5IHDO\nGaXqus6M7YZ+GAbGY1JKPngiUlKx2FEIEVN0IcCJNa2lDM5jTFbpLMskgdZ6v9lmeWaz4tB3QCSV\nTAFDCEpp4GQIIm0MX1rhRMXk5yOlvL6+Xi6Xu+36OC/XWilNcJRVKKVAKGOMMkZr3Q/d0fCIMLPW\n2jyl9O32xir9v/zt35wvlo+Pj+3TZhiG3W4rjdJaEwDG5EeX5TbLsszY3GaUAv+c88WyE8dbkAOF\naDafT5v5dOa990jv3r3r2+7jx49FUbBf7Ndv3yZVvd3vU0q393fL5XwYHAA8PT1dXV5MqvrV9cuq\nKDiJREv1eNg+Pj5+/fpVgnj//j0AMJj8/fffj/3A0esppbqstNb39/cY/GKxAIDD4XB5fs7kZz49\n9/v9er0evS+K4nmqt1qtsqLYt+0LgLqu+fRn3n7VNOxz0Pc980APh4POS54CVFU1n88BgBUyiMix\n1lIycw3cMDrnKKZ6Wr17+fr+yzfwMYUoQVxfvTB5dv/wEAmV0d2hvfnydVJWSqnb+7t+HJiqLY2e\nzWavX9ObN2+YDXN5efn169ftdsvrlp16Y4yr1Wpw4ziOOrNMLuFpdz+OXdeRFF3XHdq2KIq7Q79Y\nLKw2fTymO+z2++12K7VilSmXpFIpRm77x72UMhH6/Y5SzMqCT4yirhi7Zlnd0V8osxNhU0pt27FB\nVVPXrJjXmV1t1kB09IM0YuwHo44yFiAqsrzMcq2UQFJC8s7K8xyUtNZKpdqh7/t+GEa+ERgkY7v+\n5xbxuZd4JkUvFgtO2eIhmlIqKwu2muDtz9vz+WobhiE3VmsNRN77MDrEI8UsxBgJpdFGayFI0ZHe\n4UMYQ8SUVAby5BHNqm6dZU1V5t77GPKiyPOcn7nkkbkAUNJkFgW0bQt45Izyb9Raa6l07IbG5qCk\nrOpv376Nwb9+/YojEPZDW5fVvNB//w9/49o+yzK4PGtDGL373/73f4qYXr16tdpsrt6/2YZh63pB\nYGK6nMz6wW3Wu+iTi+M+YVOUSqkvN9/Ozs9Jil3f7vp2CbjtDkKI6xfXdze3h76ri/Lq6qo/tOSj\nAfmL1++yLCtNfhiDOwyLrLrb3S/LJq/Kfd+1Xcf3/RLNi8nsYXwqq3p32A/OXb4++/r1awrh7Ozs\n48ePzE2YTqfr9bofhq7rrq6uWETUdd3vfve7pmk4CgJOjgTcjJ6dna1WqwGoLMtS6t328Ob65Xw6\n88M4ezflFvnV9euECFLf3d0VVTkxmZIyz3M/+tev3nz7ejOfLT5/+vL73/3HOI6vX79OYzBFnSm7\nvnsUQvRZFrVYvLzY3G4Sxe9fv328vXtxefXrv/n7z58/t/tDNobzqrYxoRt3q6ff/u3f/F9+8Vc8\n1c7zYjGb39/fQwyF0S6Fs/PzJCEJ2HUHTzi9mK02mwKyGDGCyJuJ88PBuyIzd/uN0Xr98y7XZlIW\nYRhzrS+vzolSPwxFUUym093Qrds9ZxehACptVpiQ4mZoA6b9fo+I0+l0DMrHSAnIVGOu9rH1KZgo\n0MrohhBCBFRCihBUQiPl4KPQMSBwcWCMlnkuEL2gAOggjRCjIJBSGCWlkk4ba7XWiDikBMiOzynG\naJTOJGihhbFaSAohhfhw2MZjrIo0RiUBASlqYZQOmFLXY0oyoiWySisFfSYSKCGER4GIgUQkARE3\n3R5RoM66gDK5TJsib7TWu/Yg2IsgEgjIrU0nq2SUUhsttQohUkIhhHeDqMoAEKKX1hBR9EGDpJAA\nEkmpTxRoJYkwAKQ+OACwme62LSBZoyj4seuVlE3TWGNiwEhoipIE+JQwetBy9GNoPTP1tJBEIKUM\nKWZZllcWAP794wf/xz/sdrvWQi/Tvj/8/HELP/xBS6WFzJu6LkqpjNBGIjkh7CxHSA+uR1BVLvOs\nOpsJ1/aGlO9cpzuQYnIxf9yuQwj9ePBPt7/+7heTuqjr2dfbByHlX//tb3++ufmnf/n/zZfL/X4/\nbapdP0plV+vdDvbvXr313bjbbL9+/RpjXG03i8Xi6bB98+bN73//+57i9Op8UtVPD48XVXFxcTG0\nbdd1yQedEvbD1Zs3hZAgxeV0ulcSvDcCut2+yjOMYRzHm8+fSIC1dnbxcr/fP+7ay96dn5+/fP+L\nKERuimE8PDxuran2602ZFxdnZ8v6rLGT/WHddR3F2A1jAaIoix4wjd1sPo+EfnTzs+nVi2XbdwFj\nnpnqa5atw268MQAIYt/uLy4uSIt9uzdWd/t96rGqmpTS075DRKFFXZeKsDZmWU1e6AJmF2fzxcfP\nn9znb/d9uyztw+0OcnP57mJ72FPSZ+dnLQmS8HX9NJlM5tcvvn79Osny9tBba+uyJBROx6BwXi/O\njZkt5ruu/fr1a9Y0djJpMYnZ5MmNb67fUIgpxFJmubLX5eVyMn+U337++edCy//73//Nhw8fUj/+\n7d/+7Wq1EVptcX/reheVQPTg7MQOu2FvnRDC1CUY/TD2UatiMXfyKI8koqasFIgQfVbVVhtVVGzx\nW1QlIqJRTBiMmXrq9lVe1HlBCSHGqbSVFUkapZRImEIyAmyk3KGQkEjKmEgKpeSQnA9OaW0Ls79/\nkFK+vb7WJ9OhWd0YEkrbP4edCCFSSlIQkbDWGe2F8D4ECJBLAJY7B4IolcytstpoREFJCOGdsPnE\n6+ic246+qVSe2RHJjb2SYnR9H501ptQ2B6kjKoDgXExJKVlZUxnjgh+DJ6lISBQ8kyYNQiFpIN22\n7eBdURTT2Ww+n0ujOYrEGKOl1Fq6YXx6eHT9cH52luf5v//xT8popZQE0bZtVRTT+WKz2UgQzaQp\nimK73YYQDHsIh2i1YY8uRgInk9nU6Bjjt2/fyrJkxwwp5Ww2E0jfvn1bTKabzSb6UFUVu1bVdT2b\nzf7t3/5NGd32nV89SWsms2lZVd77qqiEVr/5zW8GN5rMJqLVatX23eXlZSRkh/fNdsug4sXFxa9/\n/evVasXlW9u2Z2dn1trb29vnuQvHor1+/ZrJ1X2KQ9tJKY1Ufd8zk57tY/I83+/3291OZ/b6+jor\n8u12G4Pb7/f/+Yc/4O9/3/f969ev/+Zv/ma/39/d3TEtgtvlx8dHY0zTNNuxu7+/DyEA0mG/5zfL\njnpKqaurq8XleULcD12IkSJ3mQEAlNG/+evfvnn3dr3bfvn6tZnNbZHvu3bfd24Yx5iyItdSAh5x\njxQj++AYY9hNibUlTBREraSUNs8W1y+ZuDH2jojYlmFwYwghpBhCMFlWlmWelc650YWhH10MSCQz\ng4R/Zv/HQCDplCTKw1QeW3IrzwKDSEcbOR6lIyHLjRIiBIoCMrLPFAEJAPJo3S5OpjzxlNHNpS6e\nSI/0F3GhQoiQogRh2M0z01oqTn2J5s9mlvzTjgOqP4+Pj1/H13CKNObQtxMl5PTGn00xT0X3//mL\n/3o6aQTFKXeBy3xl1TiOWkj2Xv3p4weeRrMDHUcV+hSZlapOUcQ8PeJHfazQpRRCcA7HMUgj4TAM\nUitmLBZ5ntw49kNCssawLR3PO7SQISXESECUUt91qEymdN40SkBT1fPp7Nvd7X6/Hbxrd9vSZu/e\nvmXQeDabnV1eSKW4FcjzfOi6yWSyXMyC81++fGk3u8Wk4baSLeqWy+XDw0NRV5vN5tOnTww4/+u/\n/usv3n83bSYY07evX6P3i9n87//+73/+6Uci8m2LQHVZTeczbU09mTD0ZYt8sVgc2pa7ImX0d7/6\nxR//+MfM6Nmkqari4eEuxjipq75v1+unzOpMG6ngcNhNJpOrq4sAVww7PT4+JqA8z8uybPtOKzWt\np7NmMj9bLhbLWd1IKZU1ULUBUwiu73upTdM07KpRVRUbg9R1AyCLonA+/vzzz261acqqLGsBShrb\n2KLd7Veb3XZ36N2479qzly+uX7x62m832733fpJLQPrw049KqaZsKKbkw29//VcfPnxYzOYuBm71\nzs8W79+/11p3374NwwAA1trdbtd7N8agjJEED493MonCZjEOgzSlyYJzW7e6vLzkLVnXtTX5d999\n94//eP4/f/dv2thD26f24GMYxzErcq21i46Td51zLFIVSEAcAUkKBGDK8qKuSorJOXfyyKsns6lz\njiN4vfcxhOA8hhiGkRIapdkNsCxLNwxd1xHGOitSSnu/d8PQNA1rjhMh63R5lMuzee6VJ5OJlJJi\nGpwXSgIRJCREzirl7IUwOt53zjnnBzqluZRZ7mBERIwJpZKnaHBrM0SUrG9EZL8OeYr3NkobpYwx\n7L/Puzim5FMkBIEpCRqDd94DAHvaIwASRUAAqQQcnTdmsxkzpEBJ5toE56TNANHHtNlsICZ1ebmY\nzl5cXa1WK6N0bnS7P6p1237QWltrM626rmfslD0Fi9weupYZN4m9PpB2u50xhvXyfdtdXFxUecFa\nndvbWwBgxiMfiP14JNzWkyak2G57K0RwfhfCZrNZLrIms3lZJMKIOAwDM4bqumZskw24GUVs23Y6\nmQTvtVJSSq3UcrE4HA5uHK0xWimO+w3e86GAKb24uNxutxIEhzvCSd2PiF3XPT4+IpEJWUrJPwal\n1G6/Z8IeIjLqzmUEALBa6Ww+l0Zz/51SGvvhy8+fJk3D7npXL17OJtP729twBIA8xTS48bDbN3Wd\n5/mPnz4ykHI4tOfn51dXVz4EpdTbt2/vHh94y1lrda60VEQkEhFBdOw7hpaVnQlD9Eoqbc10MS+0\nlQCBsNtsZFXbPAOrycuUkpIiEYUUN4f9cYYhhY6nRCNPIaDzLiFqTKQlIlJMHtPgRqkMo77PN42Q\nWhCwK9bxysQkpCQpYowsF1FKkSAgjAkTIUnz50vuRKEGABYccy1yhJSB734UAAJAED0bVhz/FhKA\nUFIZYwybTpx+MiKCOOYAHr/E0Vae/wCL6KQ8ShGeoa3nm5tX+PF3CSGVPL2wP1/wf34ObCSijtM4\n3rrMxkyQuCpiB+O+790wZnmmhGRZMygJLoUQImKe55GQs+KUUpxiSEQSZExJChFCQIx+PNII8qpE\nYBNOmWVZIBz7gU89Y0zbHlJKbKkGCWOKUkopJPlIWlhjjVJIkYsOgbTbbBeLRb5UTV6+e/laEQCS\nc66eTqbT5v7x4a/+6q92h/2f/vQna/X9/f1iMl0ul9OyTt7d3d1xnsebV6950mGVHseRC9O+78Po\nfoo/vn75sirKOi+KLO8PbXT+zbu3u91us9v248DwjMmyuq6f1ivenlVVjc7NZjMAMMb8+Mc/3d/c\nGqmWy+VyudyuN3d3d/f397vdjj/nPM+ZscyPaPni/Orl9Sv35sOHDynGZjJhct/Q9UWWa6XIhXG1\n4+uqsFpMJwCAkGKMQsF0MTPGjN69e/dOar1cLrOi+Pzpq1RqOq1ijI+Pj9kLI7Xux2F/0NOq3raH\n3W73+dvX73/5C8jMZrfdtod9uw/BN2UpkSjESVkxbL5ePQJA9KEuq/l89vj46IfRxWCM4bg5Ppem\ny8UvfvGLu/V6vd8lNwqlAKA7tIUtZsvz0I+Pd/eH9RYQ//7/8dv5bPbDDz+0h75pGq31t2/fdm03\nmUxiwmZSRUIxDhEJEW2epSFO89IYk5yHkDIplNUYRBpcnmdaSHTRp0EXAAAUA6fM0SlkkJFkPmkl\nCCOklDLG49hFGVOXpUgY9CDQsHFhTEKmmAQQYiJMJ+k/W23wT97vdjEEIipsxpA1E0cSogQ6hoUT\ncKYTJAQhICExc1sba2yR5YDovecyHKQEIEFAgvipPoPelFAak6JX6kQ7VUqASESSCKUgKQh5uoSe\nkvPexaCMFiBAQkRCQiAQKKMiLaXM8nyxXEopN5tN17f7/b4sy0nd5FZrqbRU0fmA6IcxFqEpcprO\nlFIJSIJw/UAJrdK5sZBQKdU0TVPVX758gYTT6fSw3/IAmPk4TN1iU8Oj27MP8/l8t9tx4dZ1HcsS\nnp6exnGcTaYxxt1ulxW5W60eHx9RQFGW2+0WgTJr60lTVtXdwwNnp6y3m6ZpfAy3D/fGGL6c8jw/\nOzvbtYe7x4fbmxs2vUJETrznPpgfMRvrtG1bFAWXlg8PD1ab5fkZK4gEwaSqxdlZVZbT6dSHkOe5\ni8F7f9jtp/MZ0zrm83nTNH3f/+lPf1JKOec4NI2eDbmkqvKiyouiroa+P1+eUUxhGIno4eGBPWyn\n3v/pxx9+/vnngGm9303nM2ttu9/n1qaUVuu1VMpY++nrl8PhYIry7uF+vdsKo4WSQuoYo/OukBnf\nTAJJKUnGGKV98kopEBIRjc2n04kbxs1uf3d3903Kly9fLhYLsNb1PaMCXdcPIdZ1zatwcCGEkBCs\n1taCEIKl+pGXPGJKCBEIkE5SPyEEm00mAZEwYVIcUB8jKKmFFoKpEEJIwZcWSFAk/kzu+ouQA+7w\njuxN5jqCOM5lveNvEAhOsv0T5RKB4EgUV4oihyD8H6ybeTtJKQUcYzD4F8ljdhmrCYiIBMhT53nM\nKkREOLnFPgcgPrfBRH/Oovjzvj09Hzj5/rgUOax6cGNdVmVZBucEQUSUQMqaPLMghQsheU8CAAUo\n4KfHtBFBFBEAMR2fTyIBzHNJKXVukMBSnyEGB1JkeVFVFY/BUkopRH6qEoBS0kJpmxXGaKkUCQUS\nXei2+0nTjK5fzudVke93uy8/f5ZEWkonjfsybDZVVuRvX73+6eePIYSHh4fM2O/evP3NL39dFdnP\nP/x0c3OjQORZtrxYKKUWszlrZuqiTCmdzRc//fBjHN2L8ws0R3+0h9UDAIS4ICKT2dqavCxdCLef\nPn3++uXNmzckBSt8hr7nfiDP8/V+lVmrpPz5pw+bp5VU8uzszHs/tN3i/fv5bNYf2qHrhRCg5M3N\nzUH4i4uLPM+zutRSnS+W0+k0+nDY7rRSYXQmkt93zrkSlFa2C4mI8tzWTRMhsrh2cO7Qddv9Tig5\n3t39/j//OJvNLi9f9OPw9tVbRLy9vR/a7vWrV7YoH7bbT58+EVEzX+iqCo8PeZ501zdF9ub1GyVE\n3/fvX7+aTCar1SqUNTvysgzk7u4uK3IF0O33kJK1ZjKbrrYbpdT5YmmK0paFeHzoBtYuaq3EdDqt\nzi/5tJlPpjc3Nzzm5J6y70eh1dyHYRz7cdwe9i4EFOCj6/veZDa68bDdSIK+7zFGk2WZEqB0UTcx\nhOSDUXI2aTjXVcW4ok4gdV3XdV0/DlzhFUWR28yAzLMsNzY4n0K0xiilBjcCJWMMBtZto1ZKFxlK\nASABgTBhAoyRUuJIMUyJmxm2T+B1zqNiKWUGEAmZfUIESkpiBzoillTlWW6tNVJBlikhKLG5FwkB\nUsrgY/THMBghKIQQKAj27QORZEpSRRGFVIJAAug8JwEoBTD6nRCUlKDwWAYAEgVMACBIAiid5bnN\nMramIjgCenVZLWfzssgkiLoo28PhsN1tN6uxa4e2/8X7d977nz5+KovcXFwqo/ebh0SEWguAPLfz\nxTSEYKSazWY//jBUVfXy5csE9NOHD0PbZWXx9u3bT58+8RRQghjHsd3vj0E3ZVFPJ2F0D12bUppO\np2VdRUx5ng9utNYWdTWZTg+HAyg5mUzysnx4etrsttqaetKUZckRHMN+x2QcpVTApKxJKeV5vt4/\nMr2FD0GWo7HRAbMzWDDHU31rbfRjDG71RK4fiGgxnysQT6uHzF4vFouIwXuvEZqzudJCKcXWME9P\nTwDAORBszbPZbGaz2XK5ZIoZi3EBwBa5IBi7XisVfXh6eAzOsYLLWvv09LTebt6+ffsiBA7wqV5c\ntW3bHw5JAioRMCVCZfSHnz8aY968fQtKPq6e9odOWTOpm9A5JaWWSoI4XkRSUsI8z5nt/LRejeM4\n9K3rh33XemPnMU6VUkWhiKJzwzi23icAUoqD2bVSubHAhuljwjxPBBFT50cTVFIohEISJAUd1bfs\ns4FSKY5PAAChJBGkhIAJIwlmEAvglapACKmICBMnK9LzjgIAjIkh2SMr8vTFPbE8yuyI6OgoLU5h\njnxPGwFaStAAhFZZKWWMEU6XMb88LY+ILt/BR+meEL0bj2w4QgnquSM/Ej2eU1/o+dL9PyDPf/n1\njJM/VwnGGJKag/nYCk1qhQ4EEP75f0BCMAIBIQihnn9aEiBOGLjUCkOMKYFAIkKg0TvnnI8hy7KI\nyXtPwXP2nA9BSck9VvTBj47dOWKISummaZqiTC5ATLnNhFYhhGlTv7p+WdbVfDpRBKEfX1+/BEzr\nwTOOtThbCikppvdv3zw9PV1dXMynM20kP+fdbpcb671HKwHg8vy8KIqmql5cXm2326uLi8Nm+3B3\nv9tsNYhpVc8n083Tqt0f7p5W8/lcChlTHJxXxpKQfT9qm0spvffeRUJRZCVVkOf5m5fZtir7w/72\n5uvPnz5cXFzwTT+bT4wxRClSnC2mdVXNJtMftuvD08PqsDNSDV2/mM+n89liuVzM56Eft0+rzWpd\nZXkKcSAxyctpUY0wPD4+xm1omoYo+eAQQEr5hz/90TmnrRkHt2s7aXTV91XT+DhYbbIs+/Tp07f7\nOx/C425TzacAcLd+ijFevXjxt+fnv//97zf73dls/qvv3t/d3cUY225o8nJ6PW+aZnfY/+FPP+52\nu91+c1VeSSWZgqS1rsryYfW0Wq0OwzhEH31QQmZGp4hFnvdtN/Ttm6trlaiuqv/rf/mv/6//9//z\n5u724eEhz0uhZPRhGIZ+/IoJOP6LKHFUkbXaZqZUzTAMQ98DQGmzjJ3TpXr58sXjw4MDuLy8fPf2\ndZ7nm81m9fh0P/SKUz4JJQgkSCFCRlpIDgnN81xLFaQ3zHweA8t/o6KUwuCPIRMpuGPBmpL3PqUg\npcykBqngGAtmpM0kCIzJjWOWZahUppWUMqbUu9FxxolUzjlmcRqjrLGZ0lpIKURuM6tNCpEvQalA\nSkkRQBsSoLVkJMw5l2JsmkqBAI4RQiKZji621pIQWmtAgSQUkAYCKUKMyOE6QPxNBAJMmsdX2+1W\nKtE0TVVVgmA+mQ59izFhwmK+sFJlSgbnEXHeTKq86A5tu996Xw5uVNYA0mG3pemUTx/vvVVaCL3f\n78/Ozpxzh8MBBWil8slEGt1UNePPSsgQAsXEsi1MidV+IYaqqqqq4qQ8APCnBGnmHo/OGWO6/QGW\n7ocffpjP599uv1VVpYwa3PBf/+t/+XLz7e7uzke/XC5dCCzunEwmL168GIahqqosy7quc84tl8vD\n4XBkunqvtWZTyclkklJ6fbYMISQfKKbFfP7ixYtuf9hut9qa+8eH9XrN5+/gj7aFTJr//Pnz09NT\nSun169csgI4xsi0A99lZlrGWSQhhjGkPh8V0VpalIGiq6vL8gpnbwzBst9vLF1dVWR7adr3bZE25\nO+x3u90wjvcPD/0wCCEWy2UIKa/K12/eJCBltLXb0blMm8EdrNKEmDAK0EJrxnuNMfWkjnkupGz7\nbrPZShC2rECpzTD8/8n6ry/Jsus+GDz+XH9v2Iz05burmwABAjQiSOnTjPQ6M2vNt/SP6kFL+haH\nTkOQEkgC6O6q7i6XPsOb6++x83AiEw1OrnqoysqMjIi89+y9f/tn5Hy+t46zoDW20QYY20hlhbTa\nZJkfpanb4ZmuxQgjCKFB3GjNDdwzDCon6pdSu/RvNyzWQu6nRgsBgAACrbVUihDionuBm38hRA9l\n63FCdQXS6VD3zjUYg4fS6L6AQOQKsLJuSnZp3AagvY2NAVZqtQefpTJ0b0f3aMFmH6bYx6ppjHG7\namst43uTYW0MMC5lZT/d/pBsac0+CBxDZK11Jl+PzxMCoB5ThN3Seq/dhAjtewVKqTK6zXOtdRLF\nQggDQNN1jRR7rSSCAEFg9zEvjvYFCcQAOmdNiyCGCCJoH8SU+sGegmCijLUEE0QMsFXbBNwjnHG8\nl/kCADBEygJMkOOBy6azWmKPQ4w72V5eX02ODsqylJ0QXZOEYRhHi7upEIpzbpXOt7vlckkYnozH\nVmsIYdNU6/XaJ0wI0da1lzIH7bo1jbPdH2QZATDw/JfPX7Rl3TVNQUiWpBDCIAjaugEYQ4zzsnTa\n6MPDw4PDw6OTk6qqwMMW3/2mAAB1XY8nE4zQs2fPAACz5YKwvU9tWZbT6TTLsixJTw6PMMbr1Wqx\nWkb+IUQEMdZs8/efLlbLzdnxyY+/+HLQ67d1F3Uq8UMlZUD9Xjbg3LOi21VlWeWN6DinSkltjXur\nW9FVm7W2IEkyz/eLqtwV+ae725OTk9OzJ0Lq1XZTa90Y0+/3d7vdfLcD2mDGe71BL+1z6qla3Hy8\n6PX7Sqnb65sgCFTblMYOBv0vX392dXWllPAYb0UHgdluVl3XRczbbLeEe56QGgGhpFHaY5wEhFMu\nqqYuys1mVZY7SpAx6osvvri8vOykQkg4MnlZV/P5/OmT52EcVW1T1Q1mBGLge74fBgkh2+22tABC\n6HFOCGKYMEq1Ulkc+aPhYDDglLV1Y5TO4uTo+NBaWxRFVVUUI4Ko7/v9LOWc12WFgYuVV0pLbRQG\nULS11toAixCEhCmjpVadFg7KZoQ6jA0YiBCkGGuLIISuiFBKKSb2IY3YaoMwIoQACHEHnd8qo8RI\nZQAgCDNKOaEu2BgBSCAEGCkLHtKfgIHAaEPoHugyxjhSOrDW933nygeM1Vpb7TA7CNsWIQRccpQB\nCEIMoIUIEKKNkVY/HhSuaSa7fEspXW9WQRD00oxzHvkBRgBDpDrR1PUwSykhWZK6PaLVYDNfiqYZ\nZD2p1G7XTfr9tN/737/6VVtVVmnf95ezeRzH1uZt2x6Mxtba5XLpuNdRFK22m7u7O2AshshNnKvF\n0i0GMMaUMaW1UsqPwqzfZ4w1ZaWMllXrRgSC9uhxv9+XSkFgoySO08SZS7t3P8uy9Xrtog+Pj4/r\ntl2slq3oKKW+x5RSjpbiRszRaOQgHWcHBpwjJoRHR0d5nm+2WxcJfnd7u9vtyrL0KDs5OSGErFYr\nxy9QSl3f3Tqf6qSXaWBPlHSPSQhxk/ePfvQj50/psO44jt30VBQFAXCXF7EXiLZDAHied3FxMRyP\n3C7ZWvvmzRvCGSZku90KD2GMPcoOTo6UkJ2USRgJIRjznMRQKdU1LSFEleVms3F1hSKstQHaQAop\n5ZR2bduCLPM84l41qSqtNWJ0V5a7pkYL5K5mAICRSkrpe55ByGojtG6k9IR07lpUGvAI+TpFgUsw\nxBhACAxS0AAAlDXIGmSNMppTgghWezkBsQjKrgPWALA3zkAA6Ic0JET22sE9RAyReeBeIQCtNuYH\ndCdrLXcx8g9fbK011gqlPM/TCBljDLCdFNACt3NFGrvvxRA5WNj+wPD9d0Pqw5oqZvtAld+N3Q82\nrtAFi1prtHEr6h/OvuAHH/YHCan/psNAED0a1FAAAILAQqmVK7dCSSmlMhpiRN3kDffLZm0NstBa\nazFCFrnNJaKEYmiMwZQQxxOBAAKgrUHE4W1WKuWYAa7tcAOiNcYYxTmnjAmtTK2lbBnCkBHOOaCQ\nx2FvMHC3tpUq9Mzt3d1quTSQpmnqOBD5dhPGUZkXCMK2rtqmUZ0AhLmbGhKEMHQZeZvVmjEG+jYK\nwkGvb631GH96fj4cDjFEbVW7rLbheDSvdhpaBQwi2ADrPFW479Vt46xCmqZxdAq3Db29vr65uy3L\nknl8tVoyxihnaZo2oi2b6uzstD/se6FfluV0Pq2aynfB7L5vjJktFtPpdLVZK6X+4MsvIbRhL/WY\n1zYN45zHoRTCYshDvxZ1UZZ5qSklvu8jhPrDgZhKoVTk+0mcUY93ndzkO4+y5XL5/v379W47HI+O\nTo7ztr6ZTyGEKaeM0du7u65uekn65OR0MZv/6h9/eXJ6enBwoNoGByGGiBIU+lzKwC2zGKPWap8z\nDBEjtO0khNjzvNFo5IfBfLV0cq/YD6SUYeATgu9v73abTb7dVVXlj/yj0xOMqZRStJ1z4XapVlEU\npaJzRpV72RuBnWaUYT/yRNt1srWWEoiUkdvtup9mYRS1bT2f3rvjNAzDLEkd8KqE1NYYpRmhURCC\nh1xtLdUj+dFaa6X2PO4FPsCobOttvqvbxoEKyFrnJEoQMkojC4wGBhiMsZSyFZIx5jw4CcKuiCCA\nqbFuV0QRNhhzz3MZ5BghQpBTEyEAoTZKGYddO5YxhNYohQHEhEAINbAY45BSsLeUgI7kBCGw0Lrz\nylgDO0EYZRhbCA1EGEANIQHosXIjaAn53ZFFXOPpkmgRQhhA32NKyIPhqK6qpshF12khKaXOv8Nn\nHsb45OSkauq72ZRydnRyWok2S9O6aSAER0dHTpnXNS1BeHp3Pzk6zJK0rKuqbdq23a03Tgxe17Xv\n+3Ecl2XJGQt6veFwCBFq23a5XHZCIIzdMrUsy48fPzqFcZZlxhjP8w4ODjDGUgrP8+7v7x1ScX9/\n37btf/2v/7XrOh74Tvm32+2cD+1gMOi25enRcVmWRpvjyeH9zW1dlB5lq9XK73OtTZ7nGEAbBKdH\nxwwTl/eglSrL0hgj266xVa/Xc0qto6MjAMButzNS4QiXZTlb7d1FXN93P58ZqX784x+v12tCyMnJ\nSRxFZVlut1t3UhwdTFz/dX56VpYlpzQMw4uLC9dz/ekf/dHk6PCbt28QJefn50rr3169a5qmrGo/\nirzAD2HY6/WWy+Vqu3FjU1XX2yInjAMAPM4xhqEfYAiEQgihwA+iKKII3s2mziooCD3P8yCjujPC\nGhIErvwoC+qmUUISQkLPNwgzJzDYbPOi6oRyWFDK+L46YgQJxphqo42SAAAIMcQGafRYpbQ1FkJE\nCMTYGmMBoIxCjZwl0A+RZGj3E6RjHrmC9+iz42AbaMHvfYuxAEDkJkIAEACuBrpp1QmXrbUKAAQA\nAsDCPShvHzTy1u4JF0opS/ZxxW4TDBF2z+fRXdY1yRhjt6N2ew33aMYYa8y/Ka4/7BJ+1088rIEf\n/9f3fccQtkoDyqIoqut6sVr2+30E9yxQh5oAAJRSDn3QD2O0e1gEkdba+ZBAsE9ORQRCCD1GS5d1\ngwmCVgvpE+ZxznxPS2EgCMIAAdi1rVKAMaaAqZoSacsQZoEfJnGUhAjjTzdX94slIvD67gYbgBCi\nAPVH48logint9VMhJWMEYPTu3buXr54bY0LPN0pDY/3Aa2oGIayaZrVa9ft9QkgQBFrK2f39kydP\ntFLDfl93Ig6jKIpUJ1wC0m63m7g7riiqppZSEka7rgvjyLXREMKqqqIkbqqaUiqldEHmD7sXxDyO\nEOqUdIaRT18810LmZdE1LcR4cnRU1s1MTJVS0+nUFaFGiov7G+yx0WDYTzMIdS4ajBCQzXK1TA8O\nRkpJIz9+/Liaz7Je+vTp0yyJDbCY0tFoNByPCfMGgwEiNIjC65upUEopc319u8kLGoaA0KQ/0FJW\nTYc8zLlPCPN4cDQ55ojBH//hzc3Nbru1Smslsuy4PxwUVYkQqKoKAeAaJiFE01S+748Oj9liQRkb\nj8e9QV9odX19DbUxSpebHWPM5952s4EQBIG/Xq+yYNDrDcKwlFJOxgdt22pti6LwPG846jv/n6Iq\nC2AJQhijuqujKOK+n+d51zSUMx56TivRGTVfzZuqklJyygiwZV3VmAZBsA9XlbIoCtG0dVG63ybF\nhGLibgR34zw5O+0NB/3BoNXy8vqqbhupFf6BMaJzotFSOcdADSH3PMaYphJjbJR2jknu5Hf7Doic\nBQ5xpEJKKXZdu1ZqHxlJMIBSCue/7YUBp0wbLaXEyHNnTtu11lrKmBu4KUEQQgwgBAChR/8MiCzA\nLu4TIeS4otBaYDEmrbHGKgSQC4xyr5cEno8AdEwrUTV+RgjCYeRVZWmVTOLYKF01ZRJGr1692u12\n6+k8TpO2qje7DQDg7OR0VxcfPl5gjAeDQdM02/V6vd640XMwGHz39tuqKIWSg9EQV3S73W632zCJ\nIYQumVK2XRzHWqm2be/v76nvxXGMGS22Vdu2l1dXg8FASKmUciEqDJO8ytMobquaYmIZcuEwbdtq\nIbumfXJ+HgTBzc3N3fXN6enpCi3LPK/r2kKQ53nC/TRN3fj7s5/9zP2lrmvnH+sIe26hopQKw7Cr\nG9G096uVMWYymTiXOyEEwIj53mKxcG3E6elpURRd3RRtlSXpZDJxR3mapovF4h//8R/3Yicher3e\n27dvEULPnj2L47hYb4+Pj9u6AQBwSnu93mazcXV9PJm47WAcx9TjjLFXT5/OuvzNmzdG6+12iwEc\nDYaMsZcvX/7yl//EOd/tdo4Z2FS14+v6iLtkJ11pggmEcLlcUkr7aeZQcaNBUdbaAO1yxwBywCkh\nBHMPYYogBJhgzrUBSuuiaZuqYowRhLuuExgiSiilhHKktIHAWKut4czPy0JYDREyEACLtAGyai0E\ndds84jC6bcCD1ZR2ntguhVQqB2ZYV9sAdPePW8PITuw9ZR0DGeyd4h0p2o3g9jEIDBIGIca4k0Ir\nBYAFxihjIISU7H2VXXl+5OojhNq2daOMa4qJu28xVtY4JApiZAGQUjqbM3cIKrkH2AHcNw0AAHfd\nuhnCrVpcbIlLzXJ4sntway1FuDXWRRRjjB2gGgQBAODxST7SpzHG0CKHqQohnEcjskBoYbXR0PXv\n0FprlK6FLIoiSmJgbBLFGOO6KiCEAKNOiE4K2TTQAgxg4PmUMdfAIIK7pu2q+qA/7IzaFtvr2a2F\nIK+rToowibdFbrVZbzcnk0PE6SnFSgkXQUZPTwGERomf/vgPAQDXl1fGGKlE6AfeEd9tttZaZ/Py\n2cuXzkVhPB7f395NJpN3333vgGJ39UY0cpWmaFqllLWgqGqllJ0vGGP5rnB+EVEUpWlW17WF0A9D\nPwyTLAMIVXVdtY0ypmnaKE3youy6zvO8y6trYG1RFI5cF0Wxquv5fB6nyWgwyMtSKPmX/+7ff/Xm\nm//x938T+cGf//mfjwbD6fzOauO2dbt7Vdf14dGRa/ZGg75b5AkhAs+r29bzPOYFUqtil1PGpJRJ\nHBdNPRgOd0X+3XffjSeT2/u7fLtLoshpl621hJDtdksIORiOpJRxmnz5B3+wrYqyLC2GmFJl9GQy\nWW+3vV7v/Px8s1rleR6GYSdEWVW+MVVVSa36afazn/z048ePHJHQD5SU89msl8TxcCCEyHrJwcHB\n27dvu7oJw7Br2iiKsiT2GLfW3t/eCSWNEqLtfM4hxrvN1g943lQYY4gRC3xEqCWIMm4UKdtGitZF\naO+KwqUIT/Oql6RhGHJCN8tVvtsxQj9uPwAAKKXOvtsRmIMggBCmaayUuL65bLo2r2pgLALQRVUG\nntfWjUV6Mh5XRblbbxx9Z89SRogiRP19rsEju4JoDcDe8NVa61PGOZdCNGUFgYn8wBhTl1Xg+RpA\naIE2pq1qIQRAFgBAMOw6o7WWRhtjmq7eA2aIGmMQhB5llFIEIIYIEaw7AdrO0cF87jFCm6ap2wZA\no6o2iULK2Xa7BRjGSSKEIFVeQAg9ytIkghaoprNSSWMxsHXbIoRWq1VVVZzT1XZlrXW+Fl7gncRH\nRd2UVdV1HYQWI5zEsWO4aa2DwN+uN1cXl06etStyZz/pCp4G1hjTNE1b1TSOkySRQhRFsVtvSOg/\nSgiEVtZaoVXdtRAhZxpnrWWMze6n2/VmPB4rrD2PHxyMiqIwSiE4fvH8aa/X+/D++yQOm7YCGBwd\nTWbLxfv37wlB8eH57e2tc8f8p3/6p+12yzl3617zQPZxzthCiDzP4zC0Wv/Jz3/OGPvu3ff/x//x\nH7777ru8Kt1UIbTkgedxXtdVnu/quj599SLLsrvpPQDAbbbquk7CiHPuTqWu6w4PDwkhi+nMSHVz\ncQUtEELc3t7meV6XJaV0MBolSbLNd7PFfLPbFnXVo+R+Or24vLQJd+d4v98XTXt7e9u27etXn/WS\ntFNSSmkBYJgAYNyU5vvcmZ26rCRX2DDGnHMNrDHKqXs7KYTSUkoShFopazVyYA9jFGFKiNuxUYQJ\no0x7xphOCm3Nru2wpJQqTKSzVLUQGIAwJQYCBBGAGABkrXa5vDTy97iuBRDsmcQOeiYQu8nPaBcO\nBCGEQiprrYHQver93pfSxyUKNNaiveTXDYEGAui0uNi1vthC2HTtY0V8nES1teZBquT4Vo/jtYs2\ncvMuhBBAoJSSUkKCHzRU1kUCQ0fEeNAiO9Db5bshhAiCSkgIoVOFOSIFBIAS4vzrOWUaaWOMsZoQ\nspwvgiAYDYbWWof+QQi9MHBjHIQQ2b3B2Z63RQi0ACMMCFWU7rnlUjkpkdbaWAstoB7lnDvLXACA\nzz1rbVOX+104RA5mRACUTd11nRLSAo0hKq20SkNtpNGqFU1TrbcbZUw66EFACKXDySEB1iqttFlt\n1vP53NWPoiiKusIYrper+XR2enqKMe6aWns8G2WOKtHWzc9//nNHgnPlE0PkfAgcbWK1WkkpoyhC\nCHHO17vtVnWLxSLP86ZpOGVlWToCx9HRke/7u7KwShtjgiDwtHZrKQf81W3TSuFFISakFR1EcJvv\n3CVhtPZ9n2FCGD3gg+X9rNzmB4eTo5OTxWoJCO6Phov1qrbq0/T2dr3YrtZ7coDSPR6VeTEY9IxU\nvu8fHByMRiNn5tN1nTtG3nz7vRf4lHnL5dIYUJZWWTMc9AjHi81aaCGlPDs/UZ3oRNOIoiOME2yl\nkFImPnFE1KptulaGcYQpXayWl9e3znrMWlvXNaWUUW+3LTq9c5I2F+82Ho8ppZzgxXxKCOGENp1o\n6jpNktPT0ydPnvzTb36FLAiCgBGKEJKdaFAThuF2m6/X66qpIYShz4HrfYHZlRWELhEIYIwD30ec\nEmsghohgLWAnOgABC32McaNE11SdxxgnSkhrVODz0A8eORwEQ2B1XZdN1zoztdvb29V2UxQF8zjE\nqMhzgKCXJUkYUMKzKDHOgrBrgzhCToqtEZTKWqusgQZCBDHYexsTRjnnrna6rYTFNeccQcgYs0Y5\nYqbzgLNGSyn1Prd3D1y7su0SnywEwD6EkCJiIbAAKGCtVhhAjRCFyKWzuDvUXV0ME+KHdddSiJCx\n2MLICywEUBkgNXl6/kSqLvD8k5MTLeRquTRSdVWptc63u8FgQCnu9dLRaORsyQ77Y2MModRCQCmm\nnAVBkKbpu48fkiTJ0pRzbo1xJNWyKhBCnufNl4t8u3NOXIeHh8YYgJEW0vX1RZ5LKX3G2Wh0s5pL\nrVy3O1vMgyAYjIaccz8KozjWSnFC+1nv4/sPshNWm0+3l4OsF/oBpzSIk1FvEPlBVzc/+dGPeeCv\n1+vpcm6UPjrYT5NVVbmiq7X+9OmTM54tyzJNU/d2G2Nco+AO36dPnrRt++rly08XFy4B7fmrl9fX\n1y4tcbfbJUniCGVBEGw2G8/z4jj++PGjMQZDdHh4eHZ2djg+ePr06W9/8xvH/Cq2uyD1RqNRGIb/\n5b/8l+Vy+e7du+1265JbMABlXe2KvBXd4eGhH4V5VZZV1ev1oih6N7seD0dtVeebrcf4cDjEAL5/\n/97zvG7XKaWCIGCct1I5zbhbkrk/WmkhhOg6NxoCjLTWzrDU4wHzAimlMBpCqLTGWrspEyMHtICm\naQTGBCJMiWpaRyOSACCrlQYEWgItQghBApDt6rrrOoQpIhahPVXZQOCmzP2+5wGMdcM6Ywxa0LYt\nstYRAtzAtC+WDkd9cIJ9hJ3tD2K67QPF3wJgEURoLw5Gv6/2ceXZPgic3KiNEX7kMyOEjAWPbiEu\n8xG6PIxH94xHUtjD42itHQnZGuvgcUIIhsARDlyawiPByl1gCO1pEA43gxACpRGACEDHGnXzkNNN\nuycGzb7bQAAihN0KjRDiuKMQ7jlpGEDXkkCnqbDA7QiNVI7UbYF1WzHCKMKkaVutJAIQwk4ACLRB\nGBBGQu4DbZCxvV7KCIEWtKJbbTZ5nvMwcI56VVmGzKMEZ/2hCx7GIQ6CQIi2ruu2qhfTWej5B6Oh\nlNKFgY7H4zSNfZ8PekOl1Hw6jaIoDENrrBPpseGIc1537e3tbV4WRVX6YRCnyXox2+12i8XCORC4\ny2AwGHRSIIKbrnUGIJnJaFPXdd12crlZY4yjrIe5ZyEAhPaH46qq8rIu6yYIAs8LojDmnMdxXMw3\nr568aKTojJKtbFuxWKykseOj4/v57P3FJfM4xcTND57nddtqu9lst+ssTiYHo36/H3h+0zTD/mA6\nnWprXZDtx48fLUDuZ/V6PaHVtixkJzzGe3EaROHz588Xs/l2uZKdiDw/SdMgjrWQXVUIpVTdIIwh\nI9T3tnnx7sMnlwHcNM12mzNCDw4O0igmhBRdBTHClCgh8zwXXRfHIdDmcHygpHSLiYOD0cHBgZTy\n+vrSvYH5dmeM8blntXZY49nZWcMpIZHnecrYoiqLuhZ1Q9NkX58Q4pRigo21QpvdeoMx1EoJF0fG\nfUqpozK0bZvGyWAw8LlXFIWRyiIccI8QkvQyd/HnZeEoPnVZRFEYBJ6UkjDez3rKaGttGkRN12GL\nhRDz+dwRa0TbBARrrZVWRmkMoAsyoAgbYBFGTi4rhOhcCjJGzsSDeV7kB9Yol/LLCFVKMcuk20AZ\nrbUGCFkEHdiJEEIEA4u01hZYY2y337JBI611PS6lDFiKoAZWa6U649pKx8zVRaGF3LUtIYQwihBS\njoT1xevP8s12u92G3Ds+fzqP012+wRBtt1vRdgihwWDgBT7lbL1eb7fbD9++p5wRQqTRiOA4Saq2\nW61WWuv1eqm1HgwGnHMCked5cDDcFaUQgiC8WCy0NZDgIAwZY8PBMAxDjPHd3V1ZFISQfpoxxqxH\n3epFab1er70H214p5Xa7xQixOHFRg6PBgHP+3HsqpSzzoi5Lj7A4CIHS7ml0XddLUq31drMJoqif\nZpvNBnn+aDTabrcnJyculylJEmdTxTl38IVDBffA8nbn+/7XX39dFMVnn3328eJTbzhw2Q8AAHcK\n+IwbYxihSsjbuzuIUBzH/X7/+vqaMRbH8XQ6hRAWRcE5Pz4+vjPWCf9Xq1UvTgkhk8lkPB67332a\npqfnZ3d3d3ezqTQ6CENCaZ7nBoIgCDzKDDb1rgg8fzIaN00jhfB9v8grNyTFcRyE4a6sHFpQtY2B\nIOAeAIAwiiFy3g4NsIwxA4HSinEexJG7YZbrFUHIkYmUkEZp9eAb7vixrp1EBBNXFwmDEFoINQDW\nGgwwghYCILQy9kFq85BqYiBwlWm/K3Uo54MPlOd5FBMnAqCEEoy11hxD97+uBpsHeQ/G2FXfxzWw\ntRYjBNwztwZooK2BRkOtAdoXYPSgEXqswI/Eq8c6up+AH7azj0/efYdSEjyslvcOOw9mHfZB6uc+\n3PIYWeOIeOohato9jqvE8IFf5qBpay2njGNitXapqIRRAKGV2sVXEIgsshjjRz962XZKKdcrWWOI\n8xihDAIAMWaEEoKklEaq1tRSSu3sRKx1iapBELhNkGg7gKC1wAAAIYAYQQwBggwTRCBUJgqC4/Fk\nMBikafrh08f5epXEsc+9pq67uhklvdgPBlnv/t0Hl47eH2S+51VlySi1xjR1lcQRAlAJWdd1VRXW\n2izLtvmuLqu6bTPGOOdaqqZpLGVa6zCJI0oAgkVRLNdrLwgsBB7joR+oXs+teN3vzrFAfN9X1iil\nPM97zBTSBpVVFUWRn6YBZU3XagsAwhATTFmUZKP+wOOcMcYp6/V6MWBJls2Xi7fvvl/Wi+n0XkOQ\nDvvW2qqqOinG43Gv19tttmVZhmFojDDW1m0Tev7jfmG32WZZ9sXnr5frVeD5n714aSG4n84nk8nN\nzc3h4UHo+XVbUYykNOV2o2Wn2iPZ1LJrobUAGGWkARoyFPNsuVzuqhIRWm3a4uJiV+TL9Wo4nhRF\nYSEaTw5CP4iCmBOqtd6JzkUZDodDgvF6sYRGj0cjinBRFEK0Xhg8OT3rDQcfP368vr7urHYu357n\n+ZS5OM62ba024+EoTVPC6GyxkF0rKLG+lysFAKAuw5EQY21VNaWu8mIXer7HeJRkHiOcc4IwpfTM\nCxaLhTGml2b9rLdeLJfLJUZIax3HcRYnTj/iph2hJKdkGAZxGCmluCtdyjoxZ6dMvt3kZdGKFhHS\nCtGKzrSNa0mtMdACqjEAwBKrtUYWaWFt1zZt23Wdo4gajISSoAGGMaiVVdoyQ1zYBsae50GMGtEJ\nJYVWQCtlDbYAYowwRgBYBKGyAFhlLAAAWyCcwlgDDREiVoAHyx1tlNHYKKoVIcTtVfM8V0phSiB0\nMaMhOTs63oXR7Pbu8uOnNIiqMt9ttmfHJ3EQhp6/WC+cLvZ+NkUIdVLcTe8xo2EYRknci9Kkl+Gm\nDnexFwbL5bKqqiAIRv1B4T52OSKkbduDg4Pb+ztrLEZoPpvFSeJ5e4M9zthoNKIICyFms5kX+Upr\nPwgAAPP5vKqq65ubuq4JxtsiD7mn/CDf7kLf//L1F3VdX7+5d2NK4PnAWGBtW9Wcc5/x5Wy+3KyF\nlJtit1wukywjjB4eTFxp7Gc9iknbtsACionHOGfcWssIrapKKdXr9Z4+fbqezjDGv/ntb0/Oz4wx\njLGvv/7aOacnSeI2l03TEEJYEAZBkJe76XTqaq3WejabKaUW09nl5WW/11ssFi+fPT84OLi7uyvz\nYjAY/PKXv5xMJgCAIAqLotgVOfM49TgkuNfvh2FIPc4DvxGdG8JkJ44mE2yBFA5ag3EYxXG8We+s\nNhBjV9v0g3e/UFJb0ympgQ2551gVbjImhChrgELGAK2ttapphdWKkX1MnnFWMwhhiDDihGCEgGw7\nhKB7dW3bIsastdoYbSzUBhnhipwX+KhTDqRVSkGEAIBaG+jIVr8LxLSuJ3X5lT7nDiYBAGhjtNaY\n7FO4jdLW/M41A1lgHl0vEEIP2LK0xlqALDLAWgi0MRDu6VgP9C5HkIb6gYrsqqkxe1sPV3EZoY/r\nYWOME4zteWSuVFvjiGP2wRgEPJhpOA+dPSdLaUophLBt2/3yGEJXj93s61bOjnYrpYTGepRRjzuS\neSeF+7LHLgEAQDFxSUFWG4/z9qHwuwhVDBGkFAHoKhPDSLgAOAgxQgBAq43qBGaUYuIIn0IIl/Jp\nrdHWIEQQggaYTkoluiSKCcS6FaJpGSZZFGdhzDnvjYaYkpJQDvCTk9OubnbrTRiGCIOmrQgZOneB\nNE0nk4M0TbuuW6/X1uo0jRljToa3WKw2m82wP3BbeYTQ3d1dGIZRFG2321Z0u90uL0uy3WBKtDV+\nGPm+3+v1wjAMohBj/OnTpw8Xn66urnzf556XZZnn+23bzufzrutKofr9vgTm4ubabdC0NavF0vM8\nba0X+F4YuOxIYCyEcNDrI4LjOP7iiy8UtJ1Ws/tpWVdeGIz6A8/zwjD0GG8BYhYGmErb+b4PrHYc\nBSklQwRC+OHDhy+//DIMw8Vmo5Q6Pz0Lw5hQ+uzZMyllUVcIwCQI67Lc5huozcX3752EwdFZmq7d\nlYXneSHl27Kq2qYR3XK7Kds2ybKnL1/N5/NdUQaen6V9RqgQoq1qpRRmpOu6siz7WS+Koq5ukjg6\nPTq22pyeHDHG6qZBCOXbtbV6PB5OlytOWT/rMUJ2m60S0qNsu1pzQofDIYyTrmlF3WAIA8+HFhRC\naK2VBZxYi4A11ihtreWEG2UBQ700TaLY7F0bYZrG2+22qerFYjHqDyYHB5QQIcR6vYYANE2zWq2W\ny6VU0gt8Y8zT50/KvJjO8jiIQSfn262WajAYhZ6XhtGVuF+LdegHFqNatDwMtDUQAIARghBYq62V\nSjl4De1tgfanH4YIIJgkSdM0nRBaKWS0kcqNGZTSveKOMyxo1dR1VwspHyhWAEBrIbIWWAS1AYhg\nd6ZYAKyCBhgLgYZg1zUYY4owdumlygilsIBRFFHO4jRxKJpUSgFLJCWb5cp1f6Lt1qvV7O5+Pp8z\niDnnEAOEkAG2qMrFYjGeTAajUbHLN5tNI7oEZwCjvCyqpnHHinPbCQKPc75erxGAlNIoSYRSYRju\nRwQIm6bxfP/m5ma1WgVB4FLYpDZ5ns/n88D08jx34H7VNgCjbZFbpb0k6Wzr7Grnd1NGSJ7n+Wb7\n3XffIQCzJJmMD9IgyqJ4Pp1VRekz/uzJ0/v7+48Xn7LhIPB92XXGmCzLgiBw46/jwtze3jrehLOs\ncn9x00nTNEkUTefz50+fcd9zUnfXOiijmcedhZYDT8IwfPLkyfr7twihruvm83kQBNvdDhj7s5/9\nrOs6Soizfd5sNlqq8Xj88uVLYKyU8t27d+vtBlPCGFvvtv/6r//6zZs3/dHQ8YCqprbWSq1a0Vmp\nfO5BC6q8INCBWt56vfY9T0ppIXCRIkXdGGMoZ4xzYG0nRdu2DBPP81whNwYYYK2Srlq3Va2sabsO\nGkMQIoRoCKU2FliMMMa4rRsnYnYHDX3cwlJsjDHKWgshssZabAwAgOrfrVqttQgijDGBQGrnvoIg\nRvABv7XWtqIjVaWUgtYCY1spkAVaawSpQ3ge6cr7Umr36ltHSXI/BUKopHKGcxYCCyAAwOjfae8A\nAMBY9ChSAo9Dr7H694po13XuqnbIM9AP3lsPbibAaAgsxtj8gNi8h7iRW5MBY4zV++H1cdPsHtBh\nU+7vEO5JZMaYwPetMbLtEICh72trldFd20ZRtJ/OLQAQuTnaGJP1+jUm7qcLIRzt0621jFQEIowQ\nRohg7AKaVCeElI7BbSAkCGtjXEOptHKra04wZ5xQRCDqUToZjylm2IDtYiXLerXZVGURJjGFyKdc\nwsYQqtrOdtpKc3p86FiNhwcTIUQcRq474pQFnq+UyvNt0zTj8RgA8Pa7b30/ZIydnJ06Tl9d184L\nz7nUQYy477u+X1sTRNHt/XS73WZZFsexXwVRFLngo5cvXzr/7eF4NJlMFovFdLWoZdcKu9rluKyM\nMRCjzlkHcy61sRZqZfO8rPLCKB3HcRjGnPmhx3tphinZNtWoP8jLIl9vR4Ph0dFRFEX3t3eb6cI0\n3dCPR0GSK0AI6do6iiLP8xCAnudBa7//9ttvv/325Ow09PxfX/8WEOyHUVVV46OD5Xyeb7dCiH6/\n//rli91uJ6Ws811bVwgh7DFjVNmUiCJLwGa50VqXbVO1DWJs0u+HWeIHEcmLIJKh7wOMOyk9yrPB\nCACQ69ZaW5fVbDZjlHJGKMJVUWa9ZDQYZv3eYrG4ubteLBZFVfV6PWstMKapKgERsmCQ9XpZlqWp\ne/+bum5Fo2UXeJxTYpQYx2MHoclOGWms1RRhj3HZdG1TW6Ei7oc8BABYYYyUi3bRti1gfDmbe5Qd\nvnwJjZ3NZnEQIoRE1zmSXRb0BqMhIWR8OAEALKZ1W1delIbMq7qy3myOXn3eG/S11ruyMARVsmu6\nLmQUYOxyEi0A0AALrJtcA+7tW3wEKaUAQbd4dtZAUkoNIMeIUkpcLplSEBFCKSEUMmIQVEBrszew\n0tZoDQxQylptjN0fPxZYAAE2wFpgJTDQqEY2zBBGKIeU7E8HA7RptxtnkOxjXFVV1TWylWVdkf/v\n3//P8XislQqDwCoZeP54OAIA3N/fx2nkUoOEEH4YQoy8gH/+xevFYqGMSdMe5Uxq7VmrrVmtNpPJ\npNfrMUzKsjRKD8djAIABoK5rp3ihnAFt3FJEKeUwnCSOpZRVXjh/SqfOFFpF2IvjeDAYGGM4oXVV\nWWvXm82w14cQlmX55s2bzXJ1eHjYVLVSarNaI2UOR2PP84zWq9Wq1+v1s55+YieHhxqBxWo5n89X\nq5V7RfP5PM9zzrlDP6qq8jzPBXY6OHS32+V5Drs2z/NXrz8PQx8zst5VBwcjKaUX+GVZEoKUMggD\nIdvbu2vHZfV9//Xr11rrLE2DILDanJyc3N3d1VX15MkTAlFZlgcHB87zMvD8NE1fff7ZbrfzAn+5\nWUspd3n+8vPP6rq+vL5K0/T09NQdr3Vdj4fDm6vry8vLp2dPBoPB7e1tx3kcx5Rya23TtrLthNGy\nk5jtrZjdtCaUbERHW+rUXAgRKaXsOgus1VApZSDACBlljdLagkcHVIIwgkgC4FxKHDrddZ2b5wqr\nLbAWWogg1AAjaAHEANZt40ZwDSwE+0Bso4GUwiLHV3KmTvs6zTk3wCqlCEJwD/DuSRCPXlfg0fbZ\n/lt35f0KFkJtDQQQIIic7/mDc+yeOWz2Xh8YIoMAQkjbhyHYAvc47uJsm8b9Nl0rBsH+p8NH0Nsa\n9Mjl1vqx23BDOXjY1EK9Tz9021xXZSGEjmfwuMWUj7GGhHVt10kBEaKMMoyarpNWPlLDLLDGGGcW\nDx922xhjBKAC0j44ijgGlhIS2D3ZgiIMXVYSIQ5/ttAgQqA1jn0GIbQIaCcpJjgIfM75xA8HaS/y\nfArQp6Ke303LugrDQLbdZrYwWdYWlerU9Po+oNxd8IPBYL1eO5pVkiRKyffv308mk36/73Hatu10\nOp1MJmEcOaSUc+77PjC2Ucpae3BwMJlMtNaE0YCEDjybLeZeEKS93ngwFo2AECtl6rIJg/j46DTr\nD6MkLoribnqvLeR+OBih/nwhldFYu4Z+NDlwMgFC7PnJ6W63a0DdKd1udsVmCyG0Fm7Wu+GhzxjT\nEEw/vv/2/TvIyMnBYVFXHBPTCo07JBQS2rOIEhIAjIcDTuh2s+Kcc0LdtoIx9uTJk9VqVebF+PDQ\n9/3pcqEtoJReXFxYa9M0dZvR58+fr5ery8tLP/XcQYQQsghqY4RWnZJBHCGMYVWqAiDCvChU2q63\nGwOsthZiwji3SFHKLMSiab3Yy7JMCdlUDYIwYLSu64viIl1Hs/tpv9/XVom2k3KfOPnlF19qre9v\n71arVZKkYRAIIUI/ePn8xWazKssSWhBFEaXUJW+qIHVtXNd1QmkEIPZ95hMPUz9mBGFRN9P2zgUR\netxfr6Zd0waeb63t2rat6rquAQDuHQAYHR4epv2etsYpxD58+kgQpowZqX3Onk6ORd3udruAMKhM\nwL1eklZGksBDHhNaQYgMMEAb6Hp8AK0xVhvCmSslrmlmmEkpOyEWi4VSykpFEEaMEsq01p02GGNj\ntbGWeRwSxBjzjQ8QFMLhhdYarYE1FlgIEETaQr3fagFIMNTQAqC0ltAao7QGBkPfKY4MABYarY3s\nYpwQn5u2xowSzoSUZLPZKCk55x5lxS4nhAyHw6Io4jjGGGFGp/NZ07VhHOf5FhJ4NDg4Pj31fZ9y\nD2MMECrL8n42pZTHcYwhmt7eKaUIokEQ1GXpks/btg2CIMnSoiggwXVdD4fD6XTatu3BeOx5XrnL\nHUZXFYUjrThuF+d8tVq1FsRRRBAut7uTk5PoxavVbG6kstaKViRJ4jEGtWWM9Xo9jzKrNOf8/aeP\n1tp/9yd/Cgi+nd4/e/L0+Pj49va23+87rmZZlpvN5tmzZ2VZAgCiKHInEQAgSfZ0u8lkkqbp3/7t\n3/7Jn/7prizW+Zb7fhiGmJLr6+til4/H4+PjY6XU9eVV27bj8Xi73cZxfH9/v16toijyuffVV1+V\nZYkgtNbWRfmHf/iHgef/t//238Iw1FK52rBcLkcH47IsgzDUWh8dHU3nM0cN9Tzv7v6eUvrs+fOb\ny0tKaZYkYRi6IztJkiiKqqrpGJNKOQcGB1o+8p7coeAaPSEExtT36Z5khPejodtZ1l2plFByn2SA\nETcWGA08n3VdJztpCXH4kms16rZCAFgDsQUIQAsReZj29ntfs58FHdd6P7wCa82+AEMInUOL1tpR\nKxGAbhSjCHdt7QDrH87TwO6jtt206R7fFTzOufOBMg/49uNa96GM/q5sI7B/dxBCBuwL+f6F4z30\nvf/RFkgppZSIErfqU0a7UdsAoPWDlZt7ehA8wNqGAOsUMi5t3nWi7tfRNI2DHAEAbdu6Iq26/W5Y\na92UnQGWed5gMHCmqpBAY4zSUj/0RsUud2i2m6FdCjKBUAihhATUAgMdAd5RBDxEIITM9yCEECFH\nkQUANKKDLupRqqZpEICEIELIfDpr8nLU658cHiVR1FU1xXhycny/mN8tZg7+GaTZZrWuqwpZ4H/2\ntNfrOeejvQk8Ru+sbZrm66+/Vlq4b8nz3A/8n/zkJ4x5RVF8+vQpiqLxcBSHIafMsfQ7KQwAg9Hw\n6fNnxONxHMdpgjSy1lqlXW6Yc4lS1mit87L4+PGjMoYx1h8OkiRp2zYXGz8K3fvPORdKAmOl0e7W\n01qLtm2FoBg7w74pBGVdnz05f/HiRdk2mzJv2tYqjbSd3d2PR6Pzo5OnR6e71Xq32VILDaUEE8eQ\nfyTiGWP+4IsvV5t1KwRG6OnTp9zz8qoOgmB4OCiKYpD1lJBGayW7JApef/ZSGg2h3eY7wogw2mqj\njWxlSxAJAz9CaSPktipqJcaTgyfHT7eb3du3b5uuNcYggLtOalmIpu0EUKJzi/AsyxiCxXrb1PXk\nYNR13Waz4Zz6vt/v97W1QRDc3d19/vnnRmnViSzL6qrKt7vz8/Pb29v7+9uqqvwwCIKAMGqtxRD6\nUWqkscp2tDFKY4yzOOllWRmE/axHELq7u7u/vcMYnRwd9dJUQFXscndD1XV9fX3tvD4eaB+81+8X\ndXV1c319e9N1XTKICcJWKGrhdrWWeUMh8hg3Ui3mcyG7OIwYAelooBC4urvbbDZQawMhgYhTxjBx\n7TvFRO9NKzXljDFGKLUAdAB4xIMeoAAxBBHGUFvlzEA0UForaClgECPCKAfWWmiMUcYooy2wAECE\nkIGAYya1stZSzOCDHAMhhAC12girod4f7Mh56XSqKEsIIfc8F4KQZRmkhLQ+vZvd/eiLL23iJweT\ncpdf3N5WVXVyOMGM3c9npRDD0ThKI4RxFEVaiiSImqberZaOALmYzkSnRqNRYsHd9G67mIdhOD4Z\nASM2+arbVlJK6vF6vaLQrjer4Xi07qrZSvGIW2vX5WYwGASDeNsVDGMgtDWGWuhjOs8rbcDIC9fL\nFUI0C7zxy5er+zv/5OTFq2e9Xu8ff/nL26vLk8PMGBMFYdM01NrFLrfWvvjsVSvF52ny/MWrv/2f\nfx/HaVXXvheiJMiN6J1M3n7zBlkwGPSlVl3XucXt8fFxWZZ5niuzH6c2nPIkOvrxj3759m0SRh5l\n22VBLOuwiGiMAtyVMt82QgjqxbptoYFGmtn1vRW61WJ+Ozs5Ou66Lo5j1Qmo4fHhiRL6X978+o//\n+E+vrq4IEPPpPYRw0h8cDUbFbDHgwel5f3M7y+/uDrzorD/67PnLcdYrqnJ6dyckODk97YS9X6zj\nOIbcB8yrpDaECG2kBcZCRjinUGtNNEBGe76/2+0whpSTVnfIJ3VT12UNIUQcGqOFlMQSjjgn3Hqp\nS8UghCulhEIMUQihhZSFvta66TqlLaS+BqCphQeZw5Cd/b2bWRshXNECQgEAIEMKGKUFQIBY9ADd\n7MdHa601VimFrOM1IEIwxFApVbcdxUZraTX0GMMEWw1cbTbGWIosBBYoA4DB2lgtlfJ5sF+yCrnn\nT1lglGaUa6mtNgRCAhEyAFmIEA4AJoBCBFvbNVJgCyAmxlpMCPW41lpJ6ThlFlgeBRYCrbU22llt\naEcqBhBK7WGitZZNZzAOuOeCxTC0HqVSSqQUxtinhPhe27ZGdJxigoCUwgDgYGqpROthq6yUWhsF\nMaAIE2BN28aUFlXj+34jpFtFJ72+MUbucmXlMM1E2yUBH48n6+Xq/v5+PB53jaAcS4SAFzBKGtEZ\nY0Lu9CZQW4UB1kKKppWiHcQJAEAJWescWpB5Hhb6+vbDyfHZ7d10WrclZc8+f4nGw++++66htLGg\nlcaXAEOwEjuj7eHRsdb6ZnrbG/WDJMQYd6W4vL9p2/b1H/7ow4cPV/N711DOt9v6/fvj42NlTdSY\nuq5N1/V6I6qsUjJN+454lW+3jegwxgGiwyjRStfLzfnTpwfD/u31deJzlsSmrAAEsiguLi9rIfPt\nLkjibz+86+cbLwxOXj7zgiUAwCq9Xq2aXeEjLLquk3PGmKfUs/MnCKFv3ryJ06TrOstgC0W9m6tr\nNRwOIdKnh2PP8z59+uQCE32PAGKY5x0kh7znG2vtrqREk1ZYZbu86BCR3APGUKuHSaS1NkB/8fTo\n6aS3WC3W63Wj7BdPX1hrv/vuu2zQXywW1lopZRiGr169ury8rKqKQZxXLUMUW9H04eXlB8bYcjYP\nPN9WpgYrkgz7iPUBVVpzaVvRSikB5wAaZEy+Xvm+H3ieF3CCcL1adhh0GPWODlvR5V1XLpfKmNvF\ncjwe397eK8KIha2FQgFGAwSb66t7xlheNhqiMEiCybiR4tPlxdXN9WC301KdHZ+cJMeXny7y9cYj\naAd06Pk+pf1+v59E1W6z2WwgtNfXl3fVFvqsg8YQbKyyoiaMfFpOj46OpCAHh+PVZnN7fzddzDjn\nHiWm6LZl9aMvvozCMF9teBAQBLS1LGaiURmkVKCya3ocKaNv81UoGgAABsQnxKfEYwwBrLXGiEI/\nnBq7zouIcup7rZKB7/F9WoxWRhujtZQKQkghYVgZLY0QjUKKPIJqRFkpFTaGEuzoip2UQgjGbCed\nmKojjDobKAgBLAHG1ACrWqWEUSH0PA9xhDxmCrRrqsCaXpYhC6AyPsIkSRIt1cXFhc8/N8bc3d0J\nIYqieLvdfPbZZ+fn51EUFVXplHllUYiigMZyypqmmc9mWkhjTF21nuc9efLku/fv/uIv/mK321V1\nvd5tCSFH50/8MFDWHFWVn0Tmu2+VkL00sxAYCDzPgwBcXly0VR1yLwiCshVHR0dWm+uLSwDAy5cv\ngTbz6Yx7HoTQqZCllNfX11VZut3tYDD44osv7m5uV6vVf//v/30yOTo4OPj1r3+NMAYY/e9f/UpK\nucl3ZVWNDsaUkPv7+yAIhsNhFidd21ZV5Vg29sGLnzGWJMl2u726uhozcnp6OplM6l0hhQAAUErr\npvnxj38cx/FisZjNZg7W8KMwjuP5erXb7Ya9/suXLznnHz9+PDyYTCaTDx8+fP3xt04M/atf/coJ\nBLuuS5N+XZQQwu12myTJ06dPX716dX19bYxpum6b7xBCnuedn5/f39+7zzs3bDdI1XWthHTkAkJI\nEkX64VW4fTkgD6Mb2nsWumnJ2QaBH2h4pFamsxAS3/edYLSqKvHAtnfT1ePKFjx84Afalyt7j+Sv\nx2n133wgiB+h2sfB1BEIHve49gc/yE26COzzgyyAEAGEkBDCTZzarXsfnlXXtI80NAghAgBibB8s\nrhzRRmNogUWOFI0wxhhASBglwBin+bPmERt3XYKjfBNCAIL7HTD+PesuJ7CGvw9KI4SA1Y/oAuWM\nGOrEXVVVOTIkeHAwRi71gRAAEULIEgqd8BphglCe55xwY0xVlF7gA2OborIQMIiksdvtFkOEAZzP\n7pU04+GQEZKmsR9GZVN3wtnjEQl127YeZI++JftXR4hbx1BMfD80SkopnR7y08UHz/NWS4ERaNsa\nWdDLEkyg1jL0vdnsPonjOI7Pzk+iKLq9vf3w4TZNU+cU6wVB03Wr1erNmzdv3rz5o5//LAiCT58+\n1XXthJKHJ8fb3WYymQRBoLXebrfM49P5bD6fR2ninGWDKMSUuBtnOBwKKX3fnxwdHR8dUUrnq6UQ\noqjKsiz1QziV6sRus5VSggwEQTC/n7ZtiyAMgkAJ6ZQCjtjfT7OPlxfuSovjOODeYNCz1hpgZ4u5\n27kcHR09e/asruv3799fXF/d3t5mWeYC3AghVogwCE5OTmTbNU2zsSAMw0E/u5vOPI85K3vq0TCO\nBggqY33E27a9urpaLBabzQZR4kzxfN//4z/+49PT0/fv30+nUwAAI9T3/WmeQwjvb26hBQJADFFR\n7L7++usH6SNpRbe3vLW2E0JImWVZFEVNVed5HoeRR5mR6sP37ybHR0EQWAgIws5s0vf9k5OTOAiB\nsRyT0A+qomi6tmta7ntN10InBWy7vNgppY4mh9LasmkWi4UWEhobep4xZrPZCNb4HstUxBgbDocO\nSWWMLb//BmMch1EQBEIIZ0yGISQIUc6djLuXZoHnG2Axxsur65OTkyRJ0iQ5Gh1giMp86yzxn718\nMV+vruf3iKIPHz6sNuu0lxmAkAWB5/eyjCLclW3XdRAAyhlmNE1TgzDiVAMghFBGA4QRQpgSAqkx\nRmqtHqRHruIKrYAU8FGeAAncpwMDd7q5U8sBHu70c2eUe5wsTgAAQqsOCWstBhADiCGSRiPnLmCs\n41o6R0wCIeS+tywW0/ksjgKnj87iZLvd3t7eKqV6g34QBJvdtsoLz/Oqogz9APkgjqKQe0VRVEXd\nS/ufv36ttf7Lv/zLtNe/ubn581/8ggf+x48fNzfzXq+3Xq+11l3d+IzXXdvL0rpt2rbtBVEYhkTb\nDlNX1B0I5s64KIqWy2Xo+Z9//nmWZddXF43ozo5PTk9P893u5uZmt9u9fv26a9vLy8t8uzs6Ovru\nu++Ojo6yLHvz3bfXNzedFFXT/eFPf+LMrYqqDAY9J4vMknTQ7xfb3VZunYL+6Ojo5OSEc75YLY0x\nzPdGk4OyLK8uL2Xb1XXtEmOoH4im/dWvfjUej5MkcfdhEAS+7zeis0p/9uJlmqYQwqqqZCfm8/lm\nswm4NxqNbm5urDG9Xs/zvLdv3/7sZz978fzJV199NZvNvMCfzWb9fn+9Xud5zhg7OTmhCwYhnN1P\ne4O+UsoZ59ZlpaXijHmMu9RgYwwCME4TQshut3Om01mWZVk23SycSwtG2BG+3IG7R3T3K819xdJa\n+4yZhwBBiBHUTnujNLBAg0eoDT6U873xP4T20Yjqwbj8h1vbx49HMtSjdMd9vfuWH37xYzFz2PFj\neYYIQgAhRtCYfd21+68nGKsHve/e3ePB8dFxNa17xcaAhxAFD2JtDCIYYIQw1i4pzFnnuGfookAR\ndCO7UyW6Vetju+DaMve+udrmohEYY0h27uZsRaeMVkohhJqmQQTjh/dKW2sAwBASQlpXyB98YV2e\nlNYGWgABsEoH3BsPRmVTK6UgRhgB32NadL3+yON8MZ1BCIfjAwtRREgQRdZqIVqKiVtLu90BQsg8\nGHpQSgkhGihjjEsjVlJarT3Ge72eS0YC2gx7/dDz66qinC+mM5ewudlsCCFCiKptyqYuikI01ceP\nH4MgKIrCOpd8azebjeMzu9g4R/neFnlcpgfDgQEWINjUbdM0kBGrZJylhFEv8AkhSZYZY4BLzgkC\nZsznn3/u7rjFYjFbLF2O+Onp6fmz51d3t+8vPt7e38fW1HV98fHTyeQ4L7YYoiiK+70ep0wLGYbh\noNfHGBNGl7OpVqJtKoJhXZfrLXB7Ad/3P/vss67rnH4sSZLPP/88DMO7u7vZdKY6gTE+nhw2u4Ix\nFqZZU5V1XUOM1+u1tXa+mAZB4AUB55xCrC1EhIZxUnemKIqu687OzhBCvV7v4uJisVgQzhBCo+Ew\n3+1c39m2bVmWQRKHHr/+9DHyg66pAy8EwGw2K9E1vhcaYF1gqAZMt0Yp1ekOB8F+CQWRk4MaY4bD\n4eHhYRzHi/XKZa6H3PM97/7qrslLCEAaxdmT9Pz83PO8u7s7rTUL/KZrV6tV2dRCq4Dx4Xi8KXai\nrnfrdVeWjNDJYDQejZDRX/36N7nHPUx7/XRyMKIEWaMQpOenZ0KIpqq267UxpqkqlzI3m80Gg0GB\ncVNVSZJoKXdFkWVZP0vPz89D30+iaNwbaKX8gHd1M18t66aZTqfr9bo/HtVNN1+sLCaEUaU0xIgy\nD1rQiF3TNpxwWVee9SGh3PcsQVoqa4FWpgWWMeZmVmutFp3VRlsDLQQQQ4yAUk4OsD+ULLQQAQQM\nAFKbvd8twhYC8sD9NMo80kcsNhhjj1CKsIHAeToRQnIhOSIaA2yBboVRGiGEGSAuj+/k5CTfbO+n\n86yX7VbrwWBwdHRUVUVVlu5n3F/dGAi++OKL5Ogoi5OmaQihYZyWeUEI+elPf7rdbu+n09V2dze9\n/3//n/8nQuh//a//NR6P0zR1ktxdWawWyzSMojDUxnCAIeVQaA07DxJGIQBAWdjWjexEkiTD4TBN\n008fP/SS9Cc/+UkSxb7HAABSypubm7qqdrvdwcFBEsfX2+3XX3/9+rPPz8/Pf/zjHytjvnv/LggC\n5wpLmLdYLJab9Wg8TtP0frs+GI4450We604EQeAIAs4vEAAQxtFmt93kO0rp4dHRzWo5n89l26Vx\n4nHOGQ/9QBB6fXV1dnaWpqm7WN28+PHjx5On506y3O/3rTaz2QxC+OzZM6d7e1wr9vt9a22WZVfX\n13f3913b/sf/+B8X01m+3f36t791ttVZHBdVWTb12zdvev1+1dTFdhf3Bkq0BIEkCrJBzw+4K4pt\n1xEErVZKdLJrEcFh6AeB1902NIoYJs59DBjr1sDmQcYKIXRpCk5OQykt60pU0q3D3WHdKenIREop\n82CD7F5Lp9QjDeqHk675ofHFQ4wghNBVWwghdE9DawustUbrhxHZAuRErhghBI15cKJRCvzAAto9\nIEHQeV8Y4MhJhuGHsfIHk/Qjidp9KKOB2dOmWmWJNdRSZc0+NxRYCKHUGiq1XyCDff2XWj26xrun\n4R4QAODMt12x11qrB2voMI4ghC6R9/FdUkZTi1wLoh9yHdwo3MnOZSa6gAtordbGJZeUm43vh70k\nTaNYdaKDxmpLIYqSpGmas6PD4WDwjRSObRDFkVIKQ8spC7iHEZRWWyX3e25ptFV7lx/H04Z7MQK0\nlhCGgOGc9/v9k/H4w4cPUsow8Jq6XM3ng8EgSaL1auH54R/+5Ece45vNpixzpdTpk1NZJWVZ7nY7\noZTzxRuNRr7v+2Hg3pzxeHx9fa2sib24aZoG0rbMEafYY7HP4zguqgpRAjHGnIVR1B8OhBB5XVZ1\nDTYrI5TL9HQcSQeA5WUxXyzCMMziBChTFYXnedz3jJDFLg88P+Be17bFLh+cnrGUaalcC1hv6yRJ\njuNjRImUMslSqdpPlxcMkzRNPc9zjbvLazo4OHj+9FkSxXEYHRwcGGN6vd4WEa3VYNDXSVxVFbQg\nz/OirgjzhDIBodlwBDFaLFdVUz9auY2Ho+Pj40fnrPv7e8dyxxifnJz0+/08z9+9eyellBhAYz1K\nKEaUeYxgAIDvsclkYoyp6hohwHxmLZRKMcZkJ6uqstr0+/1Br88w4YxFYbhYLG6ur93yNeAeNmC1\n3lx+uoj8iAAohFgsFhDCo6OjTqtGCs75oN9fbtYXl5cY4yRLfd9vd4VoW49QjolPSeD5aRgwBKXQ\nlKC6KuYzzRDMkkg1zWqxyBG6K4vJZDLsD3a73WazEW0HLXCRCW4E7Gc9rXVdVtUu9yk77MWc4q6p\nFfOKogDWZlkmgmBXlb/5+qvVZg0JrZoujJPTJ083261PqJJ6V1bWLhDAdd0YqSxAbSmYkADCzigp\nrTJaG6OsIQA+Jntqo5UxyhhtrRGCMIoJJghqaa0xzs8EGIAAfjzc4IMDnTtPHAPfqL11H0JQtwIz\nRjnjhFonttTGWMUQhoRg636qtlo7TyFijPF9nxHqMgEhxHXTuC6+l/ZXemGNef78eZaml5eXsmn7\nvfSbr76ez+enR8eff/75j7/8sed5aZqORqO66YI4EUr+9V//ddU2/4//1/9zPp9/+dkrz/N6wwHz\nvfrtWyfyWS6XPmX9JK2qanZ9K6W0xjiI6WK94px3XVdsd5TSLMsQxp8+fRJtRxnGEFV5EYZhlqZZ\nlp2fn//vX/6DS94+OJz4nn92dqa1zbJstV4zj6+2G4KZs9Zy0LpVujcYKqXKXV5Ye3ZyijG22uRl\nUZalCz0sm7ppW8dG7qxmGAVJNBr0ZdtJ0VqfC9l+/vmrJIm6rqnrEiBorIIQIgycs6noml6W+AE/\nOT2ilD57cvb9998fHh5aO1rOF10nlBJHR5PFYnZ1c5WXRZakddMkvSzPc8Lo2dnZYrFACGmtIz9A\nCIVB4FKsAWFFUTBCKaU+4x5ljt+02m6AtW3ThEGQPHvmRqu7m1v3GWutlhIS4sadpmshhMYavScV\nW4gRRBAhLLVyIzJCyHEIAUYuq9EYYwHYe5o/1OCmEo/TKnrQ1OoH6u8jSPvDwdc9vuNFPxZp86BS\newSfH9bDj/6ORlrrONhWG8aYI3BhV9qBc98AGKLHEdpY+6hBckOrBQ9/Hp5eIwUBRloDMFJGK6Nd\n9IqFwIXtaKMRcl6RBiiFfkDgehzxH/GD/XL6of/QWmu9r/17SABBQqkHrDGmk9IxklxH4h6BPLhZ\nYQe2G2shgNDGUeRTNhqNCESybQmwaZZVVUWAiX3fCEEg7KXpZHywAogi2O+l9/ezfNsKKZDR2moj\nBUXQccG0dmlNyBjpPN2sMZwzRmgUBFEQAm04ZUmSiKZtq/r4+NhnfDWbN3Ut4/jF8+f3d3cQwhcv\nXjhGiduJPHnyRJTbD58+GQCclhdj3O/3wziK08SxKzSwmNGTw0OnsGiV5GGAOVsul13XTRDc5xYL\nobWu20ZDYIxZb7dFUWx2uyyK1WLuyHpt2yKEwzD0Av/29vbiw8f5aukz3otT1XZREHz52ecu+tNj\n/PryqizLrmvCwEMQb9dLz/MMBD//2U8ppbP5/OLiYtjLKmOWy2UURZDgm/s7oI21VgixWiyLXX50\ndDTqDyjCzsSYc764vXN/oVHkBH5BGDnBXiM6tzJczdYX11d124RhCKR2OgsjVb/fZ4z10sznnpTy\n+vbG3WVNXTdlFXAvGo8/zu92u93x5CD0wpOTE9F2Ltbl7OzEWrvNd6vVqukkQJBS6gW+Xil3URGE\nPcrCIMiiuOu62c1dp4yOYq21bNra6MjzDwbD0Au1tU3TuAK53m0xxhAhn1HEaBCGvV6PEhLHsTGm\n3OVhEiDFu64DygAlqzIv1qvdZpv4vtFatU1dFb0s8T0GgaGEDPsD0XZd02KE+lmPUyaldPWlzAuP\ncc55XVVJFCMAm6pWEb++uqSY+p5nlOCUDQaDoiyllLPFEkDoBXSxWvIw6g0GBmGpFKKgVUrucgoR\nhggSKo1FjCqtFQSdEHXXSqM1sFprRrkytpOqk8ohUtoYAGEnpYcxJtSFbwullbHaAkr3jbU7hCBE\nCBKnXCIEc+p1uNNaY0fOMsaHCGOMCDbGtG3nQEFHKiQWKgCNBRhC8OC7R6qmQQjNZrNXL15mYbxa\nLiHE6/V6pRYHo7GS0ks5xQRD5BRK4yy5IB8/e/7ixYsXUZicn58LIf77//U/MKaIEIPheDwejkad\nkt99++7rr79+cfrs4/ffVVU1Ho/9MHAt8Gg0urq6GvT6PuMME4+ypml2m21bVM6gUbbddJfP5/OD\nyZgRulquDg4OIDDXl1fuwsUYf/vNmzdfff3q5fMgCJz5Kuf8bnoPLNpsNsvl8vz8fLFeFWXthcHh\n4WFRlkmSgAIia7UQaRx7npelSZ7nXuxRRqRS1prVdrvb7TAlUutOCeZ5aZI4hSIGcDAYHBwc3Opr\nqdX19V7aH8ZRURTW2slkYrSOwrBpmjzPAQD9fp9AtNlsTk5O3KoPU9Lr9ZqmcaxL5nsHvt/v9//2\nb//2/Py8Ksuz09M4Tf7l1/86Go0ce1MIsZovqMcppePJ4ZxSCCFGWLSdS+0FlDJMGCadBczbG1kD\na5u6joMw4J7WGliLCbEP8xamxBlwaGsMsNYaF6NbFAVjzPd9i2BRV23b+tbnnEu1H/5c1dTAavO7\n2gYf4n7tgzvj41TnPh4RaSnEIy3ZXZqPtfbxW344SSO0p1Vba5Gretpoazuh9nMwRg5QtRZCA91w\nA39AjXZPzDUWj/XePnQMRmi394XOuMM9DYwgxAAjaw2yCCAIAIT29xD1f/NsXVfx2Gogzt2XSakx\nBkpbbfYQAsGMYKax1VZYqzEmlLNHCAu7t8U5blqAECTQOoTw7PB4MBjc3tyUdc4hTrwASo2ABErK\npp7d38dhyDEOfM/zPJ9xq2RdlZ0USimEKYXI8z0EoMNUH1qofb6T8+gQQrQIRUHIGAv8IEv7crsa\n9rLTo0PG2OHB+Pz8lBCCMfzyy9dCiCxLttt1b5AdehMhhDLSQoQQppS5Dqeum3JP/CZam7u7+zhL\noyiGEN3fTz3PGxz0PN8HhEhrp8vlOs/TNI2iaFuWWuuiaVa7Xdd12+3WYXUUIqdxOjk5oZxtVpv7\n+3up1b6cVzUlJI3iTkmPsIB5lBPRtTwKnz05W6/XCNq2rRkmEFoILYGwnyZ5ns9n97PpXZbGlmIL\nAKU0iqI0TdMoXi6XTVXn293Vp4vuD/7g9OTEaL1cLBBCSkgHgGOMJ5MJY8z3gzjFrgQCQher5cfL\ni5vb27KsnR7heNBrmqZp27quXUfi+74XBsaY2f3UefMZYKMoGo1GSZKQyLv4dNnv9Rhjz85O27Zl\nBCFE1st5fzhM03i5Xu+KbRzHUZJRSoGxo8FQS1XlxW3bjQfDwWBgtcnSVAjR1c1qteqEAAAcnRy/\nev7CKYarYpdm8XF8tK2KTop+v181zXKz6LouCD1OWehxSoj2PBJ7y64rNhsCoB9FaRgYIrHWBCIp\nO0Yp1Eq1jUfosNfvD3r+6PDbb78tiiKJYq21VdpQRggpy7Krm/Vi6VyHnz55sqHs/fv3hYeFEIeH\nh5HvAwACP2hFs1wuWyk839+VRbHa1KLN27ZV2vM8AzTABBogpdJAM4KcSU0UxVXbGKWUNc5tFzNq\nITAWKm0t0E70aB4cXjEGkFBEGTAGOj60tgBopds9ymWttZZAJDF2yZ5xFPm+7zOutUYAukHIp/tY\nJ62V7Lqu6wCCjDHiIoqtJRRTzgAAziWENE0rpWrrGgDQdK02hnBGEDZYOC67UuZf/vevlsvl8eHR\n2eHxV7/+1dnp6R/95GdRHOe7neg6bcx4ePD2u28hxrP18vD46OTk7MPlxVdfffWLf/+Xb959t3dO\nBgZg1CkJCT4aH9zd3bk95WAw8CgTbXd/f79YLM6OT9xi6fT0dLFYbLfb0WA4mhxQQhnFdV17lGml\nnOsW5/zXv/51GIaTyWS327nufrPZ3NzdKqVA1wghOOej0ej09PTDx48fPnwIolAJqbXu9XpZmnqe\nV5Zlr9ebTCbzxaLpWgAAIhhTShjDlHjMS5LEkQ6Y7wdB0O/3u7q5uLgAAGRJGsexg7uLooAQDofD\nxXRWFMWrV6+klE49kqbp4eHhv/7rv45GoySKnc5KKdU0DdQYANAfDSFGQgjP9xEls+Xi6dOnw+Ew\niiJn6Tyfz2lDCSGjgyOPskHW67pONK3qxD4rXhs3/Bmp8rpxLyqNYsAIYyzQOssyjPF6s2mleKyR\nGGNrgNDKKosxRhhLrYwERHTQWR8b41KS7KPjMbAQAqP146r4UbGjHz75OO/aH+x0H//LXak/nI9/\nWLMfh+DH7zIPNRghhCEyyABrpFIAAGggtvte0gWn7O8UBBBCzgYZoN9FASKEzL6W7zsGyKgbTAHa\nm5MAawH4XWyDgfuXo6xFCCkh9k/y4WseUeg9bOyMWZyHs1KUc0qpsdYY4wKRIMEEYysExhjifUra\nYwnvpITWSmuhBQQijAkhjGAILeCMldtdk5fj3qApq3K5QRASD3dNC4zN16vZrYcpdeZTdVUiDEPP\nt9YqITEFhNDA51Jo19Y4Kx+EkIvKoIR4ntdUdVVVDrVmhEIIXz573kvSuml2ux2ldDQYIoT2enrR\nubsYQugsLWez2SCOndBzvV4LIeq20da0bdvr9SDB58+ejsfjt2/ffvjwIc/z0WjEMDk8PIwJHh8f\n1rJbrVZEtKLQGlh3XKx3W2dV4fk+9b3v378jCMdxHEWR7/uIYK11URS73Y4z4awFellGKeWcB4xv\nd+ubm5umLI+OjqIgqOu62G0d6u51nud5ebFDGCVR+OLZ0/FwYDl7/vx50zRupk/T1D3Pw/HBr371\nq/VqJdvO87wgCCI/+P7tt17oF0VhjAnDMIpirQ3z+Hq1tRC0bXs3nV/f3G3y3JHwjLVffPHFZrO5\nvr4+PDzUWpdl+e7du/F4fHR05LzlnSEuAtDnXls3/TQ1R0dVVUGt16vlwxapm07vOtUlcQaR7boG\nERi2QdVahIDHaK1k3ZSrZV1sN3VVyE5kceTOolG/9/TFcwhhVVXFdjPIBnVVbbdbAEBvOCA+v51N\nq65tRbdYLKC1HmGmk5kfuo3s1fxaidYjOEuS46NJP06NlkaOyqJoqppzRinFEHLOpe9RTOb3d0kY\nvH710vO8N999WxYgjiILAWWYEoQQGo9HcRBmWbZbr3pJrGV3enz0+vVrglldVlLKzd3derdVRnPO\nYd0o1UJMlRTr9doPA0gJeMCWpFRSysALwjDEjNq2MRBAjBxQxhizUnStYJBB/BDFjRFACGJMCWaM\nOdfYR3AOISSMtsBal0AKgITWGKOsRBBq30cWQKfnsAACqC1wMecIYwah1L8ThQolrbUUEz8IgiBA\nEDrPGQIhbNt2NBwXRTmrq8lgJLqu1+/VZSW1zPxscnAQB2E/62ktr66ujg9PDg4O1uv1YrFwgr/l\najMajZ48e3p7f3//139FMLu4vvr2228PT47fvHljgJVSKqXulnOKyXq93uX5dDTrlDRF3kuztutu\nN7dBEIwnB0EUfiq279+/t9aenp4ul8tdvjXG9LMeCALGCabk+Ph4PB5ffbqoqgpDZIzxPM9hGtfX\n12EUMY9//vnnb7771lr7F3/5l5z73394v1gsXFjT1cVlFEVuL+LYaKJpMcbOEmuz24ZJPB6PDQCb\nzUY0DVSWpFnAPWNMWRRvVqu6rh1cH4ZhGEV1XduqIghHQeiezGg0ghDWdV0URa/X45znef5Xf/VX\nf/Znf4Yx/ru/+7vnT5+FYfiP//iP//k//+dKNJeXl8vl8smTJ9vtNonixXKJINxsNtsiDz1fPxo5\nWZBvd4v5HADg8u+c1NLxRKI0UUq1dRMEwaNzhTGGAKiExBhPRmPMaNt1XS4ppXXbwIfCuS94EEKE\ngiCo69pFoQEInXE3AMAZR0NjnD2F1to5WjhRkENQ3WrZvZmPFfTxw/0sxrnTH/+waLlvf4S1H8sw\nAECI1j5wlFynavXeBvmxqO8rirPKgvixlpuH0Rk8srUhhA4iBhYAC4HFlFhrAfrdxGwRRNYaa+GD\nrvfRwtrC3z1hF97wWH0dYxY8aIIx3ZuKAyU5523bSrN/f3jgI4Q6udf7urZGPiDz+yBkbQAABEPk\nyEcEJ0kCIVwulqHn/7s//pMPH969/ebNYDBoZd0JGXl+K7qmaZjWbV0a03fcwDiO4Q47Yj+mhBAi\nhXWBUpgS8Dso3ipnb26sbDtrrbNmXC6XuN5Za5eLBcaYcPbxUw0h/Pbbb40xhNLtdvuTn/ykKIrN\npjk9PQ0C7/r6OgxDx2rW1mit67rebDZhGDZd67JJrq+vX7582Xbdr3/9az8IXqSJQXC5WBVlGSfJ\naDS6vb117bW1tm6apm2dxH8wGJSYxHGslJrOZ5zzw8lREsdaa4jQdpu7c8OFmgAADg8PkyRcL1dt\n3ZR54a6Yuq7zPB8OhxSTsBcwQs/Pz0M/aNu2aZqtaJ89e7bbbpfLZb7ZzrzZxcdPh+ODw/PzH//o\nRy+ePf/Nb37z4ft3R0dHv/jFL85OT69vrwPPcw1BVVWb3TbLss02l0bvtkVZV2GSxr3+vn2kbDgc\nCiGEEG6LrJTa7XbHx8eMsUHWowiPJgdN0yyXy7quhRASqdGwL9uml2Zt3UAIGSVd1yVR7Dx3e0m8\nTsKyalarlTR6nA6VUl3TUEw6CxbzuaMr9/v9yfig3+/fz6Zd3Wy326KuwjDsJb2nZ+cQoelqMZ/P\na9Gu12tEcJZlURInQUgAslKdHp+cHB9vlqv5dq6p6EBdFflmMSfGjAfDg9Pxerlcr9ceYwihIAgg\ngbt8s14tcNRT2lRlWRYFgeinP/5DLwy+/vprRKH2fYbJs/MnaZJMp9P1YjnqD7arm5fPX3zx+ev3\n799vNhut9XK9RoQ5R53xeCyBuZ/OpVbM8622GmotJMaYUaq16brO94I0y/Zngt3vd/bcl7ZTykCC\nCWIIY4wg0PrxtLEPpu7gwQYAY0yJ53ZDQJs9qdNYYKzRGhqrpbJKK6XcoWC0VhBQSonPMcaWIHfX\nd2ovN4CMeIGfZCmEUFlTtQ1pmoYx5nizHudREv/iF7/4+quvMMai7b7//nspROj5rz/7DALw/ffv\nf/zF6yRJFvN527ZSyuViTRjN+r1vvvnm62/fvn795es/+PLj5YUQYnt7q7WeblcY4+PDo0/XVwSh\ng9G4lt2Hi0+RH5yeng4nB//0D79ECPlRuC7zLEn1ZnlyfOziB16/fl3V5W63u7m5eXr+ZEvxF198\n8Uc/+alH6GQ0hhaUZXl8NBlPDhaLxd3d3b//D/8hCIKibjjnT589u7u7m81mkFB3oS8Wi3y3k1IW\nRQGiiBByPDm01l5dXc3u7o/PToMgkFpZAJqmoZxjjPOySAfRZr2GEEZh2O/13rx5M5/P4zh2V8N6\nvd5sNnEYubS177//vtjlRVFEQailghbsNttXr1653GnRdre3twjAoiqrph4djC+uLv0ocKYft9N7\nijDEiFIq2s6RVEmaru7um6YZDYbD4fD777+/ubninGOMkyQJfB7GgzRNv/nmm6YqKMNxEjri22w2\no5T+0R/95F9++9V8Po+SuGma5d3tZrs1LpEXI8fIdUOYM0TEGGtpGOeu5COtpZTKGhc364qBMroV\nnSu0P5QbAQAcb8s+0GsfV8KP1zTGuJPCOquKxy+w1mgdxpFjkwGjXbEEdg9cP4LR2loXHepCBrXW\nGO0NRoxUxmgIIaTkESp3fhfaGpdqYO3eTBpCCB8qLrLAAGuk1NYaYIlDhwBwLw1jDBBSSkFjAQBK\nSO5Izg/3KtzLo7CB+rEeK6UkgAghxpjWUmiFGTUS+L5PKXWuy23bUkoRIdpa1444MQNnvpTSAE3g\n704Bwry2bY3WbdvS0L++vqSYPDk7q6oKAZhl2Ww26/V6w/FosVhgSp2JdFVVq82m68T+nXfBw8R3\nmkWhZK+XKqU+fvwYx3G/lzZtVZZlFicYE05oGAS//e1vaVu8fPlyPp8DjF6+fLnb7VyQiZDy6Ojo\n/fv3Nzc3WZaFcaSM3hV513VJkhhgMSUvXrxYLpfr9bo/GvLAPz47JYT8wz/8w2g8poz99d/8Tdu2\nvUH///M3f+3STXzfD635dHmRb3cuZNBRRg4PDxFCu92ubVui9NOnT+M4dq4OeZ67Xc9gMJBSu6bH\nWluWJSFkPp8vt7PPX7+6v7+/n94eHh4GcaCUaNu638+EELPZPYSWcyqEqMqcMUYwDoJgu9kMst5g\nMBBtFwTBP//zP/ued35+jhAKuPf69evxaOT4QXmZD4fD4XDYdN1yvcrz/O7+Pq9qrfVgOEaUzOfL\nXr8vpQyCoCpK54CdZdl8Pk/TdDwe/9mf/ZlTFgyHw5/97Gfff3i/Wq3iOCaE1HUt2i4eH5wcHd3d\n3U0mk7PTJ9Pp9Ks335yengqpfvv2G20MJNj32NHxpCqbgHkHo9G4P7BK39/dbdebz168nEwm6+UK\nAHB9fe2ypAghLoLCATZ1Xe92Oz+O3MFyen62WCxCPzg5OdGdZAgHQXB/czvo9TmlW9lFgW/03oWD\nYEwx9n3/6fl5XdcIgTiOV9uN4/QE2Xi1Wq0327pthBDw8HCxWFRVlSTJcrksdzlnbDweE4T//S/+\n4vb2NvVhvtnO7u7vrm+sBb1eDxFSVM2HTx8xYZPBsBFdEATM94wFGONlvnWxVFopCKGLpFSXl0Ho\nQwjDMDDGCNHVdQ2MjsOg6RRjjBMKIRRKW6UZ527qANpAZBkmkNpGaaMNhAgiZIyBxmpjgLUYQGAB\nghBBtNtsG1zGUYQxlp1wnbdmqGkq0OzbR/sQuaq0douwVb7dlLk7PIM0Jq9fvxZCfPr0yf1WOOdh\nGFoAWilWq+V/+L//JwrB3//d3/1stfqf//N/tnVj7Y+11qPxGAAghPr+3QetdZKl2zx/8eKVsubd\nu3eQ4NFodHlzq43uj4YIIWW01CrLhvPlAkL4p3/8J0bpT5eX2yIHBC/X69VuOxgMpssF4fzw8HC1\nWkVR9Pnnn3/99pvV5WUax63ojianSqnvv//+ZHLY7/Vev34NAUiSyMngnBA2TGLmB8vVyvnjzJaL\nsqwppc+fP3d6ibSXWGsPRuOzszNrdVmWbVvf3BSEE49TIRnEaDyZWAg+1IU1qtzt3IRtGIOcnZ6e\nuHN2sV5SSna7nRDC59xaI4TquhZjNBj0AQBJkvT7/a+++urTp4/n5+dVVc7nM4zRz//k56PR6N27\nd/P5jDG6WMw/++wzQkhdlC4iiVLqhvsgCIwxQRy5PNSqqvr9/v1qSSl185AQIk3TqtrnIGGMm6a5\nvb11Aq2TkxNHB3ArxlYKdzY5WFMoiRCilDKPa2Bd1qQQgkHu6qVDmy3aW01JKRH5vZnPAEcntj9s\nIf//MWfzIC4yv68yesSZ4QNz+JF7BX5vDQwp5W5R1HWd1oZS6hYHwEprLYSYUgrwnvnVabXHyYHF\ne4gVPj5t+FCD908bAOB8mxGCxiAIzd72CjghL3hwvgQQQgsggo/guQs6hA/b60c99L8Z/X0/3H/e\nQmstRAQCDCwgzEMYQ4isNRBiC62FSFug21Yp5UTHCEGp1a4s6rLyGHn+5OnoYHz18cPlp4sXz56/\nfP68LMu337856vXoCQ3DsD8cUM7rtpNS7taFUop5nls4uZIPAAC2dSJvse/KLcbYOQ4aq6SUVVUp\nxizjPvfiOOE+I8wbjieU0ihM4iSLk2y5XCZJMh5Per3Bt99/RwiBEL19+x0hJOsNgjB278mH958o\npQgSo8FquVmvtgihvKiUtnVdr9dbzjljntb5ZrNrmoZzfnR0dHBwcHQUz+dzQojv+xDCNE0JIRBO\n27ZN05QxFoah53nT+XyT73zfPzw8nM/nVdustpvVdkMRZow51c1wlDZNgwGMosiRwqSUrCyapqGU\n8pBLKW9vb/dh1ZQqTBZ5Ue7yOI7rslosFlbpZ0+fJkmyXe8jfl0kFKV0MBikvXSz2SxWK9do2gc8\nhnEeBN5h/9gYM5/Pq6phjD1//tw8hFGuVquu67Jez/M817kKrTb5Loqik5MTpx3CGN/Nbm4QstYi\nAAnCGKLQD/pptt1uLYCT0bhqG2NtfzScHB1qAz69fb/bbNuq7mXZeDzupdnx8TGGCCHk/AAIo2ma\n8sB3N+N6t724viKcHRwcXFxcMI8Px6P727vFYhH6/sXHT1kYh9zLIfYZf//+vZTy7OTU9zwtZOD5\nzszfySZn9/cQwn4/q9rGJTQbY15/9vq7779z5RwA8M///M+73e7ZyxcXFxe9JMUAXl1dhX7w7/7k\nTz3G67I6OngCIVwul1rb8Wh0ev5kOBh9vL5abzcWoLvb26prs94gSmKhFca4NcopvIXoyrxwEgtt\nVNd1jDFGCIQwDiNKkBvDKMIY/C5c3N2/ou0IwlrrTrUOxLLGUEI443ldAwAgAIxSZAG0wGgNtPE9\n3yqNEcIQUUyYh92NvxGFOxZa2VqltVbOUa7XGznUwZ26EKEAB9zzCCHs2bMXUsr1et1PsyRN33z3\n3SDL3n777X/+T//p8y9e/1///X9Agv/5N78mnB0OB34SaQC0sZvVarVacd/TWq82m//bf/rP3PO+\nfff9N2/fGMerxRgbc/7syWq14oS6re1gMHjx4sV4NP71r3+tjL69v3ORDFLLen4PIUSQYkan0+lw\nNNpsNm7JRDkfDAZRklx/uri6uGyKctQfTG/vEEJHR5OiKLIsOzo6up9OpdEI0+u727qu1+u1858z\nxriK/urVK2VknudBGEop7xYLAlGaplLKm8urII52ux3G+OzsjDDWS1JOaLOtZCdE2zm6xPhwIoRQ\nSp2cnPi+71rXpmkWi4XoutVyCQYD0XXj8VgK8fVXXy3m86fPnhVFIaVcLpeEkIODg6Io1ut127Zh\nGFptoihyiV1SyqptbFMXRdFPM6FktVj0+/3DycQqfXd35wV+pjOHZO6KfLfbxWnisiCFVo5NY4xx\nSqFOiNls5gxGOiW7XJZVZYyhlGCMgZLgYfPKMXEjnZbSEOCM/R4WhMBaq4zW1gAnAoIAIPgQuvU7\nMw3w+wSlRz7w4+M8fvHjrvTxnxjjR3nP4+PYH+Tsug2K1MoYgyzW1mCMNdZQG7B3OSZGaa11Y9QD\nWQs62rPzn3x8cOgy2H8AjD8ubs2eIg3cTeg00q76IgAhgggA/fvfuK/rcJ++8NhqKGP3rxpCC/Yh\n3o8QN4T7oF9jjFPBoocnyQh1rxkAYCAA1hqthTaMR2VTHx2M+73047v323x7O72r8iIIgtHB2BjT\ntEJbGMaJAkVeV1JroZQVwsnEMaZSKkqpEmLvgmm01trzPOc5k+d5EASUcoxxGIah54dhGMfxz3/0\n2fX1tUvwNcbMF/OyLKezKWH0bnrv/IRfv37tLm8AQBiGCCF3/C2Xy/5oWFSlg6B3u10r9gtUAMCL\nFy/SNNUPditxHPez3snRcb/fd4sVIUSxy9frte/7k8mkl2aDZwPdVC4/5+jk5Oc//znl/Pr6ejab\nKa2MtYRShNCg3x8Oh0kYUUrTNJZSE8K0lPmujOM4TXptI4y1s8Uq8Lz4PB0MRtCC9Xq9XC6z8agz\nNg6jNE5k20FjnSP99O7e87zID4YnwyAI4ihyV+96u14sFnlZZlkWBD6AkHo8MsZx3zjBo37PSHE4\nPmjb9uWzp8v5fVVVm+02iiLueQ7NAhhZa8V65Rw2giiM00RKqafm6OhovVxVVeXxYLctGJ1xzs9P\nz6bzOWb0/Pz8bnp/fXvftmJ6NwMQxqHPKV6VeZbGw/7QKh3H4fT+vmkrYwxA1vNYEAfM487PhzEv\nr/JxOCYGTe9uvCBI03i3WmJr+lmqpUqTSLbdrtgOnjy9uMi31XbYH/hBQCKMgFlu1hhAzpjHmDIG\nIdR0MgxDz8d1XS9Xq7/9m78aHowxhqvVgnk8ioO72d27d9+NRqPxeNyr0rub26ap7u9vMUL9LGHM\ni6IIQtx/NQAITm/vfN9fzubj4SjJeh8+fmznrZWiKYsk7Z2dnQGCP3z4YJQiCAee53metbapSmgN\nIxhaAwHkGBGPa60rJSHl1lqjtEUYQ8QwUUpp59IDACGEYQIocERF1XYhZ/v73Z1ISkNttdUeI5gz\nYCy0xmqJEQbQSikxxS5kxUhlCPQ8zznPnZycAACUUhZBAKGUMi8LbQ25+PDx9vYWAPD8+fOqqvKq\nvLi8XCyXXhxeXF/95re/Dbn3737xl2W+PX/6BEO02Gx3603btu/evbPW/uynf5SmqTJ2sVjc3N9N\nZ7OiqMq6Joyen58HQXAzv2vyMuz3h1mvn/X6/f4g7a0Wy65p3fG6K/K0l2XxoK7rrN/bLXdXV1et\nFEEQfP32TVVVP/3pT6WUBwcH0+n0q2++RgZEni/r1hpDCLm4uMAYp70siuPi44dWCgvQYrGAGBlg\nIUae75dFMZ1OnRS9aApltOsG2roJw9D3feezo7VuqhpiNJ/OuO8xQr2sR5KBEEJpXdd1K7o0il0X\nU5alM5PCGDt+pmu6B1nv5cuXs+Xi3bt3jq3NKHU5oA5qvp9Nzb2x1p6dnQVBkMVJlqRf/ea3jLEg\nCCCETlnvhQHzPWMMYywviqauP15eIAt4HAkhuO85vGU6nbZSSKOfPXvm+/5mu320N1oul9fX1zgK\ntdZEU7ejhQQ7xymCsLYuMswyxpBLfrXAPvCHXQMOMbLWGGUZY85yA/yALYUQ0vZ3rGP4A5qxA1T/\nTcV1Q+rjvPj4T7cDfqzfPyzDlFKhZFcIV6cRwdqauq73VX+f0asIwg7vgXgfH2Z/MEfv//qDtN69\nTcfDfz1WVmSBBtYNxsCxkRFEAKKHV+fGF1dx3YO70u4YcPAHxG/3T/2QZKy1WyJZ+DDla2uUVm5g\nevwM43uxO4DAYffYEXh872427dr6s5ev/uAPf7ReLAnCmBBKaRJnddtMl6vlbkMYr9tmu8sNggAT\ng7C0QGlDoTYQIEp87Ll2BxHsMH+X6JVvd5xzj3Of0eFwyAl1XiJCmbJu61bUrdhut5eXV2mavnj1\necA9Rr357GIymUihr65uRsMDjLGsKqcDTpJkMBj0BwMAgNt6QozctOqoLr7vzxZzLVUSxSdHx24K\nJITITrgEDtF2su0owgH3HMk/8oO75byu67ws19vt+dMnx2dn1OMWo6KoO6OCOCKEUMbarnNr4NfB\nC0JIbzDYbDarzRpidHZ2ZoC9vr6+uLjYX4EWuKU1AEAL6TPu4uJ5SMInT3zfd57bnHMe+L1eT2st\nlarrmnNeVRUAIIqiJEmEkk1bb3a5UDKKoq4rLq8+SSkhMMdHYwzgZNgb99OrqyttzMnJSZZlAKPl\nZm2M6ff7XuBXTe0FfgCAsyUQWqm6gwDHUeooWoHniaa7nd47eCBLehjTsqzzskQWWAQHQRz6gctd\nbqva+aWsVqtdngdBQDiDEAol21IURVG3rVIbQkglWucNgjFGxg7SrCzLXpz43Bv1Bx8+fMh3u5OT\nEy8OqaggRnVde4yrTtze3IYez7Ksrus0TbuuZR5/+dlnZV2+ffs2yXr3d/OPHz9+/913fhxx3zPG\npGk6HI+yLGOEtnVtra3r+s033xRF8eXnr4GWwFiMSZpm0+n0X/7lX26ns8urq7IsT86f+J53OB61\nbbtbb3pxkkWhUaprmjRNR4N+Xdda66ZpWms9RqLAC32upVLIIsIAANiYQgIjtZV6n8JiLYEAQSiU\nRggRYBmCEEJsUaeklDJJ+3tsw1rolmcQGUIoxoHvYwCbplFCuptcdi2mlAIELFAA+txzZJ2mab5/\n83a327VCcN/DjFqXyCQVefny5d///d8/ef7spz/92T/8wz/UdXlwdAgh3K7Wb95995Mvf/SXv/iL\n66urV198+Zt//XXdlJ89f/b1118D4GwPzPvLT2EYuy3U/XTaCsl9HxCstQ6C4OjoaLfb0P6wbduD\n4ejFixdv37zZLVZ//ud/HnDvr/7qr7JB//BgginNsqw36AdxFLJwvV5TJcMwvJ/PhsPh6fnZ+/fv\n72ez2+tLSumzsydHR0c+YXEU1UXZtnUQBP+/zt6sR7YsOw/be5+9zzzEPOScd6y6NTW7ms1mUyJf\nJBMeoTe96l/4Zxh+MgTIfrJhwDBBmJRpAYZESk2Rra6usavurbpTjpExR5x53IMfVmRWVkmGAefD\nRebNyIgTwzlrrW99A9AWpJRlXW3COMnSVqvV6XQgeLKua9uypJQ3NzdIJ45tr4sCIdTv9xFCm2wF\nm4/1em0bZtBpSynzNOv0upTSfJuCKt/3fXDIgoYd7pYxhqXSMGGM2ZalaVrgB0KIMsvbfvDBBx/k\neS6lbLfbl5eX8GaAueNoNAIctd/pWqa5y9WRGAkJlRXs99rtNiM7GfStOohAOMk2jizHzvP89PQ0\njmPKdr5mUL8bKTRGcaNleU4pJZomkCKMwjoAtr9CSCSlaBpOCGOMEg0RJTC5Cxu4W9MqpXTTuFt8\nSogqui26dxPwj0bD+z/e/fZOF3Q3eopbD46726N7e2WNUXS7bQUbSISQQkoKQTRCiYYRappGIA6C\nYKEk7HfVLu4BIYygWOJb0Bip3b8IYobxbdVXSiGFlQLFCFE7qJkAVAC/125n/duRdzcEk11HQm6X\nRnc7cii9AObvhmaMwNMDVu+QrwL3dkdkwxgLwYUQVMOapkVJbJvWbLUUUj46Pe0M+01Vl1muaTTJ\nsqKuirJK8kwRnFdlUdaKYEKIYVuE6WC4URRFo5DJGDRIAHLCMVCqe56n6zpSCiGiJAblK+c8jlat\nVktgNJnPiqKQSNmuc3Ry3Ot0kyRxfE8I8fbt2yzLjo+PlVLeYABjMVdyfLDPOTcM4+joKEpiUPqa\npokxpjoL2q31dkOJxusm2oYQvtJtd4hC23Lb73STMOJN0+10jo+PLcvKkzSL4qZpTNO0HEdKud1u\nt3FcN02SpW/fvpUSBUHA6+Yiz0E/+uzpO9tNmJWFUshynNVmczOfa7peFEWYJPuHh4Ne3/f9zTaM\norgdtPr9QZKl8B4JSnudLsBjVVV9/PHHi8ViOp3yqsYYQxa4pmn93sBxHEIpM/QoiYuqzMsyzzNK\ntX63m2UZ4jwtC1FVo/19DSG33eqWhcTI9tyirqI0WW3WCKE0z4Ig6A0HpmmWTR1nKVwHSikfPHiA\nFXr+/EWR5v6jwLbtq6srzbAsw67youUH3XZnsw7trmMYRh5FTKOEkCovFmUFBZjpOkTMSaEawWvJ\nsaZVggsloywdDAaEUk/Xh8Mhr5vtas3rSlZNuFz7R0dwCV2tVi9fvVJKdftDL2hncZIVeZkXUilm\nWopoVVW+PTurqsqynUrw9XbLkdrbGxPMttttp9Oxfa9uGkLpYDQUQgBcF8ZxnueH+wd7g+FqvhBC\nIIQ3my3nfHozV0oNBqNO0KpH9aefffb21cvBeHQw3g/jqKnrLArffPvi+vysTJOHx0eH+/uTyWQ2\nu6nLytRZU5WysbAUGEksOKB3WHAFJhsYY6QwUuA/TzB2dENKKbkom1wjRNM0S9dNxso8BdE51TSq\nEUw1JaQSkmBl6czQdYJVqaRSSihECBI1B889rJCpW7am53lehEkYhkgjDGNZ1ogLommaQrysaNM0\n77zzTtnUn3zyyeTmpm5KIYRhGJrBmqS8mt38b3/+Zy3P//D9DzvDvpXae0eHV9ObuiiHwyGjNM/K\nLM+rum44H41GN7M54NJlWb558wbMJvVWp8yLo6MjxOVyMhVSlh981BSl73mWbkhXDccjw7Im05vp\nYu5g03GcbL0Kw7DX6wWBv1gsJpMJVoggCRRoznmcl45tL5fLNI339vZcz8vynBASpwnI8rIit22b\nEBIEAbQLpmlSTGqmECGzxWJFVu2gRYmGhOz3+5xzMKY5OjrKymKxWEgusqKcz2ZKKb9uIYTiMJJS\n6pZZ17XtOjzkuq4DKQ54vxDqEMexlLKu69ffvWSm0e12z87OYEErpWSGblkWpRS0xWdv3h4cHfY7\n3VrwMiwRpb7vw9a2qMqaN3VZAVFu0GpZlpVWxWAwKMsyTCLLMjWNBO0gK7KLy/PhcIg0rAiK0hiA\ndMc5+uLlS0KpIpgoYpoml6K59X+gRFOaRghhmkYJ4VIqIRSjhGoUIyx2yh+EEJDpYdrjt9DxrvD8\ncOy7+/6O53w3B6sd9qu4FEjcztlKKqmwxETbwdQK3fOQRBi6HMYYHHnTNBpjpq6XvNSwhjUNCyml\nACsOjHHVNDsO163qaSfyuZ07d3DxbaAh+F4pjAhC8vboiVIUE4QRQRisP7BCoJdu5A92wHcdxt0E\nf0c9g28EUneQPnQwCiPCya7zwLsne/e6FUVBKdUtU9M0zImoqkYJLHlV5K1Wq+HVJtpeTXVDY7wu\nOecGMearpWGaEhNMKEeyboQiGGtUKFVxUTc151zDFGGNaKxpGrAFYNRQSMCmhhBimwbnnFHKOY/j\nmBENOPatrt8otQkj0zR7g6EQar5c6+wCKRKF4XA43mw2ZZYPh0MpUVGUXc8bDoeW60RR5Lru2dkZ\nhG92Op3pdApYNCIYVLbvvvtunZfb7TZNU6KQyfTA9TBC4B7Tcj2KsGM7JtNtZhgBHQwGBMusyB3P\nc31PYvTi2++ubyZxllZV1dSC6npdllVVWZbl+t7wYO/i1av1eq1pWm/Q74+Gs9ns4vIyiiLP8z78\nyUenR8fz6ezNy1c6Y6ZttYOWbdtRFBVFQXWt1WqB5gqMaIA39OLld7quf/TRR71eD0IUEEKN3Nmw\ntNtthTFjTMgmaHnddlAVZaftDfvdbuCuV7Nocu15nt8Kat4sFgspZRiGTdNoOjvSCDx6GEVplvV6\nvU63Gxwdm6aZxkmr1SqZXlWVadonJw+aprEsa73elg0v82q9Wum63mq1pJRNWdmGCUtfwHiGw+E2\njjDGWZomRe54ru25hFENI8N3Sl4byKS6LrlwLVsfaPPpzOoaSinZ8DRJgIl5PrkyDGPPYHEcN00T\nbqOqLNvtTq/fg4Z+ezOVkn/75tWr87etVqvd674+O+vYwXK5tGz7l7/85cXV5adffqEwIoyWTU0x\ngZQa0zQN0xyPx5ZlJWHit1uGYZ2dnQ1Ho99/52embXXnXSnlfD4fdHuDbsezLc80syzTMfYcty4r\nJXgcbss80xQ2dAq5k4o3jGDXtHWCpJSy4YjzrK6hvTaZoWna3bqHUkoxubtMgdJXKVUka0IIwYRq\nmCCMhBJcyIZD7iFCSNcohzRPhQymM203JOga9U3bYgbRZW1Y1EdUZ40UaZZxLhlltmlKKelkMnn/\n/fdfvPzu888/Ny2LUI1oCGG8DcN2qyWUSuPo5OTkf/gX/3xH6NXxarNeLBZRmnRbbaWwaHgYht1u\nF9w9CCGO4+zt7dWCc85XN7Nnz54R2zsa7aVp+vTBo2+++eav/uIvLdcJWi2ulO964+Ho7eXFcrmM\n47jjtA3LZEQry3Lv8KDT67x580ZK6dpO4DmaQovFgmGCGjHs9lqtVhyHrusOh8PziwuMMUSLmzoD\ntq1ECizlkjgG0fTVZrYpNrPZTMP45nri2s6j0wee59mWNR6NlsulZVkIoaasFrN5Xdc60xRCGlKN\nFJSRqi78th/HcZZndV0GgSeapqorqmHf94LAizfbp0+fvnz16rvvLhnTqs3q5uba87zRcLgxaJ7n\nVGeahuMk5JwznSWr6PJcalSzdAZRzxpjlmUZhsE5n8/nURS1/KCu6mk6o5R2+j1Y6x4dHQGG/Pbt\n2ziOTdvWTRN8LWAIrnkj0kRjVCrV1BW+TX2HswU4CLtBUyq1m2x32ez3p1gYEGGK4re0KXQr2tGJ\nhu593RXd+7Kiu0UpIYTh3W/v31jdcoDvz747iLvZrWekklD+6W1Rl1IKhfCtPACuF1JJuCsYq9n9\nNe1d1cRIKUVgAsZIKXU3pxOFJN5Rq8hufYx2BfuHT1Pdq74Y46ap5S39inMuGw5th0A7pwt4NYSS\nSip5a4BF8PeW17sXlihFvid2YY0oLriUjueGWVQkqaFps8XCYnqv2/ZcZ3a5KKrSawVciJo3iGoC\nYUwZIaRu6qysoO2zdAMRTKimKQUkrLwoNIp1XY+iyLIswXSlRKfdFnXTVDVlxLZdjBWhNE7TME3G\njm05tm4aeVls4yj56itgJzRNkyfp5eUlQsh3vWS9HO6NYX+8XC7TNK2qClwYbduGIJAwjqSU0+m0\naZq+3z7aP6CUhmG4Wa+LPHddF0s1vZ5YljUejnYuQpSahuG5ruu6aZ4lSRIlMVe78BjLslzPaxrR\n6/WSKK7r2m8FURK/+O5brZGEUKJR23JPjoN2p7der6Mo0XUzTrLn376cXk/SMPIcd7MOKWFt36OY\nZExnjDmmtVqtzt+87XQ6wBEDzAZeQOBFYqmSPBNCcCmyIgNNIGWkyvh2tRyPx42G+t3OsN9tqmo+\nuyk1w7Qt2ALked5IkeRZVVWgXLAdJ4wiYOQ0TdPtdpuihD1Rt9tVnd5mubq6mliW5futuqizJM2y\nTCnV8gPRSIOZhmkCK5hR6tg2EOBd1+31ehqj1NT5SnElq7omhCiMqrqGnqwqStXw/eFo3Bt0HL+u\n66IoRMOTMtc0zQt8jTFCSLiNJ9dTx7VEw6u8sCyr4sJkBmPM832o+tfTq7Kpic7m8/lGdzqdTl5X\nNzc32yh85513dNP46puvi6LgVY0V6rbbaZq+jpNBp6uUisJ4f/+QGYbrrH2/ZRiWpmm2bY8HQyFE\nKwgIxkeH+0+fPHrz5o3rurmGA88lhCRRbOi0c7hfVVVZ5kR5pmEYOuu126TbxQhxXud5LiYrAI0J\nVoZOCSFISDgfTZDsS6n4bm3EOfccG4EYUXApsYaxhpVGiWkwpYRsaoSkoVMhhCAIYcmooes6g5AF\nygysmY7nm3YYhgqjRgrXsBrBlUYopUgjlDH2/PnzKE16vV6cJJSwn/3sZ2mafvHFF2ma5nnGMAFn\nY1A6LlYrhbFSqqjKm/ks3saArHZw9+rqCsgUWZY5jsMF/81vfvOnv/+HP/3go7//+79fzeYffvh+\nN2hdnV9wJZuyms9mhm39wR/9suD1dy9eDPbGhJAmbzRGwcsNPNtgXbS/vz8e9nlZaQr7tnN9dgGZ\nKgAjx3F8dXW1jaM0S4luxHF8+vCBpmnn5+egeYd17PR6Uqsaqlev11tOZxomg/HI8zzeNEEQTCaT\n9WrluC7oH5hp5HFiGIbjuo0UhmUmWarr+ny5KMsSPHuzslwuFq7tdLvdYa+v7R+8efNmsVjs7e0N\nBoO6ri3XAVCh2+3atl1UZRzHq9WKENLr9Q4ODi4uLnTT7PZ7tuNsozDJMy6FxphhWaDKPzw8vLm5\nKYrC9/2jo6OLi4vFajkajbIss217tVo9evIE5MJ5niul/FYA+Nh2uwVUsyxL7V5kB9gUQDEGzz+A\nnbFCcKGBUr2jCN0nMP9HC9376PH3RKfbcgIPer8Aa4zCJ1vcKvCgYYTW4UdYNMYYGpG6rsFsj2Is\nhCjLkhLCOZcIE6kY0QghQGTFBgHpPRJIStkgRJWSUjKNYrwLBCYKKYRAWYgw2v0/xrtkCqUkUkpI\niTElRN0O5PCHTGd3Xcv9egwvC7lVCd+1F3fPHQw3sCJwYynlbYzFD/EDqknFgXaA8O1bIKXjOFWZ\nG5bpmCbFpNVqe75/c3ODEKqqCqdpluelaBzXbwSnhFW84UKZTDNMEylFKeVV3TRNy/KAQh/FMULM\nNE2gsGKMKWXdbpdX9WqxhFde0/AmjA4PD4OgXRTFxflVWZaB3zZNUwhR1/zv/v2vR6NRt9t/+fKl\nrutYZW3PlFICyvLy5UvwAEjzbG9vD7CoyfTm5uZmPB4XRVGWZREm0KAgpWzb9n0fS7VeryGvvq7r\nqiwppa7rQlek67oQYhOGRVX2R8P+cBClyWw+Z4y1Wp3Dw8O1vU7jxPW8qiiaprk8u2y1Wgqh5Wbd\n7Xb39/cNyzy/vCiKYjqdurYzHo/tBw/C9WaxWBR5Lscj13Vty4IFeZIkNzc3VVX99OBnX331FSj7\nHz9+DB2AUqrKC4GU4ziO6RJKKKWBQRkbT6cTUTeObS9nU4OxOmg1VWmbxs18A4lAuq7HWarruqZp\nYP48m897vV5VVe12OwzD65uJruun+4e2bQuuqqIG7ndZllXVQC5cp9OJ08T3W4wZq/Xa933Eq+12\nqzOGGXNd17ZtISXGuNfr+a2gWw6YZS4366quFUaazjSdjfoDTaFovZV1M5/Pm7xs+YHBGCFkMr1Z\nh9uqqgzb7A+HWCNpnD1//rzX67VbraqqFouFhsnR0dF6sd5ut5rODg4OLNeZTG+S9LvBYGAYBjMN\nUeSGYRwfH5u2LQjaxtFmsymKQlaN4ziqEbpOvVYQrjeg+Fgul0Da32w2vu/C2sKgDEtVZun43XdM\nw/z0N58sZ3OkkYO9PcdxwnCjlPI8b7NZrVa1FCJJYl3TTKZ7rs10nRIDSTXo9TebTdiEQggAXYhB\nkFLg0SsbnlclXNsppZRonunC9VNyrmkaNQzLMMELQUNYKUUpZXSXPYwQQlIxTEymKyF5UaFG+J7n\n+sHvffhRXpVlXRV1tdluZ4v5No64EFTDJCuTvMywodVUKswbJBWS//AXv3CZ+fL5i6vL86vvXnZ7\nPV6VvKmedE/fZhfrBmVJjnQaiyovxJNHjzlSlmVILjBGrU4nT5Pr2fSXf/DzvScPkWMFh6MvX76M\nqPz7v/976pvAIt5ut3mS7u/v/5t//a//sz/6k+PDoz//8z/HvjMcDjWE67oejUZZmvaoEYdJ+0AT\nm2TUHxwdHYXbLTmUjuNsNpvR+LSWsspKSdhsvnZ8Zz6dDQaDluuvViuClOXoeREr1FxdXZmm6TiO\nodHOaMQ0rffwoUHZu0+ezOdzDZPF9TWqa83QlzcTHSPe1AqpJE2jOG5ubvx2y3Ecikiy3r5z8nAy\nmSilkvV2tpg/efLk5ORkvd2cPDj94qsvX756iZFWVVVvb+/hkyeffvppWVYglHr06NG33347uVoc\nHh6+efOGkqzldajvzhYL6toGtkzHKepap7qsOULaIOg+PXqYRJEltW3ReF1js1yLmp8eHK/X6ySO\nLWo8OX30YP84juMXL160222ESbxZ1XWdSNntdrflCkllmxZE6XmeJ4SI4pQLhTGWCmPEMMYYaVB3\n2o7HGAMxNK+b3RxGMKW7kgwWFQRhnekA3nLOpZKUaJRSJSTw7KWUsGyWSCmMEcFKSc4bj+i8aQzD\nEGRnPVFVlcaorutwyeO3YiQhBBJCw5BTssN1EUJYKQrWH7DM0XCDBEYSU4xc3RQSS6SUVFIRTKhG\nMcYS3WYkQMiJoQMFjHOuYWxZFuc8LwuNUtDLQnQSQQjpuqkbBGFe1Y2QhBBNESklwoRQcltphMQI\njh+yhrBGsE4VQpXkXApEEMaES4HV9wlRGiaCC4UQgR6FC4QQ0TRMlKhrIaXGGGNM07BSWCq13kai\naXTKPMf0PF8gslinTPeSJnJGve12S23DImbV1K7rZFmGlDII0ZWgWFV1RQR3GKuqAhm2wej5+bko\ny67vSd4M/KAsS0aZpeuM4IaoTbJ1fW84Hq1WK4+ZFqZlU9ZpvlqtLMsYnZ4gIdM0FaLRLY3peLmZ\nH57sg5pRkv34ZgGpR4ZtbfM4DMMgCK5my73x2LVMpukPjx+2PD/fpsv5QlJxfHwM5+bp+CQKkyiK\nmGk0BCWouZ5clrzxW0GdrhvOu93uvuUND48LoQ5PH+oaXdz8zmNW58HTMAyxxAbWXN00Au3o5Pj6\n+vrFixcOY1TXut12URRvX788ODjYbDZPT08xxlBfV7zu9XrM1j0auK5rtzxmGIFtM8bKvBjtj08f\nPajrmvPm5OR4tVrt7e31el346K7Xa17Xw14vyTKsFNOo0o1W0Lq8vCyjcjAYVGmdR5Xddsq48f32\ns8fjwWn92WefXc8nhBDLtqlOu/2+ZVmm5ehWlOX5g0ePoiiqEbL9wDTNIPAJIdjEmqalaYwQPn50\nIqUc7g+yJE/yJE2i+eym3W6f7I+qPOn2O3vjjzabzatXr5qmakqHc344HjmtVtM0OMkCgTudYZqm\n8/nc84zTvQetTuflm9fhcs0MnSu0QTKqM0KZadvc0W29d9TrOY4zmUzevHztdvxgr1dx5XRb1LKT\nKLH8DjNcO5B+VhoG84KWUCupGsmlkLWSnEjx6PiIEFLG2XI6L8vSFeLg4OTs8sIZ+lfX10cnx5jR\nf/W3/8bxvd9/8sE0XPZ6HWSg1xev4m34wQcfdLpt17OkaiOpxuPx61ffrlYr06Cz6fV4uHc8GFiO\nfc2b6/l0utlESbxYryzbtixvMl8WjdgbjYUQvuuapnnQYh1dC00WhmGRhllCTNO0LMsxdNHUSmHP\nMExCqqqSgmuaVkmkMDJNkyCkmhpzTpkMdAMjiYQUUgDGUDS1TrHf6UVJjhCyGImLlBLNtlhZpkHg\nSFVj1RAsAtcyTdrwoipTLhGN4xhrmDEG5gnPnj27uLiwdf0nz94/HIxn15NHD5+E0aYsy8PDw8dP\nn7z+9k2SZ67naZZRiqYSvNPpHBwcOJa9nM7Wi6VrO0VVTmbT0Wj0sz/4+Vefff7JJ59cXF5ijINO\n++OPPz44Ovz0008//vjj3/z6PwRBcHV1RQiZzKZff/312/Oz4dHB8fHxxx9//NknvwV8yXGcDz74\nQArZ7XZN0/ziiy8E5zC0cc6//vrrOI4PDw+rqjo+Pp7Nbtrt9rNnz+I43m63VVHyumm1WjByzedz\n3/cDz+/3+0oI13bAi6OqKtd2TNPknLu+B/Y9YGC0v78fxzGAaZZlAWW0LMsHDx4cHBxEUfTNN9+Q\n23jazz//PM2zoiiiMOn3+1LK3/3ud+Px+LPPPh8Oh7BPAnXvfD4/ODj42c9+tlzMADGez+cPnzze\nbDaLxeLDDz+UUgIEVJdVp9VyPLfb7SqCwR3GNM3lcglm7r7vx3F8F6hiMB0CNR3Hubq6Om5Z89my\nqqqyLE3TrMvK9T3D2FkFCSGkkhpmAKkhhGolhBBcCKCkAhzNbyvHHZ6s7gSvBMMsezcL7hS0CIH7\nsdpRjX/Abb5/J0IIRDCMQUIIJCW63cTcFV1163V1V8DkbT4JurXTgh/ZLbS+m1lvU5juZk34LdBA\nwB4Bij3nHN8Kn3aQuJSwy8cKiboRQhCMAQ/EhMDssgsfJFjeWznj2wellMq6gsmYoB/om9G92fc+\nFA9+Arqua4xhjJVCoFQB620kVZ7nSCpdo8AO2w3TCGFtlwIJcMKuOeDiDmCwLMv3fUe3q6a2bRs8\nxnWqjcdjoI8qJcMwtG375OSk5k0Sx7xp1tsY0laCIBBCYKyiKKqLcrPZnJ6eHh8fwwZqs9lAQu1k\nMoFt/dHR0aNHj7JseH5+rpTiGrVt2ws8x7abqhZIYYw9z+uOO+12G15wy7LSJA/DsGxqoWS338vL\nOkyTNM8UJWDnORib4/EYHmi22UKZV0oBD/TVq1eWZXU6HTDh+eijj3ieV1WFMfZ9v9VqgZ8MRBnC\nOQvZiFEUSSl932+aptPpwIcfAtifPXsGoZ8QOeO6rlIKptg8z5MoghTCg4MDxthyvYqiKE1TCBN0\nLGs4HOoaFUKkaYqU6vZ7f/xH/2AwGFxcXHDOsywzTfPZs2fT+YxSupASOL2dTidJkqvJNVxzwHmw\nLEuEMLwd6/XasVzw1Voul3DStdttXjc5AvNtrSxLQFPDMGSUwhOvy8o0zadPn87n87Ozs4ePHxNC\n5utVN88UwQITr91q93txmmFNy8sC6LSj0aiqqqurK9d1qaat5qv1crU32n/68HG/20ujmDd1URRZ\nlhgmMwzj8PCwrCqh5Hq9BgQLUDcY3MMoCsNwNBqZnpOkqZTSNc2f//znYEKslFqv14PBQNO0X19d\nT6dTqURd157nVUUJcz8EKruuCxDdbDZbLBae7QipQCwetFqMGVVVlXkxnU4JQlgpQkhgWTBUeJ7X\nNE1TCyCWAvkRIQLuPeTWHbZUteSC1zWvGyQ506hioq4qS2d+q5Vn2Ww245zrpt40zWKx8IKOQdld\nujzUndVq1W63QTaRpuk63N5cT1abta7rtGma06MHeVOso7DOkvl8/vq7lyf7h+v1+nTv0LIsplHK\nyOMnTyAMgBqmSQjidVKXumk93tt3XXe9CfWBsTc+8Gyvruv4+lohcvzgoR+0f/vp50IIxtiDx4/G\newfL5XI+W/b6w7/5t7+qy+rdd99dbUOFyNXFVRRFtuv/5Cc/efbs2WKxEEKAO/Q//kf/yDRNRrSr\nqyvHsk3THA6Hb9+8mUwmk8mEue7R0ZFlWV999dXe3t5PfvKToig2y9VqtdI0DSuVp+l4OERSEan2\nBsNNHIFMQsNYp0zTtKurq/V6XZcVQmi1Wrm+57qubhi6rkPwSKfT0XQGZluAAiGEHMcJwzCKor29\nvbquL87OQYrgOE6r1XId/5/9s3/27bfffvXVV/D0b+GRDXgLUEr7/X5VVXEcF0Xx+PHj2Wx2dnaG\nMYagleVyiYTUKSvL0jCMNE07nU6/379YzRTfcQhBPQUXdMMwwLuO181gMDg+Pm6a5ubmRolaisbQ\ndduymK5HUZTGCeccEe2ugN3VJxAhNE1TNw3AfSBX5U39o63t96tQqRBCO/NLhe7QafhxB6tiDFYW\n+JZODDe7Q62VkLXahTQghNQ96fCPHvT7XSno5e8dP1RlTHcSZDiF7u5B3rMBgSe+kwZJuZu8OSe3\nv4WTEN37E6A0U02Dyi1vl8pwz1zseMs7zteP3DHvHfld20Hp9zvv+88R7CAAum+ahktBKdUpE1gx\nxpSQTdMUCimma5gIIaijN00D1ReOQd66gYpmd+EjhHDOEUKe5zVFHYYhY8wyjNViYRis1+thjDud\nTlnlm/UaaBACqbquNaZ1Oh1wXQX0yHGsKi9CqeCz126318sVpTSKol6vt7+/v97EBwcHWZYtFou3\nb992Oq2joyPTNF99+x28aJZtE0KqomSMOYO+5zvQBmkIa5rWbrc9z8NFrptGv9/fhPFkPtuEW8My\nCaNVVR3Y/vn5OWiW8qpM8qxsanhEoI+BOZ1pW7CqeHx6+urVK6iv3W4XbLMAMIyiCPpXz/PCMJxO\np2EYPjk5BQgU7Hds03Icp6oq4GEJIW5ubrIsK8syjWN4iPl8TihljIFBnmEY0CKA/UWn04k221KU\ncCd1HBNC3nvn3Zbn//qT39RVBcSr2c00zbMkisGZcjAYtFqt6+vr8/PzbrfbbreBFzKfL66vr1+/\nfm0YxunxA1DTuq5b17Vt291u9+3b12maKqVgNycbvivzxk7hTXUGJv8HBweA2SiCTdM8OTmhhp6W\nleHa7W7nanLDpVyv13Vdm7qhhMyS1DLMPE46rbYIeJ5meZKu0GI1nYfbLcZoOV9w2SAsj472jo+P\npVJhtClxatm2RqlUilLa7XZ7vV47TZ8/fx502mWWU00DpfzJ8bGSknO+t7f39u3rzWbTbrcHg8Fo\nNOKigS4ZGOmO0zo6OvI8zzAMTWNBEHiB3+n1qqYu3rzhnNdVORwOKTM8x70z3l8sFvP5fK/Xo5SC\nosT3fcEVWJDCm6vUblUESjmllEMp1+pcKckbrAglGgAn3nDQ7/Vwv88Yy/OcMdo0TZqmQasFfFvf\nc4Ig8F2PUhrHcVnlZVlmec6VJEj5gasQsDUYsyxLYERpalnWq1evTMMoiuLm5uaFbhJG1/M5pdT2\n3CiJsUY0Qy+zJC2LTRLZgWf5riH4fLVM46RI0jzNbNsej8fdvRHC+K/+1f/l+z419O12+9nnn5+d\nnxuWORgM/Hbr+Xff/uL3f97qtNM0FUhppv7Txx8DYSTLst/85jfQr+3t7W222+1m0+/3P/7447qu\nry+vXNd9+OjRty9eFEVh+D4UoT/8wz9st9tB4H366adCCMs04aPj2g44pNimNR6OXN/Xdd2xLMdx\neN1MJpPpdOo4DsYYyMaQziaknM/naZpyTRuNRicnJ77vX1xc3IWfAHOhLEuopq1WC+zxJvOp7/tH\nhyfn5+d//dd/7XleFEVlWY3H4yRJZrMZ5H0OBgPG2OXlZZ6lP/3J7/WHgyRJtnF0cHBgGMZisYjj\n2KCsJrWpG0mShGGoYaJpWqvV2mw2FxcXMO+WZbnZbB4+fAhd4WAwePv2bV3X/X7/7OzMsiydaI5h\nFkVBiJbHCUaozgshpWU5AiGMiSKIaLduG0LcaXigHtwNmncrW3wrQNqNuUpCAb4rM3dzKkJIIxpA\n0MDkIgjJBmDkXe25u0952w0ghDTgKd8qBO7XrbtydWd7eX+uhWoKZe9uEL//LO7XdThUGIOAs313\n8Lv+97a0a4QwpkMB3nlE3Iqt4WrOpQD1/d3DyXtA+u7YdvvlH2y4f1R9EUJshzxrXEpon5FUpUJK\nKVPXKWOIC/hzoWRd18jYWYpC2yFuoQtTN7jeIIR0XQe6KaQLrDabMs9hEJFYlmUJ+j2shGVZbT+I\n0qQsCsM0TZ3leS51sPRzgNtvGAaval3Xj4+Pq6qKwyiKIgi3hgti3SjTNIEZFATB/v4+WIvD8jKO\nccvzdV2nRAtcr9/vX00vgIYtG66UCvx2u91udTsSqX6/T6gezGdJkfutQCCVJMn8ZrpeLIfDoa7r\nrusCWAU0FMdzW61WGIaLxeJhvzcej6+vr5P1GmYUGPq73S4hpCiKIAggwczzvOPjY8YYjJIwLy4W\nC7hbkKtGUQTcUlDKUkJ0SmHKgYnNC4J+v99qtczYgne/1+sVWa6U0hiteOPZDogVay6qpoRm2jZM\nhBBG6PV3L5fLJWHUNq0kS6NtWJbl3t7esN/fzKaLxcIwDGjIsiyTt5YRXAjgQsNeCbSUvV5vu91K\nKW3bhtGTYgLaaIwQ2IPHcfzy5UvG2HA4hLRpxphh2IZpNmi7XW+uJtc311dYo3mel3V9dvYGjqHt\nB3uHewZjOtFCjVGk5pMbSunp8cnV1ZVlG3WtkiRarUzbdUzTkAJ5rcB1XV3XeVXnRdHM56CkH4/H\nTdO8evUqTOLx3t5yuQSTTrvVH41GUbT95JNPqqra29s7PDzM8hSmi263SyndbDaj0ejJkyer1Wq1\n2iwWi+PTk+F4/PzbF4zSd5++k+YZJoTXDSFE13XLMAC0WC9XTZZBKwmfB42wu0ykpmkA1KO3sWZK\nKdc2hWEYjNaGjrjUEBacN2VRV1VVVQd7+4f7B1IKSPFxHAdhslouP/vss+VyWeYFO6APHjwA+mFR\nFAihNMuqqmrKqsxyriTFGL9586ZRslaCmsY777xjUDa9vP708y/m1zeuZYPR4+eff/nw0aOP3v3w\nf/y3/5wj1R70DF7NFvO3lxfPnj0b9vs3F1evv3vp2Y7v+91+r47LqxfPLyfXJqF100DRPT8/1y2z\n4DWeTnTTuJ5Pt3FUpBnGeP/goN3vrV+9evvF54vV8uHDh4vF4vjZM9eyP/nkE8AH2u32X/zFXywW\ni/39fdd14yQxTPP6+jqOYwBVlFKz6ZRq2k8++kjUzVdffVVVxenJyXQ6pZRmlGkKffTRR77vx2Ho\nWPZ8Po+3oed5nufxuqGUfvDRhwCAMEJubm5a3U53OMqyDAhfsKjHGNu23TTNbDYDOTxchReLRdM0\ncKr0+/1f/epXnU7HMAzXdauq1nX91atXoHZvtVqWZZVl6bquFM0vfvGL3/z2k7qunz596nne2dlZ\nWZaDwaBpmuVs3jvuuo7bVFUYR9++/M7uttbr9Wq9Ao1EHMdAvKyKMgiCk5OToijm8/nb87PZdPr0\n6dM6TgPb1bHW7nVXq5XrBfPlIssypASSSGEEeGkjas65EIqZBixxoWIB+RmSf74Hcu87WuBdEpEQ\nAnLvKSYIIa52fGmCsQAZz63cdjdqN2ABuYsDwlIici9ZCPwglUL/7wrj/+QXNEY/uhn+Ydzh/ZoH\n/GR0O+Pi22Tiuq4h/kEhiTWKbmUJMCtDkWO3XwLdulzdaynQ7RyMdqLk3Uy8q9zqB4dx9+ws08K3\ncPp9Gjm4ZksspRCKqFpwLBWXAvGm4Q0Y6e1U2lxghZImgYOhmNzt14uiyMuCMcYVr5qyPxjIuuGc\nt9tt1zYB5TMMYz6fuabZ7nU3m812vhwMBp7nAW6EpQDylK7rgnOMjaqqBoMBXLbyPO/1elmWZVk2\n2t87OjoSogF3uXavG222YRgqLlzHMZgOMd53n7E8SfM8L7t1xRvLsuI4djxXKeW6ru26/eEgL4u6\nKK+urjqdDuBPumUeHh7meZ7nuWGZpmnquj4cDg3D8BzXtZ1Br68TXJYl6ABhVwWVCUwlAapN01RK\nCeJAWP202+0sy+q6zrJsGkZACNrf3zcMg2maaBpK6eHhYffWZgQmKlDrAWenqiq4buiUgrEdjNSC\nkCAIiixP4+TJkycAVwyHQ8s0dcMIgiCvyjAMJ5NJ7gedVptKAZVe07QwDMuyOj09BW8NKeViubwr\nGAB7dDsteIOEEGEYFkXR73QBBcEYp2mqaVq32724uNjcTPxW0PECUBk1WQYW6E3TXJydCyUtXbcM\nE1YzOiWmThGW6Xq7rqo0jluO3+/1Li8vo3VEMXnnyaMsy9IirXkF5C/bcxTBRZRWTa0w0jRSV3yz\n2SCETNMcDAZFUbSDFmPs4YMHV1dXr1++arfbqNW/ubmB0zDLsjAMv/nmG9MyoLwBrXUy2dR1ned5\nWZZ1Xa/X66qpddN8e36WFsVgOOz2e4vFIi5SXtdZllWM+b7vOa6GiUl3CDNkQVJNh9b5NtVmR1AF\nKSMhRAquKaVTqhkm1bFGCBJSWObx4ZFlWk3T2LZlmiawDg2ml3XNGOu02kgqXtV5ksqGM6K5lj3s\n9ff29maL+dX1dRRFnVbb9T3KGLuZTf1OWxG0Wq1+8cs/eP3qVSOFZVmHJydUIWh+P/v887KpZ+vl\ncrt554P3Hj198tsvP88X07TMuRRcyslsShkb7e/NZrNvvn2R5FktuBf4dZIfHB1ijFfbDTON8f7e\n2cUFjIwvvvvu5Ojo6Oio02p3u92z12/mqyU4iA5Gw7KuKKWff/XlcDg8PDz86ssv/+L//JevXr36\nJ//kn6y3m7/8y7+UUj59+lRcXkIU6N/8zd+8/+y9Xr/z5OEj17JzkT04Of32xTdNVf/DP/oHk8ur\nX/3qV/uD0d7eXp6mZ2dnvG4UF7qut4Ig3GzhCri/v58kSRTHnue1e92PPvpouH/w2WefJUmyXq/X\n67VlWaZp2oY524aibvZH4/F4HEXRZDLBGD958qRCYr1e//rXv+acP378GMwgNY1ut1uovnAaKKWy\nLHNdFyP14sWLTz/91HGcpmnOzs6iOAZYjFJa5UW72/EcFyIHsizLV6s8z2FN5bdbZVn2+/2maRrB\n9/b24jiGHYllWU/ffUfXdb6oXNe12u294cg1Lcf1kVJLhIWSuwh7rCSSQFCSSGpSwky/m+0g9Q9I\n8z9M6t1VU40QhIE2rO4AZwjc1Ha1Byu1S/NCiNymMtwvitBvIokE+oGRsoZ/MFjfLarRLf58v6Di\nO/9LENeS3fQKv78lO2OFkVBSKglByOBgRQjRMLo/ROJ7JiQ7yZMQ8jaqjGgaJL3viiXBcRzDLbXb\nL7hbwPCVUhAbBb8ihDRVDf9/N8HDI4p7zlmEEKrrTNPgBpKLuq5lwzVCwMtaKKkAPNcJ5w1B2DCM\ngudN08Rx3PJ8pBT4tUGDn2UZpth2LN40VVWNBkONkDSKR+NBJ2i9efW6LivGKFaoKkrMpc2M4OQE\nCAdxHPOqzrUc9iZSiOPj49PTYzAktywLCZnFCXFIu93Wdb2oq7dv3y4WM4TQ48ePdV3P4iQK8yxO\nGKVMoyt3MZvNMNtp6C3LIoSUTQ0XX6BKgO2rREhKaeqGY9l6h0JM53a7LYoCKnQjeBiGvu9DMuB4\nPAabkQcPHvR837HsJIp7vZ5o+OX5ha7rcHL1uz0QO2xW6zAMKdE6rfZ0PguC4OTomHMOHAilVLvd\nBmEVkhJUMdBkA88jSRIAtIUQEKbSbren02lZV9E2jMMQSWVZ1qDbMwxDN4y6qqAI9bSuYRgao1Ds\nhRCGrvu+ryG8XizzKJFV47sebzhien/Qa/lBnheGZaZp+ubNGymQaZqgiQLZSJqms6kBcwL0Q5vN\nxqAMrpAY45ubm6ZpPvzgg9FotCOfa4QS3bBMVFWmaXp2qxHq/PKiqirbNJXIeF21/GA0GFZVdX19\nTVpt23ZP9g9Hg+FwOPYt58WLF1I0++Pj1WappZpEQjcNhBDnghAtTrI0TZFUvuOapmk6brfVHg6H\nZ2dnnPN+p48QcQxnf7jPG/nee+/Jurm4uCjLHAIbLMsKw3D5eoEQ6nQ62/XGdV3HcVar1TfffNNu\ntynVNUavrq64lK7vNQ2fXF93e72qKOuy0ikrEE7jhBLN9/3RaOSaBuCXoPaGzgYoUHcXlrqu8W3I\nSt1wJSRkgyJKNYRt17bN7sF4L8/z2c3k/O0bx3EMw1AYb7dbjTGm0YcPH44Hw6urKylEFIaUUikE\nlPZep2sYxv7+PmOs1WrRbre7jULX9zhSi/Xq6moyvZkzxvIsL4pClLWmEc/3j09PsrJ4/u//9rA/\nooaeVsU2ib3AZ5YplJxOp3BFvr6+Xq/XxycnimDLdjWdHfcGf/qnf/rbzz978frlL3/5y//6P/9v\n/sX//D+9ePFCYVRUZVoWzDAQ1b746svLy8ssSf/kj//B+fn5119/bRjG519+8eKb5//0n/7Tsiwx\nIcvFopHi4OBgsVhojI76/ZevX7330U/g1dR1PQgCWIXeXE+iKHr44EG/002j+GA4/u7r52VeHB8e\nLWazly9fXlxcJFFsG2an3dYZa5rm9PQ0iiIgO8zn80YKAHAmkwnUXd/3Ieg02myLNCvL8r333ut2\nuzAMjUajIAgIIUwje3t7v/3kM8dxrq+v2+02pVRKVVWV4zidTicMwzAMIT5hOp0O+t2//du/TdPU\n87yLi4skScZ7e4yxJE2PDg/bvW4cx6CFHY7HcRzPw7VlWUAnEULUglNKsyzTNK3mzXK+qKoKAC7T\nNKMoagetLMtQWV0WZ1RndVG2XMegbJvERVUWdcURlreMKiDvKKUwIZTSu53iLvT+1tBY3tfESgUL\nSJDl0FtHp11RQRhjzJVQYB1Fds7Pd4PdToJ8tyIVUqLva9Ldvz/6UveCHPAPKVf3K/H9v5W3ntVw\ng/vFb3dv+Pt73m18CYGB8j70DUUXpB1wCYMCTG6TGDDGsN/dweDkduzGu8NA9yDx+4cB7UVZ5egW\nxGaM6ZTCFVZyUYiCKKQxxm4ndU3TJEI151jTRNO4tuN5nuSizPLA9WDIAEUpFJKyLKnBIAy5bqqa\nN7ZhSsllw+fTmRDCMg3LNFtBkGXZ5Pq6LMv3339/s9ncXF2DVClJEkIIWBDsEE6wz9VkmIRSyhcv\nXrRarVpwpZRlWQqjOI5fvn71+OEjgP7SKM7zHIJE67p2PdN1Xc65ZzvMNOqKQ7sUBAEz9JpLnbIk\nS7MkdV235QeDgQ2qpCdPniR5VhSFxqhhGBIp1/c24TaNk9FoBA7wlmV9+eWXcRy32+2TkxOl1OXl\nJRwY59zzvKOjoyAIIMz48PBQCPHZbz8B19Vuv9dptYUQ+/v7AO3AFbndbmOMo22olAo3W0QwEDYJ\nqOc1QimlOgPiZ11Wi8XCsawkSaBjC/xguVyC0i+vayllEzevX7+GspplWaff45y3Wy0hRBxFltkD\ncmiSJIZhgER4E26zLCvyqtvt+r4PAyVCKIqii4sLAN6CIHAcB9xnIXoLso9Wq9V8sTg9PT04PDRM\ns6hKMMGljGk6Yxp1LMOxbMswfdfTKZNcOIaOJKcEtQPv0ckpxlgpvJzOkm1YVZVvW/1uW8NKNJwo\nhKm22Wxev33LRY0wpkjLsqypaoPpvuMOB4O9vb1ut/v69evZbIYxXi6XEIwx6PcfnT6Yz2ZRFFUV\nhhNtNBo9evTot59+8vbt2/l8fqYb+/v7H3zwHii1GGNV01BKy7KUCPW7vX5/sFgsLNcpi8LUjU6v\nCxQ2cPozmH4fBoPT/E4AiW9lk7vWBLSRFEkudI3qpqm4qHlj6cw2zOVy2dTVZrVO07TVaY/H426n\n4zgWM+wwDC3dUFwQjKVSSRhZliV1PYnjkjEuhE6Z3bKozizLop1OT7+ZJklieW5/OPjyyy8tw2wH\nnqHR716+FFXtOa7ru91Bfzqf7e/v10X9608+oaaRV+Xe4cF6cj1bLIfd3h/+8o8mF5fL+eLpO4Pj\n05P/+6//jVbpnW43StO//nf/bnJz02518rL68ruvz84v2p2uUurg8Gi+WJxfXQ0Hg9998/yDDz4I\ngmATbmeLueu6x62j7Xb7X/xX/6XjOH/2Z3/W8vwnT5/O5/PPvvzi8PCwKArgAy+XS4ChNEy+++67\nZ+882ZbrszdvB/1+GsV//Md/vJwvkiTZrFa/+PnPHz98+L/+1f9xfX398PRBlmWb5Qoa5wenpz/9\nvZ++ePntdDpdrlacc8ZYp9NBBN/c3FxfXwdBIKXUdb3X7mRuBoRJy7JevHjR7/Vc103ieLvZTCYT\nqWt5nruOD6fEbDZTSu3t7ff7/eVyeXV1BV7NsONRStmWkec5Y2y9XvvtFsBoIClTCEkpX3z3stPp\nOJb98OFDkqZ3CmnXdQF+L8vSsx1YYkFrDxeUzWZj23aRZ9Obief6TdOMRqPJbN7qtMuad1utKEsl\nRoo3UtwaX1BNciWlxLckXoyxEEJidBeWACPmfaB1tzdFGPwXoXhomgYlRSJFkMK3MmKKCcXkR8Ml\nQuqu9isp0W1c9l3J/L723ytdPyrA8P2PKNnqlmh9tyglt1JdOAZeN7t5GiNyy2S+G/dhqawwkRqF\nGR5mMi6EgthBgOgJbrVaUBTxLb8MXjGI3YVO5a41UUrplP3HWPr9SgxbPaBoMI0mSQLviGVZAP/C\nXkYSCXmLgnNKqe96WZLmSfr06dO98Xi1WpVFAfM6vw09FEpSneG6zrIMCZ7n+WKxUEJ2O21KabTZ\nNmWlIUwwaXn+ar6oqopSCkSni4uzVhDA/HR+fr5YzHhVkwOU5/lsNgNwb7Fecc5Ho1G70ymqnBDi\neR4I4k1LzzxPVLVhGL7rWZa1nE8gDM6yLMO2inzTNE1RlUVRBO2WpVu9Xo8QolNqMKa57mq2gCUi\nsF3W201ZljVvjo+PZ7PZdrvVMFksFkmSBJ4vucAYu67b7XYBYTZNczQaeZ735ZdfTiaTPM/BFNZx\nHFi7dDod0NYbhqH1+03TtFqtJIqhe9psNlBW1+s1MKKFEEmSRFHUCAHdQKvTHgwGzNCBUAZxF7yu\nlVJlU0eX51LKi4szSunDhw8xxtPZhDJS5GmaxldXV3meOo6zv78vhJjyOk3Tjz76iBACoWfgzGNY\n5qNHj87PLoEFRgjRdCal3ERht9s1DAP6JIiRAK8u23Ha7XbQaVtvHWAzgVHgq9evwQdb0zS9MYFl\n8ujBSV3XtucihIaDXhJnZZp3Op0P3n3PlHixWGzWq8ViAa+bhompG2kaN7wyTV13rCRL1+t1I3gQ\nBBIr13Wxh8u82ERh0zTgHiilTNN0f39/PB6HYXh+dck5/81/+A/wQfV9HzLxLi8v/+RP/uS9996r\n6/rly5cYY4ihfO+99z7++OMsyzSmT6dTxliSZdPp9Ojo+N1330UIGZSFcQpBltvOVgiRZRnGOAo3\nIJ8BlB6jneMbeHpjvMs0A+RP0zRGmIYwY8w0dV7VRV5SovmOqzMKcViO4xCqcV4Tgrrd7nS+2mw2\nxweHR0dHrSBAQgJU0zQNI5ppmkVRVGXVaI2raQbT8X/73/33mqH3RoOr6c02DYWSjmVrEg063cX1\n9Ucffmgy/YsvvugO+iWvlVJIqFrwrMiVtks0Ew1//513x73B6eFRlqS//e1vl+GmNxoKJc8vLtq2\nyzmnjBm2xaXI8lwppVsmfG4sywrXG8uy9vf2EEK9Xu/lV19mWTYcDj3Pg5zIMAy/e/GtZVnjwTAM\nw0G/X9d1kiS+7+/v799M5x9//LHneV9/9bvlcnm4P9YpOz8/xwh9+N77cRyKhh/s7UVRlCRJv9//\nX/7ln//B7/88CIIqL1zXnU2n+/v7v//xz6SUf/frv18ul+1OJ85SSun+4UGSJF8//1YIAYUtjmOT\n6e+///6bN2+UUnEUVVX15MkTjPH19fXjBw+fP3++KpLxeNzrDoDTkaapYRiu67muO51OYfPk2B6Q\nYobD4aDfpZReX18nWdobDoqimM3nsIRot9uTyYQ3TRYnw+Gw1+nO53OkU03TNpvN0eEh8Pd837dt\nu8zyNE0BXjNNM9qG3W5XKfX6228555vNptvtDsd7OwshKR48eTxfrdMij7JUEKQ0khUlIUQJhO8B\nvjtYBn1PU9I0TaLvI2x3hQ1sluX3DCOYM2rBq6amOsMYF1XFOe9YrpRys9m0Wq1Gip08l3MAVDHG\ncBHnnNe8gaYH3+qR7hrV+/jw/bH4rnxijO+8Pu5uebceBnQReK1KSJgMhJJY00CbBAUYnjxWSLtt\nGmAvpGmaAooy57tp+9Y8C56Lwgha6V1dh6qvvt9wY4yxupU1w9NRCMiZRZnd9Q3gBqDrOsyvSHz/\nCtx1IXGdmUxvmkbDxDbNOi8VF+12+6e/93vvv//+3/3d3/3mN79xXBeeUSNF1dS+75d5IevqycNH\nFJPp9WTY7ZV5PhoOidq9gLyppFJlWQqhgNOb57nv+1WZz+fzfr+/Wq0cx9ksFzDMNU0zHA4tyzq7\nmYFop9Vu9/v9bbieTqeEEMeyT09PbVOPtqGu0VYQiIbHcaxTZNs27HTnq+VquYmSuNVqmbZ1enra\nafe+/Pp3i8XC9/0nT54QQmSUBJ12lmVX19dpkQsl9w72QZ5wdHT09ddfF0Xx6MFDJBXIJXSCYcXL\nGLNtG3g9CKGvv/76+voadsCtVuvo6KjT6QRBsFotOedLkOg8fGgZZl3XnVZbSuna9mazKfMCRvDR\naOTZTlFXk+lNnueEUl3XsyLPy2I0GoHRB1Zob2+v5Qf49oMap1kYhuSWl97r9YJ2KwgCMNzdbreW\nbeu63m63oygyDKPhNQyCVNeXy+VkclNV1f7+/s9/8Qf/8i//KssyN/CBPYoQiuO4325Rukt5B51F\np9NZr9ej0SgMQ4TQXexjGIZv3769vLzc398HeE9KORgMxuOxbdtxHKdpqjBijEGtchzHcRwRl1EU\nAauoqqo0TZFGDg4OyqqaLGZvz840U8/LIk7T/cMDZhodL8jzPEuSLEk7rbZnO512eza5oZQ+efQ4\nDMN2t7NcLs/Pzy3XCYKAc/BVbHe73fV6XWa54ziYoKqqzs/Pfdfb29sbj4dweSmKohISsrzW63Uc\nx8Ph6OTkBD6QnMs0yxBCkB2ZlUXTNDols9kMhFsYY95IhBBjLEkSy7KaRoBHCrRrjDGNqqqq9kZj\n33HzLCuyXEO42+sM+wPXdcuyVEqEcfQ9GRBrRVEQhCzLOjo4jDZbpRRY0EA6345kY+hcSl3XKRgp\nwA6ZUp0SRQiRnJdlCT7G0LhttltMNcuxNUqwogIpqWFRIaWUrGTTNJeXlzrR6rIK4x22Thmjhg5T\nC+ecCgF2Q8BYcX0P8oUUwV4rsGx7MpncTKc2pZbjcCmTJAH/pkGvP97f812v0+lkWbbebBBC/X7/\nvffee/jw4f/+Z3+eRPF4OBqNRtPJJMsy5gfr9frxo0eu697cXL9++erq6gq2alEUPTx9AAtUpZTr\nOK7rFln++vXr58+fR0kMgor5alnzJkriOI4bviPXAOtSQxh63m6nA6XCsx1N0/KgBfEPPNMwxmEY\nwlXedd08zyFMWykFE0wQBCCdzPO8zG3LsWEsA5I9MLnKpgbEG0BspVSSpWVdSV4D7Qs8HODyhzFe\nrFe8qm3bhg1HkqWO5xpMhxQ5wOcHvS6cRVVT/yeAXSQlRsDWRbc1YDcI/qdu/f3cdt8sCqGdvfF9\nupMEEhHCGAMFBp6R4kLcVlZCCEa7ug/TsIYJQj+eEf8/vyRCEiF875vdYdz+ePerH93gx08K34qm\nfjhP/2hsvQcE/P/82nU5917wu3veiaeFVEjcYQAIYgrv8AOlJP6PUpgQKorii08/e/67rwHci+K4\nKApMNcuyLFNHSiCqeZ7HiJZ5sePYVVHAboFSohFUw5uCMTV0YA9xzg2mIyVg72jbtqUbO0sgTUMI\nWaZpW1ar1QJcarVaNU1DGWm1WoZhXF5eMsYCz9Ep0y29rus0TpIksXUN9tmA+hiG4WO/0+nYrqOU\nWq/X29VacQGBSGVZJlGkaVpelUop27axRlzXpbq+XK+H4zH4ZGGMueBN01R5wZXMkoQQQh2iIYyE\nTMIoyzLHtALX2ynQqjpPUpPpsC5VSgmlmqYB9pNoduGyAEhIXTDGDMrAOtiyrE6r7Xke2pEZ+Sbc\nrlYr4JnHcfzmzRvP84b9QbvdBvs2cFyAmEhm6AojpdRyuUQIwVRdVRVGCMrwfDGDHrQuSyUE8L3z\nPJ9Op2VZgjYJRMm2bVuWlaYpXAQcx4GyCteH6+vr1WoFhIDD46OsyN+en33x1Zenp6eu7zFDr7bb\nOI4JIb7jGpS1/YAoBHWhCRcWwAAAAOBJREFULss8z6uiyNPUVjqSyrWdXr8jpVyuVuv1Ooq2pm1h\nKaSUWEqMMWOG43imbUv5vXrifgMKG1B0S/tvtVqmY0MhzPPc912wtm5My/M83WB1XVdVZRmm53mM\nsaIoiqJIkmQdxQghEKEkUUQ1lsVJmqZ1XROmw2QPEnOikKUbCO/WSYZhOI5DNR3OwaOjIynlarXZ\nbrfQug0Gg06nc3b+KktS+MBTTdMpk7yBhEEpJSHI99t+K8iy7Pl3305mU0yo5ELXdde2dcq2261B\nGSHEc1zQyOmWCWKw9Xqdpun/A2hfCy8wP9kqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "execution_count": 52, + "metadata": { + "tags": [] + }, + "output_type": "execute_result" + } + ], + "source": [ + "image_url = 'https://tensorflow.org/images/surf.jpg'\n", + "image_extension = image_url[-4:]\n", + "image_path = tf.keras.utils.get_file('image'+image_extension,\n", + " origin=image_url)\n", + "\n", + "result, attention_plot = evaluate(image_path)\n", + "print ('Prediction Caption:', ' '.join(result))\n", + "plot_attention(image_path, result, attention_plot)\n", + "# opening the image\n", + "Image.open(image_path)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab_type": "text", + "id": "VJZXyJco6uLO" + }, + "source": [ + "# Next steps\n", + "\n", + "Congrats! You've just trained an image captioning model with attention. Next, take a look at this example [Neural Machine Translation with Attention](../sequences/nmt_with_attention.ipynb). It uses a similar architecture to translate between Spanish and English sentences. You can also experiment with training the code in this notebook on a different dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "source:\n", + " \n", + "https://www.tensorflow.org/tutorials/text/image_captioning" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "colab": {}, + "colab_type": "code", + "id": "6MKXiiVUbb_f" + }, + "source": [ + "
\n", + "
دوره پیشرفته یادگیری عمیق
علیرضا اخوان پور
آبان و آذر 1399
\n", + "
\n", + "Class.Vision - AkhavanPour.ir - GitHub\n", + "\n", + "
" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [ + "K2s1A9eLRPEj" + ], + "name": "Copy of image_captioning.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.6" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/TimeDistributed.ipynb b/TimeDistributed.ipynb new file mode 100644 index 0000000..86028c1 --- /dev/null +++ b/TimeDistributed.ipynb @@ -0,0 +1,119 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + }, + { + "data": { + "text/plain": [ + "'2.0.0'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import tensorflow as tf\n", + "from keras.models import Sequential \n", + "from keras.layers import Dense \n", + "from keras.layers import TimeDistributed\n", + "tf.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_1\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "time_distributed_1 (TimeDist (None, 10, 8) 48 \n", + "=================================================================\n", + "Total params: 48\n", + "Trainable params: 48\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = Sequential()\n", + "model.add(TimeDistributed(Dense(8), input_shape=(10, 5)))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: \"sequential_2\"\n", + "_________________________________________________________________\n", + "Layer (type) Output Shape Param # \n", + "=================================================================\n", + "dense_2 (Dense) (None, 10, 8) 136 \n", + "=================================================================\n", + "Total params: 136\n", + "Trainable params: 136\n", + "Non-trainable params: 0\n", + "_________________________________________________________________\n" + ] + } + ], + "source": [ + "model = Sequential()\n", + "model.add(Dense(8, input_shape=(10, 16)))\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tf2-GPU", + "language": "python", + "name": "tf2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/final_cnn_lstm.ipynb b/final_cnn_lstm.ipynb new file mode 100644 index 0000000..c8f4122 --- /dev/null +++ b/final_cnn_lstm.ipynb @@ -0,0 +1,488 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "import os\n", + "import numpy as np\n", + "from keras import backend as K\n", + "from keras.layers.convolutional import Conv2D, MaxPooling2D\n", + "from keras.layers import Input, Dense, Activation, GlobalAveragePooling2D, Flatten\n", + "from keras.layers import Reshape, Lambda, RepeatVector\n", + "from keras.layers.merge import add, concatenate\n", + "from keras.models import Model\n", + "from keras.layers.recurrent import GRU, LSTM\n", + "from keras.optimizers import SGD\n", + "from keras.utils.data_utils import get_file\n", + "from keras.preprocessing import image\n", + "import keras.callbacks\n", + "from keras.preprocessing.image import ImageDataGenerator\n", + "from keras.models import load_model" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# model = load_model('cnn-lstm-generated_10c-1.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def CNN_RNN_MODEL(img_h, channel, num_classes):\n", + "# words_per_epoch = 16000\n", + "# val_split = 0.2\n", + "# val_words = int(words_per_epoch * (val_split))\n", + "\n", + " # Network parameters\n", + " conv_filters = 16\n", + " kernel_size = (3, 3)\n", + " pool_size = 2\n", + " time_dense_size = 128\n", + " rnn_size = 256\n", + " minibatch_size = 32\n", + " act = 'relu'\n", + " img_w = 175\n", + " \n", + " input_shape = (img_w, img_h, channel)\n", + " input_data = Input(name='the_input', shape=input_shape, dtype='float32')\n", + " inner = Conv2D(conv_filters, kernel_size, padding='same',\n", + " activation=act, kernel_initializer='he_normal',\n", + " name='conv1')(input_data)\n", + " inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner)\n", + " inner = Conv2D(conv_filters, kernel_size, padding='same',\n", + " activation=act, kernel_initializer='he_normal',\n", + " name='conv2')(inner)\n", + " inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner)\n", + " \n", + " conv_to_rnn_dims = (img_w // (pool_size ** 2),\n", + " (img_h // (pool_size ** 2)) *conv_filters)\n", + " inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner)\n", + "\n", + " gru_2 = GRU(rnn_size, return_sequences=False,\n", + " kernel_initializer='he_normal', name='gru2')(inner)\n", + " gru_2b = GRU(rnn_size, return_sequences=False, go_backwards=True,\n", + " kernel_initializer='he_normal', name='gru2_b')(inner)\n", + "\n", + " # transforms RNN output to character activations:\n", + " inner = Dense(num_classes, kernel_initializer='he_normal',\n", + " name='dense2')(concatenate([gru_2, gru_2b]))\n", + " y_pred = Activation('softmax', name='softmax')(inner)\n", + " model = Model(inputs=input_data, outputs=y_pred)\n", + " \n", + " return model" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "__________________________________________________________________________________________________\n", + "Layer (type) Output Shape Param # Connected to \n", + "==================================================================================================\n", + "the_input (InputLayer) (None, 175, 75, 3) 0 \n", + "__________________________________________________________________________________________________\n", + "conv1 (Conv2D) (None, 175, 75, 16) 448 the_input[0][0] \n", + "__________________________________________________________________________________________________\n", + "max1 (MaxPooling2D) (None, 87, 37, 16) 0 conv1[0][0] \n", + "__________________________________________________________________________________________________\n", + "conv2 (Conv2D) (None, 87, 37, 16) 2320 max1[0][0] \n", + "__________________________________________________________________________________________________\n", + "max2 (MaxPooling2D) (None, 43, 18, 16) 0 conv2[0][0] \n", + "__________________________________________________________________________________________________\n", + "reshape (Reshape) (None, 43, 288) 0 max2[0][0] \n", + "__________________________________________________________________________________________________\n", + "gru2 (GRU) (None, 256) 418560 reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "gru2_b (GRU) (None, 256) 418560 reshape[0][0] \n", + "__________________________________________________________________________________________________\n", + "concatenate_1 (Concatenate) (None, 512) 0 gru2[0][0] \n", + " gru2_b[0][0] \n", + "__________________________________________________________________________________________________\n", + "dense2 (Dense) (None, 10) 5130 concatenate_1[0][0] \n", + "__________________________________________________________________________________________________\n", + "softmax (Activation) (None, 10) 0 dense2[0][0] \n", + "==================================================================================================\n", + "Total params: 845,018\n", + "Trainable params: 845,018\n", + "Non-trainable params: 0\n", + "__________________________________________________________________________________________________\n" + ] + } + ], + "source": [ + "model = CNN_RNN_MODEL(75, 3, 10)\n", + "sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)\n", + "model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found 360 images belonging to 10 classes.\n", + "Found 39 images belonging to 10 classes.\n" + ] + } + ], + "source": [ + "batch_size = 32\n", + "train_path = 'iran_shahr/train'\n", + "val_path = 'iran_shahr/val'\n", + "img_width, img_hight = (175, 75)\n", + "\n", + "\n", + "# this is the augmentation configuration we will use for training\n", + "train_datagen = ImageDataGenerator(\n", + " rescale=1./255,\n", + " shear_range=0.2,\n", + " zoom_range=0.2,\n", + " horizontal_flip=True)\n", + "\n", + "# this is the augmentation configuration we will use for testing:\n", + "# only rescaling\n", + "val_datagen = ImageDataGenerator(rescale=1./255)\n", + "\n", + "# this is a generator that will read pictures found in\n", + "# subfolers of 'data/train', and indefinitely generate\n", + "# batches of augmented image data\n", + "train_generator = train_datagen.flow_from_directory(\n", + " train_path, # this is the target directory\n", + " target_size=(img_width, img_hight), # all images will be resized to 150x150\n", + " batch_size=batch_size, \n", + " class_mode='categorical') # since we use binary_crossentropy loss, we need binary labels\n", + "\n", + "# this is a similar generator, for validation data\n", + "validation_generator = val_datagen.flow_from_directory(\n", + " val_path,\n", + " target_size=(img_width, img_hight),\n", + " batch_size=batch_size,\n", + " class_mode='categorical')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/50\n", + "11/11 [==============================] - 10s 902ms/step - loss: 2.6002 - acc: 0.1080 - val_loss: 2.3075 - val_acc: 0.1875\n", + "Epoch 2/50\n", + "11/11 [==============================] - 3s 260ms/step - loss: 2.3294 - acc: 0.1214 - val_loss: 2.2622 - val_acc: 0.1429\n", + "Epoch 3/50\n", + "11/11 [==============================] - 3s 243ms/step - loss: 2.2966 - acc: 0.1307 - val_loss: 2.2745 - val_acc: 0.0938\n", + "Epoch 4/50\n", + "11/11 [==============================] - 3s 242ms/step - loss: 2.2649 - acc: 0.2165 - val_loss: 2.1042 - val_acc: 0.5714\n", + "Epoch 5/50\n", + "11/11 [==============================] - 3s 248ms/step - loss: 2.1972 - acc: 0.2222 - val_loss: 2.0846 - val_acc: 0.1875\n", + "Epoch 6/50\n", + "11/11 [==============================] - 3s 243ms/step - loss: 2.1059 - acc: 0.2407 - val_loss: 1.4311 - val_acc: 0.5714\n", + "Epoch 7/50\n", + "11/11 [==============================] - 3s 293ms/step - loss: 2.0018 - acc: 0.2287 - val_loss: 1.9641 - val_acc: 0.3125\n", + "Epoch 8/50\n", + "11/11 [==============================] - 3s 258ms/step - loss: 1.9320 - acc: 0.3014 - val_loss: 1.2307 - val_acc: 0.5714\n", + "Epoch 9/50\n", + "11/11 [==============================] - 3s 257ms/step - loss: 1.8816 - acc: 0.3293 - val_loss: 1.9275 - val_acc: 0.2500\n", + "Epoch 10/50\n", + "11/11 [==============================] - 3s 255ms/step - loss: 1.9035 - acc: 0.3173 - val_loss: 1.1291 - val_acc: 0.8571\n", + "Epoch 11/50\n", + "11/11 [==============================] - 3s 258ms/step - loss: 1.8937 - acc: 0.3272 - val_loss: 1.7044 - val_acc: 0.3438\n", + "Epoch 12/50\n", + "11/11 [==============================] - 3s 257ms/step - loss: 1.7380 - acc: 0.3929 - val_loss: 1.5299 - val_acc: 0.2857\n", + "Epoch 13/50\n", + "11/11 [==============================] - 3s 260ms/step - loss: 1.7802 - acc: 0.3892 - val_loss: 1.4534 - val_acc: 0.5312\n", + "Epoch 14/50\n", + "11/11 [==============================] - 3s 261ms/step - loss: 1.6590 - acc: 0.4085 - val_loss: 1.4350 - val_acc: 0.4286\n", + "Epoch 15/50\n", + "11/11 [==============================] - 3s 263ms/step - loss: 1.7920 - acc: 0.3622 - val_loss: 1.3659 - val_acc: 0.5000\n", + "Epoch 16/50\n", + "11/11 [==============================] - 3s 263ms/step - loss: 1.7374 - acc: 0.3742 - val_loss: 1.2221 - val_acc: 0.5714\n", + "Epoch 17/50\n", + "11/11 [==============================] - 3s 270ms/step - loss: 1.6460 - acc: 0.4127 - val_loss: 1.3032 - val_acc: 0.5312\n", + "Epoch 18/50\n", + "11/11 [==============================] - 3s 254ms/step - loss: 1.6352 - acc: 0.4165 - val_loss: 1.7278 - val_acc: 0.4286\n", + "Epoch 19/50\n", + "11/11 [==============================] - 3s 264ms/step - loss: 1.6392 - acc: 0.4264 - val_loss: 1.3394 - val_acc: 0.4688\n", + "Epoch 20/50\n", + "11/11 [==============================] - 3s 265ms/step - loss: 1.4940 - acc: 0.4787 - val_loss: 1.3881 - val_acc: 0.5714\n", + "Epoch 21/50\n", + "11/11 [==============================] - 3s 262ms/step - loss: 1.5983 - acc: 0.4522 - val_loss: 1.4225 - val_acc: 0.4375\n", + "Epoch 22/50\n", + "11/11 [==============================] - 3s 264ms/step - loss: 1.3847 - acc: 0.5086 - val_loss: 0.6056 - val_acc: 0.8571\n", + "Epoch 23/50\n", + "11/11 [==============================] - 3s 270ms/step - loss: 1.4201 - acc: 0.5185 - val_loss: 1.1524 - val_acc: 0.6250\n", + "Epoch 24/50\n", + "11/11 [==============================] - 3s 260ms/step - loss: 1.2609 - acc: 0.5678 - val_loss: 0.7763 - val_acc: 0.7143\n", + "Epoch 25/50\n", + "11/11 [==============================] - 3s 263ms/step - loss: 1.2168 - acc: 0.5739 - val_loss: 0.9316 - val_acc: 0.5938\n", + "Epoch 26/50\n", + "11/11 [==============================] - 3s 263ms/step - loss: 1.0597 - acc: 0.6242 - val_loss: 0.7032 - val_acc: 0.7143\n", + "Epoch 27/50\n", + "11/11 [==============================] - 3s 267ms/step - loss: 1.1347 - acc: 0.6614 - val_loss: 0.8696 - val_acc: 0.6250\n", + "Epoch 28/50\n", + "11/11 [==============================] - 3s 262ms/step - loss: 1.0301 - acc: 0.6393 - val_loss: 0.5764 - val_acc: 0.7143\n", + "Epoch 29/50\n", + "11/11 [==============================] - 3s 264ms/step - loss: 1.1699 - acc: 0.5958 - val_loss: 0.6839 - val_acc: 0.7500\n", + "Epoch 30/50\n", + "11/11 [==============================] - 3s 266ms/step - loss: 0.9287 - acc: 0.6957 - val_loss: 0.6334 - val_acc: 0.7143\n", + "Epoch 31/50\n", + "11/11 [==============================] - 3s 269ms/step - loss: 0.9313 - acc: 0.6801 - val_loss: 0.6589 - val_acc: 0.7500\n", + "Epoch 32/50\n", + "11/11 [==============================] - 3s 263ms/step - loss: 0.9668 - acc: 0.6650 - val_loss: 0.6982 - val_acc: 0.7143\n", + "Epoch 33/50\n", + "11/11 [==============================] - 3s 275ms/step - loss: 0.8069 - acc: 0.7107 - val_loss: 0.5850 - val_acc: 0.8125\n", + "Epoch 34/50\n", + "11/11 [==============================] - 3s 288ms/step - loss: 0.7297 - acc: 0.7329 - val_loss: 0.4263 - val_acc: 0.7143\n", + "Epoch 35/50\n", + "11/11 [==============================] - 3s 270ms/step - loss: 0.7326 - acc: 0.7386 - val_loss: 0.5129 - val_acc: 0.7500\n", + "Epoch 36/50\n", + "11/11 [==============================] - 3s 266ms/step - loss: 0.6890 - acc: 0.7458 - val_loss: 1.3089 - val_acc: 0.5714\n", + "Epoch 37/50\n", + "11/11 [==============================] - 3s 268ms/step - loss: 0.6671 - acc: 0.7869 - val_loss: 0.5519 - val_acc: 0.7500\n", + "Epoch 38/50\n", + "11/11 [==============================] - 3s 271ms/step - loss: 0.7293 - acc: 0.7536 - val_loss: 0.5898 - val_acc: 0.7143\n", + "Epoch 39/50\n", + "11/11 [==============================] - 3s 275ms/step - loss: 0.6488 - acc: 0.7536 - val_loss: 0.4681 - val_acc: 0.8125\n", + "Epoch 40/50\n", + "11/11 [==============================] - 3s 293ms/step - loss: 0.7696 - acc: 0.7929 - val_loss: 0.6888 - val_acc: 0.7143\n", + "Epoch 41/50\n", + "11/11 [==============================] - 3s 277ms/step - loss: 0.7033 - acc: 0.7771 - val_loss: 0.4849 - val_acc: 0.7812\n", + "Epoch 42/50\n", + "11/11 [==============================] - 3s 270ms/step - loss: 0.4926 - acc: 0.8329 - val_loss: 0.2657 - val_acc: 0.8571\n", + "Epoch 43/50\n", + "11/11 [==============================] - 3s 267ms/step - loss: 0.5797 - acc: 0.7757 - val_loss: 0.5622 - val_acc: 0.8125\n", + "Epoch 44/50\n", + "11/11 [==============================] - 4s 322ms/step - loss: 0.5543 - acc: 0.8129 - val_loss: 0.2072 - val_acc: 0.8571\n", + "Epoch 45/50\n", + "11/11 [==============================] - 4s 400ms/step - loss: 0.4604 - acc: 0.8386 - val_loss: 0.5626 - val_acc: 0.8125\n", + "Epoch 46/50\n", + "11/11 [==============================] - 3s 314ms/step - loss: 0.5314 - acc: 0.8157 - val_loss: 0.5920 - val_acc: 0.7143\n", + "Epoch 47/50\n", + "11/11 [==============================] - 3s 276ms/step - loss: 0.4310 - acc: 0.8493 - val_loss: 0.3544 - val_acc: 0.8125\n", + "Epoch 48/50\n", + "11/11 [==============================] - 3s 287ms/step - loss: 0.4464 - acc: 0.8579 - val_loss: 0.0331 - val_acc: 1.0000\n", + "Epoch 49/50\n", + "11/11 [==============================] - 3s 281ms/step - loss: 0.3880 - acc: 0.8636 - val_loss: 0.3323 - val_acc: 0.8750\n", + "Epoch 50/50\n", + "11/11 [==============================] - 3s 307ms/step - loss: 0.4469 - acc: 0.8500 - val_loss: 0.0848 - val_acc: 1.0000\n" + ] + } + ], + "source": [ + "history = model.fit_generator(\n", + " train_generator,\n", + " steps_per_epoch=train_generator.samples // batch_size,\n", + " epochs=50,\n", + " validation_data=validation_generator,\n", + " validation_steps=validation_generator.samples // batch_size)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXmYFNXV/z+Hfd8GEGRXUUB2CaiAohJQ3I1GCbxvjAtZ3BKXxATfaFSyuUZj8pOYRBPHhagYVJBEYgREUFwAERFUhBHUAQZkle3+/jhddE1PVXf1TM909/T5PM883VV1u/pWz8y3Tn/vueeKcw7DMAyjdlEn2x0wDMMwMo+Ju2EYRi3ExN0wDKMWYuJuGIZRCzFxNwzDqIWYuBuGYdRCTNxrMSJSV0S2i0jXTLbNJiJyhIhkPH9XREaLyBrf9koRGRmlbSXe6yER+VllX28YUaiX7Q4YcURku2+zCfAVsD+2/V3nXHE653PO7QeaZbptIeCcOyoT5xGRy4CJzrlRvnNflolzG0YyTNxzCOfcQXGNRYaXOedeCmsvIvWcc/tqom+GkQr7e8wtzJbJI0TkdhF5UkQeF5FtwEQROU5EForIFhHZICL3iUj9WPt6IuJEpHts+9HY8Vkisk1EXhORHum2jR0/TUQ+EJGtInK/iLwqIheH9DtKH78rIqtFpExE7vO9tq6I3CMim0TkQ+DUJJ/PTSLyRMK+B0Tk7tjzy0RkRex6PoxF1WHnKhGRUbHnTUTk77G+LQeOCXjfj2LnXS4iZ8X29wN+D4yMWV4bfZ/tLb7Xfy927ZtE5FkR6Rjls0nnc/b6IyIvichmEflMRH7se5//i30mX4rIYhE5NMgCE5H53u859nnOjb3PZuAmEekpIi/HrmVj7HNr6Xt9t9g1lsaO/05EGsX63NvXrqOI7BSRorDrNVLgnLOfHPwB1gCjE/bdDuwBzkRvzI2BrwHD0G9hhwEfAFfG2tcDHNA9tv0osBEYAtQHngQerUTb9sA24OzYsWuBvcDFIdcSpY//BFoC3YHN3rUDVwLLgc5AETBX/2wD3+cwYDvQ1HfuL4Ahse0zY20EOBnYBfSPHRsNrPGdqwQYFXt+J/BfoDXQDXgvoe03gY6x38m3Yn04JHbsMuC/Cf18FLgl9nxMrI8DgUbAH4D/RPls0vycWwKfA9cADYEWwNDYsZ8CS4CesWsYCLQBjkj8rIH53u85dm37gO8DddG/xyOBU4AGsb+TV4E7fdfzbuzzbBprPzx2bCowxfc+1wHTs/1/mM8/We+A/YT8YsLF/T8pXnc98I/Y8yDB/n++tmcB71ai7SXAPN8xATYQIu4R+3is7/gzwPWx53NRe8o7Ni5RcBLOvRD4Vuz5acAHSdo+D1wRe55M3Nf6fxfAD/xtA877LnB67HkqcX8E+KXvWAt0nKVzqs8mzc/5f4DFIe0+9PqbsD+KuH+Uog/nA2/Eno8EPgPqBrQbDnwMSGz7HeC8TP9fFdKP2TL5xzr/hoj0EpEXYl+zvwRuBdomef1nvuc7ST6IGtb2UH8/nP43loSdJGIfI70X8EmS/gI8BoyPPf8WcHAQWkTOEJFFMVtiCxo1J/usPDom64OIXCwiS2LWwhagV8Tzgl7fwfM5574EyoBOvjaRfmcpPucuwOqQPnRBBb4yJP49dhCRaSLyaawPDyf0YY3TwftyOOdeRb8FjBCRvkBX4IVK9snAPPd8JDEN8EE0UjzCOdcC+DkaSVcnG9DIEgAREcqLUSJV6eMGVBQ8UqVqPgmMFpHOqG30WKyPjYGngF+hlkkr4F8R+/FZWB9E5DDgj6g1URQ77/u+86ZK21yPWj3e+Zqj9s+nEfqVSLLPeR1weMjrwo7tiPWpiW9fh4Q2idf3GzTLq1+sDxcn9KGbiNQN6cffgInot4xpzrmvQtoZETBxz3+aA1uBHbEBqe/WwHs+DwwWkTNFpB7q47arpj5OA34oIp1ig2s/SdbYOfc5ah38FVjpnFsVO9QQ9YFLgf0icgbqDUftw89EpJXoPIArfceaoQJXit7nLkMjd4/Pgc7+gc0EHgcuFZH+ItIQvfnMc86FfhNKQrLPeQbQVUSuFJEGItJCRIbGjj0E3C4ih4syUETaoDe1z9CB+7oiMgnfjShJH3YAW0WkC2oNebwGbAJ+KTpI3VhEhvuO/x21cb6FCr1RBUzc85/rgG+jA5wPopFrtRIT0AuBu9F/1sOBt9GILdN9/CMwB1gGvIFG36l4DPXQH/P1eQvwI2A6Oih5PnqTisLN6DeINcAsfMLjnFsK3Ae8HmvTC1jke+2/gVXA5yLit1e817+I2ifTY6/vCkyI2K9EQj9n59xW4OvAN9AB3A+AE2OH7wCeRT/nL9HBzUYxu+1y4Gfo4PoRCdcWxM3AUPQmMwN42teHfcAZQG80il+L/h6842vQ3/Me59yCNK/dSMAbvDCMShP7mr0eON85Ny/b/THyFxH5GzpIe0u2+5Lv2CQmo1KIyKno1+zdaCrdPjR6NYxKERu/OBvol+2+1AbMljEqywjgI/Tr+qnAOTYAZlQWEfkVmmv/S+fc2mz3pzZgtoxhGEYtxCJ3wzCMWkjWPPe2bdu67t27Z+vtDcMw8pI333xzo3MuWeoxkEVx7969O4sXL87W2xuGYeQlIpJqljZgtoxhGEatxMTdMAyjFmLibhiGUQvJqUlMe/fupaSkhN27d2e7K0YSGjVqROfOnalfP6xcimEY2SanxL2kpITmzZvTvXt3tNCgkWs459i0aRMlJSX06NEj9QsMw8gKKW0ZEfmLiHwhIu+GHJfYMlurRWSpiAyubGd2795NUVGRCXsOIyIUFRXZtyvDyHGieO4Pk2TdSnS1m56xn0loFb9KY8Ke+9jvyDByn5Ti7pybi5ZIDeNs4G9OWQi0ktgCv4ZhGLWZdetg+vTo7Q8cgBtugJqY4pOJbJlOlF9qq4SQVXlEZFJsZfXFpaWlGXjrzLJp0yYGDhzIwIED6dChA506dTq4vWfPnkjn+M53vsPKlSuTtnnggQcoLi5O2sYwjNznrrvgG9+AsrJo7d97D+68Ux+rm0wMqAZ9Rw+sRuacm4ouBMCQIUOqXLGsuBgmT4a1a6FrV5gyBSZUdpkDoKioiHfeeQeAW265hWbNmnH99deXa3Nw8dk6wffFv/71rynf54orrqh8Jw3DyBnefx+cg9deg3HjUrdfEFuCZPjw5O0yQSYi9xLKry/ZGV24oVopLoZJk+CTT/TD/eQT3a6OgHj16tX07duX733vewwePJgNGzYwadIkhgwZwtFHH82tt956sO2IESN455132LdvH61ateLGG29kwIABHHfccXzxxRcA3HTTTdx7770H2994440MHTqUo446igWx3/6OHTv4xje+wYABAxg/fjxDhgw5eOPxc/PNN/O1r33tYP+8Kp8ffPABJ598MgMGDGDw4MGsWbMGgF/+8pf069ePAQMGMHny5Mx/WIZRQHhf0hdEXDfq1VehfXs47LDq65NHJsR9BvC/sayZY4GtzrkNGThvUiZPhp07y+/buVP3Vwfvvfcel156KW+//TadOnXi17/+NYsXL2bJkiX8+9//5r2A71lbt27lxBNPZMmSJRx33HH85S9/CTy3c47XX3+dO+644+CN4v7776dDhw4sWbKEG2+8kbfffjvwtddccw1vvPEGy5YtY+vWrbz44osAjB8/nh/96EcsWbKEBQsW0L59e5577jlmzZrF66+/zpIlS7juuusy9OkYRuGxa5cGlRBd3BcsgOOPh5rISYiSCvk4uuLOUSJSIiKXisj3ROR7sSYz0UUbVgN/An5Qbb31sTaknH/Y/qpy+OGH87Wvfe3g9uOPP87gwYMZPHgwK1asCBT3xo0bc9pppwFwzDHHHIyeEznvvPMqtJk/fz4XXXQRAAMGDODoo48OfO2cOXMYOnQoAwYM4JVXXmH58uWUlZWxceNGzjzzTEAnHTVp0oSXXnqJSy65hMaNGwPQpk2b9D8IwzAAWL1aXYOOHWHRIti7N3n7L77Q19SEJQMRPHfn3PgUxx1Q4yZy167xu2bi/uqgadOmB5+vWrWK3/3ud7z++uu0atWKiRMnBuZ9N2jQ4ODzunXrsm/fvsBzN2zYsEKbKIuo7Ny5kyuvvJK33nqLTp06cdNNNx3sR1C6onPO0hgNI0N4lsz//i/85jewdCkcc0x4ey+6P/746u8b5HFtmSlToEmT8vuaNNH91c2XX35J8+bNadGiBRs2bGD27NkZf48RI0Ywbdo0AJYtWxb4zWDXrl3UqVOHtm3bsm3bNp5+Wheab926NW3btuW5554DdHLYzp07GTNmDH/+85/ZtWsXAJs3J8twNQwjGR98oI8XX6yPqayZBQugQQMYXOlpnumRt+I+YQJMnQrduql/1a2bblclWyYqgwcPpk+fPvTt25fLL7+c4dXwPeuqq67i008/pX///tx111307duXli1blmtTVFTEt7/9bfr27cu5557LsGHDDh4rLi7mrrvuon///owYMYLS0lLOOOMMTj31VIYMGcLAgQO55557Mt5vwygUVq6ETp2gVy/o0kUHS5OxYIFG9o0a1Uz/sraG6pAhQ1ziYh0rVqygd+/eWelPrrFv3z727dtHo0aNWLVqFWPGjGHVqlXUq5cb5YDsd2UUOsceC02bwpw5cNFFKt5hY35ffQUtW8JVV8Edd1TtfUXkTefckFTtckMpjAps376dU045hX379uGc48EHH8wZYTeMQsc5jdzHx0Ykhw+HJ5/UGatdulRs/9ZbKvA15beDiXvO0qpVK958881sd8MwjABKS2HLFjjySN32RHvBArjwworta3owFfLYczcMw8gWXqbMUUfpY//+mtARNqj66qtw+OFwyCE10z8wcTcMw0ibRHGvXx+GDg0Wd+fik5dqEhN3wzCMNFm5Eho21Cw9j+HD4e23YceO8m0//hg+/9zE3TAMI+f54AM44gioWze+7/jjYf9+eOON8m29FMmampnqYeLuY9SoURUmJN1777384AfJKyo0a9YMgPXr13P++eeHnjsx9TORe++9l52+gjnjxo1jy5YtUbpuGEYNsnJl3JLxOPZYfUy0ZhYsgBYtoE+fmumbh4m7j/Hjx/PEE0+U2/fEE08wfnzSCgwHOfTQQ3nqqacq/f6J4j5z5kxatWpV6fMZhpF59u6FDz+sKO5t2qiAB4n7sceWj/JrAhN3H+effz7PP/88X331FQBr1qxh/fr1jBgx4mDe+eDBg+nXrx///Oc/K7x+zZo19O3bF9DSABdddBH9+/fnwgsvPDjlH+D73//+wXLBN998MwD33Xcf69ev56STTuKkk04CoHv37mzcuBGAu+++m759+9K3b9+D5YLXrFlD7969ufzyyzn66KMZM2ZMuffxeO655xg2bBiDBg1i9OjRfP7554Dm0n/nO9+hX79+9O/f/2D5ghdffJHBgwczYMAATjnllIx8toZRW/j4Y9i3r6K4g1ozCxboiksAW7fCsmU1b8lADue5//CHEFC+vEoMHAgxXQykqKiIoUOH8uKLL3L22WfzxBNPcOGFFyIiNGrUiOnTp9OiRQs2btzIsccey1lnnRVaiOuPf/wjTZo0YenSpSxdupTBvoISU6ZMoU2bNuzfv59TTjmFpUuXcvXVV3P33Xfz8ssv07Zt23LnevPNN/nrX//KokWLcM4xbNgwTjzxRFq3bs2qVat4/PHH+dOf/sQ3v/lNnn76aSZOnFju9SNGjGDhwoWICA899BC//e1vueuuu7jtttto2bIly5YtA6CsrIzS0lIuv/xy5s6dS48ePaz+jGEk4GXKeDnufo4/Hh56SNv07q3VIp2r+cFUsMi9An5rxm/JOOf42c9+Rv/+/Rk9ejSffvrpwQg4iLlz5x4U2f79+9O/f/+Dx6ZNm8bgwYMZNGgQy5cvDywK5mf+/Pmce+65NG3alGbNmnHeeecxb948AHr06MHAgQOB8LLCJSUljB07ln79+nHHHXewfPlyAF566aVyq0K1bt2ahQsXcsIJJ9CjRw/AygIbRiKJaZB+vAjds2YWLIA6dcBX9qnGyNnIPVmEXZ2cc845XHvttbz11lvs2rXrYMRdXFxMaWkpb775JvXr16d79+6BZX79BEX1H3/8MXfeeSdvvPEGrVu35uKLL055nmT1f7xywaAlg4Nsmauuuoprr72Ws846i//+97/ccsstB8+b2EcrC2wYyVm5Etq2VY89kZ49oahIM2QuvVQf+/eH5s1rvp8WuSfQrFkzRo0axSWXXFJuIHXr1q20b9+e+vXr8/LLL/NJUDF5HyeccMLBRbDfffddli5dCmi54KZNm9KyZUs+//xzZs2adfA1zZs3Z9u2bYHnevbZZ9m5cyc7duxg+vTpjBw5MvI1bd26lU6ddM3yRx555OD+MWPG8Pvf//7gdllZGccddxyvvPIKH3/8MWBlgQ0jkaBMGQ+RuO++fz8sXJgdSwZM3AMZP348S5YsObgSEsCECRNYvHgxQ4YMobi4mF69eiU9x/e//322b99O//79+e1vf8vQoUMBXVVp0KBBHH300VxyySXlygVPmjSJ00477eCAqsfgwYO5+OKLGTp0KMOGDeOyyy5j0KBBka/nlltu4YILLmDkyJHl/PybbrqJsrIy+vbty4ABA3j55Zdp164dU6dO5bzzzmPAgAFcGFQowzAKmA8+CBd3UGtm5Ur4739h+/bsibuV/DUqhf2ujEJk61Zo1UpXXvrxj4PbzJsHJ5wAp50Gs2Zpdk337pnrQ9SSvxa5G4ZhRCTZYKrHkCFQr54Ke8eO5UsU1CQm7oZhGBGJIu6NG8eX0jv+ePXhs0HOiXu2bCIjOvY7MgqVlSt1pulhhyVv5w2lZWPykkdOiXujRo3YtGmTiUcO45xj06ZNNKqphSANI4dYuRJ69NCFrsMoLoZHH9Xnd9yh29kgp/LcO3fuTElJCaWlpdnuipGERo0a0blz52x3wzBqHH8aZHExTJ6s66Z27QpTpuj+SZPAKxG1YYNuA0yYEPyaCROqp685Je7169c/ODPSMAwjlzhwAFatgq9/XUXaL+KffKLbjRvH93ns3KmCDsGvgeoR+JyyZQwoK4MU1QiMGEuWaB6xURisXq2CGJW9e7W2elVd3uJiTWWsWxd279a1UydPDhbxTZuCz7F2bfhrPOHPNCbuOcYdd8CJJ2a7F7nPnj1ar+O++7LdE6MmOHAAxozR/42oN/Trr9el76ZNK7/fE+s6dfQxmSfuRej+m0pxcXo3GVALZu3a4GNh+6uKiXuOUVoKGzfq1GUjnM2b4auvdLagUfv5v//TyUCffAKHHpp6kHLhQrj/fl3b9Oqr9e8Fyou1c3FrJOx8QdH2V1+F12YvKtKFsv00aaLeeteuwa8J219VTNxzDC8qCSgxY/goK9PHdCMoI/8oLtYZoR7btmlRrjBB3rMHLr8cOnWC//xHrZIbbtBj6VojYVH1/v3BIv6738HUqTpxSUQfp05VT33KlHDhrxacc1n5OeaYY5xRkTPOcA6c++STbPckt5k/Xz+n7t2z3ROjuunSRX/XiT9duwa3v/12PT5jhm7/5Ce6PWeOcyLB5xIJPle3bsHtu3Vz7tFH9VEkvp2KyrwmEWCxi6CxOVVbxoCTTtKCQ8uWQWxRJyOA55+HM8/Uad67dumjUTtJNsMzUb5WrtQSu2efHffad+2Cfv30+Z49sG5dxfN06wYBSyFUyIoBjba9aDwbWG2ZPMWzZbZuzW4/ch3Pltm3D9avz25fjOrFt2RBOUQ0g8bjwAEV4iZNyg+0N26sYvzhh7oaW5g1EjTQOmGCvrZLF23bsmV2hT0dTNxzDE/cv/wyu/3Idfxl5s13r7189JEOYNavX35/o0Yq2t/9bjx6//OfYe5cuPNOmDOnvFBv2ADf+Q7MnKn+eqInDuEDrRMmwIwZ2iZfhB1M3HMOE/doeJE7mLjXZv72NxXhO+8sL8gPPQR3360Dpg8/rOJ9ww0wapRG+kFCPWyYZrNMn65R/IEDasVMmJB6oDVKwbBcw5zKHMPEPRplZRq57doV7JUa+c+BA/DIIzB6tKYzXn11xePFxXDddfDkkzrBaOpUnUEaJNS/+pXaNRddpI8/+lH8eKocdC/ltmfPzFxbTWCRew7hnIl7VDZvhg4doH17i9w95syBp57Kdi/Ks3Yt/PrXKsTpMneu3rgvvjj4eJ06KuY7dsDs2XDzzSq+yYT6m9+E00+Hm24q/3eTKgd95Up9nujX5zKRxF1EThWRlSKyWkRuDDjeVUReFpG3RWSpiIzLfFdrP3v26AAh2IBqKsrKoHVr9VMtcleuuUbzu72/oVzgnnvgpz/VMgDp8vDD0KIFnHNOeJtevTQKP/dcnZEKyYVaBH7/e43k//73+LFkOejOwWuvwYAB6V9DNkkp7iJSF3gAOA3oA4wXkT4JzW4CpjnnBgEXAX/IdEcLAf+0aovck+OJe7duFrmDfgbLl2vdk4ULs92bODNnln/0SFUCYPt2/RZy4YWpo+XvfheeeSY+6JpqslD37vC1r5Xvk5cVEzT56IMPdGB3XJ6FrFEi96HAaufcR865PcATwNkJbRzQIva8JWDJaZXAxD06mzdDmzb6j7p2beW+9tcmZs3SR5GKQpotVq9WYUzsU5QSAE89pXZLmCWTjGRC7TFunN4EN24s/7o1a8oPtAK88II+nnZa+n3JJlHEvRPgT/svie3zcwswUURKgJnAVUEnEpFJIrJYRBZbzfaKmLhHxx+5f/UVfP55tnuUXWbO1EUkTjih+sQ9nYJbEL/hXHwxLF4c/x1FKQHw8MPqnx93XOX6GibUHuPG6Y3lX/9Kfa6ZM+Hoo7O3FmpliSLuQfPDEqe1jgceds51BsYBfxeRCud2zk11zg1xzg1p165d+r2t5Zi4R8O5eOTu/cMVsjWze7cOpo4bp4OFS5ZASUlm3yPdglugEe+RR8azXDyxT5WZ8tFH8MorelOorvVHhwyBdu3iUXkY27bpwG6+WTIQTdxLgC6+7c5UtF0uBaYBOOdeAxoBbTPRwULCE/cmTWxANRk7d2qtbm9AFQp7UPWVV/QzGTcuLkKekGaKdAtu7dihZTTGjdOByI4d498oUmWmeLnt//M/qfuV7rcJjzp11GZ58cXkFVjnzNG/tdNPj3beXCKKuL8B9BSRHiLSAB0wnZHQZi1wCoCI9EbF3XyXNPHEvVMni9yT4U1g8mwZKOzIfeZMnbE5ahT06aMimWlrJt1a5C+/rHbZuHEq1OPGqQWyd2/yAU8vt/3rX49P+Q+jMt8m/Iwbp98AX389vM3MmZqxc/zx0c6ZS6QUd+fcPuBKYDawAs2KWS4it4rIWbFm1wGXi8gS4HHgYpetimR5jCfuhx5q4p4Mr/RAmzbQvLk+Frq4n3yyCqQnpC+9pOKaKdKtRT5zJjRtqmMAoH3aulVTCpMNeM6apd/CLrkkdZ+qurLRmDEawYfdCJ3TY2PGVCx/kA9EynN3zs10zh3pnDvcOTcltu/nzrkZsefvOeeGO+cGOOcGOuciDFMYiZi4R8MfuUN4Rb9C4IMPNCvF7wmffrr+Lc2bV7lzBlkdyaLtxPaPPqpedq9eOl2/Th344Q91gQvP4w4b8PzpT7XdRReltlmqurJR69YakYf57kuXwqef5qffDjZDNafwi/v27bYaUxiJ4t69e+FG7l7U6U/TO+kkra9SGWsmzOqA4GgbKra//HIV2GXL4vvXrdPHxx4Lf+877tDXeH/3qWyWTKxsdPrp8PbbwZVFgz7bfMLEPYfwxL1jR3201ZiC8dsyEI/cC9EInDlTI+TDDovva9pU/ffKiHsyqyMo2g5qv3u3Pu7ZU37/gQOaxRMWWd92W8V9yWyWTKxs5EXlL75Y8djMmXDMMVrmIh8xcc8htm/Xf8xWrXTbrJlggmyZZCvP11a2b9dMmaBMjnHjtB7Khx+md850rY7KLO4clMmzbVt4MBP2HlEmK6WiXz9NYEi8EW7eDAsW5K8lAybuOcX27dCsmY7Og4l7GJs3qy/bvLlue+mQhWbN/Oc/Gh0HCVBlUyLTtTrC9oflp9etG/yN4pFH0u8TpJ6slAp/Jo//m8a//qXnNHE3MoKJezS82amegHjpkLk8qHr77TB4MESdmL1ihQ5G+otbJfLCC/r3MmJExWNHHKETiMIGC4uL4ZBD9DPs1Cnua6eyOi64QH1wzwILag9w1lnB5zn5ZM3k8awbUBH9/e/h8MNreAHpGOPG6beGV1+N75s5E9q21Ro0eUuUhVar48cWyK7IOec4N2CAcwsW6CK8s2Zlu0e5yUUXOdezZ3x782b9vO66K3t9Ssa0afGFlU8+2bm9e5O337LFuSOP1PYNGji3aFHFNgcOONe5s3Pnnht+nh/+0LmGDZ3bsaP8/kcfda5Ro/ILPjdpEl+sOWwR5/3746+7++7y5/PaN22q59q7N/g8L7ygr589O/762bN139//npkFpNNl2zbn6td37vrr49fZtq1zEydW/3tXBiIukG3inkOMHu3c8OHOLV+uv5knnsh2j3KTMWOcGzYsvn3ggHPNmzt31VXZ61MYy5ap4B13nHMPPqi/12uvDW+/f79zZ5zhXL16zj3zjApcp07OffZZ+XZLl+q5Hnoo/Fz/+pe2adeuvFh26VJe2L2fbt2SX8tHH8XPV7euc3PmVOx7hw7OXXhh+Dl27NAbxDXXxPedcYZz7ds7t3t38vevTkaPdq5PH32+aJFe52OPZa8/yYgq7mbL5BBmy0TDs2U8vMG0XPPcy8q0Fnnz5lrlcNIkuPJKXR4uLCXw1lvh+ee1Dvq55+qScJs36yITe/fG20VJ0/v0U30sLS2fprhuXXD7VIOjK1bo49/+ppbPhReW/8zfeQc++yy5T92kiaZqev3/6CO1jr773fCFsGuCcePgvffU2nvhBc3NHzMme/3JBCbuOYSJezQSxR1yL9d9/34d3Fu7Fp5+WucugAr7yJFw2WUqhn5mzIBf/EILZl1xhe4bNEjXC507N74YBagADRwYP28Qt9xScd+uXeHtU+UZn6JGAAAgAElEQVSHe+I+dCg8+6zebM49N35Oz98/9dTk5xk3Dlat0p8//EEHWb/73eSvqW68G9LMmfpz7LG63mo+Y+KeQ3ji3qyZbpu4B+NVhPSTa7NUb75ZM1Xuv798XZL69eEf/9D+n3tuPH3z/fdh4kStVvjHP5bPNvnWt3S9z/vu06i5rKximl7QrNJkkXjjxhW3Uw1crlihyxq2aaORe3Gx3qC8AdaZM3UAsn375Ofx+v2Pf8Cf/wznnaeDutnkyCN1QPfhh7U8cT5nyRwkindTHT/muVekbVvnrrhCnzdvrgNiRnn273euTh3nbrqp/P477lCftKwsO/3y8/TT2pfLLtPxgCAWLdLB0tGjdUC4Vy/1steuDW6/d69zo0apX/2Tn+j5X31Vjz36qA5iJg6QFhUFe+tdusQHLr19v/1t6us6/njnTjih/L5bb9XX/9//qa9/yy3RPqNevZxr3FhfO29etNdUN1ddFf883n47270JB/Pc8w8vcgdo2dLK/gbx5ZeaOpdoy0SpDvnVV7oMXTqkuwjIe+/Bt78Nw4Zpel9YvvfQoRqhv/SSLgSxahVMmxZeCbFePT3erh385jcaPQ8bpsfCZpVCxdTCRo3gV7+K54d7FRGPOCL5dTmnkXvv3uX3T54MZ5+ts0udix7xjhunds7AgTB8eLTXVDde3zt2zL/1UoMwcc8R9u3T3F9P3Fu0MFsmCG92aqItE2Ui07XXqoftIpYpWLlSPe3p06P37/vfV0F9+unUA4SXXKLtN2yAu+7SkgHJaNdO+9KwoQ6k1q2r+8Psl82bdcamN4bTrp369/6JPr166aPnp4dRWqqffaK416mjVtFRR+k0/WOOSX4ej7Ni9WSvvrr6FuRIlxNP1MHvM8/MnT5VhXrZ7oCheHVlTNyTk1h6wCNV5L5vHzz5pHrcq1apx5qKOXP0W8Jjj6k/norPPtNKjL/4RXQP+f77NYNl4MBo7Y85Rn1u/0JmXbsGX3fXrirk55yjlSODotHmzaFz59Ti7h1PFHfQv9V58/RbUZ2I4eKJJ8KiRbk1SahxY3jjjfytJZOIRe45gol7NBKLhnm0a6f/nGGDqvPnxwcv58+P9l5eu1mzkmeZePzzn/qtIMqNAHRA8vDDVbB79Chf/TDZCkO9epXP5Eg1q7Rp0+Q2Q+/eVRN30M+/Z8/k50hk6NDci5CPOkot0dqAiXuOYOIejbDIPVWu+zPPqN/cpk20OufOabtOnXTJuH//O/VrnnlGBe7oo1O3TbaKULorDFW1gFbv3pqtk8yuWrFCbxKdO0c7p5F9TNxzhERxtwHVYMLEHcLTIZ1Tr3rsWF0ZKErkvnatlqe97jqt0vnMM6n79Z//aNQeJRpNVlq3MisMVaWAVu/eegNLtqj2ihX6jSHXIm0jHBP3HMEi92iE2TIQPpFp8WIVrnPP1SJbq1erP54ML7o/+WQ44wx47rnyM0QTeeEF9fXPOy/SZSQtoZvJ8rpRiDKo+v774ZaMkZuYuOcIQeJuqzFVpKxMs0USJ+GARu4bN2oU6ueZZzSz5MwzdXYopI7e58/Xb099+6pgb96ss0TDeOYZtXCiDhAmK6GbiRWG0sET7TBx375dSxaYuOcXJu45QpC4+/cbyubNwZYMBGfMOKfCe9JJGu0PGqSDjal893nzdGZp3bpq5zRuHG7N7NypK/mcc070bJFkg6CZWGEoHdq31880TNzff18fTdzzCxP3HCFM3M2aKU9ZWbAlA8G57itW6CLSXgZL/fpaNyRZ5L5pk05G8qL8Jk20Xsqzz6qnncjs2ZpNE9WSgeSDoMmOJcuiqSwiyTNmUmXKGLmJiXuOEDSgCjaomkhQ0TCPoEU7vGj7nHPi+0aM0FzxsBunt2iDfxGM887TRZS9GZ1+nnlGbzgnnBDpEg6SbBA06Fi6WTTp4GXMBLFihc6QPfzwqr+PUXOYuOcInrg3baqPFrkHk8yW6dhRI3N/5D59Ohx3XPnqiSNGqGguXBh8nvnzoUGD8v75GWeowE2fXj567tZNxf2ss/R4dVKZLJqo9O4NX3wRH7D2s2KFlieoX7/q72PUHCbuOcL27TpQ6P0DmbgHk8yWqVOn/GzNNWvgrbcqTio69lj10sN89/nzVdgbNYrva9VKM2ceeURnlHrR89q1KrBhfcok1ZlFkyxjxjJl8hMT9xzBXzQMTNzDSGbLgEbUni3z7LP6mCjuzZvrdP8g333XLk2dDFqX9LzztJBY0GzVp56K0vuqUZ1ZNGEZM3v3auqoiXv+YeKeI5i4p2bfPv08kkXJ/lmqzzwD/fsHVzwcOVJtGf+K96Ce+t698cFUP2efHf6+YasbZZLqzKLp1k2/qSSK++rV+rmbuOcfJu45QqK424BqRbxyvcki927dtMri2rUamYfVeRkxQqtwvvlm+f3z5mn2iH+BDY8OHcIrPXbtWj2ZLH6qWmYgGXXral2VxEFVT+w928bIH0zcc4REcbfVmCriDfalsmVAa6k7F56e6NkuidbM/Pk6cSnsPb7xjYr7GjfWWuDVlcnipyplBlIRlA5p4p6/mLjnCIniXqeOesMm7nHCarn78dIhp07V1L1+/YLbHXKIFvnyD6ru36/L1wX57R63366PrVrpY+PG8Kc/6RJz1ZXJUlP07q03DP+YwooVuoCI/2/TyA9M3HOERHEHqy+TSLKiYR5e5L51a+oiXiNHak67NzFp6VLYti3Yb/fo0UMHY73yB/ffH18IO4jqqgdTHfTqpd86Vq6M7wtafcnID0zccwQT99REsWU6dYqvUJRqxuiIEXpOz3rwovhkkbt33g0b9NuVt6JQskyW6vbiM0VixsyBA5YGmc+YuOcIQeJuZX/LE8WWqVdPBb5jx/gao2EkFhGbP19tHW8d0zBR9m4aI0fGV0QKy2SpKS8+Exx5pF6rN6haUqLWkvnt+YmJe45gkXtqotgyAFdeqUvdpSridfjh6r3PmxdfnMOL2pNN9e/TR9c+/clP4ucKy2TJJy++YUM47LB45G41ZfIbW0M1BzhwQMvUBol7TeRP5wubN2t5hlTT4G+4Idr5RDT6nj8fPvpIa7x70Xyyqf4TJsAf/lDxfF7RLz//8z/B752rXrw/Y8bEPb+JFLmLyKkislJEVovIjSFtviki74nIchF5LLPdrN14ImKRe3KSlR6oLCNGaFT+2GPxbcjcAGlN12avKr17axXNfftU3Nu0Kb8Yt5E/pBR3EakLPACcBvQBxotIn4Q2PYGfAsOdc0cDP6yGvtZaEitCepi4lydV6YHK4EXq992nQuZFqZkS5ZquzV5VevXSWbsffxzPlLGl9fKTKJH7UGC1c+4j59we4AkgcSL25cADzrkyAOfcF5ntZu0mTNxbttTUPFuNSdm8OfORe//++rlv3AjDh8d9+kyJcnXOKq0OvJvb++/rjw2m5i9RxL0T4Hd+S2L7/BwJHCkir4rIQhE5NehEIjJJRBaLyOLS0tLK9bgWkixy9x8vdKojcq9XL15qwJ/fnklRrs5ZpZnGE/f586G01Pz2fCaKuAd9KXMJ2/WAnsAoYDzwkIi0qvAi56Y654Y454a0MyPvIKnE3awZJVkt96rg+eyJ+e35JMqZomVLTSP1Fjkxcc9fomTLlABdfNudgfUBbRY65/YCH4vISlTs38hIL2s5Ju7RqI4BVdD67PXqwdChmT93PtK7N/znP/HnRn4SJXJ/A+gpIj1EpAFwETAjoc2zwEkAItIWtWk+ymRHazPJPHcwcQet4LhrV+Yj9+JiXbxj8mTNe8/FyUU1jSfojRrFa/UY+UfKyN05t09ErgRmA3WBvzjnlovIrcBi59yM2LExIvIesB+4wTm3qTo7XptIFbnbLNXoE5jSwZuo5KWiehOVoDAsmDC8QdSjjko9EczIXSL96pxzM51zRzrnDnfOTYnt+3lM2HHKtc65Ps65fs65J6qz07WNfLBlXOIoSw0TpfRAMoJKCVTnmqT5jBe5myWT3xT0fXn8+PT+kefMUWHYti1ae+dg0CD461+Tt8t1cX/9df16HrbmaCZ4+mmtuLhjR/DxqkTuYaUE/Atp+8nV2aM1RZ/YLJajj85uP4yqUdDivnCh/kRl8WIVhNWro7UvK4N33oFFi5K3275dKxkmrvKTK+J+zz1aBmHixPhqSJnm0Uc1I2Xx4uDjUSpChhEWoXvVIxPJ1dmjNUXHjjB9OvzgB9nuiVEVClrct2yBTWmMDHhtS0qitffaff558nZe0bDEmYDNm+tjNsW9tFTT4k4+GT79FK64IvPvsXevfisC/ZYQRFVsmbBIfP/+/Jo9WpOcc071ZCYZNUfBirtzKpo1Ie5fpJivG1QREuKrMWVzQPVvf9Pp6PfdBzffrDVYMp1RsnBh3OoKE/eqRO5hkbg3MSlfZo8aRjoUrLhv366TU3Ipcg8im/VlnFOxGz5c/def/lRnc/7gB2qhZIrZs9UiOfXUcAurrEwF2EsPTYdkpQQKcaKSURgUrLh70fCuXeXXjExGoYn73LlaIdBLD6xXT71x5+B//zdzNW9mz9Zc8zFj1NvfsKFim7IyFfYwnzwZ+VbfxTAyQcGKu39gMGr07rWLWmPda7d9e8UBPT+5Ku5Tp+pC0BdcEN/Xowc88IBmzvzmN1V/j40b4c03YezY+AzRIGumqqUHLEI3Co2CFXe/j52uuKcbuUNy3z2ZuLdsmR1x37QJnnpKF5vwFoP2mDgRLrxQPfg3qlhg4t//1m8CY8dq2mjdusHiXl2lBwyjtmLiTjRxdy4+qFdSEm1ST0lJ3OtNZs2kitwrO6BaUhKeN54KbyD18ssrHhOBP/5RU+YmTKha1crZs1W0jzlGP6v+/YN99+qoCGkYtRkTd6KJ+5df6uo0hx6qHr2XmheGc2rLDBqk25WN3Ktiyxx3HFx/ffqv8wZSjzsO+vULbtO6td4AVq2CBx+sXP+cg3/9C77+9biXPnSofhs4cKB82+qqCGkYtZWCFfd0PXevzYAB+pjKmvnyS42ajzlGt6sSuVdG3Ldv1z4+91z6pQPmzdOFGryB1DBGjYK+fWHWrPT7B7BsmQ6ejh0b3zdsmF7vBx+Ub2u2jGGkR8GKe7qRu9dm4EB9TCXu3vHBg/UxTNydSy3u27ZVjGRT4Q3mfvopvPdeeq+dOlW9/m9+M3XbsWP1ZlAZ+2f2bH0cMya+zxtU9VszniXmj9yDasUYhhGnoMW9fn31easjcveOH3GECnSYLfPVV5pSmGxAFdL3tf2zMj0RjYJ/IDUxNzyIsWPVm3/llfT65/Wrb1/o5FvXq1cvnbjlH1TdsUMtMU/cw2rFmMAbRpyCFfctWzTNr6goPXHv21ejxVTpkN7xzp3hkEPCI/ewomEelS37671/mzbpifvf/643nFSWjMfIkZpNk857gAr2vHnlLRlQ733IkPKRe2LpgWTVHC2iNwylYMV961aNitMV9/btNUskSuQuogOw7dtXXdzT9d3XrlWBGz9eJyNFmajlDaQee2z4QGoijRrBiSemL+6vvKIRf6K4g1ozS5boAh1QsfRAWK0Yf7VHi+iNQsfEPaK4+wWmc+do4t6hg1o/mYjcKyPuhx4Kp5+uIjl3burXvPoqrFgRPWr3GDsWVq4ML6EbxOzZGvGPHFkx2t69W22Yt9/WtomRe1itmLp1rT67YXiYuKcRubdqpVPwo4p75876/JBDwj336hL3detUBE88UUsJR4msp07V94sykOrHGxBNJ3qfPVv79vTTFaNtL7XS890Ta7mH1YoJK4dQ6PXZjcKkYMW9Mp57UZE+79xZxTNZimGiuG/apKVtE0kl7pVdR3XtWujSRUVv5MjUwrt5M0ybprNPmzZN771699ZrjSrun3yikf7YscH++e7d5WeqJtoyYbViwtb7LPT67EZhUrDi7o/cy8pSF8Hyi3uXLjogmExw/eLevr0+lpZWbFcdA6reBCpP1MaO1XTIZIPAjz6a3kCqHxF9jzlz1E5JhXcTGDs2ea11b1A1qJZ7UK2YZNUfDaPQMHEvUjFMtcJQYuQO4dbMtm16fn/kDsHWTHXYMqWlKtR+cQedDRqEN5A6dGg81TNdxo7Va0616hSouHfpommPYVF1q1bw4Yf6uW/erJF82GfkYdUfDSNOQYr7/v0qwJ64Q2prJkjcwyJhT/QTxT1oUDWVuHv70xF3Lxr2hLNvXx1cDbNNXnsNli+vXNTuMXq0Doimsmb27dMIf+xYFeCwaNtb4u311+N1ZRJXqgrCqj8ahlKQ4u4Jpee5Q+XEPSxyTxR3z5apjLh7EWtlxL1LF30U0UHPl14Ktp+mTtWJQxdeGP09EmndWiP/VOK+aJFG+N63ibBo+yc/0W1P3K30gGGkR0GKu+dfR43c9+zRSN9r27GjCk8qcffENYotk2w2aLplfxMjd1AxLSurWKK3rAyefFJFNpXtkYqxY/X8GzeGt5k1SyP8U06J7wuKtlu0gD599GZgRcMMI31M3COIu5et4bVt0EAFO5W4H3qoPjZvrpN9wiL3pk1V8MJIt+zvunV6s/BHu1//ut6QEiPr4mLNTqmKJeMxdqz69y+9FHx89Wq4915dTi+KWA8dqrNYX3lFRd5mnBpGdEzcI4i7d8xrC8lz3UtK1Ipp2FC3RcJnqSYrGuaRbmVILw3S71EXFem0fr+4ewOpQ4bESxNXha99Ta2uIGtm715Ns2zQAP7f/4t+zu3b9ZsT2IxTw0iHghR3LzOmVSsV+Dp10hf3Ll2Si7vnt3uETWSqLnEPykIZO1YjYC+1cNEiLbubiagddILX6NGalZM4B+C22/T9Hnwwblel4sUXK+6zGaeGEY2CFHd/5F6njtoXmY7cg8S9spF7up67P8fdz9ix6mvPmaPbU6fqe48fH/3cqRg7Ftavh3ffje979VXNirn44vLrsaYiaKFssBmnhhGFghd3SD1LNUzct27VgdZE1q2rKO41Zct89ZWKYlB0PGyYnmv2bO37E09kZiDVj5cFc8IJeuPs2hXOPVf98vvuS+9cNuPUMCqPiTuVF3eoGL3v2KG2R1DkXlpacdGNqOIedUD100/1MUgA69fXLJXZs3VG6q5dmbNkPObOVa9/y5b4TNnSUq0P37x5eueaMkWtHj8249QwolGQ4r5li1YkbNBAt6OIe8OG5dMVw8TdE9fEyPmQQ3QCT+Laq1HFPepqTN7EqrDoduxYbXP77boEoLdSVKaYPDm45s7DD6dfa33CBPje9+LbNuPUMKJTL3WT2odXesCjqAjeeiu8vTeByZ99EibuiROYPPwTmfzfAKKKu9fWex5G4gSmRDzb5LPP4Be/SH6uypCq1rpXJMzbhuRi/ctf6ud+223lf2eGYSSnICP3IHFPFbn7BRniS8NFFfewiUxRB1Qhmu+eSty7d4cjj9Tc+kwOpHpkutZ68+bq1ZuwG0Z6FKy4t2oV3y4q0ok8ieLjESTuDRtqNB4m7v51QSG8vkw6kXtUcW/XTm2nMO6+G/70p/Q98ChYrXXDyA0KUty3bKkYuUN49B4k7hCv6+5n3TptmyiuQeK+d69mt0QV9yiDqmFpkH5OP716onawWuuGkSsUrOfuFxW/uAfZGcnE/eOPy+8LynEHzaWvW7e8LbNjhz5mOnLv2TN1u+pkwoRgH93vuYNlvhhGdRIpcheRU0VkpYisFpEbk7Q7X0SciAzJXBczT5DnDsGRu3NaWyZM3INsmSBxr1NH7RJ/5J6qIqRHMnFPzED58MPk0XC6GSuZwmqtG0bNkjJyF5G6wAPA14ES4A0RmeGcey+hXXPgaiDCcg3ZJchzh2Bx//JLTWEME/eyMo3AvaXpSkrg2GOD3zdxlmpUcQ8bUC0urpiBAuFVGYPaR8lYyRRhEb1hGJknSuQ+FFjtnPvIObcHeAI4O6DdbcBvgd0Z7F/G2btXxS1q5B40gcnDi9C93Pbdu1VYgyJ30AFYvy1T1cg9aP1R0NouQRF6UPuq1GrJ1rcAwzBSE0XcOwH+YcOS2L6DiMggoItz7vlkJxKRSSKyWEQWlwYtKFoDJM5OhcqLu+fPe9aMJ/Jh4l7ZyN07njigGpZpsnGjRuSffKK2khehe5F9IpXJWPG+BSS+hwm8YeQGUcQ9aHGzg3MQRaQOcA9wXaoTOeemOueGOOeGtGvXLnovM0iQuDdsqLZKZSN3T9zDctw9PHH3ZnBGFfew1ZjCvPU6dYIj9Lp1g9tXJmMl098CDMPILFHEvQTw55B0Btb7tpsDfYH/isga4FhgRq4OqvrL/foJm8iUTNy9XHYvHdJ7TGbL7NoVF/Wo4g7BxcOCcsohvEzB/v3BOehTpqRvsYRF+5a3bhi5QRRxfwPoKSI9RKQBcBEwwzvonNvqnGvrnOvunOsOLATOcs4trpYeV5GgyB0qJ+6NG+v+xMg9cQKTR+Is1XTEPajsb2IGStOmmpETllPuzzn3Z6xA+hZLWLRveeuGkRukFHfn3D7gSmA2sAKY5pxbLiK3ishZ1d3BTJNM3L3l9Pxs2qRCGLYsnD8dsqREvxGEiXXiRKaqRu5Qfv3RY46B3r3DZ4lOmRK8XmllLJZk72EYRvaJlOfunJvpnDvSOXe4c25KbN/PnXMzAtqOytWoHSoXubdqFe5XJ4p7slWG/MXDIC7uXhplMqKU/fWW10s3pzyZxRJm11jeumHkNgU3Q7UynnuQJePRubMuHwfhE5g8gmyZhg21znoqWrSIZ+MEsX+/vr9ni6STU961a3AmTZs2yfPiLW/dMHKXgqst40W/iaVzi4p0QlJigatU4t6li6Ye7t6dWty9BCF/5B51FaRUqzF99plOtqqM5x1msYBlxBhGvlKQ4t6sWUWbpahIBxO9yN4jSuQOWmPm88+Ti3uDBurdV0bcU62jmmqRjmSEWSxBYxBgGTGGkQ8UpLgH1QYPm8gUVdw9ayaZuINaM35bJp3IPdlqTKnquKciaKDVMmIMI38pOHHfsqWi3w5VF/fXXiu/HYZ/luq2bemJu3PxQdhEPHHPpPBaRoxh5C8FJ+7pRO579qiYJhN3L6d94UJ9TEfcEyP3ZBOJUpX9XbdO22RyxSLLiDGM/KXgsmW2bo0PbPoJEvdkE5g8mjXTbwLvvqvbqcTdXzxs+/Z4X5JVbIT4IObgwXDPPRUF1kuDzDSWEWMY+UlBivsRR1TcX1lxBxXVZcs0ck61gPUhh6g11K2bCvKHHyav2HjNNVqywDtWWgqXX67P/aK7dq154YZhxCk4WybMc2/ZUjNoKiPuXrSeKmoHHayEuEe+Y0fyio2bNlUU/V27KqYjRllezzCMwqHgxD3McxfRSTvVLe4zKszpTV6xMQz/zWDXLo3oq8OWMQwjPykocd+9WwdJwwYdE2epVoe4h5WxD6vYGPbeXikDqFqOu2EYtZOCEvewujIeNSHuhx4avD+sYuPvfldR9L1vGR7VkQZpGEZ+U1DiHlZXxiNI3Bs1Cq6Z7idM3INSG2+9teLrk1VsDEpHnDgR3n8fXnlFX+9F7mbLGIbhUVDiXpnIPVXUDjBoEBx9NAwfHt8Xtgxdo0ZaLKxx4/h7psodTxT9Bx/UrJvbbtPja9eq8IfVkTcMo/AwcfdRWXFv107z3Pv0ie9LViO9UyeN5AEeeij9PPLGjeGGG2DOHFiwQMW9Qwe9aRiGYYCJezmKinTQ1RPlqOIeRLIa6e3ba6ExiF5+IJHvfQ/attXofd06s2QMwyhPQYl7FM8d4tF7VcQ9WdGtQw7RmwhUXtybNoXrroMXX9S6NjaYahiGn4IS9yiRO2RG3JMV3fIW7YDKizvAFVdo1sz27SbuhmGUp+DEXSRcUP3i7pzWM6+suCcrupUpcW/eHH74Q31u4m4Yhp+Cqi3jzU6tE3JL84v7l1/qxKLKijuEF93yT0CqirgDXH01LF0KY8ZU7TyGYdQuCkrct2xJXhLXL+5RJzBVhkxF7qDX849/VO0chmHUPgrOlsklca9b19IXDcOoHkzcfTRooJF0dYu7Z8s0a6Z+vGEYRqYpKHEPK/frx5vIVBORe1UtGcMwjDAKStxTRe5QM+LeqhXUr2/ibhhG9WHinoBf3EVSR/qQfO3TIETUmjFxNwyjuiiYbBnnoov7xx+ruLdunXoRjWRrnyarGdOhg4m7YRjVR8GI+44dmreejucexZJJViAsmbj/+tdqzRiGYVQHBWPLpCo94LF+PZSVwRNPaBTuWSxh1kuyAmHJGD0aTjwxau8NwzDSo2Ai9yjiXlwMzz8f396zRy2WV1+FRx4Jtl66dg1e3NrKARiGkU0KNnIPisQnT4a9e8u/budOrQkTZr0kKxBmGIaRLQomcveX+w0bBE0UcI/9+4P3r10b99UnT9btrl3jS+YZhmFki4IRd3/kHjYIWrdusJCH7fesl7ACYYZhGNmiIG2ZsMHO/ft1jVM/TZpoVG/Wi2EY+URBinvYYGe3bnDfffHttm3Vb//DH8JrsxuGYeQikcRdRE4VkZUislpEbgw4fq2IvCciS0Vkjoh0y3xXq8aWLVCvXjziDovEL7tM2wE8+WRcwCdMgDVr4MABfTRhNwwjl0kp7iJSF3gAOA3oA4wXkT4Jzd4Ghjjn+gNPAb/NdEerijc7VST5KkkiunQdVE9dGcMwjJogyoDqUGC1c+4jABF5AjgbeM9r4Jx72dd+ITAxk53MBImlB5INghYVwRdfmLgbhpG/RLFlOgHrfNslsX1hXArMCjogIpNEZLGILC4tLY3eywwQpa6MhyfqJu6GYeQrUcQ9aDkJF9hQZCIwBLgj6Lhzbqpzbohzbki7du2i99LH9u3w7LPpvy5KLXePoiJo3Fh/DMMw8pEo4l4CdPFtdwbWJzYSkdHAZOAs59xXmeleRX79azjvPFi0KL3XpRO5H3EEHH54+n0zDMPIFaKI+xtATxHpISINgIuAGYg6EYAAAAadSURBVP4GIjIIeBAV9i8y3804P/4xHHooXH55xVIByUhH3G+7DV55pXL9MwzDyAVSirtzbh9wJTAbWAFMc84tF5FbReSsWLM7gGbAP0TkHRGZEXK6KtOiheadL1sGdwSaP8GkI+6NG8czZgzDMPKRSOUHnHMzgZkJ+37uez46w/1KyllnwQUXwK23wvnnw5FHJm9/4AB8+WV0z90wDCPfydsZqvfdpxH2pEkq3snYtk1XYooauRuGYeQ7eSvuHTqoLfPKK/CXvyRvG3WhDsMwjNpC3oo7wKWXwqhRcMMNsGFDeDsTd8MwCo28FncRLRuwaxdcfXV4O38td8MwjEIgr8UdoGdP+PnP4amnYEZIjo5F7oZhFBp5L+6gtky/fvCDH2hWTCIm7oZhFBq1Qtzr14eHHoL16+H228sfKy6OWzannKLbhmEYtZ1aIe4AQ4fCd74D994LH3yg+7y1Ujdv1u2SEt02gTcMo7ZTa8QddLGNRo3guut0O2yt1MmTa75vhmEYNUmtEvcOHXRw9fnn4cUXw9dKDdtvGIZRW6g14l5cDN276+BqvXpwySXQpUtw27A1VA3DMGoLeSXunoDXqaOPnnfueeuffKLb+/bppKbOncPXSjUMw6jN5I24+wXcOX30BkeDvHWA117TEgUNG+q2f61UwzCM2kykqpC5QLLB0TAP3Tl45x1deKN3b53oZBiGUQjkTeSebHA0zENv3lzz3z/6yEoPGIZRWOSNuIcJeNeu6qEHeet33glt28Lu3TY71TCMwiJvxD1MwKdMUQ996lT11EXi3vqkSfHBUxN3wzAKibzx3L1BUM9j9yJ2b/+ECcEDpZdcou0vuKDm+moYhpFtxDmXlTceMmSIW7x4cVbe2zAMI18RkTedc0NStcsbW8YwDMOIjom7YRhGLcTE3TAMoxZi4m4YhlELMXE3DMOohZi4G4Zh1EJM3A3DMGohJu6GYRi1kKxNYhKRUuCTSr68LbAxg93JFwr1uqFwr92uu7CIct3dnHPtUp0oa+JeFURkcZQZWrWNQr1uKNxrt+suLDJ53WbLGIZh1EJM3A3DMGoh+SruU7PdgSxRqNcNhXvtdt2FRcauOy89d8MwDCM5+Rq5G4ZhGEkwcTcMw6iF5J24i8ipIrJSRFaLyI3Z7k91ISJ/EZEvRORd3742IvJvEVkVe2ydzT5WByLSRUReFpEVIrJcRK6J7a/V1y4ijUTkdRFZErvuX8T29xCRRbHrflJEGmS7r9WBiNQVkbdF5PnYdq2/bhFZIyLLROQdEVkc25exv/O8EncRqQs8AJwG9AHGi0if7Paq2ngYODVh343AHOdcT2BObLu2sQ+4zjnXGzgWuCL2O67t1/4VcLJzbgAwEDhVRI4FfgPcE7vuMuDSLPaxOrkGWOHbLpTrPsk5N9CX256xv/O8EndgKLDaOfeRc24P8ARwdpb7VC045+YCmxN2nw08Env+CHBOjXaqBnDObXDOvRV7vg39h+9ELb92p2yPbdaP/TjgZOCp2P5ad90AItIZOB14KLYtFMB1h5Cxv/N8E/dOwDrfdklsX6FwiHNuA6gIAu2z3J9qRUS6A4OARRTAtcesiXeAL4B/Ax8CW5xz+2JNauvf+73Aj4EDse0iCuO6HfAvEXlTRCbF9mXs77xeBjpYk0jAPsvlrIWISDPgaeCHzrkvNZir3Tjn9gMDRaQVMB3oHdSsZntVvYjIGcAXzrk3RWSUtzugaa267hjDnXPrRaQ98G8ReT+TJ8+3yL0E6OLb7gysz1JfssHnItIRIPb4RZb7Uy2ISH1U2Iudc8/EdhfEtQM457YA/0XHHFqJiBeE1ca/9+HAWSKyBrVZT0Yj+dp+3Tjn1scev0Bv5kPJ4N95von7G0DP2Eh6A+AiYEaW+1STzAC+HXv+beCfWexLtRDzW/8MrHDO3e07VKuvXUTaxSJ2RKQxMBodb3gZOD/WrNZdt3Pup865zs657uj/83+ccxOo5dctIk1FpLn3HBgDvEsG/87zboaqiIxD7+x1gb8456ZkuUvVgog8DoxCS4B+DtwMPAtMA7oCa4ELnHOJg655jYiMAOYBy4h7sD9Dffdae+0i0h8dQKuLBl3TnHO3ishhaETbBngbmOic+yp7Pa0+YrbM9c65M2r7dceub3pssx7wmHNuiogUkaG/87wTd8MwDCM1+WbLGIZhGBEwcTcMw6iFmLgbhmHUQkzcDcMwaiEm7oZhGLUQE3fDMIxaiIm7YRhGLeT/A9QFQSOkpvL6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4FFXWxt9DCIQ9bEIgQNhUtrCFTVBWGcFBlEXZXVDE7XOdERkGEIdvXBh0cBkHdUAFRD9cBxkVBQcRBYJhRwgiSAxLANnXJOf743SlO52q6upOL+nO+T1PP9V169atW93JW6fPPfdcYmYoiqIosUWZSHdAURRFCT4q7oqiKDGIiruiKEoMouKuKIoSg6i4K4qixCAq7oqiKDGIirtiChHFEdFpImoYzLqRhIiaEVHQY3+JqB8R7fXY30lEVzupG8C1XieiyYGeb9PuX4hofrDbVSJH2Uh3QAkORHTaY7cigAsA8lz7dzPzQn/aY+Y8AJWDXbc0wMxXBKMdIroTwBhm7uXR9p3BaFuJfVTcYwRmLhBXl2V4JzN/aVWfiMoyc244+qYoSvhRt0wpwfWz+10ieoeITgEYQ0TdiOh7IjpORAeIaA4RxbvqlyUiJqIU1/4C1/H/ENEpIvqOiBr7W9d1fAAR7SKiE0T0IhF9S0S3WfTbSR/vJqLdRPQbEc3xODeOiJ4noqNE9BOA62w+nylEtNir7GUimu16fycR7XDdz08uq9qqrSwi6uV6X5GI3nb1bRuAjibX3eNqdxsR3eAqbwPgJQBXu1xeRzw+2+ke50903ftRIvqIiJKcfDa+IKIbXf05TkQriOgKj2OTiSibiE4S0Y8e99qViH5wlR8iouecXk8JAcysrxh7AdgLoJ9X2V8AXAQwCPJQrwCgE4AukF9wTQDsAnC/q35ZAAwgxbW/AMARAGkA4gG8C2BBAHUvA3AKwGDXsUcAXAJwm8W9OOnjxwCqAUgBcMy4dwD3A9gGIBlATQCr5E/e9DpNAJwGUMmj7cMA0lz7g1x1CEAfAOcApLqO9QOw16OtLAC9XO9nAfgaQHUAjQBs96p7M4Ak13cyytWHOq5jdwL42qufCwBMd73v7+pjOwAJAF4BsMLJZ2Ny/38BMN/1voWrH31c39Fk1+ceD6AVgH0A6rrqNgbQxPV+PYCRrvdVAHSJ9P9CaX6p5V66WM3M/2bmfGY+x8zrmXktM+cy8x4AcwH0tDl/CTOnM/MlAAshouJv3d8D2MjMH7uOPQ95EJjisI9/ZeYTzLwXIqTGtW4G8DwzZzHzUQBP21xnD4CtkIcOAFwL4Dgzp7uO/5uZ97CwAsBXAEwHTb24GcBfmPk3Zt4HscY9r/seMx9wfSeLIA/mNAftAsBoAK8z80ZmPg9gEoCeRJTsUcfqs7FjBIBPmHmF6zt6GkBVyEM2F/IgaeVy7f3s+uwAeUg3J6KazHyKmdc6vA8lBKi4ly72e+4Q0ZVE9CkRHSSikwBmAKhlc/5Bj/dnYT+IalW3nmc/mJkhlq4pDvvo6FoQi9OORQBGut6PgjyUjH78nojWEtExIjoOsZrtPiuDJLs+ENFtRLTJ5f44DuBKh+0Ccn8F7THzSQC/AajvUcef78yq3XzId1SfmXcCeBTyPRx2ufnquqreDqAlgJ1EtI6IBjq8DyUEqLiXLrzDAP8JsVabMXNVAFMhbodQcgDiJgEAEBGhsBh5U5w+HgDQwGPfV6jmuwD6uSzfwRCxBxFVALAEwF8hLpNEAF847MdBqz4QURMA/wBwD4CarnZ/9GjXV9hmNsTVY7RXBeL++dVBv/xptwzkO/sVAJh5ATN3h7hk4iCfC5h5JzOPgLje/gbgfSJKKGZflABRcS/dVAFwAsAZImoB4O4wXHMpgA5ENIiIygJ4EEDtEPXxPQAPEVF9IqoJ4HG7ysx8CMBqAPMA7GTmTNeh8gDKAcgBkEdEvwfQ148+TCaiRJJ5APd7HKsMEfAcyHPuTojlbnAIQLIxgGzCOwDGE1EqEZWHiOw3zGz5S8iPPt9ARL1c1/4DZJxkLRG1IKLeruudc73yIDcwlohquSz9E657yy9mX5QAUXEv3TwK4FbIP+4/IZZrSHEJ6C0AZgM4CqApgAxIXH6w+/gPiG98C2Swb4mDcxZBBkgXefT5OICHAXwIGZQcBnlIOWEa5BfEXgD/AfCWR7ubAcwBsM5V50oAnn7q5QAyARwiIk/3inH+ZxD3yIeu8xtC/PDFgpm3QT7zf0AePNcBuMHlfy8P4FnIOMlByC+FKa5TBwLYQRKNNQvALcx8sbj9UQKDxOWpKJGBiOIgboBhzPxNpPujKLGCWu5K2CGi64iomuun/Z8hERjrItwtRYkpVNyVSNADwB7IT/vrANzIzFZuGUVRAkDdMoqiKDGIWu6KoigxSMQSh9WqVYtTUlIidXlFUZSoZMOGDUeY2S58GEAExT0lJQXp6emRuryiKEpUQkS+ZloDULeMoihKTKLiriiKEoOouCuKosQguhKTopQSLl26hKysLJw/fz7SXVEckJCQgOTkZMTHW6UWskfFXVFKCVlZWahSpQpSUlIgyTiVkgoz4+jRo8jKykLjxo19n2BCVLllFi4EUlKAMmVku9CvJZ8VpXRz/vx51KxZU4U9CiAi1KxZs1i/sqLGcl+4EJgwATh7Vvb37ZN9ABhd7Dx4ilI6UGGPHor7XUWN5f6nP7mF3eDsWSlXFEVRChM14v7LL/6VK4pSsjh69CjatWuHdu3aoW7duqhfv37B/sWLztK+33777di5c6dtnZdffhkLg+Sz7dGjBzZu3BiUtsJN1LhlGjYUV4xZuaIowWfhQvll/Msv8n82c2bxXKA1a9YsEMrp06ejcuXKeOyxxwrVYWYwM8qUMbc7582b5/M69913X+CdjCGixnKfOROoWLFwWcWKUq4oSnAxxrj27QOY3WNcoQhi2L17N1q3bo2JEyeiQ4cOOHDgACZMmIC0tDS0atUKM2bMKKhrWNK5ublITEzEpEmT0LZtW3Tr1g2HDx8GAEyZMgUvvPBCQf1Jkyahc+fOuOKKK7BmzRoAwJkzZzB06FC0bdsWI0eORFpamk8LfcGCBWjTpg1at26NyZMnAwByc3MxduzYgvI5c+YAAJ5//nm0bNkSbdu2xZgxY4L+mTkhasR99Ghg7lygUSOASLZz5+pgqqKEgnCPcW3fvh3jx49HRkYG6tevj6effhrp6enYtGkTli9fju3btxc558SJE+jZsyc2bdqEbt264V//+pdp28yMdevW4bnnnit4ULz44ouoW7cuNm3ahEmTJiEjI8O2f1lZWZgyZQpWrlyJjIwMfPvtt1i6dCk2bNiAI0eOYMuWLdi6dSvGjRsHAHj22WexceNGbNq0CS+99FIxP53AiBpxB0TI9+4F8vNlq8KuKKEh3GNcTZs2RadOnQr233nnHXTo0AEdOnTAjh07TMW9QoUKGDBgAACgY8eO2Lt3r2nbQ4YMKVJn9erVGDFiBACgbdu2aNWqlW3/1q5diz59+qBWrVqIj4/HqFGjsGrVKjRr1gw7d+7Egw8+iM8//xzVqlUDALRq1QpjxozBwoULA56EVFx8ijsRNSCilUS0g4i2EdGDJnV6EdEJItroek0NTXcVRQkHVmNZoRrjqlSpUsH7zMxM/P3vf8eKFSuwefNmXHfddabx3uXKlSt4HxcXh9zcXNO2y5cvX6SOv4sUWdWvWbMmNm/ejB49emDOnDm4++67AQCff/45Jk6ciHXr1iEtLQ15eXl+XS8YOLHccwE8yswtAHQFcB8RtTSp9w0zt3O9ZpgcVxQlSojkGNfJkydRpUoVVK1aFQcOHMDnn38e9Gv06NED7733HgBgy5Ytpr8MPOnatStWrlyJo0ePIjc3F4sXL0bPnj2Rk5MDZsbw4cPx5JNP4ocffkBeXh6ysrLQp08fPPfcc8jJycFZbx9XGPAZLcPMBwAccL0/RUQ7ANQHYP9pKIoStRguz2BGyzilQ4cOaNmyJVq3bo0mTZqge/fuQb/GAw88gHHjxiE1NRUdOnRA69atC1wqZiQnJ2PGjBno1asXmBmDBg3C9ddfjx9++AHjx48HM4OI8MwzzyA3NxejRo3CqVOnkJ+fj8cffxxVqlQJ+j34wq81VIkoBcAqAK2Z+aRHeS8A7wPIApAN4DFm3mZy/gQAEwCgYcOGHfeZxTYqihISduzYgRYtWkS6GyWC3Nxc5ObmIiEhAZmZmejfvz8yMzNRtmzJig43+86IaAMzp/k61/GdEFFliIA/5CnsLn4A0IiZTxPRQAAfAWju3QYzzwUwFwDS0tJ0ZW5FUSLC6dOn0bdvX+Tm5oKZ8c9//rPECXtxcXQ3RBQPEfaFzPyB93FPsWfmZUT0ChHVYuYjweuqoihKcEhMTMSGDRsi3Y2Q4iRahgC8AWAHM8+2qFPXVQ9E1NnV7tFgdlRRFEVxjhPLvTuAsQC2EJExhWsygIYAwMyvAhgG4B4iygVwDsAI9jfWSFEURQkaTqJlVgOwzT3JzC8BiMw0LEVRFKUIUTVDVVEURXGGiruiKGGhV69eRSYkvfDCC7j33nttz6tcuTIAIDs7G8OGDbNsOz093badF154odBkooEDB+L48eNOum7L9OnTMWvWrGK3E2xU3BVFCQsjR47E4sWLC5UtXrwYI0eOdHR+vXr1sGTJkoCv7y3uy5YtQ2JiYsDtlXRiRtx1fVVFKdkMGzYMS5cuxYULFwAAe/fuRXZ2Nnr06FEQd96hQwe0adMGH3/8cZHz9+7di9atWwMAzp07hxEjRiA1NRW33HILzp07V1DvnnvuKUgXPG3aNADAnDlzkJ2djd69e6N3794AgJSUFBw5ItHas2fPRuvWrdG6deuCdMF79+5FixYtcNddd6FVq1bo379/oeuYsXHjRnTt2hWpqam46aab8NtvvxVcv2XLlkhNTS1IWPbf//63YLGS9u3b49SpUwF/tmbERNS+rq+qKP7x0ENAsBcYatcOcOmiKTVr1kTnzp3x2WefYfDgwVi8eDFuueUWEBESEhLw4YcfomrVqjhy5Ai6du2KG264wXId0X/84x+oWLEiNm/ejM2bN6NDhw4Fx2bOnIkaNWogLy8Pffv2xebNm/E///M/mD17NlauXIlatWoVamvDhg2YN28e1q5dC2ZGly5d0LNnT1SvXh2ZmZl455138Nprr+Hmm2/G+++/b5uffdy4cXjxxRfRs2dPTJ06FU8++SReeOEFPP300/j5559Rvnz5AlfQrFmz8PLLL6N79+44ffo0EhIS/Pi0fRMTlruur6oo0YGna8bTJcPMmDx5MlJTU9GvXz/8+uuvOHTokGU7q1atKhDZ1NRUpKamFhx777330KFDB7Rv3x7btm3zmRRs9erVuOmmm1CpUiVUrlwZQ4YMwTfffAMAaNy4Mdq1awfAPq0wIPnljx8/jp49ewIAbr31Vqxataqgj6NHj8aCBQsKZsJ2794djzzyCObMmYPjx48HfYZsTFjuur6qoviHnYUdSm688UY88sgj+OGHH3Du3LkCi3vhwoXIycnBhg0bEB8fj5SUFNM0v56YWfU///wzZs2ahfXr16N69eq47bbbfLZjNyXHSBcMSMpgX24ZKz799FOsWrUKn3zyCZ566ils27YNkyZNwvXXX49ly5aha9eu+PLLL3HllVcG1L4ZUWe5MwPHjhUus8s9rb54RSk5VK5cGb169cIdd9xRaCD1xIkTuOyyyxAfH4+VK1fCV1LBa665pmAR7K1bt2Lz5s0AJF1wpUqVUK1aNRw6dAj/+c9/Cs6pUqWKqV/7mmuuwUcffYSzZ8/izJkz+PDDD3H11Vf7fW/VqlVD9erVC6z+t99+Gz179kR+fj7279+P3r1749lnn8Xx48dx+vRp/PTTT2jTpg0ef/xxpKWl4ccff/T7mnZEneX+2WfAzTcDkyeL37BCBUlF6ulzByT39MCB6otXlJLGyJEjMWTIkEKRM6NHj8agQYOQlpaGdu3a+bRg77nnHtx+++1ITU1Fu3bt0LlzZwCyqlL79u3RqlWrIumCJ0yYgAEDBiApKQkrV64sKO/QoQNuu+22gjbuvPNOtG/f3tYFY8Wbb76JiRMn4uzZs2jSpAnmzZuHvLw8jBkzBidOnAAz4+GHH0ZiYiL+/Oc/Y+XKlYiLi0PLli0LVpUKGsZq4+F+dezYkQMhM5N58GBmgLlhQ+ZFi5jz85kXLGBu1IiZSLbGvtj6hV+exz3rK0oss3379kh3QfETs+8MQDo70Nioc8s0awZ89BGwYgVQowYwahTQrRvQuHHR9VWtftkZFnw4VnZXFEWJBFEn7ga9ewPp6cC8eTJw2r07MGQIcMcdwFVXATVrWp8bF6fRNYqixDZRK+6AiPRttwGZmcC0acDy5eKTL18eGD5crHePwW4A4ou3WqtWo2uUWIc1WWvUUNzvKqrF3aBSJWD6dODkSSA7G1i5Enj1VWDBAuCNN4AGDaRehQrA3LlAo0bm7YRqZXdFKQkkJCTg6NGjKvBRADPj6NGjxZrY5NcaqsEkLS2NfSX6CSZPPQVMnQps2gRs2WIeXTN3rkbRKLHLpUuXkJWV5TPuWykZJCQkIDk5GfHx8YXKg76GarRz//3As88CTz8NLFokZWYruy9cGJkV3xUl1MTHx6Nx48aR7oYSJkqN5Q4Af/wj8Le/ATt3StSNN945agC16BVFKVk4tdxjwufulIcfBuLjgeeeMz+uOWoURYkVSpW4JyVJdM38+TLw6o3mqFEUJVYoVeIOAH/4A5CbC8yeXfSYXY4aRVGUaKLUiXvTpsCIERIq6Z2AbOZM8bF7UrGilCuKokQTpU7cAWDSJODMGeCllwqXjx7tjoMnkq0xmKrZJRVFiSZKVbSMJ4MGAWvWSF4Z1/q7lmgUjaIoJQWNlvHB5Mnilpk1C3At6WiJRtEoihJtlFpx79YNuPZa4MkngcREoE8fSWGwciXgvdiKRtEoihJtlFpxByR18AcfAHffDRw/DsyYISJfrRpw002SDhjQKBpFUaKPUi3uFSuKiL/wAvDDD+KmWboUGDBAhD8nR+ppFI2iKNFGqRZ3bxITgeuvB8aPl31jlS27KBpFUZSSSKlJHOYPKSmy3bcPcC2riNGjVcwVRYkefFruRNSAiFYS0Q4i2kZED5rUISKaQ0S7iWgzEXUITXfDg5HvPYD1cRVFUUoETtwyuQAeZeYWALoCuI+IWnrVGQCgues1AcA/gtrLMFOtmrhorNZg9UYnOCmKUtLwKe7MfICZf3C9PwVgB4D6XtUGA3jLtTj39wASiSgp6L0NI40aObPcjQlOuti2oiglCb8GVIkoBUB7AGu9DtUHsN9jPwtFHwAgoglElE5E6TlGKEoJJSXFmbjrBCdFUUoijsWdiCoDeB/AQ8x80vuwySlF8how81xmTmPmtNq1a/vX0zCTkuK2xu3QCU6KopREHIk7EcVDhH0hM39gUiULQAOP/WQAJhnTo4dGjYDTp4tmjvRGJzgpilIScRItQwDeALCDmU2yoAMAPgEwzhU10xXACWY+EMR+hh3PcEg7Zs4EvBco1wlOiqJEGieWe3cAYwH0IaKNrtdAIppIRBNddZYB2ANgN4DXANwbmu6GD0PcffndR48GHvQIDtUJToqilAScRMusZmZi5lRmbud6LWPmV5n5VVcdZub7mLkpM7dh5sjl8g0S/sS6N3A5pG64Qeobwm4VIrlwIVCnjsx21dBJRVFCgaYfsKB6daBKFWex7jt3yjYry11mFSJ5772yPXxY6jkNndRYekVR/EHF3QIjh4wTy91M3K1CJOfO9T90UmPpFUXxFxV3G4xwSF8Y4n74sHvhD6tQyLw883K70EmNpVcUxV9U3G1wMpHp3DkRZsNH/+uvsrUKhYyLMy9v2NDa9aKx9Iqi+IuKuw2NGgEnTshCHlbs3i2ukr59Zd9wzVjlgJ8wwTx0cuBAa9eLxtIriuIvKu42OIl1N1wy3uJulQP+lVeABx5wn1+jhpQvW2btetHFQhRF8RcVdxuchEMa4t6nj2w9B1VHj5Zz8/MLh0g2a+auc889Um7netHFQhRF8RddrMMGJ5b7rl1A/fpA3bqSKthT3K3Yv1/86rVqAQdc83gbNjS/juF60cVCFEXxB7XcbahVS9wfviz3K66Q98nJzsT9l1/kgdCwIZDtysATbNeLxsUrSulGxd0GX7HuzCLul18u+07Fff9+mdVar55b3IPpegkkLl4fBooSW6i4+8Au1j0nRyJpPC33/fvN63ryyy9itXuKO2Dto/cXf+PidZKUosQeKu4+sLPcd+2Srae4HzoEXLxo3V5+vjwADHE/csQ98SkQzCxuf+PifT0M1KpXlOhDxd0HKSmS0/3UqaLHjEgZT3Fndg+SmpGTI+JvuGUA4ODBwPpmZXHXqGFe3you3u5hoFa9okQnKu4+sIuY2bkTKFfOHTJpZIe087sbQmpY7kBh14w/WFncgH+Ds3aTpDT1gaJEJyruPrCLdd+5U2LWjZQCycmydSruSa4lxO0sfTusLO5jx/wbnLWL1Ak09UFWlrPxB0VRQoOKuw/sLPddu9wuGcCZuBuC5+mWCdRyt7O4/RmctYvUCTT1wdixwPDhTu5CUZRQoOLug8suA8qXL2q55+YCP/1UWNyrVgUqV7a3WH/5RaziGjUkjr5sWWfinpsLvPQScOaMuyyQ2HirwVGrh4HdNazays8H1q8HNmwAzp/3fW+KogQfFXcflCljHjHz88/ApUvuGHdArF5fse5GjDuRtJ2U5Ezcv/5actLM9ljF1t/Y+EAGR62uAVi3tXu3PIRyc4FNm3zfm6IowUfF3QFmse7ekTIGvsTdiHE38I51t2L3btnOmSNphg38cb8EOjhqdg27tjZudJetX2/ftqIooUHF3QFmlrt3jLtBqMX9yBFg/nzf9a2u7U95oG1lZIi7qVYtFXdFiRQq7g5ISZH4dE9LdedO8ZvXrFm4boMGEv2Sm1u0nQsXJKbdCJkE/BP3li2BLl2AWbPM2/dFMPPC27WVkQG0agV07aririiRQsXdAWYRM54JwzxJThb3hdnEJLNVmpKSgN9+8z3wuHs30Lw58Mc/Anv2AB984NctAAhucjK7tr7/Xvq7dCmwYwfw+utyXGe6Kkr4UHF3gFmsu524A+YRM54x7gZGOKRdrHt+vkTmNGsGDB4sg7jPPisDmf4QzORkVm399pusXuUZ1XP//cC99+pMV0UJJyruDvC23E+eFMvcTtzN/O6eMe4GTmLds7PFsm/aVCZMPfaYhBmuXOnXbQAIXnIyq7aeeqpovQsXRPgDGcxVa19RAkPF3QFJSUB8vNtyNwZTPcMgDezE3bDc/RV3YzDVWMFp7FigTh2x3ksahw+bl+flmZfbDeZqXhtFCRwVdweUKVN4pSSrMEgAqF4dqFDB2nKvVUuOGzgR959+kq0h7gkJwEMPAZ9/XjjssCTg7Yc3MFI0eGM3mKt5bRQlcFTcHZKS4rbcd+4UwfdcC9WASCxzK8vdW8xq1JDkY74s9/j4whb/xIkyG/a55/y9k9BSpYq5kI8d6/9gbjBDNxWltKHi7hDPWPddu0Tsy5c3r2sV624m7kS+wyF37wYaN5bYcYPERODuu4F337VfBjCcnDwp+eyHDHEPtNapI8eGD/d/MDeYoZuKUtpQcXdISooMop4/X3hpPTOsxN1IPeCNrxQEu3eb/0p46CH5BfH88z67HxaMVAO33uoeaM3MFDFfv97/wdxgryurKKUJFXeHGOGQ+/YVzQbpTXKyxLR7DiKeOCGWrZnVWa+edSgks7W4JyeLQL7+OnD0qPN7CRWG/799e3dZlSpAixbAunX+txfM0E1FKW34FHci+hcRHSairRbHexHRCSLa6HpNDX43I48RDvnttzKo50vc8/LERWFgFuNuYOeWOXwYOH3aXNwB4A9/kP7ce68kMoskGRmSRdPIU2/QqZNY7v7G5QPBDd1UlNKEE8t9PoDrfNT5hpnbuV4zit+tkoch7l98IVtf4g4Uds2Yxbgb1KtXdOKPgXcYpDctW0pI5HvviV87kil2MzKAdu3Eyvakc2dJ36ADoYoSPnyKOzOvAnAsDH0p0dSrJ1Egy5fLvi+fO1BY3H1Z7oC5a8aXuANivb/8MvDxx8CgQeYPiVBz8SKwbVthl4xBp06y1TwzihI+guVz70ZEm4joP0TUyqoSEU0gonQiSs/JyQnSpcND2bJidR87BlSqBNSvb13XbC3V/fuljbp1i9a3i3XfvdudU96Oe++VbJErVgD9+wPHj9vXDzbbt4tbqF27osdSUyWUU8VdUcJHMMT9BwCNmLktgBcBfGRVkZnnMnMaM6fVrl07CJcOL4bAXn55UdeDJzVrSpikt+Vev755DLiduP/0k1y3XDnf/bv1VgmNXL8e6NNHXCHhwmww1aB8eaBtWxV3RQknxRZ3Zj7JzKdd75cBiCeiWsXuWQnE8Lvb+dsB94pMnsnDzGLcDYwBSCvL3c4l482wYeKe2bED6NlTMkiGg4wM+UVj1ddOnYD0dBkY9SaY+WM0F42iCMUWdyKqSyR2LBF1drVZAgLzgo8h7nb+dgPvWHerGHdAJiQlJFj73P0RdwAYMAD47DO5ZtOmQJMmwJgxwCuvSCy6VZ6X4pCRIe4XqzQDnToBp065UzcYBDN/jOaiURQ3TkIh3wHwHYAriCiLiMYT0UQimuiqMgzAViLaBGAOgBHMgQS9lXwMt4wvyx0oLO55efLeynK3mqV67Jik0PVX3AGx2jMygL/9DejQAfjqK+C++8QnnpgIjBolETrBID9f3DJmLhmDzp1l6+2aCWb+GM1FoyhunETLjGTmJGaOZ+ZkZn6DmV9l5lddx19i5lbM3JaZuzLzmtB3OzJ07SoulG7dfNc1JjLl50u8+6VL9tPmzcTdSaSMHc2aAY88AixZIm3v2QMsWCCx4v/3f0D37kXXhg2En38Wq9xO3K+8Utw23uJulz/mzBmZtPS73wGbNxc+buZ+0Vw0iuKmrO8qikGLFs6WxAPEBXPpkgxq2sW4G9SrVzTDY3HF3RMiyU9fBATXAAAgAElEQVTTuLGI+/DhwNChsmzfJ5+4LetAyMiQrVmkjEFcHNCxY1Fx98y26UmVKvKANKJ++vUTtw/gdr8YVrrhfqlRw3ymruaiUUojmn4gRHjGutvFuBtYWe5E4jMPNn37AmvWSPrhXr2A998PvK2NG0W8W7e2r9epk9S9eNFdZpY/BpBZuf37A998Ixa/53iElfsF0Fw0imKg4h4izMTdl+V++rS4Nwx275Z2EhJC08eWLYG1ayVMcdgwSR8cyGhJRoa05aufnTrJqkxbPRJZjB4NTJ/uPrdMGVlKcN8+Cevs0aPog8/KzXLsmOaiURQDFfcQ4bmW6v79kns9MdG6vlk4ZCCRMv5y2WUy8enmm2Xx7YkTzcMV7di40d4lY2DMVDWSiJ05A0yeLJZ4+fLAnDlS9tFH7s8PkM/G03K3SwWsuWgURVBxDxG1a8usTMNyb9jQfuKTWQoCY1HsUFOhAvDOOyLuc+cCixY5P/fwYXkg2Q2mGjRuLBO81q8HPvxQrP2//lUid3btAh54wNz69xZ3TQWsKL5RcQ8RZcrIjNSsLPsYdwPvWaonT4pwNm0a2n4alCkjQtuxI/DEE0V92lY4GUw1IBLr/c03ZUGPxETxqc+fL78grPDOd6+pgBXFNyruIcSIdbebnWrgLe7e66aGgzJlJC4+K8v5AiBGhI8TcQeAgQNlgPT554ENG8Sn7ot69cRd4zkeoe4XRbFHxT2ENGggfvPDh32Le5UqInqGuAczDNIfevYEbrxRrPiDB33Xz8iQOPPq1Z21f//9Et740EOFlw20wxiPsFrQRFGUoqi4hxBjIhPg2y3jPUvVEPdwuWU8efZZiWqZ6mPZlbw8yRfj1GoH5D7txh7MUHEPP+3bA7NmRboXSnFQcQ8hnhEfTibSeIt73boSZRNumjcXC/uNN4AtW8zr5OUBd9wh7qMbbwxtf+wSqynB58IFcbdpFs/oRsU9hHiKuy/LHSg8cBiOMEg7/vxnoFo14NFHi8a+5+UB48cDb70FPPWUpBoOJXaLmThFs0U6x3DHmS3yrkQPKu4hxFPcPd9bYSyUbbcodrioUUPcMsuXS4ZJg7w84M47JeJlxgxgypTQ96VaNeusmU7QbJH+YRgYhktRiU5U3EOIIeh16jibZVqvnoQgHjwo/2CRFHdAVndq1gx47DEgN1ciU+66S0IXp08X6z4cEBUNh/QHzRbpH8bnnJ3t/4Q2peSg4h5C6tRxL8/nBMP9sHq1bCMt7uXKyeDq9u0SR37nncC8ecC0afIKJ8avmkCwyxap7pqiGOJuJL5TohPNChlC4uJE2Bs3dlbfEPdVq2QbaXEHZLD0mmtk9mh+vrhqpk8Pfz+SkgrnpPEHq8yTNWqYZ5cESnfcvOcvpF9/FSNFiT7Ucg8xixcDTz/trK63uEciDNIbImD2bHErRUrYgaIpCPzBKl0BoO4aM7zFXYlO1HIPMf7kSTdC/rZskRwsdonGwknHjpJxsXz5yPUhKUlWjjp71jxFsB2GFf6nP7lnC8+cCYwda16/tC/uceCA/OLcv1/FPZpRy70EUbkyULWqRHSUBJeMJ5EUdqD44ZBm6QrsskuWZoxEcHFxGg4Zzai4lzAM672kiXukCcUs1UCzS8b6IGx2tljudeuq5R7NqLiXMAwLVcW9MKGYpRpIdslYj5k/d04WZa9Xr3D6DCX6UHEvYai4m+OP5f7445JS2An+ZpeM9Zh54/OtV8+dslqJTlTcSxgq7ubUrCmLnzgR9+XLgaVLgfPng98Pu5h5K6LJjWP8MjLEXS336EXFvYTRvLlMHrr88kj3pGRhzFL1Je7MsqrTpUvuXPPBxN9B2Ghz43iL+8mThfPoK9GDinsJ47bbgG3bZIKNUhgnKQgOHpSFPQBZ/DvY+DsIG21uHE9xN9JnqPUenai4lzDi49UlY4WTFAS7drnfF1fczdwp/g7CBuLGiSTZ2RL2Wr26WO6Ainu0opOYlKghKQn473/t6xji3rFj8cTdcKdYpSZwmp7AKvVBSY2lz86WhyiRinu0o5a7EjUkJclM2QsXrOvs2iWW57BhwJ49gSe+CsSdYmbpBxpLHykMcQdU3KMdFXclanASDpmZKW6tbt1kf926wK7lrzvFauAU8D+WPpJ4invFiuKe0XDI6ETFXYkanKQg2LVLIo06dhQLOlDXjL9RMXaWvr+x9JHEU9wBDYeMZnyKOxH9i4gOE5FpwlUS5hDRbiLaTEQdgt9NRfFtueflyQpWl18ueXpatw7ccvfXnRJtA6dmnDolLxX32MCJ5T4fwHU2xwcAaO56TQDwj+J3S1GK4isFwb59Et/evLnsd+ki4u69BqwT/I2KiYUkZMZD0/icAZ2lGs34FHdmXgXgmE2VwQDeYuF7AIlElGRTX1EConZtyVRoZblnZsrWmADWubPkSTHK/cUfd0q0DZya4RnjbpCcDBw6JA9NJboIhs+9PoD9HvtZrrIiENEEIkonovQcXb9L8ZMyZSRToZW4G2GQhrh36SLbUExm8iaQJGQlDTNxr19ffvkcPBiZPimBEwxxJ5My0x/CzDyXmdOYOa127dpBuLRS2rBLQbBrl+TDv+wy2W/ZUnzv4RB3ILCB05KUd8ZK3AH1u0cjwRD3LACeS0AnAwhiYlZFcWOXgmDXLvG3k8vciIsD0tLCJ+7+EkjemVA+DLKzxZVUtaq7zEhBoH736CMY4v4JgHGuqJmuAE4wcxCXVFAUN3YpCDIziyZc69IF2LQpNBkii4u/E6VCnYTMc3aqgVru0YuTUMh3AHwH4AoiyiKi8UQ0kYgmuqosA7AHwG4ArwG4N2S9VUo9SUky69R7gO/CBXGFmIn7pUtARkbYuugYf8MnQ52E7MCBwi4ZQFItly+v4h6NOImWGcnMScwcz8zJzPwGM7/KzK+6jjMz38fMTZm5DTOnh77bSmnFCNPzHuD76SexZs3EHbB3zXz/vUTibNkSvH46wS580sz9EupYeu8JTIBY8fXqqVsmGtEZqkpUYTWRyYiUMWLcDYzUtVaTmZiBP/4ROHIEeOON4PbVF1bhkwMHmrtfrNJAByOWntlc3AFdbi9aUXFXogqrFARGLLu3uANivVtZ7l98AXzzDVCtGrB4scxyDRdW4ZPLlpm7X4DQxdKfPCnXMBN3naUanai4K1GFneV+2WVAYmLRc7p0Mc8QyQxMmSKW7yuvyGSdFStC028rzMInrdwsx46FLpbeLAzSwBD3QGb6KpFDxV2JKi67TITNOxzSSBhmhuF393bNfPQRkJ4OTJsmC2pXrQosWuSsH4cOASdO+Nd3p9j54kOVhMyXuJ8/Lw8XJXpQcVeiirJlReDNLHczlwwgGSLj4gq7ZvLygD//WR4I48YBCQnA0KHA++8D587Z9+HCBaBTJ2D8+OLdixWRSGVgJ+663F50ouKuRB3ese6nTkn0jJXlXqmSZIj0FPfFi2Wt2ieflAcGAIwaJW19+qn99efPB/bvBz7/HLh4sVi3YkokUhkY4p5kkhVKY92jExV3JerwnqXqnTDMDCNDZH6+xL1PmwakpgI33+yu07u35K6xc81cugQ8/bSkNTh9WsIoQ0G4c8BnZ4tbqnLloscMcddwyOhCxV2JOrzzy3gnDDOjc2fg+HF5EMyfL3HxTz0lceQGcXHAiBFiuf/2m3k7ixaJ2L76qtT//PPi3k3JwCoMEpDPm0gt92hDxV2JOurVAw4fdoctGuLetKn1Ocag6qpVwIwZIvaDBhWtN2qUuFo++KDosbw84H//F2jbVup17SqhlLGAnbiXKyfjHMEU95KUMC1WUXFXoo6kJHFXHD4s+5mZEklSoYL1OS1aiMvhT38S98LMmYVzqBikpcnArJnYLFkiD5IpU+Tc3/0O2LBBJkBFmuKKpZ24A8GNdQ91jhxFUHFXog7vFZnswiAN4uIkwiUnB+jVC+jb17wekVjlX39dWMzy84G//EUeEkOGSFn//iJOX35ZnLspPsUVS2N2qtlgqkEwV2QKdY4cRVBxV6IOz4lMzM7EHQC6dZOtldVuMGqUtPvuu+6yf/8b2LoVmDzZ7adPSwOqV4+8a6a4YnnsmLii7Cz3YKYgiIX1ZqMBFXcl6vBMQXDkiAyUWsW4e/LIIzK1/6qr7OtdfrkIt2H5MovV3rSpDLgaxMUB/frJoGokZ2/aiaWdu8Y4VquW7P/0k/U16teXh4DZHAB/XUL+JkxTAoSZI/Lq2LEjK0ogXLjADDBPn8787bfy/tNPg3uN2bOl3R07mD/7TN6//nrReq+/Lse2bg3u9f2hUSPpg/erZk3mihULl1WsyLxggby8j5UvL+VmzJsndTIzC5ebtWNcwwqrc+65x/+2SiMA0tmBxqrlrkQd5cqJtXnggLMwyEAYMUJcN4sWSchkgwbA2LFF6/XvL9tIhkRazWgFrN01Zq6cCxesXTlWE5kCcQn5mzBNffGBoeKuRCVGrPuuXTLDNCUl+O336QP8/e/At98Cjz8uDxVvGjSQQdZI+t2txNIqF8wvv/jv97ZKQRCo/9yfhGnqiw8MFXclKjFSEOzaJb5wI4VAMBk9WlLh1q0L3HGHdb3+/YH//td3TppgYTgtPDETSzvftt0xM6wsd3/bsSOYbSkq7kqUYqQgyMx0NpgaCEOGiPtn6lT7GPr+/SVr4urVoemHwfnzkpq4cWNZ0MNX7nm7BGR2x8wGNatWleRqxqxeo7w4Sc42bCicmycSCdNiGieO+VC8dEBVKQ5PPMEcF8dcoQLzI4+E7jp5eb7rnD7NXK4c82OPWddZtIj58suZ336bOT/fvz6cPi0DvElJYrNfeaVsn3nG97kLFsiAK5FsPQcnjWMAc0KC9UCrMdhJZD04a3UNK7Zvdw+KO+2vIsDhgKqKuxKVvPiiW2RefTXSvWHu04e5TRvzY1u3ykPIEM1+/YpGnZhx4gTzX//KXLu2nNe7N/OKFfJwGDqUuWxZ5vT04ve9QQPmW2+V91aRN3Fx5uWNGlm3ayfUkybJ+cnJzLm5xb+H0oRTcVe3jBKVeM6mDHakTCD87neywLZ3nvkzZyTzZJUqMj7w8suSnbJ1a3E3eKcMPnECeOcdOad+feCJJyQf/erVskpU794yaDp3LlCnjky4OnMm8H7n50ufjbkDVoOXVi4gq/p2s2bz84EFC8TllZUFfPZZ4P1XbHDyBAjFSy13pTgY8e0A8/79ke4Nc0aG9GX+/MLlt94qluvy5e6yX39lHj5c6rdsybxsGfM//8l83XXM8fFSXrcu84QJzOvWWV9zxQpp+667Au/3oUNyvRdflP1gWe5W7TRqxPzVV/L+7beZ69RhHjw48P6XRqBuGSWW2bOHC/y+TvzioSYvT4Rq1Ch3mTHxZ+pU83OWLi0sgk2bit/+22+d39Pjj8u5H3wQWL+Nh9L778u+nc/dePA4mWDk7Z83XkTywKtalfnsWel/XJw88BRnqLgrMc25c/LX27ZtpHviZswY8Y/n5bn97L172/uUT58Wgdy82f+BVmaZrduxI3ONGoEJ5Kefyuf43XfuMitf+cMPF7bA7QY7rSz3Bg2YK1dmHj9e6mVmSvlf/uJ/3+36GsuouCsxT40azMOGRboXbt5+W/6jVq1ibtFCLPkDB0J/3R9/FCu6b1//f8W89pr0ed8+33XXr5e6H37ou67dLwCA+euv3XV792Zu3Nj/vgeS+iAWcCruOqCqRC2vvipZGksK114r2yFDgB9/lMHDunVDf90rrgBeeAH46itg9mz/zjXSJjvpp9VEpjNnZCbvo4+6B16tZs3u2SPvr77aff6ECcDPP0v//cFX6gN/kpD99pv0r08f4Lnn/OtHicXJEyAUL7XclVikXTuxIKdNC+918/OZb7xRkn/54565+25xJTkhN1fCL594QvaPHJE49Ro13Jbz7NnW52dnM5cpwzxlSuHy8+clydnw4c77zWzv13di1V+4wPzxxxJWWq4cF8T716zJfPGif30JJ1C3jKKEn3nzmG+/PTKx23v2iPjef7/zcwYN8m/cokED5gEDxP9eqZIoyA03yCDwoEEijrt2mZ87a5bU37mz6LGHH5YB20OHnPfFLiLH7lh+PvOTT4qIA/Jwe/BBmTPw0UdS9tlnzvsRblTcFaUUMmGCWKG//OKsfseOEoLplK5duSA0cuzYwqmOf/2VOTGRuUcPc/95aipzly7m7RozVp991nlf7KxzO6veiLTq108iljyt9PPnJZLn9tud9yPcqLgrSilk3z6xgO++21n9pCTmO+5w3v7ixRKuuXev+fE33xRV+fvfC5dv3CjlL71k3XaPHszNm/sXNbRggfxaAcQSN9wudpb7ggXyftOmom0Z55UpU3TOQkkhqOIO4DoAOwHsBjDJ5PhtAHIAbHS97vTVpoq7ooSGe+8Vwfv5Z/t6ly6Z+8CLQ34+88CBEgbqmWLh0UfloZOTY32u8WBYudL59X75xS3cEya4y+2s+nvvZa5SpbDrzN/FSyJJ0MQdQByAnwA0AVAOwCYALb3q3AbgJScXNF4q7ooSGvbvF2EyYsmt+PFHUYBXXgnu9bOymKtVY77mGnHPXLokM259zUQ9c0bO85wIZmAVz/7GG3IPKSnMrVs7O6ddO+Zrry1c187SL2k4FXcnoZCdAexm5j3MfBHAYgCDix2moyhKSEhOBu6+G5g/33pd1CNHgJtukpw3RghnsKhfH3j+eWDVKklR/NVXwMGDwLhx9udVrAiMGQO8/37hhUbs8tR88YXkGbr9dmDbNllP18Asx/2pU8DmzUXX0bXKkbNvXyCfQMnAibjXB7DfYz/LVebNUCLaTERLiKiBWUNENIGI0okoPScnJ4DuKorihEmTgPh4YMaMosdOngQGDJDY8qVLgWbNgn/9224DrrtOVrB6+mmgenXg+ut9n3fXXbLc31tvucus4tknTwa+/FLy6XfvLsK/dq19+2vXith7i7vVgiC1a/vuc0nFibiTSRl77f8bQAozpwL4EsCbZg0x81xmTmPmtNrR/KkpSgknKQm47z7Jvrhzp7v83Dlg8GBg40ZgyRLgmmtCc30jc2VcHPD118AttwDly/s+r21boFMn+dVhYLf83tGj8sujc2eZrLRmjX37a9ZI3+680/eiI4Cs8mWFP5OkinNOwPjy2wDoBuBzj/0nADxhUz8OwAlf7arPXVFCy6FDMkho+LAvXpRYdCLmhQvD04c33pDr2WW39Oall8TfvXGj7Fv5wxMTZXvwoNRr315SMNjRpo3zRUf69JFY/jNnirYTSOqDYKVLQBAHVMsC2AOgMdwDqq286iR5vL8JwPe+2lVxV5TQ8/jjIlZbtkhceigGUH1x+LB/9XNyJLLm0Udl30oUW7YsPAHrvvskKdmlS+bt5uVZx7+bDZyuWCHHHnig6MBsIAOwwRq0DZq4S1sYCGAXJGrmT66yGQBucL3/K4BtLuFfCeBKX22quCtK6MnJEcGrVUv+2wPNvhhubrxREq8ZQu1tVb/+ujwA/vAH9zkLF8o9ZmSYt7lli7m4GpObvMnNlegd71z23g8aX+0Y2E2s8gen4u4ocRgzL2Pmy5m5KTPPdJVNZeZPXO+fYOZWzNyWmXsz84+BOYkURQkmtWoBDz4o0TGPPlqyEq3ZMW4ccOgQsHy57HtHvtSrB1y6JIOpBsYgqZXf3c4fbzagGhcn1/NehersWTnmtB1fx+zOKQ6aFVJRYpypUyWq5LnnZDAxGrj+eqBGjcJRM5588QWQkAD06OEua9RIBpLtxL1qVaBChcLlFSvKgKoZp06Zl+flFR2A9WzHbODUbNDW7trFRcVdUWKccuWAvn2jR9gB6fPIkcBHH8m6st588YVE+iQkuMuIxHr/9lvzNteskTVoX3utaCri0aPNz7Gyqo3zzNqxissHrM8JCU58N6F4qc9dURQ71q4Vn/RrrxUuz8qS8lmzip4ze7Yc8057fPiwlD/zjH998Mxd4zTCJdSzXaGLdSiKEs106iQLkXi7Zgw/vNnMWsPv/t13hcuNfe/JS74YPRqYMsW978TatovLDycq7oqilEiIgFtvBb75RlZwMli+HKhTB2jTpug57dvLZClvv/u338qM3Y4d/e/H1Kki6gMGuNMY2BHugVMrVNwVRSmxjB4tIr9ggezn54u4X3ut+RhCuXJi8XuL+5o1Iuzeg6lOIJKlE1esAM6f910/3AOnVqi4K4pSYmnYUAZB33pLPNebNgE5OYVDIL256ipgwwa3EF+8CKxf779LxpM+fSTnzfff+647ejTwt7+50y2EfODUAhV3RVFKNOPGSXbLNWvc/vZ+/azrd+8uMfDp6bKfkSHCXBxxv/pqCWtcudJZ/fLl5ZoPPujMlRMKVNwVRSnRDBkibo233pIQyDZtJJ7dim7dZGu4ZoytUR4I1aoBHTpIEjQnGA+h998XV1IkUHFXFKVEU6UKMHQo8O67wOrV9i4ZQNL0Nm9eWNxTUmRWa3Ho1UvcMufO2dfLz5dJY9WrA1lZ4hKKBCruiqKUeMaNk8lMFy44W1zkqqtE1JllWxyXjEGvXuK/9+V337xZxgWmTwfKlhXrPRKouCuKUuLp3VtWeCpfXvzfvrjqKhHYFSuA7OzgiHuPHs787oZLZtgwGRtYskQeMuFGxV1RlBJPXBzwzDPAtGnmi2p4Y4j5rFmF94tDtWoSTunL7758OdCqlbiBhg6VFa82biz+9f1FxV1RlKhg9GjgiSec1W3ZUsT4s8+ASpXMJzwFQq9eslSf97J/BufPy6Qrw3V0443yYFqyJDjX9wcVd0VRYo4yZdzRMV26iO87GPjyu69eLQJviHutWkDPnuJ3D7drRsVdUZSYxHDFBMMlY9Cjh1jiVn735cslzUHPnu6yYcNkHdvt24PXDyeouCuKEpP07l14GwyqVrX3uy9fLg+TSpXcZTfdJCkMwu2aUXFXFCUm6dFDLOY+fYLbrpXfPSdHZsN6h2rWrSt9CXdIpIq7oigxy+WXB7/N3r0lvYF3WuGvvpKtWRz+0KHAli3Arl3B748VKu6Koih+0L27ud99+XKZlWqWVnjIENmG03pXcVcURfGDKlWAtLTCfndmEfc+fcwXz27QQKJ2VNwVRVFKML16AevWAWfOyP6uXcD+/fapEYYOlVTEP/8cli6quCuKoviLt9/9iy9k60vcAeCDD0LbNwMVd0VRFD/x9rsvXw40aSIvK5o0kWUAwxUSqeKuKIriJ5Ury3J+X38tFvzXXzvLVjlsmMxuzcoKdQ9V3BVFUQKid2/xu69YAZw65Uzcw+maUXFXFEUJgF69gNxc4MknJZeNk8lSV1wBDB8O1KgR8u4hSOl0FEVRShdXXSUJyb77DujcWWLcnfDee6Htl4Fa7oqiKAFQubKIOuDMJRNuHIk7EV1HRDuJaDcRTTI5Xp6I3nUdX0tEKcHuqKIoSkmjVy/ZlkRx9+mWIaI4AC8DuBZAFoD1RPQJM3smsBwP4DdmbkZEIwA8A+CWUHRYURSlpDBhgvjdu3ePdE+K4sRy7wxgNzPvYeaLABYDGOxVZzCAN13vlwDoS0QUvG4qiqKUPBo1kuX/grUYSDBxIu71Aez32M9ylZnWYeZcACcA1PRuiIgmEFE6EaXn5OQE1mNFURTFJ07E3cwC914wykkdMPNcZk5j5rTatWs76Z+iKIoSAE7EPQtAA4/9ZADZVnWIqCyAagCOBaODiqIoiv84Eff1AJoTUWMiKgdgBIBPvOp8AuBW1/thAFYwh3s5WEVRFMXA5zAAM+cS0f0APgcQB+BfzLyNiGYASGfmTwC8AeBtItoNsdhHhLLTiqIoij2OxniZeRmAZV5lUz3enwcwPLhdUxRFUQJFZ6gqiqLEICruiqIoMQhFatyTiHIA7Avw9FoAjgSxO9FEab13ve/Shd63NY2Y2WcsecTEvTgQUTozp0W6H5GgtN673nfpQu+7+KhbRlEUJQZRcVcURYlBolXc50a6AxGktN673nfpQu+7mESlz11RFEWxJ1otd0VRFMUGFXdFUZQYJOrE3deSf7ECEf2LiA4T0VaPshpEtJyIMl1bh0vyRg9E1ICIVhLRDiLaRkQPuspj+t6JKIGI1hHRJtd9P+kqb+xaujLTtZRluUj3NRQQURwRZRDRUtd+zN83Ee0loi1EtJGI0l1lQfs7jypx91jybwCAlgBGElHLyPYqZMwHcJ1X2SQAXzFzcwBfufZjjVwAjzJzCwBdAdzn+o5j/d4vAOjDzG0BtANwHRF1hSxZ+bzrvn+DLGkZizwIYIfHfmm5797M3M4jtj1of+dRJe5wtuRfTMDMq1A0J77ncoZvArgxrJ0KA8x8gJl/cL0/BfmHr48Yv3cWTrt2410vBtAHsnQlEIP3DQBElAzgegCvu/YJpeC+LQja33m0ibuTJf9imTrMfAAQEQRwWYT7E1KIKAVAewBrUQru3eWa2AjgMIDlAH4CcNy1dCUQu3/vLwD4I4B8135NlI77ZgBfENEGIprgKgva33kJXNbVFkfL+SnRDxFVBvA+gIeY+WRpWG+dmfMAtCOiRAAfAmhhVi28vQotRPR7AIeZeQMR9TKKTarG1H276M7M2UR0GYDlRPRjMBuPNsvdyZJ/scwhIkoCANf2cIT7ExKIKB4i7AuZ+QNXcam4dwBg5uMAvoaMOSS6lq4EYvPvvTuAG4hoL8TN2gdiycf6fYOZs13bw5CHeWcE8e882sTdyZJ/sYzncoa3Avg4gn0JCS5/6xsAdjDzbI9DMX3vRFTbZbGDiCoA6AcZb1gJWboSiMH7ZuYnmDmZmVMg/88rmHk0Yvy+iagSEVUx3gPoD2Argvh3HnUzVIloIOTJbiz5NzPCXQoJRPQOgF6QFKCHAEwD8BGA9wA0BPALgOHMHFMLkRNRDwDfANgCtw92MsTvHrP3TkSpkAG0OIjR9WftkNQAAABwSURBVB4zzyCiJhCLtgaADABjmPlC5HoaOlxumceY+fexft+u+/vQtVsWwCJmnklENRGkv/OoE3dFURTFN9HmllEURVEcoOKuKIoSg6i4K4qixCAq7oqiKDGIiruiKEoMouKuKIoSg6i4K4qixCD/D8QOpzfZ1dTaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "acc = history.history['acc']\n", + "val_acc = history.history['val_acc']\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs = range(len(acc))\n", + "\n", + "plt.plot(epochs, acc, 'bo', label='Training acc')\n", + "plt.plot(epochs, val_acc, 'b', label='Validation acc')\n", + "plt.title('Training and validation accuracy')\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "\n", + "plt.plot(epochs, loss, 'bo', label='Training loss')\n", + "plt.plot(epochs, val_loss, 'b', label='Validation loss')\n", + "plt.title('Training and validation loss')\n", + "plt.legend()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# infrence" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from keras.preprocessing import image" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[3.6700971e-02 7.7572372e-03 8.3157562e-02 8.5508507e-01 1.0649939e-02\n", + " 4.4613280e-03 1.8432270e-03 9.8935234e-06 4.3585874e-07 3.3431733e-04]\n", + "3\n" + ] + } + ], + "source": [ + "img_path = 'test/1.png'\n", + "img = image.load_img(img_path, target_size=(175, 75))\n", + "x = image.img_to_array(img)\n", + "x /= 255.\n", + "x = np.expand_dims(x, axis=0)\n", + "print(model.predict(x)[0])\n", + "print(np.argmax(model.predict(x)[0]))\n", + "# predicted_class = model_dict[str(model.predict_classes(x)[0])]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "iranshahr_dict = {\n", + " 0 : 'آبادان',\n", + " 1 : 'آباده',\n", + " 2 : 'آبدان',\n", + " 3 : 'آبرغان',\n", + " 4 : 'آبرومند',\n", + " 5 : 'آبریز',\n", + " 6 : 'آبعلی',\n", + " 7 : 'آبیز',\n", + " 8 : 'آبیک',\n", + " 9 : 'آذرشهر',\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "path = 'test/'\n", + "k = 0\n", + "for img in os.listdir(path):\n", + " k += 1\n", + " img2 = image.load_img(path + img, target_size=(175, 75))\n", + " x = image.img_to_array(img2)\n", + " x /= 255.\n", + " x = np.expand_dims(x, axis=0)\n", + "# print(model.predict(x)[0])\n", + "# print(np.argmax(model.predict(x)[0]))\n", + " os.rename(path+img, path+iranshahr_dict[np.argmax(model.predict(x)[0])] + '_' + str(k) + '.png')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tensorflow", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/images/attn_mechanism.png b/images/attn_mechanism.png new file mode 100644 index 0000000000000000000000000000000000000000..32fcfd758e14b06770a21aefaa6855bc304243c0 GIT binary patch literal 172401 zcmb5W1yoks8ZHb7N{N)DbazO%go30A`A@tB>3ZncpH53xG(Gi1_qVP zTue+sN=%GY!NJzV+{zdRMl$TR>K&!{E}Znn_i=r27_pchSnnkh2{e`!5eUhUC|}{- zdek1xNMC}ZBwmu0Paa-`5Gx_EZv1TByEHSaAOeAq-Zl=VZj)hY%F$$z-*vNocgo!K zHcTa6k$7BG-mO@Qp7@Sn_>vBqoD#`L$q zrl#hi=c_-mdVQds8rj$`Lm1t)V1jCB%#2KSC)|N*Z1T8xO z5j`}EsYEOj`{jWZI^noGAMEA1J7e;E(LX@OMlI4oOG`Qq7pwSJaJdM)UVumw9J|_& zCZ$*;@eRQ!LA{SOcy@l+Mli4?goCK=lyn|#CDFGKX5>TRNnJ--MEV(EjukGA)$$8A zMC!7*b!T59q>H2mtj!A5;1a`H3ah2sxlS5>iOJ^Tpl1uklSHMuja8TvikvOnW(-UG zjg%0F4l$$<#)N8#lz8rf32heXZNPS{T~wb`4FYDfp&8A|li=yBuwdtxnOKkS5`Saf zI9<0x`7(}huc@BQ_Y0BfoJSKH$*qSwo!3TPSubS4 z&COOoWj*R`zrlU4GQ9`=u~A}aV%4onBpr)r(JaaZ!e6kyeTgS|aG=yBlS?a>)cHH4 zy7EOk#_sx)($ohJW|`<4PhYEc6MmSJdy=%&u!2KyYevvfPcL&Jh4~B<=Jehzk@|C4 z(=mjYU0#@;g4wS3$4`lvixFQS56(#SBLr`6migoJ!m7?7oQa?#-s&eMrVQw^OAjKw zQ)kCMxU^3MgplVM0Q#znp-#}CDONml+cNRm!5T8S*>rN%GSU+4~~yb(^M z)vAOhITLd$VI_yGm%RX(hTOO!_F*;)W z{kUc%w^{E;hT$8!B=L82WR+qw62%)hmSPsb(A|uP#98Gdw9l}@e!9&hGxbNRaA}$HB~)&hJb^obs4Y&SY;XNbqU>VrFw=9H zTlmReexcOBoSIRWr8dDd#pn)Q3-b&uY(tx)FdzvN|3Nht_gSi+l9?_>Nk&6@T!Qau zoy;n^H)(!s)EBv5dJf3yGR%~!v9573u`KZ!ai?^v*pA^eRLLzl-`+F6v&!ap&a7BR zd#-dhk7_7|K>quC=1djEwOpE9*IZjAB_$ap0i}-IP^HCurMz`z-gm!67AR!nO~ecb zsDBt$WLIodsEjj>6Y{0mJUV=r)3>`Uy;8Y1zjwNKFAr7OQ#qPm*E!vy(js8hcqq{V zo70igx3bFu!Q#Hf=@4_?{>SHoOoL;qTKl!DL#rW!wjU48SvekXW^p=jeC2SlNF8$f zAoZi75B0|{OB{2Xeu1LnP(L;qe5>0rrLm>2?c@5hB?ij|=gf>PUR!JoTa2s@4G$8( zOZzA&_DSQk#DxaSP=l5Co7E!wqR^uAVh+Y_inAw(j~Vfw3D5lwJ>;WsK68TSqvG>) zDq8XSVZ3sC#bl+Z&w8*vCuD7GIcgxKsQS^?d!1g%!k0P}?iA9GHwoP}NrtNXV}>%a z8znCNeKP#sJ__|~(<^MY4K=P-6Jt$^6;HoqfM4<6Kz#Z51Z1>N%VEirp+!LD#n&y z^)o!qAU+>zZYP`2&u=AqBHPK@DcWh$IU>g;Cy-;2li%aCq_^bWBimElF&d2#ImWv9 z0i~7dhw)44lx|#AZq;1NddupRH=219eAR@T8k=mJ#+#-Bh{UkOy8;>lLLPMzzb zd%yQg@qgkoJgf_9XhGJG31!N|tpAGoeKP4-h=I@2b6CVh@gV(ygPcVVS?LEJX)lAk z*+Km0{FGI322x8Lz2^Bj`%hc5Cmdc*O4Z7`Yiz&teq=&*Ds@0QP1DGC*}B)Za%yV! z4ZXL9b--jX?u|T(KZ?(rpx(Lf7Ae*Op3Uob9M6`l(j&gfrc7}4I_dO(E;=ULb!E(C z{-Uw%`BqHdeRd*93MC~1HGC0Q@PzJHPMyJ!f%#69giZt(a|dn&PBn|YPMJ&B2&PY0 ztzyWJ@E^U#pUWJD`7gANcbk6fWp8wAC0eV=X)){gcn58T6D<%dAS}eFJT9_QYu8XN zTisZt%kNc*%pI)>u6tbdp`1Od%)D@He8Ey!6)C?+`Hs?-dQPKFSKZ;-@fwTm_Jl%X zznd$*4YycR=BoXlNg`o#S1m9 zH{{OKx>x)7)U^+b!agx?piNFG*{U|W-*c2-(J4`_Iy^4UZPb~@Z78;GJiR!%wRmTk z$mjv1xd?#?*B%!#A%99-3Ljb!k%i@fh0syTx$T5zq-NedOA;NIK#%v!Uz+;;-+33t z4W}F8cM@01ntyWiI@`&o=}0pZ#`pRCEqCU5r~GM#kVnUOBh@I5uLR$ z!mjrP-wNltS?pCDycsA@*qqsv?xg`sAan1ZetwqIk+G(uQ7^EaIIWB8(Rt`nAJ;(O zrhV}E@cTiv;m@l5_Pr_J#NDDx@2)#j_xOeCd}G8To`!)DaN`3%S{pm*le$@3**NmK36ftu!3TbZ zK4u{&y?VsSQjlCtR)JK^*1?#RlbM5=m0Sp!l$2D!!N`P9QT*{guY=zN$<3Uc?D$w% zTwPt6T^};rI+(Js@$&Mru(GqTvonDwm>k`0ob=t8Y#b^6401h=xUr+5gSnlPxvdQ; zG_JmZt+SILIXN`Z&3}K^Y3yeHcP1Ohf3^iS$O3)C!p6+Xax*q~RRH>wPr=;H*h)>@ z+}ha25zHaP#?HYZaP`9f@2kI4{_9osf4$1a!SnA||Mk^BuL`h0Tlm+O{>ba5e$q7jFk8zB{$gh zv^$@*B+jevAaTBxdh+t8`1|vhn8|MsKZHtd1(N?D+anOgK!1<#5l<^w4EH0SlvK73 zdnK44c`40Qr?<{^Yx8G4_oqV}_r+bQo=slI#cu+RJ?Y=L8`&S>NS8>8z+uL|fTtvd zMf%Sloyl1J{57?C#zX(dm(VMiun63?@PFU(3&uEFFYkpzyB~1pUeOAHuFtXY(b;Zq ztI~5><>%fEQr9#2nNViV3`dq5WZcXul7e2d_d~ihmQ1XrZmmdjAT-@`vv&J*`cfzo zkBwZ0XEu;C&5-J5vOX(#?8#*7$LldSi!;N5Q_E*6ZNr?cnU6-vFK+OVeRnbwaIXa{ zfrQv=yP37~f#aZ4^y|NqmSZT`Sythf3g1W|Qx@@Tzt~qc!J6gswrG;m4=GE6`%E1#bc!3) ztv&*RB*wNDyBR<-Qv_y>1Cv_d;%HvK1&M}nee3(3$)~=@-MY66CZdHej((VHh=oF75TZO|6F4VD@Fu!rZ}guUxuq?u3w}K4l zdM?YUTs^<}*ARS{1jm7I+Aj20YjG&I4<>ALBD1QeeLTZwRcsJLEtgUq<#^UhT7T#l z%sh^MfNzJd?a)Q_Ded==s%{X;`SO$5<##b?mPNHD|M$`DE{>N%P?&2-No$lHXuMBW za^kz`oarDjyjef8{9$K>VGT<>2WJhAOaO z=L+@xs+w;T1`@f9zO|U1_CB0?MGO0EGmIvEnXR_vxxC>0VRh5ASA|Y>D?~Q?A!0RKDtAMt)gjNnddA>djt1mzZd?R55M_){}nlt+)T#hnW>uZ`F<-? z^<*3-sS+WY)cws*TMe(?yejx0`1p*lk>E|)O@r1&N)KqIz-H% z`RL{#IACEBs;QIUKV1v=1^l>Q6VMfO6%F(3ZD6N^-(NID;a|bgw0c&We&;XZA3{d_!&nK+-$M#QLbtrzT$s$m^_^oN zu+*?KxV%@0pRw!<`D{2t5#qbYQF%P8OBudG1!Z69l_frh(|BH6V^}0qbg)ubxGm#r z94s@!W%ypW^K914w-9@-V|+;WSWS4~#bo$pO1QZ3;siUV&@D5==foV3-AHo0a@yxK zh$h2}ow1@%RR7nPm+eD!UP3!9 zCoCW%bo|RWTL3DBxK`ZgL)za`F(9Yu^`-ZESCW~zkV)O&8|A&Wh#F~4)0Y>ACFchd zA*Wl7!Ua|17PB8xY%FTY1kd*d^gnG><-4QeYCAnUn%eTg-Tb`UV`GyYYJ&}5o&FW$ z$pZ`>pW_9)pYBWhN<;JingyhLlxe z?ghPz=A)1Di@scu_g%F|wQW3iIqHw`!7f=(asBCj%JGw>@r<1j#1viRHv2=WTh9s8 zDgSC*IM6temxpzKCig?5ev$P1hcrtNuC5mwSS^2-AjU`wuv{NTkPw7U*UPs-bQG+r z<4$GVn5yTG)S~71{eFU$Ll-MR$B6iwi_eEYJz=Gp;j^~9w>-6b2)S*vMBK6(YXZoV zmBaZv!hp0ITcv2yus7=uf7+dHROeJJj{tcSn+&u58_h zoXZEc4@8&e5j^&~UON&FhhDQmxQe>f;}-cgI3~xutgWlj2g7QHQ8ts^QGSloZu3#e z9VI&*gfz`o8Quq7EMxghpSdTj%D2Bz!~}v+piFg1L;XgnQ8|FB_@%=Zv-}atGASI1 z&yhY4IKKE4QWb^Elaa=j%trw&;#jiSUtZKU!J!1+SJh&(0%t3z_(&;>DUeK@E|9;C z`>V{u@7MtA4KJ3s->HNO~*#P`g8XSSprN0Sl*y)?=yJ=AUi8E$&H z|6S|!#X;AheWe`dW-*Us@9r8PqV4 zI3UMgcods)Z9`&3q#<7tW?mNm4_bz)UwjdhDdyj-p_p{&X6iz=ygWa=2ZnVev!t3E z(GMX?V5}~xT}<9S-|}r-&%~$<-H@>2(89r3KN8v>e4cZnRyPYL)m(_dkPA#EllKx! z+XI7K{jvRD@$%H&HD{#cm~6uiFQZ{D8$qzxY8WG!pem)g+OI2KKj;6Vaz2{>gE&m8 zSVzxiJznn1vt1en4#ujYnz`^Zg+!)P$gs7A?>fpUiONiXcairoHqdvz97y>QCV05N z0YZ-t8s!*}iFYAm+$?EDn~jrZMpE0qpJ>}~OpRoyHt_6DL~BE|pNmw%i`bCuPzfDd z4+~^)hpomk{ zw=7N5M=;@R<7G*;WfPSKjHT=R)5mgoAv~NGgCA|2vowuy0+w*c2?X5iaF{0Rh76xn z6n!;_tQ4J!;u`;GRln@7{xKj^{E`+?bBD&~~*r@?m20>!Y>31nyd z)2|H0TDcbE!VbT_i2CLLM{e{;WfT77c4w-&Q!|q)(`h@4&$EwWQ*4GEMryZuxF)Qo z#+f^V9=|)aNaTW|m$H$(s$JlnpZZS&AFoiTk!YA2z-c6t(Dxs%o&gF}vd7AbuXjcM zLfV8GmCQujV(P4G5lM+=LL4D9&F3LIP)(Tl1f1ip4(OCt;%?{@sphuv*l8CLVIeBzC2MgQ!Uc+Y7xa9+ zFa9L(Q!3WPh>mBW*3dc#C^r>Zw)j&mnQFe_=;n{(xI4ue~<74rE{F-3yEJ5XtGW>doMkSLL9 za0dn9>eMJOb)cg3j~B%HafEBrr7Sa+e^dPU{KU^iGE3wWb`P1ph<(+!GmU-=#-T8B zO*P}!%A(k}#Ui&7Fd5$8+F>b+id!aSi40*(T|nM=+}+S(UnJ|I5{Lc@=cEE;Sb=zl zOhn=2`cFGVL__98G5zpTm}1#DStx}l2%e6+=VnpJUv}DQ4T$P%}+)7Nvs4vT^**sT#^$9#r+y z_wsyu!`AoHcK!Grc=pvre=722keI5upbm}iB;6R4WhE%(=i80G-W@5NnrJ(Zk<`o_ zCZaW4vk2~5nFb5d{QK;x-zTBkYTqSrzj>*SF^N7a0*RsI?=i%o+#%8MnTG=$kML#q_O>jd}t}Z#AM92##zq%YJ(s zc1FvNbYyK*P1vBYwVIV3_>)l8{Rrk9(R!%fejg?L__%!{=@(fWo^6o!o;#EXcoiSa z)-I)^?Dh)#zC|_^S+2OrR$!3^p<)b|-0*dICi5{I8?(lv)JLg&ApB}|nXp!!AJfh! z+k49g`4iRtAHRX$btymLU;X$_F{6gMC<#$l zEzi1gNTursi^fyCg7pJQA+r9`y9`TtVQri$0yI4Qlq%vG$F5 zmz=o-nZd5ybvBo21CL&o07`0hy@H4DxiC`EqeEkcClrgAwD?tZz4!BE?TMLV-L1Gz z6fBH`GlME|6Rh2v{ZU+hD3aZE?E|3{jq*I6iYXMl`)DLGjZmwMY1-B+ehQ^bdg*zdGm{9JGc_-aJG2tD!8mTy~7n$eS@OcjY&zZCzy%Jp}cTxMP z!nFB*kOi$qp5$q-C&>0&{ZW|JmTx=LBL##IdzkUeg;F4UhrW5#>e_fZ)l%C|@>E;h z7gQ^9C{f#;kG_q9Ot94GS*L4}u*tV1R!{6(N8()9u}j{Big&q zku_I)Ky*YGO~8+VB@7Bj;lny@zVjZ~Q>+@Uc(=?l-k!XXo0I<3Ggq@~zhb!} zS%@5wd{Lh&gw+jXRrhdcQy*LbZr;ZWBckqKIBToQy{Z) zHk~8BHqIxKnW-}!Lh#w?$U6fU$GyHE)>8&0UWu}L?0)AS$gSv)cY9)0nVq0P?**J> zkmJ)J#_=?px|KM)$5i7~>W^vz;X*Cji&9%d?#VM}ryh=(W;kOMo4GFcy`2T+za=}1 zM80@AKJ$}{9{w$CEz8_b%UKb@jprM-L3N?FZD#q|zwCFuBE5l%WGzsNhwU0QYS|im zmx1FLN+UoR{dt>ck@Crx(=UEddc=CWA-;)BSV!P?wE9hE`~sdHJ@j&>{6@X~>d-@( zv(?XNp3KT)mzRM&D!a1^6h-?P>-<=wlfVN5cB?_DAWDn9rX< zCL1=Qtg8Kb>uXl#m@z6FvF@x|qwA;izHEua>8b6$Xb&lWIVVS6hy~ zNK2bj9eeNr#y`I@-v>B$ox=&LY4dLow`{UI-yaDvYftD9BY`|Kb_m*`W?8w zMK{}ccQ@!>;AiRKru$wTZ$otkssuH1;a71yGpotC2DA3E9U{|RLYe}>pVKw3)s~Xf zuLzWg>wa&iT>I#GsTT$BA&VWFpslST3jY<0nAGGYjNi9Rklsj-nr3*@n_QfA>t0}H zWvg3QmUU4}!=Cr@%tyXzj^E`TH+#1Y^3?1ki+*GVs9x#EV?xP8%haay4$Ys$c*=R? zE+rDJYN+6ogg!HE6&{(Ceq|0Mwd@wG5pB!DN@Qo#H^vE+ix`)v7-d=}13w&j-qcv7 zqA(N@6%Hx7^n>~k*8{sISgBBoSvdRg-~M(XJWn3f%&q4?ps~>`{TM9rB&A=GC907J zP0QTZ0$=Rsoqt=cONz{y17RGW8(%F4pOs>O*#N@p@^Gf2iXTsB-^a@#mw)HdI;r1+f$4Ai~QGYozz>Vf^Q`c-Z4$GIil1(-O#HH7D-IRH%WTC%4;MG4Kh%P zzWY(wZF}Zyk6H8NXfA?LG7Fx z-%ww{A(l;)R6I=~VmxKcKAxD9v$t}*I|Vh?LKH6)t7)D&cy%av$TnUVCQ1F|p!P=Y z!>yW|%<#r}L++126gY4)HEX4t*yCExP>nhBIph{szwz7rRj|JYL+Td{<(P;ngs=Z& z%xjDM-@)LYy#~eooSx6~3IB6&Gei&~1?yEl``;`3f8O@s z^ESo2OGc8nv7QzeaIymd#2G#L#goJ?H6l`P^@Z z?1l5h%cY;Ml6l-xh5}S<=EVjaZ=@u$3rRh_wuI(7esMzgo2=WY_w`MFEI2h70A3(+ zy2Yb(J;iu3SdpfDaX|b(lFU>`!q%)_@E-iiL^G>$bMh5jK%~Rz!k+(BB4a@#jJDFI zJ0$b9rd&(mHDWQ%tf7=n(Dy*+S{gW%3O#j9B*7{+yhwksp6LwGQ@J@g=6JmljaU(? zwJI-KjoJmu$-ny@hA>*^Xxe+dN3%z8Lj@DRXU!H8;_Vo2M5_@GHe%V6QhyDJOa!Do zqp5^@QVi9pfq$JqUosG>hU3rm%Ih^VNoL}JiPiplVqiaqJseG9{xxx>M)iW&z<)`G z7?MoNL(glo1SGQ@<*X?rP&ny;X>@G7#K$&+Ki za}mU;yYSRGCh<)^>c zK7l5>*C%it$AfYUq!NO(&nk$bf9fur^q)4b3tSc!Y?10Zr}t z5fkVU#)taCf7jy;G;1g^r||E|BtxG>eht4~pk!t?z+mN|)0q18rpCj-a`?Z0F#M}Y z{~ctCz@0w@yU?}wWV?QgvdQe)6MJ-saUCETy4lL?+biFEMKl-3dWZc<=2qLTa@nO-@)YOXPJ~T?X!lqv^ z=9ek19Z=7l7Su0|^h0Yh z!vXVtXU95#s6Ha`SayCteqk9MUX77S4cE|X(PH$6>4hf`o}5SO8-TzA3QM@OY3u{h z&!N{mvB1nfch{Do*Ek?EV)6#*6fz^3T}U+|=D(53Jg@epfCW2kdSgB!X~2^^@XIUE zcYHxFP+nb^sxs@5j)W|?j-8#Luabj+pvu1mo`at$`+mV|WpW(Dj|n2}#legbcs_>? z_@`2J5qxsOi>>kxX$1UG5S3X7L2}564-W!P6vYf&w!M|LI^4PJ%zTV68j08Tqa)Cr z6fKQC07MTOZKE6{zwE4tQc8u@{hC9 z276oi+G>kwW()^aoA7uYjNCxuuoe5c3_icQF_uqPG3wH(b<$FNV=a0rLAwOw$3yxV~To04TAD$dm zOX_gkvY6FlZV4I*Hhc#T?>e{TV0W6eaN(NOr?ao`yI z-fvZ20R@UDdfr$*f#M0h&xkc5_$*%OjD8=;wi6rAsMHGzL2{`N3bWGZ9%nn9t)Unc zaC76Jj6r+=(q&eoFR@PRU`MDxibi>#KsBEGJI{J3{K-?W7u_!Rbg+6@q&-NJY|Yf6 zCZ@<82*b_sTYVGZO`unb({ORJRx;y{5)Akm0#R4hL5Mw~NRA-11*mXAY}24auMY~9 zXedk-3gP=IJTrHYDrf;vnfUBopnAMW1mp)xk;*?oXuKT`fa*uSV4BIp zC2G5<^MD$63zWddQLF<>qY1fnZ?22dCDqL7w|^)<{}C;XzW~eUN)itt^}~cyPoQ%B z5ic*q8(X*+h$V*z5%i>(8lPs?gV`;MkDWNK^bg9Q%6lTuA*0-91nJ*c;3yH&pkEUN zXTYYw>fv2Vy($MlkV;W?bA#KO0Qr|3N~>!&~gA1 zj}#6ZfGf|hSh1Eg*Pr-Mzq15%$AX%H#wgf+E`UD?0f4%gT~~(A+KCSUO0MzNgGNX$ z1V9CIFK*CYP6Y_FH+5cJeG}9KWVm~Uy^p6eR0*A35o%jcx zj9?W+{QGF1Ws#uztNvE~AzI_{ciR?Fz$1tjI$191Ah4`hF(XQVzj)GgICiOaBn1!w z^4%w3Ggk%$;6oDwKu%>~MUN64v|!(`0*;^^#BBi!qF4t6J^c@FOyVNpfg9N>ugWmE z1NrexI{5lY zYVvSQ(g6G2a%n_YdaMZPu|?f_0VEDTVCIZxMm>#@1|wi>-a~vcH%O}hrSAR(;H%|) z0Hnj+5}?#qjIM9&-HZ^KvtWeE`U#vY*r57=Y#7niF(*Jy$3cVW6*TS%&?!aV4^^~& z7u4IJ>>L7w%s=TgAZyH0|D9_hFpB#pj||tCQP8}u@3}K+ZVNn?Ozgou0uEZpcFYdQ z3(MlmMy%n;{SJUnP6AS(PJi&}%1TE;R=VGa5BthWQvxgf(#cvA?z_~C@a3_5_`VCU zr*{IY^;?63K)H}zV7uwoEGW|>=NFVcRRiqCl=5A`FuV^b3rxqc3!r%C4R5T>fD#tr2ha@Lv*K3N+VdVBka5$x!uh|Mz#@0h0nTCLC*j1-fa`35 znAE_J)!F@e`6L)LCh9wNDEiVs#d;Q)6r?8)?8VF4R(2>EoXB2ej{veW&f^$jBA?xq z=_~f9d0}Cllb1jPdUdpYQArCjUC|V9Ih@3W`{#pzBuhb6G2^3a^2Rt0L2X(y|MHC* z|0Xckvyd|Y+*`v8mRMtTJT?Py5mI5mfh0IdJrP>l<#7L#QSA8xlf|N^t_+!P8ptDb zl}`&8KJnt&`n((G<^nqG!;~j8J|_^VeG*W7XEOuPkfFBiF6u`K5C41;|A~b}U1B*v z;41+XwQ9-U)1Ti#(UJqH0<3d@8@1l8b|Gv7A28d?d=skL`Ko4wn0Z zqSFV{zL&qsyhrszvMCAX9fLp{jdn^CB22dc#o-o`RTdmMR96-thJs2E*8v}sk0qIM z6%1|y8(VRTTHSF35l$g)Z4lt_3bv!=SB~5hI?@Z5ICw{LPOFYGUOPJrL4be%gikm2$HiyMr|X4;Q} zQBg7Mh(rQv<=9lW0g+w4->rwZc7=Pu4@ee$glyLLB^Qf!P$6Y$S_70wREUIf1bE0T zz$g$UXjtUFN^=UvH<4u9x&3vh?B%Zi=?)+^lRzBZ62Q667RQMCtRrvjczN-QMi>d| zMXCX+VanrQP=}}0?+!6uQT@R20)e&nh&Vv+kjAPfB6n5#l#B;<(hMUK zlwtc}$3j)wB$D`9p3pI5H< z;pFAH6n%ZfNNb-+X)ekX#+%16v?iv8?O@$Ty~xgDCk(agKR$aGr@10hPUX1@NE@k` z5B8|u+$y~fn%zS$f++1*e(#iIB)NNTRH}Lm)1=z9Ja{x!1p?>bAHjbDXQ&ZPZzu4F zuz3mG)PgVL+2AF7M-*WqCdnCSjG{r2WJVcT1K_*@0O?+ys6wGloXF56Mef%9u5k~* zWQOCaZWl}q(R`@|66GCi&J9vV*v##FK7QpI7Gh~LG^fkqp2 z&f;etg3`Q&Siu@w+lOhuFqj3wpo~2-L?Xk*#2{@W<1&=(xbQRaXuZo#xw8cbjfNSF zn}GS84iVvL9$`th7}#U1iNZTXbGP{aI8@iR)g=6re<1@$N&mvW8YnS{PN;wfW4PD2 z&*GP;>%&_cUv@-2V5W;~fYH1J3H=2>WrEFyLWvjO*>>x#FtX&rb-<+82dz@1>C>Nw z$%U5pPaT)iT%qd)6zXa(jot~Ps2DO7l!&^42(<+S|3q@a=X-Gco4RdWfpj&)3?>@7 z9Zz&iE+BRu#E9;R+;i-hC19Fm=buQXgZ3`+u&wusWv!!E#_M-; zLVuhSH{_hKDg~k6te*naNRhKbL5*nVMX`lDv;`eMeLyf%_Kb?4Qh5rfhNjg)d^>OL zq}zXoXC7@R>WP_jLSmHVe4lZ#mop1-0XIL&4wWLO&FYAKHUjL@37obf*oB1}G^b7H zrTccT>KvI+id(5r7JYR>@E~@Eza=pPg^6ugp8x?MZd8FuPoT88==1Nd;6e)MHDPO! z?KaFO0M_wR_UJQ87>G;m^D(;`qV4j4ge@*&n$Y(1GiOGK_!17wB}9JPA8E57^l>N) zIAo6#Est3htV#6GE|d11uQ0G5h1R&eMmD6jTn7BQR&bMOSa!0|iTHH(iNK@H&W!VQ z)1Y54h_Z-kF@gtbm)w0WgDTcDphm-=-r3K10 zkLfW)C%uJ)^P3&yghsiYNwYd9jG+0}c(;1WMbqP8Z9`@ClraP0PaU~W5=bKIz2(GJ zWE2V|0?FTS2$5AZ+Z>V|zS6b&oNlO=9=5r+!Y#jgE+;iC+<38H{0Yehk*H1J6U5mr z@vrG;MtJ%1$fZOSF<(g%&rk0m5Qs|Nk9i;QxL)B)fzQDHUy*|D3GOMl0n#uWPGHTQ z#q1&YYQQMwg($mWy_e_HmkX`SRp$ULaQ=OuKmHO^im`t0M?K~wdYlW8`xRZ7jUM-9 zt#DYc3kb`p4^7KjaUx_NJozQIZiGhoy1jhjMT86MA#fDRYDO<5;P9X48`CW4H2ubu zu7cLB-6qD~Y(N$AiLLW#yX@o_sjpWwZNB}A#a(X|j<-I4>~1iW+~H{uUX@yOAjdo6 zRrS>j9Z&Mr3r=)qA0rkDECRmRP9c#C_91d?ds z12)Z;iIcU!Fnl=2VGLQ z%G986It+luCHea>K1zZH2vf~#fVFM~##D<-Wf)u_i7lv;4Bg%vkk2WI21E(3G8l3+ zrChxoPza%V6tIiVe1hql{|0GpF+>@|UoP9ecH%?4`VVK@2^C%o{V+8TIU>e^{=L)}yX&Vxy{v%#jS;opx*ifnmb7PSYd+a_U7t*J zZZi_*HA-CQ7eecbXV5(wWaig^j^%u`z~cLcaS}({sozFxrVi8tXx7*<@4eCpcIJQE z!yk$p>K05zg>T<|A8%)pJi#z3#H}mI?&bH>h^DS%%8#Rfa?uLdXLX$IoOTjHQn{of zg$^t(M?z}|jQLls1Cb0UJ;zU@fqnxwRG1a`EE`gcD?%SL)?skjy=73flO+VjAqUg8 z!Z;%&#HV5*XtFBy3-DCzuggN8Fuv8{e+^x3(DM!~*#+)Z>A^TCtt5$aYu#E?hd39M zb^7L^L6}mAIKTvX=wy*u>qkjgv6tB-VAa*o9*zN;Q{pCP+su%PCeu_(4IfKM6Pz+a zwSfK|l_WJIgZtb75IF_!5#`)}z$`|tzc(Uphbzzmj21&hLN$7b9JP?gVMK!C1Cp-Z zRuB#*6~H*|6dV~Knj^;E6WA7+YvYBkT|Py%2U!G80ez_+g${8kjy(etjS9I8`D1ds zmOQPrIm?lgu|xI3_XSX(C;~SRmAbu_-HV_A7mXaa#sKP1Qo&za&OsqbHi2EOV@5|c zH&y`_R}r3X?kO3UGQ*(Qk;s?U-yd{Pjx9#kdkxhr^)V#%Jhcw#@3U7D1EwG>_khQJ zc;U8Z{&QF~(LSV~IUOHii*mFsU|_faYg06;4KF?^S^A=ts)E}drt9fbEp~&1S+0}# zj5A7gqXeBu&&EOa@)|S)>Rp!~QZ!U+%@)oPy@b=fP_q1V`~?D`O2q4;h@{|s;-Z<* zU?V!J+lJR0_pPmB*iDh?nY$-^qR+w{H1cDcC84nPimc?RXS>H z;7y{3lq`xV(5r?%3Vw~vRu=wHG9iB=#k+_6K1Qc4Oo zFHMx5fxA6VcP2rcQX1ac>JZCgS@T4WqhI{~+WsO8j!Wn>HLlsxcnmmzvMGSv9@xAKd@=D10pLYEL;Gb=j_TiZ8MBpLLpcc1H2HWQ#Z z$R44)S_7xS+?LAVN}pg?Lr;+`eEciEYpN=aQ>%72;_zj5Qc@&kev&~rUHHBI1ecI56 zZG4`9xYU}LUqrB&Y+2;NF;T)Lndv7@XA=t*Hza0Xdal2?g@(A*aB4%KTU${3nlCJ$ zspuuRfh0QDqe-_SlFjw|yh0*DyZTGQ~e&Nz!z-2wKsV>=A z<1xS2T_tu;ki(da8TTP`qlqnu%{|1r|6G>pgX$&TR7>tx@QsAvo3c%f$829<^LeM^ zmrD4={5^1csjOafwAmq)F<4D`mU!&B`%XLVb5y24O|05NMrDaSn6j2^-5*R^{;ODaj=0?rA|-f+9a5RSAW{25W1#i zPNsrwlY>a6c1p^K!H*1En2Hyh;oHqr9hhHKM~_4bXp-Ho)f+g`ZF#Nj*lQmhf~Fg} zF0cPB06ZH?evvQD%B2Iy%vlf@_PI-+!`vpgv_LQnZj%|A2f0aA$!R^P?X|$L0=KV^ z>_7-ljXMa4+FVE~HSbhD$uoS1-7H3QyF=up0NtvkSI$56VWhTyM@3CyK!9VFy#QTg z=p_|p8Iy3-FJ&>nhhtL@EC$zturo?=da}>y4yO*)dFeO*WFj7**O<@!Yy$eN?*pWk zE1+Uk@?}-BfB~MOE&N9t5~zO2VU9u9-=VNuWX4lVM*Y3-;iqXP{yOM7c$ia72a$an z1`!1_Msc*7TN_Ef5{`!1TkPIK?$R#$${~x>F#h0~P>K6H>m^By%wSt?4!jb}qBWGK z3`Jien5xtgPvdxOp-`SL8f66zg)vr33F1UUu@}vwn7}&~)qpmp@;y|;>-=mNL_O(k z%;Lp&xkfX)D|h*#CgWIVS$vPBo2)CevZ6q#g&Qe;&(9P?g)&5>ZM|?g7=>kyyo=f* z3j9N1quv=qqFsDfQ3`7VNW(f3Gnb&&>oPjzf{n6LtdeS8=~D%u5E^KhN3zAiqHkv) z@J4tr&Z1M6EGC0wraSs}Gkksx)a5`(XVJ{P>pGVe!B06RW-nEs6k6*7syF+*0Vdfl zDc-_fKs!ULz%{l&=yI%dqErVgzxYgH)i}KX=$Ghs61mEZiADq*XMk&%bdL$&$YTtH znoG^Au2)T$P%w{6Q$Ub1yWEa=#V^1 zWHUT}{Gb|KKjWri?_!#II+4GZW=g`q7v~XM@V44OJKJS!>$HG?DCSQ^yB^d~ha%o@ z0FR4l<_NZ)Z0WBaS(e#}fM%JhXrEc@p;^lv`T$W+t>hfgr2jwm-YTlfFYF#wNF(|hL8QB+krENnvtIb=_x;B?H|OSDoiVly z6ntaF^Q<+WIpRu_K4^0`a^lq>zq9$M@UsC#u0G-UAq) zBFwQ7%TvFoQGG^AQUe|b;bG2yo^Czbi|Kd{$*ow`Ec-7sjUDYB(hY@IZ!N1031JyH5XC(g5}c^hkAHNcA3~Wwb3~T4FphvhnHWcuz&nbvx>}UL2oa*x#EuNtp`cecxJB#P(S* zSHAMi5Xl0oFz)1%U1$gZ0}7}eXdJWYj_Ahq;d@|HJ-@zX5ZOrmoIzd8r2H48V}&@% zcIE_kuyJ@f!!9dMTZEzx%0les*Jp>XN&a)-E8OS}MGoYU<<+alH4!g+e zo?GxZgV&YhnaZ`CAhCR;L%~!kWLZa&Ybc%LdEkvWC^0amz}~hfF1V6>_PxXSpyvg_34^DfQ7D|hcYBH)qaR^F#MG9cy6e;>J^`p3BAOI zHUL#nj~?KmUw^wmSui1+PCaW`45WxqwzdUe)MvZB+REcIP_U3Cb?sHv-kR6xKl`!; z0CCCgO9-4!nH>c96BB3AqiXblwf=oAdPA4bxod!wD{q&j zi2*XTXw5bOW5LuO`yST%+uH8KP>*g^n-_%{7R2E);(D`^&43*0-1_PZY(nHgzAGX? zKE^3(%-4&;t*>D?L@L`ZQIAb^4F{GwfCUTF>{i-GN!P=Z)mdwJjFMajIJyHMB`|==cp#o@9$y5s8>@|nl&Fda`7G)MPS;vd zap*b40g7D(?V}1*>l<&k`uiSt)Oj8DGP2%+@#-5nEqMwkFDp8JEfHDy?Xz1s5z|jo z`pM~fgcs`R7GNe9>ge|-_8$4;bxh`l8>rbJlJsvR7^mgx1Gvx-q|;%yQ>$>y*Em}M zl_zKhU7WA+RU>aeH|p3Jz_oB|J&nx<&;4L(q_vgtKx5xaskLz4 zEnxR5AUp*9y_QpR#lNb9ic`2U&HEzo8c6OiE-dZ`X_}co5GLKy$&H{C;DI!+ev5|@ z!J1mMQm^GX-myfY`rRV#ft27_q?ini2;I|P8}q?B_YTVYLJ^I&hS>#EI7vghaF%h)rKy{U+HRM&IZ)=W3QO8B!A?6Sv^f~0Hf;U4zjCRIL<|iF+VD?{LA6vsYqMlS z(qe_AjTEQr66pq5mYPRt&x)>5mZ6O3`oQeg4QfjO&MNLbkz;RkcG6+By=i!BLU5>k z*A^7)WPFX5WJP@;V9gLz?i4>#ca*wI3Z8H4|4DvL>xmzbdeg@v!*!X&(atVDPy(yX z=vhgI;p4Ckk%HXa>V>8qnzydfY`$s~#>=<;Mdqd8jhZbh!qTp?uo`$(DVraTKZdbr zz9l>*NX2=_bU{4>YU60{3$p;ZfHdX9W-_8fiWXpHPnc$;%n!kZ(LNM@n;SN;^QGgUlb)`ll zAr@|cJ@B4HDMTCm$R&(f5<_G*sl?g%ATs;5I=4=z!B#d*RkMs*yflN}cpU;>YhXz? zA#W2xGzyN}BbcXEM&aZv!*{uyjXGnyVa7KxG2tbpw`kd(KHDHZA!Wx=6~{oyO<+^R zCoTE?ScJ-zG~C)hdKeVHWoks}-m?=HI672z*zSVTt5Q))M-z#6~f{MNZ3IhshQC3By8fB*LGlKy>Gf?$2kq~q62nZZ?RKB+qd-e{27CY#$+21f!NnEqkKz%R6|r_-_*J(de*s@mFespBvU6*S+}q za*4ECBAzc4H6HiDKKaE`t@t&%Dy`a88jm?y9dWs3hUKEr$)SDvW(CdS1M*gT)HZ=- zdK!jdsy`epKAdr7L&dH3*v$fh37TzRvOe7{S{a~hu8m|G{4Q+WL1GJ$y8z(@u-|4{ zhW&)V_jI2K(2_0v{J%MY3hD=myGFy%3LkD?1yYFrIk6~axE*{(Q}d1q1y16!e@0+9 z8IB9CVE54J+d0W7bn@2fTe%#`8am8RM;R=#jSdl-(o<;S;9 zvQ7dL4jIi6+l-ISWa?nXV!!;!m+8XYJJ7`+k;I1Ly~AC4h5k^KI8fqYku6Asc4bIo z!J7JIfVLa>Jtp0#kqnzEE#tWY>=VaNt)E3m4G@2Yf@z^q0cymrFHL8sV zbHf*5-@^JIEaRbvKlmBE_*60E@eacohI+(UyBeuq*f}qI$i%FDWla|i-gDcRVrFkL zzlp%$7f`8(&i{y9O);uy{85_a?|(JdUbN&~Wgj@?yJS;VQC!g1E&O@8Gy$^)5v(RyHWpjSkQ;4ZVMjhASp z`4S#}WD~2vv#H7$W~)`9+n*UP^{$ZVyNRRWboO2S9CCEuh!tI4?YpKU@p(FpFQlA9 zWlwU*i8Hh+ru#Nd!QwjUC!ukxsmiLHZI^`eJ3GRWGN#qFLFXx_3!sP0Q|851({fhW zRsHxwuA-!WIg>jaW~o(?*q3Rl>0k%mlq)+eOIME#f@;cS@&(O97(;YArJKd@JJ zCT8L#b#{8dI%^)hCb=&Z4inR=pz6;gL3aMo)FNapv*7+xSXi?-ydkjrjWNtgi;%nS zOMV3{wrj3;QES7PYGzdOUNlpeiHb5z`pw6?GZv4L68)KX&z1MF zRWye(@25(*E#|F+p**c~+xEU_5K3Fv=u4C^%=vUX?Zmx@`*SXB zN3)UaS~>DZKS$n_Sv*ub@_r7GJoAx3V2$BE_|T=9R z;+x(L$Ss(@sD`$MVCrruh~QNJD8{~$)E~=dkit<)L}*WM{^n8}s ztzp#KAYQtmc{$ND+vVpWrQHDW6o(giK{NXVtI!R(mRGm20PCW*Fb*wDySYjjT*fi7Qx0g{C7yMptH<4+WIAm3ZVx|zwP{kEn!PaLjFT8@&5%N?`28c_z17ZZ; ztdJ1Vg)?mD{^(PHk!Zd)R8uK37$MXfQ5Ayo7~RY?8AMKWa>DCgz~B#;{W-O4B;K(V zkJ^TxDCx?>hC*eq%QhIM3hyFmRU(+i!i%g)k(>}j44ZpYuUTT)i9bh!0B#Th`ut9BGDCjm*F73_`;s zSOiPPSAMf-7!ac$nMBL!B}%!SCKn7C>2|??GfJ1aBPLw!zZ*t&gUopv2}ivUwqBjI zx$BkCQcIVTnBYf}o6r+8Y_05(7+2BzF?KPsMBE0p2VTyO zH#!2@7#Nwxm{0vW?e;Qd?>V@!R=an`bGaqGPv@vNh9Tr*ST!Qf)GU&Pody%#sUopP z*tJIqUlaQn?9{k9>irhS$q5U$hxGzjQtkwg{!F(o)OzK67-nL1sE8ZDmeq6(+Hnu4 zi-%ztBTgmjosRMyQJwBefjmZ4J$LoS!yc}tZ$4VKC=7Sn`us%{q?24KNjvylf*Q_=5%Fq3GU!nVW z*11l_Zdb&fBhMSFz4?GGB-d=Cp*Iq8L;4*7_ey{Uc zn>Kp=bLAmr|eWBt|kbQ;oPc@5=fL99b%Hx$%b5krm|;MhbIK(-u16mHQ-3Wr%} z*016?1r%8wOdeL1ehAb0f&G=5$M8g5R}+smbA$&*)8W}Zjls$V-y)HErkPY0=Uwc5?6;rjMx@^V(_Mu)OBp-WX1TUR62cVO^e;-yTv@D>o_+$ ztogH}12gb@@GZ(@BSido{;^P9Kf_&J;%!>A=J_zp_-R)kZ!D@8hLrIOv^H5@&aQxn zcWO1{HN(1x58ntYmJ_T3l&j3{4|rB3%YB8@hdf4yfp)`IZz3z*(a~JsR%ev{s0S4J zoyIHG5ev*)PKwTrca`&-Bvpv*_z9RiyFK!1@c@)apLeRegQbrJY~>MsIDU~Ez%9%;UOs6> zd0hpq>fmPk19;cGSZXq0I-Q;Fs&gbytx(^+d5?X@2cc*1uB7~@a~G)c*Q~opf=lk} zW4`A|({kdnc{<@P47nAsjeiuB<8alfruwt?(|0k5FJZyh#`wdi$;h-!8=G;YBXv2+ zbGFi!I^6tuE2Oa|V!fBs;PW(*%Ys-=Dwv|X1qG0aNJbXc z%`p`EI>VsKac$NPs@>2>;Tt44@DAUL#*N@j=J)PxH!Ey)7BHsRVkb@2T)XY#UI7v=pjoqr=+*0NkYSaFDn<( ziwtPmph4b>W{&T4u*7)8=@|2nbNGH3AAaE}WY`zq)r&-Tt}wzH34DO)>HVgaU-PO) z9HW0@I)(GYDCrR6XX^@CmR;BCeG@SWd5^VtjZu!Wf|xHQ5BjaE@1!{2c#aqQ^V_se;mzd6-Dim zyo>pBKSNw&Ic_9=A6>vlx7gx4OFuij$?Lo* zofTX{k!|z)AuI0_60SZJS^h(Jwj45ET_sCSmujd4SVVP=wv!`$m)5gjL?|Z2LuWhr zAqtb7T|KNb;q+egyHWS09eoE_@50BzQJ%ph0_;vEAFmHB55(xE1YkhC%&@5-Rs^Z? z`IffSwG)U3^;2}gF@fGpT`6$V#e`_E8|M^|E{i{YPX74=C_v&Q!r!$e9+rMFCP&;W z2LN9ALiZntm6Twt8+qgyHRonJZG zoKR;3>in7r{GTuYyRKPepn@b8?k-4C(-S$W%brPmO0_5)n!-Sjjnlh~Emtjz&YDgl z0vz^&pkoKq z0)*#hJ9Z^HP`iEXZ37#)PLy1t-jcd_Ki^@2d#mYpt)oT+3jLh2c&@)QF zl8*uBA^g~AIdDuiLW$VOrUvhh_){CA`I^JK00PP#0?m~Mw{T#!{o?O31AGQyMx2p# z+MAu4ZoQfK{RP^3-rKEF58H%Dtji#+2sbI$^E_D4V`60m}=8VfA?un6qHBX4-Ps+-rKa+oBOGB$++P zpkTFaphBWF8tAZV&)x$i?(~;WoUA3`&r0(;X{yw>C+u*mTV6wLe~s)v{h(VoC+ z3vXhhjGz7jwiQEi;pVy$_%OV?j#Am5%x;q0bDDUvwOkhJWu$~oO{3itXhE%^9+I&O zNiVSCN37UFUxnBc&Kf~{=Zc=M0{-~Rw0jn{IONY;&N?u%7Ux|7=zBw4hU9+t6L}5^ z{&5x`4&Itc&KoC$_KSWvbeSeY#Ut|WX^=KxHRf&iMVkw$hT&eWmA|vlx#SM_UcQBj zh6RjQWtK8a&C*c+;6}$HU}7?01q$|iOaZQ6jDTgSg$Lj?(m6iRHVsN_d3(8M&+tD?G)Xs0V~Boaa66 zMigMPZn2rrS@V1fnAaw@c8>l*%M^)~C`IT1t99(>eOv^cxp7NXkGulB+#)74H*V}j zLcotF56j7`ufAUQebO?O6BPhxvZ)o~h>G)Zsi+RvwVSK7^k?4Jm|U>Cm+6j-KH&TM z_=8qj`RL)tM;FYr;f@tQu*NH@)QTqB_yA0$uTY zGja4`dQW4iN&s{IV=2e$$NU;|`eyqIVS`O~KnU$MrfuArP33Jtw|E+96TLryh%`b`VI=J?Q>4+LP797(Q(>ugmcN>fcImdlGywDZNS`fs`EmDz1=qnZq zao@Y)Ia7dzk}R%>ri9J$!-Cel-5uY3(btzaR-O(Y&G5@;Ga8;fzL#;=OxrKKBUbIC z6Ox${e4(|Mvi%Zt#X@m`HMRi-2n`n!UY^Vwx?FK%j1kiR=ZOo@0+;kj1N*OH* zOtk526Zj(odDjyDj`jVTywG8hl#Br7)lE0FQru_1%*3t72#qA&xQgF@89C$15lF z{^;dZ435v{Td1OH5rasHgeGS)Q8INV-SkHsI>xSmJZY-gDp6fL)&=BQDm7^SY7wmJ zIq9b|xS6j4jsAeAW)4m;P)0N=^L91&8+A>Y5CvO=ENaLoGe1}k4#EqW z5{Zp}BK*dt)Oqz8Nr*pQkQz~@{yZaGq&7VaT`SEpfJ;0}7cLsd=!oL~8F=`neeeEZ zsx`pyHU`sRP_`{@)Pxb0V@UE@?80LL$<<$zhY<($_BgGFs<&Gs z7ZNwxQmDtMLo|Ng4wZcU?$Pw!oKr2Ih`~!yY83DexgVtSi#X_C0*>OaH&P$|7Oww` zrent=@HGK%_z%?%?5qw6_mDOXSu;EYuV{q{&PaBJP64k`1f|cf1Lh3=(wUG-o)q-=CZBSu)Sih^PkPD%EvSjvyNQE5Fj)xa7tOVU9u(4K(Q?jB>*Va z`j}r)Pm%TZ$QYqahmGqnpPOfA{KoVi8HH0}DC1T49Frid`}BkzgkZJyjVJ2-iuI61 zexG=sC?7i}7DP=C;V3-RV@^ULrNzhWH)WCF3q9B!Jy8P3A;kH)nJy}_6;bJT^ghS9KmPutOkh25TfBOd&Y#9txyP#KEF|N84-O4o>r@uG zZ4+zg`;Zqqv^n*l8^np*eM4knI_tp%#zY_JP-nYCo;nN z^b1^ykx4`&{6_N-#pqG9go&JFL{^kMO6#qWw+k(@M^7y(Bp%&dJui@mp0d468yl#g zCM_&-bg6etl{UyAW`cM0ijwH1p{PIM*wfO!S!O}^iW-T4w`2)eDoj!KVvwzTp!W-_ zDtST6N;l4K!oGG}-OwhV=x68hqv|Hwb|$28?V8?Zt>#A+;_J~(-F())%ZNHZmt5KU zh&!yj;&q8ORHnt^RANl|Pw^fs63+2FS$|say97f#!uQU_vbG6Fszqif_Tc@Oa6JQm zDjB^kDsk9EzmkYWJy;TmIkPKxXDML@Wy3fkXzNOYHky#@H|6-s9E{drEB0%HwY!Wc znwpYsn|Lc*L}e#N%nyP3)w%h3@q@gMRZ{9M9(iQah)b;jx|XL<$35}KWh+iT2f^ky zo1Br%iGP%_Gtzrs(08HRydZUopXaiDf7}D@`=|693@fTJen_w@t3T@?P)Oa{XMz z{MXIe%_*DS>V@f7{v>|mz=>jf`pA4ATBiW77h z(bF?pPDUBj!sqDC$^T?E<9hSiTt|MM=Xc2#!O0a-s*!i*pNSAa;(o-xe@?}-vS- zIxuV{M=LLbgsnJud~$^kVwPSgbc`h2R!?idOnfpv^`Zq50z%r;C*NmY=mVSmeEK8i zBhA%6~Y=d>&Tm`3P`BOFb2$g=5E zFX&k3!ySR|>NMZL*-XK}OO#m`2rLbECQJ3|ego@b0q78m>!(AWNazqH$jt(h9Ov3L zCBOoN33zW(@>d*3Ezo}|hE(>fcI=n3Zezd)aM>9XaDXOdBV@ke)=+@(^P~C(*kStXVwyVINxN$Q`u`K|qh}Nd^=zZN$mcj>@Q2D%TaCr$5=n`W4ftQznL6_jx z|6Wy&`2w6RV0gSS(rbDIq_wtvt?2*|Gn}!l#=WEPK;_BzVMUi)zyl(cYvMKJY1bkG zTzSZ)e?Gf3gusC~Rid$`8UkS=NYf?Ia7v^yzz=xs1EqlfBA__VecH)U5O5b5e+oGu z{5=7~7P1hs{W$Ii<>4H5@GzJDPdUVXx;9>5#k%#yWNs!22(g~%KIDoUr!2(%?gs|R z-*iE+0qJm`(H>o%^OY(CMv3`QeU{zJO9KUWFmKuyTVJ&U>wOpl;3`39g;=-n{~qLB z2!NDXzX1OQ8#;Ze2EY<1Y{lSQ6es9>n;QlC&oogUf|vbky7vF16O#`fRY$|C1`{;= zzQw1E;~S;6{#XnoB^=AkKcVwYpuqth?gAZm;hhdvL~Vd-^vK}iu#KPx#Fc)TnoEl? zKS{{lh)!?jQf?&)k(B?c|0(5x|G*8UCb3IjgEs*G{)u0eaA`)+2mRjR&Xn6_jQ{_y z_kV9caTLgT!5zpW+d#h(z<@s|q=}x0?1$Ks_o35<00$!&9LX?Ns7D?nA_O@m+>n@o zI2}}eX&}Cxi1(~qmL8&jNy~vGaP`5j0mA1tu>7F_wkDMh06`1_js^U{8^@vnLq-Qu zme&B$WjkOG61#$wSNQ>%Cx;A zWi<5k|Hlb-52(SkQs85Dl|kXg`{4tQ>(hLy@w4j@K2Zr3CMFX$3Jk5ji;O$8D={%G zGDYFy<1WKgg@V@SScR#IxiN%{>yz>0#LUpmQ2JyNuU71k5F(r$Ors^A`B!cf24;H$ z_r2$j1o^p6A=N^&z%18SA^oXJ>x2Tmdi9vtSbA30ey5IsB(Al0!FOWe!O2wfQ3frH$AP5@I~lU$%6xf)WJ>yaEe&f3!(rH ztWodNhIusY^Ihe5#@KQ&upQ!oLO^vLd?bAR z$(u3gL{Pv-5q}Y_lUcq%9Ob&iBG4_y0AaQ+TjQ~65~pccM`x$j&uXtzyIMe@F=_Qj zuNwj>+IDIpj`xk=VTd3&yTl2g`Kk`q*wS~mxlt&F8-kFyv6s)UiJ!4(hW^T4=JL&U z?tt3}lkZXciO`mq_QO)~mOvbt;FvaObOl^`X)CL|3X2g@H)6XCNW^Zk(iO=+KHcJn zD&#~;I4kHM9qAqonu@*6^z+qo!%zrk;Y>e*pk|Y9!N0DkOfj+~On^y&a&~rh2u_yi zsj&QP^5^$OopEVt>2&9vQ2c^9*@Ie-qxI=g1PhBS3k%CCCI-eKbt_2W!5OntCF3LAo9 z<5b@j^0Y`8-Po|`KU2OPN-$k*&kja&&aczvKb1Sr*A?XDBYpvCVl<$Deo{^KPeDgt zKw|=TyY6W`iMYHQ2XwccphKt2yXio8gK1UCp`4P$ocOu8&zuI*j5ek zx$Ws{Raiu~d>NY>t#h${2;l6BL~{zU)u)e#L^M z651Bz+*Wb0d2mME=2`5dWwd_^<^5TT`)GV==mUiYQqap%y~k2^z}cMX52uC3=P)!T zpTnmJu-s!sTwE&UlQ<>JnIW%OMokR($CX5o2V~_*56Yk|;V-Ue|5XAXJ z-fkBShPX%w7~wD@-naxYsEy}oTCl>Zd&=|(zQO$fiAE8C3LKl0rCCE%p1@oi%czjL z)h|m`S(z$@$JVL04Yzd0^ZO2SZf-8}19Od*@;3!vf<<>&25-EJX(=fM28&{ zdoa|<4Nx?&k2bBRThu}UC}DAx&H2i`KTIp#ZxX<=NDr8;Ab#xRPzbone;fXS!dh)M zn5=b+3#}Sh3y7J^?taNnFuk`BB|?P@C}#Zk~b1VzC;-WZtB z(k-f?geUXWXT)8H^0ps%OFTmAN{@g7MhW;NO9+>c0Au}zCSMmP=hE-R}W{Spe!8-T?2eX{aWJc?QaM6FLGZ!4H_OuP1l{dCW$Ve z+yr{^v%M1g|E^07mb%Qx?(nPYLSfTJWr+v+RbYwVJPGxm<-|8qJWEWnE?^d`xDk)Yf6 z*anlipV#7Q+|J3%ivjLt3ipDJTsB7~JWux!q@<(-`1ng!&kK~GuyOTy2`2lX{f39p zWs_a@>^HXSAsS!4d~pI?AIqh|`11I;xE@eW`EYx4wzgb8@&4n?tSmjtw!%6fTu5uF z8>;K*=#U;x6RP|%-sJ7It@q-8UH`faXmyc!m}}U79V|_yiAnL$Q@-fMst;#_5-%wi zm5vi*i?*lL-`qKa9_yC$~x6WE-xGT1-@08 zuCSyvf9n`T$LO{9Goq?c|Lbr%dpI$B)%??a?~jV9biBM8^>sY<^9}RDFRwb{a!`nX z5ra_PLpy)`w-N9v&=_V9%L?Xe^iCf!7Zpa3CKh&9t6Xr>S4CQ@8wT}!uO*lsx0`-9 z^J^z*JKN`UNbz8*)V#TXWt!zIe?qoAjG&*RgaA4bYJM%? zP%frw-KX2!tBbFe`nEE{swxD4LjxTL$A}8|-euOgYWikqp79;GvaEU`Pu~Mnn%2kKGeO2G3xwV2zz$D^q{UuMWakom?X0qflF#2NEsju+* z3S{K;oSdWUzdzUrdLHLMIp68WH^Y=c5N5GEcpA#C<|Fh~B!d7Xpd7cLi>sgj8Wxib z?Gz&YBM6<+}XDn2JCM{=h2GV)yoE|f?R|3vC(cW(cE6p>H(e9A7;p8CIX z#xSIZW2Ytih{RSXzniuAUgtFGz^r#UJUUtfzG)@3_j-vjaLL}^A)YMw)Dh`*x)-1O z-!=;YJ=IH!|NVBT;O$x+5+0{0=MuwKfzb7)eeo?efVcA>!lL zipm)x&G*zZ8$h>X#v9t!7td-sUZ52@o%p~q=KaTyywiJ|xb_VPK|2f0`ae(i*->xY z8Ve;5^uARk^>=na>kAMfbWEn${=HZazDTD3XzCjOYwadkRbQJ7R-7tXt+VUJy4!jQ zk+IFq=dUP)oyM}iGp={Z?#F=@a5D3~C&!e<;NU8xGjLdcu;f>%!-!Vpeg0hrP~cX< zF-qTMZdQUL996*bwHP?%6YHy}EX7Yc;tsbD{|i=hi)`TS_hMEY|NRrS!eU4tQY(Xi zh@@?LD|440hiO*ITLqX;9H|rba=&Rr#H(>Dro;B$Bc5KX&WbLiZ?q;ReXjZ_S4cOv zaQdwRUy02W=Twt-y(^`Je*id~N=95f;Ip@dm4pei?MSBMXs}wodhgCuxhatRjDkS^ zAuXu;YNK(P$}}*+kxkg@JhFcq3{M`7Dzk8=;>lrrCs~=#@txCMIun}^@X{DjVLSsB{KJ7MW*)u>@v&tyw$mDS#1 zMO3-O9rsBi=jT-EgtA}F{@EW^IH!C!%m0S?RI&VUifcmd&t59x3s0_mc7pJ?4~vz# z^kp6aH~ageI8e(>#TVpzRVEf?rz$LCop-0d#ES`PSLfx0am)$I#zjKQ(#wx~@-=i` zr8}lx|9a^9<7+T&ojw+mc!DoC^SLo?1ZL%JK5;Y^!p5EIvt{=O2z%9Nbdt-+%Gpra zeMapBt4T~%zWbQt#`^gDjLltpyQF9}$1}gLTDlCH4dE?>drF!vz*w2EkSeTchM1y~ zo3KTa<^Ql}E=9bzej%q-ca}lH?<9IGXR{!w)nwYA`^u~5n=mQC1W%Vm(a5%W`b!4- z6uF8(ElEkqtc#|3ho`l_)ipHaw#N&-y{*#T{7qE8Xgi>J&4_W`{zX1C96wsAH!_Bn zNw7?H=F|Q!TlYFDFK+0)sm8#mIF55i6rBvoe`(Wxrk*E;-?!-8*>2zaCY+b#9-?@z zp02m@>&=Ao-zT*c{4YAn=H|(*-A0347JqvV8t?bKAetFeueBOg_V_W)byAck7Hm2+ zijq{=@!-QFvcFycyqFHO^$%hzYG8-GW!TJ2<%1X#3(Zo=AY~yyxWy`JtX12oB4SnV zsj{5`Rt?ky#2Wez6<_Yz+X*;tL=7Zzh~d})RQ;W}goMYDvrWqXyz5&AFv~5U7D)da z$Czlh)F*nT6$G|AxYuBHo>^hlRgPXla%|@3Q+X2aP26OjW+s}7X!oo9$<*P# zHNG#OqI9vZP;M>W%n_EN7*6+Gpzu@8GRT|K1xH z7vO3Z{KLivtj*<9cod+Oz#Rtpk|dK>^VFr#t8ff`Z3zQok(K0y+`m`SM03@6YQ>?T zQ^;(H>o^fswd2Hsq212v=P<_F$TqKCNvp z+AG`wynz2JkWvOHpiS&)#&nNw$=+sxs6rJ0+-|QCA#yWH4GFx3H<<+i$qX`tJTo zQ8df-HUXd7QFZRmwx(XUdrrg0El)q6$%f42$H?)q^c_7t<}3eDpUjfDL{uXmR^d)0uy>KN6E_o~&T3q9!N+qmPm>6!*KDI&YqJ z)%Am}y1QW7s3_D2=G9nJ8eQBGxfe=i=d)+*vHFwCbn2(-lhVN&Ve65>fz&a+uAe7! zfRY~PBcI?^B&bICrVFsQYqPC+`)!E+*p4rsl!?xz8+R+xX|+6V zudhVnCl#9Rez!_0bxOCpfkm$PB$RmZrKhT09Z6>9V6400%KBi6>H0ttr^BKM=>v-> z;-MCXe|;d`@(}DP-mY|L|9d4nJdubJmp(O)KQ$#m6JPAQbY9h)RLKe(APUw@=y1w> zFtn5E3tB8o2R8)7t8eJ1GME4M2ruo;p0I}%L=Pxp#pD{bKV*?Z!lMBuBm)q+2vV*t z6}A4RiyQfC-4f(+*Qy`C)PD9JaeGEmqNi8Oc6DO;m8xroBMl~G`CgJZiZ;?Uqio;nZ>(Kga_iiTM zdP6<_;aH=)wXL!Cmrk80Z0{sRQ2{Pt(!kBg-oIwG7h>Bb({jH_FXCW?wOGJyk1)he zOH1n~2)|lS8uYZ9n6E2_2874czg@buorBP%OvB#hjX!gCPq%wkF8W?BH>zDfpG;(wHu2&rl4+{Y*UMD~bQrGs%n?>B8KHmG79 zg|Ar60RptTzK$KE|DxIE^8hWy*~07;R9PEtB6bNT!JWGHIExBBZ81mIet(FnqW@wbk| zHtx{~JbMH}1;>g%+E3OZD(iRUtrmA{-1EJmuLeXjd3kws{QT3Ya#a+l#9siTKwrDk ziXJ$hR6ekupDnwM#R*#_ww`!WlU{_Fr#^YYu9-LP^~&8o=o&B6$8hmV8x{Lzu6wWV z3bB0tsFVNSGA49^p6o&)EF)`}_R?d~2*9k}|W*Yd1`kD@||7QQ6=~mg3GX+5x|7ds!o+OyHG4dQvd@qLZj7r=Q1W zWSN}cK3rpesm(@RmB4820i8Zc6n*<4=X+cExG8Gn#f{r{;}S{s8L~^>M%e$$HEm$o zQ(e+@(cpgBxqiwt*Gi36kaPTU8&;Us+PX6=Yd7+Ao8-|d_hTsZ%_~0yaBCK>QO_sK zI<%-tQE7Hoi8T7$xOF#XN-p}WLS#LU?&eTP8$SM^iL|1I-x_%g`zn)MzuDloU0dD0 zzP^fZ%Qtt0OjdiMBUv5(*Y3bQ3QYLhZ6;6tn{LVkv zFRWV+>DLo!s4N%?sa9t!c&yw0s3xpzl0l@jkb_vWpirk;F)S?1WVs_WlC`D={Q%9J z9f7CWjL35hG^y%}%tHTW|k@_`iJaKvM*4?^qs>k{3vX5nz)a~BkeR=xflU?s9 zSEKP{ht5&QVAiBr3eD`(1IarQdK>!0=2iTa!RtUez-wh^xNK}PJQ7oyiZCBiAH ztJ7wDeP1Y%=-=p(Zjk`dN*Aqb>uR7Sr7@wW>^BqIglJ-ZXbT*wTn`oI>2AQuzsg!yzTlU%)M%%v7yYv#r zUAr-1WnQ+cxRXNlkWxo__;p+0!(}K1tH@%R~gVh;@a%e zc>GQY!FW|K*&2Oy{Q~wQdBEGe@?@rAO+r=uWrj*{w8m0HQ)vvrjOYghB0=bewJAs${71|L z_f7H=gW&&C2Hht@&@joOZ@T}6aa0r{7TOIfQ^Ru4tUdy86mnzL%Ol0=<-$&Jtxg>= z(N__Kl=iqXw=`c!Q9bSCu_u5tF-3u`Q}2(16?$Re`IL`NlRN|u3!WmgdR~C!k-g2+ zADz{G%z;SejZH-2tE#wEsF3#_?5@VOf_4k~YAS7$vLWeG^S`$G6ws&+xpn$CGNPi) zxY5oh$IIn-HhXkGyCF5XKvZ1Dx^6}j`Z%>DsK$DZ#C}lt{=MCIlk0akrpnFx!-!a+ z$$LE>zoM*8ay@6@V|o0Kpq-B)=;m=qSzmzyf@r45qGzEY77VXET}P6X3@?J32Qd?S zO8;#|qI^+7(@?Z5vHh1$u3hhVHJ!6us8trgVu-8GUd(uEvcMqSa@Ws0{)-Ek)H&)22hW@GsqhjE zKiqVksu1T&=J8W5KL>&tU(bamZ&ei)YG!6;0@BUY{cYe^l-|{lqEMmy?eDb zQ*Au_^6cdj|L#kEABpIvIbQ>{LRFF!rA~%pMz-!1Eb=o}@(Ki;|65Fo#(^w>*I3#B zzseFn(e8WjEEg8COy?C&$R^|2D|Bm%HE?Sd=lYPQ5|B*f3Lj?tBD6C~skR^eppas+ zH(LvezqF_rH@|(~6rBDYO)CXQp_}a^E@pn1_QJ4HF~r~2EZf?tL9yu?PED-mN1Ol; z*neF^<@b#WG>PCIS8)uqCTR=0#?aasQvHE5kgSbtxp3E!cAhMwRaBz;au%7;mt@Pz ziq@Abkt!0)mJS}d)xUo){y{0dXig0}BxN|gMGisJzxDRv^Ht!*8(ULTBWcdOpr2iy zMsu{;uoj5&c%h)>i?fAY9sQZ;DVvO0u*1KNf(YInfLnC%zR_cZaC!$u<>x=#8!9t* z`#f!}^%}U>?s|UvWSB7W;7v$W!4MV;>XM_OLgPAf^`|Nh6}IY5RR1?3HQ~10+}x_# z+IjW>BAgTSL|rPIF4A)d9pf?|BGmk<@Rm=d&UM$S4|Tkp|0tJW5mr104}L?zErihv zQzRYJ!*bC2zu0>3aH{|R5BT7aV;;(}Ws^--Mpk4;8OO@8Ws?=MNoEp}U9{|dtn3ll zdmn@%LP#0iuXmr%=li>_`?{~o)qio$`~4cv=VLt~{Q0pnqfG!A|Nr(CoDu@q?w3v9 zfgT*OGyVysQU8ks+0Eif<0>3G_kNf@|`yT*$r2P{ohN&ae)dsAa0nn8>c!grp^!kCiFt65$AXKsH@nP=s?ZVT(f-bj{Co?Wo^Ni@xa-u1tuxV12NeB$hp2F? z>55R!g>^|TE!fz?&Oqo}^|UVtJwMs$WRV^N@jyOH%P3i};kj%4;qB{v)^@*Yl}J6d zo~4#vEi?}B%0A5O3zB*3z)<3u9o8-L-$m&F4xG~<0{?)&Z;KW`<{q3@FUF||+)69C zS0`D>>DwmwF78bxIv~27b7Jc!bxoqmpM+k8^VVKd`FP(4$*}`ChG*5);`CB(Sx^mq zKOwNb5M;VTG(IQ5p}BQld>;Amd|RGXq4l@x$AFBMm+D9FZOQDpOzS(7^hB31XOi}q zTGoqv|0~24ao~nP`TvZR|4XRm@p#~HY$kW&1@e7f&hpvS5LImVj@SrUGIBqcZ}ctZ zDQ%m5W!SI&d~OAg6NZ0j?pp{YvXN}k5qyej%Z~%{$OY3{m#^z1=khKmN83-IJ>#Uh z8($Pn)~_{{y7`$@y|ugv6UQWLzoVWzDXOchpXQES(!Fh>H+Q3MUsxa~`@bGU5p26| z;eTo&#T4RJWsZOA<|2dFdgv0@+iow{$2z;;Bsen)##BY817Ig2(9wS5Mz@)Be5~0# zSX2Yor8_+XfyMDz?|to3kV5`AzTmBEZrabE--?QBZLgo*Gs$kznW2QSYL$Q&C2-UK;obWZZ95V3!l_#Cz_z0Bp~1`ymaYOFGRRV zNlgi3ikvC>L1`qjhfgiS`YYZ<>FzoxU(G6Wj|O%)%VTWV{;i&=cPYT$TU_olf^HO6 zM`F;7ayrNP@%Goq_~~_8fU6_Mtu&37#+Y14+k-T!d=ku=`;xk-|I)P91Keypcu7=w z)9a$oSnfGO;)4MydWGa)SEosCbc~MP{@B|~oL>5TN5J?a?c_bYoee|AY*VItjANR* zMx}4mKZv}yL`?Nqok=7;@0-p^8L??h#<7nZ60UyHl8 zYDhOt*J3xdwFg)%o^Fce^5MC8=o)jsMr4=4%Od}-=GI%FQ2m9FyY&~`TjUJ=xNqNS zR%MGYM36rlHZlrsEg5?apeKRJ#6KM;x*FRHPH`8KL(7QuT<#|wfS5&I0QaVVs6JzG zqb@jeYA3c=`GWg(^rb2(y`&3T@va2Ql=Z`aX%hs+@CF_+i*NH3r#@Qqxr3jj`5_OE zb>kC&{cp#II)jf>-yK);_s!slne;OV1@|Vsl?gZ{rnx<6d}>(1TvdZkvpYu4eCrI6 zHRfxm*}Ha>c5Go7cCen$8YP@31wgGqg$?or==xc-c48#D=H3`LV0xwA(PJC^cIMyN z0OjtS5%;Ye0iehtn;(3i6ZUJL+|2gqc509k!lQrkd7r+Wr=!u6&+E^W_MTBEl&X%JMCMHb`a zGYQ(~kMVUVZA;>#32wYtSIG+LW~!I*Qsx?rz8C<#R{CriT?3;#n)$v-$d$cOaG%HO zo8hb7ys*^X85Z%V`dHG;?t1pC8`zRYKJ7hLmsVVskXS=VEea>%cD!<8JuCX(i4X>Z zgeR?T#EpMZ2qHWzUWrkf)2!fu|9njXK!@U7nF|+`1V55JTQfB>WnV3!FaO0L2JN(= z67yP@j8B%{BJCrR{X}oBnoYV;5 z=O&3d^nM-=ygEVbjxq0%FVK61)A@t(eDAB>7G&NE?>(WOTQ3tBU6})C&+Tfv=U)%S z??~)d-WL2w`}^k?f#iYAOqL#!f6p9bEc8-VEY>7IPXQOevrXdX6}*$7e2dsQrmohq z{t#=*{z4)pUYEI`&I_R`79mqNY!Ft1M~aAK1n(rLc{OIa)@g$8)fb`R<1 z3LwqfXf!Vv)AKxx;6n6xs@s*Kw^|?aikH^Qc)gtFotPJH>+U=+B*dlw>VP&xd6T~_ z?w_+p1d!wdaHJo^bA>j-DL|L*9P9TMPUM4fE_&8m>o!L5?wZ&58aI`D$;~NF!Qu%! z5*@>esi#~GhNOS5F{BfCFAvTWm0cnVjdXPrYbW2<4#`Ilb4WM{r0I9<~IzNn}$ zFHh0y{{36#7~&5dD(hKUyj9DHM<&LIW69Kl{mwu8XG6}uTJ;gtduBekAcm0$I(4?7?$#^cb%$KvgE79qNdRU zc2hOUDf(MCi>BRU{zPM6{@0=+HK7+by70LM9D&D?p^0_Aa*xBP{9I3R9=c`AUSrvt ze9H9`Tb@>At}-Sg=8rWKd7w89PGJ;7T~JRVbEVgs=GUc`7BFgyO)&4B@6w9-ziESvuc<8{Df2b&tbCB)Wm`T!Q^^+Ez@P6+~i zlSlY==IFRu*WPO7?W1Zwx5F~3rl0FIAoto3Yk znKN9Tye89KH?d+`s%fqFe3(_WfiqAc4{Mgaro@R12aEUD(QB~B4SI~UbaYY+3OLJh zgAO+*_RoGUX=!T4LX%JKD&&^k(z|nq0|eJskugdNxGZQ5q`NOQ-wHNwx=ZTu<2kKH z)I~NXjQsUVcd2ZDJOmxxg^75ve;?H`#G6?ruRj1Ew@DNCMHCc3hCHRrw;W-~0~wdM z$YrCYMJ?{E2)<2z>U}*8#C*=A-KA__u z{piUrwO!@E5A7IwXdeQ*SyB|IFDf=YugUaP|3E$IouT$bc|N~T#{7Fh{3p-x%)7`dB$Ni`Xxy%>th5E9fa_a3 zPr0!H8d;t`Ti6@ zHJ&T0V%jW<_}8Hl;AS3k*6Yg3+ebSK{MoX8zIt(u>aBI~-9SvOCUgYEO{VoObKKOC z4IM_>JX>QF%T4@}a%J04jOf2^5h!3mdC1=H8<7LUR}BH887~m`+YdC3n^jwF1@-`O z+6QA7J_4&!0f5A=%ht8rsxB;6MmY63={O+3iCf!1?=D#JkWtjSaI~{t6 zf1$|PHYfI1^rtt-Wli6260T&+9KU_On?FA@KzKZ?yj@t|*W0iBFZ`GT72bC^XLQx6 z6qzz0JvgX^xWK50BnsTOe$pn8kplPwC6Gly@i>XHIqx*4|8_y~I2nZ7_A;0T=k?ir zdNQQ@x5}Cg5LBgphU*5u8`%Wa2!qXFSkCtXolHqFOe-uGej?1zp8^D}w{o{YGn&@h z+uItpoS*Y;zW&bjV;sT51d!EScncfwc1vmG)9dZP&yQ5MYL1WkHMthw>s_+v0&`L{UZ}X_%A(MO#7*<-XLNi-3GI+JNIzVFz$8iMdRRJOG1p*1#-6(if@jaPh$<^acsZR?WobL#2BeW}tq& zS!VzmZXPk|oZ&oB9dw)h_*Iw8!-=;<4OWoZq8uYswQ!m#t`K5#2hBinJ>gDU1)%6C zvhQO$Jt2(ptXiXYWYYhyW@WuJf6N7DaKn*h>mah>37~%a!Eq;iZfem2QvRz+hn`)z z!zmLYJGDLUzBbA55vOS_BIy!L|usYlgww94KZ6Ai)hY84R|jz~LNY*2FfOR$D#0d$YGCG6XW4MZ`zLiuj+FS~8sfYk)4fOEKR z?J)o~`$4)W-{s)re1NxJd+=$J{KgiNNd9V!`Pk;gyD*at` z@9H@Kv5Cxsj!4ACAZtSp^)5rRMg)YqkQfT($Fvx&-2h{InRW@pWd+~ml&3}bJB$AN z#bAgS^Pk7E`xC;>0=z^A>M8G%%$547NU8pO_yzVQe3{~j{G4&xk~-!9NWzVGH?{JI zE*AjA?=OMAx7u@J+w`+Xf@t;HUMBI*oAO|@^cD>#13BrcaDlJLMF7s+=CX`&r?vTC zB@oFAj!Cuvn+GO4Q~(bf-6;q>`j!lIcxV~#U6*)@>OUYnq8E(Mczrdm-Sq%eL#gBA z2ARwtRXh_Q!0Y?11eE^sC6|h@zZmQI>-4z5&1hfVHUPepeoS3j@w_tCeL=%G7ohk- zJY^~ew>+E(FXq@kr`l=l^2pq`Q;A1Oy+E1vN>B>|3H-Q`0s0081wGc5CKH715>=F8 z8nC#eAI7MUE`qHzz1<~^IypPld7vRcNEU@@Tco z%&5CfaaAWUmq2GbH8Zo0mbOEF1q(tv3@l6T*46y{o0yqOyZy3|Gp)uHWwIZ(VH40; zD{df5uM~IY#y*5D3=k6959A01_csR9R?Qz){pH4LRzU+_JDR=IW44uGOO(+k2yQkH zN}XGP_A&mB*h&c%MvT9gR)wU5iIfulyBN!ySuY_hr<$rNLcn*MCdO^3>8yD^Xphdc zb|#{8+e!&DRcb+v(vrQB?6&l!2PJeHeK{Cp(b9L@1v-?MFzvDI3bM~~? zfnzo!zEPXVau%TZ(h+WGK}H}7sg3PujY+-gpauG6-;r=^t>2Q817+1Xz+B*jwWvv? zpCFJ97g8)iuloY%wj=!62pdCV^XCVe>n!DVlhXTxVxK&L^ zQd!u+5XDuFVA5~dLzN1Rpc<+SkH#eWBJw653w1EU0GNl1{#>9{l$NZ^)WsKe1J|3( zF?;y%*Zx}g4F??))}LKIRsw2SUm)uT05cwXYUV`1|BsM%#!pR6-3NcGZ?QSBrqwQu z{?ZE5QwAuE-wTBB$+)JG=kI_qe90zN_8BB@UzR{Nxe)TJM=3z9%=~5!9xiF+dT6=; z(l!mfK|uo6dvTj;HDJTPUPA*?jCB{$s(A!5M=zrHe)FeGi7EX2Hgm@e4>%^^*Ts*@ zsqoN_Wx%zjEAy2zm*+>@gT3#?RfA7^dxue6<%$>L^iG=(b`}~(9^#@~dCH4ULsf$^ zUp*C(uG*z9?5wroTfMTXfpZwZ2GR*2ex1Bpv_D7?juXj zJ>szabntcT&>HqM2OiM&lPX6Jut38^1c0ljI1s7|;Y5x@J>cQC&4#=N4h$g~nb82_ zI~eG}EimxfO7a|p5jYv&EO)Ba-52u;4;5d@>JZ=!+=_o)3YQD{ z+A*^a8X0DX5~2LC*t)b?C1mGwV9#KcBW`t)f>ibW9oF5sf9W`YcWAB;W@|}Z3t1$V z8cOI?D3A8wY6{DIznDcB7srhf!M%&XP5?xl?3HY{ z7Icg<;XP z(?vF4fR=^Al=X_u>u;Nl`F&rMCl2@|)S!&%SkD&Q@?Re#bV@#WqRC=oB-2?tsX+@a z9?h;$ExlZmpj#NoR492RIP*fvnxvdJE}LK|=ltyCYU%s$Ei!U8bP!vhCYAZzDYtc{ zEABA#F=hq8+szBHF-76puRvPCOA7n=&{trZRsCHbKS`o++3>kr3TFj`@^D7V15B~+ zvM0b`Lx&Jdciglfc_+B1O?xsA)GlBSBMI>?b>JgrXk2OJ{**Rs@+pzk0UzwJ5se!# zA2=$)tQiFyku5@!X(obY99oBexV1!hn+5*=t? z>|D3oyB-FWhK(tZJry!y1{_4vwUp2v4>0s#w~8k?W>rt`aR#g4OEsjv7+DLZ_5ki6 zsh=}@y-0SL-)*uN$hl|=W~ZNhB8o~LDw?ivrYPAfl`##shokw03LP1hFVAaQeT|NP zTZ&C>7?qmj`fG{w=;+v#uy%hSqmP$kSN?*Zmlr8unx{xcC+U*@d2MYb;Ti~8v)rUh z2W{`wTsx&>pSdcBB%qIjbUv2W?@BCN?)D@{_^3&n1aTCozU7G{ZdbTa=J!C$B&ssl ztZd=dMhWjzpzz7asnYT0r=O|IR1MvF_Sv*uaO`4vIJcgKMae}<*3M60##uq`;~eFP zr8DHrvgVFUTR5$Cfy{~dDHuOe9W@7Phi;d`L1lY+Y7d~{l#yHO68Y45u z)5Ee5A8g+p;H}i@2J^9Wn2YdMGOGwOl?IsG$a_G+(H#Cs8F}JT-^8%}BNajo$nblW zk3jIktws-qIk`g;sk)CTJX?xKy@NzkL9bXxNOMeTtvgsbyuqd8jZ%ZV+9QPU%WK=4 zAK67J;74*KBe}6)Cg(`Io5#oxZTCH?$d5G&)?Xj2lT63T!V{U~xwR(UjG(KA#MW@x z=o%HSGdM0I`(k2GaDQ5U{a5OV%BZux`BiZ|0ZF!CGoTTe2SZ$SFK=jf0VvwBzX~i; z<_2P6P5SEis9M|ZXRbQZJTxmvuO<*5Pbg>3EYz9K>Z0(rh?X<%UB zu6hpE?1-o+V-D?5Yo=R+2Eedi<=!Lz`Qtw3Vyo>CF^)2SVv2C1$8T<;OUUx)nAyf0 zFkXL3zpk<(+qrc^bMUk|ph(zdss+*#_W=%f_P1+dK$k<+sHR1iAXL-gvtP?ec5Q&F*h{DnR-nWo2s{Tf!kt^?Uf+46>jegm$cRgOyq2E?h;6wJ zXxdzb<{8xB&Y@NJW-^(INkK1D$9FRqtatpxp60(D92}O@~i(dq*vC-jx;%ewYIz zH=chYdnseB5?zHveP}9mF>bgH5X!F@gTNjYVS}|%wGiTJ~GCR*K1m8U!5T1R# z`l0Q&>)tGNm}-`ZhDMCxidh=B1D16(!;#XC#TiL!`67l4OK!F2^<2D0#GqYJnrNk zuoT>QyCJP*gO4rf`WZ}_9C72RsM=& zJUgL^IpZ~$(RC;SvZ?28!zOw~6wH#__K+^I-tsjyuA%?qSrw;fX~I|0Wj(yrDWHz! zQkU@n!*6EH#oMc>+zQIqqaTr=s=%OEJlAD=dsPahhY55m!CX9}`RS>n^ZauV^zO6e4SzHw(L1#wDnMbS$zdEm3(H;ROnIt@^VD_AQ zg2pS-Mpv}wJ;p6f^7p@ulcBTK$4&ZxyM4+`BAg3h^bQk-FG}9l!<-6v%)#^$Z&xv0 zzuPwppv?(`?-qwYiMl*oOOkU3Jpt9da1$PVWGFphh57th8|dB!fjpqd!U1#5p{%u? z!WyxOGwG$4gJbjw^Fd!QC}Z|cA%KFGzw;`oUos+1vb-RS-w#v}3T}i$^q=9i+p`WI zgMN?gE6*64xCW?->I>T4$aU)>#0q?U%H$rP{nj8fJ=%lV|J;fKQ>56b>?I)}usvO& z0x0)a@&@H}Q7wkX-Dm+^hur~awI<_sfL760{}zqh&1Iw5CGuBl36=M5;NIP@V5TO% z3BfRXr9WP{QisB#HQ2@QtQ4z-Cc_zPZStB9MzwrCLGcf0tn0&NSxE*SPQDx$`B`A=+@)m+8ra542q$q58 zj*sob$c@?0A5#ujU@PzF+cTSevu8eduBv5MTpCi<7H6_E=>BD;A5Z56!d^nM?&bJ^ z#mayTJ&`sa{z5VdBU5Nl#l7{SwX7{QFaz9qC4}my+H9J*8j0PO{nAO=3kYc`71rJ; z>o#oEFsTPml!P?(#TouymRM0YAX?oAL0SFZL;eH?8Zx^*I=NolMrB0wBMwR%Nvfit z^s;&*+S3+9c(&I5fpiz03eN(PwgH5CF*OUg{^KXIL3{W`nsm}6IKGYeL?6=@hF4}> zb~gcsdn9~xD^qfy(jB~nfC=K1CD7~wZ}aqHJPJ_;B;%k_AcP)VCqnrk5QuIo=rUu) z%Y;vsSqcNQZerrs74_ZlD5SX+(u017FXrduv+&0XMkgbvc~{Jgvr(Fm#rvVS4fX}i z0Y@++7(a%;hwuuOm&bwN@^xdxw}lYBbpb)7?e(rLfI{nJIs$hP(a#+xjSs^>eK=+l zUWmU^XywT=qj5Rl3tQtV>YO6Ei_voqR~X&^iK@56*mkW3@uUJi5khEelEcq#I;hkn zDc)c@bMx53_eUZkuK`rc>YNa_mdgs$CwD9K=x6`|tc9Rc;qiU%C-OBqohXcKrj6;W zya$eo5HqhrUPO34ePTDRuhdveVqPNhp!+?_INOD4MG|~>XMEyX&@=rp>8bO&v`W~{ zBrvl34FVbO321EHpAPr~-jZ1vt|OdwMr&JstT-u3br1mL{wPj&0aTzb`%5VBQv8b&|C|gj&h63qR64{Klkgy3ROpeBgPN zQrnz8;SQx?A+wLM3zc@!5fr)nNaGrjNGIlg4XZBPTE118!gG!3aZqXPz;AHL~CXdazXH0z;gS{W5Ri_;Uo~4G+~36 zw|$sAC$E+F@}+VkhYemIy|da-&e;v;Fq11>#@4x_c)qV`Hi}#8ZIT#d{sNJC3#%P1wH)NM}l}KOzAKh;<&+kdYc3S&P_c zM=)MNwPMzyIq&VnSD>4Ee$d>#N-Rupi_uSTjcGYxIf~YMpQbb0*Z0(SoCT6GL;GkO zPWpjV4<9|!7E8@-FXD3-C@OZYtfXRYLo=AS(w%FG#F)%XOs=HU<+18A%%^=biM4te zE1>AeNKnw6%D<5QF~sr0PF}AI$q)CfP7>}%roJ|IWGKJ#CpIFsq^J*|Q1wuR4ap18 zv9h&+AT_%x?#I!1yE7ZxYOl&8X|0S$YR;M5mgM6gI5B(yyTp+$F0c<(2RoNh zDKg$)@+@AT*0V;6UYC@V#KHpJ)gf7_J}peTvkPZG9e5hbt=HsQHy9*iR-bd;^irLI zMaD(*^+RaG36ELhU2w)K3X{?bjmP~^i6*OPl>P&(+#jLf6^jP%k(~mN?%};vDYDT< zmk|Fc{TA!J%r}C=$e%R$@++MdU<$3yixaF*vRn*Y8G`zeEp2T<4~|8XFtccyb|-3* zS_y$;eMFo%Rv%Ni(4bh*5lO*+L#?e7Ns!-cjZIwyHueB^$FiK}ZRBw|17RFx0lcTP z&Z^}b^PGpQ(N=OR-uBEz1S88oj_1$~${QirS(Bbu;=RCre3O*RKX~PWJar|mnS<6~ z6}@GwEyud)^KDumgs>ridaHb~L@0+>7;T@Cj@?5AGmJwF6p>vy!UQ7*;e!}Qa9Nk5=*Tjxl>jz{EGCl&NHVH|TqwtbxeH^X{YeCA_41Jh zdmjjyI?RLXQ_O_1epse^#mbFm{hmHUEn%D7vcfA$@eMIPdEICi2)Jej3(PLTj?a2MCxtP+_9-po#5}Dj%j_7 z9tD4)2}7}_!`>7W5I-f43Jl|g#nGV`R^7=_k^-DaVtC@ajXyx$R(81u5`*>&T{;H{o1ee%uKVQ;()D*whQBTinh}N`ucPflAbZ@Y{yV> z2+Wn_PECH-w?y1enC*%l9UYymuC6wvQ5jqhb|a&}*EBCNeCb?5?R&atbsDU9(YSHx zT8rN>C9|H9L=B&0$>qUMcbabA} z>ikenQSf~0tS{VrNbA{ze@SIt(Nvn4;#)&DhJ$NI-Z>c<81?KR(hxJ3!P zu6l@>MG#{$nbPm+Md=wVRHI z&+UjPR^G1w&140`x?j)xuO_HnopmCZ2`}&4(pH-1;B=&u52#MW+xR4!Q%vwE3&4A!ZmQX1gW8!d(+@#WGntrO?M1BTt3m7E0FJv? zM<*ATjO;GXV|mIp?e$&dlo9)^y=G#uYN7by4ka1B(}R$$P|aU~y*Hu%pe1qLH=MhHr7g zABIsb3a7gftXULtK}bIuBUk?%2?0+}&skNbjF<$B3)9(uSpbzl?_l2%&Wile zuyk)h>;tN%hu^qTmDq_QQ(O5LG{|3qLUxE6^r$8|E(1FFn!>0~hA?d8Pc5L?X5^cX(njs0K{{3Umq#rYy?=c2yjA$~YVSDWK zYWiyu2FLsDkq8+zE_}@@xD*~%U`1AKS-ku^M~*OZmTGK7CeZ-%^F=d9*lVg*e}ZKa z8`?!17u8<6Tb<%JzTFmZyu$BUf7|Z3T8OwLwB=fSnHn$C)>(I8{GTt3?P9D24YtV#p|ZKRW)?sOU&s~Y{l@qnKHGFqYjf?VIDwlBAB(~ z3$x^h3w0txvG$ibY~PWEh?@>kVEa>vOJoeS4Sv~DuHnWC#3ciTyIwjOB_68}aniqgCDibawV+;#YJu{8^3BS8Je zYJ}+z11jiG1u-S52R4GiM&MjcG1K>@IYjLKN8K&Z{X4zif)3 z;a&5@>ng-I=$HhWlwetM4=OP`t8TwQL+e9#0bOhXQhO=I$S*ZA{7!KZ{zSMGHjP~uDWGI7C_>mna*fCy zopt;k7qCmoZ+B!=7&Jkf19JLW@56TqXz>|>%{k&S^mlDoJn!l~DWq2j*B3!3GSS)Y z-)P(OkWxa~y@I?zalS_a{+?vql*mn1?|M_DGkHpQQE5Y8$%bRc4=ZJYElB}B)^%Df zMu3zdW=`-7rxAp5aA#7?l!4D#LCxNd*$#7moBz2kD@}x}(|SELYrk z@Fv+sgk7aD4e5Wa_rHv{>Ilm*2I|5_(QTM%zA z|E}qqt(62u^!?)7;ilV=7Asrz)0fL)@oc0Sd)hZ7^@*+On@bGuAd4!jR)%uOHl%s9LczfFUqT7{)mAQ*^*D_!9&dziU5aFHrDx*|@ z*MSh9Ph6+OwD+AMdx~9rr#XI)W3fh5WC_qNv?D7x>^NUAw(7?6Ie>8mO* zdVDu+HF+(tJD#3mk5zUb$bBq|%&$7{Em{(W^gD&+8zCHO`Y`#v3k^Ose2>Ei1>A~m zX?`hEH8KF{U9#^473bCPSvVC*r6lfK?OnzzmVBr5QvZ|pJlhVxYp@9zVMxQ^+2l9c*l=&^JRX%Dpwe4NwBjwb$D zL81nW#xa$QE&dNp%pM89B6=U12tEpu@LIp|2CCxgB17%wfTF8Rg{PIBk?YD8jUFad z_4H^P0f8A%%Cl_ay+YMglgiY#HCN}`&38~LeDe?r-}?=o&ICYc;WvpdSkiFXr(e7O znnExPJ*oaA^izRHTr&`d!S}xGn&CgbR80Cie(RDY20^)5c%;msap{9ul} z-~)+D-8%#}C9x8py>kJEWKi^}OOXHe=Fp9@eO|V~uaf9wh+}F}RV2JISv2S`N&jb@ z@`tH}XnA1YK&I4IL%H>x(tv=q1!+{-bm@xdjQodX3Ywlu)W(5>eoBO?1lwD~iv%IQ z5gQa7_~inE!orlV_H$*sVfTd-qUiYsTvXc(C$TUo`{0eX>nE6;V$S8H*%p9!jBoi-x5RbGZ0R? zs$WV;O|^4zI(Q%a=!4971}XMYjM-|T5AWT9@Ot5_6ZWNy;Gi0?{O2eh{>CRMok zn4-t6+lkiw(pa(`cDy%;)`pI9ubb-%rwh;~jYQ#fCNcpx9y%$h7yFp3(7(p`Nj33I z0M#me#V3*Hia}DB{AXIN2WK{js400pwQ!yh(nTK_mUd6@QLZ4R z&`cJUJJwCmnuApG-^R>E6qD{jlCvji98^7=3EOcmFeUfLjlct!Rf=OGzMm4EG5hd74LmtF5_52eP zG6Jihpr#I^Ckq#5&OsDDlU6g(E%g5wQYZ^CH{OecC#XIPVo^o9CiErUsc5em^O@L>C zRgi4R;o}XiFg++rC{_5ax+pU2_ ziOqkA_$F1@P+eA5R=@xyle8WX-#Y#d>i9u*F*KSGZ_v>GcIFAg~EM^At(= za|Z_pSy%d%{_{QaBZQ)WV!1!Iu&c9kx~x~86Uhn}QEML!1k%YgmbNN8FbiRJ_LB?C zE)bwN8XKV38M=rypt0Rjn$?)`Wqt_7!D@mxRMd%HvVk)p++tqA?mGq+78h%mDawP{ zxQFk-YeN<(5{jil`ha7lLkiplNY4pQJM`qdXAiT?#djle+%N#Sr45oex>Wsi((>ro z175hX@aX1MEU=2^iQ=8g?<_XU;skFo{LC@~2cHYo+v4JJddU)%ORS&p+a*qq>RM`i z)SF$A>B~-T7MO)!pe8&SAenCvhO$2)but#Hlgaw{D-H>!Kedx{FA-D6qFu@Rzl^-{ z3H9s@Q&D0fAj|pl8?fl2qzn|L1CPdS z-h1v0X3O@E7Ha84`4I1d{KjNaqdjdZDTcV?jogqABTSZ%W3QD1eBuXi4o1)Cq4I45 z$x(Bl(6yZ|x01o}3>MwCBo%wwUVR$!=OmYv^;#uqzG8YK7=v5$@z+*aODVytP3F_T zv~ZJpt5J|Ji5 z+HZNa5z_X8W5>4n<9Z-d99CQ{NK=~=cP<7<=ghZ8L$&k2v6gqaVR0|OSDx}h$)&IW#s!Mw z7MOEs1_+#ywErUg+J3(`B)f7PD27>6`o2B$zZHkn;=6o}go zSntI+m&ay`ScQ9HgQK+i?Vek3LnPd$>&8DDoEs1O9*ivrDbKX|fi32plS!Anu%Ld|fD_b-w<-T~{oP7r4QQ!$+&0fG(i5h>*So z5=d$pv%ch@3U3xgh5Ui2fp8{kEPYoRj_CQF_(m{7j8WwpUEVQB_rytpF3s)LYFG|8 z;MYt#ahg$K)mSXr;VZCRjixyRMMX`FOEhw-oHFKN^?r_N?R!R?!a#cwe(hf`UlXX%D8dm+((Bw zK)gv}D-b7^@w2PF6sCTH`_5o=)c;&~szn2n;a-MWrV82eH-hM3nY$&x(m_lp3iF{A zG_{=~0pnBHn1IQ|5LEo6fdkj(uZNrmoqdx5B59o}1sRtZS&dc|_^w~ncX`y?`0#=o z$Vb}`)+sGuzwC~>Pi5M{5D7NM|K+jX<-(w= z>3KX2#XI&&S!}Z6${=U!umL{EE4YaMY)aetJj}Q6h!b^S82#)Jaxt_#UOTKg;P5?<%t@o=xwJwgUZ?Girni~y zA54IX>ssT2NDlpRrdrT@5PCFILi*Diy}N4SxrVD`V> z7L`=$L&56#{1yTyYjXQG`&Yh$czsMoY{ecJNGm02au@O$LOy-gccdiUhVebyb9GZ` zU({=(KjF{?kIeYs?xzbY-{WnH2{|C0Hx|gtGc$4ibkGR}ex^A>wL{8ZR@9<9VgszK z@@wZM5<6}jLGdVH6prpKr;0PMT$|+pTtAE7b6k-$5qKIg_jR(w?66=3%#IR$0q%G> z86G;iwWcWK&$*b_=ibn-&lO~>iQS+W4@k1DbOkH%naJ;YXOA5lUI=w-_!z{xHeUT5 zRw2g2bJO8K64l81iQbyA$zgXvwYUxp#8Zm9?{AcFS>f)J$b7I!13q=p#TB@K0Xlxo zdKBkPMmZn_lobokBhsCdp2dIMl3+jtw!F2krval32G3vqq63$VzRvs%gt{UxhRcx4$UpQbkH3uy zSbiWpO7qEoalN7B_+Z>*Dw)DgNrbpfW$Z%_!VV`Hk`<1&!y=Hmd?&v$kX4j(T{POXk5X@O;A*&d|PsTJ!w1|b7&bn%2DOzxM^Yd{pZ>On4`vDI&3Ec=p z7dY$R^1$9IShd5MlRnau(!C;wT9t7g7+WJ?-+t)h#rbIwz$M*p7@>rS&lg+~b z#s^~5#P`5MRsManzXA$F@Pi))i|8JKu1OSG8awaF(*srqIRz zCh`B9GtL^u%K0QWw``TYO%)QQQMU7Ao@cX#N~gv|_<)x}ilX|@Xd4RO1U#8h?gfQ^ zgS!51Qt_}>(8Bo4w*#G-s2GuC{06SB8}q_P&jG>ANJXgYoq1rG`w_FC;ELcA8$cR@A`=wUvBcyLHA0tSP7b_<2_x?bftouMtBp;iP|5RMgYd)Iyu5 zgkF{eHSQp*>96%x+JlvzXj8|!1sIDlhgS3t7OH03T^EZ&UZ!Rm->dSZCT0N-D}3W_ z#hZV=_CNo!aErLkiqC+$T02WRnO;l&Q`$hXA{H6yGxzGxnWp8=*&nGeBe!L*)d$&} z7|6qjVBPsQbudhit@T(e-;3t~a}Fo$r*UWI*4P`$)uac+E+D#)>3R?vWJ=~KbLLqxZOV{w zCpKv-5kir99y2RbhGHY6WJu;jk%}^APAT=StNXsc&;9&<@AG`#_dlOL?dv+Pb6DqE z$2!)rCd^csjzWbg^h8nxi!cXF*5oslHv0(IC*&F3gvmXZWC}%Xn%MZk0K5nOu5IAE z>$p}L6wvQozDW-(Dxb}{g@0zCAtP~#2~I*h1AJf6P30X-*OGxCKY9qN`q+6<`6Rd7?t`v;2i24L)=uN&5RJtG-ll0H5}=8@J3f_f?!#H7P2$NWr1e49;ny%d(%l9=&{N z^hS2m75Dwrb-B&y=9QlVZ-bDYR;};7IZm$Tn&$~ow}60122}7^gX_KKINk>>hXf%( z&>(LuEiOK=Jy#q;AENq|N^=umr>EuMnJ~kI>JSJ44N%hQjiYFhRT)pZo1bETH}9vw z;Y}UaF(~@AgXDe9qAlK?ef=jF3-j4{CEP#oTerG4Koda=lK)cbUAw(JLr^G%T8_lM zw?C^F+jUv{n)^|qX<1q~j4|jmGRj9Yi(Ea0^q3v82e^-OuE<;I*MvjekYVG-1m^;7 zwQtPzxd2Ub7$6#2V;#O(U=!Gbhy)MtwOiJ?44j7f_k~t4Mtz=gWr=zGinl`ueM6Tl z%vNIi&ZsFyllaJ5ZOyk%XN`&+6PTb{bU8~P?4fsHleN^ha58i@Z;jg!uQgC`PBe~{ zn?Eo2(m9M`6Nv9_?iW6Y!ylqj;h{G`vA(@ge!1w5IyQ5E6w5(z+1uzm`jC)u%u~-d z=~s3#Wm>IpQ_sDjB-pGi_}apFb>0p-AJSZ8=mPqv@kiQ}rPZ zn5P@~x`LU1zLzod?6i04K^PSOH^ME%1r-->S-T+x2q^*vmDcKdl8Avfh|d0yR5)

WI$tQJWxIL z-Y;63Z6b2Tv+?QG+OpD(bDusD)pG&G$TIu|Idy&r=eIO7TFtrkJ-@1KUtF>!u5y~f+tm8`}sep~H z2l17X2)P#BfzZsal?irhzPJC6N50M|J|7@VYl2fFLsel_-+VeCZ4#A7H81((u)|f; zOeuF>C=aZ<(3qT@oZiW#aQREj=~N0E;L@cb25M{P64Z42Mctr?(UojPPiMBC<+}Pk ztSnmW?BlB5O62TDlU1GJ1c!p!=8m1W4`5(QOdS?vVK3$SXO>HD~0}_IhJLt zQKX1V%i?HQh?6Wo=K{^!5K$#}&`7-yj#NX>LL<%;NSz`Dl1k?IYG#YH)W;CKbPWc; z&7%WuNQ)Vvmnu{kz2%eswe+pocMKSWVn3 zE|*7!?N#srJpVjMmZ1jL=bufYN```W`oe}1cphy+kKu)1sf{W~_SIY8p1XT#xue~f z98AMu@=2NN3nLeY5&ZxV&n>E{8N67)W6X~6nj%>Ohd@~#WDAPUb>4K>N#MuEv%xSV zJ2ULCGg|OhOPO@<^3l)$p?7uydt=p8XXbJ_Fz{v^Kdhuy<@eGT9J2Ui=zXcX`Kf;n z>L)jn9f^TYKz70z_%>-!t{8Z487I69=fVZ*LVZU~Pxq+p=bSArFn<-o)IM`)jhpO) z29_4aeraY+I33NJOliKVLqp!il<&RSd~-_F!P+_l>2`*wNnhLDx^(#*pWX$|+`+c% z*X5y?8sD^UmKcf{^#nQ$76CnLK`)Vjjb}hU;zou6c19QeQYx1@u)R96y5JUGh{FnT2%pE3|Ko#*}S8SCx%alsJZW+ zO=N@<#RVto%g{c7P%<G2#kBRtB2)5^s$|&%vlcB@};i>26&_!+@ zHS9o3LAn|tX;t}hd8H0N;lg(MZVdd2t;0Z&evKdg%C+E#2uLIgGZR`!ltE+TMPX7V zc#R*wNB8#i35bh}|4g{>*e_81s|7&KV%BZJ%0lU`#`|WEM8fqY=M%Uu^gl~)CDfi@ zufUWGTWT7aplh7Gkn7{1djuXtNiO!- zXw)BE>F>q?3n1$o`+<=aQkk%|(3ZpD(5emI6Umjp8;fi$20>lKG$UJ!-4g7GDs~^L zFI6-N;65bmEpq8gJyxV?fhj^(Z_9_D1@kQdR^pTgONJS5d%l#wRn41ZXge5PfAOum zXTc`LQYELP=mrM|$9`lW|Nr)0^kXcP?$m-_#4)h^pv^-}eO_hX>1K5k8Z2Xv&>G32%qr@@KGky7LVXyT?^gYZ9KLe6k1d)a|owYFK1Z6gSX~=If zdhY*hoDP2Y(sbf!59E6B&Uz=k%=vw^&Ku%yM9B+&`ypEB01lr~WQ;>DYs60?3)O+4^G5q{2g1lHelwAgp|9$~G^TlI9mSw? zLx=|V)>Elb6R^!hZD)H9qrSkl=-*Q)2xo)SE7jTFLyJPr=H$Z|M?ogUEYo9Hk^OBh z_dz|M5)R22*&($sH85WiTQSM>7!m{Ktb>cIX%bXYd+zIRe1MedpAR?tn!mC`>@D6G%NW|f|CO8_^t3YF`P)6{nHs>=@rr! zL!716#u_N}JcmhVK4H8-?+;wR7gUWIeJR;DjKGx~yiVRt7y24` zxNB!t2=Z`~XM8eH)&vj#d_Y_2&m49ifH}18Fe;&6L&IOWCQK18klQ1p$Pfp+y96`% z(B+oYcbINGHeX*KDhSLG5uJ6SpGL;fuv1|BH%oB|2T%)GST{~)-A*ewX1jVh7z%RC zPlJ$$v3V$Twm^QL9voaK*tGy_lhYqF%EXv1VrfV(pxYIB&YR^jEoMH zGq9j6VGZv0hACoHXAZ--g3ooxVp!pfedmEi3r1X*)0MnQ98~ku=SVH}fGpreaM-?j zU_EC@1mD<_ub}&}v~S}u=vl#ST?;`-md4xPm&UKr7TeW1XLQ_W6Q|kher|hTlT>hh zM0n>da`M)A!O;@;=>P5Vs?B_3(^pejv$yy7RUV&Kh3`Cc!U-Ry=FA>H=a&4gegZ=d z^q|3q@y8X>^`~}6xU2h&KFu!L!bp#pRoa645&e0|nLFn}<*lo2E8|7I%Cg8fT6ACz zZ`*8M&)8J&dPr*6ELL*%IzDOti8^$1(@*QLNNVcJdW2Fii+XIqYnh+->}PL;D5GSj z*A#;oqW6U&k;gN#q(!HL_;SVG0s9n)IYEGtkI%MjtMWOF%&KuS+@=c7uZtqDurxs%i3u>1g-z`EB*YI7CY!D zCD_!|G+bYPidJ|M3hNOZ+sw{R1Pay?pFB|?SQNtSvl5r3Wv9MTlE8raEs*d3>t*wA zOPc*3w>@+M;}OsK7%GN^Gt5>*QYrGUkAQ)-(SHLFV-Dy)X>b?yo_Ky_vyVFNx^1J+ z-O+oN`Vgy#0N;fxt*h;sL!E2v_q`lIsD{f-`F_XplUZB{;BVZB}%1i@`MYC4#*Br7wglv`r z`6xwnsxzG7KdZOK849ReANXlSfN&23O~s){Ht4Gt5)w^tSLElnTh)FyOy5U+s2c$E zqu!JC2@HJN-wc&z!S#LuA4V6}VFfu?A3uyJ%jZJ-RS=`OiRC?`t4_OFc}%8d9u(PEso;EGq+H0XVu4!T(P zb`?~al8M`k#p$3SP7)tQ3@2nehN~Ug=0gJ)Jy8%poGd*D8ov|czPq}ONUuSF*UzP< z@9K&w?iHRkduDm@J3bR1j07`KuPg<&A>;s4%Euld)Y;Jok3=bQ^hSjZ|V zB0Um@tLzm&c1VI)LKBqx^;1PaV&{?F^}THwzjAiN)`bJq)UkJ0pbA!o^04Q{G9;ZL zXpoKtEawzuI{ib$w!^=9ZWR*O-)uuEJrZHMAVDRFd$mP>*1u9>ka1qgkxpSA>(Cns zj;kbj*OJ<+;7`ua!7O?Hd*?cawZqGWNXgY8`LeN4nx_Y`{Jr9WTs$Z~rpWt!>V6VI zU5pg>JQ>{z{p1h*fwCybDG#!m2<$5FyycU9>l1e3+Ze1^Z!>oKDxmqFip-{Ja$O#& z{oIE=2^%By1%qQtuKX*tmsGIVCrkgmOfr}l$Z;Xnz*k^CXTcl1lko&morFwU*U~an zrAM=gO&mtlgJO=zn|*?Iv82;>-->eyNZ)sf#=V1DJAL5tr%8FfGVmC?$8zV^D!tD> z@~MH!bDcMe@pV^??7->1zdrv3NcyWc(j84-hS?R^Wyv(^Vjq6Ci}ok9c8oiqhF-m&D%s;h~t;clp8dOqy|j zZrLdjhY=1?8?qw|Y59V-MPIIRkY?=V#s1<|eDjKoUw$W;2CcL_4;9k*_{HE&4pWK@ zf6l9G9bNIT0e@sjfV|0S|MZ1dLH3E|ks9?LW4%O+@A447H-Ye4f9*tXW$R0W+ zbFof$2DxY;V(tY}$Wc&(>~}To=0MTwP{8E4hv+a;fmfp+)r}()u2IH6z44ccl2cPv z9#;rhc2gn|tQUZbU{UBb%CQ{IWF$d>m!6~noxLNC641%H&cKq+d2mGMH)yC%i8! zypwnem?2#sjcAB)-$_%}{XzJ!`=t$R(zwp&Qz}hG8p+1f$*Ko~S^H!U>`=oN!Vz@7 zkOqFbWrCHuaHZ}-N?%_d!Vy~+ULG#KE#LI2uNGat>~UoLdbR`yetrLiZCDjL$bmgWRx9`So|qTps+U>dO{mR(w}#3)DDLj+N6OPSfl z#hxc_loLDLCW#B1uvf>H-ydo!vUpeCAu`E@Pwg;NemAO964Yy*)@2?iBfY%fUYhxs z`1WktV=Ib0;<_l<U(Umng&&1JolN$dQUc_#RUxn}Q?h{s!YI3i*JOKTc}pvfk^G z+};>gp7{kF9qp9j#>UryDWIy-pRMDuueL5S%f(0WW6ViJN91ARy`O&?948nWTUf@` zck6%TzA~F2SjEMBcN~s=o_@WtW%cEk;nI@ccC{eTSSvxRnBHpsPh!tX7c$xH~9t zoS4Wy_}jq!u20>y7;O^z7gU3ovvwNvXh@NMrwW|-E5JcSiXCM1rNN8$PIb9gItem@ zOT7h%R?!9&irl^R{Onv`UYlFy@6A)c`RJ6l;^p1Vp$$Z>r;mAr!Yfr)gwDf3F8 zmLS?S>=ZWN6!)sS$dtR)(jF}S@_5BEzz3CpnuLpT+jb*ceB#>&l$L8cUralBxS8{1 z5kF6X-cW*ClW}5*SdL{}C&WmKJ*;RyYVxTIrf=vfnG(3F@yGb)z(#*SmM)L(;s}z~ zAj+N5k2qjQLq&(U%;3aT@#o(x0|`zw0=LZ68-rMVQrjey)5UyF<4VpCs$7W9UH^J4 z2nb;@L*5{y(S{{z4ferVsdF2q~A{HTS)r|Q_4zr&#TcSq`CM6!Bsk!?e{YJD(A>di8j}^UKZ4+ zlnoiCdEM(!O}n@_ET_z3x#N8M)BBQ)vb%;8WfzQ#cI+C|i@vEUuZ*UrWo2cZ*ZUGv zmFrD%$PpV@87)szq}DA*ru17n*++lwNDyu=DGe-T>rIXyttg#r``o#pZomz zxq(UN;<0?VN898@&C|}RKq|}Cy@c2TMb;-g>|#rW0v9C*fJAI5)<6jBFzhSQ?mW$P z<*5jtW%a#o{m%Kj42YVSMOc=Y{8*R(qFL2>nl8b_=`~3A32+T`UrlTpmjbxT+2{h4 zr}#^nVkkl@7zV>sa8MBCK3bL_KQ~^D%dn;}=%V)l57-~((u)PcntL-k?`T-$u8HVU z{S_p{A0U?&TnMEkV${C*4!F5{oK>zgPcvM6j8_PJwf7P(W~UfKsMtMS?^X*^lYV;T zTuS*tS=MO~_Yw=riLvEsqLan?M}VY;r?rjR@-a6)C0(-u2-*hFeOR47faByc(;j*= znrphhscP2tPja*5?EcwPP)F3 zpjcXKBt4q2w6b?e&GDFomfKZVIR|C}29$TYX=L9z9t;9M+sfq#XUh`KePOcGu8QNfo=9V~&nT7o{oi}$C6fuo5TY0W z+1}Q9NiBPsdqE8i7vD`E!RGgAAw^JEKqfxc)M!U?L}Oot=icu2CugH=qB-9P;Gi!O z^`vKGA+GC+I)wwRXpa8Y#8o0$^HGE+oWw`)ES z?5{pFe0;HCGZkrQe9}_x(yY0l#f=~zhP}BZ`obEZ#iA;>$LJw1{lXswyz^_ z?1MVi2@Ux+1LYB8X_KY9$L$~@2W$;@xfJ*F%%2!4`QI^Akq&}oJpQ?%UzeAWJ6)b@ zy}0lSlsxLGk@Y5xfyAs=je zW%B;&K3b|WZIda7>fpUyHTuJBNTlza0za?#Kxgm?!M3FT+s^^))}8^~0m(?SBLT0^ zArL^G?qRP>ge&FjaZRwRFGEQ6MeN$Q1}XUQu*m=QW7VB?L~`#);7q93!&SbiV9?4f zh>VY6J@Mp-`Uk!t`hBQeAuzL>!du~F$orZ8+ap3&0sjj)ZdJu>Z*%X*>?O7K+vqKV zqcZt-#Ca~|3o@nbJqQFM7=%?nNnZ@XP{RJbVyf*s=&hnrq}=7mcZdbADMcR=wc+=CRgn-zr*hV&-tGOL z=YTAvV4Z7!A^_{%5GHUKU?4Sn7+Duymv4H1 z|A<6*F$nNH{LtI>HztCgevKaHgv%^7^7bv5lR2&X?X)ghweEr@4@;jErRUvlzMeUh zc;qjafefWfUuG-hu%UiEa#>g`N%_=o`$SEt8-R%6aCb&4bHqt6wn_^mZBfm9ygw7lt;@@^oX6c^7366D>0(<<)i)w#l)JVsIJ^-8B}rL6(|mp zXtdP&n58&&$(?O?J663A^MpT``KZ|S@Q(hu0~?O(2rMTBdok2s&U%G4FRN~9))&93 zeIqTavt5_#KS&)olq&q~{Ev5%;oE`~{DPuk2t_>q`Qe2s5y_?_O&9Gu`ufk!@YBIr zjUhX^!lq%U?arUCzk0x9j!nFJN?^|2AfpI7BZg|aEAUi=J0Q)->=;ebxAMV0oZUhE zgwyJHHu7NWKM$6$zV9R=yjrH|OGYN%tE;JIvA4>F_xGH`;PA94A$Pcq3(@KB14r?a z`b^}W)%R;Rl+9Wc(r9KEPY1u_0}R_w;c2I@2dly=?WJPyfS-yVT99mrJ9u%fkQ#&JQ0NKPH0?~LBl z`myZax+*M|@+)oXxNY#ao+z`|MUP(u-grE|L@fSEUxVZYI6a=ObCP>Xc=*SphV*lc zAEqolL<6Zk@@hs*o{1xG$9bbN@FI2`Khj& zmi%dU_UA^(#Zat?jg2sXyAQzUj@)}|SGDfEYp0L?Yo6Cm!94#OKf&0AHA%WNq<4dM z7~$ppd7jaq=ZTs<^g)^+xw^YUUZW^KAN!N#9nXv{3Tc=AN8}a^EQm*~S7zf5i&(=F z8nwI?fzJkGB+>ZY;kgcLglcWrP4usmrJOoxYP#fMMxYU z+X3|v9ij1TJUlZ2C~07x&4O)0X5ptHoV2#>+XPe0C_#cf1O3mT!1Fp@__J{C@wKX0 z1#;y|0<631mG`EnIa!qHjjtIx!k#PWy9Yw~GoJFT{Mk7whRx@+h^tgDnJOCu87^EXfz|^ zAd|keO*(y&IE9GAV>^gH1VQpV6-iQd(0TqWz>?Ij`aNzFX^hj|JoR_Fsgzn;Ic<|4ShQo~1! zzM&35qlr{(wk|{aOe(V=3iumh{PBwhia5NOg|OB=bw^M$apisl85-=GP|6p`d~A{J zYni(DQ?oHN&}I6YNrkijp*BHE72)bE3Fni!WAnq#ZZlKuHUOyk1V7T-Y8U^XK`b<>Ag7q=0U&6*C)U;YmUd0qpv&w%E)T6;S7^NC~ zSo|`c89Ay%pBp$4A^+Rjk`A=nTSvgfmGYc4Fk%f*pGiA=0Y|a!_jKkEATd1j{K!Wa zc{>~G082t$6OH5|kwj~lUST(q*7-pHZT&fSF#zp>kDi@NuC#&|19gmNMg@NO7N|$b zT98<-gRy|oe-6|D`J1WXCw20n{tBsVGNr2qO#r1Z`6NiElZDPA5N<9D?C{I*^Pg4c zX74iqvq1WZmLoV}e2|HS=x`|qGSJeTftCxMnzp|QCp`Q-^zad9z1Vd@5g+#F!oX%O5gq#mXc zIt?4pHyg7r6pNT`v?!m`FmN0MV{ZW^8k)8ZKD?r1&CG(*WgLv%q&{#!PKies7fkyQ zRL{yS?;q-tNju6GmZi_Eb^<$tf{8d{^5oPP(m<$%t|Swh3liUYGJhw&r}=z7(zI>j z?%JO{KPi1!ID&UyD%pySqh;KTilFMLCGNR1;hI-sPDBW?WI_Y#>$@NQb43&*0)!BN zYCeK?guIMRk1@>lrs@R=4$6{+P{Za_t~*7jPy#*1xA_b(x{>Ug(8<~gDb6;*VIS&H z!q>Wn4Zq@guQ*#xYCCy}#w)gSYG0gME9Ebza)o745Ops^E~u{SNdCoH4BTSLaV0XJ z{`X@M_$veHp#&0ma7(4qX6G7d(8L3T5Kprt+nrJPQtGCTF*WndlhXTnm55X6>*st~ zS6=&($X+fm+o-N)*3$TLX9Ggf>Wa#pAp-qgCrQvN;=N@=$^E?kfj*j*r5%T` zEGughJjOXmHU7tIFW(){X;_6pFOq`6{#)9K^q3>$3jJGU*#V-;M}U>MfK_cyrM>k_ zS0nB9mxgiNk=&U}DZ>K@G3}i!dfw?;p`I1yMn^xnwC0jTc_VFzpe{y}KL3jrneInX zuMtdA5jLKmTzTOOl64oAx^8Zv@q_{sm>Xigw+vO##cE-cxu3(x=yhbtcV82j1X|tT z%F-%K{BW{V;RW+;Edu6SE}8#;JWJ;*`G-XZLj%!eK@S$@9d(V9Ki&x8#>knD9~Q@n zAU7d2IMD-r?!6EyHf;PEl+kE&{h|1$N(jZ7Lb&LI0$B<_Pdu7@5yu$sMHyOY=%X2? zdJ7&mMvk;vL~?JSYnnzuE0<3UAyb)ne69H?l5m84jt(@%b8r?~+=T-d)8P$w6%=nD zUe!=XVTv+Bn6}0GwfN=ZfYbUZ1O;<|P)PaJLP%+7{wy^|Po^V7SRfiK;`~F9nzE}P zUpL%*`C>~za93d;Wgetp5tuC-1UdtMS^l1A{1t8PzgL@%o!VSS@?&u@`*n&tEZ zWy28SXZP(Z1#8HWV`3R6FXN{Q<;R%pB!)Pj#CZLo6qxa=PU$mXhj@VNVKlxCl^j53#r5f)LL$=!5%pVW|%?Uxh7Num-o* zi))2wMuwcm$k~rW-6uZ;xm5@o4k^t3|NSV1_9nm2y$BB;_>*R!cr_o2`eu;Fleu*yHnF7t?yqM^+rJg2e=S)Lep#?zqGx-fV*EIaT+G&%o_eM0%t z^cbhWju`o3&Sn44DTx4#sG9#TGoYZlJ!>YO(-q61kH_P;RLQU2`$6!2UDFZR*zwHv zREWX2zp`^-MZJN|qYlTFN{0i*hC-nRt9Ugl2v&8h5d*ykl*_F4bv=Hf?XR4hS%LP?ii=DNHrZX=Q6I2toU-Rg>r zipvY4^5s_|fTXiuO6!>+%{_c@3$QuLqGxAk|8M}~HE0tMDeRZZJ9aX`v3kPkbmc)W z7dRh&omgxy!L<@~8$9_=-%0j+DIXcouY!N~tmuoDl{>^n)(Yj<#lLkp(%b9(Fdhe~ zcgPr~fGm$5B(he7G+zM2v+9jT>xBWXa)&mRYZb~@L*ukssec-`UqY}RRRd%=q(`fe z!S(Hz9=FhSgT77(;ygqX`i{6Hik$2tgh4e)|3wRTNT;OKyhSG=Hm0@nm5Qx&>Et9n^R`w!H zP!^d)BV^RuN=>g3fUN8-%>j6P<7+tDczusccjqKo2o$@mp zuW1-~CD};BD$&k5#%n&jLv(KrfR0&x_Lrvw5M;0g$RPEe2{oud};gsrr>#NvdjNl2$G6@CE{j8OQ*67$rp19mGTDC}wG? z)3`I-wl+2%U9^+Wp&_I#;yCQS);UYwGH|Aq8oStjD+Z3*nE561u*~im*WxP9`F}uZ zwxVg`Qst}TDinGlq|ezO&Uxl}^M=_5_MU0}Bk6`GEePJVr!HlBu{zr7xX4)^b{cEz zZ=ZG{jzjjPNT1Tz*G{qHWoh$5l8q641=p4#({>zbi`4)6{q^5F*E=0Hl|#_AmaC{J zg&JPuRBj_XUC`5K#BM7NZGVP@pHdjw(<9JDx~1Lx0ge?gn?;c#DR)r7sCP8Yy9RT+ zfi%N|rcuYCQK6ok`AG1C8aW!np721PJOX4?(w18v-1kyFa z8B32ZB4yzjP1L74%4{FuC0$>z)_EOQdV;VkC`m|zo(XF8orny@%T@Cs*44n2=mtSi zKA{|fS)kPBHPE|7($BpRyPM7Bu%pMAE)M3aS?1cxB8os|vbWg}R_fD4BDwzAn;dw@ zjF^1_(Z>IEdERxCmTq)6f;@h{9ppYr>=oaKGu?Bp^3HhZiSSvhQO>PE1Zj59BglJv zD^8->^#U!Kde8TcN*g((w6mrP<*8|DX>yM3>TYieDfi_hF9Ywjy=W)5anwIZ;eL6C zp&z1wF-uyiNEx+gn~gY(lVDl_9fm6@ z4>U$f3=Lb{oFai^m+?!MxcopPTNdF2BsHbBEdq{BI$-R%qmRa zUOhyy2b>Zm~pyL=c2f#C}JVCN#23o0=$2c`4 z)O)7rC~ZfO4%^y;R)g#h34frTZLL4hpxlgQ=l!*r_dC7y?benP=QqEmv=H0HU8H0I ziltnAC#Y|FDN@R&7z;i1e>b{T$uTN-4S4OhBnKalFFN@b_aPh@5A4VTjX-YC?eU@A zv)+Y-wgseCj#PH8!V?O%y8>Ya@;`>so%&hR`&!LqO!7I0qT9si+3u7hZ(AOWso3OcVXbr_D@XPXwKEAQ49rK-pKU; zB|;hFK+TYKc=gg$acWKf!jS(f-ObU!SBTzC4~v!EIoBFQM0M%G_fdiJMbpx*Q`>jy z#HN<5=^_Wo8@})`JbqtCJBVDP!bvY5YZ1R#yRTWp%~&lQN0{z-rD6zQZ$DiqlywJ) zS_DB`al_MZq`f%+Jxd`pyRyA?8(&_M$b$Rf!2;4+ZfmdzN*Q`VL4i%tG34F6ZZUDg z8K5@`gAR^@=DSr(@0t*Ge>f7ItSMWAG>;qtAPZ^|p6f*fYSt|yvxVXXgta6I@L`>e zfbX&ih(jRE6%m{I?raf!ET>4AEpYlWlH-mj&dV^6!Yw~8MbEz4hDe%yRVL>t^3R9l zGTVOb{U&tZe@RmL_04IBB7JlobdvTeCts@xEm#V2c1i@)ls)@R&}hBwpgv7R>gV=L z>HIM}H2BOcS_A*4r;4jBPLfs{nXs`A#^YnySIojP0$dR}7dyaE1*2Si%s-~*zGl9% z5V8XdjQi^%LoZD(-0sYCf9zpL-L}>GGSPj%xBudM4@B|E{_%;V^pmfb2)JgGhJm=E;06d@VUA4MlO6#BTT?MGb1C#&qQu0JaoOoeV4 z{f}wu*pf(ThP$&gK)>_Rw|@t`s_$Gl2mh{s=^a8C>aqW!CmpjO zoPPFN1^WwvK#Wnn?X?ORHbol#BGVOjoX3$7!uDz~r(*c2k;lrfUY~>7ldeLekx@Bl zAuRL5bV){LsEd}}b$;+}f$ie_(<4^rQTX!9(fWFr>OULy6S83&oP6%vH$Ti+NA7RK zPYCC6;kuAzi8b{B3D0(8auW=eht&JPc|jU!wt(y1^~7DBT?56u;1-XRt( zFb+fDc;@y!3b(%7fJ1t_vZV*KBkZ?^npYJ58sn{R>pxns0hcWQ%d^i(y|%9>OH2J7 zg!a|P*8Hk5PR{HadgudL@{~*U_CFBWA6oOMu_|{ZWzardFq3R0(BJJdM^t)-s{~N1 zPj*I?k$WquGLi7)K_?^$`|n^SZm|3~BJBrgHYiCuzxx6-gw^ zC9;###j9`X-JQOM4EezMo>~}C`LSGPI@Vxo|I+{BKII4tasLi0*-ap$Wn>(mII zZ7`!uJC;2|;{ERt>r#XS?A3cOH}F9fbf+67JR$85XW#$dW)HETeOJI#SN94OXWk@! zSoAg9D^!^-Uda@rs8tFU4SNH^OsAU<(PituGu^Sf$4bYd|66;glZoJ-m3!mmoDm9N zvE<=6%mO8JTRuYdCgrgIfs@J|F(BIMcJORyk2jiaZ&6x!E&4wW^2Wb+q)%r(kdL)`YL zd#jLYrT3Hh=kGIgwnMr)(jO3EwXbdMTq%RG{`PbS%$+KUpf#Zgb{JZ}a$e4llrB4|D(SR;%GgL~f>n|K*E7k7OSrxN@2}*`c+d%%pX1Q_sbZaQVVT}YykQkzak*Sq)9Vpn$e%*A|6I1w9frni z!*dKok20<~Z*T0qAc=V{N+3kao+S08c2{*6rd?kcS|CMg&K3(5coCg}9+bZEfl zLrLy2=!KE&u(xP+qH}TBcdAQ$|IbO>(~V@S0nVJ|5#>_C6}GfyDwFY*g;Mb3>_ZWd z=A`^%P~#bS?!ivFPz!tPTIv{w)I?uZhbWHwzECC?@R2qqF62dXoxkg}KWBcNRN>;h z9A6Q@7+E+i;HnwLOcnks>a*U-P{l7Tk9ap6GV9j-eebf>--_R{GLyWikbTR9r3{lZ zX(jLz3JG6qBEe$s=33TZg-^sMe{itRsL;|F7`6;14)H;S4A1V_ z@=L9=p7iQ|?fN8wa^Xbh8VClon2c*s;&#Y>H1XRE)W^{n;)O)AZjPy(S+aKK=1@2{ zsuVZ={HEZ5Ar68QOBWmu-5Dlv95=_Ld4IU|`sQo3zPnD5gOXFd1l~4i>D=}7K^N^^ zUAdD1n4B|Qe#`mi2+JmC&vw7&VRVZL5+7}5)%yJ4G-kd+-YS#IW=x0ZZ2uVs z8=T9p_|ZFBvE~U@;Qb2&Y-4}UAOC)}LE`}Do;^b*O*Q69gXQB|FkRii3U%lYks+YY zx!Alq%&8iA=dkRm#!2^AA8!ptYhBtu;2|=4szjqtTlnLefC>P0S5?YeA}X&Dd)VLB z+f$21%5JOFU$<=tFdT^vvkv|&Wj!$!b<`k!V<^hy#iws8RxYSZU zihmyH0u$9%X~TVg!43Z6t33Z~;O2uhJB|D92HYGQ3f05UCr>oGw~nfup}7tYiOnHS z#rYp=4?2MWg3o;>c|Zk7O`k4eq=kJ2PPeaYi^(6u%((y1)G#XWtU?NQ#TI9*w@F&g7a z{i$aSSBZ%;2)VxQR8lUgc<$ARk$;`J|CMp4&O%YkhT->{hXICjI9v3C!)t|!W{&|2 z#L*Oxt;$lidtyFZEIL_r4fs7J_9HbAbQ#|RZ*Y^eP&Zb!a887DaTc%u+hY5==Az^P zQ9JXAA4XI9FK~2*gLBsVkNBv5XeXz=dtI?VM{)dTYk~Lvv}R0WD|p}C#IletX|F47 zWyjk`)ORTinqHwAk> z+~IsF_wnErXjxQI@#2tz&Er6)NTA(hw(Vn8v^anJ$1|9E{QD~lRDbdtOf0g}Wx%>s zo*-OITsuD7aE>ySv~balvNyZF__@>Ro78cILdTI-J_V%=5w5p|9U_$88Js4!Dil)#5LV?(VFOW4B_D!KaAS?0v~Mf}VX*04CR`5J}KRJ>}0?G&gB@HfWfZ@JLh5`66x^TRYGEpJ^z-D z*F4`HiViQ@Zw%89$Nq6V#CjJecF77amgRBpAzHoPHo=(rO{4IDAX6Ms{Nzt{kvzo zXalY*k196LMx}{BHmN7^o|>F6p2m@Z8Rd>(Z3Z0H}+y`tyNG@SOvqH znSCB`+$IJpr&LyEli!y*$Fi|$U@cL&dzZ_5^?ok@(Tlh&Tt#7`%Lo)DfCR{UTU3R%+__9pVGZ3}#|6c~lIs@^6OK^Axu#yJl39FQz-f%;#-lq{qN5`EwBcryBFcR0sX>vNb9f`O=sr|#{8-a zsj^LKs#GSc-#FzE3Is*?|B_eoB})^r=7oBtN<=jXDHpRV3W+3w^8t!4CU=xJbesaI zuFm@bCmPpUVTl|2gAd zKeoF#f~{8A=sb+DHqBisqSBvr4(>2Sy}~zECtK=kHlIm}obFFQp#kMi$4?)*6mC6v zMj364ox!7qcC9a`H4+!puiw(mxpB1|vuD-P+(IPFRc)t$%%O5VKOGALd|K~@M&tt7 zA;@Q)!3?^W>{nc|A<88lKo6^h1XL2*b-b2b{@N8dH@cadT-YQ(q zRp2+!;9Yp?I1Zy*PKT(x0=}Cc!gtH(JVi*Sb>z{-I7g5{nzm-7syLFbToucSb{ij7 zOOO&ld6bP_hm^?!uJw$4sNjVQetv%7T~K3s7*Xy#s@z$i>alSWNhU)SGki`VqBj>35v8c1>Byw5DMD(!aE8Fj#~4pp32ht=1dbRf!ca-PU2f8 zqU>{wuOgR>)74*4DOB|#@~x3d|N2%@g=a_!7{EqFfaeZTtktuJLIl^FEL*BGKoL~C zV=t|cac$;#u#EWZN@`XbUvY7eBy|#0;G-aS$~?o+zz**ii(mV@&KM~uX!k^G$8m`w zbT^Q~&<9>>%bBaa)Z`8fgV$K{fX?ifKL)j%LV)0=RnKa$BE-ZVFf6GD1)jj4e^s{v zRVA|>+|L)GR6y)XfeqG7s$ix?sbOoNIkWq#iVP^=5yX7p4*b8G!1eR;ds`#LAXl{VtoSMyzlo_S4I3&ZgtS zF-hS6FvG+eB?#F6*H}SkB+Q$<E-<}F#`3S8o{kA!di-w%^C4B2y$ zG|c|_r&OSQ6}0Idik|xEtSRbc=CJ0w+59Sj4%Gvh>r|!V>XhMRVZ$Lu*-!A$OQ4Ly zU1zq>U(X0R#&wA&o<9^;KAJ1H#_zKco4l`c;sXq2XeQHHD0hC5qiBVw9fLzsb_FGN zi{T51%TfO={04YpFa>=S7Bovxm`A`6`Ajvhsoti)D((B?NdGU%T&trfRluHtzAh&W z6`szb5CZ7tSqBrXgrF{i@@r?{bk#zcnEXOfQW1DUFJk63pLj2ef8@BvtK)@oxVnz$>6y_g&zjVw*)GSoL~A=fzrzVqaGh?| zfs~>346h*>IG>9Lz{}7!b3*56=H)C)+P~OySVS#kpY3lQZbU`}O^*kf&j3@6AY;Xz zOQvj|v!*Ky$3H_?zYko!n;*dF}CC zV+Gm|ScC&mr*u>Go8}Dx=98I{gUq(OoptbAtF3m#gb<%00;f2x29bo&4mLaytV^=7;>(DE6&^zAIl zlNYJ^*z`yCo;V|_4E^WaAA6Ug{)D&Tr^+UsfCcIt@f`ORGS$d-V1 zf&qYv54o7`DG$6w_y77Nh*&GRg6fJJl}b0p&g`pXvAIfIRo&$(>NDi+9uWi=|qz8{!eg{<=ST3W-`Oc zq_62Tb#-+a|HbN_9Ut}^y0~S>xjQ&6{BJTy;m{kL7B>ZD!B^?oDxRlOY13TU&z!Q>6mpG>JAKFyyKVs3(HX)PsxH+T{0lj+-Rfv_?AQZakFj zt`G2Ev{wiyXIbbj4ju=HD>V@;3RJm^`b|UFVL>AD@cAC-mDkW=@~ZUtthx60j^Q*? z>7V`gY84%4KVqX3Q)cr(>+0&R0)Zs!-NS2ofQhvi?2lOMR9ede;iA>m(FUDv%XhmZ zpot`jyu+Iqr)u~ABUm&rr5;Cu{xba+B1u~hm!N3>wI17>goEk(ZdK?&E z+q7LyJazi?Gu-iW9t!JpsC2s7hu69hb`B!(V|AVqlnVBZa3|OZo-haUcNNL~lR;KZ zZYBk!f_h2^{;TA7{(Xpoi6U9p^#RC-T_*}IKv$kE-#*}aBPFZjimuHOf<%uAy3R$7 z1?Z*}Z(UYRBO>C{8Nmna1p?83tK6e+e%b+9 z*^_Qk3(>m=CD|^aA!DIgbEWQOrW3|G1)xPNfg`P5%v8So`uI=o$n}3d0-$d=<*UMS zu}g*lWmcn~2}-OM>2hDB>#f@^i)eha1p(n(7-XLSgY7(m4~H`(0$=p_Q(KN-*ss#I zc+lC;&i%T?{Ch$QqiK;T{>O6+^iB%j6MEZ%M(m~mOp+6@Hg?c?9q08Hpl^u!ziGRhK|Nq$%IBw^CIJlC zZu;D=UFE=}Kj+X7a0DPTCakx7bMltw8PKR7IX3VKMzv>$QBOAs<)As#oFD-a1LYJ@ zI7@>SEF*U0rlrG1M@)_vqge^3O#ycRe5Jyl%_v%Us_fWpP7v+oBg6VpJQ2M|$32h^lR|za zOK%=ZN=x(}H7%JiJf5mt$7aD<_zd$EPrc#u9~#C67B6X~Yy}n#fSipB0z~Nx@s;`d zV7El1Yz@SK!?cP1paEGb?=#rnz>i%RiTetFkDRW2;I1g$x$C0vs+{uso3faM0-}vB zYATVwyewq*tid&%-(b<`B|e%{7$yp4;$^WPTB2z}To#EPl~E^QfJx_ap>(vWW-O{Z zgOaZ=n;FImd_U3%(|)J}&!seyc$WjmMic9_3|J8cGV$L(zn;$(upl?xoqLl(Yuy`A zZC+JP{*2U4vo$vkb8uzA>#-#$v3 zv&c@IjDh7TYD~}I1D}ud+Tm;jj4*?i?yg=Ry0gr)4fvU{8*7494!=V{8R-r-RPy;l zwQcl%K%;$cK$*8&Fjq#|0DzHPK<&Y_!MuL2kVR1qS3In2!-7e;Nkrnu&TJgQD+PnE zKfPrI9sv8rPZ=@fPvC>5?&pE)t#r=frlK|r7Jvm{+I3I8@I2<*JBsRsB~kWk(b|ZOvq!HXi7k%^kA6`oIK0?g%m#RV)>XDERzR3usi?l zn1A}{esr@B!rRRo%%5#}(T>#)2ooPy0#gPqn(_f*44IN;mTkePM;0)?I2sCY~^+_M-e}i1a7-;CM0l4!``lma3aSA_~aY)ksoAI&#qf3vXO)J$gZ;P~X#oit^ zqL_p@__7seG((2?;mgWuWUax3>|cjZp_E3tpo&^%Ll{#w5J(_*GLxjwnRLT8h6;8> zYaIvN2>}cHEjkjv<`vgvF6uBil}Mt==7@PQSd&j&26-AFFwcN0SvVA<^*N47NFIOy zp*rl_%JN6*YpN(om^im%Oy}8gWXKm#jh}3GgQL~cO>;s8ETZJ$FUCo^`Lv0n{~Ycb z&9yqmo3}VRz?reGUm=tTI`hV8&}!n}minNHHiHHA-NNaL4%=7wFynFomLJ^Vg?@zx z%}TIh{#X%$Vi$C zfoHr9tYPDmf^x3;uo6R_eUpVpSAs)eedC4m0yuD>5ep5#UA|hs4}L&p@8{J9xrg(9 zUnlCXt=7#AsMa~v(;JtYm<8S%uqKNtT(nA%WkYw$2JsnQg8N~2A*B^;#m*sGSJ^%yT@b{mXTW-(VF?P6QGjjqs(qOeP7wlfoZ;K9jF+;Cay-l6sH!$w2XdNiP2al`LWVW*N@i+-EwL>J^Ayd> z-t}A<1<=%7ps#!;OGH3(cCTCQ;kOV`D-$IGYe)Oz%j#-ipU7sYHc!?J2wTNHfDLH? zPl&yB{#rhArMIJ>Zo=t@V;krdrXGH*d0(9X(kJFI_8Q<;^cTS8zFB#6bWN zS%j@+5Bg}-1tIMfFF28c#$3$bqw32~Zlnj5{r|fDIB`yNh$y6fsjLMQTzJ9ug(}1y zIb#3WF@O>S2@pYDE-WLbxAfD@hw$gxT<~<6|EwjX^@wnEAz$AK=L%YdbUEc|qC{wC z@42QDT7U&B@@A+K&ZRS=pPh$j$(uED8#mK(>C$|M=P=(>_H*7LY3K)Bu*~!KY`VX~_xsex?i~ML zTM9N_6clVq!4yK}q}-+`02ZzU2&6L9^0os0*9MCI%7Jx(8&e;}cTW7*@kTuXSx}4~ zArQ0ua|3~YS86)}_6o&%1&)s_C@5&ss5t&Qfm?t&fD3?wk;Y45u8LwgHsESUOHe<|>UPlp0PJ0158GPf zo+!~_q;-fg)e(9ATZ+Hx5Q%_$PJ<{d5#a|w0pI{MrRnVgy z6>r;fz5MT!uo0it=+Mm-D0*xlwa5kFv5>?uz^>lq-0A{l?fhH6W&Ti`v)_K^_mEn* z%kz~c2sLv8b@0t|4vD_WjnOvPq>xE;M+xnN1@pg&W??5fzSaFMq7lK8zU=h2Iv~VT zu`J?3t1{1>z6WL3kNDnpB%?bQzDk3zjFDjD&YM;wDS{)8jk*Bvzlg{}MD{w^JioN{ zJMfT7utLB%RiM@o@Y=#^?ar9>+39zEA1YHju7_-vKaukI3B4j7)~LNqH&St%cizH7 zS0rh%$U%K_$i<|Wu6*vbV$$sEO8C#YNG+%X$I6_Ds_ON$X9;gvhu;1 z9SgVF7(%EmFIQGPSfx8EDoDMpJs^X!ZZd*{4N#laM~X65VtTq-M1yo-N1Z=#FsS>M z_1w>NqC-@d_gh0L0vz~xAj%==pEh{Z006%okT=qSJ8#$WynyN=(sFnJSlzB@t)6qm z(eFoY)lLhyaE^>=JF!B{_oIyc{5#v6^%Y+BA z#R-W61Gr<*XK~DgujrL+C*;qVgFk>5DdQeMz}9h~`MSYk4a`q6y_U*ai6E{bZtbagXQ9auihWsngXy3tsvNm)5Jy(GW1J0trX8{)V*I;+G$j;cA%I z1>|<==*_8T4d71s`amtaT)D7N>^~=rdhq}pWlav^%Co>Vmpwbmc3Zui@(r}M?>;;! zMdQeY=LBcLDq+V~c2}w8bJr#=jCgEGdi*wh^;Sg3Q42MPgq3oR6I(>Y1q=gwplIqR z8*oW+vbmf%Zd6T0tPd67kuk981?+=}vw_Yx(bBJbuwKUz)&oLOgV1Nb;oQ&=9J1aa)ct7yNM2&~IsG*CKSu`2 zh^U!Vz_O|Ccc%X%U!Dj4{Rf)<;JuSLiTk^#WF<`}ijL@QHRoX@f+% z%LNY3SG^kMj&FJotRqpNlS-^XJY?FJC>9CvwEcX$h3`Oqs_?>QaH$=z&a0hF~5XsdP42OR)>+aNb_#GWH| zgWd!6>Q=E{teUk@bjvpy$%or=Ns{*AYq*Hcycg+c5Id%5r!VWVGvs=#+yYs7) zw(p){n6J&=jFXHKdA65)9Jc_xfzqFKjlCVEZ?hnzgs^oclftR*TWcpYvxNDE)ZWGt zA6o_H?{hn&2ahOB_$2RXpnvlH1)vCCGtOMQ@9qZvcW?gjbAUr}kD*xHz?+24OS~h2`s^DDN_+3SE+UU; zQW#D=1RFZrc-bZ2$L%3--mC$#ZhGi4S|Yv^lVCB6mg@X!+2Sbt{nP9A*Yf+`{e(D* zJ;17qSJCw>hrb808|s2t4zK#fgaBjKPpV1~FiuWh>k|z>i?K!mG7aO2JUL z#!|^|$J&Q32A4_Kr+;N$N=_!Ce@Zri7B=@v*>JaqXiX5}$!xWgGU^nIJ7$937%^h9 z#Ffs42ejl-powHVK)Re$*qT=dQ0yO#H$msD0e0b3oL~;{7)v`)QZtElkD$5mT2(5t zt9T``a3-K#FY|3?Y%t`KHttVKWT<23P7m2G!DSKQEDN>%vqJ329PRz5Ob)Sk_TuL( zpxoelp2ImL7;XcKnQ_mM-0yE=88Tuy(XDK;1m?b_6!Kqiw(34FQ#i}N;Kl9{FViyE zqIds;=WMQ)qnt@P&D;s9RYY>ut+8O-3h+5`kWE$_*dpU2ahBE2V+y~6-xVB2^SXJJ|mRi$Up zTCF?c9eiH0m>eV|L>+ay#`z=K&l>9_zJ|zYL1iIw1a*?u4(0Tn8RFCGH<> z-Tq_MMkYes#7J0TjOn?w939)K)=wuHNsuLOJ_QAkY-0ucRi|tU--J{aygNe800NNV zX#V7JL6lVM;I2}~v%q?aEwQ7gxC>1&PR(QLko}*8TOYqXX8NAYsUj(npC@!*dSGbg zOXd0I*`{~v+3sU+GGYj6=PsJ>QXqXN$H|5JX6>b5oH(c}?Qv(XF~ z!XGa`NA@13FM^I$K>5=Gtv@wJ#mKOVPZyGvKO}ak4xe@VBr5*!Q$r*9T4%(-jR8v6 zhrkGm8(lS0_@48+(ri86(hd@n@4bMj83)-Lv-S5XuzHS@)jf;5j<)A455a*z_=52z z3$?|Z6Q>QHciw+_`le)EEXh+u#jehwE@W{1#(zGZ z;KqvQbZL$0O`q)0@*J&__y10~_}2akAD!5wrSPBsrg$>617D9oW8lpr1#YsjgKnQ% znS!@Dml)MNDVTLrGK|qv^#szS8xd}Glaz~wYlJyt;&Ze+uDdG25jO!6-#6MzxrQ5u z4dHxEQ~7UkvlwZDSs z(!t$$?|iJ4dQvPowq_#=-#3$#$$Rwl=XZSI^NXMx`l{pmd&WP2ke8a_G0XH$?I7VQ zH6A0oza-$H`m*rxE$dpR(hA8tv_>umm?-l2lSZ}kS|{t-cN`eE9P?B)ka@x4_KkW1D$GcN^bqs zKGv?o!{pt`gsn#XX@%bM|z9K!G+J0}AWkb{Ip`|GM&Ger1?%9$NI0%J9}> zI-`j`swJV~vCVU|#>~42(J?B<0fNe~Z*ouC<>P*`DdXx%@@}HH9zP5PMzvVjHeuFN zeXgrgm{civ`li%H-@9Ht^(6gWO!rrA2=4jwTehW1MLYT4nS*j*oYp{tOZtH}n;mLa z!9?#Jt(Xv(xWa9%pPx1YktqvDY`8C&MYV-fGBG<=fuPri#qS^mR^4>2 zZ)xmrq2C6$gcpe!NglsD;mb!=Gz3D7AuiEoQw@~d#xqgI>-%#O`Qb27q-HFWgd#IF ztK{*Ykl^S)KbXeuev&&j&T^WMU6{RtZr<7B&OA1CZ8*wG2PJg0Y%8x<@T?(;dFRSx zrM*T${(N*|7t4HVSJ-!uC2G6W30Dx!Yqk$jX%Nu3N|XZiSbbQVJaytMuAFs`zPl1zf80vb<(} z;bpK_NQu8+xxztgMOMdb&LtJBJz;iP88ajtD}4J9H~r5on$K6A>8BlWvPX+rDIg`)VoIR!G3BQ+a^fb z!z3`PGXKLyhL}}mJG1tj?;gHnvvEq7aY79#`EXI6KyAOiesC^EYB4CgHtp#VmF-G> z*8J#8UvpJ~D5mG{1X6HsXotn)N?k054SKJO=Gb(V3XnTo@%n_5D#IXMOgwumnIQPk zOB3s_V5ie`Sk|i?>jeZUTW`8qAwtA{wG3`n9+#Rwf^S;ooJBKrxB`S+MA+TnGy0D4BKhym~mN% zIoGc7R7(Ms0j`*VIYlNkmLx-&h-|vbd{RswR_~4P-YpMnCYuTN_KPX<7y9A~xl587 zpSXKWHdA-8)U+DATKy^MsP}qMbbt5GIIRxbeRK{%$9zwp->SKU&pA(0=Vu(LzRk!@ zMoy$?L}w_?UV$l~a2opy-UVZbm_4RMaHFWHC`ZKV zr5v}eKMoBZ1dN~44yD%JWewlGQ3%WVK-f&XDS}0d`J01fG+zC{>@@HEjR4~^T1j$y z*{Xok73j+^n{3396z9rM)mJ&Ezc)jRBxgOksU;HD6M-5>L`E|An22^3(#VO;28e#k z3LW^Bv^0twmLmn)8v)X6_jSMSw#`$k&Yr3{3!+DNe8ey=dPIHW2)%3hi z0VLt&)cx-I9(YrEr>Ranfo4CpQacZdn*f@v zlfc-WK^AY`FKN#(MVF_Oy0bE*!tWAOK7t}T!~H`zo+NYpXH-W5Wy%wL+WPr$?*D1T z<0Q}?rbVPDs5Uf-sLX5TEWqzRKu{>TaS4%B1uD0mcSvF)yC1;Dnz3e+d&$h)I|a|| zbB4O<^c!yI`V}|?f0!QJG3c-B`o;n!IcL=V-C~r~+Uy)n_Oqc*Yo)jY${OLCTavrF zWDlqNL99jDpU)}UjOp^ar(H|RQ5%+p+NDY|6EK!}6r}obS#!^9iyZL%G$` zeu>hxTf7<=W=1&9zJ%`$EcFr@hwefO(gngf_Bf%N4eJ)3ZAzS1Kqyo`u|N z9N!rQ$UQ3rmw$igTJU?7`m(a*7Q_A4lw+18e%oeOL45FxuJD7Dmrb`-_XAGr7>gTq zF1S79TIYhot`^as+xqMe#RR{r2TJw(ZZjUMogy2ez0F1~9$$~hRFg`iZ}G^lHl{Sq zU!q(OI$Rz+Y-ntL87=#MJki*&FpEjted?xC$*XG~orNf=i4AKOq@)6`oRCWN<>IXJ zkU|ZglH0-N#d);vH=i$_)c5#9PyXuPoOw$3>*fZPM}gd3cBb=Kvu3`X>-oV*$8kEj zxM;2rysM%W#A5zLf^J5ld9%F@65bEH$l0ZKzBHFmGI6_8$x`TbN%Nc4;H5ZPQbY%} z3b?%Y034=L=ew_duUKD6Yb>*YFYvqx6FYyZDUahks|h4Z8lDwZ6WNn0)dsakJr$3< za1BxVu7L`>U>feiL!@+BfVQws1NSFwxqIE!lYys|kIZzrj8B&nhC<)wqQ1q$D=T?Q^X=#<`%L1b}`Gg%SZjJfyi^a$juk~EY zS+DvrTvbVUdVA%!JoSLTZQ=XR7o^v6%syzHr<#a2Ch2FW@t5GnzFMMD>af$m(|78K z2n-ahtrPy()#x*hAKY~@Z)Q<1EWAPf(uuooO@?KRZLUYU_V{WPvd>u&t71&C+GYn$DEJ?#2B)&L&H>7 zAk86Xd2;1R>Kf3r5Lx{jFU2yUr&$|WU_S3V50yhwxj|BjFQCrl<;*-k4dv*Z?`|H7 zMo_~(r9wpYBJ51!tMB0B@NqJMS~UB&p~rX0Rt1vdenqBbyq0}+(Z}} zWD0*)<9mCmXA$VG5$8fLPfgrsf50Yz-j0Pe?W4YY*7$8#fYY6bcm(`l*98HTl#HVFe{%e zM3{rN(eie@{$fuy0(TW=`3wSOwmM#|!hIOfA&^6+7<; z+a!-pcpym}XB4OJW~HmWo-&vF%hfYDY&X}`V1ya7wPoOSKU#+POAy+ICpkaS#(svrvN?wVpCu+guNv2YJmm*- zrzP-E=#p|59KF|pU=Tp|zoX`?zV>@MRsY7@aqkQc?g&d3v-IO{c9a4(+sprOWff8I3TG+Dp7f4`#t{9=571Fb-FeSrq92xYOiC^J@a?`~(S3Ggy2&+2d;lw`>TLPC)xe&wCPieCpOatPgqG>D$JO=E{2KG!i2Y`5H`OX(pd9>{OwC9sHm2^Fo`*!u%m$BD|CN|;F#2Mfr z_V_898G8ra%9r@5{WjV!TD)(JXC*Ut5K=^F?5m-AX+%lg<(PY_vP_?Eo8bIwGErqtYqs@L?k9p1rHh=LmzOIxnvxf;w;dYmXw zr@-L|a)g%+7J?(3l=a2&l6_E#Xu0fWm12J!YQq;b9*XwexJ3<(7k1kE9m?g%TH!qH zcEQy0f;4ob_J9Qc5tLXpgvne81Gw}K(}U1Vz`8v zk!s0F1P(@WD?WtIR?<$YTOHZuZ^?A;hD+#p z>UBNxvG^@2vaDl)FJbFF?j(|_Nn$q8T|77Gk<)^nnU^1LrrYx{4tSJ5jmPz#jpyxo zE=zW?r`j_ypaSRHe0sZ~vYdxa#pzhL#OTBgC(DM&D#o$eV(*{2?ae-p@FE7x1^MV9 z!&shbXI5vbU+(01aFg`rJANmI%md!rm$2 zCgctHLg`Ku(B)Ss;t-9d`KlQo1+<^8UC*d?m2ThU8Ia^8-aUxq+0Ti`G|eZ5-nAvi z+pCSoLE5f8z<|b|I&`|i=SWEUsZp45pBRl&XmaK;EGY;`ThT1F91F_s%l%cDjILBh z&AL%;l?6ZNL(5!P=$!~Dqw7NZc0b?s+8xA#n=g% zr7RT$GGD~2%8za`L0npe=@H&HaVu=QCiJD#5sle?uYmXclKIE9eV1!n2`b6o8VS<4 zNHY9=Xwi>udO^*!A9@LF8E{XSMVT-4E9{^HfAja3zVrT3VCM)x z%YPuE(KMv7Oq-qe4!4-pc-mH@O53+u{{ zi$QnMp-imrW#&;1o#_$di};yJ3$15rk1Oi9#j|dU73RW;XQ4%Tlj+!xd^Db`oIXJo z)&9yvcT$p*X%1YnZc|_112v;esijCWbLBJQcB_su-5P$Q4qsczE4lU`)<5Y6TlF4C zRzYneW#1a|vW!07Dpw8XFdwWaS!7%W7=x-ZV3>pVLNtH9zv7Il3am;??x(jMKf4k0P zLMS?pG=c$?oN_kx6SIi!9oe1D(0;NWVXT_cOnNucq^dle{NVSx$;K?EA6jv{uML)7 z5BE-ns?qL~@=prz+uU;@{2n}+p=?bi&A+c=Gxq)FA!KoJlfPE0IO6pH)3@imHf|uw zdg{ERyi9T9ZT1sBQ0}0Y?6WmV8Y*2as}LyT!Hpt_iF;~a9Y+>vdn%p?-2CTI5de~t zBeK&V5sDarkfh$@HT@W0_E>HZbtS!QAMvpoqj=_i=vO~J=aN?zBn|SvWXNZ* zZEYa3SVh$hR82;tg^_MpbaMsjpQ7i0u`tUL`o_kcd%sbCiuK3yl7%6~p-ooI;noOk zppcma=J9V@HEg{7OTblsKcdUjHaiIZ1N-6f&$q>X_xbZ1Sb8n_1;V2Q65n z!y@5_m%eqey}=w!7@>5F_M%gr@A54cptzM-5^H-!51MltzS5p=F9-y5Z=Gu-@-%%E z9TlY@F-!Q|3%S#;U629Q&>+55s#i^1Yqb9HHaVW7XUXcWtp&E_d1ye^wf=>vU)q4@ zRpnE6$(QFLR3#PPzrX}~;4fbM&g!e4Xud3GKDIgb0eTeydD>Am^xE(frQc(fA0#b+ z{FrAS$*hTHj{5gX}$A^GaH!}deQ*3|E zU1A`s8{oA)_7}EMP(=`Zp)fJ`p#&lccm>3h<{ZZk+1X=%SCW@ie7%;!Rir1z8GR{a z&NYeF<;ffJo{gdyP-^QvFEP^XzvOp@F8^Xn`xW5`~Ng=Wl3)mP9ui4g$7LJt&#>Y=|zH}YG$&jTyinO11 zh<{XGGbG15xq#BXn^lJ_bB;vU2A_SD<;MmV@r`rh)DhoU8gF++Jre%G-f}oF0QHeGQ5-uZoSGH*1%Eseg%Prs?9niM0RU*G1rK!*Im`kpdtO zfA=o^GLLBZjtc@eVu|=r0V0H=Tf3t|KG3Y#nUede4FzQNLWgIt=|n&)LflB}%WKFa z0WJ^#{aqbEXK{|ip5-By!YC6+V=@bh1891dBV08rqh8NI(NfC>CN z;Nhk1r8}5q&d8mTpqB{B^nk>Dj*D;%HLbdW--ySJ2GU_K`2g<$;eE7*oRRP_F0&&< z1qizv9Ot}MTuJxk= z8DBc-l@!iZDBxv-M#hJ0L=)-Im9auu<5jmE0N-n$y7K)b^*}qPg!Q-0Py}RX%#lh) zOH3ZEp5w1$@~6Jqa?!`Ko&kQdO1*8R>YdQKfXrWyw<~sCJ_{T5` zp6*Z59t`z?GU)V)DO4xEJ>%M!6E-M}3kQ_EcvR(YUnC~OQ_nLS>IKsDR9r5o!NR&<<>$GO+wL?Gg;mSA$^AZp{qGv`oPYrMGi7IvJ*3v*&*^et(uj8>{QPhOed7-*odE#8E>1NQHbnQ zttTQU_2Ui*Md1IqC|KkOcZ7w5npJ|>&FZavV450tdqE`tP;F10E#t)DVRPomsmXC; z{o2*i-u{D9VqvgsX-g1Kd>h>aBouUih4Vd`*94Y%^jqeN-FV# zc%m|P8flz~?$L#F2VNv3N(UUJ)>OT`2(Jno53lZLoEBDiswaGx1n3IPUz#q;!b9)6 zHOX{`4=ZeTf_k}`7C#g}nobE?3T-aB{?!ILCEvb|lDxGQ5a11qr2IudRn_SBi>HhM z-Nb468OnLcYtx=-cjtj6>89zo3L{fC2xX&x00PUGH8ryTJwDH9z9|*S=y!}_<8JRw zxP#FN*cW6$P^||Tj#us-SCjC*%I~?kGPvRW?g7NR5c%YVnanak5{VZW=lbs|;kf-( zx_d2K@-qkVSB%f%eG5Qd)iSFFUiv!1$tqk<;8j?IM&wu=2}Q>vodP?#!qG*YBB4~Y zDRS;yWH>j8#EmioDK;b-%I|5C{{2MAuv4~3Hpq4fUb#&(0;>07A)D5qZ{LXEdEbZ# za4_^T5GU7a4IY;WfKHwh-lB!s@vMLE)0gWLI!_O}oN z^IJ6Jyq$DD5}_?8jL71_DqQ-q;SHw$uXpw^{q!OfNMKq7PE%nHB6>kf{l6Mje>kWGjgCHnWBD^4&W@%U1*|0O4veBU4H|iPM7>M#PcI zhT|YJ9==N^EmF3EU+2K5F!+)OMg06C4ED-5r78agv*PFo-c&=9>O!vM=iz9+$GQMe z)3F2$T@^GvO#wWzNnvc2(I@N!0nwvk)`V|KaWLomX~H`O?+; zje~ad26B=uUv`7Fh;3JWb|4QFp65B-S<3S88&^D6zbb5W9k#g{AZ=6vctns#BRYtT z;PHwmOQmxjy9HU*Gepf8(0!N2cG}+AJ_u_=e3iR&BB^_869(hC2v^{n9)w}z<|WAS z4;W>DPzmed4jfKW{!fbni>2^3f|&ip0iYIC0ky{zfT52hu5V!rl&MLSz|#6ru;?ua zfaaW;V!X>1p-N`jXerzau*0+GmxM%9@RMD;x#&1mn33|E=CSiSxMHdJCmQuItalI@ z+JMjnzF~-jZ#9T>y@bhbBK-t+=u1Usry5fP1lt@eE50FFd;Oj~E!jyNWGf%TH_PKs zW&wbaUz*ZgubqQhVvuS+^+PWl^8Mb#3jKfoT_a3Jshc2S$Qd<%L)v6i35cyZdDrBfjU?$g1a`YP$hYuloMF& z{z2{1H-vi!!IWu#WcXGp|K3@*<2vAw$F`5V&Xb@?b}B<>VAWM>`V9iTrQCsNXX$kf z8{ZIkd9#59#dB+DWnHU+)&t}26L&J&pZg)Z3K;Zt*fc6kcVjy)dZ46UZ8iXGE&z5O zgAOCr`mC=PP-8(ieksJfoI|iJJS)|-m=MMYXaH(1+`>$~*&4DR;jwNwOqPOlvN0G{ zv|Plu_G}AW_1nE6|9LX^AIS~Mq$mSfp(6jjt*#CYzqxxFh?M-1Jt8W~aM1UU)O-8y zVeM3^`x%dcDqT1|UKce0SvLnN;ZB0Al_ zH3*F8RZy{<=_ko%?)|UY!xxG-Cp5S{GTe0uao?Xo;i%IlxaM%K?AAs!m?wOUxF;Nc z00;RE{$O>^1!xJ=7d^ z?7&@ECn#cR4oXGH@jTCu1Zn{FCrDxnN-sv>V4o@Z6=aP$k-VM0$JtSrVRjV(!6U8s zB1vC?=^PAV^4dM1e(rfbBJ%&nR$gT*G-sZ2kV>Nd!qc85r{R%Xn61ZAACQh0G3Cla zN?=MA1?8?jLQ3BO3XBd|(~7y~4#pp+=(y_t=;+7I@XTcp0c0RssZh@Va}++jaBxYX z_5hS@snV{aS-8v3{ke%)sD2`z4uhohtnk9eAxS^Hhde|BNfBgS_IqG}OZlDJyY53w zUduBr%}&0HGiesx28#u|CfuLdaN0D+>l;Zo_Ur$OfC2l`k0<~hCDGNpV$KPH|d%C>e8$ztwyHz^`XYziPc$9^*K&|+`I z(ypF?OjazXkF55FKHtV)o{vQT)dJ8e3}e*wHi(JI^$Z>AU8RD}R6Aw$AnfXU0EKER zmTreb*;BT~wxjlFYX!ya^XedHKzR8VTeNXz_Cl9 z*M{CX619i_JC8iv-2#O?iVoo^nGF_1G%Rw?L4EHxU>Q4fm^!>yvLmS9GM$I$ zn&x|JrIB;(SvUV#g=8N6$X~F~q^WR7`Ef!|(8-X6P!Sx3ZKUK`d<9*^vxbK?;` zA74KO&dA&#y+FNx;}>8^f~7<+4Wm0`)-y-{g%6_}! zjs-))23GSVd-D>CUBjDecA<`rERJy8_pt(PpoRdk0!ne9Y9>hPm=ziJ84>aQmt3io z7j~B4*&7>E%jJDcgFLGGp$P0}|C%P7QYzHXCfUamTm&^Fc)%LRz2lPZd_s9Vdmmxj zScYPE7X5{|*s<|3@#d;3u5KKNky$hoVN_ai*$u-gfHbL<+b5{%AwJmwvPG&`AMJki za5FTXGhzeLactP(DM>VL`(qH0=(vI$3p>a{)@XuH&0p4@4SuwiXSWI}vbk_xnaTx^ z*aK7p+XxadZ$7nurV{CY;Ijk(D&Y(3yf`e~z;5+v;Q_1}nbp@gwtbaT#vWU-E*X~?wLWK-< z4-k0tAULRI@Q8kmx-i+?`uh|szxILd^rw|++CfV4Ps`J!*NtXRCm-|2hn;`0J#^Dh z=Y31?X9b38zf9L&u5BqC8yOxtEOnDM$PIh;n`rbV_0>~-n<>&vkF2AhPPB?J$I=^| zEh9$RlOJE=5zRgT1nu_&Xu9&2jE@|j@;xY@kktme!5k`wv)@iLbwg0O6B9qDIu2Lo zg*!RF;O5iU$X#+r428shQ2ey@`S9Mc573LC9%l2@`^FfNB3az_DCezF@UwC>e={pX zMn+S5W=Phj1K|>dOhwY6zqr{Q=%Q4RT*O#wYGmsq;Ga4h=p zHbioQ`kh?v0OdZ-1w9#q*G#S{maD-ll`{x0-8zh%V%l~LdK z?z&MlUot(5UZziuFpByR@?TAe zks769p~vsi$kHvM`n&buz+Ppl>D9&O;1&%N~)JXMh z9=`^$U=9Gb6jgpt3Za>>uwGu-j$;`!p1Tx{--hDaiJ}anZJK%tMM{fR$A{sT;QE`g zCtI+XKp2`~B6p*j{S<^g6xmn#ja`ZX&C|Vyq7F(}mT($-${2{?u9KMXePR;aAbeVX zW9L69;6w+a+qnX{U15&`jTW$FK(j_jQOfbBb81Lc2$nf>r=|Ttam_nO*^a9;iFxLU zb9ACdb;`EY45cvZ6)l_{Xi=o|(E(bn7*VZ4@`s1RC1XGD094qgZOQV;L;2`9Mdctltl}cVF{5q}LgV=!>qBaC zz)J{)2>orX5i8Q+2x&1s#lHIF>8Xxk=ja>1L4HUi0?T?11efTZd=xvJT5L$6>oz_yo<||TcYIx( zD*&dTPz4$(KRHhynJJB|IKCgL!cU&j{gBt@X??uD^C84+bcS5pCMsuc0tI+J=2-mqCtc8QFLa{CND73?(Ui+e@lwH;k0?BdB(HUuOi5aE` zQt!g<{8+Tixm5_Eyw}D!)@>2Em--rV5oJt%=_@YIT+|+@lpZoAKP(1y$xnZot^Cb& z|Bq$TF|T2*<4VfZ=xXZ>dig`;;U#{&sPeTp*E^uXAp>>Tz593St_9z}-{rs5{8mu( z!b61ZBug0%ujOz%tOP^?*$B*OSoRDK>=h!NHgotC0?7c^JNlF%-MYPUu5&%F=QSSJ<8dFyJAdz- z)6W{sY&|mv-8{YKbAPq7N%(W;12fK_)8lcGZ8;~HF<`9ju1aQz)o`BBIfseh-Z3&# zN(OkC%%yxt?mQUKzQ@oQJ^)+{FCc%)U3%$ffQfFNJ_H?!HByqC3~~)7aarmE*nR4q zuPl7fb@W@1dGp1*zY@T^=S}g^rGWXEOgmXbdLz@rZ-FszjExZ;Ds$qsEMk&3S;3&6 z1D6sz4-aru39PX!kRNa(uN+GvcGo^sh@_A6&&>{bA=W-dKdkn=?48XH2b z{u-$zj30^(qsGdSv|el^QL4WVg-&tOMS&h%^BneZ(S6GENAEdloIm6m9{^@dZgBQ} zQ8QC1XDF{k4=&7sxKXfSiZ@5&=U3T{lOBm8n5{gF0zaNX?^OLJh~0_V2mO$?>GXNI zk^6YH9oz2~+7+?`&?;Rk{-3Q_pLx@cyx8X;Zd2AUxvm?w=V`pe;B-e79ghHbyCd`2 z2{ZoTY`PB}(bfQGH4Fa;ccY66!1pEJ=MK2nDERvZ#`5Mk4x>C16YH%_X7XhU zHEvO=!Iy*nX|~Ff9M~^Onz`7bSCLOcQ-5fav#dNVE7JH(A3u zvJVKBAO^G`f79nhG~j4li$10*NRkMw>rG*0mKE^8HdpruZj)o}p!VBgy~;nU;X5?vrzz;>0*UvgnvQ**r;DBZ>? zQ15DaK)A%h8el9pqx#iy53ZVU)h@>g{^ohQy`BY1^eMge}EswuZiY zKD|QAh_O>j>Kz{m1J0#)Wjs2~`njv8lD}lQ$p>CIQVu1DHC#BT?x^R2N#LhIM7%1$ zK4GBx9BNx2>-0%ZkG%=@G{tG%#{8Q=cQ3*?AgPA$6LpV5UvK_})650zmWqNKN~C5@ z*|sMuu0ec+=uFrQsNJN!^b2mA415auHeFESnukF9!w>D;o-W*I-n)7I+s178K-_Do!UAfuDdP%; z?3mnt@u+Qpex*W61wlu{MpSPLps<#e1K_-I^JpZcLe;RZ zFUe)PZl52#giz>CVX6ZTA%?zgUez*ZKG~xXk3mlHADc%MuZ`}u=)8!?-`8zp*eA~1 z(Z*(;Q_ASd0!D)7XP&vfcDLI{;t0JzA{3K`pxF6VrEw=X;MP;bnJNR&cN3vU0V@ZK z^lh$7&-JW)vnU^F4nOLHGj=p}B;22p=9hmAf`uaTm(Jmln(ax1{Z+%}bf+X4I7PwNj{7{kz#c|_$x>2OCC;95dJOB{>1sSpg?hv~%|Tye^^<~ee$ zPIIVm{0h0R^2;n5qg6zX$J#-XvA;=}p6mWlG>Sc4HTNZu0nY3giMaj~u?xcZd|rYa zcM_+PJ;i?Z*`TK{BN7^q^3pPhP^0bI&M4c=k*3WndtG;b(B1s2}?cs-YL` z)88+{7?yyT<8u!Djl#cWKNlMRDsE5tB0j$rz0Y!3hFG!8k$X;0Kw``6YQH9W49W*? z_ZWSxd69_t`S~0jzFfOmc5j8A6NegcoA_Q(izkY_SW|Jxl6|{!GO%+e8}MC@N2W4{ zG>jAtFpIq2ylQkWA)WcVgQq1}NTa~$4`@>?y&5mEIGi*dRI;o`R9kY3*ss4cT7PXB zdaJt_A-%rUc3PTK@32kOdMtI~cSNYvQs*kGkxsd3*%xhwPacMDqDZ}Ip;-@PFux_l zunF0KAZis`VFaVclbW5cH%w45RI>NAKT>Yv8QgI3Ob9#S z6G`4>VsMu4`+j~PHKm)y_p|Z$$=RKG*0#?ez5~+{Og!qbB9nu8?g8RxJwV z^BghV)D36D*f)dU`+VGerIcc$*t4i6}vr~+LWNFWy(H*CC{_)gWG!Y)sOaRb+@SKcpu2-RWYH(W;+!kDXtVF>ehgHAmd-t0`^YS>1{Q! z$ZNPwHovONjkDx033_)$-(SIQ5&9!F?%iE1UT5|8Aw@lDf!s&Q1&Le0Xi!T+)dv*P zQjNXgIp^B5{V&m?Yhi>mz zj;OQ*{cO_Ay$#stA*RIE9rY8FU0R{*5Bj%xXQ)U_X8a)Eq=O)j#?1C3>!z*O{;1bW z$zJUG10kx_#d@c?HeGx-*U8VWckLe1v{%hTKv3TBxnH5DO6+?3z8?rte3KL34K~W3 zy-V&Zgt>tixsh2AAEq^oM}4_}6|U{Yws`^X6(KvyJHtV;(-ieu8PKa`*>lrkvgW=o z*53T8x^r^mbNbp*Olpc9o#I2r`V(~WQ^^LJz!}{l5$>` zYVM7TV?p3yVpmu|W%Co6zwyjz=PoKc{-U4CVDDnvb2PmMkJvF`X!}wLE1C=oMI%r~ zsr3IuD^&Z-gZLthYV0J|`_8$94=_(jQck#BF-bV-$-1RM?D`V1}x3lOWky(r_+B?+raR*iTto~6}h zgkI8cRoMIX0K4f~8b4*opOunP<=q*RkmFvOTPR|aZO5WB$6M(2yUj~*fGXtp?|iuG z#XL{rpVvMt=&z(|NQL|~|E_7_kWQ8dqG$6wW&Sy(>);#-U!2rC71M1S90^r5qErdH za41-j<{aKT@kCq|*Lt;*m>t};D8*+fVJdbv!!>kk!d(N>)YqqV>c$KsS~GS#{0wo7 z)FoGn|2)~h8uKJ*g$D9;q?on5GARZQ!FcrmZPd1<>!;GMK?=)X)6@Hm74=Mx#RelD zHVt(PI+Hm%MVOzCVfApk=M$Ut^F+uE!U%*-5>n}yhJ=O8Y4 zRn`eD1uA|o|0I2T1O*&MS&V_JUrAKR24s1^k=q5#MxSU<-)b=bmBOTJ3iyzGarV>o zx-%cKhewU&>|iD3uYytpKoU;%{!)|T%%(}5ntq#cg)HNfz8dB`BZl--9pp zNpFK&*!8eXD1UlxYGlbx>aA&$(;Itnx9Kvnk(KSM=z|zg<;yMW_J^eVHQ-Q8JbrWk zO7na2#WPvIr696^k3S08ZHwjT_ePN8T5Y_j_9MZD?*WxS(I#v^m4#C`$kUM-1 z1-kkRU=hpcx>dqdS;{u3^y>bMtRX%w_?rXfyD|tGm&R3b;mNvS0bQ7+xu3N z^U2qGB-^WbIhvmU>?S=&NX+d8J?wuP`1cyC2*CY>u$>nlE_`_-Y~`z$ZJ+}O_j%#= zvpe;p`t(ya{g`(8C?8o0>T4c)G17&%9{x_7Slwwk|9~bpc$`Yj=M0=$;q2H_PIhQp zpZFugqZM`Gic9HqSzd3f5=qGb?Wt8LTNqd!4}NoEvm#3g?doUN{l=!3Qq^Y-s@Wr< z1sSQM1%IRQRD#VjHt01*OzW+srxyh`HJrh;^y%c0o3}5_5l%aB066zVi0I>Q@#379 zOHIfwii@>sa7}}jDtYii;b$mGYxM{mVISAr#mjdwy8wvEz4?Onvww>K z$s-&wVF)nB^oA{TNymh(zxCL9hR>U}fCK@6pNjg7-5$q`ptY^;PbQ0JY{d@7s!syY zIbXtI{3y4h3PA3!wPrrdt%1c{eLd}f3p_Cl6(fJGJ~1sb?n0O_<(GD*RkFyP=netI zf5CB-ps086%zMMblg@#uG?Zvwq2pphF>*gz{~p$~NII%yX-@uWIiXbA1>~qCPyr15 z%=|PA!>#WKI)^uY#txrTXKhe-o~U)L`9tyZ9yTV7aADn*$0LnJjO6-RsBpz>%s!N9 z%J3|IawF1*789>yqSPg8;?qR<6@Q5rL^**zmJ^+wCxE}~X9j9{Mw7UwK&XB=NoA01 zQDT%nva;0h!G5$Qd6+H7?(ItN?q%t7yy305QjY+zr=c*K6q~FM0W_@mC{=mVO#TWO z&m7~c9=$6Vo?EI_e1@6ysBXTZU1iJOg@ebKpvhfHUCa0S^`!$;O|vm<#o);GkA$;v z&bfg)bdchv#2RTrnAl0<&6z1E8>@1Jsp6*2w=7rW{P>dNV$Ltw zf-pY`Gwz;*kH>7$>uweRw;k+R(NR}O{$Z?4$(xzrUpv8AukYcE(D=;bVrE@#8!?Hi*R~GCs3hnv9wDYhV`3APyj?&0p-LMLcXsG5Kxl z&6}#b_r)D0=*OZ$AAh^{{4-qlbmUfJ8&+4C04}?QS*zGVc-O<`E=Lqe8b}yN+d9s+ z=_kmXdVRopbNHI1v{lW0po9&-xpH*dZo%fgzFGKl4IG2B*Lr{23FSZAP=k^x^}HX? zFmxMuYwvtaB!zCvV=``{eweaPvLG-E!9vS1MrF!*SRiSVgR-g)iT9XS&KK!Qp7`y< zBI{Eyh7rH@8!=rEn4=DVc+Z-Bd4_tisrn_i1cG+G_KaDK%j-ek;Z9~4Ts+@c>>9p% zn^kwIe1l8?(adS2YF^eFE&%R#R?3doh4xw5!MPkLO`ij(!xh16+Gi`Vc^}GOr>9^k z_1eVbtBy{i$g5T39805StRo|7chRz8k9&L)hH5Am$4f3q|0I2=!N~1;lK!pfgv9Yk zw`28h(=vSY-f8G}NL%sCwsiBsj^lFg0+q-ufEP4~o&4U{ zx}Lk_S5mK{_M<;)gI}laRQYG#MIH#y3F(s%(u)Gbwenr19k6q=xgnnJeN5MXIWE-? z0*E)2uOevk^Fy|*E~(%oM9KeuH|g#2E$3M%cztPVMw9w1uY4*fQ-biV%!11bNa zOoldwTyK(aCQ(>H@Lx?$ z(;6TxJzXtd#Z9wJP3hWl62W7w*p6kA&7(ae!`?u}@8q~u>?)iiKDSZzorT}8fIi(f zcdX3v`3WeYjA3UEk_xEYwos=R>2Rb=!0{{e;Jk)B zX674%Jom7^2Y3aUe;jEzm-_=^_*I@cY$Db<`H(6tTi>(htb zVe98`+Bhm~kBxP-?{&#XMSOPTA=^IcRnRt1hSvKhxY@0SieT|LrD91_ckST}z1RoZ zfXbWS3S$w}Q2S~I#o4g6TG)%NP4Gg64d%5jTO?zIU!AK$Hp!th&-+hmx5*%t)B(e& zIxfr9^Arn!woU_5Zx7s!bAR*d)s?^dOr2wg2%7Vz8lZ=-nkZA(duoJl(9{7PAlRJq z@pG{cs*droyReeaZ6hK#7tgp(o2Q_zI()7g*b`*9+YQyaZdS9FUm19^2~0& zQmW5%gqU}$$=eP{6b-npMcy!sv-=m9pAX=s;f*nmEJ@mljxYr(J3Y*AZ>yj0s+Go ze&>|`aubcuXvELnI|j2;3DXY8(iupg}+_|ba9|9yH)#;@Z(*@HHs^rbfUFSL~XlO zSH3XoPuS2P*r!T`?g#8GpHmJ6r7H=a8R7@b?JUW!fJMG}kzu}s8FidHToz*Z*X=Vl z{6>|fHi-SBw3=OC1A zJ$@Ses=j}GRt07TTzcNe`C&o>&>RsiK&;J6V4hzEcS`q`FgdigBb1l+?u&!A=98vq z)FoYRpE=U)vmhC&Ie0jk@CA1<7w~{)e{6q1iu>>-V`lzWEkZ9c(Ko&Y4g1TUISVR? z9)7NoX9p_15G?i#NjPkH-GIz`cu(Qg`rmJFA6$Q@K$G+3<4M}@RJo$VKDnT!SP#;$ zAaDQu<5sN`>=x|=lyX1loi!*80D}X$?3Y|ZH^#nz!mEVGFyW(X)b|d=3IPCnRUy6R zAd&mNGW@Kqd!ya0@_UZ6yr~p0Yzrh3NQ!Y<7KF>Jt{@S6i@*F|((5~Xh^ zBzcW?mVY}|hr-5y{9tjgF{((UDlcn*0zi~EWMW`-=O}~t3#*udE}DdZ+B~{bl?ReC zfDBYZ3Hv>Z$2S62PZ!BH0>(I%j!&o2hU=UFNg@VG=TCskz_Ap`nRs=Neh9;e=meD1 zGG6Wu$*rC1gzyd+?o<6ynj2~;Hw%O%wDpn*JKOLa=#uimIT-Zw#UqW^58z|Sk7I5d z$oc;+qGk0iId}J|-BHnB6eJ#}5ZEfhOuH!+_k<9hN*6{)R#ea-j6rK&;Snw-9q^t2 zkYDblYcGazXpn|%ng<@GeqFh20c`1!?a%(Faisk;1h2RNaGCe$caU8jz7((S4ZQ}f zqJa$nTU}_4hY3)8K8z#o1^+wfI_2**@<+a6%_@dr07o2M(V=D=sEpX0c0Gq+#Q**5 zt2^%Rtb>Wf3D4>04H*zBIwU(^)FQZGs=W){z^@{6`U>JGky7ZQ{C|4#pXdGWp9Ga~ zwpOzL`=8VJQTer4pAk@YP!<#TkHT~K3YIu}38~5e?ig%MuJ|!Y%HX0hpmi<|OTT}F zga33&tBn;g_vi!pPz0+DremrXnZ)m|;s`{hyr$8qfo;{-gmJ3>nZ*C?6v*|{hWULw5Dk6I7W(J)G;go9 z_u@A=yYwzTXN+V>kH>K9K)`@K@{ zwPL4VqV#!b&gV9jX8=q=w-2|Jl);uw5(R_nMBgjmC}r)7TrdM4XTDd9C)WDqPWWGF z()QAq&IYlGA}tse!IU$9YRvD#CkElY*eJhBZFTSmR^`DXx4rA>3ESsgMa>4ED3^*zvhqlr2kgc2h=Yg(fl&)PyO#P8$rM7kPl$nF@N$AD`a`j}arx z2(i;e|7-fOwH{(oAP*?8!M^ywujU%&W}@Z#^MKebDb%qH_c z0`AMZ=>Kgx+%(bnLX%a=n_&1@C~s=TwA<4(>;G5|bc6E+lC(@i=zN2Uf4sQiWuS03=8d*J)kEi;V!28yARgzy4d zt%fwmt#J8O@H5c3*9P!zR|FMMqQfW$CGQ6*Jf;Vq!6~pGIH-OkRHJX zo&{8Cksu&ZRc(OP)ax6ee2VYAhb4)?m82YSG$Oe@$R z6a-QSG$JM}y#=%W^9&m3R}SnVHc!3ZvL->ElE#^7Lf|eg`1JK~1?da6z1E9DR`-1N zs~`TRQ_SV8{63+sf8l1_uJ}k5Qpsk${ClayjnPwfCHTKyDJzJ7&rxZ6L?+H1J#pb# zc1Yo!TSn?2TKi5H>BJt=TJf80z3Q{5kIqI1iGKS+pEbTi@6;bK!^*1 z!uP`rAuHnoGb%|FemX1<%=8Y~$1At_{xup6^Bh@>VC_OzT?g|#@;{5{-%CvmlZJt{ zn#;($h}g@)3GX>kTSC<8QG+f(&4XDpGo)56EYbKs?hgbaW(E3bSNyM^M!aGd$AosF zE?x|~obmH(-vzlH^I;--AxuwlDSH((EyDIvBhQ)E<#n`Z9uSKD-`~9x-!^`kseAPD z+t#G~uBc16qa+wT#4ZU!9*2`=j~Vh}>PoC=i5Z=sTyIpG!zk@0g3yoD-_FYY*V-)Y z2f$dut-y5-T!`XJ=diASp%Qrt?gMv_ z!WyJbj`b?mn(PWdC%yX%trURb47jwEdXKl<&pHC6aXU!Z079at-vogH&kZGVFA~UI zZi2gy9Kw4-;V_9Pv;e~0L+DZnH@%v5XlxIuDmPINKu9Qv7{(zK=fShvQ&UIg-t*2# z!hr935y#nA5!a#v=4vG97(`rm6in_wO61=W3GwJ5hh@D-8X-cgA<@^phi)Ia0^Lle zu$d!8jD{TX;~03QZ*V^U@Mcut=C&2#X#%&4@1IY(IQRWb4a^Lf)KH%@mZP)h(<@1n>ebiJq^rkm{5hC{3Nh$p>7Z#Q9 z+&YH{5FBhjc$7Uz6Pavi7Q{!JU_i?0=x;A^*#5?c8I}|uciB7-U-Cp5A+JH|5#tEbh)F3 z{)Ds-e9`xBkoMPSs=<66{S-P~mz=@`Lmw5_hQL1|H!}Pdf9uRrDgJko-8wQy2GicG z`a*1m2*X3T>{ICo%^iohVSs0?VyqQuZgsrc73nV09CD3?=3-G%JW^(qLjik*0>CPi zKO(j52hweu$jkh+;r>IB7p#qFD5CY?hTokH_^UkHS`>^U@*{}wkW{n+ARL{!3Bx{T z5spa*Dsc`biWAm@iZa-H3C5(|^GRz1oCew9%R{9g3lag%w9wYZ=H?(3Iw2x9oVODk zm;ArV&K$ns@SB>wN+HmA&gUpjQ>D650PpWUSDTi+qOtY&<>Ze-f4>U%NAAzv?H8V9 z-~YLkZZT?h@Ny4<1l>K#ai-CdK9L`-M!1J3%q|XkEP^Lyo}4cdF{HzgG@Ibg@u5X{ zh#dp2VOB5x;tLFyTE(3c<59G6Dezd|n8h{Sco4R~RijTK?N3O5=S(;j2d*MaPYBi0 zVL|qQfPebpOV{lwjj*U(dF;(!vzoQnKbj*JB#6n>Jsr!Fv_32(blxJQ{a+4ZQPIYK zlUZzZF>%Ceuz1wp#L2~>XuGK}#KxBZfi!+%E!_k>BgqG&DRhDI;A)f!0?1lGRsOD}L>h|IOkqz0TBw$v-&1zqesPvz zXTP`qc|b4aCTRE$l6l*?BEMWwR}6rxpXS{o@kBI?+8v^pmFW!vu~6zPVibi|D-Z;y zvxG10m(>W&BzV!`tL0|pcivv5Y#Chr9*x32L*Q$U5B-1-q6Le6v^;V}Zv>f1itoTP zkstuqLcdmtF(QU84uyM$iRdXB0e*hTcf{Qg9$TGuX3Cs_CKLuZ42vX#ADcfp2^3!E zHOwLV7nm+KQ^V^T+^Jj0VE^HAqqxUSEPQw3e7^xEE{qdwI2U7$&a=T}gr2rtMtu-OPjfjZ!A#0(7_WEMcDTRe0+-9r8%Hz?7;1F}ngN?Sx)+$3?^ zjw8k(Evi!7pH5*3hseGc_%_Axg2B#vIBV5e<0emPZtf`{ut~U;{GwS{t5+9+uuP~|qJhWVlj-yYn!UMZy!rsBy8rj!~O31+~kvVc|P4P9*5HH4%O zTuUwBw2f!|bmITZvj!=MK7e)47bS|M!!2p2Rdq#q1bLs=x~;fq*QjA$21}ZHdDOxJ z&JilMqJa_XQG<;};;ow4}LBt@h_}xDF)vH$#`s&EbApZy1c{%3Q=G=H> zb*HV*zNb=ykCPug)2xe;Kq1d0*1f`wyuC0iF9-aNcI=d?EPy<+6+@mQFhc-#W#wof zEs(*#8lk={^urqPTuhb=f)+@ig=`4Zowf1*qC^10Ihv0Hb3L8mbx=rL8)&5HcD@21 zvYqPRURO^d$uYdX$v0pvPEAVQ|i);;kfrT3eDW{b@y*wwnPKmus(9 zUH&?E_4Q@*U4-!p0Az{aowb0(*$_oFN07fl)J-4ojaJ&pb8dy{>GMH5#_@{F{OC`} zM)&MZ?2~gOu!ESO&Xn`Q{JairHXRi|wI+u~*5`{C3gIy(O;;C!Ke3(uj6-AdszC)v z4wUJT07>85)t;NcJN06nXB^mtU@kb#mh5yY4sFq_Og;tB3yd3h*$H`zP?>1lXd;Njj?FGsR@E z$VbjIPvHK&McOrHK5&Wb_&eQvgVt$b%XXq`wvQA`2fR*Jtw>XZOwrP))0NX9M4F`LLzHxFz47M`{Cepai`ARAkSPJCSelh-;Q8sP|D6Pgo{}-zV zqtl-**^)PSf$|EH1%mG}n+MI)fr9&Wl^}MHc)4?rweT7<}Pr85s)*knYIcb2Er1=5SSC{;Y^3Ov#KMRW*J&QfBl(Bj1D(+b^rkoZvVt)h+0_VWYSb)e=EhthnjJqyH<=~0UTrG{>swmc;-!#Kc3_nzJS1Xe8SL| zas9|GrYd}RIydUgq=DjrZO!?eDaObsfjD9p7yg3Ype%meiF<|wnh$cskCft&Ug?Tt ziG=lX#}o6gK5waLY)hLG0;1m}TEr2#@iV@6u?*8ENcpuyTXu@#ula+rPZPuvzopPY zTPtZ`CWjmsw|~A7eK$4ZSv@Yxo%#^FW+$shaaw(vdv+1MW-Dfg%2cNdm!+L4VmaRU zfBL9KX!|NcEBM@mTnZ1UT4#s_lWYM~^V77$_-r!K-24urOF2@YOxgrCW$BY+hQ6xC zY;C=9FwBO}O;3~=wj{ADri%tr(7c(FZ=rlc#VFYo1~ZPCcr_=Q@}Ws*Rz9{d7R5BM zHXf5x9%m8oA|M*eizZR@k0++N;z|7RvH@!aZ+$L;NYlH=W_|Z`Ix<)(IOwi6I_Eu}Bp+O$+ucdK79WzKgMY#*KRbYI&)0TVDxNoxM2uiiBq8fZzyYAZLydF_~2kO5kd9+|9)d_UERPvh>bFgS!YvDNYXM(x+TG#>jQSNXOF|j zySx80YtTJ*48&;yCj16zEswT@zl5nzx1!QEV^R=RY%(89!6UM5^^vsI!lp zoF<-_j?8-A0xN3TH5POpTkvT|FK=sPvI@t%9lZx3L&w@$`*jl2W7?SW#IPZID#AqV z4o4Lt2LqAzz-NdFOQ66v@=%Wr@vba}w9M1{8>!d;3X)bO|4+*4!dz&GxxU8yVl~+6 z;>4~sZN8D+ZOTN};#tMU|ExtS?Ak;k39rqu)-Me=|Aq$c%*G=5bLqi>w}`D9SqdN^ zg#qh*3sJyDie5Ii0<|#4x56Cqo8R%=%{zt&Yr(aE7XY^+Uo7S28tRT!aUsDA*wAU| z)XB>5lDV0yU@)Pq;L#+C;1LvdfBC+~H*FjEGs(Z9S0mUXlRVKj>QAGi1}gS$Tv#IX z$(Ov6b3NzG^~bhQ8>)31V4Zsx405hlN3;c49ONPEk;WqF)~)n+*Fd?r9a8<>NB{*U zw}WBpf!?WU;47U5WQ@VPXTul20Ifn3S=;mPObmXza&k*g-WswiJ}my&0GD?gBtHpt zBxz~a(MvuYzbJ~Af$WW8QvexAU*rAVE8ae0#C{#j7d3*Ck^`bbHv#8s-jyzvjrB(k z$4%9=ca+Kx10Qx6)oBI$;OXw@g2m{a-K!SJz0}ZF5LNPw- zZrSI9pZ*(P5=DDC{HL6-vhLkGGBSIg;7TdCRQg~Z=IMs3X7whO`vO5#$eO8PjY-yWpAX1i!*fajt@bUKHIB!nGP@%``$;v)~ zF~F?v8_wvD&_7=ir&guL_Rusyy!KcT2-geSIbp556Z>) zLO|VX9%@l>V0DC{+8^J$1ZK;m#DAT!ZB=X>25-qU&3WVv zwJ{mPDLSAp>KNg`i=((ljY1Jo+G@(CS-V8vsL(Xqo!RPcI-Z#i?p2)}x9U(zvt+G0 z*tp?RBOa@#URJs-nTLp910-%wtiIg7Zwr!uTt;VnX2K8|x0y#2tilkQP-lz2>jCQr z%6cbA9(bPS)440candHucic!l1hEkYCP=noCY%vk_h&>2Gads zY13M%sqlS1Z9OX6)x#6$|;@o@9B)bP8+VP*;eKI3cw>t$e3jx zQf|2eDQs$&{zt!;G){)8Yx)*VRI_UNw9(}49K z@JtN_@a=7IGM)CSv z!3w%RKscuyF~*(a{YB#HHD2BRi{w&A7K$h7!C4YbuR}pL6Pgh!XIovxuhOzgaMb1pW9eQ=D=5 z5sqZB{a>@k!XhYeLZPvs zH~9nZz?=04TPr23MoP24VPTyk)+_T+=6LXFgEm_xu$UY!j8&X~t91eHIqHcW#CvSz%FipX=5AfG;=}xvRy9neFR-J7u4C@m1is zQtd{ST8h2bbT}R`L-L@Iu~&Bs5POp0Tp}-j8B1=1+v%VOyQ=EZ$u7c(+hCq&{qnG3 zUhM7)fEF)nolJGf>I1aasbO=CJ-8SyAU2#(SZ4XM(m0nwkH3v5n*r$3;<0HNH@Kk6 zd>EkK`wU)(!Z-Iu^L1^yz)b~VuI7Oh=0mU4l)u|I|GIOBA{InoJa>884J(BYLiCEJ zz^J+v`Pyg&BBdaTmEG9rjFz7~FmgKjBik^n_nkMirff z`lj^UFbH7HeV~b8pNt`}esh-^XeWkiE3S?D-gWU%Fq($xBP{R#Gox9B*F$hNIgL%C8oT)|086GZu{A=z^DdCvYLLt5#mR zPOm_M;-bVSD>3iyix!L$YrxCl*EAiJFNn$w%~Ird<-QUP2w!^|L1>Gr2Frvi zq@>BGc4Xm#lLzojnl6U7_RRJz#H}!eh-2(|+dNiLY*-=eJORYMa?XQ_nAF2E(8Zv( zRry%hBMq08UC`0hn+{LB5f)evb4jD`s7to%SiE0Eezu zjju|7;C>-4jVPJ#aF|#)h zH#r}WxKGDPD36mc;q%{)NiMgz+}vAeI(J&czHAkyjdZaX_E_VHW3LwmG47p1qn6S2 zCDXd0Ic#E|RYJow#7{3j*fo32igOsY=i0CGy?2sB zJ!w4Ax;C?<`W*uU*&>_0{17o^{qbz?ETW)4zM~#7%#f&oieg{!X%ig*#K3Vn!R;!FCmSS@N^8cX$ONQ=eodps(`L8?inE z;K~C}`d}XWFSC8rYVSca8{e4Z7sWF*OrGky78r9#CNM=g;5r|UJ5@iEO3YIJ1Cm1C zz|ordn8eSf>*LggyCi*zOGye_^VHE_LAE`bWPd~XBJ063W7!VsACbe9UW9sOHc?rw zAwYq8?O_Kx3@0bsw|W0GJKS$}nd{h#3uB^f%ZW@*wfuDJ++?WI0QK-*r05`A^mBJ* zj|CT$rCeW|_Ww-146y2X3W2Cxi-X73tll+v?_cHCBUWMCkND7gS9>!YF~@IiaPGF> z#8q-Ty)MHY6+8&Or{*kTV%EL+e*UCG16RWIgTreZ?}JY`G-z&^4U6A=j{UkksDB6< z>BI$#RxSQjfZg1wn#AuurcSF;3_@=|b|?;(9zE%oe_e&FE|{@x<2}2O56zMpmxu#S z`IJqK!E|z;#byQf_Kc$0?%-drM@H{nFYLFN9jK?3<)YbpxM;PjV@|#?OC)OxmUiv6 zD3ml5Ng0AtNU&W+!u)F{#!x-E=WUDSpNoUvpTSMV-U!RSFwW3SBd`Jgy;nQs5WUB} zjgptH>$Olm?ZdfO5D{2F!%Xu_S=tUASP==<1z(pbP17X8pB$OleSF2)b#uji%{O*c zcb0aI(td}!e9XAz$k|zW`d5q@4|r`_E~G46T#KmoCpds$?Z$N(#Z*n{cm2MFi%H?W z?GzVcE^K)Ckow{lN?9rbKfO~EmJOPb-zd}8KLm{`^w%PeZ|5$x05CSytWR=89h!h0UK>?O<#TK+$SdLibkgw<)m{@TveQ8lKvsRP!t^0 z5gadP*rW8vQ<4HnP&&v2C*;u_78O5kav<&bA7kjDhaGKI9IyAg}b$H{NvyekWQ(_NI z0L55xW%YL1)-|nNlGPQ<(TZZ$5UvG^dO6EbL(UT9Z=xCdYhb{f)e?J~Gt5c>+Wq;p z>S+(nH&sFS2y?r(-KD4u&TDmpn;Ve_O+icF-8b_CPVNWU`?T)f!*)iX{2pf0C50Wd zH>A+ps&^zr5=psnl#bf;aVPOEODOrjz#i;=gDz5x+2CpnkL%zjE$X{(da?6e)#Gow zmhA8A-{UO^Bc_S%*eis%cT?{}bLGr`kV!U`_gJ)?`7}ro_y}fD*01+My;$4ApLJ2^ zldV0DU3nM%+8~5}q5RgvVCmZf7RgD(5CGwde=z;{>ID@6v2MLvWkgLHxW=)qJY)KG zc6W(p=ohJMsheiY1zJ`iw9L2g3&~k6pRbMTkxL4#;h%Hyeo-fyO6;>^qeio`?iHsmld~zut662NJ=6!{+UxB z(~{GhLrpQmcxpB#kR_xAHo;dl|%{lX5&!c`@v6_drkt>}Jum1jI z^4e=wnq5pM>zGhL>x2$F(rSbvzJ`w$D3+~)7FUNB%H3L89x+U>oZ2G&g5#b+@}fsc68V~c&rB*g zH;FO^5_TNvUh5lZ)79r!2RNlucrxUP1*&d7hKu>`aDR2WdSfAVpV)a_tt)gI$c`J~9>p(E&UsbiJ^a<2&kNr+Gou}I{$^4_oTI{`OI@h!5jfI?oq-q>eVGj;G@o~gDp^kwLZlA(6R6sP()LK#H;YHnP zW+f~IE2_O;8WFBw8MVa8P)9lTdIBBz-Inv&h=RG-E;m2H41X$V@-fQYZs3Dz<=5;4 z?T6cJV{A*u2@V72?4mnzXjbwo&6(Y20}P_}!?rupdtqvH1t(MI8g7t&s^LCJ#v?K0 zhgz;7=hy{mLE5R#;EJ+T*cf9*d}2q?pRBxFb{Dy~i;h-&WxXa?ydRc)qnieF8QjzU zNEzPtbe7#!4%x_FZr>p7Vh*7kJEJ*EfWv%d8?O@@X3MC5rATYec<1$vPxphDCicG` z?pEzTx*tEibSiql?Y$yof^#V&UC%ad88AK8)=Fb7`dDgmw_eO6*=gezZ<6&x9acLL z!+YwDWe&w{O*4_L`wOBEy_(%9?Sl;+csE6UC%SA9%R6+2b4YRSO73>A1dizmIkr>s z494t&$TZ0VvAJN<057MXy&e5j4%vl-AyT0=N=?(CN(%3Q(tv_YTR{b&Q z^K~&f`jb`Hk51+XD3hlpxtui-xF1lI$u}>s;fXP>`*_hcE*f;t6eb%dAI_4SSY}np z>n%|Zybx1eJ~pI)4G2rZq4TE*ME~mX5( zt~6aC`l(jAf*9JCV?2U+BAzOjHcydyrkiw|-@FzpQz2SNH(9EvHW1>s>*O^{ewBBZ z#QJjS(9aQa)=|Q2M-Po5K5QTLBOoY2tucHDZN;b!6UT|md>ekBZ6!D{iAId}1h8_P%x^plsV+}C)YO&gz0!H;Vh}*m6`dS<7{Xwg2Qwj^{d^Hv$L`Y*~?CFlT#Wu#%^=HSSCz?C`FN zgkD$PY2)}wE}H)BdwB2hA4*_?r^3jzo+oV~$2C=b%)^lMK_S!8iynW^2S;eX^YLZW z{aSNuJi0QDdi$IDpG`N8p!zbF2_cV0Vq-&da<>*?{5uN0TsM~c8MFWOd3MEa+u?V& zko7y%bYvT(!TWc33)$g3xy{o<(@g<;eR?LbF`PYtSIN@lKA%zn{M$InpngA$ny;G% zAyB_p+l)V>>e)D}FdsXYB44R>I3s#&!s9NdP=|2depsz?l+yr>{_L3ZeB^0XG3q;< z9kkv7#|cVmo8?DJs4|w#cH0kMSiNa)T$iU6#G#XnA75UL*AGpQxCY|b2|3E~M`XiG zZ>-N0c9g|`i4u%ROV3e>-_yd|ebYT{r=?r3@H>(B`6-4Cb7^OW-xECL(na@q;6HaG{%18=hB&461@_K14E=^|!cH%>g9ArH(la3Qtnb?cG)W}~exDJ?QnPjp{?{IZ^mKNuzxqZ5Iy;9{YYj;Qg+pK5r zT^?H2bd&0W)Y-)@<%4mCzS~RmkT5b%W?U9PXGeuOERyqGnumlQ(~EqblO>FqAHQ1` zviEQe6FvC*S){Joy&gi$3n}{8_}UHdctH+j5fpz8o-Ll;|~5>8}WvWx8D3 zM}>8ck08seZ_)1vUvq?Kbj zp~QQSOD>N&cjF6<;ZTv8Ri9pBNaG~%oIG*Cg}MH<&bMdJ_v2v;in8t&u+QLBIqUzy z&bMjC&QMxT9cNwMx6g}S=PD3=q>IyNJOAcK{=ZvXyJ-61Rh@YzTypp=l9h*Q=fyGZj?+vFXKSoX)sVzodPS-Muo24M9jjc)KSdn#bupf{-YNEF?NiN`F1sUup{}^gAdFB;~x56@<@dzwdMT zk^a4;v9JS$l$t&o-2z4m_6T}*?N`^x6eVj^y-O??A3K6G+pXFHBj%G%NnyA}u|F^3 zUJNh2+BM9f#Og$b^0euf{sM)=tmWqIodSdVp+ z@pDni$%!gP#~>0uPRz6j;dgkQ3U5?{@Tyr8XFmj$No#$;)p@Ors#qDv7@&k2GbgmTMKC^+54Q;-cZB!&?CEA{|W5DIge#TGb>-wQ-2c`kpozWpKFl!qBRU5wL93Tz5rBY)@C2(?M|_`=%d zXN$z`c(sZ`_xE$(#);J zraedx)<%Mt!>k>|NEp3uM}$vSvVWzO{lp%LD#nOO4P=F2&IE95GtU31)_O|p57`;T<<4R_Y zsshK}p_CeT2EoWMl$21*XV=Fg^S)9jJ3a2HDO9Z6*xuq@>#eY&IM(Mv@m=QTH}0w9 zUGnc}FA?Z|3Z2Wl?*h2Gtwmwa%4N0uPo6(#7Rrr|r8J>ij-@<8IW8mp>$~K)y1J?b z<*^GwA#jNGX0r@Qpsbcet}?o&BH!S)93xLyJ30+MFJBNkSv9_QIG8_6h4u!6A-IQ9 zl+)+?!1|c{<@lQ6RJ{!%^dJWM3oU$*oS=+V?m}2lnL{Rq0t{(eEOc5!$UrvZO+6Wf zQzu-VZ}-{n2}6|?!@yTZbR8lEXrtM!L^qP}qV-plkg0V)vr|h)&v!oS^mFJu%vO6L8& z6OopA;4Le|zILs@*Y~!xS#H@{D!hj}SK+bPm#JqLJSYbhnvC6fNqS?}kIU zdAGu~vNkrg1HktD)TwgB21N(FbUih;Z?G)_$6Ex15d5e+BMBjid%&M`3rnDkMLP{9 z=*Bt~1DpX090`FCvbsYmA=oM3A}M2+dm%yh=pt=r(+!{Yc>4X+_`UH`TQ~p%67}^y zbn5iKQcI|&o>7d$(~$6KSgu}(-bgphIG!<0mA>GZsS>svGlIYgi72TgAfZGaLw z+WrPUbvc#dF}6A{7EkNex&$iglMQkt8XUQ~+6J0 zv99z*TQJ6X-Lx1Kv&q?pKhRn&sl)+Wcg- zYSoI#IrK&Dit(i471_kfz)E#Lbgq9(86le*BFvBJoTH2GjJgNr^>Wh2DCtOf+t2=C zrTY_aI-*-N|6!=Z=|&gb_$xo-3E#4!QkL>YUZlOHnL7;@f}>x29`powodPI_f52S3 zdDi#8UDMD;$3V3<#k1NA=d-b%hXlLnR+m9i4+FQ*XHOf5A}sNb>SHy_pW{P5818u7we}HiS2Q*j)a2(_C-uZce+2;sqy1rjTICw@;GeN?t zATJY$u@w%+kfBLnvzr1BFzUy2uL@76;1@~PVPwHO^30UANMSaB^a;Xy*Xe$XY)iqA zt2Otrb6AYoFRpqCgMgkH8-S5mCZAg+h^W$J8q%g(b&jCN$+1i^JjG?*Kt;rl;+FoR z*SjpbFtItX^O|V=;*3^NE3labG(Ltq%7z%y zVl5kSQ5~aqNPDEA?+~F!u~mkj^*?>_;s@I7nZ={rhXeurHu$DaVOeZO2$RB$-r8P_ zbN(T00dPNIbiC?u^w|&SQ7-3hRs>?8)$dv$?``)-*e}3brrJ;)mn4?bsFY-=ijn&V zOb8ZV0#+u)v8P246ldajTWD78B7Om_CZPN19)5>l-wrSCM_D>byT~q@h)$8~z6TTR zp}E0!MXybIEeN*Iutqe*;cJUL)+v#rs;PpWMU@#=^vuf!2#F4470O;M(s85FiS=FtagGYi{ z)dz5zc;>5Yz?FR*62`|_DO@fRHTqZc*(vf3e)$J9mK(76oZAQB%Le!Y<-rYujRxJ9 zg8rHysHN*Tz-z(fw1`)Bmy5R?HGl&n5y2EyfL@e+w4DG?#7dQ)`h?J@6EGDZoWNYz zAAh-&q5~HCdq79M^nV5LhQ#7Mb)X0O0~ye$_<&DZVlvE%Psnt8uk|U22s2R?zZ>gP z7o2ykh5eo_Y}FDa^eD0slf!G44r#5}b zpcCp9Yswpk4T}!q#HOuRVRzWeg02LpHFge9krSZ@gWdFrcL<~0Rl_(JJELzJF2}pO z{9^jWJJFE}W3^G7iy+j;y{hAcOoyvNEBXhSM2hP>0Ydu3629~i?P?LP1iu*nmf%_z zCkiYc?YrM|m!3XpDo#+C_@SaE#(2;+Kv}UY?dd2_gr}O5Uiq=KNES$)h!Y)F+e_Rg z9uTM}5UQJ|0QMV^b?^-~zB)hAi~^HNSZVDr& zMFDtNOu%GU9hh}f)F9IgMK2Jk_gW37LuI=6FV2<&+@3-A=Xyk?mH?Dzinm_7WA`UAg`+h!$Y4r+;V0;yFkF zJ}?dL%vy>YasC~7LlF30nMxG;)u_(s&F+iAA3ip#Z{U5ajRKISBn`kXEgTcDT6(POYOW}C;Zt%_Z zW+kpDS|pNagq*jQJ&LWF8$XuCVR-NrfP7>Qh89o)+}q@Pxdoadn$DfEThpye!gxn# zW61S-GXf)c2QdR|y3! zGJU+G{YNwte#^W(1^ZQD_owXOZMO=%*`45q_tt3se<6&vmv z4(_?&(I{Fmm`R3@&4EFSB!L^T^PLP}K7g^b2HfT%#I~8xn!E#mu;EC)J`ZpN(!0Qp z^-;lhEH=D*SQ~vr9)w$J0N&4nKGjCWJLW;kn>8E5dU&qdunM;AY}wq>QdU7BhSPR- zEE^LSCpb{0B6>ixw{CN^=hG z=ufP;6ofCZkfh&xD)4&ASn%lq0gM_K8Oi6u1Yt0l?x{h;umC`_gLAJ`tbqUXwVLzR z0A4~F5a@WlWsxi=ZUn$_NK>0&Kgp&x#f<@YczZeag^M;e9yD5*I=cn1Y$s4etUNq5 z{ySCUu<77^Q7-0qz`Fo|%3&LiSYFN0{xENRq3gnL7snMs#u$L&q+ZNs!kM zq09L>Y*F&_bC#>tgPP$GGA_EH zxAyPhfP$Y+T`vDYFn@`|W+gbretD9C5DUk^;~~NQ0s!=$#Bv^xRNv)ie`AUiMG)ay zXKOR=2?I>oL-A)!iIn)LbQsh~bfPeg1w_&bN}uCEHDIs{hzimyjre)l?K}zK#M^y0 z`kxd3ff{%J3yI}PYxMtdB*34elMFZ&i=;9`6o*kkdE+Q9j@DQKh+RgyjhXiCf6LPJ z|Gv%6LGb!#;Ptf60+Bt@e(!a(G02lm$InLZOYhUW7RpaGPku4Be`#20*S%OHbeUVe zTCJ~9u}05yUL~3I(dj&mfwtU-5Fpm!G?@-6;p+_^W)E?QN+g1LxZ0N-KUer0mV>`x znxwNQCXql%?Qh`mB&}uW~`)%zx9qPp_3_fPRhK+@5h)iGuz@&((Lp?1+U}k3F4L0E$Cp5SYXXz8)9Yc zN7HR=zv(USjDj94*BTa$7@7~%50(x#$lO1bkUhFTm#J-e#zI*IE*0=j13L?G+U+?% zBq+}X&tWH%jqPTAD%C>6lYWWB$H(Ucn4ECmNT5bdUubXq8~)r8A~q%Mdj24&F}-Y$ z#VXM$3BnZoR%_Glny|XEL@eJFOX3N?96m{aHS5FnwQwb;SLGn8NP1V=#cjPRqg`i{ zK;Ff;2OIT%6fDt>R<i` z(I6;qWD2!YcQ6lsT%1^(VHzfBYZ=m(X{T8GE+O4fqKsjT3O>{%HkjmC^AsE?u_4tG zRV55R_maAx7{F+Mdgd2fxcs_M%`+r-cRhQFf$2zXq)JDC`?k;b(Oj}*3Y$2wsG-pPJc8{FuaC8JtSx@7z9Ezn9D-cCN zT|V1>L06?tyBr_RWh+C41Y2?NI?a!5Uof#IbSuk#?1(ZM91;NQgNvw%8_?0fCtGVa zofvvL6LKB1!vT@K+M#?E%hR6DSesJrJl$uL#8jOBM}hrc!I+cGc!SC}A3mu|4i12r zL4w<{1*74}^n_s*>hV2{-LpHCSnU9-MY;75Kq^E>W+*U$#H;R19r?13`@f<3J5+6b z{*?)>^g@@&^WW(E-!rTX;Vc+kB*MKjTxNReB~>AME9vT(uQd&W3DeHJD*O&@keoH> z-%}q0IFvLXc3=W+P(a+;8kMY3e+PetCUY$$N+f}Hx`W1~eRBMJ1%i-af|mNkzlZ5E zmlyH{Eq^tPCrqi~_j^-hC)G@5>Nl&bPuZUo1gO>UgP4-)p=;7m;-!B9Q`D9RjNMjPNj#;_!{~ z6%5XcxCXhsyjpi4GFr0|a+Dk)(ofQHjmNQl?!#C^9?Si&5B95h{tN6_P6>x+j(7hDf3xFLCu6_4@JOYZ%udh5?`)Ukv&29e9D(6Gs40lLe(#@9~G2}Fiu zy;g1Ak9b#Zd(_`|BXKA))Ix3Crf#^B0&J<@F7j~s>+A6Ra!`Gd>k$JsSPHteO%Y#$ z0ZfQDcLpz~h=#L$zsLN=8T%Ar^IpI)?H|aa9MS17<^mbT{_rXIeFf;+-+Vt6gHD;-t`eB=(8`y(KE9 znuftHvGBtMS)b+a=E&FmSvwe8$lj!HCCuX(gz9pfT$aD9i(PMj*Da9Sos9Ww3V#$- z;C;vG^)VgQfX>PKjNb=B?K;$k4sq!~BLAiJT)9C&05aZOo`mns+m8^^Dm+ALBU}VT zZqL7rrmx=U$V*;Y=cY)bKNyFVdJg?eXda+>|0$VocrJVd+rEy6vQ^KEa;ACy9E8qj zoTf-pIeNWjlYx^-VR=o-eTyI6>SR6U96JDwNyp$~ZN11Pjn2E=|G&Xf97X~qf8!(G zP@2Oj_C@{G&#K?z}y~Va<@3x4vDM&1=KA z#L%#FY}M+q#CL1(ayWACGV3*4|(5 zf{=9Geb9H(VO`zWV5-o**I}2}XX`xR)UlbX%NFpS zyY54xS6MaWIZAwJyqCrPLwZ1~&-Ks4b8FjJ!NGX-DRs5w`18%36QJ!5Cs#gg2vPrv z53bu1@f=qM6vQjx=6_v{=8HjGRQti`Podu(cPB;qhY}jI>|a&sb;xg*vZ7r%r%nJsMOspJTgrKkepLdDIca!o)Hp7p22orE4 z0}}t-U{oxV-pQw*rAkW~Hj){)wBJwSUY%hW4x*V_gjV2$EM0#+kDY5z$7dg(>fo0O z%kh&Nu*FR#s#qn4tqb>7s0rbE7(2$3&Q`v9%O4cLbc{AvAy4zFSOLMzfO_2+00~fv zXkZI{Ws*yAG#fi;R$;ChPD8PFzMt8HgqiipT>3F;JVxmgp2ZEX-Y%&-$@N=&Tedkh zGW|9CRWSMeR~GDL=S{x0-+{JhXzk(r^CdAw9jb=Tur>M;Pa978wpkf+Y8^6YQ>FbM zC0_DMfgDoEI>aB4J)OExh@@vqmoa5WUtE2iJvguUXMJ(DPByHr=1I2Rx~fp4(OdON(t zZtY-oiBU1_gwnnkb2u%aqbyNrT8m-J6VYpheuVndu0@4wIrT0SVf5WSmw`iFa!3YQ zagE$K?D*obXwcB$p5DgW&u7EE#^c=LdeguCMT0l@_FCh!*J~d&h<#pn<-|{f=wjP9 zo!5L=suPC4 zpiVVM%%6VP!kFOi7uLlO3zna11F@{E6&f%O{@|fBPp8rtWok z?4k1Ym@wsxD1!BZ3#BPA|<#o?45?MM%(Ox@mGg=s$S(- zS00s9k0~W&x^Dy7dZQmFkr)5xg}!(6I8E$(=fseV4wE)?p}z%d^M(6g;v&n7i&tih zZOZywU*x_)jPr~HBs4oE6AB%>HL$SSQF9XI=&Zy2u3?{RU$K`f@|5W2%k*)Q_Jl|^~ zWTsSx=^6QVvp1D7oeke1o06KF?KuQo%CCC<`tg+pSSI<# zq&wW-;t-`*wK!c2A3Z#joYcCs-U!_s4DMIhq2G&>VIgY%A;31vQC)lLf&Lnzm-mv< zr~5}fMZ(XRZ*0`DBG7fdFv2Cx%^gPL4nC9djezedsB8iBOKA-5Nu=ts?Pm^Ej!8Dy zoqDwe==3L>GvmwF{dKI?%7M3e6KoP(_mVHEuG>%}=9@Vf99gDCq8Xo==c4KcELi6} zw>Q0rBq(Lh{!jk_7ts>BuHO`a!!@H&J0dh^;}~=tgO@oIy!>psoItq(tQFfMvp^W- z)X=kGepb#dcb~T(0+%mF`irJzQJ*v681QJVw^QMvThx7BIUTQN$5?&F_WS}8f0Ay@ zFhKe0kX2p1Hf!(}I+Dq!3e3Rhfv$Hvpc;ArDNo~WKm|_*?SoiN+<}D@Cd>OZrq|cv z)r-s0@=Zk@=TiG+Ctav#Bs>Fk9s>OS` zIyh6zOfSTEqGQsnx&+nQ1f(GBD1qkt4aC3x44<4qXf+EU90>_AHuloo;>7aP7+wW$ z+WfFWR?8*!F~dx!EthX9_-VLFx-}k6m&oipr~cJ`L<^~kz}l98*9}hsmzVXl8y&JD zO%~dHe{nM|L+~N#YtXIH#WkJ=NOI zkyqCp*+;K5aZtfX{d&YJb@P1X)y62r$)Vi$qaSfUhV0i`vwcqfMW4QRB|Ev%RE^R; zer7fuJmF~t@q z6)7d5zjqMj$B(}^&xVay8CFfLT1QpSRHFiVEN7Dk0C1-{_Z&%{mx%^HBPaEV_t!=^u``&09ZXy@EE_T2IYk*jGQ+VbFY&yC+t zmF@Y_Gbyz;e@#$)-eC}PG})aQOnBc$3jMoN*nxVgg*Klks)QmGo1&3%{SIt9NMzF3 zCrKv9rPl5=4DOwr^xAwc#?H2a{N8Rh^Q7^ZA1zoCE`8s_aj3ir&S*3V?v%<*fIKRL zEFM!_;xG?;X^FEU<*5*{!s1}7I7}TXtko68>QfV)$!5rXI8X8ICD+W>=CtV|2}?Pm z45Vv^I>8x|T)ATRB`ZdQL!W8Srb&hEbC!!5lUO^}!OXk8858kAN39c|186Itq{XMC zFz~FnBqXxtc&Rqb>yBlXh^|NIyco%TyJS^SXQeD0Lz~Y6RWSuw%c#%?hnbthA9Z;$ zlk`{9<(jgig07~dy*izDsvV8C25Vf@rL^`JOKlh$4zV1M$4;F!=2rpv>iK_{saHBt z*S$-zF6(X*mf9|b<7|Hxcic|;Ijv|jOrY7|nO%j#+W;Wx`;k-6fQxt_*jB6{Z&_M< z%GZ2btJuN+j%dI8Lhfhx_SS>icIZolI`L0@rGBDh3_32I>lfX2Wi4-XrRv0)*u*xQ zxq@l|Y)@JjVq_9*gqBaw8XHHjBQ=8%knrf&@1_)AQTy+3A%?XH{lVPGAlP3ZHam5R z`WiDxh)i5fqIXJ!!DaiEe^5Vl!pEgL>jc2^2ij1PL1AY276)bg(9Vj%#sKDfl9%{ac#FWQh{!Zj8^Zp>2p{(rA0V!ZA0UPblIg-RCzat9vkPR2FYl?${dm= znJ-7Vht2$2EhRhj_dX{(tHjq+?kB|BiqsuBs$XSVC7RLWdz5U z^NL*a!UzBUu7>I45wgAVcUb+_kNf_oPe!|yyf89MuU=|bFErw7uxsWbEi6{N$;%@f z-bhixhZxlx)lEG?udfdcN&l@{L2Hh-rmJKB6kIwsXc3%Nr5k$u=g%ZB(Yhk&9{H(T zFFMZGoW_%oO=_Cccr6Q;A19@?^8=X=(EZL{k@;la?G8=t_Ag+6LW{{OyaN11S)gKs z2?T8c!FM-M;~TmIkk=TMchPRJ#BDlW zGD1k)Lw~T@K6P7j-9K5LsfH|EB|JOC^!EwdmF#}5)UFK`zzcUmcaX=GaYbT>i5^_a z5dmaSm`68Y`WAo*1_0SzVr->lNe73KwpWcTGJ1NwRYp&5|M|(La?zSF&f;1maC0}CvqL8BaUd( z*bZoy*^Lu9T0e(RUw_z%qD(?=hEahhTiKxFk$uKvSbb`W*)-^l?TOAN(c$jWc$~3s zvpJ>-l;a_ag>g@SOKPQ5!7YpSAk}RWhIx^T3EjkglmV;21ciB>Tp4N*$8WdnMj@Yx zG+hLmA$M_$N0M53vU?IBe%im}NVe(>m0*9^`K_#v-l_LwF;dLM?sa9Mny@)Fk{bk= z9vk}+xlQ)^Wq}!F3<5J+L+QfKuiv(2T_Y#)hDAZ;V-+;}iE6re7C8&v7fZD%SHxtQ z$;s*F57xd?0nArArbBWNT>XoOl=fuMvmipw{cN)(MMtVER#uSM0LS>R{l}ETTbr?(Q!Q2zA->D*wv47sbw;#K=MH>jXLEoYZPP2miim%SQ1fV*kaeOA9ZaC6k`nMc0dKulTec|4Fa0ZX6RE&a~HC+!ybp7?EeO z!xLgLsqn46QK@%A@pgMo5NHDRx$7A}y;?G*<$rmn~TV`fE5C{QkK7&f+_H!v^IKwFEHWhp2A6l&c3Dk1wLJ&i;Yrg#;sTlui&hcOge z_^{C+PRAM)RjFPPAOC*z33?NKSZr`9sPUy~k(SiN&id1aKPfh#mrf9lzBk^{z``1I zYlydFnNGn{^@1UcT3j^*ZZEk{rHDsweY!@EQ^>n^bGih)IlYB{2tjR*AwUrfh!{>R za~O3ZNL{km`r`$>drqyaD^6NB#oS>7`a^u!vGU@o2>+`EAo>goUA(?Q?(Jbw&g^Th z_xV%<`xChHd6h)ZRTp+@Dg9p(Izs*ADd%#ZFu2)1s~|RTCqcAQGaZFXgJ6=d_x@hg z@+pPqZvRu~Hi4#?dEFCz>G>7ye<#RKi)11M$wyh0C<#E0_PrFn(W2+VB+9GKrrLI? zrw9ct=UGHDXc1(>sy{3_&@Chr=h&%kSK!C?Zs7YY6Nlf(ln0oZ(yls67mj=0Juk8~ z!YoHVzHb0kTtpVURgmfDBei*UIGw-rLE&QrAuB%O5e)*hYm3b-F&3AsDwd9o7p4=7 zEY~eTn$fIvoMl%pDQ5{&F{?2>bu1>Nh*gj2vh6B~S<`uH-DM&mA4Nl`zKnxdhmCvi zCOaX41}=QSX}_oj_j3Tg%kMO1${8ZzgAnTZaz-vFx$|#T#16B5H=9>EWnpBhzwqX3 zkA&gvGPLL>mIZHebqITbSkz7E!+JVt!ZbGNYNp^j@~%|8G^!W(Y^Eg>W*K>L5j1pH zBmxbl&iR9GvoBW)97apyYR+^>X%M=+W5(p!I8d(}ba=kUkc81QE$Zda1?P1I&dNs#9P4yxazlMAZGeU8c5=NrI z_i9bHgXEsv|FR_beXZC}bY_Tg_!q5`;tQU#_s_4^HE2cE?SLOGU2n5XQq3w6>s6@( zsv0tU?iX=T;TJ;JeLF}J-R@*=&Z+Uio!b=Na%@kc0^qeDZ0mc1nuvT$bG^NuboaBX zko?^o0>~5ttIwZL>8(Fw>0t8IbXQ#>;>x@OLYrHaDrKbZjx-xdC3A#T3uZp;fdRUu zMQ3sN5swKoC!Alhum$o6XdWbxqQGYi!sB(hidg6kF8NwmVj=M$?id8`|J6xaHS2Ui zF~1d&UMJ7$l+nA2qJ}L3wOSwGTn|!DZ9bs0La_LpP!b~Zv2!t+e=9JhgB!6RXgG*+ ziotCQmb_&v|hQXbAXySt=?i7&aJ!YyWnH)7w= z%(Ys*61FJb92ARim8vCXQ>3E=vBQML+H|IMoFHEm*;zG3Y!cseJ=)v}Xve89({`_7 zS&o+NBY#q(zmAzDW{{(KpnX}lR(%qNT+~GWOgn`_DPxN(&Pq856@(KBQ`=9sW zO=r07-S45K-+=J>Pbz<^IH@Ixvvx#)h0;bN7bzAcZW)C)6!DcLDL}mYl#rOn*H1B@ zDO#1NS8NIJia0n_wq7jSs(e+T_zsM8Gr1$LBZXCPuSD0rKKC_s>AdMLeVQTDnC<^@ z*>B>d$~OUuE8QmAGv~v_`o7l0qQXJ(mHTD@U-Ee8$5;We?{&tDf@-kR$AByMnADBA8P}r)i>u71@hpqh6ZfSF1tTv*6cV4Hy`6jOB zG(8+|9?bPyueUSc0?*&UhkCoL;?HgG|5s$8PCuAnUQRIj`m5w!uLXG}1N)51ni`85 z2aC~-^@tz_=Zxc6bgxygL+%heL3F2sEAmkCEI5~eQiFLj2S)6rs6P5|4OQL z(EsFRVne2m;CuH|xa$?y01x=rU02t1?4T|*KreK>W5VXu%}npLa@JzcXTm!htV8{E z%_uy&Hm>a5+4RGfi_(rpiN1d>HK@M>taS^fm3K(Q`6<3^kMLTYQvRn?2egT9t2SOb zyxu-N$!;Y#%k60k*NuQ(=7w~6Q-sPB6DWhBQMdRKn5 za4Gnh)Y&HL_(s=v_2D=0v4^3f_7xuebb$9p0hL?|zyx+wSeUt=!7nwGy>gD1&`!?0 zCA!ZjBSE;)J4fz6ze=ify645)^E)Fw0AEdA)?>7tX-f=)v6kX(T|{(E+(g917lnzL zrZTUPU@R7_+LoLP?Hcj+8BeU^@H3Sz`5S^y2Ho~vA9BW`Movk4oTT$ZVZ0-kQz^uw zjVD5^tlI%^nl!F5Ag?h;8~>J~^na%(rt-TaL%PM@S_mR|Dt=uzB7_%0OG(v;%yF7^7$#Dy6<*gjb2in`9I=M3SO4y|Vm(nW=pUe-1N;T;o zJa_|gU^~sXn=Hkv`o|3DHSZ7Ggbi~ZR`}TO{+S}Jc>*O^4ePDfyyL9Up;)?OGx_TYgO0_`*byjLi?&E_X!-bnpBjwZs z_mq#bzF=COEdsOMf90tZ%y`G^Z2gU!qT;CU^O{?Oi^ELyJXbah^fcK4u!VZFr%X_C zJq=H2z+aGr@=w=1(NQdSGtE$9JJcuzyC4I7NJ+X^M3~p9H%*8a_pKBWs`;NvRuU=e z#Az^tEMj$hb#WlPDv~DPo-|=bR?&s?B@SPHe=ZTR-<^|Im(^89F&ajM7B0bni5UBo zV7r{n;_KSD7WG2Qr35n>X-2Su(y2Up(<5T4-gOuUbK3WqT2%mT`{puA1#kY)YzkRk z9dG>A*f!aPNN|>FjYbw$sIN*7}zIQ;@*6o4-a-RQYjR8t)*!3EB2Yslgvv!qAxzY)dF`|C zx%`QRYk{ehCG#U1;IBC)6T`>s8?hUnhBOHBUtjf5VnJ_^U6eh}x`usM7`O#LKs(W! zCE7QfSBJ2axm1E|rLO+Hs+ghFa&j%x0xp?1b)qg4l$Oj% z0y9^Ui8@Rgmc{SOYHwT!Ahkx+NV^dTBSU@$r)4MC7Zs8M(S)umlf@3_>#}zSq7XPF4R%1r zG@a9Tsmv7&%L>W0QQ%0Ofu=rgnG`5~Qa!Z_KqD z>gi-)kj)8HcA^=z=<%fAAZ65E4j4{1l5s}|scP0=d58uxuD?xrc>)#I&31^x|7=?$ zL%Wd-gmx8G@S1*?eBR0!#E{SWiLdo<0$D{wo*K+v-r))(1b7bfJcXDmsj7)fhgNTK z)@vNTf|yqObh}#53`}*5m$UHC5G|RU#dDc%kfJMoiwq#~@IQ@?YQ3b32%D3|%p&c=cn$-UR0OAILgxCwX zWFk{#6ZJ!o2Ls+Q3`uCzplCwwQS;!QsNg=y@*g|td-WNfm#Tw!^EKvCa65P0-mkzS zijFmwt^fj_?3aOANzKunA2fw19M!N6zf@&^A3S8#_6wtqZL`d|tKnn5gu5?WCIt}Z0t0)iez{c) zg;vM7cO1#7B0x(wt)8Wnb-4K1JiBmeMH%T7N{Eg!7FVWidCW*!Yal|z(#dB3e~RHi z77nfpD+1TF=FZKzUuW>VFMEm9v2ZahJUaF0wMo*aSamP(Ig7@q;vLYYgTqSsSOeTW zkiaTr6QgodgIb1cr(pjP@5O1Kv)3^495%Mk4kDf-86s5wqPW=cO_WuMf{OW!MgU*Y z35sP9J7*I8`SP=3jZzYVkh?1S5!JH=7Q77IJUwl`-Qw9Wv*02u-#hV;D56MVJt&MA zo%%lLDjW3Hwn|CBdL3%Vz6VQD!IH%y)y+6v5BE|Bl28Qz)#wCF3Q0wrY~5ngJ^wD-bq=VNbe4X&fq|K?f-B1XH5EKWyJhJ)ol z_CIo!IlQ<$Sq0U~JaTCl`LUS%r#zSK4 zx7B-HlQ*n zdEQNe$`Tjl{`xqd^YtH4*DlTJ0rWF-5bNJrsSRuvx2e12 z;saYl*P5+*nHiMJsxVL*InTnnqU&EmOjR(R?9mZ4Q>k5m=j)_*;sQUcT7IQO;O@ri z+UaiDB%pJpi=Z+42ZGy=*bi<<4^+mbV_U4?V!yU+onIuzCH}v8f311`BKt;Ci%C0`GoZ&Ak6q^xd(fUU!E<<uY$v| z84Bzx_LEbdk1`I=wiVJgmb3i&YEu+w*0U`^VKc%2*>_>x>I_7tSFz5Qj5a$qy1`Sp zJh6EENR7a9up^WOWA)?C(>f+@67~FZljroeWWmL`L5d2)tC4*5WS;3c9_zOL1_fwaadBY-*6vip^0}ML4`9+ud8(7)p?DZvmO!y z=j&W7o~_;SSZStdwJBkgpGvxg6N2s~7w@SFA|#lI5jm&I2XdsG8iu}j3dsWd z1E55q@XjoWISM|S0HAl6&e=VyKZ~l`J_|3^@$61aK8mA;0j0V`TKElI}YQFKPs&A1Vlm$n2;O`1QjTX{r}yMZ-*AqrauQ|2Qzda zpt$&Ono=)Avbz(ydoyg@0rIP7GSmLZr}B@u%ycS@`K;&1=V7@R!3uw9e+IBvFP7lF zjUKc#?p2fp=Ms~XKR3-_(#uh3phuFFvzvPIiBE9}x>a7X4zGNBkIdcg?QI!g0ln+a zgooV4{@<8GNq3910~a6^!6>%*6YZ@r zZqrs*quJ?lkp9!FlC;Y%Ul*m3HOWP)fMPFGOBSAVCLx>YZawvt&xwq-oXS^Y2%w3Q z^h$jQcb1;96xHHSC9PgK;rZ^=D0;+*EJPpzLHbqxHMe=(2^q;tY=&)YalX)nU88&C z$Y+dQ2hRDZ#)x3Dp#lc?dHUh|kup}Q_FRW`Xfy#u>DN;ipgR+6>;I+Gg6}^l83Yzv zk@4zt$9aX%Y0vl%q>y@RJ*nq2xlh{E_oH9FK_Z)dAKM!2ISJ~sKWS++zv111YuswY zNYVA`(nU9t2QApIdF#D@_gUeU(rPEn;n0GohzCy|IBiQnw@<0>zEyAi#ak8jqAxb2 z@TTS`n)h202w^!Xuoq$?YHFz&R7%01UFZ&LX|T4V&JPL@3sDo7G2eR2@PZx8$FPx7 zi6og$P-~}lF=nB&lhP%w32!D#%*FE08>H@wbhZ}z4qIqewy$&~xI9^ZDlxHL+bI*n zqla#pqoh5wKlU_?mL@hUi-p5-ED;#bOp5aj&ey&CoSbV}Mfv291sLe~B0czDc0;nv)IG zJ^F4Eu|jrpG4Q45#s#A+)TAHb zVLjKAT`KrB>_rcG^rt7PwF2ST19|dKSa{(h`8FN(L-mtX@Z?Z}XuJ>btl@@Rw`sCw z6Q%OXgN^Yn=oV$?wwkKl?HU1E9Hh3Td9%%+vb%|`z4_*Q>jsxm{vfRntPb}%h2VKe zfFl`zXGN-c{dl&F5Q8DUnwSjje7`fCqZse+FQ9MP(4U?RZq5y&>+7Pnp8?|vL_~4A zdxsm7O-uAe`i+;|c&R?mSH7iDEsP0#FXJp%bwb2r6~R#d`3kl^3m7;B53ufhw{jj3ORB2=WUQ*a)k`;s-KS>0^=R76!>A!`r=yQ_87G-?L^1dYxsObZM zr+jdcP82GN;52guS0>u-b|ELQC<5T?7POR z<=rR|%O!AZltRDNrVy1KXt|mPth@jFp^r(L4Yb06HwRoR+ymm^zfC~G_o01IsX@*f zKED8P>+i=r$4~H%p-5#sb}2`BgGJk4gjnynOv+%n7kiW4;`jn$?;4u-`UegZYlSqo zORisXu5a&A3TCB$4kWkB*I@#!gC{}kE_MsTLnS?W|Mi>05k|&Y@JCPc8Ycnqu>a>7rbf6v z+?bOhn`5{z`R2Cl@^|p`cH^r`Q7v+hsUbW}X!iW*lN8OJtM})@&WQUe)j|)nZFr=H z#%#r5g&;^kCXhCoe7c6B@s@&KC_r;!A_B!`SaqXIlYl05-w)98n_g&+e;-;@e2mt} zVcC&iI#Knif~UvJbE)T@-{#-K+h?!%Oa!La?&XXmS z=blgC**z&XH@yLbyZHD+5Wa&(^TR>H7V8|=xAxNns0UKu4_j`Movr!7;53T@wGvT2 zn#>@h;A)-v_{-7PR0m?Wqo5S*a0EzJ7v?)n)mqgSR$i-KE+rvFIdR~$A^bC_Vu4R4 z_hqC;ahgS1fT*+mSQAd7(nw3UG}0ZHZjdf1=@gJgQc9$| zxpYXU(nz;}v~)e2-~WBb@T-?`&e?m#TyxC{80aN=ZBy2yQR5QU!)wIvYA4vP8)Q*0 zrBQKWZpap=hu!aD_Eu0w7Nz$$xhS!*Allm6Cy%QIV1waNBssDGWl0>${tVGpu$9lb z_;x)g3#zkt9_+p;Z0Opg_jbc$eQ4H~c_Lc$57kd4P)MLdm}fcSK|a*NXNuv2F=peN7B*nOWdCnz;vZ5N-- zBl+UsrM`(FM+uND?EF{Lh)n-JKZ|^JMVxKUYT);X)OW)CQ{Lz=B4}Nrk$;d0qZ^B%$Hl$x96wMqVfFv{C z-%dV`#yQEkR#5KBYrmLVzS5M8S9^v19NA?Pmjf-2$Yf>p$l^m-;u&h30Tp@?}cW(b~l{PVnKVJ0 zFdT@bb^xfVH-_ZD@e;08($zKz*Uj)0AGr!DwHip&Pe5BYp))%yOuBm;$6_^czS#Ts z`Nn*tq|Fl>clbR;3R-_d=k-(PxbXiy8#@*vO#1fj?$zc56K?MRVA{9f9MC= z{Pgq}SLgE%G{BPPQC=MR)#+>uP%G?14jyre?#Sh1+#GLjc?my0)(s_YzVARK!w!H_ zAaq%RJ%q@{Kki_wWa&=wP8O>5s) zc|-1Ryk#XX>}p^6)vx}&x-OUgkOU*;ez|zF>u_xkiKB7cTnDemAII*uZto42ZFR^^ zTndsfskSyHDOYHqn;Z;Zw46NdtT;qBoq_B zTnJV77S1{Br;>_%b2h}S+5+3DJi1)v-yz19;?)7e#?DxX@5x8B{2T$(#!>8$(|DN4 z&+%vI-gwiu!zY@&J>>eQhl6ttC|u20T#U+ywbRir!p#=`VBlXG2GcU$<_ExPz(d=s zzAM(S$c~W?JD779Y0IioZ_@yytEMU(h41*JB(uXrIr&#dn`#V5zPprXpJu}RLjd<~ z$P9RNjsv?0Vs^7I*R(8)~;f z^NwvWLq(eG)e8oX@+`tQxo-5DJwH**VW*SxHfhV~8a@^z0+_$8eyZ2psM+YW)5>JU zL-ag^`?+mDh@4`&96!{!6RfDJKaf7iy1TpUlTb_OK%w1=7`6}he<65&$R@_d6kB7@ zy0axDu_c|S=5O>ow}$_y(v$E&LcgwQlWW781=>7jM5)~)Xw{hHQ`_f@Kx zO%XOr&+|pv1Os{fG<%g`D%xEnOcbY^;fEVgZJ~RQ1u{G`IGwmRX+imICvNd`EtT3& zO(#@ar19gy30GI^F~Uh;2W-G~MxRbHf?8>z#Y3>-FW#fuuS5g_ZQm=e8#<2Ttwq|k z@8^4-`GVed4PUC+fq76X*dqufa9AP~=k_gFNs2mZ+$+U{mHOTa9guBVq0n}_8!io; zel?Wt2uG-Xc~_hogWclwyQ>a@I8(j?6n2qPCB3p1f3|#?pV~aRr1d{-5nFHfq%()r z+kYj`*WyK*R?I9d{Akw^LNo;HqC#NggcWEL3$NZ=q1s3*Vh?w5rngdj*PdGoQMl!l zljfMVE(oq;Z;GbzMKz*?5`SBD<3B&7sdl}1+c!!un58xPE9I@@X z87s^`&P#%)36s#bfUbsv-wy0PI$~)zE-|G`wQ7Opmzc>=F?1M9 zmOXkMuKkP>RWSu0qJGd1bCQ@dB6&qUEwsQ*|xr^B5h_*orFCKbdTz!3<3AST$zN8(wb4=`cZIx&&iLh(~)!RcLY9Hg&j1&#=Qk~CC@h!%{FWR*r3vaVn8@LFq(nVRjQOoxcX2+%ArPk3e?= z+wR8*LY9KSo7*`BYog=*h3T_AvtNOVQ;pHkYWYVaIml1~aA`{;TxH_vM+QF6wx~v8 zTSKTdn^!TtSLQGJh}JS0`G?8~>*NOhuGIg8Q(8k`!zD49Nu!Yh>Ur9jzPkP8YPQZz zqHf1%6(VTfe2eSfq3VkBLdZN0HMhxm{aGK`kCSgc6FRi(`tDJ8YSPSRFllmZL^y>P zlsDmvaSdIlS@v~6(&|TXL0+m3D<0TU#Jd?h?Ng%D16XGpgiMbo2>(@duc4z}o%a;S*8lVtjQCTD;r9;GZ#G9=c1??(56wE0-2v)Jo&Fxywl`&VC~A_y}tq580P(Xb!O@pbcE z(E^&K%J&oHg$x~BDir1F7-jZG0rfr?_i9xWlkEHI@?75b$|}sT(o)9?2wlOie~Z zc3gcUQfhKKB^r~#PTQFl5^3@+Xg&+fbU~htcwPTZr@LnZ0sGOlOP?B?GV-fl1|1vv^}!= zH}lUCm5O=qJH5vn&GqZdY{>O>rdQ=!@tDeoI1!;&hPlTpkqGXxVY=UgS{&CqHJJ2= zVeQ&%tJqlOMg)3WSTFc@amGuDtoIuBxre5$oC6&bq<9enKl}03JwF*evFgzfuOBme zG0T6v(sW7gZ#%ip8A`XHSTJgsv6}X2WxB|X;!fCg;Be?!%CngY&FNsmKSjh!dz#Fo zuby@q{Lj2SSOLMbhNnH1`bXQ9TJ(P1%u?R&fCi!2PLWrVeg+UE1m>La;muguiy9_^AmqR$Z40? ze+`n{2SG)%sJ|A~lX)_qEVzg(I^zhmq&_2bmwTo~b`D1JJ6z>gmi5Nc6S80@Av{f< z{K$Z^!Jnvr6EwiQdlCV&?iIr{`CSCJPMKP)@Ch>u(8%1}4OfCv)U*4o@ksCx;D%{I z!hVG@O@;0AS&ho_eY_1e)uMP#HE%UmZ`J#9p^E*{#~D0tH%-9QS2wG!)~t;R&yw5g znR;Va&x40+=@Hoh98Dt-_*E;7M2pmm;+LzOMgO8GJAQs?b3oq({kVKlPsfeUBzjNg z(h*71$1ZzD!~NMT`Y`RsIM)ihfFb;Sc=<;Nfd_k4@$P@+*WKo{s}wE+yi zt<46hD3Z=%7a>rcJV*8BamoxotY;Kj?-q*RU2u|ldYY`&C(1+}s{whwP%RrfZ;6fw zJ+gPa;y5`hN+I$Q;Ed-XgEQ$~cV$R@>WDM#i<;_uk3ZX6g8mZ`A1_@tkG%(qiiMp} zW`4(jQG5XXytfvQu-3^uF8?{fq9Qg`Ze~a|3aP<-`|X$y%Xmhpv~n?wB1R*vA%uk8 zmlE$aI%+OSfT{J)fBW25+{V|c?HKNDg0ZX5$H-6|_c>3C%$;_1W7=hmmRda70WJun zG=Xpf%yaT>I}5T0=8s&48{@Hsy}-Ta%+RnwRpH!swiYUvpG+F3;0 zHat)_EE~q$hC+V1i67&;vNJi+aGtdH5eT+!C3jOJsO&4@llrQ-|5~A#y*6;k*ORJ;Oo?M$KYB=E?#zjA6fMNIjn>tUuU1eJlAt^aJ)@Mp~$c` z-H0|h1S&0J24rwffcB^~@aD>W7ej`ODn=wfag1!zMsZGBs+u8-6NMK+Ef|LP`pWBoHLkqNK* zl$!ldH&qsZ~iwwyxFV&59{t9rrE9+b(k?yK$+5wllC*bbzKpfE}RRdkIClq^> zbq{GuwUZj-{_xN;xTMEX*)sC-c2G!#3y|qao@%#~Ai<^6@#^DJp!Ih1v_RMOJ1Ub8 z*wnpz31xa>VHHmn%uQ6XMta|uA&WTDJzpgG5)^RpnPNyM{2JT;l@#Oww$%QpNf*8; zlodW#pO%A#Y1PPn$>(cj&a+c6cWYJ{*wKCg2Daq-&2A%7gGG%tX!b>(OL+H%6)*pV z%d5-1{t|d~+TX=WW}aRS%OFjL4_f;bGgqUE2)NFk>Ihw zO2wCbJAN}Olr6O+uum4k7$}}5xApZdQ)62}(6#KilN_X*Dy`QQ`?gO1JP<6zAH5Lw zR47eJIX!G?mEbLhZGmftBhz<`ru# zcKdnk^_8?iF$lF|T1Rn|z;F%b+I-HGu3`ns5%VWneyfrJZ|u`Dudm3e^%AQHb@12P zs4w1n!@zzB#iQpdrKAU|!u09zx~w-u*v8{)LFj`?m%qm=Ox&tPXJdiJ?TFD-vMkSr zzQX|}&@P>1t>+4KneQ4d?~n2b^|>A<>TfJD3V8XR%H3l7D+j=NJWx~fj&af@&{~3P z$88?M&R2qekx^ZhW5OJHiuLkm$Trw6(CWC=}&YzFmuf|6T3xOIk*) zQ3H8%X}8@w?dS<|BYPTbbBYultG*ra3sCHLr~`OF?~M)^EGiuYZT^ZA3B>Dw9fv5< z_0zTAQniIb5~qk(+8fT2%9;0Q7gP@BYTiW(nSaAmP)$_<4_&V%@VUKKhf3M zbg8qK%g11!cB0v(E47x|E5(+mzhdMOAd@Oj=i4al<(iBy3;6f`D=p2WYjg;dQWRlr zoE!M27UUcv!-|PT_df(emN}2K7wMQf$qOka3g*R_zu#E4Sg=U+Zi62pM(0IwybLnJ zRt$Krtgo*Wg-}4?SQ%)OeY|pFor6q(EBzc&$^RQ{A%(AM0u{xu52P{#z1Cew)cPs) zMs`18pHZ?9Rx!&9>NpMP8d5T@?N+oycwh?nn&>>-@EHygWOUx3`h+`0bBNz?^ZIuEe~Ay4Rc|3F`ymK zA5{;<`#_T_mhGYSSr0m|FAvmDwnjI@%_mwFd~|wwJJ{ejxJa;=j~ zqd}e8%D?UvI%+pn01`SuKhQH&KyCmoZ;~ya;f55YknV;77foaZ?BL7rl*q0jy&q}M zEhv4(X2~DxiC|F#)QY#)o@p|_-H(o{Fmx$1FU4m*B!Em4ed9D*(SFa+pAxzKqHKXZ zy|?fVl#X1rw!Avf(Y7mmJSEh9o}UQIriRT_I?X1{&!E_ENHlG+=cbF%Gu7y0Sz|uf z8Vt4YrcV@SKA&6$i7E0iBb!e|e{jdBQ#+nmSWBa&`)PCVGcNK;rqMoOs6BVFRCN*J`*>ng*kxpAALjE%JY^4K**IL>|8 zK>a)GBBG-zIx?Pu4Fy)s?a}C9o_C2qTqUFYv;5M`Rzz~AIkyvgy&BZp?R9h&1 z!A=LGZ+dq8=13Tm?dbrjQJ#fQA04h8Z;vnV7v$PO@5c*Gt3T9c~QrD zKxv0z`E&Aq)8VU;#=I*&u09pqCnD|T|2kw_CP)&=)EqyfX>yY=Ln;fK_ODolM%s@% z^2Qs)O+kJRXF_aIS2C;}#X}%DexEMu6xBJcz&!i0m=p+U)cuq6=XkByqH6q-iEn}O z_fBM1Qf0lOWc@nbeH0NghVx+J>oplgWyv1ShU|P|;WMwDwGhgBR_+ZY1cLA|2b0E} zQT;XTe|Er_^+0ddC34?f>kl0Fo0He&s` zy;=U1+@P>UK9tNv`QUwNuvym`fvwa1*SWOmDGpY3IqU{U)|Au%)YhmW;7Wvo*IWxj#*Ls?-IWQXoE}MPX!!@URDm zzZk?P0~OU{betl-FKZUO%n2Kd4z-;)*t~BqogQt*fo`Qdu-_#TdSk2o8h%VEO$2e& zvIb3v^V)Jk{+Q3G{p%lOO@hYPuN+vzbVxqOS8j$onZJ3*d> zJr_&7|K}JlnslmI{Wm_qOwOh9R8zlZx8;jm(n^nl_y#ry*Wu zm15$~5R~^zY?DXL#b|b(lh>ehNk@4x;Wg1Ub>QI`hQwpYyt&rgAiI7on2 zkESkyk=3!)lp?^40%33c7efoh`i`E0?Z!XhcySKqhC)NhtUb)!PZ18sTWepKwuAdb zA>gDZOuGE3YVeD%<9FKEe{<~Z8pC1U;kqr0gPG73e+vLHng>3`G^!WpBhStEHiC%S@$zWKFNs9!IXp^-AP|vpuM2r-XIhH`eCg;Mz=V;FFq&Ay9ZNU0y4B-rNlM%5=r%-3@#l z{rq{u59mwa!93mfe{->zr1WlVbUV^LUob)W+B`@Su=j9Nbo&_y6ubdddUZO8TZ0$QOzc?UU_D8}K!5NV5m$#pV{5m+(!vazV+JO&b) zG1(rgw^GV3x`h-nojVdpl@UfA*QK~y=W*oz!7mSTG3+Vq19}_L2!h7l+pkVG*b{gZ z6t%lneNp7(K_zDfNwFn;7{fLFbwATG<;&{T))y*4E$urguCHYE>p+g~q}}gYhS_ks zJkg-_Bb%Dl#&NYIZWtp3y&#m*fY2R9Nmz!YBm%#VjYor2FXRI-8VP>P!e2xqq(Gv9UKKkggC^mRGQpI z4!7 zjJkqRox#fV&O&3&bNYC_vF;~nC{|rXj<|T171-VT9~eAX$iGO$)LV_W*wge*eF#h( zaNXJ2iD%Sep@+p1tforzk4TfRqIh!|*9%_!;+^}BN4bO)Zhz2H`hCII$!j2kvEZUO z#e2EMsz!0}MKXYmd(Hfc>hVCU>eh?*&qK?0mPP;2iKbS7!qZ<2)rmRtSucwVncwB0p?s%ZFTj^mD4Q^Lvxqa1Nt%RndPh# zTO?N&?f2F`AA^W{(B)^=vnEY`?uz}Z3|T|+w83MUKjQ_B2OCavfwE8(JB(75(=OArQ>1C{ZP?2-p+@fBt}T{B$Do6y z!jjAFN0Po4m=|qDmmtg4wL*R|t0HNJR~CypL*!sJZCYv#N@#_T9~*#7eVI?#Ew7MG zk)9&jx83L2J7XKil2 zu=gNy8|2Ij>842go3AWa zxlKS|S4z9(W69;S2;grc-RVtBmhLXk3-_vt6=}iksEgSnGsO-rgO!ZEEeK4>KH`6a z=VLjIuXoDSiRul^PpbVM?sMHupD6}%Nt4&1u8`f#3J4DX7Q~%Mtzt>Oef~D-=a21) zI0pXRsD{2*dEuMW1xi_ftJE~2;wZQ1lJ(|Y8^>KXXZx0?l3&HnoNVTlEz5xBn`S|m zfsdvG+!li-b4~Met*D}{&2{CL3z7nyC6X7N*sLfm(tm$$KuI}?JDb!3)96kMngZ=L z8rZeM>_SvAiCyE;JD3X-m7Vr$Z|H)#Vbs;2*`!8Bgs(7b*NiZC6p;s{IQGAFQ$1u{ z{c@64*o(W8)T8r7fCjRomu}N~- z@`1XBez8kovz0=^{y#lT^G=Vdb2tHu-h0hypkRKo`CZydDZ)mYoD1dljaA$2#oaGo ziuc%*TlJqulbTufs6AZ+snU=%?P=sJ40|Wvlj*wEDReS7_q()H;ECwPea*UAPP(_o!(m|^Q+o6 zaXs`Iu^vCHg5(ZJS!tVK^Ll<`jW@}Kl7cG2#n^aH>f8}0voBS^29>|rYq0wDHsgz^ zBzz=IgEt)_Fik?j)JVUetl|H|Flcv^HxBn%H`An$^F|oPtG5d%_6-Zpas)cE_X@^m zs10h7+AD7R)LiRVvkYa$ILjYv?To~zsf8)Xz;GV{)hrW1OdI3Mqs5!sEp+*=F0D;V z@VgY=xMO9QIC2fF#~HPx2GxLg z02hc>TSQYbGc$L_(7G*tsuUzha$x8ffwheO8pq3FFE=)mIV@TuH6eXGP2eAt_KnRP zvO@72S-cIq(~_SJ;#8h%y{9>Ei`s!6HoZzt@bY~lxgdDfuJxYZb0RB&PnQ$sK2C^= zE__XWCHw`mwf{E@RuNKn_Z;JJ|3TtiCD>s8?&dv*UW)v5vl@3IDy%eXHYG))XP6_@m5s8Q*FP(}p?rz=r zHaHCY**g4fng=w5Mk6EGdjI_TZVvSPo#)JxW#+1jykhDFcvhJTRtTOkPe<_~!h)vS zZ;3?-2%p0|TRB!DQZA@C1Oy%b6pH8t&G)>jNdj;xan0CeJ?aqBi&yvK)?Y64Gd{G( zybxgdI=PQ0mX^4QH*JMIcVvPV$F7RRu}3rYvLQmJKs!eVA68V1tC18cy?UXl_B3D@#USr08KaBd!N^q{;oNaMp;b~3Mp-qu(rFR zgs9G5;r=GfWVJ{?Bcx=8gvh>_S3Kpzyi1S5H97@B`(PqQ%^MIUFusYZQ0#vpyZl%T zJr2W2K6@;?YF`Pt?yAoLRjdy{_gFTWB_lCk)mInIp570&n+E~@T2FArM~N=0rKn)R z<6b*+`S=`3QyVXzbz(RNJ!-y?=K1fl8s9qSz_~>O{{B)8zD9cs6v{TA3ty^iQRSd8 zWYH1anMxLCZfi=Ulg+rnwDb<#U*v_JmJeoIn$0D#LyzT02m;d*HrD81M1*`C+%i<{ zO(%kTYcDO?i_%pF8J)8e6|CA9im$YJTv3cp{>ErCf^o!SAWR<0IQ>V7yae->J&`5^{JII1&dsakEFq$>7sq3vv`s9@sMyX$Jn(6{UCwo z%ns}W&Gockc~%Vlb*IJ~jN7?k!iK?RPgMRx!t?yG0OP2mIgU&uEmm>echEA4TIf2Kj8E*y&t%eXzwv}@t4*8Z3@D3uib{*`vO)+BscX?a?A)JlUj5vOOd3cys&YF*Df@!-d)V;fqoav}p+ zJPl0OCspwNVJisIS0??=CrIld`I2`Gy9@!MraEHgJ7NS=3f8@ma4RsP9$mRdHD;bQ zn!C{pJ!u6f5`$PK!LQE9EdxCy!cWHdRTWf}XhnB4L z)-e#_l!pVxsVjS7jt(lw-%Kb*&dz`tMEe)H`j>-RiF<)6T*TlMH#`_ULuZmer%d42 zW4#t&Mpr44b@PO)sLQ)9;(}R-b8bnk;a@Z?at3U(%EVDhMsk%Owp|MFBBI%M5?4ua zZs=pJC7(SDe)W} zIQm!)ya11wy53u6B4RX^pD})QJ|pPWbXpz#ah^w@zII5218{Syp9>0?(6(#Wdcn(H>9NpPLQYX1thB*n=@^oiMrE!M%xT(xAp5g9 zlpx2?HKVQRioc(Ke=^556fqZ7Mj{Ae?cNj`R$!X@*4RrgEQ#m%r9T;xUFqojvn_g* zYr5+Mt$P6O^B>*I4?2$Zf?Lxu3E|V2V-`;3O1W-bq)vMgX|aW52$x<4gLyS)5Sd@@ z>~{|e{{bxz0ulcp^h7n$(iv{6so@k1ysS-5#3$&FDK-}^VA+BtxsU5BeV3vKVK7hA zd5h-BPp-x4P5r56)}qUdKwXB+GbrEIQ^QyEh6*WmAJK=3kPHPGB+<4$dmOF~`X@g# z9mp5ceWMi$=AP2Y1g`RKzgU>}(q^4;4!V%*yf_uI$gy5z+FM`w`F z@P%d9?Mi(JaNuf!xkkyJO7^2YK3wb@D0acbU!``}o}irWe#wp!`JwJJuO<5}kjqf_V-xYLISr ziE>BuT9(3WQ~1slD*iT`tKeV99&ZZPneENCBuV^^*n?Y~cH0J~2M zs7o#9wy>rP69BqMb@ZKHHS2Fsfej5q!=ZZG&OwLo_Y{u zL}Ga0eEFp_-mdi7xZ8oypV=1%7+|t8Cpphm^o^LkCMlXMNF2qwQnrR^f~lm=ZWni# zQ*Ced7Xstzu1?W#Q8%=$D=oqni7S@&zvBZ=P_Wp_>@i-o^bckjv=;g)zB3l)q9n+_IclObhfs5e_r+q=#O)p$ZF&7>U z?rI!r$LGD%q2>` zld4btwiYui4|#|a#m2yCD*8Rbo;3bHbc@aarpeg58u{a{xZn8m|3i(*5rrW)STAwl z*&pf5XY&KT{-6(Q)F^N!jscZUx&2f%|7AgK3r@typ8KD?QYm_O`odT{4h5>; z)Ky-da=jr|(&aA1oraGU>6cRhC_2D{qLS(^`;opDna(>_A?G@^Mks@?GhMOP5RFbL z4kpcJyw!;)ctp3ypfhP6$ke23cdsB<(|L{5wg*6>H==HI@`hWjyL+7VGh6f;#A#}qRMjLt2NRt?spzimb5X=;>B6u-}b zFfnTK`sKRyxIKpM#}u#yT^S98l}h=mQ9Ltw!5;8x0-m?}#U$iJ&J@MbAXP;UpYgdO zp7E4W(bzSR6P9W7UZu0<|M;(PV>Cn8`3-?JZ1}rAv9aX6LFI1`!AP~3PeyZ|t)>@l z?=|I4im`|Pi_77P2up?zz8o@3*KVqzmd7uXKg52j*iZWNi7@#Nl;z0!1a6v>pn|^0&_Dt*X z5CwsA{sX8JvOq(j9j>LTy*8c6OzOH~WBlX$%#k+Q?9Dit1rV%yl*6;27(*^T<2J!Y zsAWg_==t08Zzvhb&#H{8R<%X$ zzN|r6F7u_`Yy!(L7fl_@P8>Rmn}a9Sb{B1xL4scVxGQpqn7rDkELqoD+76l;N~qRJ zQzQ`8|JNacBRq@OVKxJpYl{bkmBDISlgt7W`#dO>$apX=#>7D|O%pwHPIX52-b%GJ z`}gM;JFrPX@TxY14#DMETh#{>8R@{nRZT@dmy@JXfPt6ky@45frr513gC}SDQ&8TA z=6ZC4DAt%D>Z$Gcz(1n*4ni-!(!9K# z24At{i5jK;1-LZkz)bg1fRA2}mz%BE{cwpHc-62c7^YUK$NU=r2g54ImURfa^ztfM z@Me`)Nq~y1`8V7p`WFIxg0KwTi(p|wnYK-&P@EFU^qbot`-rT%|D6B(rdqR{=7r$@ z4!A!wJ`jQ3ip|GP*odavGokpb|b62Ugpqi5ZVJ!hK#5Q;Os=j_5T!&CtSdK{N2aTjw6z7sicaGzd}&9w1z5d+z?gwV(hf& zaM|Im_AVW4!G8GjQxrf(uQf_E>&h$}D20R;hl{~ZZ{K*0rBbuCUM2z*`y;e#p2$@o zqsBJq`zL5%bi+?3KTTW~J%>1kik6dzNMa5tuw6OB#D&UJ!lK{Qk3^_vWFS>DNyJ0@ z7{cWb65f@#B^O)!#{{_h7iICss zkzkDq(Eo_Q6oBY-U8oXvG(6Q?g|otg-=6eSvD-|S%6}$(zaC0z|K{fE&-a)Y7k!E0 z;zsiackJhfJ+ue&U|6!TA(L#nO*+j~v8J0g;Gt8ax>YuQvJ2jMagFUjm%Ji2u8bx~6aPJ2 zH?8BJem3pO!IxO0vcvw_moa+F`u5F#Z2N))fG8J`InpEZJ`!y_?j?P>$6s~}ENX|( z9T}N5nVgdp6>m10z(J6@Ii5&LgFE<*=;L!*&HMla7Xg<2*rI1FV6^?a-p4*fIN+cHjEUNR0D^K`N#M5<@RWM`f)rK)1i{LH{fnc^*w83E zQHCClNp>RJfj1TsF1eCH?6Ia7%yD#d?Z;sBBee3V625NxAJ~8uWA~$meA4h z>G1Pdbd}cssy=!^!AW+uYAG{91lYwMYeMRWfp{A2G#p`%qwL8FLqmg)J2Z{J7*I9P zshDgdK>Xci1JJ#l-|5yK+Wh%zomlxj3)YoyKl6Bw!6wF#_+0>$EbQGsumBU<6mBX6 zPdwk98iFfe5xwcCV)>6oEMkF5e!fBK&|*xRv7(rk7|fcw^CZ5Te1cc+&&}Cha+!S| zm=3rgH!8@ZFwMEiM{Ld@R-@Tnxu_|BM*a612ucd_hu zILnR8NUo_1Xrz#7ab5Q%&jQ=|dWBetRg6LwCK;ub{;Ktp?Z1h=`yaagRDQ5xF*STIRR^9$;el0=xt}yx{v@q_k#r-n`F$#T;?xnbbEPxvgp1{ z9Pn^^I@UnY_wTfB#(-nG1!$yH55$v9WO(gI27V>P@TCFRgCOW9<17aW9{W6hD5abc z2({z2R%&>MNTNwk@KMMe)qn$aR0rBYQ9))kzACL^`s-vp=Wr&S+Sj^IuLGikhH{iv zf-SbcvOCoM6>@}KyS+~@dN~THa-)3PFA|RH%?9G@?OyOYimW_~isx}Kz{_5!uP*n; zjvV%ZOObNh{!vf--)!9$(ii=b;~>}L{?T7q6$lTsa~s)xHt|^#pe<nVmSK>U58*(b*=!2!1~Gi+a)40!XDtqerP`r{|ZV(4r{CZrOk|Fsoi)QEyq%igC7 z^cuxqa2A}mhIeKJ*VNYTx0oweJtLNvhFW-r6X;?deLZXUS{Dv(+WC(I%rLhzy~;hG zS!&g*qS?DyhCM=KlwzQUm3UMAzbFRgVwLQl*G?0Z-X6~nJ({v%5W$!4z@DdtkO4+I zl&2P{3R6>7I>(4^_-a2AU0MXS!=%i0Z(0hw`A^R0+mw~->)nzH>ev!`CJ_UVRis9s zfofN_Sh?>qCS7@~T*_hxyyIfzN&d)V<|~l9-=NuZlh1P?ThZ(&lBaL!kui zt6%S4B@QOu;q{X1vQOWE2tMBEV!1P2_I0vMS1Z%!T$>}#-;1nGycDd0HEW-PW%Ebl zIP2=Lr`8kYS%BfqGw^vuGolhFpmhIlebl5gxLuS3k5zPVASo+=yC1WW1l1AX-VB0d zZn;*5&!RV5e^bd|4FnmgbkHRoe=zw1W9G;_ocPy(`uiH{m?3o3@dWZY`qAvd0S~S# z+8;vGFLbd$HKXSezFRn zRp@`ZP!oG4kZ#5b&*}=f|64Q0ebM*Vkuh&2DU~sN{=euCIDg~>EY$yHqcAlHQ6!ZN z#AIZJrn4xR5&o^LAj?;WRzAguDF%4yZcYl$#Q9TH`aSrXwj#Tih#bJ+&zzW}K$Xzs zewZ0RvewjjVt0RgMGNPZXci%Gp8W&ZG{a3ADi zH+ml`y?hnGTD&a6no5jY=+ zgq{mpn_gFB7LNa@nm`$y0!W3nR>38_sg?uxD#3E($<=n&O*uPjP35%r*_2k)O6XoQ zkbUtzt0V{26E#dk6&dDN3Eo?*h$e8Kc$q^`?IC>Jjn^B!qrwl~6Fjhyp5J9(0(A>5BhJ7v z3&aJ8%yS&Z$G-rUVQ>(kM!h1h1~5;y#|~#}hEeSMM0@8Z3{%Mu*d0 z=6!Y2%e-{3v_4P1)<*HS>*lcCVNJCSh$@elXt6F^r`|_-E#hnG8JoZt!ImkmO#_H- zsc&5uV!_)^25;Mt@>b!0cw7aPTuKDR2CRY%>=Kn`rQ$67q_x;Lj^Z>Qd=3WtN|lR_ zK4^IUu20wQS9>^8dd$h?J*t9@o?iR`OA3RNMQTqpPML1bW(+qU?hhZ#&i~G>J#YV6 zgV_Gxn?``ZFUYBQsuL)^oWUN)lS#A|6tR~J^Q&9F6AC;7pz6#6_a}hS(wW}mhcP82 zwV#=1TAmyK+yczSq&V(ECkEP?AUD>UK+-_z2CIqQ zZYS|1P6FIYD*wxO(!tmfJ?7cm*bkVj#r>t9Bl9{X1iDqM7vNRo;;igQ|21GD7APP$ zcED}L1aA)g9!Qf4LojkGISoP1P0eoFub-y|^WD^)(0%Uy$lsvqcB%Mr%A539e%LCZ zYdwApIglpc-H#{uu}^PCX}LLQwm1^etooYtg5Qi!5`))FNz!5xhL2`nMLBX8D}wgO zii6Olev*Ft&@v(jYsl4^`%A65phT{TjegA-NQ!*QKr9h+2BL^7$P{^C?WflczY7^16-w#92W3r{{^+=w zsD)f?(rgP7Q6|i`5*u|pgwQD}w&*#fexc~7oj?~pcx-wZBOq59$ZLi2)!z$Nh(z%c z8Iyz>WGl`rX=~*ck7H#XtVS}X1v0O{Y@)PNAmaTtlfm>{XVT1FN&3I`-aMSjw|g6B zo5wa~CNpK8BJ(UVW=cZHJZw|uA%tWoD)Uf8na5-kvP}^}WXMbuNr)7wckTLopZ9sx z_xbnz>M~AZS`@Zh$T5DbFTI)R5QV+*SUcd3gvL{XWlFq^Pk9$;=y~)-1*KQez z-z=v!oT7me;ls-}v|M?0D zTPDPal*f$RI0~&04Q}pGwzQAV+@^u3^;&%RV!(ttGZ&XKah>%Vwsch%K3QKr6W^&( zh`DWWS3y}Q<#a->u!t0Ma0Wt3@xLbq&j2e*0P6#+7ieZCf$I?NTU+A^Ze$mNe)q*p zbMSMC2r7d5vg`)rlTLzb*Du_UveAeLkw%E>6C$6PUnqTr z{>KvHLC}mg75aH`G2M(hef%HB^{>^z<;KCKpjC&XNL)~=A-WteK(oL_S?tlWM0|cX zAT^p)^`*!lPsIR<&4`XNR%J(x)2@H@hcJahLLxpH1)~IUqoV1r%~%QFnhP(@P)7iB zwj4a&h!T4qOqNAf5xsI5Q!r0^i*V(&)< zI6*irR9Sa5LP06N*ZDQfwee^hHcj`c1cP%cO4$-;F@kz}_)q`Yh^QlODeP(HUi}dm zA*&-2zt?AmRz_lrYGs^zL~u^?5mzDqe2}s?h26>r=#I@v)-p6E!GnJOwG29 z_0Ax%W-hOOZn!)9xi;+P2j=wQn68qF1*jyF5BEJiykIreB&un%>wcDvEiNh-8mEh! zlavi0uZg`P*j1S#O1_V~UZ5U#?8deb^W=lMn{Snkw5MBKWmOAwOnS{YH~LV;L!Rg9yd0qebR>^cPdiM&K zPXI(d`X5c>tC@b8e=JBK#VbQ)MprTyW0~VSdch%P2lkPZ@4T&f(eiumA9SgO0hB7{ z*7QjRY3~AyD?{pAdmk!$bNpwV&kMTrouyW!H!WK#Mdv7lSeb*&Q z5}lOKCd4+S%wBfE9x$AdWf92at3MC?UAN=Qy$@PHNbub%a2GUi|> z7JEy`M}MC4hv=L59Wtl;Kd_FH(!$YnXp7)wC*3&Vs zT0(<42j?5!H2QvsWni5@V30vX$)PI=gSz&8#oEZA@&J92htE7Q>b#|I3bqLeVw30U zkM9hbZJqJBOoZ3ao(60PWhaQW)PG;N$=10`AvFag17W&!e~!yk-%H9Pza-~fh6?ac z=#KXdRqGeEA*T&Cl)C1qGLqPo2>3RpHJC~4mbQexKEHPV{l^-wPMY)G{#OtTLtZ_tq7*g)1;u?1qFl5YZ^tP=Dkpd6X`@`Pl_`5~( zPm!ZqzBwpwn7hil#p4b_`}%ZtBv*$Ty1+U->c@N~v=NVyf1-?$R!yKte;HY7lJtfC zpj~FW_o?+yG`r2iqj8E33;c#4#Y~&=_TFLhgfq17DzBpEBrA}PXW!f4xew3WJ50I zr47w{wgBFkrFH3d*_WGUtXIh5PdO1*JuH1lcrt?Y3C4$hb7Av1tE<1^FfWT5mu2Ak zw=~O^s}sISGDx2lEy~8=W_pXv>XE`Diq9JP9;1y@e2d?F05|)d1yrB*b-qoIX4NNT z;%w={vTUf#*Y3xNPhXO)-6@=AWhO-9VX^1wSNwJP6;Yk`HR{G~+;u~K{xow7`*B)D z;}I`sYNBD@$At?S+62OBahHYaT6~J5b6np%b`FE?d^5og&(2>8t(&;@W4K{tr|neO z_kc7~l+ezSU-43wqbyBFpUfKB^P53mhp%$z=Q!RA9erH9PM>Q(b7`cezl;@1KJMD4 z#ia?c*rClIJI%jhkW1q!@+{uDuN^I!_T%$Ypvx@2Qud2+-%wrbW|-ldYiPCVlo*59 zfaU6)bqMv}ofzGxAF-QVBWv<_cHlRBl|tcz^ZCxRX%8)=LPs*rrp<_0oSt3fn|pON zERED%h$88O;Rp2r$*=hs?|$h)wp$Ms`T82JI7}Bx6_M{OtX%)}lO?PcyKvZ3l-yB+ zO^h!@n4cPl#F|MB@pPFpN_7<;^~XlU3JGz2cO@=+=3Gg9fx9S=_{0)1gPUKYDtQ)8 zkkt4aO~dI$6QBc<% zVjg)BTqO&Lg`bV_9X)bNTx!2VG0J0QFz=c+kTW%xp6XfhS(L~zC3gqs@JNZ!g@WtU zOc&guy3sDWz}i)>)L~RAKHIr0MaVL)=a__7@of8*c485+*8raj$ub`>%eAjz8b=D- z&DXxEWyvtP6Sn6@?-8ibt0|idSZ0=t2d8|i2wQ$A3@3t~D#}RSy&~EWhSWtOe1)=W zN{j%wjrv+#i^E{5>e>E{|58gx2g;1W4;jt6x&4eTy8ZH<--c7`tPws-$gyFB zOqhd%Zrv#0%yox6EmF%>o=>j~D1~-L#IK5!kQi6xG}bjrsG`ZTeCW3~Q`mZ$0x zbopzLAS))rLw?F9;Ypxj66kJ<=eg+VoGnQgb?WIBG*xD-rvBM#itCXrZq_zIlPzV& zY&&aOeRPWLiwSsng}CnJCAf;OFHL8wdT6T?qmZi--IrV47rfY^VvZdD@48A{inx!e z^-i3*g+a%>5HVfP8#!W1bSHtnKHyemq3Hr(k{vUyMK-*HxT(CBHTfSL>6$vZr{Vz@--j(ClX$hYC| zs(%-Ln!k{FV<~3bi`Xz0q3HBgt(|Bxu6X&W{6Y#lC38qEmFDTYk!Id=_t)>_S5z}d zR%>Tko2aZwaiu6(pZ|L4qWZKVf!AEi*9EfA&Vpx}PP4qv+#3~})wjE<;$Zek(pT~g zm&Ra3jfd~RC&>CRNNT>c?zF_?H<{8+kZEoRSS@Mus5!%~E{1+XgI{jatHdDdSEhA7 zAt?6am-*|gFEUTLx*fdw_@=jFDPca<@@>NitxNRt9&swr;uGqC;Ls=<4*UZ@i^43 zMeic5zh956_I?(2ptB{?p=t#=y#^kyj~u4L3pkTB9Ym;!nnLGFsI>3*y3Oh)x+~T> z3azCjAx72rGdFl$bdtl29f9QdkZOe4ix+C_=Cax-e>8fDXP@}Cr1kxH{X|!X z4s|Y9;`5$H(Qh^|iVQ!T%e*%`>9Pta(aL7ZHW=e+H(il&U^#Y_tnQK|>nxV0>+reg z^2jVYz6lpu&WY~xXvZO2!+v7G?6WA0%jS*A8#IC zJeJ_frum+{(X#G-FBN&C)*YTL@Ka-Bnu*Qt(NN#R=}My4=43nlL&7Ra`UL*_uHJ`T zoRW*SI>^fi#zl{&@dcSW{s8AryVDgb2E6qj-_)c&=!cka#x6zE@335W*F`Cf<5;fP z&ej$eo|=aKd-{Mh^(~e6WC6Jj2~V2`*4Ada;wUEpv7yr_ zQ#K2_CzF7F9g1+OL40^L z$4Yb1%7(zRevGTmkbgW%(QYv+2dWcY0vvb!$u+E#9cf~HR=ZpU zUWSN2F!OCvw2{94_yes6c^sQ{j1jC;uhhi>>s(^NK$NXcY zs2ko7$Mt_{m>hy$Nwp)=Ugn2Lmx}3?L}^!iF`W(eqYQ+L^os1gjV2PK<#Gqx!=nS? z_Za%^jvwfyLoBjw*lNxr{FA&0|-&LY-_c@lK z>UA|d`3MgQThjbYOfWL{vdF_BJAT4c9y~Ey#@uE>ue3c=2TPcwv-HI5kM_4~phCKJ5@DNFrU zGt?^gvdV4MocF}zegbr2&MJ4Euk)ejmE+ai&WgL-Si+P6eN@J-E3^-$kpZmF6ZjN`n*|34OgJ zU*TOc;Cn+GXHhwkz^y_`+wHSnkv&UBkg^?`=iK?`lVz`O-a{rQyOEQ;sxcp=y?xDD zr=d);^CN@?sMB#e#9}{*)L?w5Nsez;#Mu$e5DZxLp6CwB_C_d1nlgP94u66SweNs(8BY?d*-0)+MxQT#YYvqE(OX^s80clZIUFokd>fbS@>8 zk5sgJlkJDB6sF0UYz(Y&nL1mX9!5DpYhzBg_y~~zHnNk1a}lJ*o_5qG{(VZN{bJ-Y zBi}~~c^>D=Aep=@^e)&85xG6$fk-eIAo2|_)mDoBVrxmu&|dKZfroR;Y6-tm!hnj7 zZk@wi>yKh0{Ep;LY96X+&F>Bptx^aT&zN+NU&4kRGdfRkMH!u%^j%$EXnULgDL(!q zp+#~MzJ%Vr=VJI{3}wRA0tTDSJYEz;TL_ZJf~huriJNkAr)vy7-Cbkp(qepj&WcZ^ z!qP^NC(lL&LkE4}jh*n)fq-xzyqy}L2l3(v&OK^#Fe}SpiJaa3a9+Blg z)Y{tBPj$rG!mfn?l^x(&?>;Hn&Zq6En#EYl)h_daNXU3we=+4kd>^mFbsN)?3lTPK;WBzlp*ou(~{|Jgna3~ z_-UmTjePfeO1m<}+ZbQv2h*YbB1uNJm1^hF80%*(*Zf_-YylMH3+iRa*xCsPrtCXP z1n+R&T@r4Rm!3r1w_<+f*&ukWX}!0-B4l=NQTm2rqREF7a`@CzWd_Ic7Ov6ATJdez zQtM$_Sr>^YkSs49%CfBSJ#$a}$at420D+nZ;W3*9z6T3O7l%Eq5TeDUT1VY3#j18* z-;{lW;RXDwk_&Y>hB)C&Suk}+2pSNhmoViXvn@iz&Uv)-_?S8g@kpjG5$~!#)za@; z&)Ux%U^bf|=`ECaXQlb{WD5`)#P$pbq^{r{SyM_i5aE2TNKkfvEPiG&>Y9- z?yzZplJ50cDBVj#kv&FvLq$gdZ5OiD!zpOsXv&M}JFI?`uNNp{qVnR6kmRrolq@9D7F z%Ma%qa;U<77rQIqz?GvD)vLB5XEU~5ep77CRH~p*otU$fY$+T2EmHL6aQF=BV#2Tp zp{v+7HY=CZJKHb+E?v~<@aU<5TYKQS1tNu^e z<1*405g^2FM=kKi^JnDp{Rvr15r=Ai5u|cH;zL+kYAOKU*H(Q3tr3pa)haqAVgcR! zVb8@k=J&s+axWlqGN@_VbYASs_^!s92NKAUhoa-n>oTsiye>U2B4)?R_ZDukA3984- zPA)Eh2e1pd1C;w3*hBUWWgHFywHmrhAwyT_IS8U8D5~cJa9nhSGOJp3!tywt7{yCf z^BiZ9T84qD;Ebikm?!Ui7|Y5;w`@?CYBjpmM_HF0Kbl{m`|xIrzUZBb8xk2V!JZaW zrx0i&msIs3vzg`Lm6=DhsrePV%VE1+Odgt#^m5$x3FhC<1b;f^dy2Ex3DFqt%ie)) zP`n&gViSlMop0;lxIZDE__b1K{o$g^ibI0hh_1w3#2n*@*-F09Mx-k_!5y-6yVmAg z+*crlsp6PoaOxzQdt~Ko=1W6Q?M$N{ykF6NH_rR0jK~Rp-9Ed$aE!bawS-#q<$DrS z(N4BJ`Ydil@j=8&}Ct|vD{)YOxW{ng~l6{{icgd{GPEEx&VWWvO6=!sl zxETk=>iM9a5+MTZClO!Z)Q4(-NmsAsaWwmMfS0RY^}TbaP!z4MdMvQ=1m7_+9ow2mB%n8h9eHtz^V zoM9BzbajHG)>0YMPpfNN3F+kVcf#j_^)Z6y2AKDM;RiNVapt)tGLjyt=9v*-_K0n} zx0ZV4CoKb)Qm}Xos4WNNiBtfqCYJLvT2D#fda2&IoIc3r=k8*v;G?U8RK`d?Mn8Vg zxikay4g!bgcFU-h#vf*Rv|PYu3xPalDLH! z@ngZXZ%{LKd4TI=s)46=+;F-lkupYbUXMXm2P;@!>Nt3z=yE3>&0*o#W1fPYeT_ze z5YF!>i#8#eoR7`}%+x4H*lneUBy)`;YhNPKT_?~j5)qM3PhN$)=Z66-ZVBp)ZIwNj z%q-TIFl%sR_>F6LOv1(^%~K&TX3#-(CPY%#jNWssYPtFIOW8#2Vw1e{l~!FjBQGf? zN}lUq1=0AP!PQBvd!0X%a*T`UKEJwQ_N%DV#Q&C9jlGCK@+D0<0Vnq1E#%1!+xrZ! z-1ieYGzHBcBh8LoAedBUu8!Bg{CbfWNGmu(7iJb1D}>EV-q7?H@gI@jHi(e{?Wum= z)`5~0;%&Js`3eVzV_r*5*%+H{(mbl9N!W4wF=Z*BMMIZB{pzOpZ$a+NgvnC|r6ohe{vx7<<1>>ejknGnuZF^iZs1@H+L0c4%)Zdf zPWBd9pWKuPxeTzC&ffxrkIwE*9cjfP$x$9n$c*)Kpq*)i zt)|TTf1Ph*8F4)@6ubFdiA=#_yuqKgH|E>1K(SsH|Ec8pA1SG+JOhe9o3QA#SkJ0; zid505r_;ti^)Q03D{+o1lBgvC_K>*E&IoJ%lOpj$qA8k~$2(s{o?^DbNfN*<^qg<& zDxsKU8~hAe8tc@n5V1!1(-Q|mrB((+%NVx+uZ{8z*Z!wEIWi_l*})ffF6FB79o~T6 z(7feJty1&pi)rYuU08)ltzYjBbxR-43BGvBq1sB16M%A#;b_l6t zq!9@`mqg0Vsa)F`vkES!k`}-fYNz~m4PS+A?t@{RZf?ky)}0=zSxcd`9q51(3aOfO0N-{T&MsizuRMl`n?Y>$zX3Zh5zc<8E!V zAIY+>LaQ?y+qDY<9lggo2o9!!tAHmQCPo30GBGd};EK^a?Zx%h?~40`!$3p7vCm_f z<9&d2O1?Iha+U*0^q$;ndTOvgjSi zN4xeH;7Eq^hXPutAHNN7#q0p%x(#{#*j?cx{d1R2pa~p17(sN{vG6U96Q)>-6Ce{c zaoW1DDJOy9CVue2+RbYE(?#1mk|GG0EOtdW@8#yAs09PYo`GG~)xh=vWvs4%s>9_c&shLB_C_Oe!Ew1Ik1TUY}ct-Whj%Tk8~ug{Y*SJ z_3Y|ZEL0Yb@Pf9SwpwaG00qTigECiSAZxJ zkApS9UixIvPMA}@Pq#me>4UR)8}q6oSRRW6PEwK}R(gMin$GTcbV{awL@OcxCLD)e zT&{~TAcy?$j`1}zzR@GF4axa@liRsZvO)$pAdzZnxY7YCw)P50qt0MWcd-@@st`F; z#^C2cTEzjUgu5dZmXmkzaYs>*P2Z{D=`Q&)tgo1{gj9pXBQ-uH^J(j{F)YRy89uK^ zsx665<6w_8*@%p{V=cPgy5Kn-Np?P&L%odew?3qUK9Jn70)gTLJ_nu7+4%;NG{dPh zEL?AejE64C7PyB?#V68yh$;3CX_1iDJv_s=g6&=b`6)h?!DMHCQSva)L<<#944js_O0OM$ z3+zj=CBrtRT~M2X2;F&ts-;XbMbVP{bBH^1e=Y=!=7wjgVZp7IQTI`s;TQcJm|uI; zKQsBS!AGcJMS$w1VcfQ8l5dvp`^Vn3nj3fi`urJe9pYW_yBr6#web9V|NHYhWa0Un zVKIgUSM^5SX%XfP7r4G^{dKwrz!rCYp3q8eA%L5T4F2yU{m0YRi`y1F_Cb=2pnOVz z`j-a$>t+7u2dMK7fQ_BL0?lVCb*Ng;|8`Suczvq@ow#j&X1FQIf4S)y>`gbz3N-Jv z!A-0F+fA`GOpgzojoUsc4zJJnUtZq>`}&g%TFF1`MjQLvRQaXi@fClgc@7EkLLztv z0kWJYU)}Q>PVLT`{m!uA^sapTu1(;bH#FkkpM*^XUN|FN?;HAo_wRSmWD^1jijN;| z)eAUUwpx02Vl0FN z^>#8@a=%y%hrXsM53^_ZDf{^W6$D)NjXEfQM;{Ie?rG48Wt{7!HP_)~*XCa~|Mgq{ zm%NId=tz-?V}Dh!KCHY-d#{VogEV4@pd}hoYixg;)o?tRa!OA$UocEb@A361{=a=o$qp-zS&BRN8;HlYl_S za&po+-%(z}mI_Efj$wD_KRzAeSep~#XZY9yByGFnbJbteh)oN-M7NJ-=v;@>RmMx6 zTfb{@{O6uwcncmlBKywkY6qzNk7L#Uuz?QEEhS93bnAS{8dd><(LR-je*gQQ$=KhD zF;ASu$BHAHj->iu?Vu0LfbGp}S#k|nDiIY6{l9+e|5wO=l=J_gLjEaw|NKultaKtB z;xDrK`wRbFlYdDICUNW!!T#6t{=ad(k`A%kY>Oq9%M6E+n>|0;rnQ2C8U-%3SiF?` z+~+A}ANm*L1xBhH?CM2A=I>O32i&s1yKMI}{84Wh@&%KTf;Gn!Nr=H23L!LH>$hl| zGo&7YW1F)I2k+hnEH4LWa2#9&J~8s2AH?wS zQ4Cz9HQZI!n8@_gUbb%2jiDd`j? zt3q~=m@vr<>gmTP372X9XF&fNSqU`~ZBqE4ViW;&0~{Yi-Vk7GG=RA-Ij5*~+7EKy zX8^eGI?}?Ecw6BaM3CRZk+NZ~yrfldWfw!lng9ud&ZfZ6E@BCi|Mz`=-#+4Tc&nhU z4QCd@=iSRh=yzAxl4g1*3^a*RH&fyU#Ou0}*i~J;yD!wQKr69CtCPAiRxKfcz{TP7 zgXTS?GcSWghz<`~8vEuG+L!8i6|7ss-%mgFZvyP%DaIl|@F#~jegx6G5Zd-}8#BP; z37z@OR!N$_eSY_RFi%zgQ(t>`p-$g8<40GI#%Dt%;G{r{JCymYbhF zTPmBsm;(iZX%oVQrZVQ#k99M|xFJhoQPKZ(b8!(gKQS^g(tBxQTzazA9WV}F1M<5a zfHu#E>6%E7RQT6I{WGP^NF;ixRb65BQNZVZspk+#q=FD)NTKSdnPyp3^UmnD)a%d4#~~UUF-+Rg_0)+4HBm(TLl?DY(8hb1%+Lo-{#hSY47x$ z`jC`LbHQ5W#fK{B`GSq9b{fk63L&5p79o;xXw{SC;ty7&6WWlL$S+$kj_`Qy19ii8 z@V;{K>$5<<^%82AO+7rfR4}(UE#80j&Fon%&jpF`BOH|6ye-ax@R2wW^>j`4VEt6*SmyU2u_ke!{KOMA7d|EZ_M$RbUpIn(60 z8gnu%xW4#PWiwQ+e*Gm`j$*e@e4yYBi(G)nWt&J)l1^YDm41AbPuRm>4p?a4hLSh< zD4+)20`g!N)}R3~h=1%J%fFd{Uu&qOjzHAM8Q*o`b;=f8lC42-v0shdPoe1)vbnOMBa`ro0lrm)=XSgnL+)=R9yDvL@L| z5l~Iz%wr&+K%QX|4ODf$kNY70L$LJ52albHZK2L}%9DOmb$3KP1oqTnpqGIiJCPX^ zc39kgqQhH1DuzV}cdSf@?SC99zgVwn#ZbPMCXgfoFc9M%0AJHaM@Ofe>No#3L5Mm7 z&1v~7&>Yb6fw@Qe+hMDP@4~_6S$gBPq$78d9EGIws{&10_3qx@(v5Lw?9vHEIWkJL zX?e_Q9dyes)(dIeI&NvR?{+NLeGbd`r(x>;X=TAUBmR~pJov>l18iV9F@fIiLA??MxlICv)r?c@NocVq-8krKy_N-Vk%~2l>4pWQVYCidO)&ANQ=fb{LDSpN>4qc?%0>GCH9? zr>w-tw@5%AK8M#KoetbuaD+F;MH&7=Fb}K6egMEBYS;&)9>RO8Ug|W236kqSqK@j^z1H` z$S5o-5ggX-mt>&ZKWK}X!hrzyFc+y!dxl=bTB(bz#|Sl9?{NzRS{=)KUlqQhTytM_ zOKl2*{y}+_!VP>r$D zhAe?Y66!fmfRCd4!T8d~GoWMg0rW*~&waY*w zpbHV=IlQ7HieN+zo;tj)0%Y;l`Ets4*=3BG0*p!D_r82&>S@EZue@_y=E@0DGP2_qhajEFe5yfu6Q*J>iqE3 zUA&N0^Q7lz3jcYmw_sSABI!E1wp|kMvJXI`n{TH^D=dT0_4nHSF;(0!RhPy}^&DY- z-;IN_7L)+zhljN4nsncPc17S3EnNM%f2l;s*=Slgkgo#v%wmyBG#cHwOjq{fVHWDF z{QT~e&wyo>G=2J^U8v|M*zmop6t#YYz)elKefzfeL5^IY*a1a-O`P59p|^Ff>@ZO) z!;jKv&VT#a!+S3QEJ6n)NiNwxB{Rt=dmIGCRytuCIY^El92z(-qK*dU-*jCuU}|lm zcJT&p?g@VfFf$3__iVKh^^hgTZsPexMMW0-FZ{qyrtKju0%BujSr37rzEz?wZ8TVp zPJ*247?S_Akr8{sFeg99L|h${@b%KHf}Az3+Lxv{7@s(_Z-Yd1gQH=e^wv*V9ZU{~ zy!%-;LU=%0~3O8V8Q$OzMAKqEn3?jl?%Mo`igwM7( zj>1uhlmWa`W>}JnDn0f?BBB(o6xG^qX^__nubU6D#NZ3cc?FhYb-O!fBaYiHm2U!x;ZkZ zpfrU+MIYrKFNGavJ#)*^+kNvawcUu{Llz;cqXCN z`Z4HeDJ|(S!wdwAvj--A%TVCtrlk9ug3@>WS#*#u(fc&{=R$rxuQd0iQeDp-`fl(+ z;r?`mcW+-0y$FNaR5zGVXm-nHz{WX2-^`#{!aoQ63<_(a}8z z08|d>=xOov(sgHa&ElV%=Gzjb8ElP(rPZEyTY}rsNjui#2m9S3&}S>X35K^Z zl7HU85QIt!@yDFtLfZet-sJQLi6X;z!kxNC_X4NEy31JRz=iMltAQa+#kbWtH+v=(1RTL zKklfMihUO0YnDHMgTlHr`+Ks7jS_ac;a4@}C9;3KRKyf5NX3^O|1XD?3>R^Mwj0ii z=_Y4u6aIQ7SmmYlI{)QAuk;1avlP$R^6>EopZIMB9D)5So5la|Dv?Eapw%q*S8xA0 d9sUGAjtEPm)>}(wCYMy=VWmXV2_4<1FgFuj{Pi?B|)1!Yv|v8hi{43?don8_F0MC#T^b zE$&J9$#4rHF$M-9qp75%l8mGzO3BXJ$kf6R14H^*r1~k9h(^kU%9QX{tTSPxZe%Ia z(KMRV$~fm3@mOA-J#oD*gqt&uQsqY8n@py_9GoyIsd>XY^N;hB-ed*goa3|($0%Lo zni{Y-niO_ktXLZ`H9m<^csA!ocyPvvFy`indOz&EdiJzD>C>24U(s}DPq0NtbFG9v zdxoLp*IU_CHrGn?jY8Np%k$5^dfPC8oht_F0!iA6z3Vj+1`G`637HgE3=+4bK?k=4 zYy+l;cm*k8s9Gbtxa8VJySR6?XYgY;?_H@)#|Sgk&Jj3)p?Zx^O^okE{T-gCJ=ece zJ!7=;?(t_IUuE1QTzMZCmrjzYaor;Fk51h4$~w7oA&nD8gbxgP@flAA+OhuXf4x8D zuw&iW7)2DUk53?fo+vnSiaW75D}BUH?&;=pK^{&T1Nng5z)k!|*F2bB`mz!BdJa!~ z7>UDV!#E$@LPY3)kHLUUL+!~v>d(k+iqEa|@*E`f>>Oin4Q4uezHFL!3kq`@@GHDl zs-mvG{G>nW6JxBy9sW}WpZrWB&WDnTpIwvteEtHyfoj0gq*0yk>AzxpBp=@THH6oF zyH<0#0j;p8#QRF4R6tP8G_(X?D(?OD$2SuA#Z+d3Z&?&OoFa#r`A+i7dd zhEtK{j{AK?W8Z&@uEM%_uf0ko4DZH*Xt3!0_v~kFyvZM8VCJ3cAarHnaI4J=Ie{~* z7=Vp(?%_kXabavJ?Hk_9%vwN~zPYM5@&YFT9rtu@MC=n4J*K(%y*L}^{s&(}Q?Cec zUI;iVO~`tZEITa#KUKWe5R?8p>Kr8pu75U$5$hC+esqtAcmyx`>2jD&aI4HG9MUfj zOxXY4@*8^d%+K*f64^~6`tQ68+w(RAUwd&*S5+{2ex)-Wb*my~IB{vE;jz9IuhO<< z*B+hoFB0>>6F8~QlQ!>Uc@*3&yyHmy=f%_?QAO6=f)Tl%8d33(`aRyOViq-?1+|n9 zw)21XT$tzXdU6?y(uv%>n)kl{go}%{h}wK`a+?8#`-l6qZDGNZ@shj*GzJHBip#7uLD3^X-@>RpCe{rE#-I=xdTlsOcv?Dy6mD`c(P3PW?D%^TC^?8Pp z=ESh5{r&q%6S2HIq!`<$PoOJy<&A&ggsxq~XwDjGOxe0k$D51mh2JqO(}v@>y!hb> z^)*cOVVoT_3GRtD6g|t+Mwn_xCn zaoEsnV|7>2eNr#2B4{NT^!C8ME{#j4k17o~V-V8Aq!1uH`V^b-j5K%n^AslPfU_?c zKfdsl=1>k%VT^sDIj%lVVn=u_$N^Oxc1rr{D$SOU!Fi%i2_hu|2Z7m;zi&rOM1=5u zpwp6ZOwN>&XWuYy)iF8YMkpGpD=FMYWx{ZhpW^v5>IY7*gzM|y`_2=E%7L` z0mHK!?X17T%VpYFcsW8<{wP2w@t(T|woKU>g^^Lb_t!vY=Gljp$ zesBLiok6JjNHv60&oRNQ(Cq1~VP~`%`DOddo`sEOIA#=P+nu}_>+kP&@O1o|)m|@| z?VR=RuztT`$}d2B`ORfJfo}p%W^tV^?_}BwS_#|7%_&W-+C*};0=zHCQCpl0%@50u zv<+`dmFoD=F=}FH7HPK7W!630+0{Y+HvYY+WSQo6o)bIS15N&G-z_FDPKr%BPNtnX z$-Hw5_a-;>9r4lCfDIvL#~lZ3Ay%PB4mmUK?S?ZaXN+cYS}i*&(){OsO$Yys%_+XV zl%m@ro&7?W*_B!L=HfY5Er!nGw$RSR)Jm!SCmxC3$=3tCYwu@&v3*J}`7Sw8|J?{@ z4YS|CO+sb{<`-?8Z{OZ*(dgy&RJ)QH?)aqBJjTnO>DX?E)!F9ZRXAIZNT2XKuPaCk@S@ zcB~08nzD|zRyW?LN-$;6*E1P1*|#hBHT|-U>t-VTZs(Ue#ygnbc=EbqEwKDpI ziq9=-E?!tPTr?KJrN^XS6VVhAb1QY5bX{EAX=-ZbYBEpj{+J*20Ovt*$m4O#(I4xB z^8+(At1|1q#(&P3&o`}SuRNYMo^9CZo80Ia>J|U#8NJ_x;g4Zj^~Gz$Lh%o+lR1j= zEa^Sc9{LpOmn13_4&ps5g3O*5pQ;M!({eI#qjou`brtj;1jzqKOL5Sul_cs9;D{FROqe~GGJjA*?3F_MHNR_TwvA1`leB!||7kQC{#udX34zCJ-&6zui_p9deqhv{a*O5M78G_g#!oW!? z(Z3wyX{8382Bs^)Qo2D`cu>h=BS=hS<*JCwT&b6%E-uruE@>CbyLt1WAG>y@f-&gR@3CD)V z3K9F#nVJ7F6Wfg4weHh;u9b1xoI%&g$1P?0YgOBmw~w>KyAmEyH_#W#o0i$T@2q69 z*TWQr4O3Sg!NvNcB%pP;AUXQ)XHaK10Sh+Q?_9t7tc+Gla=(T6G zP4Rfb--^KPzZ>Rzd3z5O)6AzvPI;f^6?y*1W$MgQTTnwusJJtQXtH>^i`nmjKd*m& zj9MIClx<;$D=@mY4c*;It52NM)vOR%jvmsZa%_2WiHE>#3tkhFvmt*GV&%K#MnMAJ2d!D9yG<)ld=;kUfAFc_`1gx{%CT>C) zxy2{YiYL7=he$f`zE!@KAerz~_O9}*{_*kc;IJfmfI5H}PccanDwH zVmpUlCgPiS_Har@?U;=!t12L8z_XFou*bllWJUgA$|$oeV_;w=nyTD$xF;_s^uXGZ zSO1~4fg!Jpr49Tw28M`>5PWHA=%9~sv9z$V7jhA0I`|7A_!{{!9~0`}PaMoeneNFe zp(L&C3{jVP1$g|L!K^j&zY?3oW=a{QhfhV~EaOl=%Yt*ubVd-V;h9UVlOn2>}1 z`S0+ahAyW6ImycYh%6wG5BUw>1zvu>f8Gs`iXcA~QZjWhw77S})Y8z(9?lTEaP^9y z$iV~u>sS9d@?Vc?{Oi%nR|Nk3=)Zn-^r#3QLc+gDI^@^EPk~`#_#%A&FkcLRu%=}L zehL zw)N$kx~F#o$@z$V(FEi?$|>leE7H<L<8P;!P!b zdTe&)dZ;eUe?#7s4sVj5D7N{pi+Q1c;K0QcG9=()jQk!un|VD3L9EVS7Ctob4rtaE z^;w-`Q;0juTe-8^nyH>^)u|68;0kC~?d7(OM&0_Kx56cPU+IOdvm4Cgjp0p$E3!HK zRDZb2djwcT{INysQL$P1)?{prQ=cW3?&I~&)=JO)|3@#J&u^d~S?|_6T|DS!UTnTS z8pK!azV?GkL1d*iuTxFSv5fu_DG>Vthz;&2;{IR6KEP&~rWv!~z{dTJMzM8K>bi{B zY>xP|J6EkIWh`$G?TeM~?`@C#oy)!Y-B1zrL)Hr|i9NqhQ*FWcKLzTA;q6Bt-Fi8$ z9}AD$ILepyy zrMCcX&weT+e(!&Y6&P3n3|x@!l=eag<2d!(HY_)?C;C+GOz_2b?R2W^`9|xyaXhCJ zzQPR>NwyyPOcxbAL3!`KH@`t`0Lk1s6WR+MgEPP1PD^LW{NHbP&_h4T*>;*_K__8i zjnxMe5bzWz32u!?M3hbU@?B)>Pw?E^TCP85?UO9&@29To$|}=Q$D(bVTk)rtt9)}b zXaw|u>rt_e@!EDA=yotk-oCld2g84>`hiBoFr%(_(>lwtqLU=NEBDrO_0!^=Zj)MH z`pz#ITT&m&z+hFrQg1Vz?C;n1_ExdnquurH8j-c{KUW`ZGu#ZOq3F`Gu2^pI+`IJs zLIdpr`*u8>mJX-MN}UyWa%5GlOeCS#_ji{({W;#fV)}kZt!|u}##@M&&-y zTC=eAE3=GrntbV|Bm0@<2D34~-${mQeeAvTd7IawV!bO_F;Q%!U6wCC<&E>ucBlG>OBi-

%Vpj|*|YeYBtBUmt+ z)U22QWoWqX?|0v~2|AX!3d&}sj>>;~v5apXgr@(?Fgp8wNG}E0pLKPwc`jYiFQeGJ zi6|{U(|51mIYnkZJLIZKAn4!S9-fyN-nX%HK8*(QyDSfnzqZq%bC2`*JEI>e`bRn= zo8>xHu9!BMaLuI_5weqnXO(2^UowK~)gab#)AIT;M*^|MK)q~0iav_sy8^Vp9(kFt z;IkK)YF|7g7TX-=-=6=d-eKi?2$$Z!@ugc+uU^r-nbeA9>rxzibx`m-;NeJ|ee+EF zn_g_4^1n8XtkHyhmc=?}FFurxUgtv0=_X#!{^i@fcE_L_Ngx8p^3=%IC$q(_xD9)s z3Lonx;4A0n{_vIQhshH|KnX-qFO!EQWir0Y0K1Dvmvi#d+i2VWxZKE3uhXe*`GmL2 z8PQNJs}k1dG?zK$fD|2`Y6k@WZUFu?sjNS%iyQJ9L%WPfK$Typ61;-!cCtSgD;aw|RVnI!vG1LSD8i44fJ z*6EK&0r|^KdV3cM8N|xpOq{;~>~_QN+3&ooK5#7MMZDS|;TEu8{{5Xb|HprRr9F!5 zFv)SD8e;UPCFT9RIhrDRIYaI8|04V)mCIaqaWz~&flypyrj-#nQ>``=#aHpWeR=wA zs2@jK+z0m>IabiEc!0H8!YsEVR7YRMw)!;UXEPRj)i1kvu=LF>euoEVC|XvxrV`mD zE$V~hy0xrD8}ccdIHV86)Xt8&9{u^1$rc)6`xU*c{sdEGJt#F=fqmBdO zhVPlBr{Y_m20AB!&dc3H?RZB3w}A8c?`)>cH;yzPDn0iLh&HF6RkLdm-5|WHDC&qP z#*_W&@$brAkdktAzIvUCVU^DRXZfFA^O_j*9F4XQ z=C>RFy1cX2;{W;a zwpsxI?l z^Y4*|5%QEquk`%_8Rl9)htN6oFn$M2)L*LDAl}{HuonNdbfj=6!O||0u*kD033v<6 zKP;!Q8F1_-@~5?vmdYH8$JWtS(7svzbkT=Q;l0T<{4+p60z?q&9jaH4<2NDiZrw*b zac;Be`hREAPBY(pK5a9JI1tx|67FI;g}IrzpM@*{QAGcf-jp@>8y9Op2s!rkKZqj)oHHw2?=uKO_9J~)h8SZ z$N2daP5TQq81DqK^OHO+D)3!=e}|5D0ztkS|I>=$c9QOsggp{(NY(^rSw*Yd!w{YC%uFw0$qTHNc%CD!WAurR^#> zZ>lT(HZ@4>@041(e_8AtN=)uir>eSq0_*ZFxj3RUB|y}V^E8&BZRsv+`F5$Vay=KK|&^-*!I)Gu#w)^b_8S{I-i&zElA<-f=FY&qf&b zH*ZaM=j!>>+y32L8LL5Dg4oV-P0IH`uAEo2*mcPgNc2HGb?%apoSm_5In8RC_^zqH zA@WjhBgBcy4%!`q&pw$8IL_+SXx$j?9_l5Rxp|5RYXnCGm#a=_C9qN@@=z_6o)dL* zID5_RArcqWblg>pS6Kl7_8)NSYxjAR$-Us2w;v3{ZOk0X?}Pq z5-}h~LBj{Y;bJcfVX1^Sg!WuAc>^wE!TOP^YBM%DE~*B`xtq_uBGok0YZ`AcJa+iB z`i)DHHss-IBl}X`^V4wOR&Fp4qed;>BlAG{xJ38WQR&fIRqp<=X}x~Rw~kUPi!(~F zx=DsT{^fTvzH&~{kmQWpoZLG>dOJ+6e{|gI2av>TL^}{fiCoK+BrHi*lDq&?83i09 z9_7DZ<@NCUo&tgDHAb;l+s5MC8W#zTM0!>c0Hr}BN#%L8m; z1Yk4Q?Cdwb%AJezV782GlcV;XV{{HHyv1%6223^`@9&KK{;7Bxf+_n7%C|=-oJ0&* z?ub@p#l$Kk`!xL~s5;;bb2a2q=ibFT^~R{s&S|<%MAk5eiYTu~hFv!Gx{W}oH^ihk z(t*bz`7G+djS}#FLb5(Fz_0Z;=L5&ySX0=oVH}S?#i?hp zxjZrgC*YnI{jD_pGfi=;`W=#u$$(kNKPkR<LJkjvo#zpLs>>#;d9 z((@pc2+2v<6W#6LYtdPc{*qp^OyAA8@`a*4-roy-#TkD%w%8BK}AR_0npGBeNJIlYm+?WNNzBOL&YvcHNH;sh_0kgn`*3@MTtHt`f| z|5~*jg+GmF`I+!&v4rJL_XMFKzQ~`R2aP8R65UrDk@zW^!;};*`Hi4wKXT(juY}>(lI~7hUrsU5x@|1#teBPW{hb@}Izf!PLR`*M)Wd|J|ITKEc#g~7BIR?c zkM$2$H=*BEy2u$5dhjLzU0~eGWRx`OC)SFOgUEEi*lZ}o7_~z~u2b>j$sOk`3+@O` zyuAA@XQ=HK108S4c=+x13^d4sPg7jVNtx*_Sl*j zfmDeA^vNK=xo`no5D~TA#gNjxoz*7x8dHT!KLjX>)vq5ZPzjjD0nEN8-GmS^{KQKH zGemZO{~U=_*ERjQm;Nq>(;YITczQ4QjREIIIve1vOq2TxacL#wi#lRo-C`|^@K(?> z0E;HCi+dS9!$FACWjiHPwos&1_>oJ|3+)XijZf>IdE}(X6^1`=FA_lhZF&!K`WkR? zx+{Mh2qebVrbfAR%m4a|?<9}9mT4^yI1dqV<$N-*>mG!#`)8^6Qcl@|0K=i?@uz!X z52Ub(F`|>myj`BS)drlA315h{{w(9S8{phh=pl+!O&~_J+PxE-_-K8$b8=%-HY+nz zU(yPEL>>eb{*W7rA!$)W$DPJgr$v_00nS^ZYu_*F=afulJft)P90-E~!xqyq3IsAE zSv^Zja!^a6Fhqr%nk%+r^}e8(;&Bi_>d&M`D=a1j;eB?i9L2r75>oj}DbBG=W3EDQ z{iyWxPo^}kgBtuo=^q;hw+T<_g-DdakC-lo&{jipV=Po$%vD!=X5-J&N^_x0Rr_C6 znJ0_zQw6`0=jzN>;9#=>%coq{4a(=108M{4~2{TVz2ud#(RmcBMlC~4Yq)4UHEA<>DGgwj#e zp`8^6{ujf09#^{6kX=plHYyV9(L$km>{N5zRAU|XJ>y)^Kw)Y(X10w{Z&~*`vLU(w zjqcAOE~j+dod!UmTRoJcD?LHGWuEZS^DlsQ>O`p{(4zxR(vkI{(4jEVs4^_)L04nM zBh>(hX|F)a&Z|BS7AYO>nm-Hm_?E``bYEmDgB`6v4qYVOTyE8tI?G{5eh;au4>y58nv08lRtEi z*zFvU+BAPMq455WTMl`XWqnB^WK|LR{AH!gRv&*{Ay~Q3r2ArXPH(^T%{o}8Vh!jU zLlTVtgcPk|1kFhu6h+rn z1SelT=%w9=()57DhpolbbM41fS%yMaafnAElGz`G=e|{!TPzfJ;uXbuvpYriqY~m$ zmX?6f8q+^ZLzQot#Evo*Whethj}DvAcyr^ruXm~=(YM*pj&@9`*wb3OtMeaQ{8*#z zG1WdCgv03(Z>x597YUIpKuZmo6*OfIZ$~nnQ}yHOP@ML?Qb_WB!D7FpwD0r9sJl7>|q1o2SThtQq7^6Ozl-f}g8|5IY2^GMAq;=9)0;k6cVMZei9xv2hNN5FZ?gxx*HTYXKOnq~Ohy@h{ zURL9I%$4I(F(*~P+q~MTvL8rF1W{0?dp+;%JxB`h0H3u3TBJP}3cJH^p=)pGa9rP5 z^4u4uwqz3{ee+SBR?Qwjsqxa_6c|@?;1*KpgNRl-AN*b5)3>JBA5bJ@Rx9@>7K(?g zOcxKz;xVT0qK35gNlsfqaku#4`^IxtpY+4amNcW+FTvC8P@RgNoHjXkWHw1tSbFX& zQb_5s29k~N{*|s@N|6IP?GQB4^OjD(8K<^G-k|*B&Mi6$F-VX|(jsNciReWHYl9w) z#XE`bjGQj(!(Kaz)#Ra$W6tzhitKApRk$oKH56K3M|D1{QFC%Yt-w3|Ab8}U?pj@G zU^qRIbJ8OH`{_f9cJ&S@I>HMY1ayX=Ry$H$xodgPvar)kX>3EawrsT-xX2(_psL?+^3yP z^xV7hBh)#@qM+?&qqlrHlg)H%vgNyNUwB4?Ja50rprhdR;qxe^k}9y*c##DC7gCgX z5I7i5TvAh7oz2WeaJA({(6gd@`(R&*{i0VPe{s;1boU!LFk$Oodp%`8U&|ettTIvo zDGf6r@t()4O}?xkIN}rKr|0y`P#^Lqt1ZzzlEkYUNEN)~+Y&^8GQ>i?Pze}8vFanVQXzBf)a;K>dA%+e@_w7sQkTL zzTTy!AAGq>n%-mgD|4t1R9BM?V;B%WX9)PleM_;Lgok+a?KvAvW3!eNxmZ1 z5CyUbKii%knz`mb)D)zSGRkPUk`5^cxG6{Pt9$NtlrNwUGR zy%*wAr#EvMsdoZUF(T=EW8~umVfFA81uyg))joKQ%;X6AFGnQq zu#|%ffO2E1Q$tE8#6fh;P&{qF#j`}mI&DC=VpX6AewSxL=;J8*#hP;2<^Eg2L7CiOJ}GRTBCraDKU$c+z) z347yO-zdq8)NTkK820uyDx*Ct*XWm$%;TSD3S8ef$aS?9pg=y-DtVe{rJ}bRO0qG8 z>D2z;pD&0_#o33CP28Tl26;vG+fcC>!jIRwwe3}fV(pH!@-}oKm1)lYUsADN=a8A#}8M|Er?*``N#Y^A@w+B^qU+ItRdQnIRQJM@Wq&h0YnzAksnv&^9; znC&unZ&|(auj)O=PSqO7WzQn@#f(YSSBEMfod~@AYw$)2`yvO4|Cud_6f}G38-9mA z_}wBn_M9hi3#szCBKZA4C7bL>TUou4R@%-eRV6OewUyiF0r}Vqo%>)oQX{8y;k}U#&+dzHEHxar5`Vi^xJ=X4gB0DvmUx zc?nPvb-SnUOCeM)UDUtx?#Lm|kb$M?$rS{k*>Fa${|Msy{How_mxi%?&W-0SZ`P2C z#UP|NtMvMFM?KsWonc6htOZxUGS@s~Pk1HZi1b-(1sj{gtpFS44{!pU0(B8Ih@t-5 zC{&-!F&6KNWZvT2zgjq7ry3cKe*BXFHPXC6x49CMBBKn>!*a+EuzT~I%2cwi!DzW} zklsCN{427zImW1)KaG^VnULV0@mtri#(u1V`2K8&_}(V?+`eC`PZpsgK?t29#Z73< zMx+cP<*dohpI45MIt^g)8c|j!Q>(N$(q<}o!msPQ2|k=B3p$s<+U178mLyZ84)M15 z{^3Jj=%6a3Mh5X)|Hb+7gEq40dPg24)Wt73c9)U%K7^0l^B@QP%u3GxlsqemdBhS@v1Y_Q~i00 z`!608m~uUL&8Isv)tel|kCRjy9w-Bv*fueTUH5iDU8*C$TVT2c7mg)lBxQI9%|`We zlqta>dT?wI9IMM@DtZJ_hJ%{OZu57^ikX<_-pBvW~Lv zFgqw=y*wqo2K*R??xM6G?iPSoHKaCYMlt0@G%CJvX8LS?FWDSk*!%@u$6w!#G_Qai zoAKV?SGQNDIL@PHIa`IUckdCGUU*RN^X2I&|4omtjQ$Rr7Nwd~Lwi{G^`baPdRzv)wqjcW?-66q zVC%Zgq&}Sfwn?vNTM&Kc?M+`q(QAcgMpx!3wJgr?f=78+x_`(JOspT2U~x{^+==Mh zID>#N{Bv0!i%bU~w56&KJ{L{<8)@b?>Nr~BZz2)rHE69jT_?%LIz%ibLGM3!rAW+- zjBqr*=R0wVn9w}CQ0)^`;=+Rz3H%@U9>!bVDoDfjA~%gx(iRpp6<&>(*ypQ4q+`+J zvAs|Ovk)CSH_ecu+bqn+z|w~5KMdq1x#jlE`77Am-NtZG`4XEReScplbqjDq0?=r} zZ~GFP?^x+IfsyT`cnhd732&qyI}ds>a!dU09lP#+c=mO_>Q#78T3%rc(x2>wB)zj) zS^iiIH*t}2&bhYCz(8btdfNw}|+Xu==6^47NY8tHlp8LDJ0+wf1js}Xt*g$&) zq$IVD@B5#(WKae$qxzu+j||*2mP3x=zWRt3ul}f5i3+=kJbF_q_J2RhNof+Fq~*R+ zSA!IDM%SjwkN?ILiPy{@7979iC@Dt>X7UF6x@-ZV+X&Qmh#?ztx(6D<8KcN}EVGXw zvlv$ElK))t_`RZ(E>NtkPP+cI`u&}^)vd{rHK3#eV?wIOC%i8PM_b|Bsd$uVA0;sG z0wpS>a_fgwWRVip0W?E=p`a7>R{8kkY-Fa1CqwMNxs2gmN>Dq(tq6IK&F{8b?2?+` zsIndP-r*c$kQpn$9+%Ae@%P6!#>VZ?Mq;>w`YzNI_0B>9eh(?XBc96dGy^>(5e3WO z0R$nEyOiv_G&=KSto@#gXk=`+rzpZCmrVM# zS41ZVLBJ%Sg*qm?#SVoTX z;2Y3FB4vdx!~0BNl;eczHOR}zY?RpzG23X58SRS|PgfRYX_Q!RY>Hl=3(>a4fF z9f~D$?m#TcEW;@ZflrcQCi6g$-kdn!;K2;Le?8b52@k4EKtBnQ=kbGV@ZdMBH`k6I z#K$QWa^g`P<1G#MISSL0xIm^kK632nq#P^-weCoD2+dNYt7PI2d;ffC604IIXmt8F zjj!QB2{cEU zoKXI##g41OVKXn~>?=&~VH;jD=&|(nO5%@evinym8}zz#Oh@=1ZWpp|^&?Y_2fBD3 zb$#j)z-$dpT$Yt!2@WZ$^#;5#CcwJw_)moJxPNEX^md3$`srJGZ2S`n{fFg~2+QMC ze6evKDghmYC*>oK9pFBD65mwj5#s+=0fkC?G6|#`VG-My-AreKk`L;BVzf8P6d7(j z&_puK$0Z8)-H#f;D##?~g~%tM_F7e#3J0MAItF`wt(~06@*kq%6!rM%_QNYzr2wNM zVm5t{3{0@fl(f7K$RfwwE`OJ&b^iDmHmtvPm-SWf4!%EM076Nwv7W$7k%d!AN0VWO ztwX&^Ecf$gv!f9&+>X0wy_|&7*~84K4#oz!ZpLM^dduMoRyE#uB@hm?(0Dylow&+J z18{IY?sU^-%mJnYcA%R9IP55uG9^(>K>i0>QA^;2Cfv)c?&a|zDYwviyrTK7qzBvx zQw8Xkg#QpS!wy%70f_AMxx)%VkN~=Q$UCol zq18a@A4oYCSdP?5jx&kxYWg$9BUPRS?q;kh$6$C1;lnA+IT?5)((zu8b!R2s{AW%T z=l2BXJLN-GkxU~9M|PG0#)MrkPYDKJExrL01nl<{yG0(!9wo@QptX93T6;ho%e4C` zXp#g2?HxW6l92U#!5JsQc#g-FmDqt4p)VOxhpdo>BhX)pGO*iuhcVa}&a^|cYQ}Lt zQC(Kv@u-M{O~aMM*L}}g_ONZ`3QdlKvJw=TL9zTcrwURw@%A z&7rfr2q|^+%(AJ7w>xmSQC%dP2oq}pgz|0s)$Jp9D*e&xvv$nex0VO5K%E1j{0fLr zBR%f}q)7Pux=o5&_Qd+*`WgTDjCuU&Cc~>vnui|fUrEgu%n&}v^`uDiTDX)8vbhdr z7I2Pxu_m^=Y)u_bA-U}DLW<+Yg8RNx$U;@r4FiVq|x4#}?u z@+tPXFuc%iKuZccrKW@zdKW}8Yi)sd%wadY>84IuwTgr9lLX;nbof0PR08CUgdvi8391@S#G!29s|> z01kZtNFir#?gFUW2Zh{XJD?S=@&PnBdZ5P?A_RDabP!xilPQ@F8yEYO;Ad<=1R1!K zbX!r*(E)?lzbF1vIRDpR7#UC=U$yxP!&@7_XKLbNmf8{J=L10S*Rd=w9}1ohQoq@N zOfxL(3^IVZ1Mq*S1w!mw`FS)soYVs{tP80uJjB*Qpd!=vjSzV3XCT8E{tR#s&vARE z3|W+7{%Q20!PrlbGaOl_DxP$!YF#Sq{H&A1DT+Fd;Bv2kL<*#CJUYhTNP_7mRjX9c z2!uF5MQoi0UNKmSzyp*&9Q+ml^~yE|I?i(X*h#DPlKhAOs*Iw5Cu#= za8qHI;E_Wgkdy^*r$JA4?BUZX!TUJ62!tHG;-Lh1A2R)RX{?`I-Z?J3UA{ES{lw;9927e4I#7B(%euq!2T*z@3<+`bv+?*Oja_x=HIsHhew@ z5Moje>>c~T^8%*zKp7pd#vpyL13Zmx%G2aHq&x`)g2%xt=sffkj>z!;fjfAw02=S8 zdmDsk35QrTD9#;{;cWmiq!8ZgIz*WcpdyDda2DcXHY8A~eh=>WA`={fjCdc)8J%Cn`uqfg-vZT-IGUMbxoV-V5D}1S*tg7LH9(g%^Za5*dDE1r0zuUD+n= zV6Z_9VS4CQ1>k1y+O&{8GeinW4M2=2o66xp+j)fikxDEK+>~2zikm?);v@AyyY}j% zjye238aQ0>u=6nW4ul;Y^@A`VoeH$;FNrA%S%?7bI#`G}j0%WAist;E>JIeYn-+?F z6a4Sho}tx1yB=P)>jhezftJ#@M*kqB5SVcLnN!(^FVKKOWRuXottSlhph% zygvXC8@kFJJM0uq0HV&3Ho*hR!telyByjl5uHC^?Dj_;oI3bYf+c^wo9mIMmqI#;;)v@ZuJFhA=13u zIq5oMAD19jh~B{YJyvRMtbh=8+=hI`gn3Gs1K;l*xdhy7tj0q8V21X--jwix zzza!RqcbB@+;COck{HxqM<^e>@+>f$m_Hq)stgvfQw+9szAuGM-p|d}zLo=j-qXEB zjGz)a8#KU-HJu(S5^uUebuxt<5sko2u$>FdQSB^nZ5Rjbsm2%VF?FAAT9~SRyRwp3 z>yC>I>*a`Rla+m4ozLsaV#>VuYZJo)poM4aY@&PL}rCi=%`_a}`#Et){l{4thPa}8*ISf$e ze9GsmjS=qQxbZ6c;RzgI2}xPC)UOs*+|;vhvW3?1jQRlS^2R$Y3nL~awJImoBabNk z0`7pMu7y;s9GMmA5as8zuhWr)I@C#;uQK27`=-d9jU*E7+`~)qNQk9Dk*8yLU^W=u zqu@g*_$GZdAH;u<@a_9{MY_tV6E%%b#Y|5j!ErO`HfEn%}%YY z@Pf#R!`7}c3uq?f>bDng9KM-ZXWYap%5->qs+L)2r8Q;;x2I^8Ox7GWl)ME9HXlX6 z^o^Dpj)nRmz@w8~kf0*SHM#3vT9(pC(FY>ZJe|w9rPXx-w|tcX&%9TzDpF;AHF}^l zJeZ!=rFBMZScdR|Bg6G3hx@0VKO3X`2s8deZ*0a3uLVw>A_k7$2~E;=pi&pR`g`(?MgozWug6sNNr zL%l4y#PbW-;Pw#SR$es?2`MsEt#XR&{A!BqbR3nKsLX;Lzu{9@arL3#%}01YbMVVP2Zuda*T>|>jG?bCZEI2Z)J~ES*NDSjju7c1DstIG1 zq$zSI$jC+CDa!uKnQ>4PDkVMNJ`^kPX9{Nd=#UBO-%~Ie9>j0a!@paS^SOZfm2S!c z=ZTTlgFx~;;&@Irq|6hHm)wo2e|nBR^JC=?l@BLf2XifTg2&G#4^HEv+DTJTjC;E%m7ty-6+v znSaei5AF}ve%7S5O^VsmUK*^Z(QzJ7-PqH%xI1s2lUI$;_=kB+N_{~uUwi}F0LbX< zTuWht%*vAMP>!-(t|`0(rIZSq14v^miwcdu2*OyW`~JXu?URn-H3ip@258xaYm3rF zSRwQ6H7CzmC|yy3UdLTQn0<-hN=}4%v{GW{Eo5vA`lZ(nh8TnwKRxhY&_sqPo}Lyv zn*hrx%RdwM3TiHj$>pLGinD)bm?I85kUeap@+$1<*th!!$rQsRO|pe2FWcHEjz+%t zRoJ&!h6#(VY;mgSLg>Z&Kzr-zR`(rG-Y5;2&8vPNMbpN8{8<3dM*>~R5syy(acQYf z)lVWh9U-pO7l@-mvl(lltPhCWef(W^ZmmeiP?Q&lgCShfoXWkwc`$?J3puuze%g*#Iar~w7 zHHC|{ZJOrUs(0SQELZM$2`e(gE(jC1Trp|FzN7Ywqf%tHE={m_P*KAP4e5uC-~C+& zi!PF36Crz*nAod38*FT!V2m$h8KzCxcNVNY2_nH9L~PHlY|@rOLsAskLCk3?M)9(T zG}}OL2Uc60Iuaw2G6^0_a{gFz>LfuEAknP1AGn3f&wHQ5FoqQ?ypHJnu}P_6^vJv1 zQhlMD&%AQ#GX09rSC|$&CkFcSP&yfAVcxxIMb>VSDOK47B4^;g^R*UO^dV0`RwDGP zeMq7&{FJ-ocukR8sRdg{nh0|>Ar#$C`V(fBMogk~LCC`3AvuJn2q+pw3`ekWf+ zd>hul>0m%Acp1hGxbhP~J!_s2@Sc4K3vvom9PK{kR$5Yl$&LsYC=o79B5Sa)@~CsL zQ432bQNIg0pUKSEAX_r7SNc`ebvh@w2WDD2g|DZHcN_N1YNA^DRCPvF4r(Dp(1I|B zYUvealp>;R@mW^mMR%<G~%Upk&S&EKS@mc%3Z*!{}W3(m72timd6+t1~cSqUzF8e^Mj zsWWbbNiw&_;;hF2)McZWhLDxNJov|I*t;=h@cO5MFc19M`gRS&UXplpwdEBM2!6@s zg8?x&6x3%GeU0MMj7t2y3 zMDvb=cOTjB7My+mRsx)Wq=+qrqF9~q60-YuFz)XX>6T>;i_!{R;t4)xyMc2R?YFsD z8S2V*3|6z>cEfn=nIdR~Kdcy|3q-uttvcmhjsKR|1#b$z>1U0wzo0ZP+xbR(1K`ac z#;3}g_OxlKhXHyle)P}8^euX)Rr~& zvIlcg?7*~h1S9iUnB;{wb2>jE3zn7wXq z<){#hMmaSKH5gCr!X~q+9t-j*CX8&jW6yG78;5WH(^yEv%V*A1_4+rcG#Q5-4obuj$l57Q#o zsOgf*c1v8k`=IR~C(_NUi%qe8V`1BVWwG?t{h-H*f=p;y%5ty;wr;n-gr!}0Lc1jn zmRaD=+f%a-`U|aOkm4mwzrMPTb&k>b=>1 zh9P`3!eeAa7zW=y?;3;;Im6Ju4YFY@-eBBbmsyea+9*cmTm3`bav{+{I;x1URK^Rk zIB&;JoE9O0ec{q^;*$2Mg&|moTs;WTUZKlj-MCkgc;#USO!zS%Ynvowfh#w(X4XN& zd|WmLVNgWE!kISaQf6+swU$P35R|FVC~G8!14*~A>^{}}GiBh(Oq@KhCz0H~!Td+v z2_`yI#EStTSl^Pod{?)j$v$lm|JVKwBV8`UbTeUH2c^$x*vQgR#QBkEhQxGnS;UPp zdhD68#WNGOWo8LREz#OOF0~_6V*`e1adx)@oWDfsu6&zw!C8l`$q1I`qt9aC^GDtY zl>B&<#Y}vTI=9pV_IEV>OfBxd@8m<=vt6pAi0c{%ltogvD2CSTby84`c>PqfqZ6yE z-1|D=Q)6@Bz7+kG%?6^n#2Xmd6Jdsu zkQ9&<1f;t}q$D0f>6Vn1wrJ^Y6zP^yFh~iJZj@G3N-^jzX$1GYLH)jOXLfdW_Seqr zj6dENc%J*d>a6QHjp~N4p4&`;vT$`^S@h2;_ zb)%3F{!!ub@~MoWr5Ckyy_qHKYvF8~NDklt@j44`4y-v>n@xCI{{$Cn)i|){LQg9% zdjbQhb2NAw(=dAK$AsrgoN&k1nD=(Ey22uW73$ewm`o+K-#kgS3YGjRHa^h`|nEJgB!D z%c=$FdkX|XW9ELmCX1w5OM?b}yo3RCS*M3Saq;qP&5XxEeJiLDyNUxRx_BhbQOPX=T|1y!Imlb09$yCO6C#m7qVST z*Sbi7%))54-0pf#2?JUp{)tE8Ya@6FWyh&Z>}xYgn6U?-u|FHVG`QnomzA`=#JP01 z^jWXXJt5A?QQ-~n3HUvPrc8hD4IyGq%$k%dPonnQAvmZD;abL@7&BfQu|wc_-7{0Z z>=GY%B;%JMYPZv_NW!g2$%tZe74vE@XuMH&3pf~espiYe%fR7zh4(*?!tDez_^RB3 z)>qPTyp8##8_=p**m@968l}UHr&26zb>p?;y_Gtio1R!c;8ib0IyyXEHZhGMv8_ATe>a?|mu-uuW-_uDJeQzLYQChr2WJVmInb8V@~F_|0XyjUy77XDxPjZq>@u zc`zI3)&-Raq8!8U``?AVDk8vA)xUe1-9)25RhPk*S%RBF;bGdnRkeTkASBH-&P2@Vn z_KK4CWp{xHC$%d|SbvsO>%yF_XXfW^XSZM4-metv@ZEAkD3q4NZyUczy7#V~R3138 z1`G3_e;Fb3!t~}o)dy?CebX+M*>PGYn@6s?PE)%Oy=C=K_X3$Fo*RYE; z#gXbFQ^O)p<0uz?Z>)Xj+u>GK(#(67^OieOpLIinp3WiZYYdcTZU>R?vpTYOiHu9D z473A5^U&y*xCt5AzRk;(Yj$9sep^WKOIC?Q-`DbN-vitEA&aXse`3rnFfIT+S%qxCfAVHYQ`$iIz}5omnjwA?oA_U)v~te-Wvt#}AWp$H#Phd;TyqIwU!yG-uD#d|kkwC&?BZ__kf{`#CkUM`%H zMQ5G!L3k;Ik!+MCiPN1HfogumWc9`0enR1=eoN`d7$<=-E+gZ)U1SJZN7*vn7nlIY zz`kbHPwCp-1dw|e>T{_0XC zMHz3i7JcacUY&*tj)q9X_|M=8=a2%AdaD&c~dr%NyP@#a!5maM&A>p0hX_1tYTgvmJ> zT?`3Qp~VKm@Dzuz>j(H=qQ--zyYahSU?vRO9cQ0F0>Yc&GN5PqM)bGF*A!NkG+aajfov{_)p@w;t zgUq4ZT-ws_5E%qAG=0C{-SI2BjeDO;TA)^tOrT=`d!4l(aoDRcvmuCXOrF%x$e6<; zA5{wpNW|S4-UBaVIA1Ec9rftY$R;*(N6b?s@%|Q8 zOVNMB$>C?cO{LV7UF{3Eu@Cx^C2NQ%Nh{>ri7{_}uuQzWnpk%fW4O2DlClN^Zdt6& z(%8Fw4`C=0$1AMaFS-vr{jvbiU?P0(QnVIxCXJzG?3Gcne#1cC%(GFl8XY#n?KUHc zUWv;>+}i{-AYyS*v4;n|uHrcGe0>!YAIm>fD|Ua_8rKnQ=2hj?t@^nF5^p=_LFCSe z%ov#q1cy7heBeIhyVzd@CXhU2AAtM#QajB=GTzM6i&cqx&MzB=rJ@e%L=0v04yqA3 zp1JL|sW(wohTFh$V1<2!_WA%{Kt2(*f>kf94 z`e>1*R};Snysy&;O1758`}a+i@9j2S?dH6fmBI8Ht*KQbEGVkMGM9nEYuymP#Tn($ zsiz%)z88_Uny8hXR{qzYb+@fJiK!7ol5u267PZ?YH5U8Z&0kG846hk9PnkGo4nszk zy6~;h&mHWSA!K5P@COW)6AJi{mc7g(0oy~>M!PvwwN zaBj^YqCi494}D_YvHj}&FKum#&G#b}M24;M;=1)Nen{@a5Xp$RL!&(0n&BBJ&3%sZ zgM{vZ+Pk^_%3aQc1D2J~IwOg~M-Wi~xGhe8?qGMT5=q{4yc|f+KU=cgT<#p>TYJ$l z*blo`duedPXBYChZzTpoeqCPTL=!2neC{rA z6DQ?V?~fxH0g~Mjo}>Z9*ccUk-@sPaNv2KgP)x_{y(# zGNo}SV>>C*6`{{i5sTYuGrxRef1)53w+4|vRqSggy#|Ffo4D{OS-JMf8HlZ@zLU#p4=+hx6O@)2)KJ7!T<^}EkFRu6$Fyh}Ev0C-ztPrPRKL!8P%>=#pg(+_QR7+wBcwV{q$v3!BYi?s+@neip}4s^4SFEa zysIw+r78EF9nX(w`W3%N(&?^kk}Jc-oI@H%S`-6_RseE&_7H1*n4@6wdq?N|N~2iq z%2&k4_HJMObeQmF>4jmCU?QK4xJ4P8$t?#66xsS2?W6>)#6?L=FW3ozf+O>f!3LFu zly=K+t3O)fFRzb}S>%y|4&!8N8W2(YWpIZ%pi{)+|3j)j!Vu z93+hR-cY`YGtVimnSU|KTlM73@86BDzXC1LRN$AkN?W_7)vXy2yh*CKY~pbU!YwQj zwIcVmY0~C_n>*(e{sMTtLND*%qwko(=mWvpyern@^*En(Sut~BT}i|5)pSgHf0;3c zookg$x*{2Uua6KS0>x*px+2T!NRdDU!9C6l7|(_Y^dhs-vPVSF@s?Q%da z4%yU-Di{|0XS|>rmImg;Zwg8@>dS|Go0XhU+H*2K?MT%av^FdziC+!jK3q#Q>dP~Q zy}rNnJ}U~(xG}QK*p(;eNZ#y;F*tVs#5K_2LUuWAx!D+R!^8vM%OJ`3{7XSO$~faq zv#Mxy-_t4A+IjB>A0+aSbQ2Bq>_@~|eiWppYo=L}K5@0*!BS)bXUaX%Wo}YMPcv$> z-6p=x=Pg3gUq#9aKo}O|hWfl>z40f~nTI7xUF|mS+HFeO+=?p(lsbQ|jn^d(YO0PD z&)@$rK?}DJkcH)PuuhNvyoS_Dgch_oDSIgmZF4L=FD->zO%xPt{VKU8_M5NkRic_t zk$o@}7MK!vg3v>lSN6O}_p!jxj{lq+Z*;$aRtNKYw+fhYpWu2!-Xi><8me%x1s6)( zw3W&1YVA2ILXPf!9|G9MQ{`EpAaY$cIMS?2BgsQ2xUm5n(Vnf~^5<7bEcmL=?y&CJ z+FPe_w%%`SxA#r5pM4(O#`Nu~McYYH50%G7omQetOe)f;9&oBBeOrLsA|`Cf8ZYs! zQ+qAwNChz7)!Wq8L9`lhKFY$yINghRl?UipF)PA5T0bkhePkmmjI9__#$!X+?QT%O z&G;X!33@NM-L>SiHq7vaE7ZLkPXO%;&DwmgOn+?_ z)$s=9$!_*}o*{b#0oi0TLW0C;p%o7JyH^D-UXvmC$^ceGoAS)J+y%aDZC$?`%5Yx{ zx62nO|NpD?|Nm<8){`+_$cr13(hgl|>Pxthq+fz&3zG8md-F z1Fqr#*d*BLv(<2a<>u-+`2XRdOEMz@$n_@yplmGKMhx@i(Ng~));Q9EeO2^B@OdX% z6Ru<#0IfVAiaanvAZGqPk5-WCHO@yRKn3c?%`<4E0?fxsP3h>0_^-&cDhVJ`nBAjz z3IXra5%$&hNO!BLp%1{+@M(JlxQ9^9o~fXviUrv6j&A%eKotML@l^sK)Q1s-I)yF* z?vcIw|4neu(hT+8I}xbG1q2%ng~Ov+JNl1+OgQ12*WUd?%*B8I0-4vpKY4*bGclDl z|LaHpe)so3B!Hv1@H~4Lu_gcY{r~+nIM)F4rH7T2`{$bj4DssLx3CpmfA))N^AzY% z{{3V0NkA@9``ScfU*3WAJ064!ZW9N-gO%bU8{b|5r&hkW{vq7VR* z;s9J1|DER;-aQEja$dH83To6k;E&n(Vk_vNP{BgXr!Z{x&Oq^Hy4nZ}aB8?NeE9p` zb7ufAsm@)2;FW+dp#z^Ui2ZN}_A-F;TC)vVFi~RU;grl@#Oz%Jd=3&R@t1QK61x6~ zmH4CQ;nlS$NlqUls8fOe-);0(Fa_-kNWDqnSA(E8`U*1-pQPbnxzep?u=p{~2r`tY^b>sUO7;O3ZXWJ(E`ZTgQ8jvO0CGAJ%K;Y!-HtiMtH7=^{$F$+e{>B3X9P^qF;vq4Zg{&r zQI%Qf4g>)y?wnQ;cOx^rjxc|d6%2_msgU(NmeLuc zcs3artTpw&6Z5~QY&Mt}@hcx{h~K8b0Pka|I0J6}6*>LqW#~0x~uY_nNb`j9t$EJWvo;qPY6-IFH<@PAgqHWOCj=OWLsO3@?|w5^(->m;39qoPlzat%ivNfE6 zoA=9);5ncQ0TzP%!u((=Iv(a)Q1k=^%rz&9V(*jr?a>SW%Q^xyJq&-~+&P}(18IQh zW+^?XhzE27K-1~p>ca3T06|NE_m7P&0PLXT>KMCYL@iK4P{v1;kVr0I47`3>HI0g7 z2l#v2v+Fj;28f;y_K-)!lg(pG(+g+pW@bGLz@-uV@MYpg68e~%@QfqC>G9u)0tctt z!@me75jHGPLQuv>l#qZfc&%$k(8yh4ATr3)6dlzv!5yg}?x#2#^^;4S3ASmpqXt0`l>PXD&&gsQ=p4S%hOzHP@qXY-fLg z7|Np(kPLW^pwrVdY;iC!Ps3nto+!KW*BH+;gOg(e&C#R5U?Px5_F>&b^eC+86A777 zd4Dtyf=++_ocH+U{n0lNbo#>WBWMzu{vjN2kNYoN8DliTpirI8u!ia8fw3Tfz`wQ& z52ox|ur$-L4a$drS%6mZ0b2|od}KHBX(eba)&V-*<2+K4KN^i4f=+jKsW>)&mJsps zo^u>f!VEzsES&$kBB0aNn1mjF<0WBffyz&T`3+6`}EDausZNV|; zU>+!Vdh$j(zU2zrQia|1 z@rWm7DF+W>3K&rNJH6PjhiS8S!jI?fnG&o!CoiZuJbMaH@tl7FoT3V#aOCkYj{Z?E zB7SBB7Q%^(<#_S}qG5i;+}1dN=>oI$0p$_}!o47_;_=_&Di2{5A#1@rdaMRA{1!i~ z6T}J+;VBz!GRlBsZiFQ{Y87(y_J|0$PxU_$a58y#F_D+A@=;oRU{8*SYbblArO>?bQ=EXzRTaFy>BKXMmvo?H;K{Pz+CRfZ(@Q?quL z12PbPlmWU37_(LgKWaVY&n_ocsDxerqV@3~x&$d~$W)y8t0e59Fcc(i1b&nh#=iKs zf3DaK#$I;rGS9KEvjbD4tjt^ybRyvUi8smc4va9r8!vw2h!3w_cq03b9e*h2PZz)JxRp* zAp7T`@aRKa_-q!rPuvOIn4^Cpq}hResrV)EgKL-=gbth-Vvm_INS+B|-ulUTT7roc zgM|M0U%)%ma5Dab7>wf&#-K;wqs5D+7?|_{lfiL6gu2;J`dZ5wiv{{^y~Lq-LhYZ=0xS z|9o2lJqG8jQmIBN3yA_3yzhXalL|7$#PGg>8WR`)%`kHe0p?;i%VU}pygyG>xCkE| zF!EHnjGJ&4KB`oRPNjw4sl!Lb*H&5o^S;b!C-$8pc+g=>Kt0P=R#N1rg%@kVAT-5bECstFJW#1jKb7O( zst7PNH5jFm36?AVS>+2P*@3)QUlXLE6tekYa>+WP8sKdPRAE_ax*tAg`}feh$V2b# zUfllkP+}~Ypxo@Y{IIPU;h}2GXQ^;tP)azkeHEoIr2c1ezoY$qM6ucH}?bKNueC z3-dH?({uLU8Bw6;h0(TON&4|;>!WvxVf%V_rHQfxw2{IKuU%MS_7f6t61v6(3^ z)fBYYJw9;gH27%p^uUc##q2g@s1{gVi|{*l60`J~h%n(l+Xk^E@8P&9yR7j${+aa{ zJlGO>xhW|MBV;=^T;k0ce(Q2#xSsXgX4hJFuZ{xQsN%C1CC|*6F$SJ_y%}QaM7LP| zW>0iRT#+t-A!v_{PgCX0(df_y$n+IPHC9~gZ&usuN(OhHn0l$5W>MdcY$j#N$Wi1C zIsWIm*Ka#0c|TY03=3Ey17VkkH_NO2IFhVvy8DtZxk2DYB=YR+kI1H*XEEy7oiJnb z3F*gx@9aslAapAfjCAgCD;CL^hzz-HVq`gipS)z`eTxd#3f7qkmS(_s9=@~W7i=ig z)C=v%m^J2Myj+_kyc541OXC|_W=^pASXrxHz`m?Y-7acG z@)ZGi7k^Y&EF6V7URU@|JzwNIdr~Zp-r5zh=$^RAj)x+{il#rD{o@-1%JWl#Xt^GY z)098rBDCp{!3;g|SyVQ#@p#TPk)weZNf3nk1$&@Rifiw9Y1s+El0>$qzC`?y8{&_+ zZ(`Cck~Qv(^dT0J8;tHuSM9GG3s}{06k4|#aT@+QPcym)3#N7*#~TFg1a1y;8`OJNW`ICbr*gJ@B($QF69pXZ zWOfi?96Z&1hkKEtQ8Z*N_b$n*tp8>g5zF4OB~rkH9TBHRq9Q+u8s>m`T!uZSOH94Oh6-| z0XLDd_a0(>{UQ7mZMLC?DTz~Rvg-cmAxL)fuo8Wp6Kj9mXxyrnqczRU;IoUlOM?%l*(Y z5nEfE8vak|F-HUVy_2}{8{1G-L5qWpY8 zn2f}$q5_mK8=Z`+aKVeyBL|R5%`ND~V#(5HW6!Fd$*r8sn+Tn=lpl$?dP`0%J@`g* zbn>L(!&o^THph;VGYY&w;+4#`4mJNrWy5DK1`04Yc_tRh*my7(h^M3t&^LMNP*1%z z0z1VV)&wvL4(FM^MCdHp1$vWtcgAWu6^$@Bb^&aY2g-7zJyy{5g6V>D=Up`nEOZI; z_xKYFiRu~~SC3A73=WtemfW)`;UaJXD6n-x4VIC4+&oqK_XM!#d4@=2(G!O`)Y2vnG+MiAWn(+UvY4&s$^VM~1F>W(W93n_r!W-z)(I-~s1wZdiP$*5R&o8WeZ zh3Moo|93?4u9ZMvx09)tZYJG=+ioWiTB9^VgL-D{E$G}7=#!i)Fr(|hxP#cId0cM8 z3I#y>y4ihxRYc>x+Wfq)ACPZMTzbU`l0JJ1OQV&tGkFOOqB-XLC;p!s2bh{o5Txxq zcejoKP>+Rzu&=*krU~E8M1&0oYVX}00pJO~Zzd7qM4JG*!-6yv+&px?(Q!X^Z*xJ< zA5%(y4!>&9@TSh|hxq#Sr}SV#pKIksN=8qdA2)z)i^y4OJ-+$?Z_ePgLkUETI!e8H}inlZ;Qq z(Hn`Z$Wgw(*5p0l@*Wjg1nS&63Kx4!8{p^|a)hR9ypzVjzCv}_b0NXq0Z1TZ>61mz z9;bFUo!zC!P2dT5D7mMQub#zQbiFEx*SO}|cYd2bntG*s?UCeVt%R3x$Q;l6?&Rnu z-3GZqL#nU?LC2-vhbzA=LBDhWAVzpUg6k2Yn0eJa$)mO@JbLq5VOGU&VABZN^%8`wj4P& zsW#)0(Te$Jw3PBpngyrejIc_0Zs1sDlE^GjU9^4+UH-u33Dd-pX(FO$L-zO$KnA3@?O5VDLwcRNXZ#irEK<71s0xK$GeC zG=R;W3MOsGCG*pt681avF2dQ+0)6-^zF?*nZOh7IHWIpopT>xP;KOZG_21;Y(?XDS z6f4s!fxWn*7;nxJ33fh$laMuE4$K!z0sTKqm>^RhXs3h|ZEko6HfeM|$4inakhCA1 zo}?Fi_2TQ=Yu#KWK_AVrA|{y(DY7zvYpa20q|niY;R<{ zr^87X;u5w0$UfF!=F|+`pZF?o4h?pRR7g2MtDi)q!-5k?G%t8*J|+JlZT`Ana^E&D zH#v}yHTY!>g83K#?^4fa@@^xcMVQU@>n;tFTW@mmmJuW$4~h^5)h?ZA&Kigeiv1L8 zZrjnI(EmLsPgr*>nPmXjsMWYFrD^kn?0k^P=`eC0-LOwguo}gP*#2Pm-r2yPHLeR? zpj6K$=xl&N#0Q7}HL-r3`%9s_)$sB8t=8q!c;YD&?UK&7M=Q>xlp$?)rhv@(;V|dK z&Ee7<-^Cwc=P6VqMSvs3#lE-r^1;{>gpX;h#1dFFr= zc-wYVQuA?^)+Ph7l76YcJ7!{VR=9ahf(g{%J1rC0yO|88nm;C-3eb9{r@y-fCfcrf z4beB{Ih&GxPQ)SGBmy&M8yFHLdQW})whv^`71hmf z(!!Cq?!BDF6!02(>wmdr8&WM0c_z>!hrIQf_9i)~H^5ty|L3hMhPYDhr;EA1_$rHA zFkWcQ1wDmmsl;5KAuUJ;8vXnXpmEL=z^CHCw!d8*DbF*h_jCf))VBfHbSc^?5JWvi zB>FwG*u}4dz024aKXN;lF)FS=;{MoG_exa7u6#=G?f1DM2W}zGi}J8; zL!BX%CeJ=IrF;pY`YJQ_YxgG>DfzD&2-u8Nt{XfHTn5xpqNwxqEG{8L+8gJrq8lsx zoSg((Nl6rt&@h+`6%WBBnAz`01l7R*UYi<1!=w(a8)@-sFhT>CwtutVyNT!3sS0g# zz=2(-x?mB!f{FB+ngaG_41_eD!!K{-fh#1>Y@bh(B@~rgVW|WFAcd>xGrWi&SP)XS zks^S{jmX!a0slTZa2ZI114|St7F!EL>HtPIaG=XEJ11xx^95vz$ypgiutE=(O1nyK ze}1*+mV+mjvYG)wf*KdOi(0V90~BW%I&I%6QTG1J;}d+16&wX;yyQf5BCNs7ajWlE zO4&vWz_9hn+qOn}4*X0KxArdqJ32pDlsXE&b)ffgJhL4X4-QT5Q{f|Ch=T< zm7w-W%){#9%vWf&upy}gUr_0?^40juXbrgVIdXUXGultp9%b;m!-hg*>S7Md6GoPS zaJ9bY=Dbz?l)E@2AOJ&m-mn*9pCN?CYw~`(yfV#*BL5y}A-^IdC88F(^(=_znsk`N zdZ`%k6054wG#AxZwt(?73eKj*?g?i}|1Yy21<}C*2#}4V#n%;X=i9}r3U%&NATVgm zpGpuRbuI`OhBjpQ_%a7!FB=KhdYgcy)`}$ z7_EC7c$Dnx_Z3C-`s-jrXbhr!4>t9rvu5Ea4d!#bH0|C`fme&C*+E z*BD5Ef0(xLNtv&nd6?7=dMqS^L7M8_1ezVH;795BHuR|P<05W^#w%06ON<3Py1LM) z?c=&1AD{$|_8{E>Bep?z7ohNY84fMD(fnox%m$`u}gU0ua-{|wzt;*Pad=`7>^4KpCN!!{K7$XmtIFv1sF{)_tGaQdm z5=`~XNs{^}@i4|YZsB~f5mZ-^$pJK?0OE7)TX;DRNcB^_ZAlXTY5}aYR728_<@Njv z^zHO)Wc@}&G5hjM*JHFeoxMkKtQh*)k=$O*rdt6Tk0)% zmsKQfzctifD=``4a{tPN)aP~~w87$f4`R$7w_lane|jN$t@JLd?h3--7J!J==Pqn+ zijy6iR)(8xL(i5#*u8GXgCPX*{8!grArr*fN>Cq*1)tY(L;h{ zAujBAC)fFpj%};JgjI(YZk*7RC)_M?6%wN4&26Bq*jYUqEBp)z|3+65#CmUauisAG z>_3Sl+zw19u&DQBK)9hileiSvuruz)6}GYBz&92hau|4`NQ&fhNK=#%FC+>>9JhK} zAPJGzr<^63;o(+7Qk)j{xl%s_EzF_OU_h%&2~+URQ_;kC*Qy#Cuvd6=gN2*=!nMJ? z^esc?r}A%R4Fd4t?b$sd$9Z@zlJZ|;rcxV+#5n0Sqj?|*PF8;^fM#Wigd*Qhh=O!A zt?~+#gvffP-3%2m1Ns05&V|Fot9NJW45fUiGMH1C4PqK8_{%Z~N@o-A4A%WP>-AAu z6#K(1*-(NrI6W`N31#L0s;p1X|HecEqQOoNG8uV3}FgmR7ix9Xn@lTy_Dzmko)22rVZ;g zOLJf|Y{A#Ou(^G2VX#Q1vxS>g_giy?b|R+^=a+}$GNOs{WOZjx;qEZRYLit>#X!!ni|hgP?R7Q#1pzxkjw|I16QH* zwc~_L`e6e!j&MCElY0@*JdlCZ<9Nf@|j>_;IJ1r z{+^^VrXx~Bh~jQNz8VS-f?+voSfxbJBg2Xeh+w~fId!cB%sm~FDsDf(x;@sKPZhH zq}>8Bwm!CXiKaYran?WM1c^a6^tnizKw?i4oL1l+JB>hxA?M{axK{B;)!~?xH3eef zTLO{I3DVxFl%fsKzNN2_k(F#0Eqr+TQ1I5UMtXg4J7!87cW4k*4+yDrgBL#A^(0^M zCWp7Piph>LrXmB>fspdy@do_`S22B1?o(s|-=k%4OU0!HH$l0+C6fa?&lz8Z2!@fCq8cWhF`Ji0h;3@S4u!o zYB$gpwbSQZy9>T82!C-1GShK{P{R@s;#>P?50DECe^!6V55UeY)~ln1=Bhc*vTw^u z5#WjHvp1QfkJa9z+<);+Bi3E~zK(x^UP%(*_vN8=;Yp&b!#jyB!f#B~=AuxM^59C{ z3#tBu2ksDdhSDfibU+C)a{m#6 zSOEjbscuxa+^5kk>`A@IR)Nd>6bFWrvEFx+nV1sEa=3I0W1ee2#bZ4O;V-@53#bt& ztyBisf^&oYlKWEb+7Wj3?BJlf+yBf`W0#*6{$Vey=m20m3Tf+;_zxiEvd$h1r~J z31U#30Z`jzLE9u8d(;4k8Ys`wo>vh=Vj>e66;o>51ljsP;yIv2CNao{zJ-{0#!$tV z%*Fj|3lq*KzM5Iaq0+#w>|yITU7`K4;6)T)=z#}I6{?InNH2tl6p6vp@829Meq`3K zQtJg7{}hC9$v{g{h4%LJ`?tT%@Uw(TT=LqO%?Vj+IR8W*V)Qr$|4*;GlXyNvdj5i# z^5JM5Gb=t?F|1Q*c)JYhqyk`>-gwKtJasX-R0E2_*z!`oyofo%#K!_=X|PZ#?#1MG zCykyXZw~N(yANraZRt<$s*&xQpJj$+D%4YC$I3sxMQq}OnEh8=ZsW%@kiWWK=|Da8 zM~lLNGMyi-ED*XoSD6)Iibadk1sZ2)PnMMF3%wFLJC0;o4>`R10kL3V6rbyz_g)Q1 zNvztbhiv1C-G_X{v@Fzrk0CG22Ti08mQc(fciKXnr?jZDut>Lg*l~BLT?+mItygg4dz8XX>3vzNM4dv zGDI{-E9@qytaF6BbHwqiWPURfC!tB^KY{6Fgih-58<0nFOOoSaVth>}C zR8t1K_QYK0XN6{<7xQ~OPWCA?HA>b-q!UKHaQf$9f5<6u$h?Q62;=dHlg?wepC$9s z_X%?&&?U^yC|^0V$X3Yj%O6kx{aR|Is(?T(XYrL}P7&%!1eD-_6p@)|(=tyxHqBp< zpz>&m6$~kxPZd{{&5>2zv)~J+gz=ZmMOXtql&4cQ>FNByW!j+ClEUmAQGs%Z`y? zF(e|9C!_}Y{TNCOKr472Z@vwWJ-8oMkiu9DK$6>T+IwGeKIcHCK+6zaRf00HsV4En*b_;~*Y_4-DaMi<~-a5;X&Avo2tb zrsPi)Od?liNKw({dJuUnf91_l(nZY(pC4vhBufd&>v;P^&3w8a%s)Lc4eP|QjW^RJ zxou(f8d#>OF96SL|1+uFroRs_E8}RXxy<1v$d9K24t=J!MnFlTtOqKz69$Dzc^Y@?? z8fUM&du;bpojb*~}VdKN1CUb^X89zd_~fLm36+kFXh_01MS^C zIwZ&<63dzQBhqr}D+iOIqp*{`&=O!_M+FnE>r0n_Nkdt+&M45cBV)sAB*$OyyqaTg77>SUxLT`<^wT09590;**!NDLmRu&1nN48&z%GpVYcZb>AS&5MI z;_7tv zef0c>ZKev#`?_kMKDv2=P8dQ2apF}9Tsbv*j?H z*6FwN*}Ty&mE3B`NT3pxWo+c%COAPGp3N2%N>l?!eI1R72; z6H5d*J=cR4esM^t4tmT|4f!O~i!?%gzq0yqdlcp6w9AHNmJw*_Dzj$H=f<^elUQ23 zQ)fg)PAOp0q2l0TY;Tq+K!DI|fT{|~H*~7`FUms<0Gj;tCoWc}+;@TGp&P1iE(ycQ zBn95)j%Fav!+BLeNgz7=8%>JzRnto1do8$ZZy^?c;(M?cB7U`zIeWXVJ;fSsA4oP- zw5$Ry;$MwLx>7lT{uCr9`k}h)qH| zqu$zMAY1wPJf0%bhHw3-{A|Hm>bYr;ST@)Fpax=^J#-kYTME*nDw;IWLQP8%b$%oL z2APX~XZWWFZrC55KqwFo{zc2gYw3~)To_bR7CsBos`T04+L9-6j;_}^?>WmLx;14c?%SNST8zOheh(LDq^$_Iz%4Afa#@68!yKA4 zJ+K{RvNPsCfe~O#xgZG&Ni=Q%T_||mvV_DC=vs)WFXNRVop^6d+sNLu5NB{`D&c|#q z2His6ezw=$Excw{d7eyO(Gl?o*6v6xtu2C-HXaerv)%1O>S|EcO@5s9#8|HJq_xIN z!}HUXk0zC&F>?q6>+(?F$kQ8Ob6I)qf z|4FIezV+6u%oq^mxuJ!47}8%ZMADGru+^oD|81&-*DE%*;f=6PvC)m~wzhOh9JD(U zwJDF)xRT!eAf-~j9>Az+@)g8AMdzNxPeP@I^5eD)t%|g{8&A*mVp!Y|$>napckBEz zw5GAYCL*k3@p7&->S7{chl%<73Onsx2qlWDNIYmNOhS4I5`M$AU((!%r`_O>Gf9zd zi);{m#DMjgTYy+C9#Q-94E2qcKdO48QK(Ww!me;6X7{~+=`A^zF3#SWe2Er)9Ey`j zU9~`%Zl9SLHte30FS&~XVFwK;hC~$_Rcral0`H$7>p6F^Fx-uIe|`wE!W?+#ufOvo zm$VK&D%8OV4~+4!x|3DhKzrqO&T1cf(1I%@V+9khA!@K*T)Hew&;XgK) zKqw}Pcd>`e)i5N`rWBJ9(^(~y{o{{nXhx?9CD?VD^P5XjwjL=$(blovj|rDvUh8GV zQ2Bj$Fa<&`LtM&_dKmMbKalke9OM!|*C9Q7THBF00dh@e^1zmP?8R*qwiTQ13>^p) zlK)zRIQ9f?FpEF#No-n|m~3NDD1JEwwswi7tX%a%X(xlYQ^YdY=Inc>H|N!Vox$1b zy#TE|$Xpc8=(;sC&)GeF#HyXIvX=aoaX%Mktm%0+7w_GUW7Gp0(+x9+%w;F$#?_Ln zPo@Yi1A?Oq=cLG8bFmtTzqhDp5@Y{xgliI%SG<{-T(UC#tQmGr3Im+Fy5kR=gSbH4#{vCwQVaBJ^IJ}()giO@kw^)$7_&!14rEY{#vtUvLA zo7kjwWJ5iERZOM+#r^f>dwA3SFZF1GRUPzC>(zU@&OxeB2mWRBV?VsmkJtC`Shc*t z!g=yV$P7H(q6#eNjAz5wt!bMIObWA`_=V>RHozNq??RO2)^?K|>qh**_&dsGI$_%x z_=Wp(PZQM1-$W@GIt&xcA&bar{L)p;1eZD)@`^Na$twOl7I?m$h%)1?{*YZ+opM%Wb3w*u~Ak*b)nzVB`?%DxV+%j9`<1OC^wjtA#%mS^ow z8v5=zNvj&kP(?f9cJQ9PoGnHCQTl3Fge1;MFT0^agAW&8r@3tF*OgAL9Q)N6v=K^%V-~~-We*$);zig+yWX2fpc-J2 zsq^MVutMWMqh{E?p$*WVswPyMKRP@W%R9a|`f zC&fD>RP11wxGx9iTj&!pnaoJUU5wEJ$eSlocE-~8AR4sS{-U;|+b4T;dl_&7WoC@{ z@d2On>@JHpR4*o7sjY;f_|0}1qv^Vn%u+fJAxc5bbz>0hH6hiL*Qx_8l0h2ZB_P!$ z@6nQt4Ot-?@2KkPZMMf^WxSD#tZvf8=_Kw_oj1@!vBILqla#dPB@s32ryrtq+N(ri zywxC8;!H(>LQCb!y>%gu(gYz?fHAZt%l1zRTkW?{v+{?3nwDy z;0LCjTZxX>R_^NNdm(NjTV(GO79h4Oj;u+o;!|T#7jBZcDcR%H)A!H##{N?)H z`aHIQmKQk1wW9ZZc%if)5%EPOI@mN}3Q$>v+glyMMr>hj*kxq!%p4}wlcxw`Ab680 zmALQtoha%gdp9umzZmuHo;ECT!u)}Il*|AzAp*^gMXQU0NDz-ihv}uge_sQ47S46q z@t7<+qGB%k48(L&zTVFkZ`^$xa1y%;a_I?=NI)JqrGwGJ-NCFf3`Y#JznQ z6-r#%oO9rh_697ACkcji&W#fKo^W~7lQJDhu~;R+I|->!(%_<3A1aD!aH16+>WF9< zp>qNiRf!WG`vhuX#^dpK2v6UmJvn(r9aFkdRC?d3G&`_J0ECJ~QbnDu)ke)WXF;`Q zpo^V7``yD(MxrD(6OSo!p92ICP*Al}yCPXH#>IBR6%&g*(*tTZm1WqGmkQH@0trYb z%uGll&$92AS`2gt0|5ZT1{Li-IglAtf+q452d4yH}lDc)J zBL6V#N!$YVShcs=88p9c5Clt}CcEuU1jqyI`Xc-;>PT6Ulvy_|@my|x-IJzuk0BC_ zgYf?56=r>l5GHN{@r`$~f!oANDjQK52`2Dz-(}z`322_CEhZxHxO)bLkMZWD=8FR%H&&it`R?@!CPykM39<@~C#YsT5p) z)Ux?R^k?zJ=f|g>igwC=evUd-V+0_yjts9Y(o3Y59$W8?^3`S*G~d3O8sGUWwY1nb zx8_WRc;G9?WMj8f>-J?V_bPC>(z2XQ-n4#p2JNdH}9M&SKc-lktq)G8F&=n){kuxinV9NvO(mH(BJcGy3f{QX@K3uqfycDx!leyO`#4P&+z=|3Po_4S zl~$Um$)(A)qeJ@TBBbRdTaR@cbY7Pvm{G0Dp2ygg@nC0p{8%cl=hNZ4Hx8Vn!67w8 z2~Jd1YcI5@=lK%?`z{b_Tic#{H{;|qTadP`&N0jBE`6SCS6VD_PP12m<0jXREOlb8 z!M;ub4%e4AA=#T<7x+#7a0&uaaLwktG&9m}CrI0b@WyMtD!+)_+Opx{1V2FM1LC2W zmIalo>t>nIiP^u}wPu~7mO9r)`6B!As#tu^YK_HhE|wpzDV{p9Ds_6%aQ1IqeqlYP z8%}_SQ&DakU!Redld4(%)(5|Rravo7Gyl2_7kS-);8d;7P)|56` zLD`ryJKED%m%ieQg=xtzX{V6qr);E{T1B#fBC0;m>oV*@Ysm#c^lRMTUEJzI#>5)U zN%(gZ@D9H80l2bMdiTgbef=|w`&?N6{8?FTCwu%+%0Ix-RB7=8bEm`SBVR~8y_ z!-_(Y%V6mTd%41h;0uEhF<+clDm96s9g9pF72`DmXAZU@n)RU()_{Y%aY#c~Bb@WY%-)#{S;f=R zj62fibMn$l!jgMO3A!+*t>3$=76KfjER`>=WEGI}Q(47H1ihk;q^qb+S(T%VM!&nO zmg6IuKxIk1LuZkjXgHS?zj}u0>Z}()W4qB2(^G0v2QEvL-wbNC3z{}0RH&VtyS%Ng zrfPihA*^I94-|g9C{6d+!JZ{kE#9XkQ(_URK<;Z(L@riscwED)0Uu!S=CLljC+F*& zw?Vn22N&*NFC^Uj$Uf_EKEB`!%`cfbJU=y3Qb(!#frM7!4QYlylA1-{c5~dspsJKn z-wz`hn1|o2unz<|3x^$^+3VhE)$fHe1eceH_+R>q1u-N)#b;9$m1(+q46pJW+*9QZ zR-R4Bo+waJoV}63=VrhX)=Yx31-sbd(uGI6nv!yWQ<4~QzXvMgMVH^sGN(&fr7;90 z-cu_dRoU4IS*2dfCcTw;squBb%C0D0$y&4-JqknkD_f6BtLS0E2=z@etn=r7R8pal z?SeBs7Cb~e%y{}L|LGsk6)AP`njV3?-(Fg(V_5X-wIG8qHNumpD{ZcxIw^qjP}OiX zico5~`C+>3m+)53x(*fjoBASGecJIDYJ*l=p1j8?VGtJ@T5P##q?b>&)I6ENq%uiq zWz$R4=O~f2O6^Ebj)Pd*xPIewptQoy1cGMMrg23%;cUNRp=`>z)7(dG{-*&{qmSUp z@3Klcw|&Vm4}kV?d@{~ebRR*QYIPG3mP?`?-4RBd$@#!q`9UO!@({uX!`En#dgl_w{Geu@F>|r3=U;-#=Syw+o zWS?RUL0TmB4~Qo@LZHe|jbVD<*k_uA04~^+(e^Nk4O$w6x$~VIw5T8Ei-_c16Bu4z zgODhnxj^>i4$i&ixb1zr#aBou>G_9~?c!$}BzO zAJ2U}kya`$VAEjyOJG+8H7U#MX>lC4GE)wl_=#`1yUdPeK}G8Jr3Z0@N!V4AE{K zebWVTXNE8tVL1L09xm@5c%I6jc8C9xQ?yS&3Nlo98W+L;jZIrGxbAHaA*&DK2aN}9 z9W4!8Cy<-Aw=%-cH$$stz`NUey{)-ojd&ePSM(~x-e06s&Sn4HQ^=(eC}p--!jH7~ zjSAtT)R#HnS~{_Hjnq(iy1^e7Op1?QT&6#PvqLJ&-V;f)X|tSb@52>rvn;Xk@uFx@ zCy3hwQ~niG;L!{B&uA14Z>DtuCZBKB(h={2pQ&qYnL#WY&v?w;W{EnQ=06FpUN+Vt ze^41#WoJY5e&f>;hl_eByLl$74C@WBIa_+|qrX^=zyCzIDcnyXNgz=rd7LVKV$_A_ zt7L?Wv`9-+C7IM~H9+197Y(Kr5n@PI(nt0%f9EIX2v|aM)X`au-Xxq=lGoUdZ!i$V zGgGxFOJ-QwM02OAH~OpXuA15yF{u@}lEvHB;EZs4Wnn4;{Z_$tOpG@CzwB-#J|LYs zmRNP+)EEiwn473g+wxdrK!X0Qc~$d%W741!ccn__#Ah7oEy=fm*9cDedft42PFwZ* zqwLg&YYs`({?&f*v0);@LGd=h?NQ24&ArKyjh=^dmYM|ZZuJ{j1xra@&w(sY>1t;O zTfL~J0k&h3P>|zQdKO|Q<@3V(mku$8Y9p=mQHi1{*%)FC@*dsbD>BIcQyTpZZa|e5 zPb=}m_?rg&0ec5~jE9_DU%`49bY$MQL8I-x1}2E=VI%i4q_PDAs4mD#BVg2xz6%E&8)SoICh`Sk_q2!(R)_t4 z_);v@y#j~{)G}j$>O7#Ui1~P_qt=?^`Rr% zxN%)u-B1uxGz4z*AeL3&#e`s8+J*D%nv5-8akg0w$a73$1lnEuPZrKTcNcPbN>;~# z>R@Gc)1DbC=LP0mu_b9kSGWeBEn(#8^clKJnJi!DO+XH6pHTzK2Ku2nU9t|EHgW#K zjrHn#+@ckMz>7;R`_{_kD7=hJFlR;P-$vFAsK&L6Rb!8Kpmv}VR? zQOR6%cAfzYPU^@M#pvKLT`<^P!W=%L6a#)(Em8T$hubL_*qIuEF*rPD= zDZp&|Ux83E3j?}JHfbI&tOS{m?}n6{_{ zAJu_kb=}^{^jQ$*;9z!ch?=Pjg73^(&@^fio0wTm((8Ljk@mxCdpDk};rn5!z8vXJ zlF}NOQ-T2YJ0Zb9h$rI`p_Q&XG<9}K(Vz?J(Uyu``OSYbW%dy)T?9!U<~#Z3dKJ>+ zGA<-W_T=b1|798*!t$m}KcCQTm7Af&4J3*0cQeL3>*CsPeUI%pfpcr~igXDig4mWr z%-U$T!nG(7kMFp^KCq!sI`lQG-wYRN7@v%AkX(!IBgvL8G{%2gjp9{;ekHR{AHiS4+hvEiUPvQE))3!O$nFy@dz?U@Wp zI${!W^^kkz8(VC4xs+EGx)a^%@aeMyl#cEdm_Y}&Fv1ADE;D6EFWi>19G)7`@tm^Q znUgr`kH=MX9u}O+rash)XzbqZNw`D|3G~4d%x*fEX8GDz)#rgVCrG+bDiSd1ocf@I zRM!5Rfp^s~-H1e(f|R8>DMTBY2^xc;qn=BdD#=dPu(+}aH_)8mtbR|T$aKNBL^n{e z+X5HqQkGz|n{gCmdUIC;q~6lty%9FMz&Shh5SudvXkMVhqwJjNS_gYDf&nhlA^#xx zy8ha~%!_wK%R_;}z$@OBQQ2m@%g&ral-WeEFaE7>+2+L7S`tL=(NUYN@FG`T%O3#W z$bf$8qpHi|ZA(M)TRrAk8MnlHJLn)6*&}R!cP4FYZjp zsSnt?o4JI|P~x~R^X5q4Xn|MGFp1MvcgUOYd?E@%&^>hJDcOHZqAgJ&4lIcpJ0PO| zb$ASt6z(*HeeW9%FM5UF2qXB&2_RtAA;Q9N(BJ{x_WcqD6P&U9`2-zP(!neC`BKx* zAmYCLeQn1Q=Ks?iw-^28Ur(ve3DqO``Pb>pzr5^dciJx2k(I)K#v5K9%%5{sMB_Lr zZY=X!EULE>BiwATD0u+;>h8Fq=`5^!zeM=+>>o7cf~y?50hnf>0G#19f#X=tWOQ*L zJ~xH@=>7%m@!qOQm6uZ*GEbH53{cZs3_A;NO1fcUJDQRkXESWQ;It_*VRYdP&-ERO zUSj?ywyJ%miGr_A#85|$p~#>uRvL+Ag1*4|dfW~)?tbEX_+T|KTAZ+9I zY*jA}9=qI`EMvAHAvK>UNoH^`@f3|aQ4K0kr(g45cg`6QmIfsb@#(WfU~!?_m76ZX z<0u@lE5cFBc|zlRnU7&MnhSUK?a+{HdHu9_KsGdGyx_DtxwFhCgUAznd~K5QlG+mZ$4 zkA&5HvIGVGJUQx20ezRC=Ew{Jq5|6NNGOxq)TS&##0^YN;)9wK=L39samoq`#fRg2nsGT$M&s;iW~e=F}5k4 zc){DJo;uEu%Ez7yw&8W*C2#g`vCIkg(XrF?7JM#83xn%>Hn;vZm%g43IeYyPFF2&* zlw~htS>K$k%H9EJ`*+!tSG~g&Gf|bVDYpF3Nd(@ie|t-3!OXi2M9M>_x*oNJQ3CRy z{SpIIQH0boQB}X`c_s^RUux&wrW=41P-VR1&Tpx>@yE5G{A|DCyJdZ})auL1Z~~l_ zJ!!WAX{3y25t%?j;0nB*Vsbqv?r-U+pt^RB`bdcOdBQ55K~cPa&c!9pSwUJ?@$+Ve z)1@4Boj#yatsDlO(}wF7!$Eo|FjTq0^sttQmc1}XUD>e0d&!lsJv;LoBW19*aDj=o z&G0HuMkf~<8(hr^t64+nt?({R#+QHM08$@Ah~*&JK{h2?fDnp&$5RVrj3&IiTOTyj zN#Kd@M77|^s%NnJZ(Ov9gSO+6A0zlDs0W1LH6p~-e^2cZ(0ouPNx0C|YEkIwQl+QD&I zOCQ56kh$nx=zc_u>>!)nPMU?Q)Qn5_*=?GiY_qxU4BnBT4>pL{PN(5f<~Ws1th&J^og)5tdaoW_Y5NCeZW- zPFn6rba6V$4OCy@Vy9S=f6F#?Oz|Kg^W?#X|MKdhJcSCUwh04VE#HE{ImpcO>7VX_ zRt;vy??r0+lh&);{`X^Y7V19=q&S+Xnc}^F;S}x2nnE^*$=h{Dio#k97PgJWxJO*C zDhsV|+S3A3s5Dyho0TU_e)q+o?)4SRms!>|$_DyZY?qnNn8^8jy--eNteQD%2JV<@ zeC&o?d3hx1bB`L|q3!QY3Bz|fim4BhWth5~9hL*l*A?3&iPxMpFBI67+IG{x`}UFZ zTI;nKTTJru<9;SMG`L|+YfBLq35^};GFW{3TfD~iTh`ZLXVhV>L2~i&E;2GOT*Aq;tiyJx-VCg7 z2he~DF%(gAmeXiw^nsx3%mgId;yh}pWD<-aE6%;O8uIssFS*o)77k-9Dn-<$ruVB_ z?wPDlI+Diw=}aOoiWx^$k2W}TOP8isVZLVyeL6y@nz<&tI0{^3Sse!g6wRRJ@3zdc zks8J7a#0#_=ics8eGmbihwn>Le_@EB)}N(RIIKj;pp@v6F_%#(8k4b2=SP3?1>FF@ zdc!3*q@R%RpAQm~mICH;SysF3DezCeuY&*T5bKmg6fiB~DO+tqLSF%!q~X2&1yr|q zHU|1Tz9fePfOxH~w*yc1%m9Ae&;(}eaEGbeKdz@UtLoY3ds;Kf3}D@v*%Kk#SiBoB zRNaqzz3+|hr0M!-3>UE7f49e7;KdVp{dy3IeskEHYI7DgS z6vFDERd~%g@J1EZ+B$N0z%bmxNeX0`AAjn=)0fBD;9vgz=4i%0oF6#}6JCR>;SlN! zIxq8e$S*-6&Kg_>?(h4=3~=f62oSKEG_R4^RaxL)bWvqTh2{AO0sy#9ikjkn=vU2PA5})oL6D%lM z|8KRT9YGGId9Og%Hzgl_L`BFxHbDIZ`nv2KmnxUP$B(KFvSsh`FW3HToBAl}%i*uw zpx5h0UZwWkB8Vu-u!~^HfUJNq*E2Cm3h8H5t?@2 zcYk#~hVd{XhHZh(Xtt4z?r{}jKMS+bY ztjUBY^qg3GU2xQKrc++iy{*{X*dAMEwaF;=K&f=@uTEPX-2@J?+BP_=J;BHjttlM> z=`JAp)k;Og|WV23H+qKKVJ}whl+&+S#NzmGu$We!qK~2&qQ$ttRtma_;K)!{}(L@d>J7&dW zE^J%_!o9)v{6BNG4n(}m6Xk>6)QjO_CM(L+@_9!y%kFBVYv?%b0}>>%IwiL@nUs*@|t62OkV`SZ|&ys%9@n z@XrHfeeO%7Z01OTIiM}bzq|^tM-COLkEb%(&{KHhdt$rR^SMqi>O=N(hTjHyd>!Z} zq&LNofn5I2<)T;FOLX8*lVR?o{1Q$gsH^bE_XMR|vN>5O!lf1Ap0DJgjZ%nq2y*{5 zmX%5+CbJaE28Obgmfbc$RtqESRfJ~!5UyWQop}^BYJPjb6E`FMNIk*8glO%3G!j2( zrii2dN4zwvy-$jk1sy2g?$KJO0duQIWz0IZt}o>@|nyaH9Ax68~Pm6EDgySquF}VUUqfF)Lu6!5ZEfMo$+i zQ8fCx0UgeXi8Qm-r_f{fk(1!c2vGrZT)G!klBV!Prg*u;yxfQhBe+7|PqGsdLDW^1 zRI!7`a9qlS22Zq;6+5kI^bL<;ktKCuCo8-Yj^ejg&9Jn(f#tbTB-vDJxLeY7SBXcl zR-Pg4mW{_UUM%)QAgPe}J46@vI5 z4YTBp%5D2PU*z#C>WFv1te{0ja3gC9gK;3NW$L6zpJNLzjzvhVVrXSUh;5cs9l#Qe z&h^1z<44r1j;jD=D_-Sz$OYI9RaR{rj zZ+07kelL244hduL@4LiQN^sjR5N%csEPqBbw4T7z^(uy$=(tQjFG-OYG)d<$62YooWvYY)M zh(-ei3#1fm48-h+)=_J*ZX7hNe}W%V-7>m~K)CL%hfU}~DKTEFdb7-FCHN4dU3Qn3 z?)fiU-WMhG9zK2Eoyvb+vvqmxO`%7HeohOQqrl$lmcd5lhX7I(=aFAZ4)*FQi5pFL z8dpBa3|8O5hZKtH|GThvnKHrMtzhet0MN#aaX_rxpA3FC3kNb#Ul1J$9jb~Y#YQG7 zQ5KqKOpyBn>`@l8_ZK&)ornX0XFKCE=xuE?XUwWD`=(>#xmr`K|Di5 zkY3J7dXG`ftYMLsOoAC41I%}EukdmIt(7@A5r(aB#V*RuM+ffu)Z4CEkk_|EEK?HD z9EW#6PvS;QeJG!e!r=#cz6SN52E&X~XWgEB<WaFW zgHn%tiDYYuObJ_n)~l&A2~7-L@DZj8Gw%r7b^)hJHd64x#oFeV#aJ`OGDloi7x+g@ z!zj8vBp>HTRm7{fxn$cP$BPB>ARicb3><8)-eC0ip;dXnQT8VF4;CAuP!ihru*%(G&2q~ zAQHlgH`Z09BsBhCEPybPtn`7jFU)GsgR+PH`Ge*z{&3Xp0EfOlJo7-sQ)0fUx8IJ! zJc-pGR^7atUd)iwAb4$^wzWzlQse*nEQE=~1;*2=+xKEUrYF>#+$Rsh6a0t11($qJ zM1SQG1AP-tyeII!skJb>x)zdYiQKY+AqvGLNue#F6r3tq0UO0YB&RJ5>!7~ARN_a8 z8aapU1dSl5wJ%D1>QY%Z+XrpL_;eh!(+`H$bp9=9$=3*YZAggMJsNxljbtCAEiwh0ODnc;Mh zQH+DJ{=wza$O7{`N*`X}BCah%T6YLMj;@?yVJ-KWOgSevwxi-rw!+TZ68fs-nU?-n zyx4{Sohzp#$El zry1;E?&jwN2rKrd1mAU&-H$jEAI)$GLa$N!o9|GDd`7HL3SxOWLqm1ijVW~;7u*cB z)k7c!h!MCv-Rt-elLWL!_%}|JRyb*(+J#RW;2Gi!g)2bbJwUZ4_E7|(Rkc4p_o}`! zdj568TY%bF19|zrPd>@qKX4ee6p;A5Ym0zrb9*`;xU5GA7C_>;Xr|#UFejf6D3#Fq zA}P`YB^R)u1oOAGaV7EiOYzcf^>wae!6f52RhcdvgyyknB>bcf<&-3a2awT_g6NX{ zlrewUADUXkHpVXLaK6B7N1v8n^ORjdh1E=w@^VtPOBnfH{)DchY?0;kT82qDzl0Dm zJpG}1=1+sk!u_yc#%t9>6S=t&Wjl*M$%9 z; zWAZa@i9kna2k_Rp+|(@0T?EUN7Erm(IYgbmJADJ6&hTOZ;&>D8xd6ZL82#LLgq1Ia zMy^xl$7yhFe_uV>3`^2>L_gfyWx5qCup3cEqru#5@|SF3#)D@N5H!nWayX&u#aiEfpm3L0nn&$6bM>~^2V(|-?%9*4?w?y4A=#; zu4ViHkilj%$Cb?c(MGpf9bI)KL{ZqxgTh4?px5L2^v%XeERENhi;d4y1kV?5cGVLj z9#+5ozEq%1QecKpNBSkDq(Q%KaMGiPDG38mP;D|~Hdr453WA~897pcMDfpIta_&6* z?z=_JUFFV4^Tu~Z_^vbAMMLz>+(k?R)B@R%cU7B3_TMS$O##jRy|N2XhcShXbby}+ z$P|;VaC~K8r?PT4K+`uo0VRqAP`Sjx4j(TuoBeKW0s?35;Xfd6^4G9BUHPQ}7<;)d z_h=y78Ay^Um96Q30owm@nsK@HOEfwVu*ufXEzgDEiEtbzE`7Qw6%l<{{L<~s-H?~@ zJId6Qx*K2nVXUzOMlY!>?rGd-h5@zKtr|J1z!XL7?_IR zNgH`!+}d$P9Go$EmRp;6geC1T}Q=)Te)`R9_Up?mT4UJleaK zOJp#E;|S3jA@(Qt^e2Eo%9BfdJ#G2tcJa>{avgwonUo!q^1yh?wVqGSd;AeZ{+7#t z9;m7d*M{m0U`-eAe0;xED38?S_%dmiqn7R=`I~R{5flFf^b3W<30%1+J8pTrdmUKH zSxnrQ2_Wwd=m#O!y+@AQfBT9M z9~tTAGsLl>+JN5Of5W$oG`6NQ*7K7ADBhU>PK zMwk6nNQI4_PhB^MvZqg95g(<-{%`);HdV)e&R0z&up7^V1I>PbwcEIz7u1_ffR%mP z;Z~SB_A|Yj{blcQ@o!&ctHBhG3sTW^qr=yGcz7MH;p+mod$FhQ!HQZ3E{%cOuGlRk zP55bf7)vY)UXwsLFDWqcUzE!-+)h=vO*+CElNz;c=zfInWk6rQ=3Q0yp!1Nt|0X2{ zvyZa*=E|3j5h$&dbpGX#O80*gK0i?m)n33^1b;GTBk> zDU;P@q+-4qKnODp%t)dI5s!ajd6N=s$c59%R2dFE!10;@{UeRf5qP({9@WORZ+RV> z03k~5YuP)w@6+x^+}lUOSIU5s3!s<&VI1@NX>t-8;}Ol;BB?s?GRUbSbHYCZA%YhGwY@4fsi%N=gK|-Ex=ODidF8OIaV`69=U zoQs_|3=4-q*j(X)?t``x4_mJym zYAkngJU~g>W}-RM58$fSOB!;0Z5kN91ImB>!s^rigr|k5&`Y@RSZ}zM`6QM70M%CAAa7bn`%=4<*i_+O-!o!I)wzN(h%ii@*x68^m~hg1#W5%tGD&d7 zHZHF|GX4Ajjtq-T4AozZG3>99oziNL=>J8FEHHaIZVq8!ro!XOYCM3+Z4b_wK43Ch z!ar8ict-`9#(*u>g6hS9@`gh+tTiB!Ra#B6)dHSM9&nRh6Za~O?1NCK&Wjr;i-a?W z%0wGPgV5p`zWo%zc%r_kBn+;Si;Y5E@ZstsR?#Ij1dB>}M8= z=qC^xdfQk8W5YOzu=th*1^F9*ah!mrzB@(_#cx6Mwzg?&wKbOS<*BZo`T(xXucWzo zAlfTWe|tS&4(3jhran-+)gI3WIRJ&#YaEdnt^sm@2GrGd@w)=3gLl)QvG0e%cL4DO zSJm#vl_U_JBo!^YeXymb%zOn`VFLNse05JvfmcGa|Te!d$bAw!|{5~9YJ$D2qzG{Bb+m}VNltl z-|7O*Uk)3WJ^oG&&=dzs_U&n28n#=JIOc`x0LY!XRjFo$h+ZAAwtUg~VYA_!<5fz{ zIDe5SiqJEK6!Zawy=sd-^AQ5?bwBCX$5A14NU!f#F?HK1zg29bk2RQj!NgwLUz-4~ zzf=`pLqA2|YqU^i_d_ywAFUifDE$445fj@%vj)KnkX^s(9|7N`|d0&0Fx&^AxKj0r)fHmF)r_fgbk{J8uAf@xXEU8*5Qwus`;6Xm~6!p4jeh zFZ>e{k~?U$%2*a z5xngaTtlfUByDJurAiWb4tT!u`(Q_A+Uod4<@fjXkbQlOZWub7FSydOCvN4uKbbEW zFqws0YSb8-U^X?PNxT4;Yq1LEi}VdR2-HBxn>$FJJbr$GEyTs{dFNt{i{t@+=69DQ zF2V&Fu+_^USzOZqxz;R~(I}!TQwJmFO5;%*io*aonB&=Kz*qBcT(6)WN`qWqo6?f4 zknq(2GO~ffY(PQ&i9gE}rxN zR5~urPrt=AO@A0BivBM?3L(cR@uBR0BVK zrG#iWK~;!*33Mp2Io76vI!6dz6+YqXEZ>frQ*=phmR-GQ1)%Qbwl*_Ym($R%5hy?* zTD$`B9uEB<95`hO5Dd^{-x52H2(!6eSm_gz$?QSXoK^jrGb@Y2Gvbu)m3b^hRZ9pl?;1Q=c; zvE6|9VCf3_d)NBP3mY}|U2Yr+{M(aa5XHV_iEflv?g60D1ocw6h6+gRsZ=edHGYuQ z)wg(rw!vdCdkf}HEI3G{fOWlEzyE=7m?0C8IsUE-h3CsPdLVQ2G+^?&|CJ310O?2K zzmiMvYF74qcOC>?j`(;>%YJ{WwV6Ytc-kD-N1@E}2M$+_Km)Z(Qqn%@HQMc(P2>4Q zC7^VdTFnASqz9P?&=BMSg2oKvXf&Be4UhTE zThO5a-fi7rJu{Krz3$^7)5kfxAU=RHP#vMuFVWDoefpp8n=(R(5xFkUBxajV0cJ05 zo%!Qfc95$!DvU1=a+zO@%%TH$;){I_;iiX!0xL2;2Nja(YTf-k*B5BgMSLquME@SN z$Ll#f5w-*16isdfN<Q)=LNbWFHU4| z1#^ZZZ=h@YI$)Q?hhWjvQ9n8+vhN|&rn>|M|1AMfLG)TRY_#{VcJccg#*q2|ERT$S zHjC6Rh?Ona4W=@Xhnl^k7mzN}C7QW?bA1(NTP1$FRb$pO5y3f>QLvl^h7)Z;sm4xt zkX-l!%;tB!bpBzWf?{b0-9Fqf8^2!#WnUCFln!?V`&jH=rFW%u*TAEIVoB zZurZvkC#{q!Ncvv*O*I|Yw@Y)h)oT09?mG(_g*AC#0>k&9Ha@T!_-hB0wU`1i~{CX z4>(?^gNQ#B9tZ}^M^e!P&HRu}&A56ckQeoVax~p;NmV2TWm5H=Rn=g12;>=m3q1aP zIF5g!!Be}NxP1Qi)DV+Y=6x%R)-uF(&NNVk&B$uoy`vjA7hZN^it6KH`0~kVphahG z5WRW8u)%Vmw{q-zMCGPA7wwmmV84&5)^AzCSpG4Xv6i7}>AXWqol&$ zrr+|YcF7lI4FJ-9d;au2uvIP5h%7^8{&&@y`j-H-6KyJr#OV#iIW%!1srj*2QnmjTg>6=sDyJ z$TvY-6kRZv-58Wiv*D$!Ay?#u|~bKb?M#C?2j^im^c!=cwaQTc|iZM zpD{0x+8jz>2i)`$4E~iFz-K=9{8XMbk|U0?4=%pVN)@_lE+#Jj7<#0wV2JxwxMZ5H zg>`kR#dO^cQHtI5c@U-Iy}A<%C3C zIyLq|_oY9!ji#H2D>y%TWlN$|E0{N*()9sdovh%WyDIf5=yz=$#51+u2${ zypeaSraQc<3(BD#QJ!Q2(afMF1<>6lV%-BR?aP+{+6}1^biMA+_rP)Y@TL_+7*zj7 z7|}3*xa5jGs?&F-#c2XF`11+DM9j6yZHmeRbsDtOqtNy}R+xKz|Cs=}>@?AQ4%!i( zW*kNH9SzKC8Ec$vQ@)%1G4OwG2;c1_NiMAXv?!CFv6+4zc(8|xkYC`TLP+lWRSbEM z@iK1pg|`QRVr`1}3qj8Y2*3Tw`3j`Oj-P9cm?Nu>-23_bZNV2U2~#|IM<-Vw*^^&t z5l?@z4NKvEc$wnCLI!Pycw)ajxDTfuno!u2wss?)vx+dx1G96P#tb;I22YQH{|&Ji z80)pQf&~cFPw<1>{GL3G0VGzWfwzFGK0LQV47LRQ#=a&@zJG~Q$;Uu!&xdS2nCT_8 zyV}+BRdB-CV=#48=Y`E(<{meCj11uK-I-vWd(+7OUr)Y+)Z6@q;|JxUT3x52FAp<^ zbrDuS#QlCgd-KARE?y!}{{e|{=k-wDF&MXzs*;M80UKN-WL_iOZ4h&vf-uNHV!TT( zoktDi0I4AVKG@)TD0w&W*uO2hpUSnOS{dPnFo419_!NKo_2@4K7E>Z?(uCdk-l=$Z z+`)-cQ(`0hJ#;4-TKL70TB`^fhn5j19lEq>Fo}KAHDr3 zg2Oj;m9}Qv4Tq7_4#bp+e?tQ5Z;urS|HnkpEL)*|t9iwUZmVloV@IuyXt)GKZ3x6y zUKa;&2Z1|Jm#&Oxbdp0+onU0!;_}Vg^#8OwgMyv1L?`^o9@HBn;Gn&8>lQhV~q3f?Q%(w zt%`iFN%@pU-DD1|9SSPxxM+Y_>I3wTG1Ra#fUA>U?~DHeQdbka8fQ~Hzl1-w`JC?f z!~UW0eguQqp$Bp`BV84R{X~MEb6>GcE(NXe59ofjOugq<*fr%*9teI$k*D)xSX96A)<7>zAlgTEgX$(SN7~K~-a$2z-X#c!x7#c`=_(aI0E0IIAXw6l& zvP)pSwI=btLM-0SnenVGTtKQs^vz5=`8%-pPY{iKev1*RhF@@OK3`WOo6IH-;?@L1 zP0DwZ1qvh#kvzuAOXZRm@R>lA9qN2SwcFtuU&5_W_e|)KPY23TD%K1iu2U`49tI@C ztQvDK0bBvqqeaznw%VKm+{pvaDd&M3JH^7fuT%5mh`9?-+?NRkCrx{zQRQY!z-NPG z=yh}@;66!5-iqZ&!^Ksme5X|oy-w1l5081a+Ki(G_&H6x$cuD~(%vc;m8c5rI`*bB zNF+6C?!!H%H(7Qd!v(vGgjB8go9?qo#h)(eqihTbTxFFa{P#vNB-^uFDJ8V4d(R=B z=xCFNn=s(_>|uYz1#2BK-T2*{_GEs)YDN$4HH9{51CtS;8||@^Y`T+ zJdgEsEa2~^9d}w|| zeIzXQ62>(U>0W=8BVQhuw72DLqpOK3d!zq8wfr8A1u#e&f4uqe|s%pYD|!GNa_YH5XW9O3422-e)yjjIXkfy+ceVsi0kT)TAU5C=>}mo`6pok&vx@odO1BSkoEIkqgBHfGCXv zSvmD)OkR1A@XL>9+U@uHlk0Z?2e+xVqz8ZcZ(y*Yfw2Jt^9ha!*M6lVBu3E7^VjF6 zUsa1RZ(1H|AU@hqIx0RXl6yCsJj?aHv$b%s|jWFzf-K4 zW~g{%6UP#)rN@A&0_t$@`!#>BpCR7Z%!4ha7Z9qxSWQ=|Z|Z>VX@10SCCHw0+N5oj zC){4_#{w3U=Akc2on1@f@lMv5K`%%nI`(Gp*Aw!8QibHoyZII1Kf@E=cQ6t;(hzc$ zjoz6b!9%0(?FYY=k8ZhK58GQ6m2>n)GK8np*n$ zh7^*DK7Y+PyH6EV&%jhmfhM;BXm!w83G}v>T>ZePFAd&c9bVxS=1QXrUjv%vd9k z*Y0lVAz1)5lc(v~{ zl7^z$6^#K@HZ{00p>v&hRe||lzSMAYXzR-jX5^#Cn2%DBWsHb-0U zTvA_KBR7jizx?S!1lQTF=epf6bJ(0T_Ot)}bmL{#mivQyt;uy<)3-i;=5-0aB_pLS z^M*Zx&j4ml3hLyc{pFIM(!kPyf(XzPhwP$U5^916$kk7Xa6`~|2H~F#6=R{@MS(fQ zrM6Tr*WBwNTF{$Wf688*RhKOqq}~4JV7{KSv#uoor2Mqg^+8|=yew<(;02szT@-T6C>5p$^PGJu4*`pj zK24+bf#(YC?_w;179)pQutq*SSd28`=bgJQk=tcO%PUS-d=Zzpx;$lfoVn6paQ)Vj z{%mu*X|v~MuJt9i>pI>QB%V+ZPgT&bIv*}r^M~ZOlW)J9U~am~aq4y|=bCLNhnjGl zwJGF*d7*hsyZUfP=8JwS7+p<>wRv>WwJCJQlfaa z)DS8bVhw!^TpGC$!aHp4?2nr-?+@^E z&JP6J&*`fL9hd!vuj2>Y)3t7y20CXu_x9SKVN9pD*>(G)G~H%R($K)hsT*brZVI@LFpVOt<@_bbS;s^z2~JRErE8_YI$xIxP#L z{^vOImVMjh(e}J^3Nmo}*uih_Txbc-NK?1=J=^}3K5aGps+;6- z4m<^_&miVY=qX%En031yWWD5`g8gUHyy3^ujH{DQGg77FK6BvyxsUai4fyqe$}zKs z1d`*U@4SOKPk9?7Ii50q0Efqga*+5a%{EMsxU}sb#pCkT7lTco53qLkMZUD}?{byR zW%zZFJcf%A&N|?4Un^LAV3WE(3$RhH7%(@Te#w5f@sp|`xF8h{{A8R?2Xp`nd85_Q zK0LAU*y7MS@QNAA$T;|=nxd;Ut-Cg60Ji>0CQ%q>UG{vhiFHxF$i14=ul>>6C%r39 zffiz!xc1hir~iFd`Aan1W=Y;A-~IlNL)c3V_NGl34B+!g6|*}1nEPXD1XIiMQLUI0 zH3Y^O>rDa|34g3%A3MfA+Kf-N5Bo_DML#3Lc%6$a!M&ONVPm){{3(-V!@FEmdruY5d(TdA4${2sA4< z%*;=Fc1@#V3UFhF^$u+QZ@(M8S(Bl7!Zuz7dGqoQuhiE}4fVcwo=%SB^_sg6Px+pm zSA!=is7mZ0^Y)g2%OBPuvwUqGi&=mjgDH+86(PM2TAw1(X_bhTlS5Fb5RrWPD|*Ly+)5Y{TW+ z0~uG$c;*^}{6UwS!KerQ-#Z6S#Ch^r6$;92 zpkmh3S~0?TYB2A=6H+vR-za1c&Kf+E2d^K;oV}?uiK?_77IAKst~p@;rP5AY1zB(? z3`)NHpzeu5V2k)c*Oh`q3ObmVo`B5#T(nHbFKd`I4V!+}l`t?5D1U%&+ME6-L!LjL zO~H&gq@Nr-2cxgTX8D=~4~u(*5H<9;KHdKooe~lV%5m@rC@?-h+Ef#hwetTP!eBrl zOw2PeiVHB04Q-`^!SChXwe|l0`&+o2H}JSz72aJ>5>Fpr3UFVBufz=h`KH7vt2>C! zIfW&02;ROcr>zt|45Ev|(pJUl$?cGr@ouJRZe{?uE_##{VMNAfa$RUk7y$$;M`CUr-{Nv#d+*=o+uv=YJVs|E5{ z>c8<66*!Bi|6o+VJi6alr1DyrQ~vgwE*Ujq-iQwDatSH^0WC<6nKLv#3bKlCFyH<% zK1M;WiF?8^%-S!Xactyy^{78wAWk+$$_%_s-BmChC-&w!IW`Q3Jbd zjxoSth_2Qq>kNH|s0J2^e6Pwj8$^SVfXHU|O*y{kf?Q5O6Y3FbT!` zTx(P}73R((utMK-h-wKL(ime{U<(*VB_f{ zcR_=ux)|Nj_UO5Nw|9tXnRfheToLSS>i_$5lkmB#TFkvxMI++25V_jw98zvlRjL}0 zoj_Kk>(};*JdlH)+19iAEiuu3MsIoQx3A=W^{@XQ-@Db7Q~g_~#ZziBlY7oVrWcc7 zdo}>uGv^wnontCkxU=@*SJ3v{`w|-Slje4#SmR%Pa@78wMBhF;bN*)OA22Qjx3`k> z&8-FOqZQZlX-E;^?c%J?4efD?GPw`%B z%^33_uf}rDE^|DJ4K({B)~f3!#LrWntqWdPawXA8thd8+SQ@BZ(;m!(cS(_ z6tm^q&1O6s(pKHD*COvwdZ$02>R2OZ+mq=AL_@+4HdoxVO3jXkFVmPOXs|h2@Mk_w z)}$@;P~kA}GK#31!w$GS&DC#N+-j39Ys#-3Tc1C_%!&Usn`k&U%J_-2Ty7v(M)$jFj=o0H|X`Djg4Gx?yPI0B!jQg_f%0Rb*P<9QZ& zU?D<_eX#=rV2VXX3LC-kr-0+cv78UuzQN~M+66uYA#0WlYbF&v-yEjPpw}GMlgb_n z|LfO_<<7K5RgI%gj-3MtQ2fFK@fXNL9>F`<7#iKsQ(5aBBWkZ2pPIdNB53jJYhJg$ zNqR`D29RT1@;nFH;M^6owlFfRCe#lTydWeUdh{6gK}d)hAv>T`^v1X1DV*+aF%rE< z*oOK#EFK2CplX49sW z8?aB^WzVmkK;AkkxR6>2*eSQbh4jav{!ETdUhjCr@)&N_ME_WTb zJZJ905ZEX|Q&1T#y%u?S9-MHrYh)1&%!wR+9idcJF8s?BT?%vxpb_a}@wiuD4IPDp zr6@on%1kt4khRX0-F*MRwhsChPn2f;KgOVPkT0gT>H5=4`Hs7m>cQTHu%2J|_Htf= zJb)RmW2D0hHR@Yue@@$92`6!1;rzb--6o>@n*vv>eB56vH=eFop8viE)w|7B^M?nr z;Yo|e+T^TT72g2g05R!iu`I2#;9#j+2RWP^EP6Ot0c)CxNm9jj%*L z5o*wyV*d>13inF;udw^b*O`xEnUwd;OY_q)E(|rLMYIn42OVs{=W*jCX}sZ>DC)BN zfug*I!E|_pZ#ZTjC)KrU@Gj(<#E3y;yg-9_P`I^EdBqcu`W#+~YDDU%5UGE&d$gKi zulIcS~XW19*0A`C1xd#4?eGC{l=j}6+Zu?LSp3P z^LWVT9gpU@7t?x@xaEA) z7BtI(3Gqx$A6R_gwv@(#vp&^ipy+oFWem4`weMb`^Z32+j6CgmW*P-%-N^X=+qd0T zS07~#&JgfA%=u#2_T>jzCAj-u{rD9VtmtZ9iH%y1sE#ZGYn7&kl$mJR>a^#a1f9El zMN3}^SZ96kYW$R}0P<)gguLC z@0<0?l?*%TU{QJH#P$i7*oF-$%VnY^lX>J$!4zGS&$ zv~Z?zJXO{&Jk7*UiQ2t(B&g#le1Gz@YK^$|167!{y|&^~Cv6yVi-mNiop;I$f26#>>8A@0#K@oQ7< z1d|~cENbw&uD1n(D8FE|Ux;X|FxRL;hlm+f5$lpBU5XCDgH5Pl*L5YuzOaI*4ORsy z9Qf;m9vD;AaaB?YTnu_rM`$8zlav6d_@_W+cR)Vo1y#NTat z0ZOKj=K@bP9kR4BInubWA6n9B`nC;EI2HKSE*_FEsiuChm^hW^Dt@Y`Y4`w-Yvd$&qVC8E=KSM}b5 zum|;+f$^d~!7VLhrI6p_pH4UB|2B&^-=CbUV;y4EUZ5)aRe)i_+p0Z9RkRQp%&v96 z*6xc<+TCBX!n%j7!)a@(=`!2uxi-aDYB+p>D21EHDmLw=aC0Zgr8YYHBU0BgPBAJyE4L zek~sW4JJ=FbJ=pO5GKz$%VLPg^9X{_#Our6-1tpR^y@!xj8p`bz6;yMs{YTfr;FwN zU0V(wmR+O0@{%e_nZ-OZoZAS;{;a`rnIl}q^KgH_N{dm~UOV8~q!-npV7ANzjnlkW2 z`*LrQGPb(!{G@iff6S%0^1J9qVUK=BD=)KzZ*c#`j8;cMA1N~A2nxXw{2gb|Z|^L{ zb+DGsd$~b_@NIcV=YSvoT{IDLZx0nhejR-mijJDUnNsSpi!7lMd|Jl;Ox~A;#hr}D zY}vx9cByN*sZW&wSqd3wjs)+o|8c?(veR|`Rz2g%!lcxWp3Pnw8MQs2`AAn`~I~>uS_+n!d9**wj;2jPZzug3l{ioo zkpe=VKdtO9z||qZ%Qu(g`LnKiUbiDs&fzVKPUMm|VxS`sOsxiJ_2C;Y>FK}6K+UzE z_|O*B=dKbr8sOkOIOlomGU`~!GqhGEn^M%o)8}AAia_dk`Q3d zH5wib*1O$&@0_R2MaA)uXXZ`+{ZVV=QEqczh=`m7p}-evKe2LFJ>b!6x|C9&a(yqp z8Vz~2()QmUWk()m*Y>?}_9!yo6AQ(n0v?SrAn%eu9__B8_>AR|K4*d}>Zxsr}miJ+`SlWuIg9|(8!kE>=s6q~|V0u-;E8hLbD}3YYgX*@W zYpW}0>W<0qPzY`$u|z%M-9mr|-tYMku-?1ducxwR|5|gSe}D5QK={e{T>qX&=r_+B zV0PA9+8tr@hgN7GlWXS;F$o_W_#CYE*g4j&{ID{dUh5>sE)gjw!d*J&__jTA0`K&# zZ5V9_E)msLtLnRUlU%!#d4g;o3@{Dt^dj0Wwv0(JifFPJ7A1I{Wbetb?U5rVe=vT2 zW8OcZqn2j9R*Tgqh`2<#jleND?n&u@JJDSq5nS}ndZ|~kTOzn*gu6l2hw}{KVQ9nJ z%*(M_Mv*c1$Q3;$%_Q?1e$(@*zfw3|EjE_bjjsy2y&D&4J+S0h!jJ4ZxsU@Gc+R%s zW%0nxlfj-x{eS~@5@F6Q6X$-9=0b~IaXiJwnUYkM;jA_`c6933=dQ--HtB7rTYjmM z(OumMmc4J5t)iN+FxJb&{#t|@B@_hB=i7g5xvs`U%C~Wu#?Rq$=YDoDGMWqj>_UE; z3ZP3F@d8OtAj{w63%E=0sP(JRO8c?0)74nL`?oEPD0W>m?8l6CA4LDH1nJ0|&A0E~ z-h7{!woH{5iyE&~8(qzQKw8vx1tk>yfwkx>5>kb(L0p%U;5B*3UC(j511ioHVk5iu zD7vU@*L9rcP{FF*AOciMoFo=}#N9&95Clxckr-Bn#-(k3i&bBZzCWtG7GRX^NM>U5Eoi&q4= zgW+}M$TQY8KM#Y8FDD$hj0I!!8CM7?oX|=Ie~`MB#i=J?@|U6|CSQCbAI(VSTEX%| zyzZ!g@tZw_!K4bZG5dS@RGi9;LuQ<7PgWU(ya{zk`0tyx{TZ~PzwD#$rCKljM0VB- z4;Dn;ck>J#LR3Kx*`N#ZA%4!lZ4%OBbAf|bbkm`%bOPiR)_)(1U*Z}3CWgXcq47@j z!B5V$DQ!!0LcU&btKMKL=uT;GK4%}BIW-R&S#Gm9)I+Uiy@L%4v{xA za~Hp<)>uXypV?dJJo2zJlZ9UBhm5NS?{?S5KCDa~u*)v6Ev+W8Zg_R*<%ct34Bza|w#&m~9Y)N{s^E)Q@$mm<|AojQ2qNpzN&%SXqr7u` z?l*7>cW~$|vcdFf)W3>zih%XD0Du*c1-XMVh6lQ?Mu0{PY?s<|dRlv2*{2!{o{eJ> z(QKdReQEbpKTSlr#8;3!s_t#oK=*R_YcCIx0?58|JGoD*p~v1_t|Y==vNA z3pVHgiWr-X0n1&N`AfSK{v~Xw>Uhl&>^`C|#5u5i>i~6jh^)N^&`tKO%d*Gv_yA|$m@?})a05{|0D>17DJ4b?M`$Q}ejr>|s z6HhI8SYb=o70tqKo^ENOGFUm;n`J>l79&1vUE}u*6l}Aeyt51*GeXY#EOOR`{52En zozdhYIt~PNM;f4>#^4&h-M?P}lXZQ`#0m0fnP)4dLb(u7kA+V(Wxs$YTBuECnHJ3pRalFr`r9zd@@x8%L8u?pQ65p z$ZdeG`}5Qmqf^%+TPAgc?np2xRr|WEDdPVXmTmOyV_#?~AwBan0LtP7Y<5deTaUD%Wi(1Wqs`bi{`wK0Xa8mI?u(8 z-{#BwZ<>>-Bz`>7cK;CATb*C6s(L$T;PRV;);?q>@P<<1s7($e2Ho{S{Zx{$(Girq9gmu~ z$Z7Jin%_MzPC3zAzXcecw+=N${4SYO|rB&+A zDacqN0VT8IF0=#4Iq3~=jaun#7EwzCEp?&QlcJYD23VG1XKDU$2oWc}&AlAO&A9Hq zx^T=H8MgCbM2zs+r&73Br|$~ItlpfLuGpz&Q>@kPYO;SJgZc^`ROElbMhFF>l1@^p z*x=IhoVfJZ7M17p5_+tCcm74)dCZ4VGUIPJ&(H=t9^k3Vv49i8756+Y$rC@sfK&%D zqe#r`KsLpTe=tepDWJoDU?U|GtGj=jOZ1%Q4n}9aUm`OF6@s$2*W;q-zM`L5OW3}T z!Te5DGyxa;9p8E4kUIh042A4dHL=#y*0)VkB2 zLk5;w8pik`l^2$U=bi^!2S$Ym@u@@rwgmu={D+1SQ9~Yk&oe`ms4(UKBvyC9r*$e! zdOCIVDkm`>H{~l4COBSS6~pr(qc#uNkEC!;MjFC|Qnzv-A$^_s9aA$+{9Rl)K~$2j z{(<=9*X_yfs9D@55oihV^mPZdt#6-Kgo#b1;8#hOnqURq>AFvj2PzE7_+sGifIXzT zcgR|3vYdxhO>|F3Rw|~ed3!a!zEG(GbEt8YXgfJcBg_^X19xM%?7dw!muYvcHuZTO zc6_rFMii`cJO2Ff!rAwNg^{_jwDm+~HLtZ~?jr@GZQ*rP*OR<5K} zp}Bo@zwNxfuywG8jh!K4KK?=!KHdw#(_KV=zyQZ8RZ%rxGx1lE?$+%1d#e6C%hG^9 z_Wma)8TqWVJgo$u(7~GX{L#jh@BvK5$S{HqoB!pri6T+SJyY@C$0bGk#fIdXX0?=V zXw|aTS0-j!acpOnaEH9j3#=y0<^~7@BX;d?mLw9Jp+^P^N(tqnEO}q{$4svYi2@G% z6WxR3>Z<|MY|1IrZM}dNEE&)5quOYuT=#aQue|ad>k|%{-(T+G_(s8*b!f<45t+ zdP;RofV&4(d%2p8ZMvEN#7M@4uckHdoqd(H)4rD}X6-MVb<)0CZ$zzW-ib#g4Ulk~ zr0)!n0I{J6DJ4Q|nC19Lg?A+YH;mOhm+9?!A2D)>r&%EJv;zDcomtY%;pgRZNSb2>$!O`?1K$Lg>bh=e*zJ?A;$tA5Bmt*uZEvPp*Kyvf-i*guYtzX!%O9B9 zx-%4`S{2=}&McgCSm*V}c44=Wu-b*j_}$2*f}`ECx>Sv3rLcI<4FeH49!Ocr8F-=d zJn*QD6J>k#@)W2h&I7&(g!oaPKVOD8zs^{=?y!*J@YH`Pc(4a)z#dfHy=QVN2^K{F zxF>cN)Z2h|r>2s+1bKC8kr;d&JfeSLI_NqW$4w>_il+!%t_a4liat@Oc)dETN_9kH z>ZS9j_d)%8Z#`!|JC@`Vx`5L1?Ige7oDA8c3bEl-+|qoPg`KapNbOq5v=a|1xpbhQ zm>~x2X*o;?0ce`GxdPUI-V#y*daST7G3C@anxKJcYDCAzmM(?#&oYI^B<4hV#^;3- z<(7APXOg#|A3(rsRv2>zP;?(qbgV;15u%zW;~oPuYj(7nM(=bM5RJjAeBf`e<`6FY zl;Og67xG&72FM7fRv#{D#$1UQ#c5Il)up=F(WOI`#I2C6R`=xn&ph1Na~R)>;MGXT z`($bp_dRtQgIkdh^K2`3)3`HM6W+Gg%9qF3(+?1cOyz1sV#P3`VZ>%&+t7d&+s*`k>CiZJJ4jQSWoOd3t7m( z^1aB6Ny_KDmO#56dGIXAZZmDRB?HYIISvzCFkz&Si0HP(Sy|mo);-PKsGC<=*x>&| z)Igj{&|6OzP&fX>#7l9fMs;?Y|E%0yu1w<`s({)Jwt$T27yQ#-k%!!aZ?d6BMN~1X zt``+MPTAslFAWwpH>RwFv(dbbMi4{}K@g~_<1DF%>a`ZAVvEfq(sZl6vf>&JAnw@< z>zyg~^voYzM7>nImK+ej>Fp;1F7Z^1*$?Ezr{07Rk(!s@>50c~$^h9Wh-m$N__yks9^u-mW`DGvKDI?T_*&f4H!bCuSC`+Ic7ND*ShxL!va9>|E7}9|glG53 zqrrB+bEEcDy+KN+_Q0;F*lFj6^(ta($h{pk;Tr%^bgCC<$EHYkCMBB)^+*@n6& z#kxt!iu&=F6CCwqNsVAj=aFqm^=`DjGKtl?^EwB3L5sauu z0~Hclait;)kF#z=npkvgc5((oMOWjdSQs0t{{%17DGbb`FAWuG*ADN*&Sg=-h(g_!tYQgG&=FI35$p)|7vi*aDt9h{IN7v8HOLApc@^8}J6u*dhon-ahYt>jXo=UefYmZPA zP!b}^GEclApAyJWFrRM`FrTK&JTn(Pr@(xS(%6+VI@csDAR%XBqUw*686^uZk>6n=TJ&vWdDXPv71h# zV>V4k{@^8I1*&{8K$Ni_=BseXT8<>eEF9qp1#EuLv;Sx(YCW zgV7a0qk4i^3D~#TtwUuK%kK9b7miAIyz^Y1UTZOMqBNzZc~gq7#6im#IR#qTwTX#(qe0!7Zt{tQh!M>#(LA|KBD=&`fcp0EtU2%(q z$Apq+Ju}GaucIC^x_@0R^so0pH$T12cRPSeBDnd9y)di$L5alMM8$`E996Pr6*DiI zp)~&W3#rG*FwHSFdUn09E3gO8xrS>v@9vJtbDU({Pv#&%*|`~G$maaHjFyumwlD11 z_N6YY>?vjHcFu1;^Fu^$DPp7oaF8L^DnrxanazHQc~& zV&CRQA`1T;UvwUoi5k}0aCrqeP8=r9CEeY%X*5I|{nszfCW8x>74paPC`h%wn()T^ z-H#TYE`<)iFNDS0N8Q5HKU?y1=hH7Q2|GOfwC7VH0L89I8LAB;g(0oh2u~gU!^=aPbO!NM`ey6JwcUt^LJ#%+~V@Gb+rr8Pa4;4vXC|Cba z#Pj=~qx)}Tr~ZKC3vTU@_h*JLr)&59t3wb^=P!C^|PpiEE{Rj_wKVSmiwCD@q-4cdp?f4NN+PYs7(iL1Qtu`Y49ey`)VmUk!|saEJ_OM^^W# zgJVvbC5n9(rGfPn2?ODXq9#b(qp$3Fdp*SQ$iD0Ebk$66TTu z`e3tf$-Rc&(?yn}g-k-kxBgvHa;x*pNm+e%zDtAdO-mexBK*+N`~w1B=@>REW14Wm zh_=M&XBZIQH*z>lHbVDCAFO5|qM?UNa)E{esHf(?NFjvWqNsU~`u`jrrO%1CoKN^5 z6GluI13KzDwC4zJN?T5l`+I#oR-q*7)9gDt>Fa)I|4Nexx+ho$EyWeBKW=hs+lC4Z z*Hj=wpu;d3uhm4l4h>1Ez$l_6Oo3sfJ4c;6hQl!II*SI+%r89h)7LaZt&1k^^i~hv z!ODkN$KRSZyjHqVK|hS{wyEJx3rhvo)sNLUPp5{MgH>vPF zh=lP5!(;T}qd*x{^y{a45ezoZY-m6LHNoC>%?A0DsRfyih<4^h$rxNQ%E3Um=R}U; z3G3fF*Oih6EvyyupM4H-X40yDx`DC-3{W?$_?4X`CMNUxr25l8#-iR3PD^Sd8*dnY zWL*2=()mX8>Vvh`?o=r}dgbh=UoH8ZHZlT;dAloP`Q8WB_+G1jb9z8^lj|*y18;Nw zxy3MSzkIjg)@WIThP@*VVm->^z_)!kUUt?Sna{LFv9fdly=r=@WGH2Kt|q^kKp=2$ zpGJrMkz*a!bNo@M@dv8|uEH|4YH9cgD!R#VsoZ-mQwE?IDo6;zv~7ZmzRe!zFX%$c z#}U(8ms>;^H%4iqc6};F>?iW2ex`n2P6gu@(H=baosv|TU%RVl}qZ^a7qYR>>oPOoTx`f`{s*p=t*7`!u@zl|85ZM zDd_!$?@C5Ob^B{zjK|3l3_~vcP&es@fmit#-vQW0bo+BP*PzR_mteGzsY;Q)9PmZh zr|LF`fsuQ`9DRe3OKB{=?mP8N>Gz-0T~$Oeh}68Q-w10J@%9*eH;5{cFOK+c&> zg#BSO>a>m)f~EBfWMwUzg4%^2GGCKxDDTR~tbHYUZr*O~ROy>oh6+Tmf~pl(X(M*S zri!&LyXCZhfOah$I3c9wyVH2D{brDxIN35SByHbXAu|LLLV?m4L=p}+MO%T&5dUvD z)gJ1oVR}3*&;dwG67x#-VY=-7aGK|sljF@=GPH6X#hlvX!Fd#|l3)^dF| z0>`YWNY{T-^qQcqAg}!o&VETxl#9RLA4rh7K4wtPe)*FO?n9FF>);^eFMzIENM0<9 zSEdri{TwBh+dLBK+XnOj{z;9{vMg!pM=bX@J`&ti`;{@cwoKd%O`PA_GC3$sG7&HdlVr+G5#9qU_G};g7krMoKK6Qc0W4!D@6S3EH)tp zdh@I*4wrs)si;E@KgW4wzw^VU-64MycAAO^^(x?H5!^VvdP)+rP&!Va++cBhtK z6MR7yjwJud-_?Kh!xJ+nb%2ATX!4Q79ypA{kgMh}x$JazxN%Oj;r9zjpBskkpeZ5! zmuDx-ePYc(j4IJ>FB8ZI>nj}}Cz|+gr{pm;W9J9d)8x9bV%JA&cul2RU>I zREbAr)NK=o6qvhH@E+PXY?~+vSH=$#!nAqd_-}so8{>3<3+x1eKy9dq&?oYJZ32)K z^Z6`$_|;FVzAt^&X=}-F3j&^?PcEOYskiEp<5ty+)OuNv-r#es6$qBH(|>Qo$M6ND z$*X8NrrDNl@Xp5Rm>anQV^m_Fl1-xPR?HM&#W%i_>%XU}`!`)u-lI;g%v!f(=!;E{ zmC7Byu>X65R`F1!+QG8xIenSwFs<4+A*g5wFDFcB6Qu@&VjaW)WuaocMq{GwQQt?yo$+o6;3I51{Dw3=xnDCbA+mW$lK zxba)INdHH6veSju6kril#n*sK*);H)l0PkdMA%1ri>$``Wn)f^KSsL|!W6U7N+6`B z+?0@YJ1K~m8Zl&2IB>Sb@G*+pLr8v9_{)yi6@Q417X(4!@Ivp3ewY^YeOSPAF@ zoRq6<+oJC(lgOKs%Z+}HBF!3m#|iYr1iV(%+y-erU$;+=5xN(oY*|o)`c>xlLkR7h z?v)-^3{#h=*0ivtIx8Wt4gMlRycTEGLa!`(+d_uqiz1O2(p+U}tcL$3TD+NdotrBG za7m`RU8cFiGy@Cj>3|tP!rxc6g z1x!?Eg$03z=8g}5I3pN4c}z%G-M+{~zw zYa+G;z5Vb>a;srI4aME1SZDYSDuQa0xU+B4D^l0|*n!Oa$@+C8^)MvSy1Pz&23cv4 zKclS}JS4fi5>O6VVCVNpEeSR{OOmLkhU@0fwY|kWnF_1vS7xb!M6UKq`ThfyueIur zfG6kys{=b?535onHK>mPg({oF>a$G6H0igu=l17pB&kV)`V%(p2VnW7D&-fN0{&Y8 zH(?7{Ksmp{mJWBoe}@6p`=cB$@!uXd8=*z+ZTdG;$+6&c_S4NdPZZ0ibBA1#hb#ES zz1gZgdqDJ{6$9LObDi%Z7@pv|8p)3{XK#MSWGNQ`-p`niuUYS8KU)XRt2_?F?gxZi zCQVIuK6{+r*gofp4epC~z0{j0jfV=mBb}xJ2Rn<2v=y7iam*?Eqi_QhstG1gU?q#k z`Zs{o2z9*v*t8srkL1#N5dWVLV2c^hSe56#qwF9(F;FmB_;Q*y=5W_2)AAm#q3w@v z3DRVKmcjKv^(VGcngDzW5A0=()8nvSXX1Oh9UpFA7ri~0*+;ixR(EK(NPB6Y|EvgX z^{q!xWP!!Bc#M#Fh0D&*?W6GylR}gG+VmERqykEndxleUdJ6=XuL(J@fRJp+u71Ikta7_ERu>F|+AG zW?{`jExxO6>|%Q#u?$)9hUwcVm4qUSbW3i%D~c_8gCJ$<&-%mq?Qg?uhvUqmDwO{G2y|fJM+aGlR%Jy z6YDJC>V?Snm4}7dW}6dPg)c^LhL4o?_lNkbRDK5&<{S$BMJ!T*+d#?}f*1iHu!^}? zp1w_eZFaEp_k%(=LRo&^nQc+eQ`mkvqLSpzzE9ZS7~NX-12f)q7fS>Q{IC(+=P>G( zL{uE__K0-@sbX2bee}zi66i(CJD(c<>Q9kD2kGKGuj`lS?NC&j-!dnMFA7tDdsm4- zXp=qst$#ZUb5UXiQZyj)0d=DUV{hs`7JDWYvDbT>>(MYrzrLSByHj{w+wI?8bcf>c z0o7)Salias4kxBBv{z0Kb2Ssx(nMKvzb$6g-1i^pGk*m)V?POWeyr7avL1JPOJ4~! zOySw`P{{{{&iPx1$sZ;8=1NTlDPhdP)o@gjU%iNLMCHSZro@aqeyM0H5&nLyGyW=K zDN^5mw%C{Rq2bZOMMCF+l!uKZcVBpIrjAZEhvx)UJ{$(c`uTDd;BzvU&Y91gdwrnt z&^*(&zi4fIS((yW!ZxC)_01o0OT8C<#VHpNVp*W{E=hQS>0)k?F9`%GN?MN7H|C+0 z+T1~AdIF(IQASOoARH|GkadEeaa~KrdAL4NwI~S>JDV& zNYV!p*A(0Qyen=lsKmY>mj;V`j)sv|nA!fqeAj0{A%79i0WMQzIxS#0X)tTObSAQo zk~WXE!o{+<-e-*eERGZyN)81V%ku%c&0?P%V9v`xtq?ke1eYG zv@14aqvlINbb|9A-bKyt!1I#0Nm}*POX}9?i~n)qk=X4EmZZrgZG=dOKT`VL?NGCw zP@B#gP>mlHro^m1^N(IA_+pC!spD`pdjUGBYS=0c* zNzqtl%-G+VjzsfO!yJ6~4U~Yx;&`pOg4qk(Kc9!&3#ep14bXCk#ED3U&tmjU07A%>GBA&RtU+pv5~>%W)Wp`#t0MT|)dJla&%#FQXU$>!HTx) zB;RO$*PSNgkM+F5dE1QsamK^<%Wk{V_+9u$9r64sx3Yw<2G5?{XDeP>e>=AtDVJOQ z5E7@K;+|}AbO5mepUg9m$i6#Od!&`UE6iPVvzM-sG7bIe%Ti&b2TSjU<8o3DoqI`K z>|Gu4_o(w1KS1+pDQL1Cr%$4N>S|BWcqW^-MT{O{RjLyyM@bt*ZYXw3`un49#Do6g z#&->4R>{@4r<2>DZbYP^%3blz*taElc(MW$)`AaUdQb?IxE4NwJ#WcGOT8e!DMA`_z8tv$`O(}+D`~s z50FvI7l*Ud7y{?LBIv&BS@zI{*tX3TD2o-#Eq+~Je2PSZ&O%Ey^~F7>@y$y| z$__uuUWxAs)h-sgwTQ*HywpRtZnF_>vBDAL+JbSKKRIuY@Z0=3@ONGc-d_nx+?{9G z-Q3pfo-B2;6edNJ6!QG$kKYQcPR3WgXTH)kefg%q-?u?u0Y22nrfM?xgGV0~5)*#& zlT2zi9+c6!qNF`a5ofcRduSYuv+oT0zdj!2SBrnP?340xpq^=Q>fZk4L&nwB>n{MU z8t$}y*0;$R?^PJB0WRP*@MHbPJnB!Y`;j0Vw!7z5BCaOzCs~1zO66^Ada+Qt!q54T z>CE(})jnomm0LAj<$jvNeEs%A@=c1fwBR|B)r z*!QTNURxkWO42#tqRoJWYv?Avw##$PTk__&gKm*={hpxoORRlX1ucpC9QFqfW~DfK zz)8-z^bU(;wzya#91E$DD`>fs9%&HzPEYu7BfQvjSQ$EmC@qp$$29j0n^pZ_7~aTy zPJ6a1U?P7-AF*sCQFi_FmN8e-`oa_HyPeM&Hb-svoW3yTRZ{{-dnMS=$~IrUApRvC zN-5Tjy8fNW{Hen9yqp#U&*X{{SWmZDguEDzU9xMK-EzUCP(|(H%fVvX^t%~Prmr|| z{vAf3QCEBd=vccetPKc&?{Eabnay;lxD6G5-IXeE9Gu5gpukq&L4yz{<5Wu#^4bw*_-qc5+~uC)~EwN6Egr`eBp6~N3%)NN7_Zx{^viCXTmP}t=`hBd(s)6QjQ2dvOP1iThrdtXEhh-aB z5i`z#>OkX|&3_%(PnS3rcTqfbujjX3lXK3uW`8H8zjgIyE{RsT0}^{Ab=`Qx9+x8I zd2>Eo=Pyg^hrn37J7#0mgO#Fu(NfgoHPBII4QTcMn~0Z7O@Q4PiI9?m($W8^R~$H- zDm9!5)=c=;@~}F0#Ya+aF$w#aJI`N@KsZSeY`H5En#1Ws%5@N=6Em+x+U{n@mcPBp z{GPI{#(7(9a||R#D*3**Vz$md5dli1=8r8sb@Y?#G4}(X%Hni(c~*v%!0LYYUmR73 zHxgBE=i4qS#|StUW^31tE#!A+y!44s&LDG`@C=Dp0qU`uYS7Kf-s-Hl!}|+8&-i53 zpV1|1W%RXdM>4BF7|$tv@$Is)7UP_P&~9o;o>>aMy{(CJm5%IqjvY|xsxNNVCAuFC z8r^x>@C)d$*~Wp9b5yb5g;Dn57imKI-BGM)ZOssub1^n6{u7-l@J0ym6N z&}kzC$ieCte9=p#j7t3;w;4{X#1+ai)pJQZ)&I8>VNcO`bWJzK7V|T z2M=ZbGF)XLtF?|5{Ka22e{OwclUF;vN{|tkYGQ?H9hzCS&XP(0Ktd(j5HNC0kqF+} zKGhL--)N!=2*iP``HQ_HHYE;;}q`;&HA(VjW)F z(#p!l+OAJ-{#K@1$)}ZfO7aDzn{@_FL*IpEQ%ZvCy3Jhke$5F7DomtWuBoglnWPMZ z``RMyQ}>&!yn=Iu?0)xl-SJ_^Y~9PH^=p~W(^kCkwN`Cc#zrqUy5kJ)$xrTsTG-32 z*-|s+=f`?4ek^8$_XnIF*M6YUe#^7NTCBdvjw?LcbxfVG0wlLEi_tdAFF&q8i@MpB zTUW{m7Q-JtgKE`Uw~o3=7q zswR^j=*4pV781PcI5wjlub53RF747;uqUiNZVtOXysxcjYJ0^C)+1IzJcswps8F{K5mh>&d5yB>avtK6!C%3R2$Jh1oX6tEAT)l8P ztdgmx5H>x=ZXrG4O9cMWFPa}L@S8yUg~GOD)O_fLFjmy^t-es!{BdV9OKY*l6{gk= z{mbzm{9;Q)>yeHM(q&2<&x(?Y@@n@!bsPtUB`xkiAu=dqFb1PJ-6MY9O^>(UTRBiq zSY76~xJ?lDXNbdyzgzf0S)R>&xAN#Z^xxP%gzQ0(RB$QDVanvrWqcNsZwlthqeTV^ zm4DZRUrw&qO^&4ZUuEMPg$PrvfaBWEpUOp+#6F$Zazlo*?h=~sxm@y1cTej>&!cuD zjIORkeFu!Iv$-|3{%TkMJ~7)(HSg`+t-at=&d-o_#IrH)1x)C%L3GC_ zH?PgV>_gM)?WYs`ww$Au7hHgKIK zOBtIbQ|q23OB^#vQFxP@z|mIEW7PO8Un;S_^NlB|1Z$^piWCu@XSn;0taY{s+UR%T z-Z!f0`zvEL!?W(Qu{R=*z59h+)f5_f-G_b|D1?6R7#lkp0TR@o^O1a{TYL2iu9wC6 zrKtwFEQDujSSQ?94Blc@qDi!E>3%3->RIn%G2e*0B0yHm)I(a9KQ6e&?zp{JXGQNHM2P@|5hO=D|i8lZF>mUzzHG)-pES=l?&HG}k3{!ej z{-I6bn&d*MaN1fLnODPx@e=%9#iXfJt#fmCj`|s+8|L_G92JM-hi)!G^zSWKqFIJ% zE2OMcsY(WHzmok3kK>0^Pt54dPa=y=@jiwppQ8B+NM$6t zfJHaJ9MYZo!}WJI2b_9xgM5=Le>A0Qe4f{z%(^7S_yY+{sip@;)%*Y2 zvKzXUzun&fR>7#2o~zM??^=0*kOj4Do2HZ%36$3bliao9wHv ztR}v1T{HzG;mf2m%^v*qvVqlhQZ#DQ**O;MYxVV^Oah~~9B!En5BW(hJ>X|7@n(yU-SvX|6MCM>c(WhplBz0YhLQ_w-np3`4~W{$Hib4U1at=#0j2Es1>GLLNFl!nr|zxy z$C?YZ0Dx+?6eOHt5-NzDMi3#!-*5BorgJxuZ!w8Uf6kJ^@<0*)+y-pE$mmBPuB`>? z{z0tod%az%ONXyrjeLfn2b1Db%JTDN@}A{Q{YNBrii>idRHSoRS0EQcy1A$si;vEw|1?Ia@@wK zF`coGzm2Q_kC@MYF=ngFnW%(d;Vr*+P zw74{xe$=b-NZ??#p%xbW?&c?(sFL+Z+H}eNn8iVapGLDywM>K4YcW_x>s3$qi6OHw zkJN>*TxGW(eO(c{M2U|$Uq zFhw1>O01dwd_l>O&n8t6*liDi0iCp1k&Nd-W3}V@lID+euJYo^4lIMezmNIoII#9| z%j&mB3>#Q%(Gp0WPK47FYAs+%I9JtoSp3BtiF8E$O>sy6`-kf!HvKkk6r?`QVRusK zTZ@S?K_OF0inkX2INz}T^%Ij){ljUo@bVT1*9HDNLM3Bh6 zYC5;{#j0irpO?kk{aw#dhFzQv>hBb5RzkjEoU>m;XY?RdVZ~5g+2>jB9hUNmS4k;_ z8P*e5Rlrj#;yYH{U+i(T(*RR5M*pivJw#g`Vpexa&0a8n*t2Bfp zXo>^Oj#<|+N5!Q~3OrYJ&jKQY>E*Gk8mJrc_nfs4uRKZaFW9(Hb~W2#vFCYZu81d! zek{yR=-V%}E4QBY&HHC6DGcqPSJ&4!#h774_euvS~a|2aKg1=e)dbxz~y|-8oOUjjOSuIxX0h zBImsW>eqSS7c#A8{(7dTIx#wS8TV=A#j0VoG7J?hFUHml!Nm6ok}Yh^Xcv0qRX_5c zMS7qBvG!?AvrVVwpkcXrx6kMCw3(6XUO_Q^IZKs(Sewy%Qp`E&gQAi~`wEE`JyQIA zDCPnTnw7AxGMc`lL`-3Qxh*AuR!gNOf;YDu4dBKP%Vsm&6-pQl=q>15o3%HgCCU zCc9jW$!)09Y}eBPu`;g_ny?-3D;^O*bvAKiFt(;S@FG92V^y{G$>K4Q5S{pE1F1Wi zttk$XdVEU{Co0Gs@GTY!Wm#KN6Hr%5-yyL-_tO)fj`SE|lpR*c;#eSq0cH-TO#b<6XoGrL%@ z23@Qm4SmMZFN@1Gi8-=&t-aFvCzgAdowCaKt1jyN+y@`1Mx;He|F%j4P9H9t_Jo(d zTK=*JZF%3#=;0m18s{qFV#;MY&lFrsRoSsM#?Pvk=+4RNrnD{lHkJg;yn1V zk$Zd|eU`?gj{AF$bRbI^xRdu_$ z9iJX#5PojcDHUU)KFQ#vta0t2?QRTW)AKXEDN7O_ib>v?+L^v>tI78sGY2foVUENX zVwI+)mt&1*_lxwi7C#2$I!-=By~3&LoKL;pb?~&QL!{j?Qx>*d!@?C0RMmwEkdKhRC3| zHF*e~@x6Ht-FhkWy%mwY0}j`=pobOD6r!^oJgJ#2=(% zhH;qQ($L>&c%8cRwYTNmsUdvO_-&ddV+47^~KrQ8*}T?gC{-=Cd@ZO zO*O(0o-*C8T5s95{@eRHV>%K0d>1{GOYcpE9pg{o)(snJ*BZmN6!V5T(=NwAG1E z9`03t^WlRqAJC+*74f-4Y{$m-{RSC&elcao>{rqo6n6w}9_ujf6GKc)rW>zWr{q>t z9M?kfMQSF#5aDh|D3kFJ@jxPsNG#B-xF`1jULEpO)M zBnypb8#e$#89%-M70n(9t0PCE{1Wb!05!RIglfek8Khr=J?_%y5sO;9T!#eChYRNj znR9Rb(;W>kov!gEIwkkZK32M65p~nGZ)CrUVbxE|l%-YzBxg-)z ze!$^3IG6Nu7jP^Z$qDSaKZHT!*}zMUgJ0HD6yhU0%1-mPunAo@r?R}zA`g3s7-HUqkxtESJcrH9s(0PUJc-AY()$+xuF;?_x zO3OBMN2YPzhx`ccf#*@d9zgwcZv5HUS{B!U)F3odlG<+yquBVV=DkJwnX=9An%;zh zU3y8ha#S!0+i0LDooN`9haQ>A*eh=+WXM0VMxlmOVp7^wMWeF!(HmU4c64Q{()R3* zG5v7q=ec@hi=`BXD4q_kHnA@TgM%VLVaNNz&J1uQ7B932uZ*$muJ=_eu9&4qVV8-u z$!@ba2%KyDSZsj*iyRL8l$h3_=s5c161) zJGIPwa}U$6Ay968i*@Gf$-13XOQlIr!VfVh8V|L)k!LPx{7vm>Ug?DE6f*u_7JfQ3 zUYEOxx@W7AP8e-*%3Tt7Zqt<2|HVG~ed+$MjS8d$E8Np10kie&8T^a<9lsea(Fb4h zxCrsy<2I}9-yc0l?za9Gj#6hq%QwBZbI|U$SJGbSFKW8Iku~TzWspU9(T>>gey4yz zvdkYypPF{HhAGUl*$Kuab-fg{4i8rzNLIc_QJyADKek#zThRSYSypAPtO}RC`@j*3 z%oJsIYj;zX%ZeSPCKOqwy&BM~(7&L1F zEtO@1UFIZ%W0+@j@@iD14PCopn00x}L-xsBgC5FSzWb*qlJEnZI2(j-jlyC|J z#e}{624gLu=-=0;KRL*`(H~UUjqaiviz=PMN$6b)Wm%i+X;;cbX*BsHd(LVwWOX$| zt}^UYJ7+$Uo@@VeoW+T8MS9v(DP%ztw4xl?WS0yE*VXeB)a}jN>b7_bu5vNmPG&fiAKrcDM+#BeX!lq0Sy2wi? zw)TisI$>?p{P%XtywUX4w-O`e7C`MdA-VGD;E_>(_r63-dAnEEcWZ(vbg+-^Sthkf)2`oQGN(;f)I#%buiNX3 zEs-IVVp|`_zOnBsEVmmUluOcvlTA+E`LN%HvPjLuLB~(~yZ}zkySAe~%yYgRWpy1z zlzl*gD{Zwf{oqnebbBP%P1~`H+F|QHk)9}Rs%V?IlE#QuRVt+Fx+8Z6W#PZ45v6QS z>6;#F$>jL>r*JbAvJ8zg$?B#`{47N{e62nw+IbY0#jSDAyL4PszN9h~+whQkd;4q| zT%QhT>1pCj!d;r)oW@DFqs^S1O+W`DRnL-4<&~KP$<~mrY~8HNgTFOSgv;VBorV^L z&F?^G5nP>~pYsWQE2U>d2e)mCUwV4;=&fS4vKb_rpZw^IP99t}2G2y)sX$pxX;8@$ zsw-CX(s|}0^!Te#(+QQPm(OeMvYocl&HT=Oc}?QSGnr}kDQIeBNc|}Pr3h%G1KXTy zP}by}*C*#>=|wC`9p^8IHD)np5lViLovgc2=5HE0t)f(}A#6sKt$d#%(;RBf!K_wE z)8=h;DwwY?ZyFAM3-pL~%GIdAzDcJ$wDyY>58b7n$QJe-;yJFE=^-)ra7}H?Q8S83 zKDQ&H8lYb~m_Y@8u&8=Ai9Ok5q+PSc5=OzrnZ6@#Nk`+@FV;4Z5KwV+BT4bSD>wZr zXjnfPHV0BB52zkkHxR_XW;KcSi(9)lSuA4g(9v}x;lrwY22`!r-%<2NpVY-*v&YTVG2{;@wz+u16}mg2_kX5;vNm5%&^m{z*&`d2JcEKqekS-&iAHpy7986a%y(1S)5_po!H-5G+vZZ5&YOS zYo`RTkd$tv- zDh=(ZRV`zsV_(ZwCa3L`Ay<1oR&A#yq1Taet5ZgOeF(btMSw1=e!z9D{DeLGY!kP& zLYk{W`ft)|J7*U;Nw0+d&SHQ3SvpSp2ogTOmv%Wf;;M_uq|>n!lx)Z| zv~aH9eo+%ChqH=IL}a^v5i6n}5Rw$_9Pm=ZIdi)c?HgB<@4lGVo?7#T?({(EOm+tQ zxhE@$JNeO#xm}WMg=@SUnq>xx>Au1{+yjCm!Q$JOzNnM9KE~c<*^y+8S9i`{NY2N5 zo~?#uJ6osEXP^0VO;O8I$a6nz2L3(g^{X|EfgDUL?LlJm$zrJyu(VWmzV{sI+SeF3 zRmh_oqE?tD8Lns?4}mLVWK|sG=gqFakDS(fez!r;%_vxWhFm46kmed&e3!ka<(&-s zm&`(*Yu`Vh)iQRbEW;jYB*>vf)GWn3El(wuiDjv0L}q`tYilew${n1h>`cS%kCG=l z|88v?D_hz1m9w_bpW9%pqve=Gif5+^YKYCf_j+#JR#XP!)C7I*vQ7tRh))3Xqc%`` z7cN%R9F+UjENwj3$fM;@s_O-vDY$Lf>Vny9nAJ1i3DQQzfEDV=7KFFoXEcJU@VFH% z&`5uOk_1}MIKHc~Q(SqySe`pC`Wu1%H49tFdGXIibpA|N8@Q%_GZ}K1W>X(M-dm1- zk|U$9MfiAM2%@3tDxL1jx&^(M<1VLgKer=2J=p>QpEvZ&+y=NplRiQMWIg}$T0)E* zb4t(7XEuWB8>s?OYjYu62%ab6x4c1M0iJp^dws=H;srx5Xw?0KvBTP9NW zy_w!yvdT5`cTWyTeCeX@GnAR9Ut*_H8h_+FTO5%dq!+V|p2#i56{1p6o}J>#Q?JxV z8?-0yXgnr83xiaVT>8=WDKC;A1@+N!f88VgaXqOvbCadOPbHQ|al!Yz2!Qy5_ zW>_I$0-@ca9BebyLMthBplz~% z6QP&MDmi@6-xiwvJ=YTC+I(a?{Rh=JQB<8JJ#$LYCg0960F}1(#=44auPpmkvop{>ABVJGS7BzrPh2K2nI%gPVUz$}nlJON8uw=)`-k26%Fv&6I7 zt{IK)L>hk6Z*k5qt~m>m*e3Kt?#ZYocF;l3XW}+}>7UmnzE=EPkkAxHhje}pM+j$k zlJ09i(Py!l9xN*v$ewhlLD(#i7O1lb3EpqNTdaqFdRJKa&Qqn1woKXFyvTIzE`#n< z!PJ*zTf)z+vHokk64U$AwbfpYBI{u}X7M%sE`Q1Ba^X+%lI?GG+a%Z=F~nlTXgGBz zL##}uWi;8OMW=CdV7% z?A7V2cY|JtI=q%3L`c!sWo&yR!dP^-E$wGfw(DKnZ$4NhpqzJ?JkxsOE94fr2xr$W zsFkU3>P9Rm#CYcpUeV^x&@R*Zx^Q+5=vB*doyC#&UhXdj$$n__$YfQLkG63s@>~~+uEZaqJfK%(F=(~*4MGG<%;eOr)~v|jm| zv29iAEK}#s{+z6MiawOI8O>-N?{OUuox5y-uMlyQ>=@g_Wz})q(RR1mTFI04Mn}Mx zo%}G7PWI{WW6uKQq><2Os)u>JPIa;5+<@(@`?A)e{=k3k{yXr$6x&pn+$s9Sj;U{4 z`n$U6i7@6F1R3oy-Di_JZWvVojE`UX^HC2C+jvg*TYl6LL=hY-4Vb9e!dSU_FT{=B z`PnDgfm$cCh2?g<0QWWhh!~T95J=9FK1GOi&VQ?yc>ZcB=Stgr&$;CVZAJ~Tm;#Ho zrDlW=u~uq$fl9C;y$E}3ITtsyYD4$#6&o8mK`EwVn1_>?udjq}_V}3%XDY1F{eIQM zdgJdZUM0X~5OAm1^|VuOV_vSTT*|4m8{tb{k?a;MRy5b!WE4Q=x?OLdPgnS&43$K= z@0U$<{^?lz+fjIUm1;fUSzAvvZfas~mp&A>t5}WRDdQS@u=({x&OxR^(a?kc*Juy`dY-li+u=Gol zY%c3ux!aSul(g`FPw?VvyRtgdhQ7aYS14Xwzb3-9^jO;df;9Zb<;oQe%?b|c<)mIA zq|L>1+T~?$7?6!2$C>$cf$IS=(p~v3wsJf0lI=?TG{fQ|McYiC*2PBEhq(_|x+>

CY4akD?k#VUGSL{}VXP z6#lkh2k*T-R{Ul6fwO01Hcc}ZzftL!+y*0~79=mvC0kBuQ!T71%VJBmMqHJaJ=$-0;^@!l5_AzLNe*2%o@*A zjH--}wCq+lXGkQ5`u2Gbh-?VaG-`tYb-tqZ`2F!_(_pizKE%@kq>tf{`R{~lP&{=F zN$aYAAiEY=K}c)u*Z2DyS)!5`87R|mis63$;R~A2vmayqre@1k6$;=S*I$y?q9S**mpv3uKn49vH2&1cAX%b*VjJi&zQNNcGox>+kw3S?jv#OXDY|l zouS@E3HidYo71-KtY&Q=OWZj{6SzfT^EsI6mYDSyryh-Q+K!A1ua`{9qdUduvW@J9 zIW5LtU0Ira#!Svq2PZA~`Z#L(E;GCZc{zm`u`pjk655@G4)W-;?vo#iqkf;fZF_XY zZ;*Kl{L{4Og%=)dqHOi1&KSLz`IUJ~-R?`swxwR-&;tTTczfJUb+c>Ul_Q!oW8+IQ ziQ{!=YJdDn!!&>D8yLc43omB>&liIQumy0CMz3?!$1eGKFi}r#y}#Ay_QI&SSk)z6 zIk!pNafQz+KpEX^$<0V$h`a=)VunEeV<^J|^_MTB$-e&eYxtl5+N$))Bs^Jh)KuV&u5unc4ny1hunQ(!L`iH1CKqaW_|>mhN*T3X7w+)8OevDKhiO$sfdyk zu0LZ{8%j!|2v{AHf{V|gmP3QdfFBP2v_VNVrF6c?_=Qfb5C?1xfR;8lh>kNS-$XdV zU;wNX>qVwAS+n2Pv(vsG?p56^moDf}H!9_Q?{7b2_Jn8B|41yp3xQZ%!|LlupLrVQ zs1i+{Apyt+`Y#wCMI_Kj!sQ=37dSxbFYxLIy|c(-7-d~#P(@f%7zsUOMW244m5VZV zHGu2r+x(x`F{`q6BdKmr(l3ackS_mX6St9yZC=&OB`oU4O{oo6PNMmaZx17!quN!I z950>+ScR3;NnAC)L6x&XcsE^+Bk?&7eORenJ4X<2AHxEOX5`r@tp|_uh2|?^{g4%h8O8(6l?_?^1ad4 z;X4r#Bj@HUw89eH4(=~EB{VzyW5ZVk(nfpNLL(~n#?_+ix)<8Mm}7(TuLk5-Sz>G7 z<5K-)NP~N+J*y+YxJ3Z!M&l$|(MS9#&N0qub)1`XV);y&lmr>cQ+f){5$|a#S+ffF ziI3Lk`uVJP#BN63^mbrm|M|}T@aV2uqrOLG73!2WAVXgx&4F74Sxg*)3;B$U=%d3P zlX1X9y{CeAU-H@Ae)0O($sYdJ%M%2n{=E--* zD(d<0Kq}){pnbG?P=$E>Hbb$XLh5rjsf&uiF4`##SipRAe3w7NUA~BG6rRiE+-g>o z-=)u>J0r$U6hiYnIP9hoZ3*+h?Z%$l^W$etTxD=CsF3-`SH6F)Kh~XQ-!Rn4`aFi0 zYpF$Pyt6^V-#xOU-n7{u+Uvw*sp9G}$UFe5M%g#;M6B&#Oxt{wGW&XN$4mJp;}uE3 zO$Ap$b>Zz zQLrDY)^$*=)%!6nMJE=;B5oOybpLs5AU=&nwLrB|z}nN#AH<*n_jOZE9oPrXrow*w zPy1^8jXI+MZ@-KbDa)QD+tf z!STdx6n26_S$Q_j=SlXw?EX3N-?;qYC*y0Fu57$nNM6T;JpMD8ur8`=F?g zWV!MoEKkhq?6fd-%SOn?IP+|Ex3#iq+_S6#sd~#zhEil<%vK2;{fBqHIRBFeJHah6 z&dE~z(>~-!YkU=3>7lYmUZ(6M8C^P#k*ZSS?n>>g6$pGhjG1Ey9T0>UYT#PPUa<6q zCIVr2Cb{XKldi9^r~Z6BK&@q8Ab#+YWX7cUA-7G~>zhHR4Dg4ezI;9A-G=Z-dDx?8 zW$df=j|TRb=FiMVmS&98Z4(`H*59v|1MutC;YU4GHbS@Hf}g)!4wI6vKxdxojEt{V z7_Ops4voBdlfs!+QH#%DASK#++T7<^=CcQb_fJkln=89?6CW@0?D-4CK-^38u=D53 z#P?Um=efG-*L{e<{>vbgBX4sxn~yDnI9P_lCsDh%U&VqDpFaJT{K<>q$)Smc)ULJM zq1kDT<${Jt(X@74uw-8)X}MabGQD$}FTX8e~ z?{DFV+fv$YzMJ|yUXS0LaL>Thm0<5$5MM6l!aVZ}W#XNP$P~6mX$^gQnIXMIvgQ@) zNhZh(wHu<3U+7gCUNNcyFEK^~nr)+7R;S$!>d;5aE#_fWk8FJ&46U&Tv zp3g2D(up%Fa8bu8 zwE?UC=htJsi40T);2P&KG9Sebiqe!>EVKAUslT#?hnBuNfN$35cahpVy7JR6{qZ;Y z(f-^M^x2GGR+w-SXDyQ(==zLE${KHkk~P`7W4#$WzHn-;>we|8ArDN~mYd{uEu8D+i<%0*K2O*I{qr z^p#k?TMur(ZM}SLZQ-HqSj4%u>~SfxCR2MxVrd@Li73MVqNX{GVLnM8`c`!RB5E*@ z`Wj*fSY#>QhK3 zFzSK1vk{_sk#QA;>q*UWvdQ-AOLOwS`i^u6T-;^a`u*cWL})#id>l2*xYl-5#z)wr zgCO-+V#_vBi5jo#lSiT((4NG(qkO;IBvy}|*S6WLCY4Z#&)uSi@CPcevK4jy^A~wY zospGk*G2!cvRGtgv`tILE6YSy=3_W#R?vB4B*!fAeRhNOWrjv9iOX?9Byp6nRj29q zv_m>Fo^$HGq_J~inY_Y@Nsh$Iu*q8NMs$VTg0o%J!#+bIT}zSN+DYcx3({fO(vj-N z(U2iX!(k-Aa|aU?*^_V~4R1`Y-DPbg(zj0;PF^S^6=21qOamVQC=QOblGLkTGx^IM z@9+{9TZD7ee%(mTHGO2ek?NZxjP@C=mGbA138Ohn!+wPBPa29CO@=v*8z*z&B@bvw z5`ZHN%95c?oPzazF}uUJS92k7?{z){-dYj1NmIjsKj)ELyYT3_g8v#q*0*{&ql>j2 zt7ehPFOR!@t9FPOPHOyY?ZokC7>1iYDSe;7($&_PJ_KBf_jXKt5!`T-uQOdjNx6C% zISOzAwlcG|0`n&-<5j(e5>BOner=Y?aidz2yw(~GXa_!0CKWBq4$>lgCJ~ZBWb5CyBuOwmXR*6tn z(`0c>#1efaYjXuk;Yc&N@JwKIaV+PQE`4QQKfT@GAEHfi*ILm^ZG!#PPlQxgI_D2C zULVTECc*`B=0@Zj(b#tNs&Su<3UQHDC0Xn}7G?L!Hf_c6DqOytO10<5O6CvkpPgL_GmF0HPJI%lfHQs3lsoe| zA&ZXLzY!2vqI=y6@YI6hXJ3r`M@=i2$=tIXVn6<<~+ME!!qXMc$)yGoX0u}p3ysq-B#pjLW#Ho{!9 zYn~}ge5k*=U6$D8f*USIn>>7Zl-|)hFjgR`i{=$%%L^5xVLG@kcy`6Ow z)WhHi{A~_BJtrJdUjY%73je0SMdY?$;4{h0{O(g z_u}ZvpExNA^2uQ|Ub#^C6> z`#ZxyZ!v579V;4y0k=>f+JWqqKjQvixg|hU{S{8_N>uo%zZ&8+hBLh~U1UcOi`%1@ z6jI=9#GU?Ijqpd{-ioHO0ULbm3CKk0{Tu>Jj4L+IGm<$QO+JY)d_K97FrPm&8b$c_ zPT(;t#y6VJRs(j|p-?luG{QgaIJ#x#kc+O0jJTZ;Rjhcig_ZnB3@;*{Oq?r)!r3>% z@a+3fyz+i14QIV=7~4NNs@XrbIQE)gBgnolDk?A`fj|Ao*@2IfAw|`N-NKd#L zJMSwQO|dGL$EYst-lWu1rc)0R+(|?19 zb7d|}lz5Ii*sMF@WeL)W@2OY#+{{HnqbkNQsI(tjx$ux;v}-j6bXu2@LL8mrm%L}p zS6mS4m`*i)DcLXiXP~z70e^IH*^`m3#)Arwl6~sG@5si4%;=b}WPS14>;QQl*F0&_ zM!igbb5<$mb8uc?+%SG2`-5|^X)ikB5LuZ1@A&UB!Z%V*-XocU6}p!zg1A|OTL$iV z9JbC#_PBmbdpq5Bxg+hSP;+Dxb*?wP84`&jnvnF4>o5JzI^8Z#irfi06TF^0;ZumS zkZLf{{n?>f51f%NhewY{2y-oS>@PSb7PUAkBcQ|GIen5@6WWRX|@+X z8V}_n8!w~R>TQ_mOs8vCF8!(G_y4qP9W19k^^c0bG~exVOd2!eDP^)gY2sE@*;x55 z=^QNa;>_U8BmMDQLUz%$PefqR>y+U0_v7@O!r(pUu>8}YXv}vq5Z8L(iC|qcyAieZ zs;!b!OvQI4Ce1(M(j{7tz|0*W0h7vKwyVoBuf}H{neFB~YOLQRGAizM26a%GM<7Y*I z9DU>5IYV^fW77dQMZahdg|4xcCqCk|A95ax<@}O8xuxO+#<~nN>!9aLu4sL(C?w zY_3HkH*dCD7i-4M^gWa9krs&k42J(oXIPmB|L__8&HAg%2eL2H%)?VEABQ6{Ajh_8(c+0ZrFnT(4eV?*`PC~*J zKFU86g6)Y_RaqiE+B|`bZ3cdZW302&Y)QN4Ok9JwMc3c(;A4n}W&{`DmEVhT-0+(G zZB!9gq-Zwd3Qsk?HCf6cfaW-kOMNSw%_kas$^>e)hwQt?A6DZjnHT4AES)gFWXvOy z(r_IgGw|^JEja!I?eJ_Rw@W$d%(Z`gdKTL3(SHvTC##BnZzHf_2}M`* zZ$C9~Jr}b}YR$*&zCHd25wS^8fad*xmUH&nB-wr;r_n?NIE z&1p?6Nxzx>G24O1wqo2B%OZXp1Ue0I3rPv#5X@TD`)WZ_*X|YV4iakq?6r)xwNKU8 z@6n$85k33)zB$Ao3}4j5G2c_fF3!%iIj5IO>2<4QtwQKbIBmI7q@4EM?D}M>oI6_V z=oFqlJFH+aDS6b&GM0Me-9y(h`t^(2S;ldNO+8kklXA2DYvhoE5@dOpq%ru0_8%`4 zM4x|IV&vHCFkn-cZ8qNHk)Y&vg#pnAj8vVEW92Z|62^;|ae{j)=o{~zD`7SyuOcbC zon|=lnE^fne+0*o_wXtdY;04J>Y@X+QjDYMzGC6S(eJ3j*-nN$nzbVS`!i;qe{t}T)DY9A`QTGf2n60TIiHP(YX_hRL)pz?fj(HK|F+;NyY0Fe>WlziVDP>A9nt4+? zG@P~^kLT@}yyPbIzn;S?2F;7i0HR{NFo?y%pDXMAO1T?TZW8n?{pqc=c{$d6uzaaX zn^#W~V3qGpTO*G7*6xl9qsX9aR{!1Y1&Jga@MDSp8PO6uWxO5MtoIT;qntl`tDh^L~P^+5!cmks^uyt7c7J3g7FF zbN>_P9sZ0SDo+?;Hb!6bqUZbiT{z zw3XI4IMbDR>n3MSLrz2G=H_c`V#K3!amA3y*k~ItE{l;El9?1UY-SgOWO?sat;&DX z*_9fu)47v%oO^-|V_65^IDzkhTPw`swABc+&Sia$$v zFPEbp?T)j{I0dg!5V=Fp8ozdZ)EBCkRo$KL!*YhUX1nJCzd@f$-;R76#Xzal#vL6aAD~hF~l1Tc{)d6Uc8ou1w;j4u8M18>% zJ-kfsk$sr%vD!sr6?WG#-YMZD^?{A(x}5(UzM^>YX%7Vk3G9W#MDDQC?Vk@Zb9!C( z3D+pdpN@a8`ElshV*x5~W@Y6Zm)uD@tJiB2I%i=uyA>y!%%Ozx-3Hqv+RJ*k4hCsR z{f&`u;HswcSsPf-%DO5w;&}6zLKK7)N}7>Vv^}k9eKz6Zuo@N4)00=tqiIguE#a@^ zb6JTxgX?uDPdNxX%cJW=r2av$o~X_4Lx}O%O2j$27Cvx>29EUeATbWIngixx%V;u^ zuQhID?kch1wHI@>#rJzZ&8$yUJ|}2-ByshO^=Haoc7mRX`THOsV+b)^dt}Sj%@3Dsv?9EU<3gPkBURN zl}b~4@%q=P4a09#)^XwqaX=jP&V~MDeF!}h)8Xs>+^RJ8#e2xa3&%fx7YE<#@auR( zIMUSJ;(wnT<5~S~N;VFNP%w>gOl;UCzu0P4Wny@n={p8n1SGT(f0(((o5laV&bgkO6#Rq#V0h;V+fM(yC4uz)Av>vmPHcpo#v(Va>ag{i9xl&LAvy3O!XE< zIqadlyZew?uhQd01uOC?Tpz+wJ>1F(e^;AK3)s2+!R(3ZA0(FF5LOK)&#);I55ap1(F0BJ%RWYq6`R z2xAqoBo=IWMt;{-J;ro^6LZMUKI{qsX>c-kh|N9+*YS?5u8Z8EWBv*uBKhI&{$}f9 ztn`E+0Hpu98mnl#gIN}Ag9*7k$cq-e=L@bw65_AiVG~+V)#ev6r|Ec#&PVmHxO}e)@_2i86He@(a>PxH-HA;ebpnL_D6{QE_MvoF z%E2bQad6J9kntoo`rYUQJ{F#$<@IxR)JtdOqeiQF;cXswf)F0v$_ucG#&@Su--UuS z$uE&JBbO`+@l|E=)cs}eYCbs2@bZEp{02+W)LF>5|`2~U#b>g{1T zv2iaSpTkS;0C#Hil#e*R5E)OA$f@sYho(#&GzBBmL-Izy6Cn)TdIoMTUrvnI_fbtH zekap0^(8z5ZzGNqBSG#DBW&UUbgA5y2Wir&4(dl#w<+QxNwoU%DyIfllh$fHFoE9~ z9*aIhP7=*=kH0bu9!E%Y#8cg}70p?uWKu0M2=E=L7P95E+ zA;;)i<2C!>gu75uE`my_Aq{D!O zBxIB?&U^7ZyQ}$7ac756uqvPXi-p3IM8(7gZMjfE3KCdJbYDt)j;82!4jU7>$4@&f znj)DcnT8z9*>SK5=@O)fC4_SV;N1XG#h^K=3%=DMX|knaw#(U^RC?!B7{1CDW$gjO>h!d8Ih z$e^3xmU%%~x%}PZqIzsh_QRK)MMGfx5&QbN^-J$W620B^v+jgdc)QOo8=Aem6k-iz3L=|aR z5WxXNSkzq)mP8FZw%~Bb0WnFeC#A|Z^S+eV-WlAG6Zhe4i}LDhFK*Gm7U^1I!jNfVm$H?$a4C@uDrjpZ^}oYOYmpDYhdW6U9Cm zWv($+8^8b%bU+?s8$q5am;KoN!gV$0EJ>0V0GZs#<`7WE17B^uNDKQgBXS>d@rJ)7|jg>2fzV zBDOr&Aa=%9?+`LC!jMV{ZZ%OdvU!Vqs`EwU=f^+!bMY>+pI_<*jOcL~^9(-NTXc>? z8zx8FeIhogJh?ob9HaI9Iy~6hMUGnE^-geFI^)kH!iOgpVKq$&!a-xeT^6kF%PK%A z7ETKIHrXB}9Yo?4+cPvfl%Fg!OoXi+=D6a>AWLSUCM{IK#`tnQo1v4*D0e$=m=*3+uGVK);{777D9BB(QmzQIrhGdn`{FEd=7ER0=(d_pXx-jW zgeN~x|4|r!i+rJrHFTeL&v9h`Qdc|G6@VNQ?c-~g%8<|Z{$lC-QMX-q=pdQ7+7O^4 zasUcmGmqY$uj+ts!c3Eew(hWB#J zjw0+3_r959#d{zn-gmqFkzvPlcXm9mPLRo)7b2cT>!uMj}cO zm|{M&yGWPGinG649r((Yz6DoO14uLCc2Z@Meark{n7$sUKIV#t5mGGxI3nbXE>9~2 z?5lOQ-kwz;OXx+5cz!Nk1ZJ-%s{=M4t~!2_?E19`JQe!ZA9PVNegS$jZHZp1GrvSh z9RBbYE!WeG!va1JsirU1v`5xOHDzQJ^op=qFWdvh!uc2G#Xb_nSwM!-Yr6?-d2@@>dy;~Yg}>d2_}T9h-jf@i5c~;B&$W(Y+gz3RB~|HURjsJz4=r60 zv|ERj+_JwfL^_9Phq8kQttRvHGAW55{BO;uJDsYC@eE75)x2ouO8nPQreJOu8v_PI zIDmal_*Y8&p!J}wc99QTaaK>Rwms7f%zwKHFS5~b>bg|}0mul`3`;}46zHv{0JyFF z;#s+kTWRpucL7KyhsY9uU1&j(f7XfjWx{8b0UTlkHb0w4=Ms_3ReEKEAynpUh*3xD zqQwEc*=f)q_h$ldVp+v|IY~VF8O7SZ@WNbiIEt0nkN)y2h+t9c(u(0qU*{`y?*s>Qnn)z}VH$@{w;GzD?+4 zw7mqNrfK4Rd>Jo*bBNqynYaJYVe?Nyaa?CUSP!O>AmLfTV(yGEgPb}_D?0>~utXwW z(rX%qe@7B@yXNy3Isq(s=N!jg`r?C5)$X+{-_=;j&$=kdE_z3qh>2u?En7F@KG-$4 zcNBN)G_))RNQ$xa+@_pK%N>!ByFF{IV8d$mGgl7;e2I05=wIf1C((Vpl2G*(2uZq} zw&y`x2LUbLyMmjmz(Xa5dhYjey0dr*#?iHF#5~A2!S;;%^WkQ*bF7`tMA!?;_tq8I zY1M0dEzzRMR2O2Z6f?gKi{3a?isylDR_V7vkNHK+Z;I6MzdyLo-o6~+jeC8vOXvOSVu**o7^2q{_^@U(XUiUnCQF$MkxNpr$t^-sb|FZgM13 zw@%d|2?z7c6#fVJ&x^vQl!kwV=1z357v{H%EfRMwq6JWfPg_?(Vg^&ofHtHTM`HWS zs>N)^7ZJe2pO;`W6l>dK^C88Y5g6m_0l@~;7=7ELi1U2vPQQfRi&bQ7mVV%b?;QXE>Kc91e#CpMeMUSj@Mf# zv>g`7{qNy-4iV3Yx58(rap2Po3N?8Ou79ygl0=mB_q3g(IFy zi5ihMo@*-(9<&M8YkR0W+0`z|ZHT9t%B-j>s5+9cMj<>Zr^4Vm7k(_pef0bM1f~*{-FT z*!JSg1wMAN#iB`)ozsu3M-O6Jwc8gf5Swl>dCYK zYQA=+<)hmaYN%Hz0VU(dp};XZ2GBmA{DAv2>pm20qiJU>r_aT%_b@WNqE%K)ZFI7W>-^;y8>T) zCfQo8Jw?Vn@R*Q9=+aqzB_jZ7To2Nd6S0*0Hn|i5FXjRg7#;M+2#@! zMiCxUUboXBFQY}zpa)qB0Pn1u?Anxnlsq$?v9xj7M^QnJmg0V(9-PhmG;P5)WfA@p zj*35zBwDY{Zd!tUUSm)7}`U_JWu>k)~f2i!a*kya(?kESj}n#Hx>6 zZskqZZ6k`wlMyzy5+}yx_+`3Ac{d|hM?0F!Hi=JfCSk`E4s8{qjJNK(JLfN_L14o; zbkYFfrNE;_Oi^$n1diSp<71V_jEtKd-}7R4T6waiXxX%=@xB?QxJNs$tTLL>bU;6| z=!dUiaUpA8_$IUWcs;*h+hJ)EzZ9Yjq?C+t{!KnOJZlvPcfeD8^}ANJOO;lZRikH0 zyy^y?<75QbNdl#94cSk^9;O|)T=PtM*vnuKzj%`+1E&A*Z7=v*_^`3{x8kzTy|SK| zRvHE4m()5P+is24@d%TRZ-V$io13$+OWD3hk|4B6oepKOT^ z37Od94Z6ckloLv{KLg_8mxU&(y&#HSOdqC{dbju4lcfYJtl6ekInA~g2(pBUL{_OE zLxce?dBk(`=~#BKXY&Hd7Lv`ZXMPDVJ!+}=KnK4P#*VV6a>o(vOIZPv(1$XgiAATW zMtzgZ{5B=_;m}s{BL~aJH}iRztv}z&D1>=BXidSWC~rE;7rwy-)#kBaR{SZhY)-JGZyO=J2;Dx5n9N zRlPm9ToV_kTO?@b`|ldJS$~*Ts$|=ZW7-eyN(u4}cD zePE7RQ5L-^=AiTK7WBaNUT+ckAnABFYZYWf3Bdj5t-pz(*&f9Upg0R~**{5|N=C7? z8iEgq2DIrr;-D)eo2O+gwk1MANs2M!4P5?Vc7;vj(oqQ<`^`MFAiF){pKSpO`xroQ z78oZjpHJl4Tbqb9?&W(Fx^dZwi)|`OB2mez=LzC1XOR~*AbyTLrrYLOpxER!ev|Dg_|oKnh~KwLI@iqNC+ zmZ#UC3VwdHUfGKrzrYKn8TZ?+iu)>@qFnex!XIXufhy(gmwwnx**^fogIcfEpFu!= zQsVg@aRD<5wd_w2g!a^6!}umZ4wTZmBM4@$Jvvh=`RQa)zJ6D4mC=j}YJxgQ099?t zh6#|@!=O<%B+d)~B||&7+@TgNsl>-fErUpJ5bGM2mfTfai7JxO8N6`wqnFs*kaxrS`xeDWzg->kKD>@#D{1DKS|Z--f6q#2%MQg z!8=y&pF4g#uA)s7lL0cb$FPIC?B0Mj3S-KXD%wQWoNWr|%R>r~(_uxar2=&Y5Z7LL znXeZTSzy8VfzU9xRRHD49m@!U2dYUME5@uOoD2Y+Q!F-z9@sa7Hri%kPZ5koKt z5;45`IRA&ew~UJN?fQl#l#&)va%cqvBm@SeQ>06zrA4|M1StUt0f`}{q@+6}q`SMD zp+ovP2LIP}J@>ob_x|>NyVjaDYZlCT&T;I0?7e?G&b>X@b?1U&{-~%g`d5MW>Gh>{ za$9zj!WqqK=djm67c;DvUgvUa8Xcm}fY=@r81ohmrkYLCsAZ#oF4#9DmUUO)(4U#vZvxa3L&*vHQP4Xwp=$0`Pt{Gk~b+lrV? zSfMC+2+o4P7ZT^@ho5@4<5VC{K5Qc^N74mg2E~-a=Z+|bE@3qCulU}FVllHJ=K#^g zOwd!3+k>`PL>@PV^}bHq<3&bc5gWvrz;-~vz;*68Fs}FIW#uSrNVd8M#Ku^mO};oZ zg`yFgVrbgMWDZq^xB|Dw{~M^nhiU9XxOg%BHr`2=ylQr^ZNwT8mTYz?wkuC=QY$F# z(H$SfRptllc~&t!SdaB4pt8GEvCV~g3-s80XmOwM>0m3oDqkRW(BuFHL`B>Fi-LgGT9&kON2ievAHeMHAn9N?RGdcI|i(q}ON1FU3X zn2WZuK)dnMC_^PQ?H^eS1T(Mta!VXj-b=n;Q~+W|C!-iEb25J`Yv6f2V4R3>m7>xS zJO-wpbX&xseocmytv>DE`t+27weBcV%X#5bF&GCpMJ^dvy;bw_$mqm1 zY4~>v0HJ5=DMNBk;faI#R3?2%&*A_!R)_=c5Vjlu0;?TgLEtILpQ%q9R)*pLM(ZlM zK9Pa0zsMfQF8SxNVxQ@|O-ivta!E^Jd~)`NzJN6So@<(!Rbv*%8!zgpUP&@LgATM& zFA$n$ln|J1v;qBk&`Vi$z%_jA`!PAZd+=O-amX9N{mEmG-!P~{+Fx~vCwTjV_Z$mKMhz8Di&f)Q7cbjaB(kH$zRDbx1HGwz) z8oRF>FqEr0Ipy_rSYPk+oQxa5ox=H#`b9OkHcj1+aNb!ABU)8<)-tgGp14Xn0gJE# zhGP+tQ$N)P2tO_lrs0}pyOD(?yOFX5`mJ3hJ@QzaD>WM$e6eY2FagffJ0}%S&`MUi z^&?I-HrfA>fuF-GM`k7DPSc8@6_nvz_jm3mMjQYtyaH1KUr&I};P7)bpx7MECI?A zOdpGhl7r^hvu`gjjFf`$SqH!z(>@!MYpXk%l<~aWmju!ApI1lk1~D-xOAU%ON{mnV z5!T5?ukpi~v{4H|g!A z2xbm@emZ}_41%L)+!hV`K>;u9P1AdUk$VE-FFo-#J@H(QS+l@76W?u=1CG~kbhz`7 zKibRW%=j2qT^7&_|0_tFjEg?z4J8TMdfy!3Nc|oy&G97k(eozDVQDQ%QXbHqn-)a( z%S=Usa1OtYXQywimiQKc9+r;2VY6H_U~Xm0_sYW+ptUfq>W*U)K^sKJw{FLqbU^Xc z6mcDbu9f4vv&wBCjx=T2{YtCg5NKPxR9{P=Z3hVZ?QX;Cpzm`80Ikl(3IWwab~~!- z+D6Hzotheb3DDBY7m0JAhcy@|9{XKu#7t=Pummx8bKyA^9-0r^@JcB~IdIB9&+dKS zO*IGTa5Qy*-4k>gmIjly;0Xn#QNW450T`%!4wfmZw~4I)JVOwCH3A)f%hkb5Aq=Q& zGh&R%-0SZ&k4*zqz*Ngb?Fsp@Tc?E2d21w>0nx~l3=DicDL-GH0V71=3)IKPtnloi zL!HI%Z5`@pu$>CTbj~qtrwMLZ#H=z$*z2L(V-DDnvktj^by)ny6SQ+bSbej`R?@j4 z%<;pf6wdjMp0?w!yTpNx1!f-HHiHKJ!WF`P)zkN|Kw}|9;VWnu(p&p2JdF&s$r|Xy z^aZFx_>e>YfHiC~zkkj@LyKtg*Vn56Dhkl}JsM$#C~PGI4v#_nY8Ekihx7@+AAB2$ z(x-(^DqBCJfHi=bgEuE;J`heVz{&aUgl(SQ3#J{K;mYTTYS6#fyaawr390K5%pNcg zhxj|T2;%$iw)lifmA65jgazEYt-}OB&Fu7Mm09PdP{;J%%mm9#U_|$8fwx@sqB!?+ zy?LwI@B|QOH~>*=!9WF|W&Y04ZSXWAaj>TZK(ncVFcb>faiu>=;Z_Wx6r9~5b6bg4 z=P$|LMH$I@p@jW1u`>0={jI7ueFKy2)4+7JwC;ec#To|~ZcIv5s-J}6!-MXZ%8~`U zjjV*OcE>I8c6zIKAJv(@EgVcpJo3+Oar*PV?Gp6cH&14=r*viM*MG)6^?}1F_O1ND zdHASiqJzEj>pBdG%^>tk!71p5I(1yvVg&UXR+OCBbs9QX*pTiMKQB$m%mN1W@k`-~ z4*G;~Fh*Tr11J!MVb?5y$Lp_MDTWVIL)V>`7JqRDc@2}PVQgB*07GW;IHmxnkv3GG4KMwvGRNfT^ebN5Umm2Q10 z2*Q^FkG>OWLGB~Oz3av#yZ|BY2XK(nx({+%K-}l_0|O3w@yR2lNZ;1_haDY^q|!Q6 zQd_k2Q~A9DU@+?OA%PSPdH@zqACy6a&~*w>WZfgycX-=w2^taZ;{ zeaQ#YEU?u*>GRt*>+J)b;NOO_u*+E5zA}UQ*?*9fkTWO(#*)vIGP{SYf13mJgxt!C zcD*)LtY4}Y5&KOhJi+-xAbKd2l({n@T``M4Zh7~qdIyF3ZKXPRxTk>^@o>*R5h%On zK3OIMz6g2^@I?^K6yym~l*)a45njkj56Cbky*@bonrrywofkDlYuKH(FKM9QH&~HQ z9so%1I7Er?V`3#DOHhJaxg@y>92*}VM4y_qbxF2el}_qMD#a@H;GYAc;a~48Mzs7w zLp`7t0_kU(zv<_8A@8}w`{8fy`Y?m4bd8TiP(+N>`#HiTAjBky#05!yMBhntT2L__ z`7-z_$oT;uGMQj7C8~C zmOglaC4j6pVV+2O*6Cp^zqX7lN>YecV0(4K$(8eNgV)aVJO> zuU!dLE7Lv7{ae5f@~g1tsSv6&ycDGvT=5ehp<=N1iS+U0K*=JS#{KjspmzPXdlsl& z&qUO&|Nf-%2^4k{?fi*wMQpDZkh7Kd9KV|{x)}XlG&7O5x2@_C9xa`>^KCz#T2Q8b z(9|w>tB%=0%`^iFt(q`I1~4v0FE0%24x$$VcJkZrqu;Wq_bUy72NP(ZPu+hH#(xjS ze-FlgHOBvk#%R1jx^w5|=5b#Y&cCJ#ZNt#qRmS2@bZJ~ARTRaD>pmM#hlUm*P4Vp5 zIJquvTfS(0I!B*SPgj#*$lX)NSHNiy;)X)&DtQ+bJ%~DJmhR8&TKBXt$qduXV>9EO zX_sEy=NwL!d^dJe;32nNw*i-DO(MtwRC`-<*S$sbUp#M;$r_f3X@!t`QJr;oOQc)4 zKYS5WSbK3L=e-s^r}^!e28jTIw2L?YvW?H;*UNoeq$KrgGnr98R4H#%rO-z42kT1t z9aq}A0$l@&JlO+LRrf(PoKU=c7O7jgq)ZbNfMdAkZgc<8LM1U8p%y^*y$xvCnNx&zp~Dp<{9AA!3N zG|!mje!yj5Pn1I*Ae?t0ddbHkjrck(-eaU$JL;v@D(OaSurtdiHWarDMPemL5n5|i zTM!VJ^~N<)Okes)J1+%DLKE-j{_8{v-O+M*4N&Z?)<@$d;)*>ya3lWVN7F=efC4KC znTFzkKvIwubcGa|D*98WPiG3NyC+6)0#WZZ)pwPA7SZqpG5;ZHh$~oNnn@d-H2AtV zDm6``o19@S4>v|771%E}U9afvLg&SiAFS7oGfrn^W9+3ezqi*4MIG2)6wQE;Pu1p{k! zcR+z?tN2JFD#VHSN+aaMvJyW%N3<#$*Dw`ZCUYO$C1_!%RJA;S@Ua{N7(ldF8=OQQ zON%&(1c4!Uc6lTA7pH0G5uE4#%7c5mP;X)kg_Og0xz@>P^o;?<*#kDh1lF{Gg!r-| z^?Gi!sC?X;b_hz$Hs(>>9=SkpBZ~L;cY>_|1rB7Di>VPOBHR}BNq>e`)J08``;$Yb zi(`aqryDQxo0Z1sxiE;K39)Y(# zo!tjWec*yp;)=Lpo(kN^Is17fQ$6A+a?5rE-=2t0{1l;BTiKmm%)`{~Ie6D39biOm zi?!1v<5Y9d{j4aVBd|d6zA%}{TiF(q@IFm!ceb%4utsp6^i^WO?Lr$r14_FTsaDD> z63&Zi46j#0Fn9<62?Ob=bbr1i_y{9C<^_}xu+mfeg1CZT%=?rKm+PKWE8-}gWj@uw zM-WBv|5ZZ&RYLz&LjP4l|Nko?iSYt50Y{~iXv(NxaoQlk-c-LVDUUFC z8>7ZAj0rS@)bWss9Vt2 z3>ZjDrf6~~%h1jZ%AMS4_kdgeO>XluK)>f4J13s&=lu@LNwP} z*+uDxi^mh?yLmI}T$#f0zIfl_lIZcapry7&2PEe60nYgIC0eyoc6@*B<^W!b5HU6v z%aR5%*!M){LfF~YJ6_u@4f-yy&w_TA&&x3Ops|zizR4&AU@{;CR~r!KSJj_Zz#_GY z%E+zFeq=jXCS<0Opz>V}o#w}nIW}5MxT&da^C;V8um}jJbg86Tntm}JqJY2~8PN5w? z0RjPdqmo1c#*suB!yPObUousR@1VZ$`&Fvt2-p09B6nO3TZ!IG$<3=! zGuLazZXtwaHv6@_YJ4cn63ad2a~NqX^r`7oQ8!++Z4X82ldx6&$s^e^rO+ukDvTeyBNKl+z!|6cLGK1BKpNd@LY z8CoxJrBg9&KD9Eoz@d7xYw$@{69Y&~Mg~^|{*MoVyht*Exqf&RyD2s;MA@VT z3ODm%z7Tbd5jM$0{IkM-{PoBH3*BD>-e}RQu8~LvmgtFwn-4Bi zcWh3{ek!bAwK~YIA567iGJkk@J~k#0b>n_=MKZLvU|yj^J;Z<;Mf`BBvlf?|bG%61 z9A$)ln$JA)a(&_PNao(Ne^Cn98UXGK=y5&&y+Vl3Hv%4~>)O1ja>?1g9*!n5Xt4rC zwb>8%-Rq6#GcVNTZpHhr3q$bJuTmLr@k9;PwmIj|JqEHSrJZqQ7U%jPaUV#4mW}9z zL+l5KG}(_&xQh!*tq8l%R(}qZO$D!<>w<@(^ryrx5qKsexF5AZL4e^O@B4%#gSH)IW+T(_ts_h# zrp9x}Rv)W{Xnj*E3Kz5C#j>0aGNKyCl|@bJ4=8cF+H$d$2j==Jv<2L$M^C2cZMcBQ z&%CZF15YhEijlq%_QW7?fddA!W`pS47gqGoG&!S3pT%#PbC``N-5e367r{Db4`>dA z4^l&i`3h^RK%97aRP$;innh)=yNHR+*%X6Xj5WnhV4C~MqbnoPu>xFS}6_mx7 z=O=W@s)t16(i?U73VPI!p5`BG?4Ie)6~5EQrJ46w;QP{*3C}27#Y(pB8ZlT=pNl6K zh)e$W*_TRr2>4nSZjB7$G{hJ}ftr7Uf^8|SBKe8do4Od}FMaK0tcV3B+<#|F`|)&4 zR4UtY!&PhwTI|2xZ0C-3k&ns#)b=Mt+^>;(uS~b@L!#B_+Ge4dZ2Y5CoHT87BDk1a zT<JH1W5!v=n2tI0O#dMq<%@`$#gk%#hMLLpR#Ajo*oP_Z((&D~a?Y3sX;O~N5l z86sMuGRoM3E)fE4iTQc9WsK;y&*HhF6@A@0TNZq*qnAd^MvGmP)w{;H2sabdOLddn znAB&TyL2M6qANKnc4@flrPE8 zw~y}mR@Ue0ckL!dg$s&+XT#4M%vdDH0>7ctYxy-FLmvZ?+<9*W4=9p#7Gse=MMSl z^}FnD_K_K0*TxP_oDRu<!4 ztcoa`&rieAR$oVuvXDMCleHHqJJ^U9aalKE^~-d>8kJd@a?-^=|4`?$Tv6B=X{4F= z#i5@1EvU_Zu6cg6{$|bn@^8!nuo}n#h?LEgoAgLGMxlmfZ!Px~x-**V@mBA?dhjoOf9CrG@$g+ygsv;c%z^+_d(HXPK+-oJj>A9 znEPt$y-vxwV>FJ1rg)tkh{60LwqW8<44%{Fa-0y)E1ty=QWm_V;^oGLY^D%h@i$%p z<aeK0?c3~X9*!7<8RLG;p0yjGzXhy5t*M?iY z=Ba5*8zo#YzkJp4%cSZJ%LYf}8T$pcv$%g7Jsc{8%*!LICDQOLhEo>YIa}cD_FC9spC~p+{z?vg=+K(KA4EP?#@ zZgz5-wydr7t-H`Y$iobowsQ9O3jX(%D#%f5er=X-B}C|$m?$xy_-_3hfCVC~IytW+ z<9Z;IGQMR)y*icUg-(w3#@mu96q!I7tGUU_L$srv_o%!}!@EPE!FL?JQ_1T3DF00R zNT?LOCFbZS|2ebM3LvjXamNciMYP8>8lJ(kDM(Z%lE3(NYH3iCYXlwDi`C!;f9A>KqO( zhy^2?+cqg>JtI!EuKG?bBOWUUbf8ta9Qe-l6*@hD+V)d1t7c&OU_ZTbbBOun>e1?8 z@!c_I!6C)5oy#~W)_t9kCqlJB9Ocx+Mj|{XytU<&`Hg zA9|qtvo{5Os%N&dA2qNs@q}n=x6VIQ?FSEhe1KlW!um`jALTW1T#viiPU}J6sgAZm zlykww0_Cc?Wo;VC(Eb8J=<0!8k1Wvm7jNfmfHnIIONHJe0-$f~(Az#nq&(7yANVBrO^bT@1MR#F z@`!ATBNA@*tx^?77q-meW9YZ8uTeN$GzSDa zrmE(a1v`cm)Xw;D+v|hV%VCNOTQ=t*S_vaC$C#x8ld-Vpl<=KWd64M%D|He1dKc-md#;lagedfLe?VYxPx};6o^21#FZrqDZ2WNxFV_r zDgk6I`OyhZ828Ako?5p%?DR{}H&SKo@bE1AAHgY{+K8t=SecXfwaxy~+H*Hl4{s)Z zH+E&0iLUghr9=hB$I5-xtlPsexz%tH3Dm+emK)bUnZIZOQ9*Cq}<^8{T=ohQc4&VqB_->eQ#FvJz^r zo!jQEDnH70dF<-6o9&VupU_W-u8W5M`j;8 z^?W%A?9FHyE=~PHf#__{=3R30&)0h+n^Es;1syU6{i=#l`D!0-L;L5$8++n2JMiHB zU4!NmdOcPqI$T=x(CdEQ|L9PK1R)2ig6)1AJ9!p#Oq+J%3e{HHiUsQCF-r^^XPtG5 z2a9;|1Py$9wQS#YE8Z^T?Y}{KZZ0Yuv}`#T9(`Wn+GWY>Qk@BTQ2)%mynIX*jY+P* zof;`XE7P(tVP@MV&QalTzV2j)#Kra+vrWtG&$Aa>gAoTmS7W!vO6;^wx-4nBMt8#< z^CMV!ns>JPOBX!?LJ}-L1!pX*6z}^kujwY!y{s<9x(WUdK2!1rX!U`qp;`oLt;n67 zstSP_L&vpq841wr7iykN>{&dpoGF^<#Tw&C!cOnzoEhu{3-Lz7$MveKb{M8Ke^y)B zHO&CDDJk;$^tqv|4}U&PIJscPl0#CDplK-$Wjiq}9*5OBv+mLgcX*R0*At$={v&yN zT-j2~X7qp~3p@7adgs}wY0nMb}|b&_i* z?08{3bz{`8xpb&n7Cb+w?{$Ct#kX~M;zwp{UjA@u)euW}c9Nw$Na5x;6*sl=y>-17 zv4=ld2G?jRd#1Wt zu9$Cz?E({U$+l_zz{(PJMb!4e>&^?qtC3jvAbz^y#W3EkYpydIQla=^=7`A(0CPU5 zc#VOF;!wQ#BJP+t1r^7dI}FbfZFJ-LdP2gl*XHV|umon`7^vA3)SXk}N>dVTUCnjHMVCZv+$F$pKP;;)H!PYP7ES)4Ji@?(@XL_DQJGYuIqDBSsXPz6t+bL=uX)|1*uJp| zKFz_h=IX_E4D(T_?%Y{})$qAuHTO63_cP`1q8N~=UOanV)EmvU*VRn{d)?mceJH2x z%s8!q!+%BI2XGS}4RSzO(%0D7ycm;*)b4{eQ~8kCuIb$0oxa?%5lNFd#zcONi5IX2 z4a&R7vr9L&6|W!9uyXde8aTmg-VfrPWwGi!Wo;;Vt1}$2=%m9fe7;_G$HgpceJ<62 z;h4xPtGl%MoMMh@dNtN6j()CcjnVuVzmA%CmcB<4rHx#~kXmK6V9*zv;=4CL7t#U_ zRV8HBA-ewYhR6a-+Ui30UzPuyUO_vM=^5XLq%*1(eKy%&1?&^$cFDOv!yRkPF!ash zr%3wl<1OC1*R1qbMC;Ia$B!;htxY~Dg6q7-FvCB$d!XUig|48x#I=pu9*o_Ux$*c(cbu0GQtZiPmuKF-M&EKmc#e+Ia2<$+imi2x!p_fMmXP~ zKy)hRHcB?39+H;OD<9fh{jbOl3h)qd^mqWsP1#5H1AO9=Tuf_bSB>AkOrjKI$}JzJ zu=vy6xBI*xGK-U+Jn@+cSt9lLD)(;X>z#fa8+%4Rq7W(Z9sdz%nq7~Y$Ba^*{!*IE z=1ytod1m^M;Cwxnf8YIJr$4_!$rKU(K?LErhEnRnC)<_ijFW|^pAsSL4d%w>(>Y#p zsqc5MI!cP)iAGHLPJaZNKCi*b~dpq3yI_~>- z`gsRvJ&jnM!z#oQg9bXFM`KjnA#?I@{XVw!09_YX5D^FlFCkjsf#Oh0ZTK`ZHb%#} zk>AUj_ek>hEyqe-Hztj_aIi0fxh{j}v= zVsb;JQD6Urc9LiVmyugAaqEqdZ@q|4u+TN1!_23a8t-qhA9x>=pnk-P^2S0ocX)6P z7R{Yr2AeLTxo6n^vV=a~Tr}RXc0^TRc<-z3S*y&!r;VlM*ttX_K6C9cfvLNjan2*( zna_rBtqM&FexH$`P?u8`!m78K_i@PM-MYd!+qK;zfmT{YoHD=8p$`(AKvN z|0d!gNELt$1+Na9V#s(5TPon~ZJ3f|2Q3>OOp|-PF?%DN&w9iv(3kzOR)dG#52%Lsqb}lYunj&~;r`M+;Ern0eX)5%RWbbW z%Zv6QEIZDii~3F75ofRcZ`Zari9+jNrJ7z*6QhdsJ_>+A;pHFZm?Xp6#*Ea{sr4x# zgP~)WP9CL8HBJ>EVzGN%=+L#QZ+A$8@#o7O==SW8JH6M?p7hq?>9`u+#{oJ6v~PRT zLq{VP!fTUXZk$ptk8(LIBs<5P;C3~z&BK@1Lp441YRM0GPqWIFOuNE7Ciiow*nN?8 zW_wYfj~3tfI^KmPik>^h{@UahVp!LUS}VvsQsAc9A-wh1g^+V(AhazT^AYdJ+0?Ta zNq0p5G`snIaE$uW6P7~f{Oj1Czqk?&8y&hhk4%}J%D6>ZYEUt|Ikea9efcvGx!AVE zKX1CSYk5@Q3+v|7@rKWw!!-9Q49(j+rAdlyi!p6C7>!-(Qe3wVWtMZ!x>n$QFQzcV zvnlUwK^mr~bKAb#hgn|!_Bird?IP*n0u}|vu5v9tW3LT`N_u1H`u_(nfr&wPtCvj~ zcIYr@pCNJML`rGfd+&od$Js%j?%>au{N?7hdW$Jx9rDTIV?KM8MM-*$Gnb;9=hKBI zU?^FyVby-;0J76tPNR}wdntR%AV=#Naiu+)GJ~4Yk7PuT_CND$6fwSpR>T&Gx{;p3 z@b^D1YFoh*10BVz^G>3-=zOHm6L}mYbiCx788%D}v+RC;sx~#zexXEB?eb&8{j=ef z<*I`n+^&SeJjs)!defpOc|$cHvpXUIH;fP65ovA4Gm5Y8hbU*EY1RUYt6!p{MB`9+ z+;&Q^KYi@2j93w}$*-U5()m?-poLv4Rip2mjE4n)Mzhd#<>~J-2u?V?Xk1@8v(P z04*;t64JBY)4;K3N4iW&x@y<`ASt6Zw`;0p|Ar!{EP{B4v_e*)pD^x*x?GTOti=y~F&l6tyliZ0jrT7)7Uw&VVy zjc4{3WlJkM*jAeA6rFo3)Mwi#lf)fRN!*MB1DlUGcty|Gb@Q}OB z`D1Er&Q^j&5Fj@8t5gW9)O*u;T?ggANwrd)uQ+r)JJE?nkGG zp(xL53&vzgS#HwwS)+c5Kd#^Xx3QpANB|-*`I-knz?2Adu|-JGZ}EVcmiDHH@lyPQ z$P3#mPHG9gmr6Z3hU)Xw2|0q^;b{89^GS{+V*J?Y)MIP#0e;6CQMsC8(Ked5xVHKs zq?0l?=k3l!1O39>b1M!_4lsBVE6ryLQPRvj3pkWV2}t9TGn78>p+Mp z{KOs-1Ty$M<2xbw<#{bhN-jCtOy#zlCvDqxR5ZvQY%W229JD+cfYYLEvTav1Zb8^| zHZvyw6+|T-XXVfEcd)^|p;#~8*OM=!bt@@k5ZrRf~0#=2Aj@$h8UT2q6a z0Iz*Il#fnbyo$`@8RJu@PsA59rDlW<0VdgeEMPowb7Pbt^SokOgK*xZtz5%PyyNAV z+_pGVy373ef{gu|{lY>I`kT|!FL&1zjz0<;-|RAR82xUwA5vXw`d73oJOl)7=nQgg zlBFRS=wh3Ypi%KLg$JrosMG#h!b*+{lOgaemo_01RH$7eQ30H<{v>RYibx(8JMgKL zGR1(DP3REq;NHuZHTL08(=Xz}qw(P3JhPp#MGcGD_$U!2%>+B$xt;>)`kV%eljZOA z59Tx$VJ;*5&gdBvI^@C3v>+ecZhkOP4LAOJl4V}OSAg?z)R$W>+MLr#k{P<$#7)*y zhU z`q3|8);yc@O=e@&;-cJUHT)7%)It2V6OXfC{=e->Lf_XQ!vf_@F8>7ZfTn9ri@YlZ zLgRhMXKo*H_ye8MWCM7_YTpnoe<9%$JDiK#ixVc+sStW1>-eoLxLR=Z^P#~21L+Fz z3C%3yQOct~UN}?-Zvd}QRsyH?g2A3JN zx*_gpZ{de3=Wg$Bj!M6SH9WRj(QPaJo@Hr6v{sP_1-gR3pIT1QSEh8yA8L50mU76| z6fjOZaE#H}Xa19_9j4U_QhlU?JjSupJmnM{hZpVq#iY|8)8^6g2xz&+vv@D==T~h* zh+icI?ETK`5CIK`>5NovJJs;!IZUGEL~2XF-Fv82t0a-0r4n=Bc(m-=%_=+hq5XZV za+cFkf^Xwky@vSBoE?jp^t_>Sf^M&-?@3L-1ClfK6*iJ}uT-v&IcRKGgP z?it3)|!Nx|_&c95zUL zY)mMr3G_|t**p@bIn2{KdW@fu=BnEhFzf0Xk~!kR(>Cr1TYmP|BL)(qj3bz`#n^sR z^h)&fO<2ulq4jF(51~rY-u!SB)+e)6-;Li!xjI7C_*#$Yzczws`N|4i?(wu1m7Ko5 zjZSaf`#gT8h5%E6>Y4hrv|x z^yuM_%@}`yFYUZO2$%3r^GtIQNU0&;Tp!gGFCXTYISO93k)fvTu`eyA9?V>12FS~` zo7lgqt+vnSuX!SQXgq#{_bEH@XY6TT+y^rA{Yk}3DT!||E~qV$9N+T1Ede3y1fye( zVIy0IDRu_b7TjI%rGBbc`u=bSSd%9qtHM4h1fM_l+M$PXwbpoJv8Kyhy!jBh^%{Z{ zIMBz^8Lh6u=F~Ydnr`Q|1gWtzb`<%Pw<2Ws`XCRCD)C~o_qwwWUAXdy z-)q}(X=SX0GYM|9FmR&sPMhpAzrRgKvFkI>SW9QRG`=rf-Sl+nVC>xjx)1ruSHVJCKe^lo1BzdP6u zBk@1tx$QIi@Z)6^OElXTCChU-J7&B6v#OWm6XxkIRyHM3M}+7Neof*&QcXh?pE9*eSmi8GszSg_Wn>q;0p zw!0+!ZCPB494!kyDo6PbrqpF&ieEskpi}aT*VKtCauzF@Lt$Nw+UBN8A`kUY+Bd^VcA{iLvEs&dk0fyZFWM9Q>^RXETw)m-s8E8M^Cs&4oxfJ?9*;@%qJ;+%OZmy zM5qKvpt60-m4dwkr6$yg!8WchKS;f?LsxrZ-E!Bq*@27d=|W(0ia!hEBiiDWoi+PA z_Y2N=Nr;efs)$HGYvIz0UP0KyCvu9H%2WcOX!L?zmLS1(E-*;p|M3&QM&-O6dV0j>*VB`Us{m`e9g?|OU z_DBF!)-lK5!NvIV&3j7jJu8h64?d69L$C6x(LizYhUd2XNu=~0aE{*$rM?drAK4n` zsRfX0Iig>!E(;Z(yu2jh#m)@bv}%F!!28dpzg5LS*z>xEE}a<1g&Ui5=@wPhM!E~} z>a7MmC0GQO8nFm>A?vM-g?gnI@$b8S37_l)=O2u3b-mURt2w8!8VBxU_9FrD%nft) zuTljb?OS$zUy>rQ@6sI{Pq9Q>%{hp}R9o6N5TR#@@+B=>M!bvp>>Bu_4fexXSb0R= z5I*||y3^*PjxjAKkn50AG;{I&#HVE*elxUO!C_hB?M1Z8PWz;iJ5meBO8X7VlabL%yQhgs4;|=RIZfB@ooDpdkxAyDwmUf40!F>M=1c z;r%@WX)>h1EHC#Bnx3A^s_Pf|PrtuQS?OyKkYVYg5aZTfj1SbL|HuBgg4A{{F}?|? zQZZ#lj<8qa9(`d@mc-s8v!Cc6=O%6Uj`x$Sr~sy4oNu#<-Y!egB+=NGxb1$~q|cY1 z-;f3@D^$cD9bhj`J3EXD=anQn!VNgt2`#D7KexuOQA6g*U+hxNbA9*C5zw1CZexa0 zAX9Ooq;mAQ5gondw0b+YcqxF1Y^_{>JqvXaX|+NxbIkbUPn?(`R~2BHv>9~RVMz(g z6nBOD>e;X1CVgG=bO9ZH(?I$}HI+pjB3|R~z#VxF04YhTiQdX*cT6?&l`yVLhjRqdmITWI?CYFMzqKi#R z!|rRzCFgwQ7Sv+xW9fbltNe8xNm7H;)|at#uM-5nNZY=Q>?;~%qI!&LdWyvqvPPCM z`sL4-YnBtoN@qCQj*m2(5xeDBb2-=xKF&>>c|%lwe!7{a@5K^)CMEk*H-CYjYIdOz z6{lA3QIA5~S2fzmYMzmS_^@&@az&Fs$GRid2NETk3>ankjwjaqMdCfzMDXIm?d;m0 zJnA=U&{c)kyZvu1Ym960tLxaIbM+Fv$^hq)4@6uK1kb%WiFO+MmiQd+Yho{weXU4# zg5B8@!uqbNdzZhdy?szJImkYO08z-29A7IHa{`_ocIE2P)`UiJ|6_^=@P2`~mxCED zC7gD`3tX-5@76~OZGy@w9<8y3z^<`cv#DdE)Tj8P1qFC*4vOq!QS;(=Pu2X=$x=iT zJBYHzD9~;2@@wBTqK-|4-pwdhBDdw;4A;y_Wt#DqYb$wM9UL;z%uc5{V`JTpy)kvw z#F0qMMDFX+RPxIw*x=xRFZamlbpiA~+)k3Fx}`@w^mzmpK{Pkpy^+%uMts$UQ&!LK zREx1Am@>icJq>?;Ggld23SCR=8*P;+{Y4ZVuR+;0dj-WQ3^g)Dh!Zy4q0%a^M%>AP zrPiLcRi2`KrGxqrxO!;QT^|!Xi*` zXu=mtNpsJj{^o()ewdg+>W+Hv*s#wsk#YFZozYYqmC=&$_i=R4?H&l%O>d{Iu;o3S zziYeTushB2GgvR+&0cHIdk-#L=x8_xO4`Y7CQ<~hkf}FRsBS{Yc=C|^c#6FP_Bp8f z#OD}MX?E9P#G^P<0Z(MO08-J5NG*_)AQM{7IVa~jUVQy9)UQ#SFV$>7EoRL2+W30s zs<`4ZJ5f>;^;%r(84nNgM_9EwXB#;gvoBYJHmL1HKKpWHC_Q2>-NIG{p0fLPhlTJ7 zNMYRf%e-H`0O_IWz~l=er)2G~Oo#U2RAR6_WXqQ| z4&gPN4bw1=65c=tvhX%Rt9I51$s0D^WJ#Ri$)Tx2a@M(;8xpgrYM1<7o_`nNLY^aB zTz|fbSIAGLA&Ri!eSht2meQ=XLWO;OUxPKICKM{l2L!oJvQ}FgIBLrUqEg*un`)Xh z`EML|R3*b4kI*h6H(RmBCVpPe$i8`9*@s6#xWl0W9XC zF9H*ID_wDHU-AV{Bz%aLcK%lovHj8~5ed3)pA%fgIB*Z*-7^=Dl@DV&fUi4MfZT*9 zk|p50q!I@*cUFGXtXdb=i8Plhq?CD4qLOk@iZNx$)7Y9)j-4OUqTh3%`Whq>cYGC-MklI0t#V zB%uqasE`TRP)R0MFJK-`{!|tBWFS`dIA&Adnx`Xm$pWbbWWjp@*oyiM`OwtJ)cNW_ z^EFp&kWpS{o9~o$*8hys6fI9S%MCDxbuS7(-g|+8?R~Nn-lXP-%*6K@OPQQ;NS{MQ zcgFY|#&p@K=?-=#Z1$Qt11E0|o6ydu>qHm_{*1ipVYdfg=l8Ru zrS`{9%IeUvIdl##}I;!kLKHZALn6YV#~f7=Ln;*qsGQ<*5p#e4*LGa>l-{?M z7U?g?o*`lSCPPFXQ_0=s3AC07RF>4*is@Jh0kyL}ijO#rZquFyTicjc!k;B2VoxN( z69U7dNm^42SC0)b@OTjAV;<$w6kb<$zaSztk)zAhRn%@jU2vL(o<6+6YpgmFbr_l` zdwDO|^RzxU>V(_h>unI%-|U8z1EN6t3SI9?8WM(DJ1kA!_CA5^4&IZbq-15203Oub zi?!DgO!PQ%KU$93JN)<|<{v+ji}5X&fBya*gaFb@TsteN>Oz}AWo4|K1&xNd)|xm^ zjnJQNU!R|Gn{vgdwS&d&n-m>k%`V*Ut>uaKpzF#0y<#}E^OP+*tVHO;tgITK*h`CQ zJ*AY%`oXO2@te6dE)Y7ks>AF@=Q=-G)8ur2lc7zB5th5fLSbw>QZ&^2P%&N3FW0yP zGs}g(ZN~Gky5#%xbIJ6nP#V7(HgZ$~yq)TMI;yoY4<$pVTx|sqVZTk_3%#RaCG)F< zp9d>c;4Oy1_{m3DG@1zgD({oCJy#G_eoLK*A)ABjo*OeuGQM1%hPTZ2(>xT@mWfNt zDC|1FkEsaTg}h$wGgeXneJ-emu?2PEgsT#{(wJ?=RRV5x2RKR1w%?^jYd&w zd*B=NFBq|4nxx({!s}o>*{HIiyYI;TkSc}dOJDih9t>+Nv2pV5s?_=(_7dzh(m%XQ zZPM;x!n^lzk=)b0Eq9wahYcoNSYM+isxq+_;KR4IvxNe>tkOxh=lk#dAF948EUNW= zTY3P20i?T?MnHy=?v!q%q`ReIVCayRl9CR|p-btM?gnWD0qJkC_x}B_>pS6SPFU}H zpSWwC-_+wY#XLzHysZbAU-3K5eJhoi-upOKF4uc;z}r{0seHQ?wftFz+qlQP+Zs0O zJE9QkI4TzO+l#J{p5FkoD08Iket(;MD|P=UTT+ zfQX96uXBlu;Gk!o2j5P!d@56BDn6-QK|{>Op!@OB;0yjx5@-&-K3n6> zO%ipQE+9?{pm-iTZINDvY>lQ#tP|H^4Sp^wF1pRWWfgzRJMK|T3{J9mbw3!tQTzGn zb7|C<|78J4+PU{Mw0nQrUVw=qQEhEm>#QVyF8Tn=oHR%T$TjaqMJg6g13|HyOL>*% z^RY_h0SMOa@}=~Ms ziHjx8Mwpuq`zf;_?nJ`Qr61*ouruP5fC7eF`CdESZn0^MtI^4?VAwVC0oKLi0CtXPY7n)fbfB-K=8NOsUucQ$!k^(Wu+y!!Xc=;fp_>T|yXDwT{`>LjVh-jV zm}9TjF;8o0p6w75UrpU@KWS0)nV-53r$l>k2MYiVF&Ad{*aa2*lHBsVTdqABaK&`B zZQ5JQyDQxJnjuu`82Qtr{(o)f|C*q`tH8pp) zmkIQ@okuue_w_7RaSFZ9j%fdP@^%6zATH6lku1C@=HpCaTxCPA=(Lfmd z;*?Un!baBgm97_S?g=Y`@d_OJ6fTMJ z63UNj#}*|y&(7}HAM9#(uJ4z~8$A@(_z!EGk+vVmiu$J}?vFmK*S(+*JSS+{^GKmA zf9E5#xGZR!ch|G5ZB0+qyl2z7j`p88Cma{RD7X-ZrUC!Q6k~jJ)>OSMZpJIkeGT1a zyC|WG>t?Y3_YxJeKWj#xiyUf((*zVhzfp>HigSp_67tj1+KZEdem5u!UjEwM_5ry8 zAG76xHnmrBL@qc!ZBwH<#0--^<&M@SZ}gX{K~AHLhkh>i?`C5|uiNRMMq?=>%(Tm> z=~dnjG86u!;<2&P4}zO;+amTX46NzTRqO4s3+&@+6mfjT>c_bmMT4S8Q!3k^hG*Yq zrk;x|P;;;wksLbJJIX=C!IajOJ1-8Wa@}S7>vJ;H@x`9;Ta8<1$K81_FA*S1oKrx& zh7V)i_rl#)KYuL*Kz`??l4n8VzTi`^I947dHmX~9ZM*BgoDa6vIC=FwbRG2wAoeY^{j07wZ?rC1M}xEsSo$B7P|v z)k;x#=zF4xi;D;TjD6GCjV~P}Ucha_1w(e37n418g>gx%(=E|=7k^&z1fSNK;jy>I zrx7CmN-?AF!xOhw{y7feGvt?+{&Ql2+@=aqI7;Wv`kYWcj&^@T8C@=p8J|zHS!X z05iVPiL=|h)QL|=!s5f8ZR&ejLrSu@5HBG$6xZne0H-+9FY>v~Yt*8fI423UTt9{2 z01PIq@Mt^3qqMdFqr=X9#fFQGq$+*|v8ADE)3duec%Ny2rAgw{f0Wd{@mjkcS>&{< zp4vz9gJ_bvSgiM$!Fm}N{(>n?Iz!Z-zeuQKZJD>N;z{D|`#UTGFEUWoOzBP(kr$m> z<_6~xvI_05e857TUn)Y9=MYZ~$!YEMt3Am6~a1xQFMgjdTOcXFu zs&Bjt7b?3(F!J-P-?0_6Xqg9$S0sId!Z&oSIXefO6mku&H)gcrM}ke z_o~JEcG6h4IwV$FVn3_DGj2g$mEf$8r0nz;3cL3>3US>4SP!>952W*D>pEGn$q6AJ zZLmk|ngF4a^*}7e!Aq6T+FOH51>X78E?Z^qQyrl#_d(VhH z*T)OCX@*G}O@vG%L2J1bytAbDINtUNwFH%HASsZNb(<%tkg757aGT6y4|Pa8N!HXg z1xP8vz}e{sO{*<4^mje+CJB$W;E}8QdsKmwDEYwy39EKA8A&hVuSjld(IFD-fXX%E z!@0Z^# zs-Fxh-1rh5e+BfowRd{UZh%$0(hTb^^8c=m9xx8(G4yQ%;z?S@wMOOra0JPwXUN5T zE5=M?tiuTuK8J#`YcE<}`&6R`L}c2PsDT?WVkPM2(hWR*1ixEJcme$q?1kJl3hkXb zO)JT~El})PuF(GKw7PA_{8KsCv;^WSgjaw&w%BapnrMvMR1OG7XUlxh{HCv%cii{V z?!2w;0BlbmXi|&ARu2RVK?fS(=0nW=%eM1o^sh=;JDY#Dr~_?T$vwf6@nx8ZlmaKt zRW{+9*da{P#hdf+BaLc_{$YR8lo5!1-4zMNIBSVmCtd_~!_i8acqXOUqGmX^={HKx zeqDWCi<6CtxOo29KOztzZq4uzI_$p8WTwgvY>(Hux(E6RD(#IrbR4IVF;X>ZhAv(| zxC1i~#VA6Yq_KxpVVPlN&oNvo(pm>?lnQ_b-A6;v0688V z?x`)4JKcJTCoi$s?Ru%Nw+%3ewdeLb`$M`Z$DQZ_N=Hp5xQKsrcb0>ilWlgiP}FMJ zRII;2R%VJ0`Vu<&yWgTHz{&eBKUDL=41wk~AeMed8DN&a_q^gE>tbaq?j0lXJ0HLx zk%)tX-73qke^7S9Ybbau(-VZYn-%HN7F^|(^W3CHZG8caXvj6n#bO0^fI@?RgdyNr zIUa=UG_6D?7_a#8WLaGQ~b@oZ77wTH!^nX&GRzaup8!c2sSGht0Dy3ukWXtVQD4(G#UFc|gEvvcmqZCR zP_4b>mnIVuS(2fUsN5gEsTeu^RIm<$8%5nx2P;05U~+@7d{m2K;#n2OQU!;*>bHz| zK^fcpD)-3Pwo}owE5^3jR}#4cJ%kclFx{KXN9yytu!Qx#Ug|*0+ts(rT$-79>q z0J+@OY}_yx(gCTNz5#Fm|JiyUzD|SDCmxI#MV>~3@NiLPH#HgL0tD`!`qQa9f||9> zm{@PkHKFDwg=TJLvW5pVcM}J@WqQ9_!r@J;NO|sSx>v;3B4UXJbo7jpEw}<|uh_O8(VE0uGT;mBW4~X1ffNR-OX0;Vt!O+jZAR@83ts(gn_@aR$ns#v<=_jCdJe zER0(lDXSPEI`PxpQKQPIai)v?#-0r+b!Be-RTXdLAKuBkVhntq4TsoeiKc^M$_in(&g#Ci}`YkXJRyY8EdHFLMZd*>=nX8@X2BopkJZSEYY3QnMcJm zgbMc*0ee4A3FK~Mkz>|Y zY#$5tLUa;?~Jx<`oXAiCb!wCc2$k(c+b3kl?MGF&cQA~Azt3UE_&hCYazK*ZxvU5wc1iMT=1_Y}WeHSOpi9#GI z0hfntfl-%0tLxn7t|92}i~lUx`)rk<3~f_jSz3Ggug&#|LR+eG%u(wLOx>bULv}Fo z7@ZVdwI8LI-GBxE>&!VnssuIPvK7Ip?!Tu7{LNzm*4=+ops2+WOBUoPXucMIfGOB@ z$&hW45a=}!98F>?-%eAj{P3$S>bKZLi`XY*6+;AV2gjDzi*;dNCj(sZcK-x6IkYTd zA>Be!kl--PmYuGjz20nZH#kCk( zcBDs2pmyuy8p>=wYI}wh;z-j9QxxT+XD(yoGg^wm&y=!!<5feI84sq$$nBH5_qC$JF zL6V20!6}QP+#<%jBKG|tWre-k3TgD@rs1gXWQ4!`F}Ka5m>ZK_4g^?!d)M!kv2uv* z;|X1}rXQVD>Y;E1F&Xj&Y?@eIcCe_vXuO21?hs9CzH(DYm+MY<=HVnBDnp2IsaT~^vHd#~ zr$q!ZFaZ{Oqbu9&X0j?`whDb4N~#o6f409o~h zFbP${QoK{})HS1DgX&;FMj=(pcW$@m^Bp>JaHip zmdEhkU%7M2${c@p?14gI);N~--esC5+9VH3*W!1+zyoh_siS+&e;7aHP$ob?gCVu? zEATXMwAxuhvwCv$8_j)l#>Cfe$H>yV`?g)!G;}-*ol=zzx~Z{AXuL(=J68_ZxL1+5gw0I7`l2dG2|9LIvCchGhT&x&vMvf+xjQG# zn7iCjvGG;@f#Y=ZwrZV&$hWoY_YL&jytdNd>)E1L`8Sgn8Ifr6!tT;@?IVi{430&S z(#+)BM=Op{dV_OPmr75o#X(4TEl>Fp%6esnGwHhYUZYQ86XSlsFJHC=eDDThB^!r^=0P_BLHlzqJvN>iqilytm)lXt2$3*R(q z0Qnex*aa7RfKbSDbx+@yt+g4+PT8oqqGYtR&%}Rr)R`yawjOECmH4qVX`T-)^ZC?J z$MImIdnI?ulwoW!JvOR>X>vb`rR`PuuH#)VRHWMI7=+oBjE0^3hYfvU2M%mMujd3P zh@{DYXjS^h-bV{3%GPr9U1Ob0mO`}Hxk&uKV!W;kPWYovNnvkl1f~oe=}|1p)%eD5 z?(lT6y4Z7Ac`sv6!z*T z9_z{~RvZ-W&jv!$XYt($3QW_cGf+W3+6^PfM9;ubupPdcp=$r?(5g%%j=(GKGdm}W z=hx|cedA-hErk_?Zqm88w6|JTI}iezb!>UV=F1dM|1Oc?M^2bxD4sWY%jZL$voRpDE_=xeYjbD;5q zeZ=sslV61;-*eHs5jxl5``0A<-G2Xhr-LN%0j=aO!nI2|>d>c1Ogl3PRlV}{ZGfdP zgJKl5b-lFRYJq<|1BVH@1aEOt(8;;JAuO@dw(B;_Q-{}-4w^XJ4uB4Lb$gU!Cdbn@ zd0BU!xsyqfe#BVkpBM$4Z@=JvQ2sW@OZs#lUP0(MUZ2Lx;5CdQSuSx)8`;UuTM0G) zzi>Y@UMHK$Ivx^UNKd%C-<0z#8Q|^Wrs28ZO~w#-Eu!COXz1Q_HZh2}7^`?{HJz8f zl>d4-&n9mMvpi24foh$VwkFEeaLrfIk7b);hBK5fT*p&9pXx()9713b~AD3mO8Ga zP4WEyzymA*k$a;Gc}gL9^91mO+49&*?T$SWQZ9FH#rp?0t4RiJ`+6vfhYlh}UHG7LcG$^pkG8}D*#)P%dNSsfv* zE06UBI?c)%3(7YB@d%Pq#Hr{IKTalx*!?5vl4i!vaeAS|Xl?n&kh|96CMoyu?wepB zWP|`=38|65+CdO2ERo zdDhpOaO;YblRJag2AEEPaokqW3%DN~YwMjkxc+VG1?$RIAKNTc2K$Oy)UCOvU3#z#7MLQUA zO;gv=kyK9OaxdOVZAm-ME3mUTuA>O*=~Eu$c(`dGAudjZlcH3f8wc3NKA-lj`p+i= zOb(a8;mo_PYXBNNVnB0Dgj9@Wz#!0_qnk$e3nY>kad0I6 z3(DduO2~4#_0q8J?Ay1XG$8^Xay@w|K374SYqnNNRu({qcF9BG_cYW&S!y$=ys4@C zh07_#>Ci0ZM!K!B=mSULBa2sInVvqSO{dD%mUgTdnaoyWE6V~XOP*qY9=|pAC^&0( zA)oBfGVTZacegC3WY!0}#DT?-Q9Ffb(CW)>?3LUm9>*uT^6twm-%_)^4jJqI7Z=_>Gzcyy0g46yegJVuRaep_s&I# z`>;|wXXjUE&rn;sASk|1d&#+Z8^C4#oC@4vEjN`3$=kBLx46P@-QG z20BmcEaMU#-YLKbyRF#kZM^}6#d_Yy73A~4j;6(GlP3%V`9y485I5Ni;I-)&7R+-) zwT7qfUfWJh!`Z8J3_X0dfypV>RFa+`1df5W^^dJ`)Lia)(5daJJu`i%xK%0H7~HMe zc43m}?HQcLCt7)V9SJP1zU+Bp89D(Cv~>Akvi-(XRHA{T%);47sNqMor*_>zsi)XsLEXA4ayy z!(^pn72!7xCBQdU*gu=13+oUb>*Ie`dm_4faf^aY7H8ZBWqRKDl7L*izKRzgBs2HY z*lpjm;`IT~E46U}efF0ecuV?XI)2tK#;5tl*Eh!t(aKU%s*}1=Du+4~9>xV?u^JnW zR%Q&?x1Wtp)ndyC9qEdrUlT!utK1)sIi|Npt&i3958Y+RI82E#8{TU>&xHR6uaSxZ z12xi`^E=>b^n;+DYK}hVObHc%u6>!$T>iA?Br>UR=u~>Edhka|($!5;y8ye97b}R8kR-tG7gXK%lMNmI}ED zt3QBf*oO#|Q{sI(l?+5hS$$dPGKxJNjkQXrzN75M4n13O*CxvLz>xSJl7{we=tUd_ zHz@y4BsQZLpv9eUoAu{JxFoAA05-dquIy9{;8I;#>KSBktUEWkCvyP+6+m0^KAnkz z41}G@4wfpaD2at!6CPlk;k~#-FV?BQcQy5$=e`Y2@WaVP&137<*|mEP#9la=G0j1% zND#46<*0$=2Ab4YfcuKuVer)ZdY%lqlxL%>515?*3!DXDidf9*=7%`QIwl$)lVVv$ zAULqn$J-#Mur8WHn_b%Yv^bn5gH&(@Uozbb4tz01P-uUQnZ1MhUn;$=BM`u8kR zzpN?eRT_tCWkk^I)l}MQ+B_-h8cO!&Rv42{*hll{=~P6I-xSDZWhHe8JiLmuh+gvaf}%f~E? zk7x;#;KBryK*EvFsNI(0a7=;Ik5A;=O?w!b`mGk;L|d@(?>MdPp{K21WtI>_K#sAMIfhCgDb_`jZut#9p=)NF!mF`t=s6*yh0!4ykrpVxvkvpKS{tW;?WZZ2)>R z_?A1W5gqX6Y3=yciDmzE+K|E?Ghxj9TR_9uL4MX(6E9kd-`Pn3-=m%hUHvVMbIj1; zZyrk``)NN@C*VI`?2Blh*;D?J12QSFvo}&~huMH3PN!)?fULarZq$aqSfs8y;JwLC z%1Fil-~&kU`JnVOUe^%sr-`vyk>6Qv&3}dGjuy53HO^O)2OS6ysZog$ zPM)n$C2cZ|Az$(boAoF$ELuZa0qow$X|3dZbTD+b&@7{qdBctMXy&7MvCsXzyNiwl z3x5{U6W`fw+^swKZqY$6{Txp7K9(=j_@=Q+yyx99J2(HvTAsw{yRC4{ESQ7VT&MR< zaq(N79+)ow@#*Ih>UR^h zwC$IF{;A7&7rV>WoMPy#>^pvEli!z(G{7<;?}u&likQ_*d!eyQH2xc7jbsc0s|U9$ zDS82Q&=1n=JLAV@9qKtvj=yYYM=h0{4(e}HHJN(;b61rB$d_ShJ>)BY!GRlzV8ma+MU#N``KEQ%I{R6|GnY-`aI z_Mei1M6c%fab5X@6K3DKvC}P)#?pbja!=E5NKCVFJ>FqujU8utX!k6*K23yKLZDm{ zw>6YyPp7qd$9!>4c{)rlxHQ|HSAOf4tde5xeFyE2ZVnutqnTf>N&4gfVUL&ZqS!{A z9`f)y^jz{$p7+oRh=@e_fi_&<08srq;fuRzRNrO>yBX7L%YnVT)=9n4(~9jET*z;y zoLWdH9Xp8&o6SzdPM41g*A%C+qHDi==;vuw$jz^^NH2(p5@b>OEz$B}BGE3F-9-oB z^Rr0a3B!VHd3^Q_0nDLG++8FzENo(xW-VGqpxSpA=TZ_WBt=J3B4M&97v@C#0A2GXD+06-8_Z zfUnUjrD2Rufu11xn#2Xc7kA&7a?070ED6iwRc7r|U9oew<4<!6B@f@ zS(5ln0QD-FBKe7zkBZVpJtLfF4T@a^_BqF;NcWg-8Kc^1fekADLm;w(jZCvzbmLMM znl{6hp>TPs=stU)m1;;uQW=c-ogfUo&N@wi(ffJP=?4l~=aTI=nxXw*OOk9NXX6o6*`=bWo{nDZ2M&5Efs9+1??wF?86Vht_XMmBfnP#@dFP_FqG)J+(IlWJbRS zbs0F1WE4*8@y4#(?|+x@2P9rS?OS`I>Gxga$;zf~6$GJ5R-aQoobj68f_$QH->g`= z9fA8ZrUP9$?bNgHtm=6om37GcBXrt220JzZ6WP`aDH6P`R+r(5={$K=iW)EjD{ydG zy%S><7~-kC#f_C7edqF&{L-QiSLqaf=*)bz^N{d0m=zO9{_{b^bfcc;c)0Xfx>hLOD67;FT)>`-0#KKzrHwd!e8PHi?jrW(+qI-n~rV5s{b-$dyM9R`p88bGK zCKhzp@c@{~e!^y>;6?ilKzjT&s%&IW5`Gct{k~Qnk@7FDDMBGJ|%4j5a zjf5|Q192NFZ{FsadGjK-u>Gi!mTJlJ!5Q=>&{1Nt@WVW~a+1xXbIHW;*wh#o^-_f7 zk>A_6E{JVktIRlU-g5`FUZ5oW1k;h3uvqa)UG{!JPOJM;zN4Og_QZdouZy@EX z6RmI3HXO zVcN+zhCB&(&>O~SmJ$d%P0r10+mn7dfetnS1bK->Q@PD{ehK;KM5C$tU*mXbhHfqu zaoDKzm{#d25EPP1N(GAgtl(fG@a8CwYIx5*8zA4KGshYiDtF55iV5TFVuYG!maJz- zAMm4EhKs#)YYuO1xkKv>G2^4ME^oBmCp?299@3=Ge&m z1e?_TG>(NC!8fAj6os=Hb|9Aa2M6=K%kp1Voey0%oh2u;lo0?dG4#&$EO{N=b zNtk9XH;T!ucW(JYzk6SAPF33$eh?6+3SR2rGq!_*TD(oUuxOUw5F~xBPP5gh)6dUa z20}}5-GAkAe@qGs2p+;V;lib?joQ(Ww@5W)HohI_!p?oR{#ps7L~u&|=}U;vRlFR0A&%E@tB}rofjqtdVoCKi{oeG>IF3F>In*`R7KsTtmfP zd1lpwZv2i&Ar84!{YGgFE?f(jfXE)S8M43Pn|>``^#E&i^5YgrA5Q`op_UNC#*>hy z)}vKnMjW8+@bd}0qchKwR0^L#q+L^_Q3=R4*J&>((P{Y={#Gk@E@g7YIuROVhO1g( zdHo-Hlq{0R^2>kHj4%M)$%WXr2e7$YF*q|(S&+C*-u$v1 z=IMSMPaDvdhnwt8{%>7O6+BU%u$;RS@oOgw|B5a;rij?dRHWFVlu9=eESeVOsRLlg&kqiE{Zj z>D8*Bm(e2?t_e7oC55(|SK0J5yOP*SP6~n#2dWzP8PVXBn;D=!) zleIFb*uA{pXwpK)9E=o0Iz3av_N2V#m6=a}DA+kIpj{hE~zyK-AlVF*ivQ!-l+I)toGXT-C1 z*VB}U!k7Dy4tOOo!lX~tMzMrb%gqq-d}5osTrZ63#dCzqmwYek`H#h%Y@!GDNnHAA zs4Sv(hBNf3TFh@L`>ugB4gmd+(;}EVejAInmD(cHLowFuX08@~+(57{i6<+LSatBF zWL4;QEcsilNhR3r56|N^y>k?mf(&-_#pITM!*bSu53mS$W$}u0AGyaSFKk)IkAlCt zsB<0~hKAEYV04>jJE3mLY>^*n+3Q^tY$)1^3HdEQh;6K6joh~q8cG`g+axskxLzs| zuGB$Um5>-Qf(Q3Eh1{ptYBE!65;Hx)TyblWA?Gag8`5yh9fADE+|4RS>1Jo&r?3_3 z?_!yl+XB%}%l_#UCMIlGGyqIPGJ0ldF4n9u0dQVXogdoVs zVN7v_K#srbJ{kH0ZHl5OI8$JYGw{3hxPq6yXrNez1hf_a#Rm4LUtT}!Y5Xy^LLFF) z;^@~fAju}0rrm-#aeoG6)%jD9^Xj7Ee*-ENeOPDvS$?n5)$jdaJqH0v<7+?$Dq*Be z_}|WSN(Rgf{04+o5kO?_l;KE|K0#u+|*NrYpGA(<)Sc?vy8A;(D`>Oa4 zE{E|(atGDjvPZnkM#B66sL*1XLG5PlB_=~79=u$H-EB@)5_1~r#8y5jK*!1`FtHw6 zYIxv;LG(6XojmI+_;{`6plE&KvsF>Lsr*g1t+Czb)9~1u6&)Qt{m#XJQ*l@uB{YE? z=5Y1GgeQUOtOh-#&^XR5F{8L~ryDa_Kr(Dx$kz;%b~*8=TtxkN}6_0&*ng zsZa_xb?N?L1Cc)>;jckWAQ^ITHCi5q@41Thf(B8#OZb8BF}m1slm#Kj)GK=jZ?ST` zDX*G4MXp$$kD_byE-+Hht!qkH*!Z_Zvr|mdc&~|L^Al_Xp5t|!dn#r6qM|kD}<@(x*M$+wrf%bxTcqnt(vtAfwS02 z1Vwvvl#`?S{xoJW%`;^K25K$)d4@90YW*_o7A5Aqw0K@zx1|RAX>maf?vP+ZD!LC1 znnf0`J-(hVq^8j=3^r=^1bI@gbqcx&5sSYHHv6f>=Cl+`JSTx7I09UktN{SS37u7v zX#0%!0;;A&q&6kpDt6oz4+df|yBr8M|F{=nID3SUAdc@ptX5AwQuk6rX(hAw#SKmz zvOb+Hyz{JRyI`xl)sMPFH;_+R#9n{R5^VZ;vaOxVHs}_~;Fpsn87#9oH$LvCqlp|@ zVtUR@sO@m8Z9PdRHjNBn*1-rN(2CYcVSxQ6tdKEpz1^cIa21>mL{5x?^{T^dBMx`@;)%h zu&{u;4XnhinZ3;diIx=SCBdr<0sph;)~`+Y*`FH?dIBhF466%w>eBt@WhqL8HBm2* zO$FnOnexm$7DxRU=@~Oaffg>|pD&w92;$=_55S?DqX90%d!_8RNAbK_=agZ6wmDa% zXnk8L6#W6PR?nc*bcp9~%1QBcEBCi!S!(a6NAA7AyyDXgs4K&02B(GW%Xo8i zN4C~x+NmYy0dM_a8}rP?QK88|IS1aKNabGuO}Ksiqv>p8Be}l2TBjv+$)?fPzYRcd zK8;c==p?E?T%3MO{3?OfbO*JJ$UU3}@x~~J^ z0Qe7hVc?5aWu52iTh0nlb9Jf)wiB|(a&A%2t4+Ix&Jb98LVORSa^EhTAhQWby0ITh#}S3zr9Y4m|k?0FQhMu44-Z`5eT# z)#;c=&qCc-ig>R6Z|%q#RGKXiWT&k-70iVM^k8e!wm{&aQeT6T$RVsEH=BspzRR(C zf^p|JM5}2PV<<hv@-$qcx$e5oh9K;|D)xJ zaOWnZigkh|m_Gy=Uz9VDI*q%NIzm24^4;@Ktc#zDCFir}<+8n7PL3*%NXA-8#-iKK zFBg};_0H+tf?qkBcS~Hn{o(HZzyWGCK`>oevPsyq*@HyH!nQyFuCCNSKShD(CE(!DV zXEk99_|)67%xc1x6&A==e$B3rCiTK>DAwADKVu0)50U?3mboh_B<^{qtIozCo1|9Q z2r@_s^1rk-GuCP0$o+5w_sY53_cR_P{4oSl=8b7}>OI|3N;;P) zhK7aAPltk;uksR|vka)+hRXUowco1Pe*L)ejLQ;Y;jo{}>)Kejaitm9`s3eLNF`hB zO2lrh#C{Zjy$Y_yG8g^$nsteMQE|>PxPM6ch!@Yx2JPTM4fMKOxKbx4PLkaI6@`!d zR5%i@C;YOm1sa~Sycx64Sh}7Re*P+>*e&m(sQ$Z5px>{vWZRmGa_LAvD7k$M2P`*U zqEW+pk#owXz_4&8zGqI!B^23E%Do~U%pS5)nK||=XS#1+Gl7WBxeuE2u4i(ZmKUeM zko|`KNKGb=n02{j{WI#vdwt}iFDz$tnH&A*Er59L_HS0# zD8dF;KGVDh(GwxM@%}vz(2Kh5Dg8j!;B*PO9-v~wPm!tq03t>V3w-(w9-{O(!_So( zcV1*Xas*5@roY&S1=E(C4i^g}HOIACq<_!#uuwg<*#}Z#gkuR^UKK%at4Q+GJg((K z${&4;gzj5nNUJaPBpWLYw?@73w|#JyUaGswc#W7&ng(_zmto0IC5zT;M1DEJetE2% z{gx`BG?>1Z_2r>e6h9_(d1^_KWUflP1=ZC4Fsf@b?p$iT!LcW`#RBWlp#lDEWowiBPjFNPBEU zlO#FPravuqLsHXUCR~{zW7~m{XSe*xCySRee_yyHQ}1HKEObkDt%W$_^*Fuj7}bWe zUh7HcXB)s{`Y5V!FDbS}Za5+YTi>erNZ)$YeK*ugWv50(3n_PHecku%af5fjfzgZD zndq3(=GOPnjNUs(%4NzYqg}1$jaSK`0=cnH)!&E3BEc=2Q^m^_;4*wdMTo`Z2rPf3 z8VjH%QayQ7{Z0BP4iHOI!p)==PtcG8dW^{aJrrWZZ_=HhW*s`4A#UX7LGd7+cmaBz zOEF?le7MQ!?Y3uwto^;WN}>FfgQ3NbipeRxPhF&ZI^?|@86#=|J9({l$AnY8EJ+LM z)Imaet1HXfVmdmNdR!eP;y=ucGN#^wR5iQSC>|AtN;NISSa_CNV9Uf_4Ay)|kF{b8 z?}VL0@I$bCNZ3ZK%#0O&(XU$iu*8XNzk80kL@|OWb3F6unGO#hP6P_d>wudyMl*sV zqYiOl20TytQ=7j5OEPQg^Tt(}Swf%uj~_hBvq@es4Wwd*PC`oKilfhQo#j9F?ZfQ& zokO05YL7)JLwqInZNWX`zBW zVX?ON{R`^5e~RD~6Lk)TlS##7I2nqcJP%JamSO_c^sD%)6PmLoSeM!-k%MfDIj-12 zO~$$HWiS5_ZZL0M`h^I-Wh` z&UpX73-X-|xFA0kDZgECA%7x%x*)$tk2;m|BW;$M1h<;_FmVF~3DrtmHlx24tMeH< zq-U{&hr*_bYs*SYCM`N{{7Vd)fAX*-Vw#-VLtZ~nwKa-Twp+$>s!!_OQ9DuEd|~s! zE@j)9X@i+-U*qyeE$Aj7o9p645!%up=?pmx!q@eRUg~wv_O}1sqoQbHJoK#cQ;q!m zN?&|tYU^gp+@gQb=Y0EN@vFk>TVXw{Q{&*!wQLMLuM7DN&BRuuh(6Kjb^M7%)rK&o zob2V~c)DD17t>xSYe#ALpoYD)Y8|SXxZkLAVm(@k9y=`!jMRl(y~Mz_;?=uQ*aRKw z^$VAL^W!P5EF0lovrm24NBUQq>r~$36`8b40~HH6`01#%T~=Gx%;KA@JO|vcluI9weEbgemVeB(5cYH(#^9&kQL1ZRk5i_Gh z-IC)YTZ6>ccWpw}hn)4#=!5!hJn3L-Ib%IP87iWF@_xXYqw%4;p)xTRMyiRF!mdcaJ=HGD^S_*ECs1%PK{BvOPJnT?~Z|zRj zcG6czYcy;BuGW}A!R&S4Tg^p&-s9qiG6A(B_p1f*rFXh~)`w1D&*HK0$JWDKdArL( zT9MFL1drOITWnjuCeQYzkgd=iNzPkcY&$n98NVhp!jbrF)iGV5&I2gw$$=j zPSy1sNfFWqQ;HR;#|Pn>!<3Q~a@@eEHlBZe1`fwTj{XuAcmLkj1XO^GNLZj8vAk45 zHZc5{n&5X&TT>m^O*+8xcbT^$YKb=>Zzg&%Fc54j=*^27l(NZq{0i*42_~;eX$A3g zR>p{RS5P0w;})}b)y^=Bqn+(b7|B+@nTT#>)tny*W@DW8*t_?!t#;qI7qLD|ZmW8P z5BT^begut|UR8{FT30ly4j@eAbq6+}Uek1ualt$Ej$_WJVd}4+F=rdG6-Nw}#`1m} zEvPBHftuwH+?XxULf&L@)ZIZqeS`GH8Zv5rySJWGo=6vveQ|yh3|u0%e1hd7ft2+i zjA2vymk^95W*wnyC)s%|!Xf`3P=W;rVPHIqC{~kqb-7~w$B^gG)Jxu>*2KO^zx}QF zgM#ftJ)tpKY>Zv85=9|JL`!aUJOyn&H=1C92Hr&gql}*pTsvFZk3ZY9jTFb5k-56} zn98%R{dYmND*l|Nma-(b#Q z_TQK372jy$t3kwKsnsp)>sp!6p+)24l-(JEV6T#h;s;{3B+7Q5SfPe;Q36Kv#@`Ly zTw-g#2DsIr9~Bs?-xdzW4x-N(Vo2z0Jo@21e{TMGoNxbN?Q4Q;h!6R66QdAWy-Hpt zh(useVT`rQydgf{RFC=`9siRSebs9icKlL;1XOYfZl|-io@1Wb@y5Uw6Z8DMY?gG3 z<)!j+v#0zDg$!HkW>NB#dT{WN4U*h?Ju^LXlB{hIRL?)ExSrjPOx;+VE&+Y)SwH3iQe?{lRaXUKtI)n8m#H4aos zmAAhQ!bm+~&UVGLT!Uu8eOJWsZr=G6QHrVNW0cwKiV%7Fjhm%VmNU{(*jW3wSLQA+ z5)D(9Am|s{gvEo^{6F9P0EVOIK{L2(@Y_EpZw5JxZjjkYWrzQ`kqO3M~*6&`*f;#)SH$*J~r`-4E210CUpIfqOKDLaWc z?Xm2UbwCWH{;QBqnGIRT4eL$LgyZGWw8RJT+$LhN!&jq+C$XRFS8#A8Fbel{W~!~y}*|iyf~3vu=v#KiY_E{<;3>;(;dY1b`7_ z4wniZ{qVmm0NEySdXjNOfy`cNi`h!Uq!%=}+Rugtg9q{@?TLDH14lL^IxR8!tGXLT1>Lj@fY2C|Y z!lZtHqg=b(2u72e7Dh>ygaJ-Rxx5Zhb36 z={|HrWvw7V%mshZ3pNLC;ionj7*v&5RTV(dz_x>>D!oMm7a%joL{ClkrnC4HE{0wh z4hmJOQTCJrfA~O!u>M_CFhqoYVMWP;i~rM`jbEGDvqYC2)Dq_-7|_} zK&t$=1pD{z>}8^cU5bzX4u1}`qrc6!7H;vJJdZSXmXTru35o1Yi`{1)bhtj^{y(nX zDy+&bS_7p^8VTt}X+%1t8|m)uZjkO;ba!`mgCZ@>0v25&T@sS#!~O4lo^vj_;O3ia zjxpXEQ>(|XsT+;YfPOld=wb8sgz)9>9{9_eF7qF{7etRf|Eh>GP9TD=)YF5F!5EAG zRRyaRW&MnCmUZV3E_s=9n}B}1`o(|ch~O1FW4T85Vc5Mv4Ga+mzJAEE8gfrzTHU9S z&MEg1_Bw}I!;ZzF;sVeY1vonva-mFgoaxdW*%jwoeoJ{opeB8!VNk;!JAK6O!Wm9|XS-YZrk`)uf) ziP>HvOwGbP2UCJ2ZLP0KQOoiA*p47f-MZ2yv_BX{AeOKQ0wwaEm@w__a}{*Gtt(Qu zE6s%^KCkn8eNkU7+j@o3o#1Bn1h)rjo16x}Y;Zg*g$F^@Pe;Px_|vscdWtd>9!%#Z zIy0gV*yx@l+;OtTO}!*FDLlVa=jVB!`p|syLY@a3z6*iT#7Tr9o7?XOb96*m)%OWN z8F_Edk}ML4Ti&63sTTBKpP^=wFUFo_?dme{vy82 zNySy}=b1JS4==|VIjt7sUeu}IEM$18qX5s+%&G7m+e~H>Y2q`68%im;CCHlvj2g&_ zl|N>!@I&eE(96@AeD46ce>)uPf~v|;Y`m6W=vsB;GP+ejs3Q*;5*8rq&04ODwjDg+ zm=>{P1CHr(Zn0{0Yws(6K*XS4kq}O(;@Gwn59f8F-Yxf@BUCnGjK`}w`n>j`&#z0< zU5yx7`X1EZeseD1qKeG#X_!}hNVO_yrq($^j%#CJ z({L-E#8K22UE^>l{CXQmWJaHy1^%CsWC{2C%XwX$AH~b#%9Nw;;`Hu5yW^S|$C}<7 zTH1wcm895auKzBOQzUSKoH}%DOHc!M#efU6yIPmip@wRxzA!)P;(#|+b(ZE$uZ?M- z{PC1c^SwYwzgyqBKxWOQef)c%X-Tg?J9{)`ad?VgQd_$DC^O3jkDw8kB`RpUevt zTt?9m%*%x?ah#AmyXxxnZ3xSeJ+j;w`(YQPizJK3+Y_j_h$%tWTh5ILvV;*}O^%x^ z{DMj!i=A9^b@@|=`p>H_bEaNzIXI-pibXc^?Qof3vl2aewLOOwWMO^dmLWps+;1$u z7DIUPiy2PXn=bO;_w?|r19;ps4@6c>?S7Nhp zP}oE)Z{2%#$8~0>GyS`eK5(`205DqnvBBiuH8()?1~lh}DOzsD>(Y#tq6Sl9pMQ0P z((~Oo(Vq?(Gn$ZHd6+Z4a9bZdd5f}HPvCM@>IUbZY?OubBRx2FVzWl}zj9LqFgdYM zHo?!E`wksBnGh@!19C& zIx3L4Y{WA10vb(NM>#1{005i>%s z5t`OKQBFBgLs=+{xW9E)ksSX-3`E{P>ge?P=C&g#+G#@oGZXyVx$E2AYcImyo+P z+Ev*pJdiuqY}t7E&uLs%Epi3TmtQ<4FeAmYWb=Ht*Xo?EBXGr!l);oHYM*ZiE;y8ze5^6Vr#k_d;lq+|6; zF&9nn`Zg;UbC$8)X(;?;RvJ5W=ZB$g1D~+qroD@Z*6y9j#2WeO`?b1km=A|>1LCtX zvz7~r9bI*-Hlpz1xb+)rbLfH5f!9NEl|;Y`kKVq_MRJx*)NYX=CLxY8G7<#4W`za< z+3(1|Z?^3OKC3GyjOxbACfP>3fYdg!z1-O2j0fI$fM5Mn%l{F$%{Z^!2dBPO6ByGh zK|;mChreX&KU75Z|BcqzO~H^c1BhI0n~^u+xocfxmpY|E={iu+9jJ9$g_$>h!Ol-> zQ*CM?s9)zMPo?K8bezUN9V{2wsP>r{$mqjCcyIK&T^Af8rDyFQp1;>)cM&9veM#X& zI%WXo2T-6d!oyC4#pN*+A>$D2$s0ZKY;EPBh#i-`txky}ktv#x+;V6W{^>?0ItI~U zH2Upk3F651t>A6ayv-Vuo{tcN-sc%k9-rq%y1zTL_|+j#drU6Qv75*UGdltuZ*I8K zx{FZi68iaQ_L=qFdqe*=PkA#^WlFDVz&>0D`I>ivj|*i|>neJQLLf%gIo7+9pQa%m zFqoS><}8PN%1-;3p6HR19Btvk!u?!2e$p)$o)A-GU6Rj`hSA-tdf}&>hJ}0kaVSU` z&?lyikXS2@(pdcIUx0@`6z4eP&kI}l7hKzLW77EV|F#cYEArg$VUF&}qGGrEvZe@`7(iJgufg zaVtn^zH0!s;KhUn7e8#VtWUdmpHE$CA0TdY=xA!p{ZEGgJ~yW9E73ud*~<9(>&6Py zM6A$xWP4yW!ZIZHnhGpx^jW7^j~gXqRAA1c!(hyWX6OW|)Ua*Jd~-yD z*`Pa|^ungB=4*D{dg}#qG<>gsXDhRGN|1zm7SV7v(IMMtHYFV13~MAA6d>mO-gwC7 zyA-HMr-Vd(mU4i){)Y^vaZQ+tP!__I}_#7M_Vsf_~4@9Fk6DHA~r$T6>g==ccA@@!? zLX)8~n@FpEX`jr0ifAX_6X_##Unzio!Q0Fzt)0-Fm3OPaI0Pil_N;n`NNkG3I?Vco zKRFmIIC-JtZ8&`GhUNUWm}$rGz%tr=u+yX(=?lgA9nso4)E@D;f9A$0ag6%(QV6^! zVwILA@Ydw7p;F`Wy;akbAr3G?<@;i8c0A?j-@m27?X@i}B@%4!d)$pn9sS0$!-&=7 zyV+Jk_&Ns1C%)qB#I7|?2C&b&blxJE)Rd6I=Z&u^@f$SGjQf>!`K-RP%y4%OwK+3__~z|a|1(l`gjL|WcyDA4Y!IMBeU z%TxV9>m@=xQ2XkA)M>sX7U})%K?OLOdV|>Lq0dOqm3-K-|=~h~@@aq(s7V1SeIS`9n?vlE=#T+-hy%nQ^8=cLw(5p-iysLbD zYifWFAet@jS9y?QMmnk)*5!WF;)RU|eRIYl!?3&TmbKfI=sb0@$w4q2PN!&ax}H_W zjaLQj()iL?tM~43+3H0uXc5U(YS=4?Bk*>!<%?t59CA5zMEDD4?r|g$r50RTSv} z=^9B&$5$Ee!8V-#>Ylcxy%ek1E{k z$=BSXU^fXMWr3HPPk*Cq@A@l$Q|r68f=EisfYdq(WnlQuSVg!-oOf~>abp)6T*RVG zJd}gTX2m@-iOf8-ytJdOMddXbOE0*47H2dOz_8hbSSP|c>ReOnC;QY#PUcu zrp{Uf3Z4k1ftZXkMwd*OzGsX+Ez5iDMYgYwM>-g@D_-%YmgLi`>J;aDmUv zNUQF_vtMwrl}=lPC_&cT*iJk1sk05G#fKx>59C4|JDF`!N_F;KCJOr(?A010n~yRv zT3kOz5}5V)&1Hh50cd$=YBy|*nMTdhmPT^ZtcAX=OEP>RM6}S6Bq{qmuOwq?`dz)T zhiIWuwJfoF?qvsrGDUIzg#(Npz1fa#k;9H~qb6cnJjJVWv=PX<#eRaZ?BE%sV*5=i z|L2?$Qa*#!)4`j|k97m<^eA3vU?R@)+YL@p^))VxK@Hbk=ki!%XQZR(&ZsWu7;!UC z|J^~W;a}Wi&zWJ+QHQ+RL`jCFKN$?JG*#8guSXTT21^08Rp<@Ux%c1j&jt+D(xj{D zBY*Ppx>Y0aqC|mNCwy4WIn?_W7X}qY?G-$d@9F#Y&Ce0W z40LaeNPR^e*bG0-D7uy}yl?pOIIC42>G!a%PD6%4_W8u>Xpnq%?G5d>XJ^u5SV{Lv zJqtRK6ztDAQYHp8$0IUAOSq@yA&}E}dbh$F+M(5eW^@8;XU zJV^EK^Jf6h(kEdjkB}!)LI1AUzze{njt{5@8*LUMNi3@p^q-eEqJ@TVPx#;SjZ2Sk z{EWYaP|5Ia1$w>(sB=XT`xw?N!F57Ao&|Mq%T)0_NQQsoswE7;BBh90th+UBR~Ow{ zsM41<#Y1p=(zldXfrwR=u?G)O^g&Q{1N8a!ex!?rb-wjK*&Bi$Onz_rl}l!@Fr1Ap z?(qL&nEeJ*q0Lk@1_~j`9WQ9zVaMIHEf^}r!>b@`;AD;DRa<3)h8yGSC4)|>qK(uv zutgJjSjCj`g7Xx78s;DyZ*s6r49g#gh%EMhp<^%|h++E>mjwNvAp8Hn7YV?~!71M`a!l?|)gf_=tz#hHlzl~6V z52ki}HzcVR!iv33P6{LWTnqSdOgRi2oi3@UzxP!Ls2RvVH0$N?+;oWPK4rX-=~jxZ z2f75?h}UIvTaT?x7h=O|>1-NO(5>nsD<;3qwp2#s%W}Cz8D1-1j04&Y`qLvItz2G) zVgEgOpi$QGUspk%z|9o+ptHa!$2tvBAn8mk@Q?9*nO~09_E5rgRvcyPCj(I?KRqC1 zXO;h%2p0jlwV^1AGMgCYO@B@=&U1{(M=Q{|str@mRNP4D-)S#|vw$1+=VrY=UDmr4 zN-c+pJLG$O80C-mw$2-cUrwK)%x-4$dx&1U{8T%j=`vqMbI+kkQq6ly%w0K3b6oZy zw5lcqFDFvRG)SVBi!&VGZqqz!npf>d6MNqEsw|#A^k36()1z ztoR&@+Umk4d^Kk6SuKm8!WxFCnt7U&3uNL+4Jt8-$+D8x?PxBBzaZ&z_G8z3-U_Ql zrk)B=cNNGK%4f);hh2413;vQL+>3X|X%yZ>OClwpVniZD_dekRGB@vb4X)gkqGb$E zzrSkHy*-|-kheA)RvT(pENcP?OE1v{F;o=8gwE6jedtA0&U(_S^`9S@7=%YkZn;*} zK97*HAlZq_*W~W65qdHQYM|k+TfN6?F%n#pBpr`1pY8YS;r~Y>BNUO{FBp7~*-S_; z{dohhtWV(h0q!ea6Zm9jg*7gNl!Adgy88#h_!0iw3;y=F)C_KXbyC5K{nA!U590ky zY!6Wy#4$*3Ig4$GQ{gS4j{mDr(%Mh)OR`Th`l6(EG_9i4q$BL*&mGA(@7({PBwsI2 zDxeG2(zqV811A;n0p^6H7<4cO`9>)bFwkbwVzC$6hO$?Jrjvba7FSX~Ise^bDq%Pk zcVrW~qD;b(f+BDrQ(>xxC0RzZ*b|<`%SBRF2waiHWfzlx%j}7KLtNFM@DNc~G+#)H zQS<&*7)zs|HMx3jr|BUIhAb_@B#%gf5`9+(eO|Qrf%3z!1)5M;gDti@-*_B%2+5&O zNWLUVr>ry$NDZ~3v%l9FB7j(8NpY7gsSjFswE_nmn{^^0wpZoBJ( z3$CVt%gic&`5}s-1w?Qs)rYa3Ii(2XBE_TK95$yb0+N}0{7_`dJi<-CtLrAmJznpn zEg7(T+8aD9yqV+9_^F_?%802O=L-pcE@F!~D`)d_6{U$H(X`S=V6)57#^2*lhyanC zEt_P^xWzU=*jLSROOIXrxP$;TJQE=j7N%@S9bYFddktvaPn5%Fa^_i5I*mRC6r zl2ra!gPa;&0c{0uZa*RNeuS(A*@wz2|+3a;ZhC*`eegYg<5s)46pQ`soVP)eR z{{HZ_Y!dI(|H1iJcZn2G%-$f!`o8v<1_^R?;X}>3G^RQ`B-Y^E8_wyV?yDXU`50pXRT)PrdW)HY1x4%QBqE|Bd5MT6DZ8+mpg5Qiah2dm zy<^FOf8>6=tJODV&!FlK*sqQ>2cF67i_pxUO)HOyzk#lUX7jzjm1-Ut!Y#e%KNu1v zvPE&&@Xy;9LoO3&{yM+d&6OCCy_YMrJ!KPycgC`|!WC{9&D2&M44GRJ*W5@70hkyV zP4z~W>!QOS+GP~|`LstHN+)9Qxs_*McS$xLj$jL6Lk>+6YWa~(Z)C&!ua+&)14C); zJ}JGaQ()P+3;&XYB>HApk)GSKfTVGVMQALT_YX4lgCYmMf_ihpY2QtHo;1x~{SQVe zE6FT5GOuC3iqv+co6p(}iN!l!ZjYA09lO4Mk2z9#DHksYCQV=Yh!$unmXCzuS9yR= zTI0~@CFf`2JN0t6L{jc^P}Kl2MfZ6f!(K7z;VULR6zFf=!2B%)M~SBFv01sSARgF% zeMFh(z?5bIwohhhBLVs)?7oX)-tUSBJRv2v0hoi__Z(kL^AlV1kMh5C#6S@AV{c>_ zu+IG~FNh0LG$`RPds?YdN<#@BK5b6)lRd{R9MT zEugoD80O=I*^;fDXn^l6fSt9j)Ej6CKk44C`%wFy_4#)4J1g`elzZ7*RvajwJKhai zwNx^en$aM2Z02i}n>k+SReYNufet0M9@+Ar+&y-u$P=vzmUrNTu`o>NXnPlk2v0iF zMb%=FO?K|abC!$$m-o+au-fpjEzPmeCYoC{yPingp}yU3(;C;E5r6(52i-1rJK#JFn zMui3|X<4I1p&vWxHf!re8;zY0V z_t)0d8y#P_RJB6yo%!)KqnTi;o4WDc`>LIW@7*6Tc-%8GO@s2H#NLs%o4;z*Pd{vU z1;T^7$G<t2P9WUm;vF#R~wLtM!#Q;{3{@R&(hNb|9l^+{APBf>iT3&k5u;) z4j1WFsJkm5PXZ=ja?#Ig1#X7~s3^F9I-G_y=PR;U+9oD(&p&~Ak)hK}4HfT@MourqSD;jt!(eJK-a6Xd_8<9I0$g7b zx9YXmTs8@iI>sc-WEhS_fF@R!fz$Yi0z8Xnnsh>736Jp54iCqT4lIqd;6UPQnMC!h zl_2SEA~0w++5|Urg_?<9VyOXdohrhUBJihY~B1&|z>yPg*I47-L_}Sn4k_|9p6#^YSNQh1Ffh_d>|_xaFThRuKjqOGWFj zoex^z7coGC{sQ;;TVAP1iRl!@eA)^%neF-t<566+Nx$nyn6+xVMu4oAhAl9xdBQ5^ z|B5Z9SJ3@@!D%|fMJLyRfO;v=?AgkXLeydO?&-0i_r{=W_Z}W?Y&+1crP8RUY?mmK zn+6b&C&>n59p^ZnqY%M`?*u6I*tdb#FlP!A#B|XkxD#E$+7kKb>QO(sFoNnunYtRS zm-YNqVULKvf3pJ^SDEKsCF^J&8+7tBgS!G+(NJ~w0mVZ%aU%p!Gxvoslb_CYe$lgGIxLE`UzfsmL^FH;fN zYwIfHVo0@`p}mVZsy&h+zibn2@tPa5bi8fl*^w8=MJeXanLKqlx6C;;8K#|U=&t2g zrqf8Dm=5zx0a6}A!OcVpv!LBIsql7{af9r|<9WQYoNww36x`VM3O#<6dm6uQ4!7u)P}X31A`U(Ouwkj>hKOkvRujZ0#hk z7Up^jZEhFfiPx8}T7YqUk&&|o7LyxxoLak7F~|As^6~(ek1jkmzpQ;`46obOr*^xL z;9HQ=@%i+$qn?c+5I|t6yz7K%nfYY+>**S=>?0;#w?psCc?~*NIOL-VJ0elX8YQsm z$rJ6taUamuhN@GQsoy2%r|O+lxM0EaX^q?Rj*vr)6YI0kOYrQD2o?YW@Alb{%%VpK z(uI3cn^>50x8a5fw#V=3n;uh5birWGEND3_M{RAW!tFoaL6-~|h35ZE9CQdm;UAX3 zLE*>ruBIAq7$JEKo`Sa1(yBZ!zt8#Xi#k-Ap#1`BIWOOqyY7-hD(nR9 zo(s~SP7muAwr_RLl@%T+9CH;FjFFvHIY?fDMuk*eE9p1x<;qSy9xedbdNqsk_kv|{ zbPGq`CPG>Mwg(Y!ByW?nz=um^uH;KxJrl=2GZ|oD;ypqJiWQ)^5eP3DDM~(yP8|B| z1uM5GqNdcW;au0GZhVxFM!y>CJFl3k=;MLE zPs!-V>SuEtZphP5BTW>$f-!V;rxIXHt>UfqC7*BDZV@q&KvfQ1lhZVw4EsrW%VZ;6 zLhm$aQUQ%j;zJKYz;srNb?fOCLQR)gy}v%CIHn=5R^HM@~U&LZcq%M!vJHHN_7kp$`wK@`)JFx7$gO$I#-b=&J%iz6aw7Sr$lxuNv}?xphbEu73*VI(>55#)kyw{2i zYqFd|y>%)$x3W9pPz-%lqmfetI>@W6Vt6yz0Oz2)6E%ETfwD#fq9ZTFha56)fNG&Ex2auvbN#grv#ZN6Y zw5LG0Hy@wHD?`S8cR5%aUKLc{}=L*=4i5EXA{W(f93J)ouhpRwh6B(^7{=T6g_tH57InRHI3? z;WyreRCU#(HcVV4M`k67U3W9@^)zECZAeSBx7|q_C&R~oMHpV$wH5rp7x@9K0C6aT zB&r|;Dky0@4)^J@NGjyoHU6ZY^nW4Z8YT1dDX2KeBsX#RXK#|ye?6adUmG2Bq(KtE z;th(^`;>h5XEB$-fih5WpNuLSW^6NW}>Y?Vi(1uJ^?*@kn zTB9;>I+c=+W4uHs&gIg#u%ylPhO>GDiZ=Mv0%|TDo6`nSo$1HXB43VOiNJnRNac3@ z+tgx~UNuIde3Vk-!73$qv7_~r@&+Ck5%sF^KiXmP>~OqqptTA7R5fX*YFCOm>-CR> zMSK84)tSn65TFc7)GZf=jq;GMNpQXRIa{{4(L7=~vLcbQbsj14iGiYtEru@ZB=S^Zoi#-(N;26Ulz@jYc!A*MOd-TkAby z+&ov;#ZGFxDe$Uq5I^$6IPk@`o%3v-q9^MX(dwD61dpM@66g53LAinS$s5PB0pLpluZ6sk};5Cn8jFOe4&BQA$ zer{*u@4U#CImdXY&LiW^L z5|wvlIOdxK41bF_D7wWPnGID5tf5Kt6f#ZPh6{XyUpHn$W~Y+!Ae`OQtqlYMO)r9^ zFLNI7$;pWz>oGexHpQJc8R5dKB$o*u^0s46n<2dJ-F|%~R;sFOJU`Snc@FtBV$;^s zN6g^#Wm(MsQ%G8!bTMK&@@mTD{DOC09^F!JZgv-=*DdLBfD8XyX}fGc-OcR(aM|;A%bK$m^{Up!+d@s7QooniQO=G{Rv3~J&`jkt_}imhAaUn-Hyf+|M+gV4Et^#w zkF8_h7i9fQR_7YQXhSV6xbZPS?9`~$x54$i)hygIg~oLz-}x1kY;y8LlS_>VH$_-Y zgF4GyboN=%91i%SvS+plbBY{Z95)8^ zkUUL64JNprUy-JS(ga|2x3?bG$}W$e^hE;^ul3dr-h2^xqdxgy8MT{6xWCttay{M{ zCLD-J^pg=h@TPw555r_Euqc8Fq~G8$P1saDR^gz5pyowW`%1T+BOU{y@CIw1CgO`chT~loZ9u&vuh~!mQzDxEB1eYhD{up z(bB(Jy?G5oreXr=FWKLN&rSF2_#EV7*U383ly@5UH>aTdUyOjYHrEvW9p+<0kAeuC zy9RNJ#l{k~Lz^LmB+W$8?XPjsaslpo|GM-QEh|M#3{`41)!+yf9T|ksY+ff+dcQRZ zN|3uQp!}eG!FB4jJ)Qi$&v`?$6&NDF-QH<-E39cu8Z=f*2p$+t-i#_fLjT^7`q?a* z{@8pkcE0~jWVdG04_!J^hvqZJ^-x0RyA6H!rMYcxPlpa5(#ZZAX)N+v)s1&vM(X!4 zrLt0Z80QjPr?oIztJ;y8MwzyD-Kut~@0&=|`L!#fjj#8R-*H?+G2M%F?zz*Es=n>u zhX;|#Rv&H7cn0e=5q~T6)sRh_q{hc)snw&6%n*WKKXAd%Y3b+mBr%z(-6o&USB069 zgqRI*&e5EIM7Y5P`9Na&qw%)W{o|0a)dUw|=ud8fyBYXgb@kpfgB+55Lv~y_Z~P5o z`M{k-NjysxZDzjYzaD1s(lwF3254{lU;D2o<6M7XlJ+>MD1Ar@#~V8<5Y*F9nd_)u zYWg=`O9uilN4kN?jtVt!P^dp>{-iIDK(3;)B5C1>Yutv+_NtlAq}`c286$20@3_F{ zmlWW%h4}wC#@|K{#2KkCqu<-}kS!*CcdZ}T4h#vSPi+cm!)ZU&stTn<*E;3+v%4JM z;mM$5X#`f=LX7sd^9c;LAvYU>}hVOlRu}K zNL$OaqaFYvl`Fl3a2kecAtwDtcb5=WQkS`5i^?&eP_hqMjOIi4P^lB1*KY&TSUr-d z?#yIxV^ekraW_cE$~$|<=Ff&BzBwle^`-n*Iy6Prd38@X&wt(fYNa5%NA10tYJ= z1;qEM#2Fv|zKb#IDYn3TYYfgwLn99+s$Oie{`+y1+Lm^q`Xe-4!Id~a%(%zwid!j$-$lsw;#4|0%I6HBT?4ksRt-=qK$2J0hCV| z6;@iXh57azrJbz zI~D@Z;NiSb7j_A~!y_pFb*Y&a6(xx69NGmuG4tN@PN#-L51sUm4a?(p2~*mw^N<@saQbL33U?#?@t)7rP%+Z_i#Rj3)M`{b1bLY_o*?2dnekV9 z=;hzmsQ8v#sVLv0)8&sw^Q=6c)nBB0oZ*ZJ>iN7c<>sY2gbqO`1Eb;OI_$;OgQ|Z*xr=ny$%9RHrz#d)lh%fd@j zMq^b1^tAsunUIK}6BSzA_Ekqaew`Q>KnALK)VJAxTb-eZ0VULP|dKQ&B1u9DMd zzg!kDFQhqb-;kb<4Hx+3sY~}Ukb%`{yr=fK9<7D!BOC-d5NJ6N0D4NsWCJrt*Y;+(iK5UqHe6PhymwB#bKGWVGg zHn!~Bkb`YVv&@k^Df%}dhi;*Y;FI`qjau)Y*bAS2p8cWmN^~@NN^qhI=MKpRX7nKD z<;+;$(N;;5HUU(*Q%QL;h_U^5f8>bPN-DQY4(peAs0cNaLIl_h_;QM})D-gF#0yQE zfY5zlCjmA#ZFLhq{rR|^#adlB{#3$5fuhkMilxq%S*m_PahrvGLz+pK;xy-^r^xFs zWa7RZ;qlYk8lE%)yi5+{4Mp;$vg>L)9Cb!EhOwHy-TH@yZEJYZgNl8E`7GA6loUqA z+UDp`frxxRDHJyXr;AYXBGDoBJGP8Sp~lB$dHlYlgCxgnS{tA-zQ?)1zz|Y}fSFua ztzge@1Y}N#my=4XXi9Vl_MuoF4I62#gCOAmxHW_CH;E=@hDYdS0iS(#)wSFYj zmYFo=06}-v@$D&D2GgBZSed22b~}`Jk$$MkLCIZA{@tq{E3Rl_Wy*$$1M3_PxK-EW zN!s1o_)yL|1D-8?-BuFl)uKJW8i8b~kQ%c{3eVB_#nK;Z{@&6e`(2#zeUTELF>N6O|Pfv?IcH|D-e(N!y_r zVRQ3NRP%%`w1-O#r8!^+xxoBgo^m$7+ZlH+D^a%jcP$iZZU9S@C~4^bxBrB_`18=m zH-p2Kw=_4-%m!BRz_Olr3*a|RjaMfDvkwa5FUS8S3$U3$-D@Tw@6YVO3<0uNm?G`S)ZPmkESj-+;(0qRO zLUNH_1@*_1KD&MaT@@cQ@Y+)!X_sEE*qWm}v*lDuy&0g!yrz!_Q2}Ml7@>q|1UL_E zQDB0qp_u>UVs7K#+oB8Do0NJ(qP|tJ>0}M$mnp97f;w;}T7SGLew$G`@ZLbI67M>_ zJYog0Djx-om0-e9F?cN7G83WlU9nI&(QZ?IHS97XzTgz6wPz)OsOPOTEo^1Eh?KejVs9JuY-Y+_)i!Df+}ko9!23osVfmdg{@+~}&= za=#gyARu?4wHTL+cWV-YDA}c@f@vzIsEFFg6xG(k#m$fox2cb2G#4#_bWeWecv_^Q z&N;sgQw!!Mo3_Vc5a7yf=tjb&P15PsKFeL(4dl}_u+Kg3wy1Hz%IBa=inmNVi1#4B zm=~F&xO(K^Z3q_C?G@{WZcZhNhU3w2D%;Ib@Rd}q^HA8}z^p5v)bI2y;DF->B{i2o zK2$KV!ab()-f#GB zN@M`+S~vWPE-?QRt?myI*YO=yEh|-llP73PN#ZvU=)W<64Pk@Pk>p}VezSCxV{kF^ ziKaN(t2YqYQf8b#-ivshd{^c{4C=2+;J@QMJmdFv5SCf=YHXOQ@+hACbenE=LWAuj zE+_(m)8meXQ);WVs-GNBhM5QLyc|m}i%^c*r4=wPH@wu_ij#EJ7?32|nQ@?3U<#9G zj%T6!6fYwkPGrY3HOnZwAq~Ubh9~Z3SpP`lv`x@h-=GI@b{2f=D!@fiAL6m3Q?GTE zbR?bdNMmg_$OP?oxMl6Rl{2##^nh(;y%@%HN`#XOAS=#>BY&g9H~H3aEXKFe3qm!{G4WsdnKbMXkYBJ)qbLf=dYzYrXUxS zO?SoE$s=R>)8E)^fTokf_M(cb0$w^eA)hqiN<_<)v~^m2E1 za(Oq~QCfObo@3Pa&k-P${CYk#jyJCYbHwW&qqdlLO!WHR7SY}3<`gjS>&p*xDsP9s^yjNrdF7783BI$16co698j^grF+D{oZ_KJheUrND8Q2iST; z*imj%iJ*`qZm5uXPvot0}SC)WhurAmOZMt@>wV2F#j)VySf*0)vSOsoQxYd0!Lg19d<`tb9lVP_J z{T|Sa;?a+L{-*MJ6=01OLZ*Y`AZ$TzqT*Zy@9Oy;sn(TyLSk0I+lXqtK~vag49QE8 zC^RGF7KI`$t2aoO8`ql6q#b_H{FZl0mQ=GeoOTb z0|d;1RJq|3pGKgD|4rc>%QQ#kE$BBF9Z4-5kLo6x3nROie5yQye7sjPg}HMW=bz6+ z9)-ipPqaq~jlFtW0T7UThMQoON1W)!lXdhIwTPyH)=NRN$`6w2b?IL=O;3xIem6!d zSlrOJ$$gJ|-hazI4Vu`j(Gz2zNm~wvgmC}YV@oawMEaQpZ=-8cDB_b}X_&wEd-8s2 z@;TM|eOiFEMaSeRCP2$ebTVMmWW>+M^1`-&epLICJU@^W;p@47@l7+rjPzhiaD>SX z3o;MF+d?bCi2>M1ZUmp?2orE!Tm%s!CA0c93K8a=KN}k(2>34p6SX^gS(~voWyE5-s>g=lc9Vcv?A9%x9*lwyzDcfFrs_xWF??z|r zkW9?9R1!^d65Ta7tQ4=6)W+?k{tRi?*%(@kbTR`=jjmUTD;MzxzGPN*0;(4E4|gAX z%P6^S=N94h$FFJNv=tq%374v_{NB}?CYQYr^JzO7L}jr5y9+?DEj1GY_A?n+$pQ7N5ljF;r(o zE;e>2P=*7+erO;w5zGe&%HNdWaVqXhTQ+PDu7GtZ8;2#AlDgw2Hm_D;jS=F8y`5fVp&|7?lN8 zF&J(504}P~LwB1nm)c1yfO4zy~L)zPu%7z)zrj#}c@N&WZd`ud;U8>naf4u82s+9V+d4f4+h%YD0`h&ZMq~4!?cxyOcqy_?F8P1-W#pFxUTVp@yt)sKk&Iza^8;~9+mkTU@u zpCsE2jh#q=rWS_`4)kTaSwj7o+NwL>oe9IEA?`O19#~;vR4$l97y`+lD2nn{wF1PN+ zf>-IK9Mnxm(j&N5BptycUwR3^2nq2fcmhmesuYMK_J{3QP8qIB7+EZ|amoF7O|EAY z%W8hADQj}{$Zck*$5ktbOUC9lg~-DtVk#((S$*%BG}P9Hb#9Q=zUjxB9=)Hz+$0EmAkI^6T+9!$T>n+e#Xa^x?&8A?I>r z`>V0Cv~MXB_;}5p#5?CA=i+qpX3x7^ms*N0x)94s*XH& zWq`qnn|hm9+YV=o_ESbq#$MlpWfngm3(?zr@kU^_+;jDL2Ed6N=TW;V=|iS#2%Oh< zlP>7dw}8AUGh-hf&#>-`35~9)7dj&~t%%EOvHiX*j2Ni{Al*f`Dka?sWFzvlYB_Wf zr9H&d+?#(C3zULqVWoHx!Wt^qloTASPmwa{2d@uZXb`QKa1DT%j^8%LJ5gz%u z9cHe?m0`mWn@Fwxefj&`F8XW1Xu_%;ec2su$DVshsb-JvTxz`lT^|qEll%%;;kIEJ z2vX75&guCkOx}8R?zai0nk+YBlEYVnkG6e^d5Q&TeDU<^R*TCS}nNMPS7^%MVXD}(A)8gCQvhj@oNS$hNLpymvF@yNi6;6n4 z8;@N-`vtv+EJAwt!Ctf});$qd1@0fscgfL7H|`CM5Ax%|z)-7^$|lR51&XhOOig8n z0IsQw7>SRI+E$C-3mtD;>cZk&WJ(e!hOE-y%tu)OB+5*!D9i)4*1n?ZD4x63+4l#v zFHp+9U3bKR<#a5HYF9!L%?Im`TjB?o7yb)&uS*Swa-tnZ-{aHKLe*oWei&@*3c$=E z8^q?%o%S0eF^s>WEe_9u>5~Pik2vjCqv;6qbb&fhbayoG#lHOo32z!{_j&=Kn>3Q_ z&1l6~KJibLaNDVGo2MJ=tkhBNK^bGs(C--eY_}~w9pCI?6u!&-WdeE60#fV=*ZUhwx3SAEA(m`LF_Y+F1*l;*Y6o zEzOEAOVy`?jqu+Nlcu27+qfO$x!rG%8rt4VE~e_^{PpeM0nzSglMfJhIbeYoq5?xs zXVV}=qe_3P0-cNT@9F&n{)8Q2Ei04?*4;ci51S0jA*4;LI%9#m+J{0@i>L&Nn|DJY z+d}hqYyO@^o_R1?2S?(`Al>jByGFA`{KS?dtN~tRo(0}@OSTBb3p7H`63u(u53-JZ z1+-iC7k#8IU&HbCRal&N60wzI_7uGv!r>F#an2b^S;dh{;Oe3bL(S_m&Jl*>@*k!0 z1jFCbrwRl~RX$;o?4I@UGwjq{K*6c*npE+y*fjnJj8UQ#0%;vqycXG;vYqJj}ugj*!sasS&L|?8?!Qf zu*0DpVyfOGqR4)jGwh-Z#^cY0P4)^PX$0rkpD zzU?^EZ4sYWd(N@&A+Q!}egKWYl)9puqm>=bFfEJn(wb6Q#llmd@(x=|ZVP7d)qQhh z5DD}9dEVgn}oj=Of zth;?{8YQ|^2{f+G=m=#&HAZ_JnOhP#-|T*{WAgLB5zEQaj4g_!Sy9ifol#R~yG_U= zmVo6@><{~bv#I2*FDL{%z&TyD1ZOTayJ~>Phv%h!PtTW^i`h4Q9-oM6%Wrw z(kLbIPugwv@$QFZs!kf@_RtlUZz;S6VIZH^uuNAc7szi%99bf8FrekU$usx{V^kO}PfX8adVEamPkpq|m=40Nl*XHJ%w!Hq+_>MqxVIZRTK1>1NGs9T zp69CfGd5Vu%nII)ERLjs;=l|?FLkq+TBPy1Fe%tNLz1&%0S}wa5?!YS?_MU5SoEn_ zLX5>TuMXrK{q1SWzox~E^A-jW9sw+366I+to8$!`Je>XNeLW&YXEuJE%3@Bxcm`gX8QtR57d4dT+<#~FHkjHIz z)e1i`{&k?;SusGZoying zZLeX?{(hR^D~$$1$mgkL%r^#(^rv&?0{X}1=%a;yp~2KQ_O(>7x}LYnVG{5GjGQt) z`|nzdvZ2`aU*+I;B9sr8nwz;BOyWuec}k@|YSm-7L9(cLL%-ivO-ZfYpmzTW^p(DB z9({kRS&i8QpkUlzHcu3=yYk&(!kUQiWg=h}G}@Wqj;yqLd{her%>5%xI5M5YH?2!~ z`mf#f*klX6tx8VXL0-cNPd$>#u}>4&b_FD&j~zC&rYrg>0v(Nn+ZVdZ;&S1vlO?qT z;G}Y5-O(BoUei_jjO@P%Nzk;(!|}>;R-}-fp5`uTor+H8Zq%QZ;-!+ewMm4YoeAOw z_kq?ZzeNRD<_#UPkDB%9+v0OIqgsbbY&2Fz4gbliKK+`llQ2g1TE(WU!hQa-lv|DC>Aq`b%B7O2WQo;_x%9-#74<_ zu?#NsmdEfH&Yw`WuaPDTL68$3is6dnbe{_oTHMiRhb-qAy4Go>epMgZw zd;U@+x|W5yNakVMrpD7&!IpHhrE0h9p6vHPH$*9q2JtA-2GDIU1qnslfQk64GBs$h zZ>B*07O0d-T48T$>;9mPZyZ5S6$zB7ZeEZxf9mDMJOzP__9R zx^#Huz3tDF$@%^Aw5|mu=zY2KMvUiKz^K z4QmFv!1XuCvvQ~yZ#z~ud25ii;K62#o-VaZqDQ!jlS=1H?d^6bylSNWC+9FS*IV8d zFRqUCpFRp zrC!^T$|H_mwy#pFcP>iU0zyf^8vDGxq}`SThYsL{(RV6Pb%FFo7iCb5*aA}R+g}S5 zBWBaiKU_Efob_aE-{f$rO}9RC(Gi|PsS`(dXe~`mOo19c_xCY1m{6DjB(;=o{7x(t zXT~%mJbwxs96s8G8|Fe`tAWuY^5%it0W8MIl{0cbJ+$G}rPSQNX2Iv1wcx4<*kId2d8eJIUbkS zQ%wt0E$exCqQv2RUbQ=xcPm=eyJ8=St4Jt>oKgSg#HB{Oi#|xOm=Rm=5Ja0hx8iA$ zRCX`I!`)sh+}o|&bd83ev+a{f!3?^uvC3NR$Kxr=_d6S;;8~W zmbm(?15AU@k+ZoWv$zH$mUGmfk+$)oGp{_^p(?G0JP$%oFVr4gQjA}B;R(J-{ybXC z&wtu;3)umvzMb!C<&AZ8+x~X&^BcdVr;IbKfR8zp;K5iqPL?rmw4<}b=VqEs%Y^mA z*g+P@Zw%U4<*F7*(BQ5l;n1_vlzk&vsJ0E?0XJb$fticfjCd5&1#i4QpL(O@bGIt6-;%$Nnb~3#BEE`^vgKVYn$0s)UGbRJASxoG|C4+l@oL-tJy{3mPu#;h)qn>qu@gp99|# z9`C`(b?{&a&j56!a+=%eqC|hHKfM#=-Il;YZdFl6d$<;v&qp0gH(|pMLTW6y` z5G>D68h-TDag!uif$T7&M&IQfkPZ-M(kQ1q2d2Qx>2K-Aisz;lH(YW>=OFi{HULb^ zrfLqadzj|72%ZHCwlY0GTGok9xaOq+Mj&9cY2>8P_ER z7lzV(1-6VqHS{81KWcjDYm~br)s(oeYah!ET>IWVn?YKwEw!-a)Dl6^eORvY6l?>= z0$N_8nI0XQM6#?0LeExGEq-erq^8_1V&VUYC@{AE36^74oQO!d9ow#=iX{GZzGiB)z`&Cw}bcIs`VE{7;!%$_O)owcxT|Y1Fa`Cmc zit`kY@_Ps|oHYOp_l7cR4aN3p%J2A0y5P2X0oLn?YOgTj%9;jT^6J**V;HQaIdHAZ zMHXOl#55oiN|YfSm04-;3Yv;DW69A$pfVoE(Z-icCg;}tFV?i0Uqp-%l{!bsPL_9d z{T|uK!D}u#vPN)F{h-cP!-5$VmcBcRZid$-0_2E$lR~NWYLEL`JWYj@^wu>pwn2|y zwEFH(m*n0p%`zSgj}_(_FmJ!Qo@X2Fa3?$ggG8D|0|h z$M#El05>f1k6S`k>!a|QG)1?dwRY(-Z8oBJOz(Rqp|9eCFuA@+n8l)>xlp$`SWhM( z98zy4gsGm$cLQ8p~c5CHIZ|8iDXv0XPQ zuk?%4H(y=Ny8fc7Jz=h?`nVgnur>W+N0c^YgG(x}uQy#>aQwKuIMV6Lt`%k$N>=es z6ROXbYAetU7`*V-E%X(cFi|_~VG77ti#3aYmunqlcFzeDd??V;H>+W+oTZv^qBo8I zN`|ip0{tj=*7sB@I&cJ)R5N)pDhrRW9mTId9MI*}i`U!NdTK?X8lSCL9)K&7aQy#$XNzmk1=pcBRH{s z-8H7JmA{0JQrJ}IR7Z8h{WTDE!6mi_X+xcWrQj*i&(FbwX)bI`bj3qH)FGNP2WY<( z6qN%rj0+rxMd)%xVo%&6mjApK9h62<*lmj^G1Qv+J@o^P)=< zi9B5B_SzS$mSPUz^O86q{3Io(0U{8Ml zHGHWstX8o*j!|QECvzdvi;^y^t3pgzPaiE}P7=5>yTBi`4kst3mfHy} zrBu+u7ox(kM=SG7cpQ0)6esz!cz>uRj)%(yvm@IL|H`2roo4(lV6F`g-V*gxQ6UA? zvgi0mE=BltBr;q1qn=1wr4g?*Jpi$s@z04z5YD4sjcQuR1R*9qR!*j(A=8U^Kb~-$ z8+(|LkaB@Rp5CkMCpPN?ti-S+-i_rP_!~X{0wVCd{J*fQ?ETjQvPDR&jNUh*_FB=mk zmSFxde5iRa3M;_&;dsnBNGddI^WJv;qu1qV;$(AvIlThtY(e8MEK&309a?h&?Y5fH z=Pc0c0NK}CX3KIanUmTDSmAObn4VMutzbzrE17b=J(vz;V(j$i<0Q4d59Ydx}P zO|KPCAh?MeEuHenxe1VdHei$XC+Lc*)U=ahilb|^{du*QHXE02QGd$Jbg;F_T*^@YY0F=kM2nO+U9FP;B!#czdopOm z=HoV-H- zF$4x4SO6c6!}*P&3lGOM09fi{mqZ~Y0&-K{W|Sc=x8_2F;R6 zyn7;PvX(H@(2(VuHL{0u@CVsHS-cwI)En-?xK*EKd`Xi6mYhHM0L3uxZbR5lK5g>` z*z!jNW$fG>t$sTJ`p}D5Rn{2ed?H5iAAP^nezRVw^jF;tXnn9H-RUf48d&F2d~ADYx*Y;TuoPseIJPCw&ZgE?7ITwe$l74#?NN>P`NJU_M_wd|e1RqU z`e=N2Cht=pKg*URgm2=h)dSp3{8zdnKWHMcn~`QC(^3t!(yy25x|TYSpEVmC6j$#+ z&1%6xRrQAJS8uiWg^!q&Rw%TqMt_0$3?URkFNZrw%g^ToDzBq#VYh1Z1KsGCO(&s7 z0sD-TG3^kxY~4hsCa+6fbREb$F62p$Kd+rlvinKD&o<~2AM+xE6qfM{uVL~pnbm*w6wjsQ#?`^+)=zi7>BRUsf@42 z&6R16vyYH*N`D4W?~|?VJ(ruYYe-$*vmBfYPqFm(;qVI2YZ6N<+7fCd zSylS)Uo8l9Ma`ws*sQ&~%F?t++9M?V-jHOR^dscO8ep6Rt~Cu7(&G?#qp3)^gQ+&f zno)6kWj4moHcSD^7gva1B!Z-1m1*046%_`S;|3C;X77KzQTzJD2zbMy*W4&ANg;!R zOwz@PWd>Rvde4y|a_4GISoqH$V#CSG9_Yt;qsxQxZfBBOn=DqxzFv}~-lYQ5x(;39 zceNCk?rA^ozw5#nXk@qfoFLWps7ifu$Bi$|KzjCcEscg;+t$r^Wns3h}u6CW-kF(4G_RC9_Z__>ZSr)#~#G!3@$f$Kaq?28T9 z(0bkZ!=^2%hzGnGpZo%}xBg!S!hIB-P8IaSH7Z+Y?Cw;dKaFPGY1%bkZFo%)YFG?R z4Rn_sVYvJLvbwcw)d)O4vWuJQrg^D7{tkagQOap~RqVk_&#b$o$f*P4OG_`Tz!`JX z;ojXybUe{8#42|#<+z3CyX&j1s(upt%nmR+Q}ew%yBX-TX^rq!!~PXLEbwn{&?FW9 z%_wk!izq(fFml@FcWSFE4WfrbmZBBI#g6-Se#_ti!}37))%{c-Xatq*O~R7lp9l(h zO1puE=~DDvl1)LwvHCg`S8X3?RNEFNeR3~Cls@967d7Zoy5YCY{s{JK;cXsZt!x&E z%A!%VCf98{jic%x23NMtbtlnKkBQDPra(wChy&71IA=g9gH4Ueb#%mUmtE$Jo4v`iSo5P@GyZs%k!fRpuK*+@&qpp2e#!(Bq)(_RJ2khy^h{*_OL~pzU$R<-Y{qiyhwSKVJ6gawHw4b%dV$mHsf(= zh})kJGIO=>Nrrl|fBv-n)}t5&U1}Mm^# zagvKnZEYXYV&N*`!{RJ3Jj`IflL}iSjl~Hx-*J3{`{=7wIa9w}7WkU}`_kJvYj5!` z^OjnX|NFiU7$lA&RXH36G8oRf@mFmw#i+cDAKqEz#Nco$vM66sDs@F6so;nUJ_^LF zay6`R+b1SeQ6(og50H;NHIOD+R==p!kpiz3IgZI>;=qG>{kal|!=22U~ zSJ0NrG7&IUIV9y!54P?Wo)(j@aH8AJBOJcesI$S-tHw)SjMsVj7E-k^v2j<>}qHqs19jNfvGEMZ@b z-G$HN#J!#I0D*jB?LAf8)vUhT_IWc^ja$#3JBOG53Q}`=EsxPFEk%oY<8jNHft{#) zg&Lh|ldXk1qPbS$1CRT5K{ga?N7&Rp!E_5Y$4Ql-QJg%-X*h$^H(m0M+o;sBwt^nd zX9cUK^ch@|hW7WDc~Y>^tHbMh`)eDaat zVI#digWqXtR2oI29?cG+k}VR&<3X~j$X?$O22SZ_@~_C#NIWmbI$DYTaN1E=&0LRt z+#BM3athFLcvs$PNJ{ZK8lkQ3OCpsqI)SK4J z%WffFwx{DsGN>NvCrhozIVZAZDj6=mh~{hR2tvD&-l0L^LZ5m~gdI!eZ!Sw4=(_o= z5g!duhN{DBkht$Q#BV#V%469yGuXUTW1(%u#+)YQcKUW`iBZ2=k$|E03xj{$V?GDw zUWgNlL!uhy^rqG5|E;^!wjqxDMGDDe#>?e$`#Z$bB(xwkqq*8pMji5^bF|TPRl~-8DIdE~Iegz&(?Exa50o zn%E@@a!;v*dCjx#5DXM?j0w`v+#zy)7+B2U=b?vWr4b_}f?S6M>yQrWRnT%$!FqQJ z{Y2lVh8*}o5bt7Prd;)FKsjxG*KpFBddlSt62@RjdHleOU!PDmR4Q(Wo7IU;>$1J& zPzK$rr*Jef^N0H#BhQy;T;DzcSphyd0T+1gR@_xyG(qxqR(4CcfvFOsEP zZ@C1@(3`>arxyk*+_MK6=Bfa)MxuKy!73s5e*w5|Lw0ZNJ86L<kKw0iF-iO#nGAWgtPn5>u4fz?K#qGNhBVnZ|R?AQt*0FEO1XXc!-2=i@aHp zgotl@Ha-A=G9~Pd1hCs!K0J>|`z_M)iYhB%)Vo0^n7(C!8WEPG#bmcyb8@dIdiE_I z+T(@SqEZh?)DXO#TZy=K$h$|}s=g6y9teU6rc8+Vb`p_XsxF&Vz^mub`#4hbjp~t2 zZ`^uD!G#1f_45rD&y^unHN%4#bTVZi{Ci4(L&T1)g>E;m#_Y%Bd&=vwB8fSUM>~NX z5D$?xt>@wVhC^^XnyS7NZ|>scNH&~G6Q=0ZDG2`ej<-Tas-xTMlB`=Qc#(vHf+9ya z<8iFCpM8E_TPv`rsW|vvA@o9&qjnm{De{37ebX3xzy5+MSs8q^$wfWzRJ;e~;GEPW zfZD#c({gd!c+Dt+h7YK@$-B9JIL*YSW`wHg1ZDL!n;=Iwcr?OQBUv{o{uH-qESgcB ztQWP9T+pB92bCJ|vryCrb8Jw+9ndLHY|BZ7qC#(S0yi*s&1|w$NcW*uw*AHFb0~OKYxzhJUCYPsb|}i zCklvTF2v0Q%ni{y1b5qLZp#ytzb`<$7t;SCUGJzy#CJkItZ4r;cb!}tCLp?FbLPyI z0D&<}$YSJ(PL7t93LC4c@$4ZgPPTzK!Q0#V5+LPnoThblNJax+q!PZ|+O3#Lw0N4DOPL_T~ehJ-F@{aU|D_odRtk&~6Bno`~S% z%A=u%ULpNxXC}HQlcqB`t?zGlpq-QqdScBgiXr`;eGjhZBp^| zO-%T~3&q~S^Aawaf}P$K-?VeR;BTbReekb-Av?kV##8)M?bH-6%)%%&MQYjF_>7|1 ziCNhD6%47q@p}M*rlBww49HCP>;OT%I!n*M5A3A=ealh!ZoS_eUe?7&`UJjxU1lch zgZ!3#9cx&6G4%0#H}ei~i@&aEKg*jtaU6WpYzpYiF7gaegA&dLj!UUuB|InGB#G3a${~dQKKeq z4^|gZ_x`d?Y_(liYF=C_&xq34UzmMkc`@*tH$X+^6l1$a@=Qk@qF99HWjq#GrdrSxSG;R7pl}XFu0R< znjAbiQ!hda|7Io&F&f#u&Ugd~rxX~6c|i;B-wDxGsOEMWm|1gymJ4rH9I`Qy`dm(7 z95uyVu*@Qwx8Q?_)^(X|U))_Z&`&D(9}1Os2XmZTqxA*+P-&^%uSRd|Rul8blj&c| zQ6fmeP|pa#;2iMXO)QvUL9zVoK2|que8o1;=lMyBFo7DmWV@=u!FgGhYxzqGQ*MGcvCZTR1Up_0;!XfCAf}^ta+1ud@ z0S<@~-k|-E@mm%-A{rbbgIv^YDa4=a z&-aOtz=nSS!@BWQ+T`ohqgP6E0CPHDnvQIt1WD;J#kc7 zzww*1GCxa*`(uYRF0xf3nUXr&ZkI7+$|#`bYS2392OsBLs_WNOtq-Ywx3$6nyC-Zn znwHJyqL56LAwPdj7poV0UBW+{w!f(u(#Sx-*UH@x+M$c$FG7W(7}vaRhrHjf4!^D`;z;yV_M2XdVZ&957YG$9fGnw)%48B8#rWNc)rP{1CWsrl z4kI3{{6PhUAQjNj-jJJQ6~Y0jIA?9Di+*fzo^T#=^tJq%fodCOkQ^;>^xxT6$`t-GXKi)o;x_BPOSV2LqlFc&P7&go7TC<-vqYHe;4#2l-Iuq=2nk|hyw_u5 z=05RM)MeJi>~Q=24jLi+Qj16`t%%q`hlyFxAW0d7d9dsR+e85R7Vc?SCY8p)*PV5Jyiil6tz87tja}Ndc$R1M z;!Q`sZN|2FanktV_nis@qW(0;)A}ky&O_vm+&{0xiJK)CV{_U#FzC{+ryf`zEJ=mc zmXqn!_Dtc8lT z?l&@npZ_DczhK*kj;zTh1xnP*1&!asgVbXhjJYSq6>`nVa$=O6!Up@g42io9$Xb*; z(S%!mQm14iG6d6*iJdWriQGNWRwCj%OEjpLLvkBR3Z(JHutUJ_Qxd(xIjMAONbfca zt#WB@wnTiTp7wgJ{A?JOM01Y`n(CmxYQM%5-w@m&iMb>AYraU=zXBSxw?!i(`H=I7z=yu0MBYZ`ec#B6Qz#o7c92?PKi3fw|M#{57w+GOa2J-) zpS1Iat!WPuJb<5pTA7xdS)eZZ5w4ajrwKg*G z>;dKLhgM6qGC}=MY<<85qf@oVy!s)bb~JZ>}?VhLs-$Mv%&haa%c}p_l2vV zWnbjmy+U3~8zJeH7dn{*;^V2|qSD7dHcHWew0q~n%4S?%ZRu}`x2r>T!a8iNK8T2X zd!{`}W`f`?k?m?n-k?HBLiG~_^~X}FlAhRK^1lg$7^x4h{_0Hd>X=fRZCEVfT*Zy} zYhauBb^wU}A9&(FKYc9F_+1gUT=KuRY`L7hD17($LK)HG0gY&^NrFSHY(sKc^wph$ znxUB%tUSg9iF?OIxluz&>|1&m3D_o{pf@pqoW!o3u=x)O!=c1VZ?A8V*ai)BKWBuU zH4F{fLT^aJf(E7KKZc-m)wpepd6`&qZsS}rAhTGT%!!>e-Uw1@M6No#Slp!nUfCm{ zOD+1_<^ltDg3CPynjt5bj8tt)Z&Txf_#8;XfMpdc8t4pJstPE~6R z{WzSi4DSpbOUP+=k$-V;6hO4v;d#_e?DT0;QhCChJEI zXPxq!D|wd9vFq0|N|)6{u25@yf`60?BV#WSeOH1PA5Ye7k^q+(*H!xR^2Vhd<;P*LLsoS`7nwek#~*SL+Hrm*`1r zUhZH>zA(?<_c~*Lvz%Vu7QC>aV8C*oME+#+>^n0xn^91*V)y6qW>nVbVKyfEpYQ(f zQr^PaBLc~n$xLRVMIz|c@GWqy+1*mE+hC|z2A@qlEaIme*!WMh>qIr=f))p;+1^38 zc5UTrNdUsral!^#EldwncQ#C=7`@pYi5C5dG04Dmi{H-~vG%Gc!!3Z{e8^m=U0kJ2 zxAtZty>H+4eD$+_hhz3&bxhsq_0ZQIH@9W@R5E9fBV4d8~OKrQM! z!7bWuq3;fQHP`jSMJ1+2pR4?pLsVeb#KFgge({r|7C7#VdoR5h_Ii7dJ^imc``?eq zsqL*0L59!g%g#8+obvD>YWKWBuiJdM%*NOCjgn|m+4iA$wunJz<;@1~{7w_W_Nnx0 zL9;h&c$kFJ-Hg|KYmUT~x+D$jR6LEedb;Y&NN?ToWq0;hr3cqn=w6;T9Y+WSs1?bM zpic6C;J1Hu|3B`+OoU=~&Re1yujPr(1HJ0A1Ve@`gvPLVC5QAg$mLx+f?UezaFR}`K)JIBj7m0J>d$rm)V%g(%#qNG5Uh-tQF?vm>?(GU^LjD;^ zra&W?iexpPh3PI?x7!;hTJdr`UFF$%UNEw~ z?)I`HB+_|3ETFiX^;JZ{N!Rhf_aFih@u;B@aU*@9-~+F8_aHbO_A>fJYR%`Q=fgVm zk#++sjCK>9kLH;)ttna(MRZ#3=k+57T0Q!@f)f!A(EGBralTk2T%D{WKgSc`w37YR z(_)(7>dq$sFyJ~&OLmuPo8$)umWI65eF`wVOHsh29j7+CL+ zQ;WA`&IPymc!ofg^Qo3PDi*YDie5-yENKRyRJJgE-V|*oGW%gkwZZ;mZk5ZWkvan> zmM|P9J?@{qyJF=M6(TODqsYrKzO@@t0im}ri!Zu;6D=Lf`KsfH(_KDv3&i0?~UJX55>y_{eX842OZ3ns#7F?u|&lh2|=g9 zu={!1`Y0{Uz5#iB?R&U{UW0(o>?CrwGZZfwP5!N>Ld<709RKjm)sT91yc}UWe4&{S zLF^?#+hmS%eq6F{8@M?JMrUgOn3XM6V^tsHts#?p4Y1vE*-fQD;(KC*Y7*vUPYd~L zO$bdP!=LpB080$06s}xVKQm4?%}MO-&VUhivY9`sKlo+yq!KMgs_7fn!NcV>?hwyW zSIPK&Mw`dN=_r7dgD$v8hTr#Ys~&r4&6k(Q)A(0FwsgB_p3l0Fn2kqq_t)CIG``&d zTa|0KGx%|DGpo-}jIbIuA$UvEc?I2>;3JZN2BwEyS0I9rut3V`Zn{^T4DY>gS>qpU z9v=tSurM4piR*)zoepS%9OzVe&~iE?w_y8~HjLp?xi;UN8p0{tl_ml%@}*O^OY2vEf*!*0xCXEGr$|oFtVp1m zYz$On009Z}PGr|Z0mFc8s04vMZ?^kDfqfH-iT}fJga@ zN!pfqtW(gA_R2|(UD{S6^wF3YusMl$(=KCxm@=V=1@hm{C~L!VZ=W>orv0$&rZ&YY zJ_IT^ZTXtRKJFbARD=VU5d++4b1#oSsG>zI=_UR3Nt9Z#=wn^tM2kWve!&;nj1b|V zB{4!Cn1q+1Z$4HVodLecO_qx_Q9sdX%pw^BiI(XFEs~&gw)!IGHimH6tV%AoIEbXX z;?dNW4bpyXd9jd%4S|RjDBC+f}{FkQ_P1RgdKawmWyUT1OIClUyi2GbAV0 z@5-XbZZw%`7M<<|Kv~|z9ZqBiMIeXrOyzx>YRqttWopgj$0VUV5qVQY?NYcaANP90 z@ro~vh`Dh;Ebd|6o~|+U_bt?z%BQ*^B0N9euI;2cuSVfmHFVe}u){eJMI@n?mC2@U)L3Kq^Yg@O=?94i$p<|_o!?Yn=V zR343b{5@~c^#$Yf+QE1RYo3dKlDNUK{o=7gwmmOs1Z;!CuduC>R|hjgz{$lZmZ&h9 zpKtcGy0(08%q_V-oP(b3xe%b!r~q`91<%7?HpYV<-~{_zk?1@yJf$^Hc;T_zv}1ER z6x8bVz!6Bf^WJYqI}+46?8|BMtQL%ak3&7ctw(rP&J+wN(d`PXe1#(%M0&FWzyoM= zs|b0M^D)>}E66zLaP!&8dY?Z>z2n*2oMLtP2pF9A z$TmxUh^vHW?;4NmmfRg?2*|(pnj8z%8;xKC-$@A(t>J#&<60}<9!N>BCx8is%m%m* z{$x5zPE9)kL6L1kadgqMrRvZijIQF7+<2{D1JM+czg@50k3BX5Fdfn;@^v@&1a^h` z*+?Vn-cC9WdWCJxo#b$~G&+R7No>0F{RsLNXU$d*rgjXKd>-VL_TCus`)a_RXF=8{ zq(dm@^@aZA`VT}kh-%}Of@+lpRo(>L4i1AfR;y+9R6VH65^yNE?%}Adn1t`PeNyC+ z!9}E}f59(3qDT{@CKAzbVT}d%A-Z}M^*Re!Q*0%<1()$cMhFaU@e~Z#aSmW(#NUvz z>Z;G*@g2^Tgx0V|dI{S2gS=tqZluW)iSHJ2yB-g3&19}CpFPXpBzgVy0R(RDQ zU1fxb{8)O6#H3zhDUmqQ%O>SQ@=LxYf7$mOPDkdx5(&pOEo`ADT3U6#{8ntW(nLfv z6$>_m&1~=kUFP*G5~tULJD{!pp5!V?(kACe!ALHz4dL_ zsltnn`Q6zD*ajWKicKJcMPFwztHhPiE0%fY291*3a>RdhQ9M8QR*cFYRbX3-kGbJP ze4nOZu$ZHIsbK7bZG)maZGQrqi%lLd|3lLhV~;>u=!XO$z7L{H6kxRsA0ccrtZ|?~(ZV80GB@3#i;+ z{vg~0RkH zBagEV=-F0}N4@vox|D|t8vZ7>fgmJ@)(6x}CH?2krGrT{e!ia5CgLUz10=XJi!}d| z*7YGs#|R1*5?Ke4lQmoKuM5uwe!iU{fAW&0q#Be`CLD}9+2Udkcz*e-Hxr@+;>Aj( z?vH?)k$Jc|rkQ7GAjG)$L*k_byds!YQnT1vN~Dh+=am?S{ZWIlG$Gg-`%g}l_|1#>e$)Ai z%mP`PUu@Q^-un46>GXp(W%lfuZ`rQupt`hG^YNE8Zu3rm*vW$LB&qWBpfq&T6x37hVzpW`W}WtT`zy_C zyQ-`A5>>hMZ{ZTLh1O5N#H&MYqU;f`WWq(|^fUv0T+mV8rq>Y1ZVCyehK)dfofvrP zMaxvDX1&#lU^u+8fDb+Hr&&Nx3X}XJXkxqmx}QAs0kO#u41fb`7W9`drgLn=Y5@`b z;%9R{(Xf9s1Fp%=TteY+*8H z8$^p5!6JQsR6Pc{>&Q8l#lM?+N~E4d3J&(-@Gpk2PJ%4+LvpPHajitVZB>xlx*3(K z+wk^eg>EO-*cssS4Q%)j68Po@Wg#OBu9Ba4N#;{->3UJ%b|%D1HsDd zW>1J8o9gr9?OY!&mlLgldIOyQ5BX>X_{`Ht**8d@@cGTB5&tm+q9P<%L6hOmyqtwf z-wI<}t%xzMs5Kb)<^8RnBs+_0kDE#Qks&Y~j(_04c8>$x3g~kmsU{9+P>4z{0TkLy zygeI6e}b`X3MxF+N%R0@f**Z!I`3&J@J+;EY*3smIr90^M1i_k=8@6j0UT9lt8IjQ z1CDc=yV~eeZg37vx|`B~GX4TN+&zKdgBUM*agi$-A9&>zO(9cfHdkgzr&dFm5!)X$ zUaZWp)Zz%n_1+_c9~07_K%5ZaO;-SabVoQ&r_nGjhi}W9q+V||v&FgNXj~}U0>+^c zS$?t+L{Rs|a&dc!FOH4Hy+<(kzX>igG{C}TO~R`HPMZF_i_)2(*l;yIXdP^b-ddBi z3O8RktILu!@~bxyee`x?{}5mqb9jA(gBn7e`e00DtBt-j?q!9zHxvIK_TD=j%lLgC z=jl;aW>z74?}p7|3!x~K8B)pK*)p>;%STDf3KT*|307Z_pjgo z@8fVBjf2O1zwX!Ty3Xr7&+EE5DSfnKauw;Gv+ETYZkOEfk5r<=S!po=7}!`SqdUcT|}4zp!z;?GJ}*-0WnEE9gT z$G1zIVapVWudcnGvAOrDf@HR@*s?Xb{^lqqxctZF=GlKI^{HRq*r`g7u5iKXmvdUT z(}Ns{u99b3Sfzg=OG@9rSG*)Z24@mwVH^NwG6mgFJ^iEQE}fWtrqo8ilQ3@O{`Rb8 zf4M_I&xj@=o&@K+azP;NWO2_qIICysFnhfh-f7`2jGy`WdPnrrdKDolCjgO>c7g;+ zH`_k%KRn!>y;sZ_2(oD)&3$0+oa-%7`Ek!(?jQ(HKlah1$4op@h5fF5Hja=TcBsvj zBtGANjoXd{h-uQ(w4QPf5!=SAp3mWZvfYp+oFCONJWz9 z*N0*_{VhkG=81^qBPcip?^hO?!MSqW7;tONz7)qYZ&enHN@JixWSxdXU`;XI`2rAW z3zeQBGtZQv;`6n^Do>@L0!rE;-s}0at#g~}&oEO8AO8cgFehT3D@T4~tfkdaKHc|> zv@V&1h!~>&)HGe^;sid88{)BmFaLP9m`!7g z3WW=AnuNnASH)Rqel>vP(Ff{e`Qvz(m4yYFgjyjorHNG_wbmx>MT>sEs zY-6XUmRjvpaNL{ZW6P3; zhcc}GdFB|HOg3FmwSMD?kXgVfKK;(b@lu<-3z-%N_4`>PXmLn^gzS zPQkChsPa03Lw|R@Nf}#A6r;ndAj{7G$2)eAt9FU8Cwg?nX~}R)d#*dDD&vs)kDco9 zrs^GLg9Dg^p2o7l!4k!1Q_oaLehwM!5&+Koa*=0cjSGux`%2%;t=~yFHJwF1>I(O0 zkF2qc|NL0AY@$)6>m{fdCITrn@$U`-pm=j~2x6%{y(=E)a|}&D{J(mz6thuJDvR%E zA)m=>jCIHF7OdI5I+a^rPB|u<8x$;<+fXk1H*93X@S8{-sQX?33<>RzPxGL5>dYD3 zh~!t}NA~ipN6`gXK5j)O1C)^_E8M{MKo1`ZRTHGzE`@(7a{nbEA8SD@vn6sC_nta6 z?f6uvSPqk{}jR7?pKH!yB@Ei+peG&)@?~A?$!eqb?F3x9xW;gHoaSRdcCBBZtCU#&DdJOa)3Tq>wxA8M*D5cAS{I2Mj>#-q zaK$m2=onv|sVga0jy(PCt+~n*F^8=2 zFDatAg3T)kFRU@V)Oa=tLd{I|YrCQ9(k;H{7YNMjAgNxvc)usJF+?exIssxA(ekmg zaLP|#ynp9Ru;?$3l9Ii$A)mN&?P3Z7m48H@NVxFq6#l6le+!q7e8sS#palCd7BAzy zZDGxP<<*xGq1$y*v#(wkj7srd8say;xQ1v4dsYq9kkQz}aF+dQdmP7`V#^~LQosZT z$+8I``^$x_yWd|(giu@;OX4%Q>iVZ=WP89Hz;l4B;e+2f%RqKj`gj}1K!T`5oAw7| zMD2$$Hsd75&Sb4=%t`c78B!j_fBHY@Ko)^>BpB zb*7*2oK^detxO76$MjINh#yWM@2(81N_JY4&*q{TLWsoacJ4)dXq?n9FD83XJBFF3e+r5b zmwPg`DutVqk61@z{ASUE4`%t*2~5liceZB>Lk1?hg3onGeZQK9b@|itwp<_&E3~@Q zqHX!cpycz_TN&40>2e!|tUv*Hp4q7Hf0~K6one|o|CMvHp;Rif1VD$k7@YSSh0C(`C?ph&p?#_+?p zwVh)(-@j~wO-Z{W*!_DY;Arz1Gm*7Q&6ae?sL#Byuu2UGHcxi}8csRYDo;teV2HJm zyMT2HPg)hntox86s=bCH!^V4hHdqfry6*y%%`zYN{Y(jKr<`dZ{t4E1HDr16YBLY+ z-z+kf(;Nzz+XCc(gr#ZecQ-bV#=j?U6``b9bEzRar@Q5$_kS} z<{{c9VLIE+O#k^aD$$H@lqAa*qETsm4IWj_EPf8{TC#f`dTwhq6>=c0vfgCeRYrh8$4ET=fSfh_s*#jlFvm4c--a-R0@%oz^ z2_h?exnrlK!c|xDAqUJlv?L3gKfc&8D$i25_qnLbmJ&eK(T~*z2*ZhbOMa<#7N1b#T#@Zv-NOkaP8ru!>2^Sc|(zc>Cx$996+mpi}#>lZ=->v_oBmRH1-NO+mT zH6wMG1xxL^`qdo(9aCd2-N!cYY6Ht7@2sR15cK)Ak{GSHG<(`}McpUC^!H|V`#6s3czIlZfh z;#L6FrA3PHVjx;1q;{@s$TqK^f!vOkc`(bPS4m0^b@BAWx8KQh9x0r&@>(U9N7i5@*9XC!P5A3R9IbIru%yd|i7quT2ON%X9s{T7M+NF>zDwAJeiLw0M^U+b@KUCoERU;syl=nnU`dBVf? zx|vldkx$%rnmr~x-Ouu6_DJk>kHzG#t}+W7ki2?lzjXik#6F zf;#o`SN7+$$I2-EN%l4Y)IQr$US0bb&WNZ_Wz6rEfP{#1xOqd>l%yg%b4p2C6K70f z{G8mT(J8NeppoA!jWt>exBK4TXgupXEoDnK^Y{u-iw%nx>;|P?8bf1+rBpl1vI3SyXdJWi>yRs3&+( zOYc?fr!=fjorkp$znnY;u@IlhkIYu+SMoCKtKVLVWCf;~>w=IN->;3wX>IF$*p^}R z2WaK`z}{kt`9%FY^6AHxh9@wD&ILY^?!rJ_nRcX0Q_Dv&>7FL6E5dG$hF91r+OpC- zwM?eA_A>0kUsz2Ea?G?5ZJ^L?1#$afKN8EZn3#`y-LPp_TjmKUIoR<04>!&*vs)bj zr#|R5-#08zlRO+McNojp(G*wOFabuNXp#E-&W9y6|MrtD*yBelMDurrMrAwd>NF3K zKUkhyw3l#oZpqSBbNXuozLI}Z6byCs34(s-@0Ys(yL##Q`I}F)B>XBT=j$}P*%-y( zy;HIGIS&)Eej3*natrPkX|K&9yEE&TZa>2$X>4OJ5(HBC;cN^)Bt6bH7aY3-at@)e z{n(vA6FMn(`{^*lm%_*A_346iv>kX`-&4z_P%XvesREH;;+d8Aj2a3G<|c(Qf}6;PmApQs zJUviZcCFarl1a@bh*SDaBZ1?S_>H5kQ2#;_6NLFmHU02h?f608f}^x%B1Ga1690C& z-$TPq)9pfcViS<_zKO4KXr}W;QAms9oe+jzWVw)axhrc=1>PqI=0vmxM2UK<}c1JU>7~Ia%F&IO1 z-QqUr!FiW?H2EQk7PK_n;xw&OW|j}|4eRn{)@4)lI4DZqZ=Cw!`Q7)^y-j(^VE{{x zmIGQ;yw}?#mKrGEs0&u<3g+J#sCZw{0X`4NalCU>q1R^r?W?~82d4J*3Lod#sW>&9 zl{}zu06{UQ;WTm^Z%!6RK2e3;z##*#q9^BaAWXu59bb(Oyko3#f4uBT7Hh;al8+YNs>K&r+wwP!VBBD+ochuAE zbZO5U;WUC>ue+R9kJqK9qKs&T@{h=pCViA~x|KLxuBis9WB<+yA76mR;c1}TdEIm- zIu-}7f>!R3Q~N`SKSf}Leh%i+(Yt*fgO)W)u^nX5n2>X~*u~KwhN&j-@q#ieXzEi? zM#UNELM@a*T_>Wv2e3T#_v|gU>?$&=&j-RZggzyX>T~U!Vy1%UurSuVk%Zyi@n?D( zasryG;pIaX)P&B>*&WuN2{_kZfZA#jKDWO?mUj^Fk(jYIT6#U%1-vT<^^Ut$hY6sQ zi}qb-_btPznq~To5xiu+he^1~{_Qctynk!ZU3DDavsGdpjuM(nbyDG|ftn%pYF1oH z)CcW6Lo)+p8!$BzNbN4xe*?Qo9?+V#?|;-@(%odbf=YW?6ocCrKceuX#liy)+_9N~ zP5Ukbt1uCkFcA*KVKY#k&D$-6O~7!1KIk~{6pIf@SQ>Xi4jOM(9~(M+qPhy!h#}2; zS?q{?gKOc`7NmsiTb~|P+f2tL@)@vXc&|U1t*JlQ89K0l+Io5DU|%oZ%=pK>%O;iB zUFD#eI3V||2YJR{jyK0OwwBeG#`*E0e~fZp**d2b-s`LW zK=BO;+hT?Hl0>>L)%fgvdv#DZ6pefAcxa1c{eEktAZ4N4Q31P*#!7UIim^}B+_=v~ zz?KS6JCJpP0OYhfa&2*y@%P=vlvM5frZlv7U+Lzt@K~gzI<|1*_8EJxUE|iy^m7Ie zP3B-Eu=4$xZPsA*q0~<2D8BQR#h}R4pSp_pByG9u_B5-<^s^9)u6%=EIJTvEG1ej= z4pbFA12y!;uLQsba83wqjRVnFpZYD+$C>zSDe3mG4d^|4J6)+;&h7z4(ji?dFaPLK zCKJ0_eCI~7?SRA<_&#!=621Cd`J~=L$13ROA0DOAKzHgP2bhh-weYd{Y%e4CD-@~% zxRPZON0xF;a(oh}uvD9-=HTRB_dVbSjtO{!vQxoW_vJj(AX(DnrmnYTXsfQb$bG#R z6#6wjRW86{?%19+JIi_bsRfmwaeoU$lpMu!KdDrpI?KpziHJoMETF|VKL>_7ogNiA zkrE%H!;01fI|F}U{3X}&iokv{EqRmxIVM@1iuvQOQk#@&mhGIw`YGM8t7>EL^~yV& z-eM&?1^1g1d)6n<${2=Jx#Wdaw*vEicbaR6;OgqhZBPl+zJ}D_{@VzgfZDvWC5c5p6 z_*+2KjsZL!fQrd9a7Ofo`THSC=7El|IO*51s4wT&)t_`_vd5ci*&HuU?V9)lqy({8=a zI(bh)vn_#FujQs)6?@YK`n-Ig3Pb)>0Y{tX_>vxnwUqNlJ=!emVuz}1%++sFU$pl;-z_lb7D zK%t6

LhmMJL&Y%}}(bJ`OufrMYcKw3s(WCB(9-5MEcS=N*U7CoQkP@?80@LIS&Cjkhx>BU5(0(sf5=~~&-_3684@GMQF ze+nv%|K9b-ep3X0hH6YUba+&XAp0pqck9mI=zVXUM51K?)|4l*zSXJjqhZya*F4VQ zfpHdIlaBqSw{UR0(H98qV!I)kkMeKs;PDRn?yc!bM@6^@qY9#xjG%rXnl}0J9@z;= z%yoKyS8S2dKlP~<&^-D`C6nC&`*&&3?J+-x{~v@hH42bQM~fumM10ccKKY!;@e^`v zq5O2Z3#cQy1t?6s&-4c_=IlPPwIpeBa& zv1c>dyuS82k>mqi@s(@ZnI+HbB!G3jgN~Wa1T8l}h9aE>vdm*deDF*g?upZsxKt!h zDW0P7u^P}@98ih+XU%8!Ob)hZ1;IQJmFn=B?pvnZv4hK{3$Y7#C)=I`*nbQnq$(cZ zET>RjstY1&1z;w~AmNNZm``ItOednq)ftp&hDYF@UJHEbc&rNJ*Rc}B(jr(5kLn5d zt1v|`3G1Xk-(C!C&5*5G@EKtUap;*XtPwbNf@GDyXL&AjFyEj=c|(P43j9LjU=iH= z9C_xwUV5A=p>k#=7;>D?QhD7XbpEKgdFW+<1dLT;N|-c&U|4`KhXfe_Jy*Ki9=~Dt zS46mZ{6|tJ2rQUzY0a0%o1ZVxGcrS|zj{R|odzh!AFm6&&+HC5&-WW3S!qao_u}ue zucapzNI#Meaxb0g4>x*-u~G?gf$bQJkFcarh30%J%gyk)VT)Z-u9A%SBBaLpM-VHS zC}4Ej@hM1@3d8=pn`6;^!M+Oa>gG6QL}%%}o-tK{vLoj%1?VO_0JJxbqII$I` zBD)%>K@R)X=_^1GznU-61a8IyWL_^KT#bVu?IaLj5dTm}Ki{^D`-U;Z%hJ7W;NP5U zLX-?|r_wr7)DY4R%j~V{%w71S$MF4T=pz~vFNdb;7YA7*yy%m>M?h7TX@X#URmvI= zo!{7*?8WsbSK!WX48 zx|O&{OR;znQp%u@&wXhEwji9kGG;8!a(g7bxJc$ne4YfG&Df0{WEWa4l|{g6(wYGa1^R;9c~hs@%SKs9Wqd>*eWSAr2adS3_)NF(aqPt;+a;p{>vJ%i0|A8vgtN*OY>U&s`9Pe!5m_oomZdZ z@)wBK<6txYIq3QJ!NA8p5@UEv%MXHP--yzv(-+h_MOokJ07s)8S)FyT4Ty1~ za-n*~qh7I+QT|R>fzi!^@=-#YBGSRL9>0T$=~xgyhiq&EcGz5J>l|@EIHO{K@>kvn zAE{f-S(Yxcf#x_|z8BlTj%5Q2_kcLaKJoJo&7c#$)!;LQ6IC{~ez-UKA5BSUM#Ibz z8e?}kqK9wyWkB%Lc@cq-NuW?kQ3CJL7}XXv)KOF;_&K3A z9}-?6!V5lgAX|XA>Oq*AwgJiK)OeoLYhp$z{Y6SGe}|R=1jYaQj(7YltJJT#srO)u zwYPIO)>mqWi3u^%sA<-8k4d^Ty#i=jD7NXlXfhO9RCBu+uU;6d1Boc1is-ZZ`9S&c z$`l#z2N5c}l{d@BCji)Vp$3kTO2u49F(?w?$0d`EE$B<|w`^|YEi(WchCg3ZL`G!J z7!gVKw9Ip3{+BfgW1WfjT0*MVa&y#jQ;@N6=~IyHT7gow1PJ(+!QM-d@AREt@ABGn zX}pHNYstRZDcqT_6y!f?LZ%I$@MWKO^W)07BVNyn03EIK%_AL8%a<>(VQATTd9_gr zw51zhxwG;;*=tV&olZ`;B7$vt_Eft2dF#k(SK7v(pIZ}OdjQpC zZ|_0EFlEq( zU~>oK-V9_#c(W7Oz^_%coMs*bEi!w>zr3d*(1^zXHE`mrSEgP;nRR#jx-nS`WpFas z-#T19->C&UzBc?IB0Zhu4?=iotlvSyTX1+S!zx&_&VpynSyg>Ca_>jX|flT%#t0l2VOUA@#{~l15sIg!B6F3NEoZ5*w=>wr@3vl zL{ZZ<;9BG=>vs$v@5nHjYH6s;K{B4;`Ax7HISZ68PqemzHTP8`=ky6eYQAalQ$T?9 zE#k#en%~+zSwuPQv%92%YZXXMQg(-r;{NGsmaiihk6@i3WmAJkVjtKvrwp2u?w9$U z`?Ud;;+??qH1sK4%kzi6ME_(0jg*UD0wLz?vp^@4gIuXj zKFf&ry5;J#z|NQ6D6^gGdl6CC1*CQVy&H9fE8tzb(V~51!d~uF-`uKCvj^L0SC&#Z z-^3O3%J3V+xAJ0y5})GyvW>o;M=hY=VsDGMuFVR`=jh>A8MFBfnX{AqUXcB4J6!|j z7^^&~xGrdf;fn~;jvk6;lzuSnUFDu}r{s6dqUZeegB&Rw7vDU2m*A=w%LOI6T)gTN zkHd-hw*@VQN_6+d*G(MA$K{UdqC7Pw$|(adrY-iHKe5Vl7D;TuqwVev9E&e6TFNA5 z#gIx^=G+ETr@eBf^Y3o~ov0UH2YVZiARV_t4e-jT^cmw;@`Lq1cU_mptwp4!$)e`F zZrV|~H!JbznRvf%x1`caXM518#L^0J_AGAT+8h11SzHcA88{!N5m?PooGr$At=(+#Lu<7qdvI8pfQ z;%0T|-fHhk605N4S73$z#Y;74g6|ntk;s4Zc;LB>)5pLg^+ALoJrv1B>oSU~0rq%< zKc`ZiqJ9*bn0Sf=_jMGc^M0Q@>})`IBO`o^UsA1K9MnLH0*%yUzIw-&fxPzj#-p)Q z;O6kNSVxqj@kHdfbrbKlR^SK4Cd=F{E$+^sVGE_>6qstY@k~XT^EyJMk|0zR=%hQp z_!U4lH|w8QDBpLI3JC^&|nRz=(xk?_b-{4yo4O-F$@fX&l8F ze+$i?O>Eqes(#SX_+`kA@2-BBqP*6Vo&! zHoHL3r~@cO{573l`T@j5FiPL>w9|X3%?$5ZmDR}%4-GkUiHRSvTk_Y_1eQa2eRV4F zwNYiMvELeKt=7>M2&f0YI(KfG>(kre(6LR=1@v-mJLMm=*gsd@A(+hOz%6U!&djVc zZv|K2;=QPl)>jLStN6y3bp{;~AF216`}4X& zeK7l;Oqu02wW=X)imat~_Q7l>qQAv}p}4M8rW?Zf>T;1@7yNOd6<`+>&>0bi5p;bL&}yw@5lB)S~eSaKYd#Nk(TLpf0E`X#zSm;-ebn z8Yj!oE?&vh8R^eIV}}*CIJiUgw=n|YNQHPM$JR0*T7`-@hDds=N*5dx6kpBTp8&D1 zI9`ZmR1R>C?Q8J8bpfL>QRDez1Ah2XsALS#7_eLOPB3Iqd4Y5J`odt<8*!&eeIC7x z`M6HOt%J>DSIyk{snWZlrtnZbSOa8!!)3PXq`{M@+2PYXyOvGD`%@%7TBH@GEKqYO_=M?qNt1S*{8p-84!IUw?HNJx~2yhBy zM>zbCCj&nq7SE6uhE)$-{FXRUnXRCkWt+D0b0Fn((E<>`)*tc5vjIWLhwp%yX_FG1 zVYw&=awo5*ykYgy=QCMo=`HZNc;ymxi)J1Cf!?!tt}F7lzdU6J(@X+9QrmU)Ww|7kRkpnWU5yQqLzqCuk}&8h?YEat1YXf%T)wS6h_;L!G7z5!$56ZwAWCpTR;Uq{ggt)$tptFJBTO zbazh_!Cr^?pibsFwoM?W56yss>|`Bccq@G4g`et_+Dd>1=izC&`op6OjK*tOES1PM zRKp_KWN^>8cw!zgeUn%jL#(ZRh%{of*~q`tVUAb)G@S@dU&%8?g@rZy6&I(SXMS*7 zWT>JBfMXRzve!G1KE})Kss1%WV9q0!PsPl0Q-QP_P=?JxV=y?lfu`n1Gd+r!fp`gNb(`(_@~g_z4Wq8x zgd%G8{CRIKMiDF2)DJdE+?~c{@HO+rmy^PBFd#;Ah0OZ3Ysse8pc*kNPXT9mlZP$* z{hhB_ez)PVHD7&po*yg04LnfiXf@mLW#pMDWFC9wHssy?RNU!BjwAk#AJXP^y|2`U z|NVA<#YpfOzKCWGgbL1aBnpYZ`?79d_;2GJ!X5Vzq&=bM3Ct`jTFD;{is^lVkgx3< zG5nWFaD&S=9#63dsskyojV^|+@AOKA=`tW+LzlBx7-WzJe$q!2!~hJu%@Uxaf)!jT zNCVIIdh|r3$ha!P6K*ZRQ=)2R?hk>jj_W_vW%t!n@AcKLk5>kJeg+zcaW+^=xov(C z9clva_jp#g0L6H&0^%EQFY&9+2S=}n`Dfy^T#`QM4rhVK5(CD$(5LuWJTIU!KkR84 zzKb9R_GRwc5gppZqJtzW3MG88(%OP_Piu>J)^`Q6AxAUXTZCm>I+_^z2C+WUYdR$ z%R^v6j4OEN)d2N034;Wi^n+D0s%@?p3yqKv*m-vSw2H!iGrgz8tI)sXAWIP%U0cOE z)O8}tCsVZadCJxAf zJoIHR-*F3nDM5lGOraQkdPKCxzH!OG!IRi{vhs*6<_a2n|E25A%zBzJz#P<6_b>p3 z7?wN(sCp1N2$8NveO%A{?JHpm#-V0^S7V(j)9a}<#PfSn$%-S&mcSV&%%{L(WimiU z+-?wScJ@@n4`^h3oMKziJY_@UI+c0y)O3K~qWNda#bwlMds4d}FRzGz1B^jB6Tngw zjaZPRUG_Hkky}4LJmGSd`tE(uJQfIuEuk~~Yr0EpJ0125zVkq(TerCa=b+oisegl{ zK`t356I$Ubqox=UPyxUXM*L9VggmbS*F%phG8PYdl`5buRsnrS=Uej{sJn_FM4pz` z7$hXfK8;&=<`wyIid$V^NjEy9SR3=ux~`T!ul6~bdFV8NgS(=AHatUNx_MWXOq=|L zQxK@^fG*-1d03bsv8O0`$7?13{(@SLN1CO6oJ)J zbML+%wl7cx3mp8L1prV-;=xPh%-No|&oxrTgtN$|ryKg8przDmTZ!`PnDsuKdymOo z)>Rv-_GSkmcf|FwzO>XBnE;_T(RQx=1kfUf^9Ww)70#C%$?mPjowx1R_nfH$neb0d zo!srC=0QN7*<&b{742b{=paSf=jHEXnj$@@|JQ6kI?R7+)Nzf1u>VRv3w9`F@Lu_&n5P;qEtRA3%!&qeF)MnW>J9!jnBnZ#x#Y z?})28{6aqk)a@&EvWYp-Fp@P1S)2y(T_!yWw1g;eKe*_=$NdyAs@Qa7>XAMjScU}& zXcdL7oQs`-PE9W0MZX&h0DTz`5KHM-8q5iJLy%leEc!&#n|51(wz|{zYwQ%Z;sP@B;1Ope&iu)hdiYr4H_On}7=s{4E+~&a&4DS{?;s29 zWKrSq^<()-R?%&)GPFbyz4U{3nyOJkNv@-Gb^CQr-&p6Ub8+?OEeF@Fd90 znk`WK-UbqDX3b>Ni_+k`FI?>=*wcG^>yv!-4e0lc1L}JAlaA7(Qv|(?Z%}*PkYiNp z_0DSpDTF{2h?1W_2d1dz;wer(W3x`B0Q)#Z-FR?xeUb*P`;(Mq^LU^V zGHU-bgA-37oyTML&X4sraA+g~bIhg=Bp@KqDP65}wK?S<=(1#j=LYen zBpRZE6&5hN3*xT(6NEQWi{~<1+%}fo`ExF!1z(!?2(eWK*L{GtV(e1vQaa!K3`^i`u`)QP`WfyTIDN1MM;W$q>JY zHhvg@)d)!Nr4+c$7<<%5xNO{`%ce6HUxS(>w`m#sM5ETXj<$_CjU%R+Vmjan$M!iG zPeM7dg;lF95L8c+;WG#>Ox+iNhO4`EQb&C_m|_BSUo!Ug%|}6J8@Ugm5}szKsg_C>|7>!6 ztA62=%a3DEn0+HTEA!_8i9|h5u5sjv0njA#PKt}WFr+7;MS}bW0);mRzgwch!dQL4 zQ#O8&q{1{kZ2!L0wCS+2fMlhVTUa#*Xk&TGOjk`3NxXY>w4`%@R|onEob;R!Cm-#Q zL&LZ1wtng{*+k1NnMUt#Vx)#;wrMcLRC=SIRbMfdQ!8DpqoMv^v9N|8SR(AvTzZP= zr?ZLbk5ZeP(jCP_8w^Be=b@WY10t-1tkK{ZFwtSy#-i><=|xCcrMV>X8CB>)LmRc8 zCYe(WxR5i3`&oL0NuI1odhfvnAah(qZZ+Wl{`orTd;JG^CVprA?J1ROj8^-cpJ4VE zd=I`KpGU^P+{g?sBR%KMVjSt;CltPsI=Sg?ENa`&1%1>>z+`K0ul`m5%O#mdL@t3M zJdJ0h=k`GO8lWnJ{`ZgIami{+m%cegRB+?{tMhj{G1PqeOke~{fJPW~XgM_86UaPx zb^Xm#Vp<{014MUdy|#^|Jw&n?P0COU^W{hI+?2y;bB87J4xJ;3b~qbwWMQoB*6)?U zOH3cpS#)k~6WCkhmjW?mFy{w4ej*W(d3zn=6%YT-(o^|SJO;(tU}~s0b(l*)rCGo9 zct*@bcDIh!Yv;F+|9Q&BKlskb7!m(tCtAP@W;xZK_G{(X-YDc`78qC*1B@uXRBt~Y zxUsUoSm&_#>u-w`ZkPc$(#yPwb$=@bgvm0b2{mZx&IX2Y8QA7~4$#|XgK#n)&^|H_ z|Kqwwu9N9RB`OFLP>{I6;(rHDT~FdIxx@hn!UA&J^fh4Qi2h&zPen1-G<-`}oU3S~^!Ga!AKQT5q!AiV`&3>le0J4v6KHL=7NQzko))k*dHbNolo%%nNyod7{>!v6$g z4D?(zPk(*xa@HVAG0fCieESK?C~9<~Str#muDY$&I~gilLg$_Jx$n%vZx?4u`)t2| z7z7tacE$`SGw+0nnZLg69Dc-Guo$`3|KJbYv(nS%~EHeiLwx*2aRSn zFFy`jfwN}Pbq)G!2YCdsiviSgOoQytVOtz`F+MkdFSWGHx%?GtB5ykzU2|+jEnWAS zZj%f$Fu$tegI&YPyQ=h5P{ZqHR)WZ8xx2Y^HCK~ij=eieiD>92RGJwio@v)OGS0nu>$CB<=>P4C!mhb?OFLnAd$4`Wkv!chqV)lsclmyKH zV$jhua!DXQeO?s-i2vUQ9EI?Hmf;_t<7Y~9^vjW^0FSpgyU6SsD9L6#sIMMRM!F>2 z@jPk<1c3IxoZ7vDjDj-ux_AE^K{l#{7l-AzwKFlb-{r+btKWQoQ81scU_;~+Di`#Lu*ZTGeD0^8tZ9vv8lEsb<+kAU-Q#50P zz#WXGR|b7{Y#1a+(w!l`70)Ka0gp9O(g=gU&e@+b7O(K>2qQUuC@%{VEVW%AO+jxWA5edtBYO5}Ap6fqxOY4=o#0&V_|K-lMv!eSdm9<_!LVFz z>i-k5nUTtDW+LP3WJ|%Ssj^{>s6vn!ru&`2eTT59Tb~1LrA?0Z_1|sD6myp-l=%Cf z2q3Z_fb#1iftxDmo*wjrS6?GN0wivvRl}GS#>81`Ma;3|l9Df0_(Skb^Tk*99U+Nc zKq5;6N~JmnqDuKbbVVbZsEr9_ys(ia&2!EnLM2n7DPeza$NHG)_9v)CrY$DRZ$nCU z_Ti+hF&l1&=@{=`usKVDGkSEqSxS@1Xh#?x4{PUp+kqR59^>TVJAX>vt1KcYO1gXT zCCo6%r!fN?gVu%vq8z>+!Z}@S_~}ddQ3zrS!&F3R5w{=SQJs7iRF$fWQm+v&NqUe? z^HZy@58MB5B#whJK8q2jng*WyY{r$|Q2UqGpsq8CG8|Xq0{3r~=3sa#JNT6}aqe0n zyD@@hg9DcnjU8N2s?||uAZX8 zlps`E$~%uYx|}fudyq?RQB5zV4$GY&9R|Bm^WEIE7mbe7f)7@wnTLFK-n7diomcpu zJrU!F*@L(Lew_ahtovJ#t9CDijr?{_MeRIZTD61nE8PkPTlKi62Z?tBD2qAt2Cc+z zsiD>ZQ};TV@dJa5!gu$^nb6HVCK6bFUfvLFVU{pR@iDKSz!v1|96(JnuU;YwCNy|= z>rMR&gCem<+qCU)o7&3+mZt)RB;x|pD4Yc(+{s8G?oGC*@is;K1^74sRVC5JK3Mq= zG`OIC|B5~gCuQ~{@-Q!_Y(96m_a;Q)D)~Kt!b!-KAVD53!}22PDTLaEMC`J+1fYdM zT<~bDats>vTS7*dYm6>8IY?1V1^g>6@h|Lw5N=gUZnbEG_Od6rZF&?%FesrtoyZz$ z1qw{J`u@?=O&yFMDK0%!bzzF=QlLeR6oj{85jhNeU?e z7M`p`U8=o+9OEmQPIIs8h+<(<$l`+h$ylQ=B zl#kCIR&9h{U|L8P%E zmKa7Xut4}JN`)-+4KRAv<_xwIUtcVW*v0Um z?xtnXGC%PkyeRL;8v6`v;!VeKd8Uh*tx6xGUj<>lacV2eO}z^}mI?0tcqC{5_kE4u ztBMdXrMD$ip-PuJ6G5(5Gsz7oz$X=q!6Xo{dH1gzGi9Vl4Cw~mYd^yuoBLM+)rwM& z0<&}hSG9y7JrprWrPKobX@sxdLbvh^-aItAP2<_}OcO3HDjX-scA>A|bOBFiD~$GI z5T!A7(g6h<;nN=tY$8J!KEMi0fJ2;XQ~B0&+Rp-L_{q-2V@EY?3x2kX&#i{|@u_^) zC^30s&$$a7Q~A)>@aRlfL=i;jizwaBUcW_{^M-LpKbG;o2bC9MkD_d{DI1_x$7A3d zD~cJTI!?-{K_nrFiD31|fp44Ny3kuuJC}H|fT&+T`78_u+=W>dw%3w)3(5nioeP|4 zW2sPg85%QF51`y%A>`-ufG#1O>o;vK=yeciZs?Al&fnK|6C@?*Ie!JLd}_KOmWX-; zUzksD%RaX-9DCwKXKLrpglY6GwnQpkKMfBn2>mjX_lUh@rckX%w^%cyUyjaw}oV8n* z+VC1?ApN5`FnC6$&e&K`LZWdvwS59QS=+%IIfh2Kq=@qroV2{PW{i=+)rTd zL*Yj77I|xs9D%kRO+5VqG&n7?*Am1FvT#6rP^H6-^5mxEN`bx~wps_ihw@f&M*&-v zX%a0a8}`9ZUmC8r7A~DAB1#mI?#YMIEzx9S@NM6e{l<)cv9+wnVAk>N>08s=dT;&J zx7>f^5G@vEsXYy^ ziaA=nhE$v>PGK6d*T@v5WE?7I|F26h8wghxm5SLSza<5W_6u3G6vbXfiY7)_wB9)J zoBtNg0a>(u_J(a_(b!?pv>mZ<8MR5UXw{*~i1W%4EjFK{k$Inlz#;~x@hvf7+U0-K zpOPtuciARUx7Gkdq9`*11cW38AxRIb_)&7n%11z4RXqcXb~lczPXW~n_rT{VVio>x z(dLmws|?hag+W zha|FDWYOYb(d3$!WMI)ukVRv;g@P-JCm$|P67eqgZzV37 zDD)?65PS_k!iw5ycQ~(pXK^(%ckzY6ioj%pEZXI)`=kUG(XeQLnp64zEm}FUX!8`e zkim%o6tHMq;)8G*!|JeTCW;yevnm4n^eTt;#SpZJD(utaLG2v>_GufkPn~ezK7bqa zNA@W#gB|h)Ay(L@XPH04w`E7dqP@EmKgaC816~{`!ut&*W%wk6^DI#OMvM*vQLFzpQ4_RMZzch zAp4ZH!5tRu9kOT_!-}O5Z!>*kF{e{$@?Qa96j`)#_0TnB(bQnkGRNKFGW-N#(Yydm z{P%GG_i+FBaR2vk|2K30|IFM$a;7l7Kq3VUa*`2$coG}IKVboOzhW@K>E*Ybr&7c- zdYau_8iQ$r+(>oKzeoatb}Z#^IgR)&YDhO^!T<`$kKJDXnt2oNM-(EaAe0&mKuddB(fF)bxAT)6Vg50K?0A3-+*EuiN|4Lc{KnFG zPb)(TXA6Y%7l{ApCnPCEfAc3MhxDgV*M3I_>79h8A)~{tRsPZ*mMfu0E5ua&T_7U^FyP4vuq?TyGCcE9w4p#VpNt^;NiE)9$0etgp3(@o zYW^`3oQwZ7=Ub|fa%c&It`R2ShY(i$ z2z`9gfweZsT2ut9iTX-5T<3D$u*z{lY)UD_fsITCH_B<`oMqG!bLYG76L<+*&VN4P zWq_L(lIGDD&t=GJYLr$U2^{t?NLvk5`y3b`nIIq$zl@0N(2<#f{Xe9=cQn`k|304a z%nD^^6S65Ogix|YvNy@f9+8oeJ(8`^6G`^YmQ`dtjqDxSGczRL+vD~Ae9rlO&-tGB zdB4x^pH5EV`FK3;kNf?)UAODHZlJCxgQ_Ap)>7+wMgTugEXMJ6jbobWkMflv89$HE*k>jb<|R93I6XF*I%8toYDYuQW%?!V-c;* z7)sEvkJy1!+1KlE1v_8q9OOY85;5o5oC2^9W8fhyiz||$_*!r*{@%roxyO06s8*+< zTK1-$azH``zsZ(Fs3bKO<*|(bLVEU_(jy46fUW6>;4=Z6nkTmI+pIqzd@lpDR2R&s z-~fV^=iFZipX|6#XZJqAQ2%LZ5J+zB@_df5$}jvB3yoi-d1C>@*bcM`I>F>wR80Mt ztR(~#8LCMUE<4+Qp$`)mA;2%0Lu=0u5rdD%fOv|Ck79XrrBYW-I!Uj;%ryAi)knd& z#tP``xMep}@-Ap@Jru!s?waxvyi|dYJ$g@8Bs!=!UNqK^8eVQASDJsqhoO=b8f8n|?utQq)g(+zd0&sTHHzS7!u=-C!#e~$tK0Lh&{jz`G! z1<+_FKzmRhsqp1S;$$yR@bl__QZ^~98n?+GGt=^Yxz>qDn-TgC@pTw@ZB!1xK#%qc zq*bGOGN|!Df!)AfOpDc&Iv1^!+@v$LL*OW*DJe89jjhQNQ~B+YrcRJs@dzxrm$E5G zkHgNn|21^kh$>Qf^4VFIT%^U8o+ynbgn^55u!b7I0?Q<^+%|q`3|24!l<&N80}yH^V+Zp-40peo0tcB7gneDB1QK zHFnd!SA05Jyx(z0i|5#VJFgh+nAi>MIq%IGj=d?lfeREu~HX16#f1EBodE)OdhhJHs;y1ExE^_5ZZ=z3U)5b8zzEb}cmY z)`Zpz6h8;xo}H+L2aqT@r8CBdef$m?p{wzlnZ^DqumR-vlDNj%i4wmLD5BR>ehaTP zd7cRAaoEcqMa$rGCz|#5R6N_17zQ3|Wo#K{+-qmhcNfOeB^7bMh z)IpgGU6bW7L)Rt#^Vwg0#Kf6$%{KI5MI|&;@QJ0JlqN)SRZ8*FZ zYmdbU=_BDJ3|P@w z{iPO|F^-su#vqp=5beI_Yb~&6hJi2!v#J9sdGfcc2i^xPBiq%%%!?O@_S*u~`TU_S z$J;O?YIS$jqz1(!${D_nW!c}HN$LiMTD(e1x=EwC`dXOwpa8bC6{`)rXYp#PNVL`g zFHtAgPyk71I}&gKsiOiA56IIg6irRVr^jagHS$-X9+D$IT4H(}DZv)(OrqEaGJfl% zoW{!{Z0GC0S5f4l+`vkX&zSw#peI zS*C$OushF+k#`E)N_pPDtdkc&a`*tY4n#G284M1>b)$`EAo;9l87vMci7(e@m1*{b zoaNQ>!#|tP!gB&JVT8rm;ZkIHr;iByq7>M%4)Q(15_Uq9#C6`fUNrffS3v)*4uJtT zVU_;xE9VLa)cy8EQOmbdu_wb|LlHoxE`TDLkisOJb2;_>DI9)QK{L=kV@J+zjo3ex zu;mCjr>qMDl_?_i1v|3!NR;D}H8IFh zR2zL4IF~^)%#KKUCP6GRyl!^l3%!(a_K(IWZQvEbhW1J-qiRS?-#Whr21)3^Zp?|* z#q3X5%RK1uAQPX>v+n_gmDWv-e>N5S|7%lW+v?nTVm-#(&((S_b{a zR6A_zWqrs39ky&qm`fi}7zgFYP$z>TB`TWXQg zx-WNEeW9&czyDSN&teh@NtGm|P`zJ+yC%koQ;0?7xuDl4eJND@)$L7@mA;HX;kvfZ zauWz>{3^>ePV?xRrHPs}vw8e|AZ#BN3-Z$m z3q1p6ur+eiIX^+{@|l2cZis#A7M;Kyt#v6*xe27e3 z6*^fR%$MYWlKQUHw3@He#{Fvwiw3SwC;DgOu3DGLqt-rKktCalmOE?0cwN_9t@-k z)J|)|>gShu-3uN0;whI}3z4Uzf`zGfeJ=k2_G+m&l#5K&FVMFI)v?+hi)_GcGXIYa zm<~Stzqo&SW-)Afxh(Up)N&O+AKUCdNEKl{l$U@csh0tbFXqdI?8c(-rQ0N+6`s1y zT3hK_q!C`1{W8B3HW@1*(d(lnkFCIz5+PYk;u*p+8D$DXs&EdD%c`kib!MHzyAvbD z37=M`S;v{RLa zB{a~0VM5|BUY)8y)L}(L7p(6=#_T&+Ug-2nzYeV}DE&%192Q68GDY_D)w#f;EpaEUqB`@@i$+Hp7#Wxn6mE3#?SYgKO*Td|l7e z^)}lAd2w(4?A8Lp{vNaitX!X_xO^fgaX7v5V)-g!9JgIK=w%4nLPrMXD_2)noUeZK zGN1^Kpy969jdGqKC`bUWwDriF*Hnp_-9m-`3^5S@`+L4@%6;M+M4dcL)G^&bEYWsf zJ>e`&auXoePK4Y1zgrxofT#xJuUI_WI1)IC6B4d?YA4=O>N*b}@@Yp(A;8_x=yUD; z%cIwqo|2o)aL1p`HV0Nld_$@(K~~dulA!m6;L!Yf0OsSwPg?Sf?S^^^0!Z{8|CVWh z%>`xrSLN1J1uqMN{}7yo7~>G{@35AKg+)^v<&`Gs&t@NW)q>$T`Jy!X-)v}v3#50^ zu-$5{amTLbZUMylUK_e0y>mz|{b)w_d3ZPXKYsTbfHQm4i!d62H!Ycc z0U414$m2D%+_aE*@UR~fB9~^-OjoT-_^nw0(+em({BNFE;u-uT4j6_sKv*<4`rFt) z{U_v_B!U%R*cGMaR>5d_qVnd30%VF7P`ZjNk($B|9}h3M5rndc=vpLb%H-;CP`dVc zw@|P4W!zl=l#~RDV=z4Oh*#GjFG=OwE;yi3oguemm0-zNc&B*X{O5Su{BNFS_`(?= zAqAMn@EArll`X!prMen=l+eXrr##{~+vI<(IQPZA39$&wI@)li*s+4%B>0k5XTvEN zDG}H%3ckV0FXmt;I2GDcc&&h9z`XLB3%mL=>y>0I>^7zN{gD2@0Qh!TQp0xeV}@|n z+oxq=Sz3EYav2iTflxnyFBQ~{>eWthMV7TcU(gBMyM(;F%Ky#FOWDOlrN1#zl?1^_ z+9V>gesj3j8nM^PApcK)^YfXnogvkH-mw<3v!632HERSiCG7Y@4iG$g9mWQD8^D%Z zVZQ?TUP%s(Mg-S$(V#u*{aIAE84FlXo8&a{7%x)QE(n|a;}0o zAc?_!R2p4U9t<*JD+{I@Iqmc=k;36y<}&bPlyRGF-iQBl(kc8GCta8BUvS=~7E})F zl|h`F$kou5A=vb~pfcb^@bW-fTSaHlP(TFcA3(5lbJPUK6JYs!h_gQ0BckGsf%MWY z$h+oM>y~cE9ZA zpm^p)!i&~n-sRDr$1ePo4oDdN32pZTB(aQVkC1HpZYB9F+IWN21oiM=mBxP#!J8Tv zc+UWeYQVYhA;A^HHRnmm&ysOP7aYp-y3J&^sD}Q}XQvK6(Tw&;_QC?_YB_7^f(=Ci zNlal68M$wyR&bseuICh9@#_%EdIX!>&8wek2VGWJ2}#gFY@1lsZHtr*t>0Vu0W1pZs9_`s$|LWOb?50Oh@% z|6h+F!S1NNbYH})2*|V@aJMe6N=xJUygscKy2rW!Ul;H#ZC{pq=L6EX@db9tB)aR_ z=)fBGKcV2pdvt9FxR?$|^%*W|} z$jh2k2(rBC10j*0gx_rCr@)D5Lv=3V!GBxsoI648cl)q@;hfrM2-m@n{FI7K;VQDa z4yFG$8mWyspqBSX3mnCPaq$^ehp8C-WtFrR7Xmj}+f_a(Iu!_e5& zNfMx}*wlozXykSuNz^Vj^k8)9zE(D3>PdbT+5LK;xKzoLPIM7JN6ircceb4sB|AbtD~BlY25jMV?TAY$h8Axb|+llln{L1D>;7=H>r zjoVze8RSGVd@aDB7zaaAtxV6B?wq}b%rusX0D+8s2s2JXGFC6kB{q4envv1%}SjkTCMAguK6CYSuEB)QQi~(PeSa%YWcI*WAlv za`l`$3jV;RKm!L~{3J-AcIMQ`Q|@w7qVyfb``vGGJK39jHTg@ezH2b{?^tY(0Vk`e zTNC%p0{r?By<*xNJFuYJ1%!kNetHn2qtU|H*ou0_N>kN1567R(9MjsD)62Wj!Ab=%K zy4~M==;qjC@{x&kLNOhsmOOs>(6j)OC>Lk>@o`d^If@bljRB;;a(lBn z3x)wJ)xD{hCTd3LKRuTXHj4Qa8pDbO=Psyf}^8iOFdQkunC7$MDI`q2xQxC z{Ysl`O6{WyW`E9ienRp$Pg?dhN`81ZBBx9jUU&^umCB&`GZ=fmR>R|J}`cf5^AY>L_`+puusIW)Ht)uq+t5c`~qL zrhUdu3lvS_fAQLZ5MN6D{Fg<CPxtKYbgY2)VJVuig{e9SR)U& zpF?dtAv5~Zf#kmY=)I11brW$-=5{inDuaZJdopm%RU*e~Zx}$!}q?!ap z8*hnVEl7xcFP~4$Qv>0!HmFB{$ScZvIDaw6_?{kH?>_n+D~xwuudB7jb6d2|Q%_g!C-cIXbUgLM~=|r`?(}HKe!gYb1>=h0HK22O69jccnI%j24G@1 zcimtV!|@*xtI8jF1GMOMAYqnVbH;%!tejB(O%mj1a`_pYPMv@gSZ+GOWMv zr8C_uLwd;QK57c>Lp2}VSg~borfZ4H*nfdp`EyzGI%+{(VVswT2fpOyvHrI#_F$tM zvusUo()!MHW%}GxvR$Cn@ ze*wzMI`E(g?F=XhtdtKzF0ZZ{nSqE*7J@U0CJpDdz{@$J^$aN$kpM`ckw}ZQn#;qU zBFmQ)#atiO_3Fk&7Z2TK&JFb4?=#C~Q=^6Be?UZ&n{q*&Yk>Ev(mxkq_irztt+Ddy z*meJFy7=j)}u;s<%v-dh0apy-e z+#bHhAV5X#=gXn&mM|1sT3zv?2tg(RSv?og=vGfxdqSP}o)CexyQ%V;u{{qdTtc~T zKUS2+6YKMZaG6s*oaZn>loIO%p49^I&@q?p3M)?hZx+Cn`^zqC%x#6A#ua&%S4WDC z;~A-E-%%ub!e@yEZ`$n-KfbJ9iD{Gmd~8+vn2a+DuF5)PAupic^i=w6g%EM^KDQ{)AXwgu?kQoCY+F{ox=*tcOtF6WI}sSX)u3S7>&kKC~_ zJ0J0%P{m$DE{9U&-(HU1Ov~|^O@1MVhpZnNiDlmyjw=D+T}t{aixwd6KJaaJTQ=5` z`vs8LvwuE4(0||)=|%G8nh0hciZcG_62l`X|0^PUEIO#2-3dQlEm(6@rp0!Z0~+6L zNND9A#PKcau+}5L`3{oi6e1-*P?g?ieGbTVeMaq;NE2#r%CHB+HJ^X4hAY zOP&b*W8{?A4EQnq!1HBST+Qoq2wXbwlKQvnZ@9{FGj(6Q3;~faY$A=7MP|eis^-OF zc+c)RGNvW{dLVgi#tIwWqgar>d;@8?kp-*To95?Epe5PqAri|%@E;_~e)ulKLUdQ) zDs_rlTT#v88$GU&HgNw8pEqa>s%Gm*4IrUMsv}}A0Ab(p&efK1tz5_C1m>>#o@`vj zqj!{2I22U3AV98%mm%>!b~Ai_)I8OYVZ7X<$0-hpa7bxt9sgVOXYE5&`w~HALFd1a zQiu%u34KHQ3)iSzfD|UHmTs$g41JSCXu48y9u*w!oZi80atG&2ba?5DhY1HH;S~@- zME$LEV-rBz!%x8HFc4>R$LFh+jknf&?mmuFx%n+8@XPy}-t4)QwS8eHXf=5w@*#%zS|8+>p)*OL9-M#HGbF# zox^0`rtgF%3b^!gz?Yq!Y5$IpWh-D`Kprk-wKQ|OeXHe`cte%7o| zK~YH&iL5HfJ1S#ypo&F^oTo&Ri-jTG2&;rpe6A`J5V0h}(L>8T0}kO1sISoi?_38I zoZ-yXRB(s|#%j5_X8~dBEK{9=Z#Ya(cGmnn+zt`*{_W_a%7A&N6j8GZPEjtH+ZKoL zJ5j=ZQqoo5Rd25}<8h=a5Gp`f)0XJggIu7;H@Lk2Pt&e-F$(W$aZI9Toi^QNZAL6_ z%YlOi{5sN|Ejz3)TlP6U4*3iUj8W2wXc+s zij4GYX1sgJT6`+zhL29UKV;?~*aUq$0gvLy^!0jLaK`f?Bu{1j8%Vigx3OOv;{S@e z@=rmq#qBZOJVtI!V0w^WA!vFVQF@^1q4(33@uh-IP0auOJ}43jfrASuUs4{0MtWsG z2G%VrWYr{r6he=#ezt)C;T(}<)EzkgJ3%U8&c7?Xi2DSS%7sLp49BQ-8^PSq0SJ_? zSxWc%3GFUw&IJ>80_tSb4&ib_vEM=n;b8$$0kltRv`k_DO}eQRBx4KV)3tG5|I{t$ zOIV%snCw6~Y{gUqt$-npni3Iu@Lw>7s*3!;^_gW?c8x3Py0I?(E<&==n4P2KlKgz; zgVEE@;7Fz}wu?dHBEtz>xEx6pQEuvcJiaQE1TVjxAYv;3dMhpUi+RH;`0&%~(`U@c z^%C!LDIPo=Xp72tT{&_11L5qD#?;^4cV`{o#<^IvidXa?`IOs{9TB91`Ysvz2Dn78 zG+zn(vmF!y^pyDoN)py0!RhAU&!GB{i!^Iz8wcKU|7$bS%{3#Q8oa$$?BU*26A0t1 zURO;&SL&jYdoOKl=E?!_o5Xf;mQN^Me`lV~oSnWy(zTu^J%))0UB{cvA?x6T-aB%0 zj9WP<(boDfluSdYBp#osg21R*rC^u+NHY6hb6*BvSFeHoRwcpJcvp`YL(sV7mkwuB zG8~{^;Yh-&HZZJCn(UD|N5%+TgI@DDS*8~w(gu568(xM}xhccVtuqB8j4hK+W;Hp&D5*frgFr&Yu!`*FI@y;CDpX!={AS zJ-(_gLJ4~}n1o?f=T4+C)T#Z`GT>IZ*A{^YC}R|`O)(F^oe{->MUAbnuJ2*gblIgO zxb>G>NkKpmeL9Qd4GQdZA(L*LTVYXjw}!1R_Qoh`DVfcqxE{jO1qX_ak39G> z@7g~4K0CNSoOgj<-)U3yEOp^+U8rDp*V* zw@&ZvVrGL#4hiX!BRTET#RIehRbi>^Tnmu^uTAYl<^!0N@EE$c275m;AM`)t2&0C( zs_^(?j+h(^X|!82TQ_QRkJnMIzc|1rzsyM+xsUd6+lDRA|Gtz8?kyxo{P>SW_lqCn z5}UjFpKm76y+Va3@z>l#Qr;VKFTCAP4Nz}0pPz=w+4J#i?jwKyo;dJ5Shx99%U-5M zVd-H0jF++6iN;$`29_(I@+b)+bL0$xtDgx zx#XWR`bG<2b&y?`b&T`Ww0&odVwmLz5t>k2#)}19@#U0|1_%VJOw~6}q9V-;VSN74 zT_xz|4`oTt^i&cN@wre~p%)x~je+AIVeX`UQT)&CIUKhY@Fx=ad@jlOYMN`T(O$Fa zCeVMJE)kL@H$byg1MMSJ#1s1nNubHzN~%!~zXhi0;4WQ+hY-nQyZ)=|zLZ3!9Mxp% z9f9VCB?7qZwg2}m?9%M>7j$pggt@NcakvEqAcILE-afOn7^ZZ!rgVqfP#8JNkKBfB z)+VRH2$FeuW)ZA|!r65X%VYe7x5* zMY?y2RaXf;9Sev!WZ~&ofB99!d8|o4aXCpW=-chk01`s(YIko0N5*TYzJ`7}55E=n zLsIT#?tq%PpqFFC+(w>M|Cn>HF<)E|37;`4mg=Gt5F3kZea68z6Tx|+b@MaBQ@2>? z_$NJH2~vA@VbgIQDXOd^q#hqZ#AgText2wiUjR|7$AYJwjIVZM3U+j|4>Ou+PN8Ql zjC+B+dRd|(I%E-&jv1~{*oTa^JbwH|cI|OT?x0@qRIwso(n>19J!JV}3Qmih3wE!> zr~Zb^aMm+EdK3K5W$-nw=H*vVhrNIaU;*XB%7R2z!>HHDFl8tW1dy-*$bkID#^>?H zXL}TDO}tv|rI%~<*N_usTO-sh&0jbMo3oKG;iz5ic_#9Jc5_YrQydW^Mac6x(#_2u zb4X?c-?qD7E$#Wmf}7RV^$;DkTj^%|s)jW6gK8Q#(iL3?8OLz}NtKuKhee|}jQ7`F z{F?-shR{iAkR+dcf9>#%_9Tu2-lzw@1D=Rn3+{;o$BPrUxaoRUhWfB3N^YI`kGR`k ze6lAayp_d%25sSExc$5P(xDq(_P$=(r{1V_UE65kU)tFLMdmywis|I9ub8&Nh(8-5 z9e2rg2ou#pj_p5NAxlw_%IsJkOV2^A{1_3Z0+hY>%Pum{ft~RJ9c*M_T74-Yobnj) zpEO*o7~h_@U;9khBFm02NUfhVs5-or4}#(?{CV!@_=WT%loF7iw;7^Be04&;95r>p z+CxVSKk3IC4ujqWW?p#4eC<#e0D=`SM%X{1i{)-`HUDwbmxUC|bS_6HYl)GzP7YGl zhHLB9%jL1*KTJJ-xIBuGG(F_WH#lna#{TEcIwG2kp>MBExb5E~^7Fv%>u-uf)F$U~ z0v)LlH9_37iztT1ILBWk*>U^pVg~J?%z*&eZVg0xRI}5`vj7?>id0MDpzjbeVZ_#g zOz^IYYBwWXoLDCBAd0X9NBAJsb9l4(Y6X^2-3;(;zJ|qcaI&7!zr21)ZCG?EHS1Qm zZkN;_gknYP`AF_r4C&43LJ(Pqjlt{9gK!y=cRfK}TIRa)@Cb@E*ZMK^$R|5}q*5&$ zTRjw!_W=lT{Yf`XVaN3g7sHmqkVYExN79S)B?3V=pfZEEu!xA^kWA?5^T&<=`@<;G^aG=g zl&sISUOVX4e&0Cuv;{mw&0B_$X~=vy(ZflX%Il*ZSEVn579??cG-Qi4y)uuiWnEh{ z7jFwp+syv&$wF=Dgg^piw_ZwlQkxQi6C82?t7`~?3O}Ld9rkLMQ&vt>n`e$PO zcyWltGM-_@S8Nnx#fIewc?5mS0cXJx$C%!=aO zn=4rkd_I3N_h}hg67BdLmq&9kvhN=A9lx9^UY~LD<$onbu`{cqeT;qU{g+ZzHant8 z0JS^M-9J4H`8L7(T$j?$_r|Zte$eAK%=#Z8iuZlKYDkI9v87&68~DL%%4u5SfxU1s z{#wa}^7EYUOUf@7^<2BT4k+`v5u_@=v+femnU*HNx%CDjoGYhkmnA42CT^+v(fdh!-zfu|f`z1T}Vm!yJP`sVhmFW@Cu?yIw{Dv;nH(>HV z-iZbdALJ1Q?;;$h7#;0JDJs>pWHw`XDC|C7;a%BgI7gjo8!ak9@#Bfa!mhPbc!E7-)*kKR*Otr7N^UY=$M}H~l$}uAI z7wk%dMTIFOq;Xd9ws6$$Wk@F5is>3k_XmQO?wqtVJ}OR_nTc~uFsa<@cFBjp2&H&D z>Le`(yx|)r_zMhFlt2EGZv+LU2+!)0q|T0CifkHTj0`A(8F$#W;w4{p(}ia}aozk4 zwhi#J(@s-xt!K3;`1vz_I}>(HC`pG9M|s${2yqn5l>ERjUL@5%_{h`9bRd)i@Lo|` zFkpb}aFmZ_wxt|KO+1%A0HwyTU3rq`>XP6|0#}@QDv}Su?9Y2K)Qlcg<-Ei#sMh3g z;b!0s;CPB#e^l`)v2@ocPF9;v^;F-eteyWfOkNg}`3aW!@kdr$1F{*pp{m%905=XS zaaRsj&MG$1{fkK&TF#>Ten}eq>drRQ7OGqV&a2HFBhVR2rG39$k3Ji`YpE*nn=R9B z)n7EH;M92)>t@BBN^`axMiQTiV#X4eRa45nr@5f8%enG}7NSsLJK6?;jaD?G>Cm%>;8MFRi#P3)$>EjMu7>?Bsf;A{M2$ z#}(d=s@&CY&zF6ds@Kuk07t9r${-t8h@}5PzARJwmgoR8<7o%qM+STN_DLt@Oaskj zkILmZ4I;N_>-e`HQpXbtzvs%n%e(=!Oi?skhZw_guCuIuyeikc3t-HA)qENa4fzK|A(n|@-?OfSjs$3B}yVwf>f;qecJBKXO-9v(B4+&Y@Yw+xwCh2;) zlk;r7%ZwCMt7xqX}j*# z{$|0;kH=bCzf03rSYz-}Y0lOu8n-1YAAW>h>~V;Ejb^tJHqpT6d(z?q88eUAO{8%mB-QFY`Hs;S zc#qM_IkHS`Z@2m&^6@aNBtuf?FsG2w(UVGB7R72biiJ304FGfYOCY2Tk$Ero2R=3Dd z|Ba96$~+QUbbeA4e4{fVqw-_GVQ08XZ;+xViF9M9vuaZQqy*JZ4Gi8>dZ`A*F_91A zBFo3QSyP`70tC5u6c1Ock1jM%NDc6A1-?j9{CM- z9s6ifx^~9B#MC*=G|GD3HuN*2u`BEKEOe=~O!xe{G8|y5hGAh6SHdMW-Q$UNl3v+` zzybdo7xB&M-R4XdxwD^gTtA$zq75dp|NNH2P|vvaO@7;JQcBmLU`nU>OKbPA)yYB| z0!XwRS1;h5;=BxzSnyTX@6*Yc%|Ip`4O?&D4PuCZ%IKZ2LcxsrYc$}B@jTfyro{YJ zrUHUe9&LuX%?bO3va1ebD0e7b-8CT33J9p0BElGMR<*56a-=Lgu-Gzib} z^GN0^v0j-M?FmeFR|tExd5@WU^LUSEjo>c=pV5=jD?9NMsP^~wOP?4QlyDqq^f~ok zO@h1q;1MbJ@D|QYk}5NyCk=|By;epPipvjZr8(>>1yujM;v>Ew@Sx7tZ7FLy?YX_cZo=g8^ETzG%-E_dapJ$(oGR+=g zGs+H*IW|_A;xKuL*f|s0_OF4AVAvu)^U>X)gf4|N#$Ja56AIU4{gWVoJX%ZhKZ7#3 z3B{h`qJ(sQCA84&-}7E{C;E+Hu#)~sp? zP>lzs?_qeDHzeyqjkNRWD6{(T{ZOMB|L4!4&)MwZKSZ12??jPe=Z;`)_HZvd3Xp#kiNXYO8N_ryBJHkQy~m`J5Z)J#J#p(iXHQP%_-RR#)9% zaM3d%q?$QGa<$2;{b{ROUrHDiwNKuQ{*XAX_F~UU!$=uMNb$MxHN}>GEnF5;s_J}j zO)Qsa(&)5vwR3>;=X!AknrD;ANW0#{YifzYlB!`gWA1&ND);Z!`ARK?18Fb2ux;fDM+&w!%z0Xwrn?MsQ8Sl{8S6PMpOmwRZ`;M%kBC*=f zAB@%fRp+zNt?C!DajW%ZC08di9>(7OKrm4Jhr;Da!92}UXeu=j`48_icZlc_Vhd?= z$w`OIsL=4uRy99oDl)gn>9VEI4d~q_^P6FLA5@qD;yQ+TtOT=joot9G*L`-v0?Yk@tN!tVAC`CYNO$g9{z6ol(YQ|nyH zYGWA`tw!Z~Eaf8XNX=2<-Ga5-X{PQtD;7Z8BbE=)fY@FnH*P+ z*6bYyFGn5Ej)Jo*+}S$*!Q#+@`q{$(VN&6YOAAH{ebEq+AMvp78`ABI?`iVKkyRnv zH|^+@RZ|z||M>0ABHH~9QDek`iB7IUtn1eF6ywHk-Hi?^Ve7sbCt>MtIqGpTNUokN z-|_O@#NA6I4ufp!heVajS31+|r3v?N=rIKxl>wz4Tp!DEP(CVrdN6>l`>Hzs%)K;e zR-1mg#@}-hf82_1bsEM${WSI@lVc*&-EAQ*Z%R3n!?ac)&*j|i$kg=5u#}GswgIgl z;3#}h^|)xHbyJ%Y|IYpYsSEf|RYzwkpWde+50!yqb@181b=f(cq=r&Vt}&lMnaqbC zeGV62U4ENOb=5+8MK`9cBvL#q9l9tR_gNi#DsNTaH|{&59}&sHuWXhY9Ba&^D!%85 zM>rCvbN(f#c4Ve|VT2xyOTG3+Je8YKp-JN~G*{Yh97L?r8%mH?4Qp(0QoA*N zlCb_Ov^bGu;H>bs+%xcbUJy&Ow^W*R!P2edB@b>}i#9g% z*&oZl_E@x!d|b47LK5O`I{iqoX;LkXj@Rb3aurc;DgKk958@hDmyZ@ShiYhdp3$}| z*Btm-ESf$O|NBPS!~A@^2o87K2pLnQ4DV}Q@a;ZIkP@A@61703=)yyXX(P0$d zq7c8I!cR8RV<5}reNVS_WyZN+%fyhvmZUQ_AN{;DPc^>ky1G%<9xe7TZi#!){s@fZ z)i2KFW{>Z|bYn&Vbf!NH(Y~v%4 zpQiqmxYjqB=ZBGyWfN_-Sg=%yQJ_fnBeHDo!Cy}#NNimWj>s3~baJGWiO*DJpnb>X_;RGKOZ z<_Jos8RqZaH}Wvfx=*aWM80O#LArBem&>Awwew3ZqLn_b{nlC^aBb0Ym4=<~SwWOJ z#{Xy#D*TV1ab`1lkK9sJZEb9XUUQP3D+8S03DkV{!uy-))~cOu_35_oALVq;9)@dp zf_dXHG{%L7IFE$$8a16!$uYQQ_n1Esit)ZQHEF)f?5if2JZDOZ^G3oO81CZ`*%VpZ z1^M1|2?pxJjl*B%9WZS9hIx4(>6bX?@+&s&FL@Z@fZ|>rB%x8?#5NF3pf!zG)!8dm zl_@whH_e2Y0)Hx>g8hQF%m?v=V*JOUT9NIh{a3rc#p_Zog>O3QjvY7aNa{92!z)nXGpVlW}V| zbgQ>bcRulub-PuKFh>~Kd+Jg*pm8781u?{#m6K5kT~wUfetdl#oWlFqB$7P&Vhz8a z%&iyeRQt1HXiKC5Jl{Kq@OuPb$J#|bebh2X5ig;(Y5I#34z03*xZ=SUotg`3$l#hT zkPleq6;sEfA3x&H*=y02Z26(`2yUCRe~KH+V8-uErO|>MarF-9A@X)=Rz%+-6thS` zQ>Aug~%HSL`^38-k$T_FuELR0*FnnpVQ zR%7!|+w&JOHQ{1$k9cCxk2LHLvq7{WrX-}@{MF&9+C%%geFxH;)Y77OLCL~WHQ2JG z6vFaeU~JXP+V@(Z(sxML(sFn{MHHTn#@cUPWE98AkW?EOfqs5sH=g&yl>XFGiBZAcpw$9549 zyYx{XtVt5W3yCzzC2JS!ZpYU+UlMx%g~SgG41^WOqtgD;w!qtR!CCeN*F+a3%XwZK z_d>zw<)`jeqg&^;z=NlEhMtwcb{{nvk&nT1^7^apP2$z}%BKGq#!@;#>9pyvd&QXF za((fu3;{NW%xM2Q75c)hM2PXtjgYLSzMYu)2;jD5_9LJ&A*cU3Y4H7PmIdl2ZZfE} z760spU=~s@1^P8DvQhy@mja#{JrTfF%i52+$K-;o?z9_9hZuI31V1D6U~I;i@zy7M zCTWO$w$<@&l?l~vqH%=@f{R(dx?iSYMp4l{20D*hi|jaqO6VqOON8{(EC9ohxHZp_ z)Z5VnWml3c)Ze0V9RmHY5GTbO@X?y~lM_XHBnqc1%zZ?^72cAo@p)`b<+9KbZJma= zKD&dodE}bJUtA6nzjgn({MDQ&QFbEWs&TrT`sRFioeT@uy88OfairLDrqXypM7}Rf zX3?03U1xun@133Cv6C(Gl<2iP(8u%In?h^;xep$dp^g$EE!sO^0KZdGC*HJij-rp` zX}G^7*Hf{8huyRnnSui_KXFJO$T51pH@f>N(cI^i+oIj4vHQM93)CBF=cXf-r6hHT zf|N`A6&Y@^buMIw@q1|6*Y5{&dE9I929tt2>X)WwUo-Zlwb|`;TmgkAE^5*&XD23$ zfgro+o8igF9^qV$p*U*hY^HVSA$2Mdds#+l+o|D{EEXe&LrGL0gIxFQqF@ zGJ1atM$$c58XEi6mxYOmLFmt%FQmlhDgJP>v!fdvuZ1;BMEa%C&`A9{w?$o|G*ZoR zPwx(j!Ju-souW=z+3!RuXG(yhvDUbiaW6}+B6#g?l`PZ3iT+uW%vdnf9=h3~A8&?1 zNAu0Ou@*a4pu(@ESk#YgHGlrl zB5W61LfJ>VE$}SI);2}?%A(RH@Gtf3vqAN+jH|7dtkld98#nT*B=^Ty26zjeC*3G0 zoc%PNZ%`d84(c3M%|6pxpT)lGL4nm6JN3HGDJ(Dm!)a8iaDm7%8<$to>^rCX+ZRx+ z9_i2Jq3du6Yq^9TAB8)n%kB~{zGX!$wk$t_2rmit8sERx9`!mq@SjCOhhi8O{Gm6_ zD468;5a0H?$6vnz6qceGJ(rp08xu*W_eT4OlcIEPI}xgR=L&WI1Wsdk_k7NcMcSPp zI(s+wHpDeNJ<(iM@8J zutvS_hu6zL+Y(Mh9e8isf4uIYv9Hc{s|7&p%pEZz&%B9?NaaaTV9mvO6{5_!x_!lr zl;(n?FU5@mnv3Ydb_~e{Rs}*DbmnFMs&qdz)rEkhH4}ya{WWfE~O} zV;sCiC)RM@^=@B_WV(TyoI2l5Rd-{K7D$jcqUSSTEi+g;>FhxT(;b-c)(qqQEEi_&DZU_PCH*`pIxI>)r=#5% zzz=)JurK8!^&H<%mlfI2ANFG(qZrba993x-J4D`jLOj%tou~n`894=o*JzrdeN#Ek z;;hbKv#JN@>w4^)!YwZMWD8MaIk;aqMSPCdO~E1PjU>Z;qm(mz!V5Kh+?+!gHpvcB|NOI8~1Sz5_(2qhCFhR|e1e>LPN z;LGR}ZsuG@p9_|bbTfJ~kgVPGc1 zyHC$KFCE^3vLDX4 zIkDom?A?b%*27)VTSFMWG_9I#-f(SlE`}Vcj_|o|l<-l%b$rnKn)k*DUSX+k?ycOZ z{Dx-6Yy_6^4}0b^JU}T7-s}AJT$;5DPx$i4%8;sf*U-RB?LL=56<+0Cp~JCMCTC0I z!+S;6?OiStuGQVU4rdznJ-HcSFDwK(}Nmy3$aTJJoc2OLb%KKvC-<{bFZwzG?cVu=ZWC%3QUie5yq6 z-TTMLK)XF^L)X_1&vS4Uj|#WicVmsEJQ1OZYB5zqcLLi+rj^qME4qGn35>ac<8i!84BKMei}sT~s1mZ8TzxmehkUt$KO| zZM`d-{{GpzGp~@@xY&z`?74TzqW`{9<)!O6H|bV(GT-E*m4%91YjZ0}?67|Ea3hH$@Lk}91v)bU>wdZdAu+7 ze)xH>X$ZrILhY;ybZbVlW0ap0*6or%ythnMBA(~UGBuRb+vg~UwiZ1dMA@^>>YW2h z%V==$`(K+$Z?i*M_tF%#6~nRYJ)Z9MCq1X?e|Q&_>3-9u`n??@aK2Dm9%r6bjwk~i zr14?_#?^nV!L-wF+1j-ju3&sRHu9*qoZGKuo5Ug_!7T=HiAU_SW4Lt#KL+sYYNsY& zXI-e4YTLzM{4$zG5+PV6Xg7XC!dOmk5>I<>;k-DGX?k$Yor1dhbbn9_=R9+tH@NZH zaHYf#=S~j#rbd|FpYOj$2{tKa({L>Nh+z;@uk=(pxg!Y)#=TV>-y)A#4>cAfp&gh# zmnj=T*eS?#{}m&jqG{d&QPu9SAgD}zrbXR*TQ}-YpWd<6E5E`}H*ziM6JwnkEbCRu z3giF7-dhG`*|u$?NJ$DJC`flHDP0#RAl;#aA|=u(AxH{>(xo(lbayEstu)dh-6Exc z;Mz~0`-Or>| zYpkd_I@29v{RZ70E~Dq}n!9)o6E7?L9s6bpg-Cr$ z@*hcCuFyOl16AZTouFq_J#AE2w!W4EpB;%`VWmtaFKvdC{%m!g0v?nqaYrgu5&AW% z_E;0z@9yv4)3=Q=k%VOXU;1DT$fJCZ*4H8BYb53pv8!Qzn2K2l(n9LhTby5ZFAC&p z!&)*Dc=X)7=x+V|^o@+D$Ao=#fQBGi_(nD9GSyI9jR5w88>Dpe@&rU(s$7Qivn0j& zBdWOG#hA)%KT0WA)kmf0W~(>uS9U~vaD0wAreGWF_V zPnro?Sk!-UowBc$CN5U5nNG91AAecN?AMqymv-eo`E|&7V{1B`Uu9N(G3a^>c_wot z3sT3AnN#Zegl(hd)I!xo>$RhMkRB0B25Rw^3Hw)wlhfC*xKaEXM0reCEkm}m?T zdzCOD4ED}+5&aD;>b<}uMK(;0V#j+{H+!Lp?4qyU)_R@PUfr!VD6dN5 zE{0&F)JogKS-}1q_60MsuPJAXbWo5yWA<~uQp&Bpf6OWBaWAa_QW&K2dbnc8if+-y zzwp^UQA;$(`qx>T^L2lbm??JZVv`D~722<8LQ(283%?jl&HUVJH$QoDfAw`t<%;!6 z6uXm`9uRdw@L57H+B!^?W~~b6imlv}lMd#$Y!ck1^VY_zhe2hHhO5E&+O-p0%;`J1 z+|v<{zIadB){NFrU{MQpm{!E;p=d@k(w!;4|Jqt+zS+^9f@BgsuQMfA33hkWU!+{_ z!Ms=T=^p+s-ey%@@rQ4WA_tDrpx${hpqlKl3rNHs=s>7DI6RpS(nvXM3n%9Rd_wW; zOMKc-;}>iQ)p6!cD2a}KnfPa3!ecDZi5BoSoDHs<4-nKz@V{hkN{&)3o?ykdzmWmUOVni-%bFU4SIo^fc*v z(sQUakU_0JBmpFUC&wfWBj3s}f41ExaSB4eWLfQdGqqrg{w1F1Fm{dyb*J#{;1VYF zCd>h;I^J?8zEa7jSl)dywgslekNSc-?5~k(OJj)pO28~wagC`~AIP4)jp!7;EPkOy z@lxuCT`xRqPPU*e#hW&CqA&>qIoTWM;fJ!p9`^@)MKr0PH@5lhcZ1W-H6F{BMuL4_ zcQaH-g@2z4ujNvw$4mN_f2>xp-J=1yW(>~Hff@sNU7O=ywZRICbW{ ztyHpLcx|iUuJkE%_pUqnGt|e*(so_+&fxGy>v2*}Rs?g^O5lcS%Or_WIn5;cU{G4D zCHeKxj4({{7uUU~*Gzxj`d~T!?X_gTY}zlbli10UQoOcxu1BK*H70WN3K57nxQ+RCTPFn!bMVr>27rVY{BriWN&gG97R5fnrQ+Mf7S{ zI{Bw$yd96ht2PU*7V?2W!?7~A$S-L8?YekeqVE?E2O~4|z2;&!ceQ3O%-TDh$%8cW zWLQbP^9&@;`qsWRL~LcHQ3S=kDd^DVI?0a(hfLn=pC-y(+ht3-r@LDHcvFyVQn|U$ zf$h@e^z;BP_pWRGB6b(T9*z?{acvK(RPSi@!YU+3@cErnkjbJm_Z&>cg%gxsCK5Z$ z_{}+H8=HqpJj3&FdIh<*BKi;dhuaCgdWBR8i&_l_qfFh<9nEd=B=o76S12Ia^ho4{ zaae_Z%7^q97tuz#4UD z`NZW1iO^=39(B`V3!JpN_bXYr--YZq&PH7p&j?dpmf~5EDXOy zjmHrr#0xuLPr78H@&fB}PDN_LeI5Of460g|;CAxD6zeAnwJ-Rte&|I}P# zrj3FGo>Vb0thtBgqlv@V)-{JfVxP@jFZ*!A9}S(?BM3!T)=1eR1m~VPTe}Q;E!rVP zBSVkHttpU?-T1OB8&_)7+~MS&FVk%Q;huGPnE$1H%FoiJZkHxRsrAgPqa|+>Z$`N3 z#XD*a#N{XQ+qQ{n4)u>Lx!YvDX&Te#SmWtxNnwa}`HB`qjBTB`^C*WI`zO>zMbj{e zB6ims(k9ofBqGJqeC?m%q7;IubH_ahu-FXe=c%yRRLb}<8~lDSUJ}wX+4^-@q>h7| z>B&Qw@kFQ3KTMMIsh9I$PS1nva(x}_}K)X4SO{?Kem zen6hyo2Bi)?9Q(M2gzgC7={_GoF2P+b68UHDFw++iN@=9qu&-ttcyx*Ivp7tZofX1 zDDgem{fueNZ!_DuvgL#^ec#knD4e;KKSdAaK`rVM2{X8&eE6cV5h{!NLN6HblcIkM z5@bm3-a%Vlfa$OU>?cbBCmk)|w|rSS^rzco>qeW{Hmr#5+D|`gMZ@SENF=_7H4|kN zkswC%T!p2P_jb9<`<2g*EfH*dd`s4RxSuqoFUF2%_|Bw_W8oEu=ywP_8M({(>Xpc? z8%{ilt$%p2b=fv~O0j2f-zZ;x@xZ#aBGBp5>Yz0C_&t0*arMXrd9tsV3V0eSxzV3| zU77t#akZ-+ct{BENtZpd($S$=PUsT5OLz7cnQZ#MBa>Az8&hkPJ^$D0WTfBb{5DCf zyEN_)!LMy{dF3jIIlnJjin{vKM5TJ#_fWQw`O(=`%Rwmfj|t!>58?+9kmLTk2Zhv2 zsYS`Hh>)W&5%~|Ez0!+pxekUT(<%=j*}DH@&B7NAAC%>5jNLoQMy5` zS&(v4jq=Lxa&fIt5k^{$HG-F0O&z+@mUsO8C<15<8^86_5C`8PSB`lvTwcR$mzKfQ zPCM@3G)1I4y-H%S54od-#j_0yUmo$938v`(hln@@=a_0Yy zvT|OwdEKKoYt=b{{@eNWQQ`YWc%p?FslX<2^1F&qa2!SBeW2k@ii?vdAeH5Zubhl^ zG2x|f@71d=(&&4wKX{Xm5Iv**;&viWdrObH^)$I zGlaSN&qc7aO>^bx$Yx$BHL89SuENpNUPpXhTsXoIPp{laLYA2t5u{eIMK+HM| zx7YuY2fckMs&4nb1ranyrX${k%?5*DsevJ4!qLO*Bdd2gaxiiNXmtzD8a9 zzL7#q@*~$`d@n@4Kp&qZ*BHSVFRT4;xZHG7^slQoD|S_|Ql#o~I|es22Qu2ByF{j+ zDD4sS<(F_U!D{(JB7Jfhp5Dt+i`&9Lhf%fnna%T{o$t@LSJQwW?1pT#GIKN0G<yvf7X_E164tc%$D+2tD@%H;eOud0g!g2<;uT9dBFYC(Lb zp0y3F&`BrzfplqvE@-pjX@l#gMf93p>=Z<`wq@7_GSe7i5j@(y)_pJ>YE_fGyM~Ql zk8tbFpO=!kAcP&hWPLBJ=RPzQ>w$jo-m)kAnmRArQF;~vjjd$8rGNe{`QZrV*XYPi zAXCYSd#>&Rh}Lzi?UvvT09)X>O3KyMQso&Ms=m>P&s3dAU=n>M8qdXb*!$S#f8KF<$X}M$keQgHM$wIYsYVpu)PGMrjRJ3bZ0gr z!%U7Tk`>rg`YV6r`7L0-Z%p zb)>(4POLBgT5;o^Vi8kCPA9Jru+~-SKGTsEvE1_p3|-dqKj)KpUkuwg3%{n52gcF# zdE7R*B>C$hg0E8j3USbHFGJrTisBaZzQD5)4=2Ea2-3RJI79&fkJ`r1kY*8gb)N~0 za2!@6B~xlAo>hgm{%m$GZ6Axu=&K z!rEjzV_|6Me~P5^WWjd{z)fk%nBXc2*YE%n*!omW$>$`Y5<1-2GWGEpU~fVecVER;z>;XLQO_oV?ke%NThEH zF#4qY)vqH*pC-4u>;BQggvzM&p`V)-uDK47c^*=@0)cuq!sJ1z>Z{Mzt=>a z11vRY?X*3C)@p1k4>f|NYNrd$egXX6rQuTsUK493%-^g^+9C%~69a?XVJ@+s()R=qix$2;RF@pYM1#0`Ws0VnP!WOhOzx%!( z^d=#4RzKk1Z=Lf!B8*X>`}_e*c4oYLIBO2~BGVOY>l6>@n3V6cDl!)>0|K6c|(eeYi36ff7bQSdC$$4(31^)ahYje zAwAadGe3r0sE)LyL!x8vcN>+M)Dq<8^yV>b$1? zu8I(N;u4b-Bnrb98w`C#6pk=0F{$JEX?E1HP;+xLbG~QyL)A!(xu`%d5s?P*WrhFa z?I$2#&rRpo&&`D_K@q+CpWAdt-L!st18&nDea)KkChS0jZ`~9H{D}mC%^X?bVA(1e zmIF+I=TZzeRt6qB9IsyUZhZU;y!s(wUNYR++wgC%;+tphz&Cp@n&?;%fS|_%4T|R^TRHJ;GH1SSjNH!P8(Mb?61P@BBXqqr(L7MoEzA*Zu*VS`640 zb>PNCLquI9dZVS(K-eYK`{t`xNPEm>}uN?!Ds0ltnU#0S>^|Fgjk@NGU5L}aCrp|#`wCe!f2OvP=x?*hlrrUc|XGF%Wz&3klujF%f<``3ov=A^pi0srZx==Q*=vXA* zehUOHh6qMt0+1J>li~Pxy`a3*o2&883<3txBGXn9u31=JgxULX_5=)>-fN}aQ2=hb z3^HfLXCgWwo;3GhlnPB-krxxo$s!>KIjeDV6;0RA7&QpMV!5=`6>Rhoo>c8l1J{+&?!4!CWl1fz$w>i~2 zf39b|ZybxRk-2o9@3gf> z^>5&6CxdMylkY?4RH0J|kbG+Html?}8e!nEe8efqR3GK?A$9qpe7G~!YOK{QWsD&jt8fGOAxOf8Sop!3atQD=q^xQX9F_a!5)#}9b`lfi99^OrX4b~QACLE z-Mw-XVJEC^?0rz$Bm(pluBTB#q|a3^d<~Ifx6~UzvLV=}?~X-hHr=*ik0k){>FT@T z!t{5{4#uCu?R(y|O?C=&5_m*ma-e)ee>%{$W!eoB>c*v9AB`2YF4T-=Cv%a#>khSf zmdN)PXLS*55BnzI)G%iD7|T)n(N^{SQ1K@DmhPU+V@S!>^j=jV9Lde zGDGpE`=5NOvK*E=7`?kb`AROGAdz|vq4JxGVY4Pv?SH~s=l{o-B(S+p7tZ> z_UzPG<8=fs$JnKdtyBC1MU_K}c3Ai56?&`?hqg&82>VmQKT{ zA%Yz)g67Lajd$9`D*qio?3Mw^TPyVHi5ehQ-Uh14$CU&*$xfmC`fh-thLb=DjO9k} zel#V)*W_If;W5*8lE4@IHAgM2v45%F5yqM)fEsM|m5Z9h zp?0C(z;eFS*m)YN*k|j{_jA|Sk_Wxv*H)dspK7_DaoY^n`fAiGkNcq`6s8e`75 zMNwa@vv|Pn@@ARg`;1E%My1ILH}7FCWS+7rJsGLi#N-*!3B9o{_X3qH>TN$?4_Gll zP)@>rwg08(Yi9)ZtMVB<58N(P4#k(ZanxiO)D`6t>v#5R#@*WGA1yDFClJY>i0Gzi zf2jJ^n=$Uw_aMJJG)}VA=rNiYS7VsK!20W7u-j646)0AhHuivRvS>VvB+yS411M8` zYWW{-1G$-;dFhJ()zT0o%wBEZ?&}o|jW~uES&Jvr-{7EG(E(dcQ zsqM<)y$+oR6@WgU0zQ<54_X%q$RqiS7pyb`KX`E0uQ5!)=)7}>(va+jCjU4$!w(hy z*)mUv*&uVT}1)#Qkux!70R(ac=^K^{RoVIXknW zJm9|cPuSg)fV=1`+`_5pdo)D`d+wTrA+qP3K5`aHc7Mr^)(hKS<+vArU&R1pD(%^E z%9LsGfU&aUH=|HL)qvh7i*KKe*4RI20QwaUmc4WWm;3EM0rxxwkoE;}-e2syz%jDQ z;%~KUm`eFO(22kWIsN>VRu3A12Kh5o371)wgsg0VjmfE4c=@HwEa&fy*$;fVkFshj z3pg08BXzhis9)4!C)xnKqXPQ$T@;;oRo{WrYzk2Kw!rnEsjAm(ys<$E0}YNbgTH}X zxD@EBCmZ5^6u3KGxq&eQLSZV!jxjV2MoE7NbDtYMyI6I&JoUAq_Vay_Rpw?q(Fn|s z#B8Z(qKZF0yEA-%jn=MLJ+k!?S-xvx4mU9;$L?^k3UHpj;_u@j4A$^i}mHxB|4umwS4aBj2c0pvirNCX$g#e+2c+%o!XWM}G za~!DX7mlL6fVFb3L+PVNIIRB(f_Xu*A~#5T8XAX(`<^1sxj|z8{J8)5B(Og53@l^B zMQ*NRixM~=2Ymoobq;~cTdGO@fqdb9R1TRv_@O4S?xGko;H0h#4CIxl|H-Wm_v50~ zC=Nq;CiTfPH5JYI?0B<*3}x!wTmPS!un0 zRLf47q>>b;Gtvq$M}J#&1U+TP79}i9c3*hu1{08?0YfQIXWv{<{3+1A0pt#@jvxn; z=J+u&2HB=2Zon%jOkGiS;pkCMJf~e9w&;2jq7pTwq`LDH4{IB@_A_6vJ}CceL&)S- zu&yty7jnPxyAtbu1Bvh~Q!X{;f^>S>_d=JpWT84Xt`mj&17qMO^yi$oW?;j+3EC8= zHGr#ZAX^V2KwbYhxZzn>whin?p7FBOz3+xTo*!~Uvbekz!WhoBG4U)4nE9M*9_e`v ze}FIe{^L(PrJGf;Ryy`DBt4Tq>k^QX5U)q`y)kwU=xf@JW}ZIyxdyx!-&wA>uM<8zN4UD0F15Uqw#?7`2POvi0eK3w}o zccn}Z6+~b6&<^+Oq&j+D`j;`_Y&t)x`8WZcP?O03A+P6x>sAQykrh^Vt>dCHhDi1c zIs%s-gB@Xk3(7mIl_c+-SNpQB<_)g)2n=+`1QOUGnD-`V)!L=ycksnhHkpQtbevI2 zcvi-p2<4TD=X-E-ZRfxJT)xj?!R&BUk$f8seULG7Q;ajgq>s~s>QqBbPlKA0zdk$S zij{2rQTM3XhM~0M&k0Lfp|a&<=RQYA=k|T)n`}n19^LreT~UnNK&Vp*Nb{Caz2XwR zd*)=;la+Z>M9vU0zu)6-IvBG1J^>RN=A>H7R-bp59fxioyZ4w^3tiZJ$(q{5^Y96G zA3j$t9iy5QYrX+EOBHM>tnK!^GYMs*Heq7}6G2p@IgWzM!Zj<$i)KO3{e$)#@34 z8Aq@uw!l}B=bg^Sq28fT=bZ@H9+ek0P>7iVs-mxtt<2a`AksU9j@YJ2x^?VTA$qh6 zI3qNE2j2@j2%L?-EM%s+9}bq}6aa5I@2X@ZY}N{InB?C{6Q@L)p>~_3+lRtHZrLmN zkX>b+gKxl!O8&XE`Dac6Osn+aPpomWFZkosV$u=Ga?9lX9wC@%5d*cW6ff)cVac~p zUkiRZ1$VzW+|ytveJBa?kw#|%#Vl*P(t^R!0|2gbeiTyrf~pJ3ii7CqC% zE`AO}!v;_(vV};~PPaPt#g@agW9J(S++J5r5%7%g^pWyOFZemd3^WHtB4GPp8vVnq z5G@6c@%)bj&O+{V%QjPqWJVhP0^vcLoT0l{fH8zzjg$jDEW5Dl6Q^%@gU*RvvpnYl zBJZ&(qZn|1XrlZ!DWMC;I}0o8hiec#xMFBsUyBht1S*9-itlC)+Fe3P(=#`AAHWBS zPCz~onV#WboX7)@TWC2=WlJvuL$Om~@md!juWZZ4+lIUwo*6kkYZ{tugC45Cq)(epvVBqP|@eXncwjyU_Z8R%)@6a>AB-Lg(Z!>+%6)p#h3t9@gU`$NUH zkkL%|v~xw{i+V6c?F1xiMAfgH-#QlEo49`K4RBy-<(AK-HYx{h$L&eka+?Xc0n`(OR?^ z!`}yFEcj#GxBD$~!?bd~6Ouf}ZM0xD4}MlrE)ZsLUhMp(NB6o0|3IEH03}nCa6c8= z42BpZ=A6c;h}dVuZKgcfBPr$@hiUSXv{dItjLdhhsvTHmov?c%$De{~gx0d9uN6)9 zkX4R#0|C|Qk?gP!+x6)|Nj7;Z$H1x6JDuy&Ki@q`-|xv&Kvc%6U=xfZjS(-1M`m8R z#u)+s@g+Np6AgK4^GAz95IHrhWri7^JKYxW`TYxfq9B>Gu+;xcirCn8K;u?lJyisn1eImdGdqpzvUgVC32Zslad+{K|@$ zcIv%Z4HLDe9N!`2v_#0$q3mI7*Zwdg_)|6&M#{k@ipi`~tE~cHPzow{`MLZ;%XNsU z1c(vaDSm}U<&-FMP_c*G7PNNVmFz%*K>b?BlKb_3eFfHBw~dgbBeJ=mByDcy>DjIz=fTO3WbJFe3#U( zc8zsihEq;Y;rR~eD3pW5(VO%5{zP8Jvv{$igD9JschaBGulWz?XkS%nJO<^zEoe$P z?9||!ZQ5B!4+2;46GWgW$whmOVp%KPZwES~e6J_E=h>ge1yecQ&A2i1iEBOVK3VQr ztH6X3=Pu6x*&TUIoICMw*t(b2_M%oLV(fAo7UO^Seo_-N5BYgl<+o=5X7=Zv z_~%dRXnRuQibCZ_QLDH?_a7a|I85LbgM665uPvc4|M;^p7?g`k3D!RWHE>iyQ#7A_j!+S&cxbefxhbm zq)RINAO9|44?+>`*dbIGIfT;n9Ox0Xr0;Ld}er;FyWAK)yzu%F#KD6hZj>Aw) z<(}G30q5mdH4$vly8Kv2J0Np&<*Ho{ZBPd<%&p9MhJYq(_8y3mVb{xy)DrnUzS4}k zW_zq%>2mm7{)y;;$b#bO+P*zyQ2>Ff(WF2bO-j-vNf_5Oon6uOwci9JcQv|F;}Bh_ z1`5Fmy6gM{>?zOay)0s}jc@r@etSVViOfTMFDozM=WMVEG-oC5B#JA~2uwsJFKK*! z$aZGnAYcWxejG zMRfKPRnaWKIE61w;OSvScFI|!kA&=AHZTzUUSb0;DE)+Id9jxlE=blp62?s6Aw0ZxZ`~wVa)6d!%bc>O55ORaXuHHKm(!sDy8;(o9$AFX66eR`D^B8Q!{ zj(No>OVf3|O=GGl-Ky~@wcn6ogrzBak3Ft3>f5KT`O3(p{lJfGl6$CG{hB3)QT^vz zjPe!1fW8wFau)X1tzKB>A0QLsY`BkIe^AfMDV8F47_RX?zjIPe)iGK=FCgQN)cLL1_FW@jGqo_^?AGwgN)15R(KqIsPaj#>x4l2Jnjb18PwKP@F?#APv`$&GwtrUqnUxXeFw|7< zvi=CPD*T>K5Oyp9n_{T?Cu!mU<5`+p2uZ92(7eko*;PX*C3-FOzQWT%*=uCa1iK`a z-*^LVWAnu$Mb1{uK07B!Fo(**QE(q)7T5lGw4+%i0bo z$<;ycdt}@CH#Cm#ZGJ7%GQa6k3eiwqOLG*X{G@c(!?>Hmu!(Q@ zEa6`OR~~+rn^Qo_I0H#T+tPgv&Ov92ip=)~Sz|zN=V9kM37P1|^xb@j&lU*GSHB0xrokG+lcS=odu4&RhttEyPyB@o%7R~Q1 zy{})f#T~L|(hb}9r?|L=&);7SjA?S}^P*G0u7^_YXdTJW4feW21)^gDmvzVAR2NOs zDaG6hsewH9D-2C|0ms{!SyE_Q;TCCVDD9^ox3d=pI1;77g!UmOv@PMrU5pe>wW0sA z%6S1y*IfoV9@cICCEvo}HXdkVD@u>?a;&S?tQ)aBb=1kL@4ERO`)J8&V^E&f6~n}s zdjAZ2COGf&WbeKD(j%q#vLAt0R2>S|EAzR;V)upE#fo_P7Ke&kAIhf^gJZh$uLZ1p zJlML;nV>Y}bny&!RNco3g#Pk0X|B>rOAJU-w}5fpF~(&mE$nS^w6Wm#Uyuis?hPuK|x^AWUmrXPijQZ#?BFa3S9&IbA<=%Saw5mL3DNH^P+6GgC~=5(I{sFFd1+=riG&6!<-3b{|KbY!!L+v?GUsm!YXtGCDvMs&HFkD)W~^H(IsC+ z&U-1N8gkwlh&z2M$&F;6??Wkjr&=k>WCsc3VNk9fS9ab0F1?ZL&;6h+G7st6#l8f+ z6ITklDw#h3nQ|!>6S$xteOhlNdk(%ml}2K<41;*I&o!D)R>Siks{82y*~8l@jm6w zhf}*LsQ1l;x>JNya#vluKCDw|pQ2l^j6cL`cCar~Mc`uWa}uZO2B$HpQ6`TIkyGy$ zQ_4uMg*sJiJj;l+>l~OcGf11Bb9l`R_aJllgXiZzKN=tr-A~0hOAf!tOAF)GGBOI) zymY>PT-Y+oPsp4o)`ke3jS@EJ2R`KubDKw^o_8H4pZjj=hsIh=X9crStZ8!{|M|)x zg=|{(`<+mD9Aq%KZ?yn|EOo!XqZO#_Rpfn20Sl|Ri!1u2cJ~Nd!Au`ie6=u?huUvZ zC{$DmP;}#8pPm3og)Kz5Jame!E^lMt8@JH}=WWxEeD$D--2-a8389E9T8-B#E+G}1 zbvG5NXn?UPL`ikkM?p?;J16G?Dw|$tMbFStmgBX|#W^G-yDcsV?P{*oEq+ZO%=BZ0HWUk4 zTV}zEs;Yhi6$P#mwrK<0~Mwo5Cid+0xBf3FU6G>x!fo1U6PACb9vc z%eu_tdKL+FuVOOFtQ=tJ?zl#tKU5DZ(U5d_s`hE5*zzt48t88CR&uD2u^M&H}a;Abwo&PzD6?TK}C876T ztDb^*V+%vYna$CBU`)E15Nkpe5PsApadt2~!*K#C16js+XWRWSxD*HiPDS&0q8>6o zWQeirfjh9R=wSE`?K+81fJ-nmkcQT84PC(7t|;)l2xT*-VsM9(W|60WgD!+}Y4O^u z&>o~|kAsflq>y`Fc@e?+S5_ z>fGr&!=6H$FZb&~+>i2e&()H2LYMZw9$gA(h%dalH?dc8llk?%iOefa#PA^`>f008 zkPk7{vn|oQ5wkEQJ)rg}&j{)F69hvRNTa;yB5=53P z)(wpry%L_KSO!#sV#Yj#`@SdzBzuoH9T?0PDSAIP=S~sXIFRVq7q<9Q2nS;Z>4fNZ zTD$%MqrE6(E!6!OdK%8DIZn1jF)8W;*rM61b>)ro{`gxXT57K5L$eA?`ciq zy$MfU{*+3g5Q{4b{G0~o^#W}Tv4~~}A7=xp1HHr*cz=>sR0V{lYtVQldA!KRSO({u zk4Jl3!(ES1fPy&$ZJR^7^?g3Pnk>$zGTNJ+>5FyK373_)3Y&-pFj8JQCE3;IC8ZaS zoL5UIc+#g8q70gGI!3&20h9=$j@-73hasIwJ&1pZ#*E=U+oL0LLk z_$v!~_P(f6&raMC4n`egKGs|2XTpNWYvS)`crp<6;|WlpR{(IUvuG>2L5cg$ z7gSD@&s3$=qHdZM`eS;%IAaMUFS)yO^>m*-zNH%_UCtJ zrR!&i3T=_(*!iX>(31+W$>r_YM5@PeL*Y+{f_|bs1Zn}~xH0)lEU28cBz!%3^-C8f zbwm#QpI`OB?2jd-M>XW{h@pMo*kh?NBThGBzTG!Mf=--Eg;=m`au>6ZA!iJ10*BIN zyD}&=vhO0rEO96NV>l4^K~!rCj^I$CjUL+B(Pb68ZaUc8FOu_^G3nGrkZfU?P!zCGcE;{}q!1VP zr+RL%Hvr_swlxs)b|MIyVq_#KYtdJbhpmnz@I<^S^#NC z(bvvi=zF~nC-e@Wg<^0PpQ>is`G5GheaLhj#t<*JT3!B+mpcWK6cxnJu`b3Bk%KTQ z|E>2VR!ixcaPS+tS(1dWC2+(Lq;cpK&v$Ft@$wEVGkg-jxswJPYppkgBwm3o98c%X zU3V&U^DF5_aj$s>FeByDg%t?U!_l_$>$%Yz3wo2LqosY_;s`{vlyFe#PRKdvNgw|B z{Ez=YrKk0Tc|sLb()zv{d)ZQoyO$Q#E`*At#YkI$Pw9(v`64hj4t!zG9sAB2oNI_E zh?EBZLRX}K-L$Y6I8XlK=b+E^{%j9KvaJD{64sEj$FWAiZBsR>>jnjOq`$sn#PO@Z z#q93LcZd*DG>QgpBcsi>;K%G-ry*^O6{;7eaUIcskIBDk2aS~@kwwqFSij;jvM3SS zOFte#UKk?WUEhJ^g^m|Af49O{#OG(g#tdafHE_i1n=dj(^z1PonvtX%>FDk37IWD< zDPhA=<6Ba`Nss2&b2**1h-&Id&Tkl5s%@IC>{0%M%zg|j)|2V#x9A$V>a1c{Oqwe? z`BWA$DW%n0LQyI~C2)WIa{6#Y%H2G5Oq_vY2D-pX2D*q_ zf=@AB??|*2_>sSkdSlER8O<)m6Tqd-y58J}Vo@9;O6tBybyhN*zaq2Vv`I@6c&_e% z3UU&7t_<}&%{BOCMi|{Yv@S-Bi>$;rfnc18UwydZS7WbzC(zd(y^?b-Hv|VsJy|cD z3?}Q>;`o*04pjHZ-9_hxISDSg)+~-X+=2Dgl~x^`*xSBtI+vQ}(`0E{_?czlo%2sG zH8<2ZcHg9c8+AwWR|TSBa>)DoR65xxh)iHUHt3F*s_JKg3&mWtJeX`k-<7GU6Ro(GT8^5R_qS9Gg{9W{N$va8)g#7$4<0d^-tr0V1sv^gw6n*{qXyu{v=HSF2q9A_vkJdwHGqkiWzW1g1G!&q0>bWP$i@2h+&~oJSVD{vwt7v13dJz zcMJ?joSuxiChz>{8v|w!3u=mkk{YFjBTNb`6b*&2upf#J7RT@5K?+WzH}Wvg;GvJ@WbYuEnh5Sd#LA~uS)5oE z-)bE}8Iq8H#XK-cp#twHbgfthG=?e*oYt`Z+}OiOWoMUx?>X}n?Z2^W2k+ucm3q42 z^%Sdr=XtY$2Y4ec97caZ^o$%Yjw49b*Nv+Dd6-`; zsD{1Qp&@_wI|=OfmqB5~Y)NRg1vY_9#Ei&(XHw3OPJ(x|<1!3FiNH%O58$8QTe>W+ zr3srfzy3Sge`A`~#&0Z=<^a^p-;hF9o)@%VjfCG!L`+ zc}#Ra*b7+xgHIWDkC2DiRq=IOrX;(JG;f!fP*QKN;9sLx7rZd3JAtD>CxNO6i)BsVTUf`3`FRL-(+Wn z*W;Yn%Q<=j7c$?QzwrXBkSUvXKB*}Da*d&j4Q;Qhxdj&!9o#w|=DY8A=C_fDnNLF7 z?h)c(K#IRz3cfzKSg&%)q$4M~{Bktv72=tqc=8nO;2rDg9LRun9}M|z?q8Ns^1I3k zm*IPEe8Bj>F=+;xs>th=FRN|ygK_L#YPm-Mhq+TdSDW1hemNi;se!f>XHnbZ!r=%L*E|wT8P;ahlS5gQl%Ds> zQlbqyj5hVA`P@L<3C(Zg3Q9gt(%Fe10m27|;}|b8oOE@a z3w-xbbg$8Rw6DM7pdRYi!M!zsn*WHow(9?!Y_0Qeu=My9+L^woOYKDn0q42V*H{~I ziE||{xWsPovvxXw&%jTRs?+mB!_y(7i^0Mi!bw-oZpj^@KQoL&#SmhiE5U32()0WO z=c5r^LP7;p^R){H0uK^HF#Vcw(o3*jLqydIXz+B)l4v#}h1i=`jKDETc=L-#nI$UCoHMQC=J>iM}<2V2QV;~ZA-<|KiitfnR z-0V8dr05Mx;DY`(uymMraXS07gUYTjQz@s7_usGm?_d7C9;ytMhD_4yl*v|i;qxXOR_FvcVyUyqvu4#(?t`>g% z5H9rh14J6aby)R|MySwf{DAUq78)LlDJLgqzyzcG=PHys9{gwvT~d+xRZ-kWX7VlQ zDxdCP5HsOk5E{fPzMTP1Yd>!M`(fi4;12BNS{GzVWZrYyjB(L;sUfcH|U5R(SZ}C6mZ3pk@UAiIo6@tZVxh#$=gs` zmX*-k?plu_Zfv|KyBalr4Qe-J=&610_xQTgb+hC|{`uNJSbf7uo>OSuhDDKrNc(ug z;Uc=<6?c%D-2zS~r0MuY)NLzK=&b%k=Q>Ow7T8t}%2fl=!{1_?w^d%y{ zU0iXSqLeWNPh@OJq3ng6DPk{l z$6*bmRBhnY&5V)u_z%>E-W>Ep-Y$Oh9g{2&_17@J{gh|_7!$_14H`fc&n8Ys*Ad1^ zuslGHeG4WeD;XoihoEDw$>z!SlLBPv#oox!X<`EURNm4Mq4X^TX?WR$ZD?ZMDr#LDVt=Qk`?JJFsBUhbn;Z@>(79WB7sgVtdkHRx>hxq6IPrz%;RMoW)m%N_r7 z`hTzzvr@~R79c9TZou_~`Juo5!<*H<6zj9opAmnQqzUOGdEn@iusGyX()d9S687=1 z4an7%L&2-&p>*ZN8CX>dWK=keRzN6$!0;L={bjmH9CRY_UEl65L6{RuJ{(Q2u{aTc z0lw86t;obK0Gw?%7~cs}@{Dypa$}~L?_+5d!F&>fVlVcD>ZSpuz?0Y_0MSMjyGW+I zR=|$BN*NUJFO&5t6*cV=3mv|h?cQ^M#$$3dz}Q$n0(nLdVYX4SS8>I?Ngyw1WrVa| z{Aeke4*jip(b=1W2GEO}AW^yzrQv1t;BiLKbpm4|TFGf$eG{xH7&>EIm3is6NpRT- z-R~2LFmU$RfYKf>p?1#2x+8a>$e#X?^j2XU_|$81-W&e32*$W1+>EG~*3cRqHI?@5 zd*84~2)?jm!;pMCT@W{RA^#~-L2Myex7N7ydL8y}Ncj>Q<-g7}-7Mxp*1N}=8z6hV zEdG$%b1lOUUv=HO^`p46>-SlS-2(;K**Fn!*muWcoc(d0!AOUlYc~Qmfi{|6{t8m7 z0u|j}0P)-wI<1HH0)<>XwEAc5nhteqLhX*16VxQG9bJHZuH^fho|q8bX=W-%jW))s z7et$H>98HzGRnRBJ3RvRP1`h|le~s8;EQSi4s(MwMlftkG1ew- zwPniNU`XI#dF2}wdX;Rtwq6r5TruUf4~&N{1%dDMH)W6mk;x{|^N;xtk@BluXWOG< z?B{_xW5OwRaUka5%`-sDiQaz5JjAL3CWQ(%SnD^{Vq8WZXr_6=?7t1nd6fZzpmwtV z4S%P_=frPEMxHx$tJCRKx{=U5XONW-n7*IF2XizAFe+H65W|w^WkSQ_K+WR4_X6dD zv$nVh5KHUQ=gCI{(*Urr1@&x&ZMC1D`TNIVdczcvIC6fOr_*K}sWgW`sYdjwt%f@q zs3z?*BHFk7d7D#I0-bS2uKINt9)f!6_xC!@8x=#Yw@O|hAcGWO4XAFxrgTqWINX#+ z&Q#VNIg@|R)Jr;IA?jr~@s%*;)sG-Kbd`N*y$_-Qw%P9;AOuC8*lZUUPVG5}6dpicS&I@Q&H>YoI0g_dSl z^f}sm0zbAZ1D$@;t=+ZpG)v`9P?zj=I28n;vzmL=3*ANbM<3p1*Cr_S^LLp_(S}VN z|NG^zFVx`=`OwrEf+&5QOC=P+``!xLJ^^`Jz9LN3G#+MeM2N%<&?C@_cfN1`5b3Ie&kiM5t=7I%J#unZF zmSw(meLCDfNeR2Sg1JisGg<*vEZ_!wORKZxV38?^xd2@y1`{p(*ky+r3t#qn&C`b! z#Sep^`rUK4V3O4bYEG3tMS^;MI5LDn*ReWxerk#QxJAe>2?87TIlh;?=VIF%6 zR?;~@2>7Ty117s}MiV$pmavcEi4s1s7U)5CG$NaPv%HIea47dH7PxrXx6kN^z0vuy zn&8|5qK@rB&}iq&lM;ZfPFkjUuSjYR(f)=u%Z#G9cWkBooaC9VPK5l~nTFS|x*E!* z%4RZBy}zi0&=Sg=}WmrTF<2qS%V z<#C45f42WG_TD?5>i_*8&*`Xx)UlGJBwJKcLUI(@Gb^)qhwqEJEj#q*F6wZac{y8gyqY=Q`ippK@yIVo2gj)a*wO1& z&OU@k^L|$AEAx$|qcB<(Y=6t~`0kj~X3f%G6}eJ+&)3eLxx?fe5zI|s-i0|_@4?|*JfA3~lN9gUym}V~N!PKLXU{eY5qDuN zo_eol!_ZaJejw=V8;mYdx#u4m)z{${K{=^!P%K*%8;wX*Ywv3$`}{+k3OZH1)eT zNE+1b#P$>cBc%8D^P`vC3wk@bG=*>K8x0D}uZ~bc5w-&Jq*jppIb`(boVxZZPV~YO z)jT8|&o9X?6cXEBM%(>L^E_)o^yIUkesvMg8C!uG#lXD_QHT-F{ow7lM@&Gdjsp0* zrS>WgXk-)^btUz)nr`h@(Dz*i9&+;X;YL5@(GWvZcnC)S{UL}mKM}5jvG*IWw)-8d zyJ_ypYgo*-13xFE84mla6VFzf4{Zht_M4rMdg7pS+3%f$qRZ!2@{8r-AvGWj0fB01 z4L1*|Jr1#MZ+=tG>EU43v^s0rn1hJm&>rdu$ITLThp%$i)GQmaMS=|0`>so33} zg>UXqV&>VHBkrs+2U+TieS>{4`PY<0I|}_mUhx^MKuAJi=gjZf&XXTGNmmOwWqh*< z%!e>`9X$D$53`z|tm#`BZ%LRz4)4$Un3xcU91|=jZ|q3g=Xi7P#iRFlNfsXN)K$#% z#0!(03-PCIha`$&T)<9U$Wb9gW0XoxN5pJs5`H?iNOPLF>^lI7N8d;mM2nKHYX1X} z;6H|#??-lTsPdurvQBHo)ANrILaV^kOKA(KU*;w6s9(e z!{gr^CIUO50Zsmj09layy9*2r6v>eDH|v3-Q(#pDQIX~_C~AM-^Zo#%M;5st-~gyT zP?p3*rJod(=sA#hMzhpTVG%-kf#`R&i!)-cJ;t;Dfkm)3`ExZuHOjV;{2uLjl0QC< z`ET`z2`S$AKZ8X@7STG^6s?rZ-G!tMb$O=Y!j=yR3Rjs>a= zOS>@R=`fHT<$@MMZ@bdD@2Sq?&953cIevwaYmd4Czx(>~?NNvyLcgx^x0@6T2FS)t zRL8TB)sgHJumoYEc83Z|)_b9^J_7^Ac`(%eS~KOtyOKJyrX?5)8Ava%#J{Sc=-GY! zw*|i#3Di+m5Zf(uJVP%HVMlCML1-%*O&-i#iAXE(1P;r&m+tD8Z2B-A$jBsJ7bcaI z*^$bxZqAo@fOvtXxl94%Xx@XTJ!N_>w=-G;Nm2bX!^6>8!v8r%sRX8VXede$86}fvtD*#Rz6Bnp5Z!5ChkUJ86PURYXK-1-5_Vs6Su1;R`Gpgf^bNr=UXCB zEdSma7T2EoWC6CK^+Gmpim0WGNpI!`A@iltJ}EsA^_!Has=K z0{Z(Di$*Fz7?Zz12lER;`Xnc+dl8>#(dw(#3S@OwC}8Uwd#-$Y_;_x(>ZRp$KbVg- z(i4BN-jgU3QWbA^0E73t07WkqJ^oXg6{bhY9DV*1H%g}HI@-g zfxJ++e(0Rh8o1#1s64RZe(_8it7xGf8L&$@0GO?8aiWpSF!<88uL5KV5+`3B*l(pJ z>Nwfno;&Relii;hnB~he=(y03cOU3fOhlZpmlvaFP*KK12V@W^h&d#?_s}|Yym;9S zr(||D1NNF%&HR4mIR_<}10Ub0=qu%9|W!KhG zS%)Q_3z!E_6t6;7xt~R-6`s~*R;ZdJR*YlzVR{~ofG<96b*L8#0=1;vhanmfk74Rm zVDLT6?Y+3ATc4}5$}Pn3U4Z91@Bs1=`Fw<(&*GIvSjrpQ#EbYh=P+n8kdlGF5@-X% zYAv}3LiSk&k`|VIemM$Slgwk2SNMnthsMX^IqB-K#8xu1;81p&5&Mp`wQe_)%_)OF zcB@}OrNVgX?R&+m-+K}iX9L+4qo3P~%5uQ_4c=n{L3%6gt~jBb1_AaH%xN{E!O32j z?pZFZ$kn;>m{#NF*VeQ3a*xH#mJ6yjqmj z57W#a!?i8AG`mm^<#IlVIP0}J<`u2!3zT)y1QrPVG25vzS&sp0DxkEf!LM|8>I-9< zHzrJ@Ft%jJGm=xi3b8+iIx(+A2&PVFz~wp*6cxQnw+X*~i(%};@m^^TBmL!EHN)$B zd)UW(4_vyVGiuy7L<^2s964fTGupys9Fjj-o=nT^fs|@$kMsJM8?b;5E%fU~18#7h zJbk-+Jlj$nO0+eSxf>oV9><$tR&mWEL>LmeFjnn73x{W}ktu0tgxs#)?Z=0`z2Q36 zkyCk@mUhED^h`)8EOX_iM0_lTFOUS|va#*ewS?Cj-fenIvVV$TK?hC;DbjtTDQU1rr;8 z)(q;kWj?+GY9F#yzkWf%FtyJbvABRY^#u^2i@!wf{uo@8>U+0<^eJNIPxX$v`qt>e z*|zY3+#(83bAR6p@6BBncoDZI)=b@^*B5^8DTHF?S_os3y2kZSIi?{4r#)63^5Z4E z5{n%shJL+EtxhvBNuA89!DEiotgQcR>bunnEqTE3Y0gqK;8Ouf^pO{j(i(P zryoxBj^v%_)(F#e}P)d83mO9zOrQHz6q3hEyx-;o>^CD+#%2?EKn=kEqlK*?o{O0KtNoLbMZ z0?g^6LphT(AT;m}^3rC{&EKXFb~+HrPnJ%BM^69lH`07vz4t}}Mpw_iYx@;+%{b{b z!x{b&^IVyX?#>j6w*6NhANm$vGnZY@R~9SdR$}omH$z^Xl9oZ78G~&U{iSOf_u`Dv z1M{cy_d%zjh{R&)COIgqgu(`e)*S9iipjn9GrnA%*4j*O4`4myX&D!(e!?2{E)dSW zHl3gzs3fMT{?&L7F_kJvq#j7^+9?^XpeJeBR%UP4p(A@tD>vYasf3t@LeB{4j@@`0 zU~)4OYSuoU@4Y=-wI@QyTBy83@l)HqEKvIS*m&`$yvVnEG+#IE0J|-)e;646L%2Md zC9MLrj*uF4=U;#<)*=*4|}keSr{Rk&94>Ctp7Y(;B(IuRpj1tg|uMT6>#FnmGoL#s_(89LU*D7s7#I!W3ev%9C>#UX0&tY2 zOMEYrnyOgh#?@rS7z?AS$6V$7bc#gJw;#P_j_&jmh{3pf=?S4}N~x`od)d=WgFXBR zKI9IVVxxVyM$PEYxFnfB{MfqZouzKSf)~CW2RG`9+^7<*O7v1t^AdE|4x zu7gI8ZJIn1dJue*{`2^i2L+S{xh#sagT@7I*~>5+Bk<-E=u(a9R@C}&2u9pL@8yAJ zM;Gogi~}Hff6s*E#O1C!wNNePgSd8T5{9uYIRN8^=C-<kW}yt`s1En*2Z1NxfiM#xrf8}xW!7!9mOvB32e4v=-clW13%HJmNx8P4PkYX6Xl#Xj}Tb{`2+mX=Fv^PtKuQQBeV?t7ddCOdZlWH!}F{;+4cd#+9*7Aa;%|h z?P`;vREX(b%EQJ7F0I5N7^6F1=)W1;QIf*E5~vjv(k{}T?{l~oG9|M?+yoBZbWWS1 z{qB10!0g3Vxn7V1i2>2VTSdA6D$YJ#g)-g<>PO>*u;yvT!uIw-L=$BUWL$1I9h#Cg zCBKRH+fC9yt81PFjF8Pu|NK>=S z4i7tM=Op{Db$+c+)?@zVvxN_^ z6jR@!Jb{iEkiv!F`K2^6{A$pA@u}CD5K$Q%US#hS5H&7!E1qh>)@+%^?o zoaY@))!fY;#T5fjZ877@0nr?IYT80?BRgTEj|y4to6Qr8MjfV#PySYywCwl?PvYrp zASr^!P~-MEFH5C)b5i?NGVf7izYrdKo2k7MAyLo6Y~1!Jd^d1tk(_}_fLC{7^-$EJ z*C27PHcT4zISHLA`Qa1ezEFD}B*IMZ$;IwUrgMige4gRp#^GHabUxA$6vp8s-{-@S zD^p;N)!O)-8AfPxR29AM2HujL(mRZ>YV<*Hnw};$LE|JdBP9$;$JqAe9 zDcjZOP{~|$y#r7^{Usj#%TE@K*a*W^+dVE|Dk?JHW|Dkx#-<}W&#`&r8faT(EWi() zFI4UPa-fxC)bVQX6-Y%QTp))LGKw8KNFJ5tit2v<4E{3nBR^2BiY50beZF5ho8PlNmrpVV*PFUKZyt%Fn55~WRO^7!ev z4${79|CT61H0Yr9bp3OL zzH16BqR|93ZzVjL7_IW$`IikZ(e73^gh}P+n*7pgoQpySP`?IymRC-dSB3 zZX8`ss?R-hn=XK+@Z?90WR|`6Fye6!aAtE!i=t;tn_kX*UHPI+m#V6^T9|r+od!p% zKoE}7U8)n!^x1R4;jO4ou9Vc7SBEr9>om`%oJ%Ouz-(xxO9$BPw9SJhnaPFgko-*O zHANYs7*r1q}gt%fjCX*au)QK$+_w9$DJZlphvKjR-neu*nR3TZ$BP^I0lI#(tdwf&~yC z{P;*_=F_e>0jN`Z=RsQkgN68GmNoZy{vMcnN^orf?5P<=ld1b3EY^ZX*V|-v!~3Ts zWx;ueqFJ?+k-K~<*h`x$Mk3H~?Ys3h^)3|HUynLO#VDM916vHI?YXS{qo`MzV4UC${DqNzlvVhe=L2$Ew3lUAIntM4Aj7yK)I zUBSl3C74+<0+Ph+u>hI8>_o&jns_W6w`i1uy?02_VaDbhYYXMNHXU?j|2vS8jy&(t zp}GW|^bQ!o&D&?tLNwO$^_LKjOclRP%Yb=B-E1*v-B%O|JqslTo4mM7vLkh!_LPDy z3&y>WJ6z_qq~(7d`^blub2rwGW(5w5D$jR;I2OHh%g&6#6C5kt8(Kd1l{$7h+f?j$ zQl?R`Hs^t=kE|Z5G+L0+&fu;kn88KrB5va&))c8vI3&wu?b~G%e!c36@FZt1q#t_v zXd0*w;^dcX6S;hqv}N9wV{>sE@|tfAN!X8&ns8T42GL>-p-bUPxA^YW=^GWhUVxpH zLM_yIp%d0|01AB{6_&!zv$sJ`+}ZP2E<^6G=tn^nf5ykCIUQ1UX|V12Oi-Y3X_ii= zjifsN82oTfWz*tdu;<&ToLY*V)PI}2j`2Z}xs|g)C7UOwxlRx>vPSK~$ ziqCrzzwy{@c{=iyQU;)i=S>@%vd)1alits=vow^$egSQ}1(%1!% zN)v*jr{TZ3ppa8P!=|>oHwk*S@xF{@=Sxuo4juiIZBtIS7->DiN{PUe-0JA zAlrEA$@j|VbQpxM-4$NsE5Oow@njFQRsIW~S{slPzq!%2MN~(Ztb{>aC&Ja;q&Bgv{)g=an`(%B=p5Zb!!Ip)*Q?KIt*8nlfkxy>-?)ML(pFjDG5 zSH(Gr=XGk)12U6)h;g_QXqz*vovHPx24~h+7Nvi*{LiM_*FPp4tH*rg`kU}P zV^&sRV$+Ge2wL%dmFuWu&oBw)vd|iUDlwOS!=n-M?SqqU67YJ?B9IdD77`p5k=}y@ zWYUt!P}k}_RH40Q34ywzs4KcGAOzl)f6qH;I=h(Wv{f|0ob-goD>J-~?`0Xv4z=Xq zy63J}fI~hx018yQ^Yf!GT>xIn_;S-{#h)Qcm)^k|`4`Jy+r`ooPpnINdp;2)0an}( zaQ-XF8)rvTe*qHe>}FD@o_Tpy-=W7>agDUT_ycsU?sVuhJ@ous%D#?xXj=r7N}QUU zRP7g-)cb9M%Bg8+%{#c|P&{fxi?*bsbuLZA^PC+3x!UjSiyR&{%YLQ8w6MMyjjxKrA|_eNst%>Fhi~|5m;~urH z$zR_=jPNU7n2yyibze9}Wh|eHE@!nQNa?^17+qpcur<&v?5Y={l4{ogE2gOozO?-7 z5A`q(NC?4D2{M}pYn;TbFjOwna2!1Ct`V;!h6U9Rvfq?$E9{F2g-_2k>wpecCYgbVzG zXawwV7AGkXYD6H+8*->}W1)TZCY)b=BkI`+Ffn2|uDNNRoxrS%DVXGq72DAIy-x;k z_bt4aI7qhrazq@)gWe?tYMyoJXgylJ@RqHKQd?3A{Tt*j{%0i+moOsv4<*!(B#?Eo5o*+^Fk$T80RMkXgbvU> zM9sWS79<8&$p@dcBU`xm_fUl~0~3raH4z3z+Q|Ww&Sl}MBZF=jAu=HA4(H+j{P2Gs z^?!`(Kga3+ngfaJ%@{MG{WeqF^!dUV7Db14vbao1z00A0>ppqRIA?9BNbZ9zaySSb zgVTn|tKFS2x3lA8k$YCb?DJHoJ>?H&>XuJeW&zGO^@sUG;Nt#Dq5i8udj|WxDb@zz z(J+r&__w|iP>jpSXaqXiO^{IY%eC(7LBfkuQ1A~Q7%f-> z>`$xQb7LA2GJuiR4HT`Lh@wXoBKP+jcEIak$%?gEVQA~424of)4f~J2u(z7tJ@BKK zpfdVN76A1JJO;Sj_VXkSWhKDPiauinFhL%Y=u3~|d98s&?E^vZ1^Po~NX{?UW}qy3 zHv11~SHaRLt6R`&dkzszE?;c0g%AKdXoy*u?+HVc zR)2W5kPydC_BmE;;1+-gp)pVk(dzB}%@hl*z}mk5YGI*rgV06Js}14k1)hT0l?VIY z!2o#p3*-JV07saR0C*q!I4qmX0mc21znV?VWZ7e@O<=+Cb18#8@(42>-AaMDiN6NC1~jzI*>sEo&)o*D-xpZoq46?(x-{*BWj#!Oo#%u-xzZXzR_J&iWOb`DD{uUd}zCMDbPMYeG{{) zQ>gqeJ0LN@%5KcI3id#^UT@L46S@*`FU!w=-e8$yb9eqtP4f)WCmdu_^y06SS#kGd z2=9~Uisvqw%J)JG91$+~di5%xWw^yyCGOtagDBg;);{n)U<7Ha-KzkpbwemTU%-vp zIsuOUV%eXE771{Rz?!2OU>M3X{0!GJBttaB8BojTTr6k+W~o!Zi|N?apQvtIYd*Px zr$TleD#NVjwM9vX6EkjO!ar)eZIHXL>r}X@V$0VtPImoKE3*q69ERecV$2E|eU#lR zH9YQqg%2sk^h>wdcbgk)y-vMWWBVM%>5PFe0KYU=C>piMlOKWIdflu);4En8Tlb;C z{AFk&_d?&d-^{7$;?Ku1P_&(Qp4Al@etcFwO<6$Z8&Wxedu+Y>4UqBl z*KDMYl3Xh1vroH}SoAP$7O-OWMqV_BM}n7zHn3p&E!0c94TwZ8RQqQfPjwRa z6jTQ?j%oCoC(Qxh${O?*1eXGP@)gs(m#AD?WjMN_qKoA5Z_h>Yj2>pGnT)4zc%zy- z#cfL&69*etmh#~MbxzoTOCZlCPyE~UB2dzBjulSTn8)seY)Gxb$)Kr& z46`}0w~W4_f)jM~Tf_BT&0kz}$=3PMspUS4o(^XiA$KufztpuG1O;Xa$6me%UMPMe zU5z+@WINM`*^_{cSy$++%|Ny6JfOGQp@Gro94(eJlJ61J9ngc;&0;V}dO?J30I*;4 zYLWI0#4;~X-obB(T*MfEc^7M0u}h01HuvM zw@|xf@Hf-rEQPJDb<6DNFI{o_hMbxd%I`*9guB4D`)_b4o^kAVF{ArK}?Y z$xc!KS?w&J1iit)qE$Lp$47icZ`L&D>e6T7BrYzkgFDdC6w^ty1}W$_NIxah)DMyG z;|^hv4eMi+foiPhxqKWRlB?_9d?D+6ajqIs_Eh3;ccf^0)6$6-KkDTMp?Y+YO}8RQ*2*tZ(wvM^Xgti!(<;7Q4VPMssH zrjhM~SfzD31W@80%DbJ#x6{&Me~%1_feUtAT6@;sk@+#L7|1>3$**vT1AVOyaN67= zSLZurFOO5B%P7ZQg4R|MuqwWwWgn!+S_saiQ?i{LXs*W^+La7V?U{!%MAm=&^N7E> zqxhe;j_I?5kenRfgs z_?hM6DNyCLE2;!?IyJmh_QytXY2PCJ;;%4&LnZw>Y20cpJM%wX)7|f7Fr<*I=%Mf`$T|+9>Biy3n@NYpL;nEwG=1y-CUC3o2UGyRXBVc7EHt5< z$z|l3$%IX(u6fd?1M}#Zg%jQl=)ELb!+AO|T`U*!X)2%o&2TYKUM2&b zFX1gD7msr9rX0Z@=1?x5Q|$vsrkY<#E!VDR`-v`4Dx+LyuCqA9b9X=5ozfWtdo>y6 z|A2B^F`dKGT4Z}4FeMp&*~K6hy(4rRwe>RfOD9LDiSW||W= zB=QZNqWA=JPz#VNMbJ|UGUL542JZ9suRTVdTbNQ=@L;Q6#pvORm%@$~eK2JBt@UT| zM`PGy@8~8`3N4*Rgc`&8&@29eP-lkgXdwyg3eOFn z8W;)hR0`6OPfF^jMZ*rUQqV?6^QJ_@CBddJHRaV_L@`;+2f8BZMngp9mg51Z>j&%Q z%8E<;ub`71qp|S%A-sZ|+zOzn*E(wo%Rhk!u%q%RDSjM(k)$yEc59-)&KXrsN6OPr z8O~NwD%-#ap(C_M%&Ja+aIAPA^!TrZ5@(TPnreP^CFZdk!mF>kMuW9OMD_mls-Rs} zt^=_s%7R-0ihzqsh`oH(Ss=`2*v}M$PS6)o5b$OAwGd-Q_wMUTwh!O2;~7w6 zCQ);0cp)a;RIlsu^u+Qf`KEl@4I}}j=+$Onw3rV|S9VI#V9B_za~Y7qp5LvN0`H}~ zfxKv6D7uPsXbP2*>{0w>W;0BW2x=TV0wwIqhr~9`=6`!3v)md;Y4zb=fO-E`2lQ4! zk0WRVs%6dy!s^2z*l#t$BSgvXX3e(-8&7(4WHLsOR^DnJP#h|M-4NI#Y|!NoEF=Mw?ps=g-rY-fj)#j zz=8mKB*9gw{ZM1Xu*8wPM12zRiOUkLlny=lvtYB0cN1xM$1Ftf_&`O~4qYo7h6!8L z+yiy3BzI2kQ!|XOuSfULd@C4!lC}mc$thSyq0tE?gs{iOMyPw8pPg>r)_#eT#(bKz z+3_~=UTsHTKml-QRp(ju3E`a(qKK{gJsaFf?cvM>{4oTf5 zaWS=F8uER@i0B`nxa$3J0l|6gOMT>3lwc|E&-t zsxAsHnL_DjyV~nVb>cQqrKCqSQ#Uo{_}Z5H-E2f48dFTVrF`DfE8p^p8t4h6I=`PO zD;8)Rxeq6%2o~T%co%W?-y4kPV3VOCnZ{+SqJ_gsRa{F%>%k576hYYNur8Uun&xa| z4#0n;-klGmc`$R3OfG=7bU+R9*3(9~7>@r8ICpT;J%I|B`E|Y5EwguTX7*VqX;Lg(CXyErf6|;$-_i+bfsnhX94%)jGEiW_=7H z1u}d2To)iD=D}FFq_EXj<6^JZk-V7cKMpQNN`f5d++{aBg8xdLbPbV)!{taq7@^NZ=F`i_JJgQK8W%K5? ztCAiIn^&;zM?-zurR8_PV>nDkqA|Zlu|Mueu{-*aT;U~d+Cvq55`JjDiwoPjmT#!1 z8y;+sVLCowr}7OzdSyQ1;$}MSh5}#B=tKoY(xlD4doI}DF#3(^Pu2)Rkv{czXL?r| zy8&^F{lp81&9j$FbuT*cw34ZwyKgXxd6wAQr-V764AF7As|BL)n68>W1ZOm_S3qYA zYu~uExc6jHu&_X6RK}1j*|fb@%12&t#4{h{+t?CS`%mcq$wQkhUG*GSShTR8V~w8S?Nqaha~kZ;lXu8 zRdSxfVpx>xc0JAhQf7;$dD6xJ7Q2wIt@xmb>crLO%fW4gr@EZK$@+IKXB5xY9d+>Z zrrHbXx+Ecl?5N8K)mX45kLSkQ@ujdkRL|P0o#y)cphUZ2cf1owkSs6RxluOo6E(1zEHW_R?9YiP+C~eQ+ zS=7-hl4TlH(TBO@S7=nmdQSM%+&}w8J{OkjLTXYf_ouVJbeD`u48@T@erJ?#Y2Ki} z=T{qlnRX~4IJ;TBgvv;L(c0-5#U%HsGkcnA>Z!3BU+L)Z$0%HBd~qytWWR#B-=x>2 zdXtdSXwql0Q#}sQv}R?K7$$WWXZ9GIGXBCa`&seV#LJ25_1AT$McO=8qX#CUR~vsP z7u#>j`S5X2F*1956TKB_VFSuZc$A?K%@h%(&R4Z$Cf;ZohHplpl+UZKgJBIfo}f}H z!Y<-H?}(Kd=qkS-&QFqy$kU0cvSA(XA#?HFg~2g<6I#gcne-=#J-!H|LJ~&Nz^I_J z@@l?=#rq}iA}camX3V`>@!mUv^r&dTtk=qqn?iOYeh#x=ucOv*rz4B_Skz-CJfVW< z-8tXz;kcdk$CdC9KT7x;LdDd|cg^*yK83 zA;AV{co!s^6~BCN!rS{PhIQP%GLaJ-&x#Kx1Yq?-8xKzg5CpJ?2I5ae+$RaihkfKMm4 z3q?U{Dz~|rSx{?ht4}9!Hw#D(U_bJ!jO@kDi{zV8VZq0o4hv$ub*rlE1LgzE6; z35*kfqb3`xORcb$^S}Nat2lkR{iB1&@i_#oAwfOdR7Y9_Q+ZfK#NLLF^YEV0eZe`% z`dlpCOxpbW2;8)JTHmfAkYloKRzO)3Ye4->YkJL@1pz;kTEBaW%4e9 zM1Cv49sl3I$TR@^RF7N-$iQLh3$NM1Cr`KRXBVUaU_g>SeBO;?K{#g62qP07;N-#) z&B*St1sRfvXpd3m0#gd}*hXcXZPITSh8=U0VL%Iac0zPneEYKXF_modlSWWtIv+s_!!%=hgGy8jZ2ptzsb z(quRZRpygKTCyVPmzUHI6O}1Wm)$RNdvgSXyNk!wuYf^b;mGDe#t*0*QKmNNF^((iohfnwB zD9S9shiWj*$h7 z2FHxIBnc@n?kjTSzxnZAj!Ojl7;x0ipWqpyK5^a&z8#Oenu@719hRKy2DS8WJ+XsX z8wZmvV)4rGbqdudHf*5a;s>s_3(TEMH`@vyN5oV4D#3Eb50{@0#D_lI_Ra#N@9o)P_F6W>KtgKuXfD^io`KjBU2!j?R?@yxxCjWGxg z-H9kUq$QPXtmE;0zuJ$IVAqioie+Ovj^`pdMGWQp{67ur%?#`K#&FGYmplr0%qQCG}< z0UQZ-AE|UR!^d}w7!~@{l!=H11Q>`^;=6Y(o{iVGO{?0^cjxnj{Ul5SJv}{%$;nr> zb##*A<5{YY8hFk)`(&i1)|ENRnVU~U?ES_B@BRkopyqmVlWWT#d41M#`Sz~8+aYCz z>~4(nZ({R*!@|Oz@C`u-Rb}cN*KdfKs-gaD=9h)f!vuU6PRU43#aX5 zWn~}N-2?|fU{ zG3>T7sXN|_=WQoS;!#nkl$s3;6Y(puFA80_~SVVy40Wa6B^-Io`*AWbBb!xmq5gp>``SM zCvR6dvWEn#3o)RO-DodlHGYt&1Y-3hgrh8W&N2zfP%zGcT3uonu^B=Lg$KQgICkO0 z;JF|c@rYQ@S85Qr`6^bv_XSbIokwHztKr_hO>0`*-#(+Xq<(VoU6$<(B-oGakW1Va zz3hSK4D#NiYGq}mdhObY^z?L96_sx*HJ)M#DXFQl4jYEsYS;%I<7*D! zvuhWGAQ|BuJm>lIthlD09`Dl9Ql*V}EbWnF+Xm*1Eom%Xe=K)*j~;=8Vq^9o+3l&5yc1ab&h{cTQ?Z(KnQtS#*p);qMJTngPbk19KW!+qUFYKb_@=({^e-~yyX-Soh z=gE5$htRS?*?}?-6KEi+YG{1VTE6{Y>p{T69qJ##b5Q_1-|oqgap-r1)fR_Z#!KXe zsi_^Vx=-KRg*lD~lk-uGBZstWkS%C|N4y&2gcof(L*-ZQJ+YF!hPp|1K)`(T#2$*2 z2x!4dl`ZFH7G5=Sw^yjz4~9mlaBy#nchvoPLcIF&bKfV1G&@0n070N-Lt9(h7+MKV z?)*ko`_`m_lYjD2J4oKiZjrzmo`knk6(iS%AD6BW2x{e*X?A3-cLux30pnesEuO1` zE{O5(g;Dd4&fY(hbdCvE17+7Pb{=CLwvg;&;ZOf6~64v@{y&h6$#!EkmSZlxjRYi zB9@SY%Un-AL?&F$$_0){l@$Cj>$obL%ir`&A9-W_r!ik+v3jaLUQ`6;RIr-(9{YAi zlBdYEQ#%};?`9&wE}+Z!nP$j3z8;)-1dErZ`@vuKEKV+L1a2I;3*240AJh?dMV;)t zs2ya;HYIlv-;f8zJ+f$0vB6$M;e2zYTCAtZ7>Y<=2;9h^jMW$qW(EG+yW7#utXNhF zR;%5HM34^!kHh7#G*A;DC*x|H{I7P89-Z(i<7#CAYucz%9w2pO%9c%2&;AOBH*gyEcpTF+SF<_!{&2>bxV zRDUqDTXxY;mT$UGNk5ze$EF5;v=^pC5SgHJ1(GTA1KG#6ANM@fX@9wOYf*T$l3WK! zu;jc1pN!_ABL|20jaY1b0Hk&8x2m58FCW$u|4N5Gf$!24#sU%WJoug zOdY=@wUwO4-NpLJ1-#BQ=fdDdl;HX|Z*ws~aj^aQ$+mlS$MG`od1)ucFi2oV zmmz2C7M5)f^>qt0u$B2QVIYs;HgY-8Me*TN_T2x3a0heq`rvVK`maJ2&;;L+&1 zg*!o>t5pT@Gy2iCPhlqLeiYhrE|4aTp%CkrxLx=?yXf&o01V`YJB8yfWg!T{%=mCr zZ#+~q*4(}fLly}AAx{#Kw|xU9Mffdr0kWv=SNi|=cYg?%%?y+qz1ozX*wiPld}ld!lAyodp8FPQ4$6+%BR zUj=F6Ae621FZk}MYii1Qc!iI_v2_;43`vZ4zw^>WCF;2*>_FM24*QAyMM zZ`)`qJ5_lM@CiC-f9RIF=7vT@&<|xD0XW5w?}o4n5~VYNym0|K`1L@&ISz|$d~bJU zi6h~t-}MHYEEM#7q2K;_DAEc}#m_$wd|%QIkkOl;3ElXsb#-;Rc|Hw)p^W_){qK4} z+6x5@s2U)X8-FdZT>x;aM{NB}r1P`5NB?w7FycA&!Ms29{>mw-A(h|FCDyG~v3xBg z8y*tZ4gNB;{V?0OmO4_{F;zbLf(nc%vBrovALNy@Q7HtGnHHH5NO75XubwSqbMuAR zSfPZfy{2Ky>%wL4@Za;fM~~yJNSNq@GXXVZ8@RPDSZI|o<6!!_SGbSQ=>7_v#K)*Y zYj^2{^;N8afq^f_^eWk^^lF}fNn+sIj*nwgy$N`T5TOH0?f$e)aX)p!7U1rU-P?Eq z&I!G45^MH4cRa#9UAIsb<-J0{K8Yz{JYy)akoNWuf0;?rHwt9?a62v+bgT3n-Hnc) zJVAMkML7rK%J>5s9O8>Dq-c7u|J6S*5Y1lfG!r~OT;1!;SCjYd$+_Ko_vZ|s@;LGl zh8Os)Q+pAkD4whw(mo|L9QL?(9?I&KQ;@^l?k~9xJ@Z>l#ft_Wp@an!;W-vQ8S({4 zbR<;3N@?8!g-;Cnddo16{&TY}0HRu;uNd432Rt*Yj#PDi7*bo4+Px~D1WF{yrRULB zArHDfpc$PI`}4bLhG*JtWAep(ddyQnFv|pph2Mw2&BQyv4ShysD{~J9NmP2c2`fC= z81vdReHhqs%xv;N{9*>yb?wLPQ%sg+n@gFG^sRmZwWmhOYqjn1i%BPg-*uYP*uHF& z`e~g}ldnMs;59l!d7hY(Qma^CiP1mCHdtNqsG#y!MiK#w=ZphKfibk_#C~Lj(md&l z7pQGyd#pKi7uvrDYmnMQd6*TLf_9VaLIdx;WB!7fGb_oORlEjex}cnNs}M$tOkmF; zKjhL`O5g3lAU`O3k`AB|AD3yB3n-(9;^M;Ve9{2XvB*`D{eOKMK0<}Pc z{*hnQ2RAr6|N3c*4;%-2GM1Hk_h{r{E_Y$~s zm;Z;S*h~dY$K`ag#btIygOfKz!VE>Q_&X;Co!r+z%|Vjh0oKNzq}RPejJdb=;ecne zXAMjy^)|)oyuU?BR^&w24>=efV_lu!F1*SBw-L@=zmvBHT-&;&41k$?#O}U*`!;7x z1L$PtA}=T4`6tE%!F$I`5-Tx6r{FzYCIZ5#4V;Ri4zza?UT26A5!gc4{SAb#0|zNJ zY-Kd0bO842SjGSwKx3%?&zDnPzvZe;*nEVh(Bj@(jnU>z7wc9&)1h1zI(#6+5hdVT0IMH7QG}O>t#vm|yL3Pgd!iTaj8%V( zE?qpX3!B(=Sl*3_FnA1Oy_>6#XWo*-vL#;9>GV11KFRs=c$i<0GH&~1wec(A>7{J3 zrX{hHH^!)k;OU*Fx+7AS#6AwBzTbbUPE$LumsVVYJnaCO&5JL`&v_!{Fn50_eCws= zRN1!^#1`s1j1h_Op}@nVTbHqgw1U_%xSffk>-PyQxB|*V+FOv7egV>#rQ__^?jmU3 zw!MAnz96$kUR3#0{%x*hXR=4c%mHeLZex@wmf#AQ22e*Z4SprcVhd*~z&skbbRV6P^Q2 z(}z7{dSLtJcc2~{3KqD!3AMZ*pk$A<9;)bJ*Wp&ACv0CtMNJbdK;Keh=(@bQx(sFF zqK0jhd;Jm=;&Og-aIhud7sKyr73P9hcXMykS%H4VxtXk}ERcq*pPpOd9{T6uf!7|f z69=mD<+}`q ze7~jR(MZg_37E_mAVL~FwLz?f9_Q{&X7LDx2TgDTkKmv4E@`NGR@t1q=Q1I=3}rl6 z7xPh!^)R)SAy4#6|k zF}-Wa@-p^kW1OiX63;AvJxItyl&BPbJjpV+<$9LLi-7H{4FO3utqy3g=|FFX()rrA z0|4(`M!)5F(QZU~&5BRz=~1hhzT(b|Rp9g@4cBg?Uf>X$*^DJBu#QJ_zM}-_mkyl~ zeQ{?H;9Wfkm-IbvtP21})K^*|D+rWRBaG?Q_Ub-iIGgOzpJXY!WoauhIypF^AvNSS z@}&woRMJ%Fb#9$Bb0ED*aV1?pNLD1UAKBwBWGc0(v)%8jTMcXj{LTRfT<(}*e{=H< zM@X?+YllI@BMtpFCQBZ1cz7-`@^+ab}h*1VjUgiisR;kk1C`XBn&# zlDCZnQSWGQgfnZ1Wu&U9$$<#MtS`km{3WfqxVX&!Txw%v^4zoU5Hp$q{ne1`k<7oc z4<6734RmUX{yL}Y%`#v>B|vaFdF_Ma{r{kJ1BUr!$Hh9?g`@+htKWR$7cH4HjY5*9- zOCsByJ~#Q;`v9_CIG^xy{$V zAvcAu;U07%N>RYvX&CFv23F|Jy$`Vkg&M01XFbB zibs(8J%!^g&1{=S2lL1YqWb3q1?5akl2nBBom$UmWa7chUXQPIB}g4O_30e~lWtHv zue4E6PzWwi$XuKo7GMu1KgAENytfcb8+9p6?O;DeKG{kR0TNG2cvG(8gHi<%>D#7ZPVV zHVo%#g)@!@L?_)&f}dogz%E$lsF{B{Bnsi;7U?5)3@bi32B=9!jq!B!a!s+dOQx1NbTtlCG`Fx}w;- z7V~tE0qoR$Z)2aL*(&;@Vz(Xey=y@bb;h(t6uLhPh+o_kD>7R!Y^M>7)l+0S58-z= zO3epPGtGWn`EvY#0gJcyD@Y;1U4fBU5A+c-Um{71nUxuE^2>CN>~Lkm|Livw+$j|y z*^5}|b4T84C0*79E>;>0^M3nxE!;hX2Cn{${c{qEl$^|$FQ8oT$c<*7Ja|%z8BtG4 zn-j`)?G_A4di|*ZIrr8fX`64Du@&xlIiG%lsSFw}*WhmyhVxNY4YT(*BhOn!jfdIm z4+$RpDDM`uv6DVL^)}ZXdJT=0|BWE&V^Sc^st5YgC_11vwP@U?*I*eA=*D|pbO6{Y zArjnR0g&#jkbbhqp#lDsA7I-6%JG*$d*97zJr4@OWsB$kv%h~AV5G}Xb^R~+ERLwA zqw}J@yLN^_{l_E%t!bllRcl`TSjc zTwFqVQR@KQ;0gfJSx+V_+HQkzc-r?pn%=SwZ^A_Yb>@a1UYWlTYetIs1W-YSmfK4w z`cm&pPmPDG0^^&4Ev>D?p%V0YVRrg8MHke5p`ev52mEky{k{7k%bTac)k{3v0X_)L zn4A6s4#(d@W5j7)Ltp=>07dn7>H*#y{TM()gfV+*D4-Oe^==bNdykNVbs&y`!G{9* zL|RVnQ8Xw}lG=C!P`-D6D2&L|)`jsTLGt=<@I#(fruoy{*LX>Q=K*$6s2242e&^b? z5C@QF|4$hccZPzwL_h~Dj^vHQ=;YUqmvp~Nmc=@4lC$8G-&I*^rD zQMqZuv`h_hrnj+ zE^=OctXkq3&-ev;_lxIqXYlfeM4Ci0}0W-1?OY)}V#n zC#1Kx(R4NM`M{r$dJl0UQ1O0N!ONRD0O})0JqAE+V|o`5XrMUNlWsV$OHB4cK! z3566gCXr+cWzMR$p~+k*MH!-P7Bct!p0%`howLumzCX@)U0;8=E|=E3-uHd(=YH<{ zcmM9+ElQwpIxD2W*I~=tS)lk8K7X@MNCH4H2dS`L35<_q9g_msfc693%{Gl9gsJ^2 z@HjBx754>5b}0^K5|iMl9z=??3kYCOQxg2K#hdkB!s6w*e>&gVDZxu2Nb!#{7nRul zX(0rg_5XD3)=kFiu;2mb2qia@TX!=uteQg~b4yZ*`H>6H?atr*q9=o zft*QM`Wqw$mV>ROvBx5e9|>)?x&G?)YburMmo(Ifk|z5elBYk1Vqro~&i=@#s6-?N z>n;UqL-NbM$RlT=r zfUr#6d4=5}aW6!FM>Izkk2_rDz$X*_@ZsJj1K@`%EiEleU(dVGi;zYJcRXaG`44tk zu2Y4NZtavO21i+(o42uBc@%+j4`o$b6Nzcp?ap8q+Hx{F8qn68#UDN_^Ys4ki{CCl zQx6a!INA87BbObq(|1M|cK7jju)+XVL#-?vem;W~sX5%0Pgy{s`E+pDO7^)34D7np z-x97JRmAbbBPLg<>vf=u>k8ESG{F;D7&z4-z4nlo^Q7|dV7_-64B+n~oSF0KE(RVuJuKoCf z6r#CR01C&Q2E2F^2xHDOMGy5F@}_IJP)}m?8K{a8*U%oIqST{;Jn%oHSUpw6)p3pYO5} zt0&Te1zJEMU*+iNNUCsOm#;?E$A8byNVXA2?1hcQLa}Fw%?B_GcCJJgYKZT=<`z`2 z@`LIJsI&tZmmwAYmkXE3s%-pjxw@XENLReQGf7}W z;QI}I8cyH@ESQZk&{Umuq=J8qq~wb|`byjBtB0vnpcWERPM;Nj?+%e>vS9CN_ZRu3 zlA0ilQ~gF=LaykNS?e@>;XK4*a9wV%`7&T`l6cAa+ceU9m$v*^ULNZOaAgl=q)CDj z9;tQfnI+Z~G3&H)(pVf|Agu(N_EuR=Pzt@M!^_!MFy;DOo3kx4n($xW`y+*ZhBSVg z2^IDAi@RCx`l?)FCfV)n?&}FM%IWM!+_mqLOmu7wK(o5cJITpZGWXcvF!a~6Fjhsk zEjsMk_UktuY8f&%su}_JLTnOS2!4~WmasOs@$KrF4Ri`1`K>*wQTFXmIS6Ad`qYzo=|NEi z*e=QZ1dXDRr&r)jocYB^^6c~<^T1?cqS2wDDfbfW$np2t-#J&q%yiHSJ95v^g%;Dk zLr)f8h<9$@gAJpJB2{?bV>4Fn%LH2$mKE(9x~Ua`xO_cdTKZw!4TaA;KK<4V0X0b5yG42lNMil+~v)Q&u%oazYi>tUWX-Me>t4 zxVI?NrS1bCRNY!Y6MAkyo7ks|YsQWdznn#=2!{UaXRb5HtP|Wi%Vm+okt-_vMH*ZD zwYB(>{*a1ToccIxk^BA8d>-*^58|JEq4=VHIW3 zDc?dP$6#Yq6<`U1p%(iGb5f9BEkfWdjr`askNEC0_uVtfX*A$&_ zxB5QfjqL%a6`8lM_^>&+HqMHaDvrEdQpkd?^$-##6@&z`^aMvQ`1KzkCE9Nd1;(nhCUAv*z8J@58kE04U8~CY|-vM5doSb~6 zzJ7o5ojXsnEN7H<2il^dTw7f&l9-q{zIBNhLaQ2(3Ow7w|4={uyk-x>ooCHfc^Sm! z4gJsG8o7hA{TmO0n)=wArmXFTk1Tx3`z6Hq?p^qIZ%uc;pcO7fGu1{q_+j~&2cQCo z3+T+%hZ4EWwll-4T?FMs5RB@=xdTg}<8=(5o=d<4Yhw~RyEX4KHSPQR5_1iU4X4B7 zn7IN=edOkMso4SUwnw8m_0QDqc3>t+?Qnb>Vi1L-4mVpfivYXNf%$mgm8yI%>H;)o z?Osb{?H6ei1BH%j`aP}&fILz*-&=z9e!W1PeQu0Hp%;kXON6*YmcZzqI`goS7&PsnRo^ssu8z)06IUR~+^`O1SRc)ql z;$7ZejUXYZii!$7Lqo#>jsK@efYq$Iuz0fNeYcRc18Us@@j0w#_suTMwjFo)C^b9; z*Jx`Z!-L9g-#yt<(8;xl0XF>i68e@Ht;2n|(E%+z(i)&oywC0St!8`uiCDa~G1>a*LdyXIi;ZY<1`UsdD`<+pr;yg7P+ ztgjXnC;-Ry6B6Bo+_M^=h}ZO$c1W7Tvt49}1Ys`q+U>ex{B)=2?QO;Ab#U#|noq~> zu_-TB-Q-{e`JYV@TSSpfZZl<&dq83DJDL}5dO;y7|5_LUVFAU4(d_l_kA7aF?OS$`Wh(k#gyG<_=%EV z8Gd5jw#P?#De8pXq^S^jWW}jeZ|MP>mSU5;DJh8zQb^!?(S9$ZFfo2j(tf=j)tog_ zQWcZyK?|MniQGuuyx@;h#cJLS)%yo8YbeMfx*C;k2hu&an{`Kkyf7 zwY<6cO2naS2&l#7fDLUA6>JV#e$S5048sXiZ97fuiUeze3=IqO|7|GHpit`HQh(7L&m2!ta*v_LT$PU0*u@0tK;gb&~yj zCs8On@Ba3B=R6?f^mv&d3nrAV{rP?BHm=xL#~c%FZc&i6#!8%paj zkwqSQIr>|kjmNU|M6220`R2g2eE!lt)7vt$i=^t|CQgPI61zg}UWChpN7)t|N*9lr zM{Kc;T_B{G=Wzp*V%}D1xXg@qcA(|x3LpSYpbC>;Bbo)|?bV9E#Pm0|wLvf|pT&5U zs1nwpf#O+0=x?JL^$$r%p5Le7#5e&(oG7clq+`t0Gq42o%{omYdnP|^p{-Hqw;z)8 zZFFQ_2sl6!-0c8|uX|mYU$PXf9k_r0{!_pk7SQ{uP1NQqN!vzing`u z{tE$Hol~)QuY+@SFut*@p{AQ8DbVgR{uc^F@e2YobXHksRayJ)7IvAD`8Fg2O80NN z+^!n>Tg7d0NdFU8!Ys*dwYE&s1!`xF3a@CFKz8=5b!75rmWiGGWP*On2VMgQ3=OTT z(xlO+?Ic|18b0%sOlT5QZIFJ3#PH%Z?@~m`{(2&Iju##vf=Yo{bv@=Xv^E|>+sOVE zW0{)k*>R z{9xXx-*!g5Z6OS){jK$(`&W2ppI;<+j0~tbaRWq%dLoR{&oxh>`@`dZTDMqDw4ok* zZ@2Qa0}AVMq_AFwW}n=W(8o?wVR`0_O2vU!QH#l?O`nj=j5|U~t7RvCo5cl4qsg

=WzUnPudU&OOQ!q(gu4?eoO60^&5ig2DP7xH3>WQ!xA<4)uz7`p`4DE^Emi=BN z+65wf8iYjTtOOfL6m@C^i1o893e9Ty&r&(FXk9ZgEeqe1P&o#2xKXvdNV2(;KW&Fd zCCTOA72aRyvxr%T*JZP9vrP=>==dZS{eTrslvy!W)gbDiM`pN9d$$SDVOGqZi{}eZ*G!yZrYNA z?kw6|?nUHqRz}L7YX;eu-odDuV2Ke%IdI>1N_Ht&ZvVorNVoOqHmZk6hdHWuB58^! zY%?*(ivUZT|4>bkkFs+0V-2AWo6!P?sFl%GO1K3Kmj^StUX(!@R{f+jceW6y8e>1&GD1;*-A5M9BLQYp zPa0espeJn^gE7SQ&`gPN=4n}@8NhMz91h+C4l6IKJbH*jQ4s9`V<*T>ELt0s=A}L6PVvA$$QTIrf!P0ot6sYk5z`|vXVmX{?r3kobsSNV~F^iV*=I)7@uf6G%QvhZj@8^G?W=IMDkUuM zDhorD1!@m$&uG{6h^QEQ{vQyM)t!(I5AIXPA3L?U5DJLgURR-yIDN3p1J!+KFl}DwGE*9N?#5kjHS6u9(_@P`_2?{ ziC2}rGBU3RvxAxkeYvF9hcMk~G|gk=aT{&C!nU^f#b`Oixle?TU=ol;(^-&Dh>Kmt zpmz*vW~}xk?2bTde%j|CVFw+D^~JXZ2`h@8bBI7=>Jy#dku4kH9D~ULPSM%OFYjlO z!|LZJGWme^A}ay$F1?I6qOjm-GjOZwK&0$%zJg2ScU5~}gho9S&MJ8vl)g%p0`al* zz@ZSP)S_bRj1qmwRkiYxb_NIJvyAFUV%0h_ifmgB8Fm<$etr^SMQQ!+om<0{u6`jy zqwIyE7Lwac!owI1%`YGWYjVe+>9QL|&ii$ZvwZ_g*si}U49U$G*l#RY?xYa~HM&1BTiWpW_NW06tt%^c&d|(s z+^E&B>+26rq)3`#$sw7dPzEs55DHqE4lnJ8-ey|`CDK}7N%}xS|Ck4cdF%&W+vNOi zp_Vhn5;bqH%O;rB5`e9;}wCT5Yaph;l zAC+k}=l&=w)7a`=You35ZQDGhq`s25D9F+xsq$?qfs?+F#yynWhu5TkP?q7CM6~(E9i|N-X;kfz~I?oL=&Cdbc z`H3~+!O5mX!d%VPHx2~0%*Qyo4v-{mL57Libi7`(Re~q~kTB*V7|o6 z>F1RXY0GvPW*GDipp;pJ}i+pGVkpH>7s${)OT|ZaI&@3 zW|+}lWzd^zTsUR@T4G&V=S4sx$ab&^oOzHBpu}|zyg?3{>mPejLL(`b$OJ{TqL8zy zAryKg1|*=PDk_Oh1mDMB{q?Ynd!4pkCIC698A1x~S#nbBF_~53o|&(fUzR>49$R4{ zBX@lLNu(9MP56G(Kf1d+0HekbJ@wJ;dnUsTn?*fcrF50X6GUSdTgn_2hW4RhPCEcg zy0^3tKdHS25#;UZ!_0y=hNcUkA=>UUSLmKsNpRkS+XO2eR}$?22y_KJsun;2qIOZH zpId0O>BABpH{2u2Y$tA|m1JL1=PSF|5)wHTz;Jwa^O@K6AG~+SM>Lj0`b%e3ICM_} zT@CDF&)nztIl$_mHKi3T*=1f6x{<>4mEvc$@)>QWoAw+c@m7<3J5lKoq-^HbX`|H|*3o-m zgCD)4ef)Rf84=R0EE=ocV9JY7j=pGdE-dr6^@B-jWa`?%LscwLht5K3>$#*3B!{lZ zy|46d=SP>UceDSl45vCtrQy+?gvfj0oLH>e3c_y52&|L*+(-N7DUZ~r9Z}S%OqMX@ zEGD0Gm`ptzIsOM>@tLk}P+#@%A%fZQibX*c;l#NlKSC7VOKtjE{B_$_*Rbwmzty#M zNx6;O4H450dy3kC*q|bFU3?=-BH$+BRNaQ*g!Xm2w!AT@l`_t&4s2N@ASZJA(@TzA z>`8tTTg#EAmYMy#15W1(?=YF;6kZn*ccT$rM-icXMAq`iK9nlC6aE%47;9I zo*4}4DB;q*hUTd+J^6w6#^A#h=Yh!*dEE^>M@ujqNvb=!bKk^DsV##|SZf)K5qM~P zx?Owmn6?c)Og(%QoW8=W_Ox9&L^d)zjm57Q9Cs&9!ax(hUtpS zZHorayLU*MjSsz8+Yfb-6XNZ|4O-6{2m>dj3wncBr|$gjHS$IWP1xBt%;IxPUpkhW zTsSu2)u>!Vf3{qqNE2ml0UoK=8zEl9ie!U z<6V#@Wm0f|+WTbN7LT$3rCc&cqhtJWuYb|^G&Vuy<|h+G`=^JGhFUxvLqUO^H3f0R zz0n0D+v8LyX98AuDAl36{)CyTGu)S)Le>me@*jVvmq6a-XOmghfunVohwF7BuaO?J zE^}8>NAm3eUQx2%-@6&s+6?(p|7~&u!_v$a;47hYYXj6c3&l>CMVeM72jq(wP=` zMt2B9Mt>y}?p&eo)RS%GyqP@)>V`OG>5dt)X16RWJ+IF zQS@Td(yb(zB%RQyzu%FjjB_@kBcaRu1@QxJAK!LkqV4O`NdB|TOXnMAS@M2tY8AQ#>?Joj8#; zHJVEc1y1lBLp8gM-f%NI*>C~w6qTE;xo8HU;*`i-Uw4vz`$~@DFMs)kg+f(RMNc-v zPovcX;PF*G5lRhjwHldM(*eD|5a{w5q!&*d8$46^0k`#`wBGP)ZkK$g~!2g46|!1Beiof=8oVQvot)q%k%c$z;w9M6D|9H`HPNc}{asq? zP8w7G^P_sJcw)bIl!xm5v`GJcr%zWSfnUic{No<`n=Aj%UtL@s5}?#6?p?|M?J3Be x{Lc;Me{O$dv{ikk@X(h3x*~X%|KBZUX7RMgf=nizY{6gfkE*^~4TBba{}1k0q!$1H literal 0 HcmV?d00001 diff --git a/images/cosine_sim.png b/images/cosine_sim.png new file mode 100644 index 0000000000000000000000000000000000000000..78ab131b65880214cf66718861a6637e6b24f768 GIT binary patch literal 106128 zcmb4q1yq!4*Y?mQji4YYA*}+^FobkTH!9uA&^drgNlT{!(x7yQg>*AW3rG!}(*Hep z-uIku{onc5`dv%Gndh#(_kHba#}lTZCQpb@jSqo92o)7%H6akJ0SE-`3>O=GGPoAm z4}n~xvXzn1P?V8j&~S0KvURY8Kor6f^l-Gb6sa=xG;#5`Ny6U@q%kxrZPBhizRip# zjmJo$z5e}OkiFDHOwI=UcPoYv15QdVuApY#(1JV2r|qx0Bo!ehN4(3e%ROmZ)AdJv z9$RT%*4Pj)(L`v>OAbg(Z$FhBmM0%MS$uLX9TdF?N=X8F{BaM{G&c4vq)Y$O!^?x5 zVg4fZrO=pU$7S&ympU&8NQ^?LmXO!FLntu@-2MaBCtnC|hDNz0ry0XHXGUF0=^zM6 z=hJl7uc=SdnZD|hr6u2?5A{Q1&@$k9LJe`5|J{S`PW}2e8+<&x|K|?l4E9G+(TuNw zbu{x~KYj?4bZap_P(0>Qo0xt2{&k1N$DwZ@`KiKU{Jgw^xW>{iD{oyIRaDBF!&chm zRH?A#!eFo5ihFzTNX@^~3V&0_i-zmt%@c@4eKCE#^*#dKTz&&*+)Ltv6&wwMFT^!V z68ePu(W^UrWA+r2A6}4|*+jqE+YNpy_dNVAn;pM|VOu{wF>PceR|XCLtJ-IKXYV>3 zG`%jQNIoaLqT^AC4oljV?Wf$H|HPOWT*t@DCt@*j^yEo{`tRgO4GNYe2guH(_S=9r zBiLHqeKg$!l@^uEutKTzlq@>(I|pCM>b&sYn%@#KHj`w>dHwlUN0iIwxwYLW>H}_4 zi-%DY=0*I`@h z)=Ie;kd~i<7pAZMq<4{T_?I39`Y%l&EY{E`KH)X#~b>zgcbRH7HqQfu=fjM<1ucO z4$^I>f(<0&uqWryIQi z{EZYhDg%131%pa9o;yzw?uJY~$1X$TdM272Mzx6ss|=agx*7hh-mmyq^j?@jKvsW& zX`f1;|C@(hzms-u)}Gu8@AnXxZv1;=p9s{RS&mLEFgd|EK$!oIFq z7vot|JU1Dof?M5hDF_7vvBxWs0qm1D%q0tqTX4>8On-(OvhW)*xK?dN`N0m~y(yD% zD1*r~uyunEvhf|TM4{Z{I7C6L&#t9oFSlC`;5os4o;mIZQavVV!uX6E6hlHSEk8m^ z`-SA5yaNf_7up>e>DW8Wq>6GwBoa*0ON`1f_j7L*O4r8kW5gSdj^ zF7@$?r+2RF$W?3Hb|qVT;r*7;=9&ntstjyUy6T2WnC?4)71JtG@kmoS=j`bf0#{s& zWUg;*uJ;If@b=o7J}`4#Cx1%tL9+zCxSjd~wu76Y9rF%i zRA%tQ?P)J$`=SYqICvB{P z1xaLB)H7#RGQLn)7-wi&*lAdPsL2=8d6F<$O}3QyDFsqyO7<*m=?R4iWf8>&rM26B z4Bc^V-yc{6xR9l&^Dybf9L1=|l*eVog;-KpT(dN`V6qUp53|tiTz_L5ThBDi#;5Wq z_lDNgoqKPtbv;#L$qRIea>?42)78~gA2V_)94 zYoa)Vs4L#ZepYj!H;j##5RdfbRR9y*(OO|P5Y zHYJ^1JC;7iKbG0mTg0KTpme+@}`zbng+}ce*c8XjkZ6=%SNU{Gh;8$FKZ>RIgTKv2Ia~*~Y60 zHn;Z;S>EqYs1H~VaH#8ErF^4^G@v%(@3Xz8qLDc#5-9%G^;0{ZhrlCMzTP{%^{Jx# zlL8@CRn_QKn1(dfeKv$Pd{yGrd{qeBtbt9$TVx$_+jVR;eZ;Fz`-%6x%H)Ke${r~b z)oG|n?56uP(ex8>^Je{Krsi{R;(c~-n8Fj}zR>{=q3g9z*OqRM&`b%ux#xOcMR4lz zxYh5O@8fr7YziO65AvA{EHErcFL*DUvhtG?#~a5}$0Og%YOxKg4EMgzuqsGtHfS)Y z{&5{PGS!}L-SVT!p6SWEJ=u#dsbRHT1(c?gSd<5p;)&O~HM*I)S-X?sud%YI8uAr7 z4(W0F6mu14=pL0MlmwSXlo*wmO(y^N;8^5XHaX;Q?npK9V6vrxuXbU=@nfT-dM$CK zncb}2<=6H>sg;4bfi0W4 z47)`mD?7i%*T;LPZMqG^%m#at;2zX$6h0zV!I52U+0t$Z>FgC1ud(-RxJ-j*{?tDtj`{aL35_=rl?_sw0UR z!4|O=(I=Xp&R%qfQHM2sSz^}IG#)C;eOu_Sg;3u}vyv>enCM;oHf*ilDkNhrH}-mg z@0WFj6`c|*a|hd&;zdvRboP70OI^OZP9MsZBrSALXtVJ1|H! znwY4%aE;y%-$%G{mCjTye%#tf{~>IG z4wDMY7Dcdl_-$t2m966>?o7)>q?ccd7TI7TA5?#riGCEc7DQY*Z$+D0DwHPK=oj@P z{TD2g@`UQ*K2=tC=A?+a$IQH!_+Impvl*OA!C;_4BjCx-rZ!$ez3@n)CrfbyPtMvs-M`?AnqX&%6uCAmrf$C zyI(gF)OZm3z*X;+?gMB3@jCB?<)Zx}n$eljQ$brN!kI$fDpK3@ zVWIIiGb7XK<5O<@zisRz?7L%UxdJBrRF3oyo+m66t7)iFWZe)p@N`*uGdI$0cyDZ&jBD587p^~OI*-79;6=mXD@3|j0ocF$)D2ZlrV>0^8>GCv| zC?x6|XOv#5Xojd!1FJ_y-P-emeSul~<#HU8R^Quaa){pXv|4A?#!5G+7*eP{;L=-ajp{!(2t!xIqA4?3fWu`ZxP>!en&rzv^;9@Oh5V!Gut7bh!4*f zQAcL}5EC8Snw>rNUE6D+3ZnXq!4kl6QNNnk+5I`d>ta+Q`R@3U(r>%PgK)t$XZO}> zpGgr4;r(rs!^WRSdGsTaBmS-@}Q!^1xfvJ|s8Ta*25kEwSLE))*Ghr(Gb6r<2@ zIM~>6K*~KZpvo_-aXh1QzAJ8-kxAux$l;-1;wf+0kUfVyu4RLKjDX<2w0^_=;ik08 z%jVy|X&3M`j3##;aCjBgJQ&i~_KaZky>Zhk2Mbb&1?T+~8~d~O_H8qF=?V{sPy%Q3 zQP@k|{@;@$Ukc6>(SJX>z$&A15X-AOoCJ{q-ZKRQ7z9Geg8GZ5sL8wyf{098ZGBgL zRTU9)XGfkV7S2yCc|0ATfu|u5F;5ZjtD~js69!L52Pc?_r#REq6C&Vu)W^I`3|Ei1 z+KV&kt7oXBvUJnls9uGbq zXBTVUd&0uPym#;O-oMWcp5TUgIk`UZX)!$40W2nL3Lj~^skCFfQ=C6@ryr>iW<3xYNb@eHbmju2T?|)@4 zfgjLVMFG@t%T`uh8~j8^=?46{0DtfN^%MM_;Y{(FzXAe*LKJ1Cv^~+*r*S+fMkm^K zk^s-*4IJ>< z++B3cfnz2HI0PN{fBlC93Ws<@D8m1J1_pSa$G`3X5(ohcU}S5&__qb%5H!~ojQ@Rc z)UGf|7~ph}mrVb1M6fb$_8#rO%K)4TZ69)ng7IIE2!&*9{rm3FQ48Qe-{St8kRfR3 zE511YE+1S5C`25B|M1_BNCI6J{ny>W!O_rH&@}Ey|ErMU5Rut`-yJ48E(w$vE=~F` z8U`x^6CnCuwSTp%|9=yp!S&ti71VqyjU{}x{h8cfAmIEUiOZluR!#gsTTxxzBkM9+ z@*?I}carjKi{G?m&p#HAQ3Bi1Dy*qTE7#)bMH-<_VFpB^RMGykUWE3JAL^O8*QkzIyWHjHk_F+zKz2Y=}+FpiV~ZhC(+{rcZ33e*5o z%B+4MLZiXgN89hq5bbtuJ-7PIxfu7?BH2RViHMwU692H8FM426Uq4|H^m|m`PQWyY zLa)pg&W(wVHE^^s$p%~QOE@_|D!aS8%OdKZFUavhYzz%k`E3Rm7B3c|(V>a|ITWxZ zO$9I=zRrW%)LZB~xY_0UAEoU^i&#=pQv4Ns4%bOdT5X3}DLjpaz{q~=Be;Zs@UUYOK@=#WInbbCqNyGQK_F&64INE)S?<6Vwws9rK^_pWP z2Dhv25$^V9VENsZoanB`trkviHTxpN>Y^V<7pGfEB_&+NHx0fnntawa451D%QnNah+ z%FW_&q*i~<(fj484^M&(@+aLlCUi_ae`49rwlpISx&B!8V>UESxPK>0(su!b@$F`x zqr?`!(^UFk>;6n`ayGR$oVryOXMHa!GUV=?m=wjdq5!1B96i(1Q{j6r8#@Qjii?}>1H<#r#FEK1TESbqt!EVo5tD(BTKn>rgk4DD(M)nQS9QXrzpgaO zqJ)^Ckn=^}|?R0c| z%=)qIE%nAHavL=ujL=-U>rOWtdpVaj6E1tET!&S6QRqQs=KI8Z%&QDxKd3iajnjxd zB%U7>gg%HIlDrTg@gLREtJkyl*H;~_ut)F=>dlC{udkTq^BL7Tx#27&@t9D5=*UD6 z{be{B=;+i?M3wCXwm&$iRQX)huo|DU(JFCIB#ofEvj@V&qqFt$+KhK zBr#C}$5Rb+KwKbM{_m?Z7X#d&3}p}F94;_L(-vQ^RREW<2;YTB!LF}VW)3x#-r2|? z?EZeSJ(bpTfnH^BY}I}kp({@6jQ^?QAl(Y}${5}9m<85=0KByMJ4T+ZL4`%ws*VIe z7jlK#!*ihMUvIS3VsYp^p>)36QmC7Oagy4qW2TINGzmn~i5u=ql+JAE)-UH{-<+s% zv>*Cxv#HPe$Fr}qKE@iTCfpb))Eej>ey}~FrG9-QvP`(QRB@JPvdOD5-T!1&H+FWp zemT=VXfKs>8pZ_QENmD12c(ApS505>mOXUyzjjOgP z{j6}Dtcgi_-;XY`U0ahkaY!k!dV}#qW>;|5*WABgtR@-a{m8E5pK8iR(IGrsA(b}# zZ2K7(Rco?Nivy_SR@2^M^U+L%h29`PyGTL)VfgT^Wj?DOTx#egz_-QMe0{jyzO*X) zU&z(>8?Xt-tgWrn7OO4*{Ll63-?MMV539rOXo#)T8+sy^QKrmiOR zB{(Mtvj9i*#lWayOQ0cfpTlH^-@?o3=Gb=#Ys|8D0i0+}RNGr)UmLA@@b-OElh}`X zSpI6@3~j`%cxDO8+Z{AlzjS8)7=JkwidF#E+(K6HA^w8}Mn| z>l3vcDR}fgX#$TeoxyRUij+_YNk4beQP+Y$Q>0Uzjkd2C&lzu@)Q}q2Il?ijInRuL{&&=xFyHo;QSV0J%?K7#pCcZy%2Y!Jt8wnq$5p=rdWpKik z?QC|iIc+3yyhvVI+F~+VZLi0NTUS$_O3gix>+I0H+r_yLC4M1u^B+?GFFzF}_#z6w zn2+F1ow2317<+T)q@i{zxBeSI7TQWk16?a{EUX&k;xo5X_^lgTHfLG`0tW4^|L~Ny zLKM(^geLNsaHLLfjqe}L2BbY0-iy3%?@M-0diJq{j-aM^e{ED501*!QiquPeK<)p- zPT;k`Y@LY{Nj@|~n=n@7>AZ5i4txM3u!2`W873xGVd*%^Kgn!~UByFMbX#l&nG7ne zB3E^&R+rBc2oZ86e6CYc%n}kAgN#~>AIrfwN{uf8@zsU>#^#|D@5`=b6Fg=(dQcf4F41a zK%`KpyD(M0fHhAGMM#dd{+=h`8?ed{aXV|`FE2WLHY}NYaQ!)Y}2XCmtY`mZ|qDOZ{d8atcYsYw8e$O)KJh zSA5tF@}OU_yc$p#D~$)u-w1f>+F)*BJoOoE&xId)K!p*Jvijam?p5CttugKmmX*ttJja4O? z0sJiU*?y${WP`Lk;0#fuqr6$SK(soT6JlX)-91$gvt0Zhd*5rJ7Fc$L%P*xP6PxIrg(y)q zQ@;b9L1^7pZm`QN;2l=bO~5dY?9QJU%+d|hH|MKo@pRDnl-NYOZggJ!453fmSic1| zYknMWGg)})XpqLKDmof_ar?AkEBfX?P;j0dghZJQw`c-|Z~>N-C5ZtN7;itd7k${% zqe4C~HZ!Z5${$OvCe*&jgxILYsY`rF14Wpxw%O>Jdgb+`3u}p8{w~*e8zi>fhQa!5 z>$t0a(_D2n;IjGJjl0l&0r!4IjMdK}#DW-+cEm@rYAsT*ei*&Kx4rQ4QjU1UUxcNN zJKI^~`~+EU^?2~TYMN4``$kZd`ut3%K+Zy#4M&YhqkD?!(g6~2WXvtn*9ky47r;qe zLc*`=J{|(poJbL$?~jHSUO&iu*mL`DcKo*;2pK_PId+*lAOwv#3>}{ONiAE;>ZfBI zJe|O)mk8K`;n#boBa$ZvXVjQBz<(TN^*Vk=(x<0ZHJLw_w9$I zQx>SdJ4D(u49u(LIeRX z+F@WY`d2)#>Pu(hzxASsM*`(#_v(v)per(FOYL70T`1I)Op}hC$F#6;vHpqe6j{Mb+TB8W0Mu~v=Z&IsB!{+srC0CEOSd-(IaB+#}@^!A`-5a-2V;1FRp*$mZU zTD&De$(P|JX4Ud>@zDuRzf5&juCwA>UfkO7|KRAj28b;QIbSLR%HTtQNsyUuo!g1^ zIVwTX`HYoD&uOm_Z>aWnEO-i~JZW@R&rPMtidi;Cj(JX!>Fc|o-w2b--HzE3KWpDXYPziqQDsVENGcB#F->xpF8nd z)}K4VN}{$sb$SglhJADEs}`Q=|1lPr|k z)2UuxYG2&z_^-QdFvcPA4}zgk2jZ<4@i1vjl4q&V=RwP3;&vqGr9b0)kgK+;ad#8TBP)IQC$xk58iUNt>cB>0e)6-L*HNU>>q3%fN%qQ3Tqc=Aopdz;A~s2miGf zl2BGpr{e*CLo(k#+z2K9H@RR~+{p42F2iH{Kz+=9N55d>TYn7vIZ5clZ84&xufQ_@ z8zA0E1OuLa{74Rvp%K!)XHouSllaOc=+H6y7v6T=`}<)fO@JbbYcMBFk`H;1c9@Ya z0o6;C&L6`9|F%Mcrm`yEgbFLJ7{kaSuY}6KVHgf42Lcv-n^-3YRFe!=d+`W%mEa9z zCcE3d=VQ{o=ZD!JUtm~&{STC)ZbK3(GQ!4v!T!Pj+`H0JO-(J?=R?XcCT^x^>9;yl zAm<>+Mn1V6dxJf*CtU`;&)>j5j!KF&BSVTSW7|MLXIEwgJn@4D4jvX=a5!_8&gZBF zoY5xKoue&`m^?Eb1iH@uhPvMXK8~(Gxd{mGgije@`z~{BXa)_gg#!fQkhtIou!FkY zI#(c#YIsc+2+SWK6i#iCMI2*aNyT_6X+-~f2|-*3cJi6ybvO4-v<-1VkoSV^zLg2V zZyr#7PdEQuH)wfB<5w~;&o(KviT=fNRuVDwnTB6|sQroJ#-R5RRksNMa=-$GOvlZU z2Qr}RZtbD`A$LVZ#mY;%FI~1@G5a%g&5e1%T~cgY^K0=ra)SM+%2F$89zZB{;OMPXqZpg0K&K@-eOn867%Uds8!%~RsK|;1?DmGK;1bZ8TjGw%>#;6 z9Wt?K?bjPuiLk7 z#c~j|WnBG$--gZorJVWaRm|zfirZ5u2j6s1N>U@=J|oTSvsWt?FQW=vq+oz&rXO^f zd{t1T!rCo%+wXo4*Be!~r&`=TCosaH zE_eg}ta^TAV(Mili%wTMBEUQ)&7_~*Ft#_QK`%skYJs(sMy^-TdY4~c1U-tkp17v5 zC?_hYsYPvZBswxfx2NP1+VcRcX%bKz945N$Rb?f${h=-0dCA%0Nv+dNLxE7AX{lbMmheG(xQFOG$qIaz61#{q7a z8ru0!ui^Kqrh@XPt6zU6V+Aco6>{(ZA&@BG2R;V+NL%RexMCc4@KBERZJ#hLyGD^V zJ8T+<=+?8vgZ%l24!*xQh%5pD`eODeb=QSwja1{cQ7zJv8dH4niP$r3n zNyZIMJvg7<4-)5)bR9QfM>=N4+yGe0QJPyzoU5-~izr5gM{!cw1v4mUNLfV7{6t<^?-M%I;!J)eZ1O6iUQNR-N%jz^ykEUQUDWd7M`kz}g zxNTygVcr5c{b|PQUo8`xAZYNo^5AD>@HsD3q8`8#vl{%6@A=qZdf1#7zxO)u?YImi z_Gp>(Pr18xz+}|m_=77Sot5wg;FGNlKm)B&bpXE=!~rmzB81yvrwCF#RL(s&71B?P z3bc4Z{0Q9Y*2&K`2WBXSQ%)D|Gj`1Wzv^A%P;hUs6G-OCa5F>No?J)4FEk8q`%L5M ze)ZYNzq+DK0_Fe^?p#jEQ{inDIVujT|Hp1)kC6yz=Ty zXw=V6wON4_N3isQfD|cMpr;0JH0H;Ed8G^d$wP#yffZNI#%Ta5p$KM8<}L0pESt8C zNA;Nf8;^*Mu~14YgKSvWY3@u%&3RqbLr`*c!1DADEoGCJfdsAqD3V|9m|+JhG2Km2 z-ELY$!oh4{U)QtGUu$z6PLhj7H?zy5t~^O-IZ)=#!LJoCaSFhV?@i+(FTs+^HM@A3 zC|RM>bK#s|ug3M`>+;)T529`XQv(L`5nW7@c`U6GAb}0Aowt7a5g`4JJ*67EeKTko zk8Sw{YGXZ^Hj?IYH+KSYGv!sj5rK~&=nqKej@wzUw_5@z2j!tYDzw16V9C!f!gs8I zL%P=W6M#t|Ca`zb8)sR=FYz;pZ+JB<@)sH2r}_qnFKXYoGC)*!W5zMTjbjC(dNPv! zeHER5F05QCXgN%9`88_s5};LcZo~Z@+)OIRFO*k{A5wzFXAVA(GRD{eGtw&kRzLfc zU;s{)R;DjX_FsopL!N!E;*bCw5Kz0!m87Ckl6wBD02rVcIPh1Pc{v3|Hk!I|-rp*m z=Z2o%bp9#R!RG1zJxCbH34&%#uzfbSezLGes_+1e>(tGeQlA1gzaWQndmOZEdh06N z9YqBeRJjh&^fjL~%CbllUV{b0o-c6$)no$IY^RUoqrF9ozDxqQ`Yciy0~iCy1Wok+ zjsOa6y=Q$T7=;qlsDmX3Fv<`x6&w07ra8)NG!LyWmapc#jP-@@fN>i00Lpes(SgUk z(ml`$%k8#3na(g93%I>L!T;L9W4@qe(#Id!!Gd!dV8L;{TkU(}X)dx?0`&nP^0@qD&W=RE z4G6UGf^hEQGdLn~8b=8sUS`PGFLFTD@CB6ija~waLUsy@}Yl`ag6YIs`2C+xu|5%#LrdIadSk)FjFlZ4f*iA@XlE?u& zjZW17_rdu)DQa8!07B%<%rX0O1Q&6yY_yLI*r>t5*HNaJbzr0M&9CZPlYuJaGgoy7oo1S-SpeNvu+t=_*CZ3Q0Xs_q84YYP0q^Vwd{Hm z8;F6^wKAAP?xLm!01O96H{w#2!PC@N^zaHw05$0+?kkflqYJbE3C1fL`9&3u-Q-z? z*&nf-*yHmOKYRJtuTD^O;5k1zh)2V~{_;8y;(cXWKo9?r{=Kx-|P@uz&%@~d?<_m!Tr%~Q~;z#`Kt?5QR z-7;f#ng_7|EQc_uURuNqf+XIZ=8Y$h)CT zr&#yhvT?OtLT-M(QCg#a5B5M_A)kWIXv^FkpjiYVm12U;vN*aBG_ z_v?TUAyR)fIIux6=$e#pGjVF4M7BboW2{Vwn)tlSg7pdSf?E11{kYC9s5^cK4I3Oe z^3jRlZZ*{6Q9=Xe!`K!s&)%<%)hym1iV}Plq ziv4IPDFodP1&kogNR<5k^JU+iuzZwo+RGGi7))Ax>(4-U!Y(L&cD`ZP`b3nCyoV~t z9)sGdCCHC&8Y2zMr1n6Gt`o?PtGxB1f$|=pANRn$Iv>Q%JWbO;F)M)A`9LFAsXwS9 z@JPI?)N^N1q+m;B9AHZ@7|e2YC~vn{aP~XuPH^g$kkF=A7}vYF9REs+Sn3#?=`=7f zm=XM}DGhRR+4jvXmlvn38f6`ZAmp$iF=3-!gtZ4@kzx%@^NvQklkh?JX&S7J)oaAb96hS?y7QjcD}P;)xbNOupqd z@+dAP#cSnNvT^~GAI-J2_2=i1G(8b@p`Vz1b=IIltLjJZKK?|r!PT}9B#C7~0iwlT zeNQfuy0c&Ma=pd|v}vqQ)oUek8O-~?9BGaN`EXn#_~9PO_4Ykfz5EXmRsvj0L!<}~ljSid+M@Dul%W1O20bnEAW2voKfL+HE} zP~`!T#g5zSmz-Vv<}_AvQ)-axB)}Xfehi+OpW&XWSg6_T?ba$f4!TGd7Z+tIporip z|I>}##d!5DkU)2w(M$%t5w4(wN#{9-=C$39bKWO|2EYKY3a^3iIj`TdH*2oE5EOV^ zR7V{sE~2lv7ZH|y9Rpy+hzo-raOeR!m1(W`34`gG##4qX*72TslSCc%JQA`Dy~rH(rQ_7Pyi4*}nz- zPAKE_uIXb*9fS1 z_}NYPUq)Q~{se4q5HHvJ6tIYfE#f~ZqTKh;B1y?yt5O&OcN_#h4SvX1oRuk14#7Eh zf=r~I`NFrz-5$RF@1VWJp@kh_<8{?ZmkwHwWU=uUvn>0vdO1`>z>iwzECT^h-Vt6( zHdk1fCrE(*(m>k>^*{wwOU?Hf#@(#Tvks(PS=~H-e8X3z%K7S{>TOVFR|fc^LW`Ws zQWx8K;S&!E_VF{;pdIJF_r8rs{c_LvNAriRY$7oQEqU7$_T?$<*5b8K=s+|>rSR*J zPk*~fdX#Hb@?ANI52%Ij_+0TWh8T48!n3oOlF{OfISEi}40Tc$6O^(%>l^o^QGRNu`2{%?fhOZNXK-Eudiz#a)l#!4jx}Ab?u-BfgJhylr|dDK#zxoi%F^Q6?-bG9ac(9m~5xM2l@gAv~}Ix zYmP&-f*0FaXCWu2TdlmQTB3mIjPtzdP|PlXG>jz>trTK>SS+tc`?dqgJmsWBU{1!SzB>S?-qA(s29bSo3&=WE5~iJ-Ff zFanf$8I%IG9Y9`4{y6W62XOkJ?n0&TbveYM+?5kvmXQalw0R$#YJm{n(H10=@q%`m zgRQ5t&)Y%G+R8is64W!_1^C!c821uA>lZ&_UYEwpW_z7V&Pb91EfSb(Y2RCKR?hu& zp<2HX1`>yJ`%Sl$3;;9Szf4 z@gHBr;ptK1=QxDYk@!xJbvdE}KUpYCN1f7zJ zCABI1N0wLv%Y7O4B1Kq@A3?Lo@N2gB&LQ?n34khMPV&G11+4PEb2M^tEmf0shFpAL zfxBlXUXCGw`q}JUz3$U~)pBLE3nq4*w-qDxi%NxVodR(NIaZ&L9>=@CTmW6HH)By! zR*vT^ZyMT{7|Z+~$V%8?=KjNS7r+W7O{KC$()!#4vz8pO|N=XmU3rGAx znzYyB)t>-}Aw~&sBh5+7fefADpV$KjWtsjbw)MwLX}@CS>0$x3nKTfjUK%BX5|fAb zk|-o#i)m~(Or>B(B&rd#!V!dvALDqWX|K%k*H#df{CnzwlKL4DYAtv zNg>$T*gA5Z2c>QYtJ)*V1dfNqakx;-GTnW`)>J$#cthRG4tFJ*~@cPEq*I9@gu z&$?p{oGaXcGJJq?@XrMXEf)kFhhc41P9QE}uN5UmkR)f=9qzjJw z-L^ISHn_$ouPMS7rf|{mC=_0zpas2EBOU(=T39eOe;zZka11T5=HO)`XB|x%Tw~jV zak}AX7$}5aa`q-HC^M*(vqO|^NW{0Oo`L49RKbCR^fB#fJDtic5F0oT`5FE?L3MT} zw=1~~^neO?>dXkZ`qd6UD!w|rNA;bWAsbigTl?&<+D-*Kh8XGuY(baG%NfvgDy0>< z;{MvU^?+&Cj zl9_R@Un%m_-w~kfyg5I--+6xTTTlyQ>%ny{sq_D%zm-2`vfNCvvK$d+LLkzTv{}3pE)|R&_DyKt->NU&R&#W%Ihs~<%s6YS zWyd&*8SZp$QYr~8$Prlm?dI*wZB#>18VwLTwH9k1=ha}2e7CyfIrDA#s5hWYWZ0Oj z&OJQWuvy+QOt%<9>z70ck0O=={QUeSEN4U5F2J;Pa!WG?>Qdol|g}KQ-Nl)`_th{g~>} z^9R44{qh{F;vsxB!)cq6Vp{z4<2I_3&vfC0I!eISyr9+igow$u6roP*pn2I|#p)R2 z3LVrfH8gnW`@R6)(kJkIUN-*7m}ZPxz%I7{vo;cXh8b6X4k~o5TZHncv>1tkW1xk< zzrtv05(kiouf95ys^+uP)1tP=ZEdBYmV(VE}s zVTv~QNzM6kR=_6J2nZ~SMemkBj|9E%^+%CMDs^bCs@?A-4IQTH9`WCGY9`DU->s~y z>?Ovd{xDYCEY8+^glZ<;oNlxP?3Np= zv$l?o&fh(ZP+@2Rq=jF+RF;!R@t;m4 z-Z&!^4KJ);zbQ15EZO+{Lt!s^wLJdBP@^t>NpSeQs(m*d)&D$<)W5vdyPms(8flDEGObKv4#>Jqobru)!9hq2))Crm3IuQf$0XNg&LH!_xDv17qe^IYHfyNsjazJiqr}(4& zvWenBZX)%bbgLOq8lU*^G|qnVpdf*(*+%jz&B)Psk8|RG7~6*nG}ZSMJU=n}#Rc5C zO&N+aX&BR5e~(uR&H1i&>Es?4B;|IIUbN!lOuY@2K0nYjn;k@CmMEGPH-Mn+Y&XdO zDF83?>Oat-J%2cyx_?m2*C&)Ci?jHljD<1_)?&nkbxM%y9>1np`9w#Nm-YgB>!Xll z2Vg6h(s<0~sPIBNvhuGM)fKF`onuDt>(=z`_}NLEdORhNhQr^7AgqqI+}KIa%-jrl zi?+YjdO5R5=sZ#oJL}CopyqWV*YMu2{$R{#dJV4YWV3_RR_(BM z^Tec?PnvxV`m7?(z3Cdqw8CNq>;xA0CTHh;bSccZQnYA(&&|%bqa$MjiKlfAS%<;a zA7_2p^&pMM5^0li4=F_0WP6lfi>yG`jZBqedNmvtE$^}8g# zxIKyMs|XwODE+GcqK{Y#$)WYpWQ%R zFb-=ZSIXCw`6tYr_L)TH;1PteN9SG0s64 z5Pvk|!y9MvQ0t|Q9qEQanQ)(VPckWJ{2Y|0Pw8`SSIZ6#vxAQBQS{HbA9Lv_&i zb;XFTW5%r>GhScgO!s;HSI_sJUH>vFNV>*fv`}E%=ei+YHp|`{QHBgY0IxFKre+|1 za13~`suy7pDjR5(J^1((i{lcIvpmqrVAZCfDoSS8)!j|LAzUgxK*MiCVy8upgE#g> z17l|5-o12S$Nd?ih};-F>n!M`%}FXMQ#jIrN|Jd0M7mRlA_VdIYkfXI8d~mU3-@BE zwgcD@m`}0Jj1}E#8V1dK7%g^vFxASOgAwqS5Hy4nykp`WE9(H7E&?rV+svX)ntKa(^e)QQM9i(O-*?F#wT`e=ph{H5let?dPG20zspcm?U#jL#Nf zL(YT5lkObrsC#~nO7eX?TJKc`&eQAW!@4^ zybg`JdZi7#>1kmrDTCF28ok14l+|QV_Krz)1OF}etP!!(Pa6Cn|AZ1cB#;5U zbN7s7@ldluh!SnzXR}_O4mkd7e`z;2qybrAkq6!0^?*bjpd$ zCwfe}PSx|c5ex@E5z1pMV;@E_g3s-ROR8L~!F^V&ehmkEOr+7~TZ3YVRbx{`<~z zzclC866kEY3La^R`12dwFVZEb60t~ehMbR^M<+aA_=ZKBD`WP22#rmQ<{c^tN?Kp6 zS5CKUtY%!;o}ssyeB&T5%U4HG_~#JMBl-{w)Cm*e!;}3$5CSyXiL?FUitfFq!wr_@ z{Z$nPLvx9Zd1ID{hJe>c6L73QSW2=@{_JEgc$V-H!wyJIGbC18_a_1gr0z2WewPF< zEyOQ~>EkCU_+%r60ZFpLE-?me{))?Fpw0iibBBGl=lqwjP1D5$4xRhWU-SR&@Sp2O zb@=oDP77rR4E}I`%*P%iMQres9uLb9i(8Lb7~_e6|3!W=T2t}FmcOVpKR*n*gYw6*QB>S?%_1G{K*As zAxMQE?WSf!dV%}&a*j|pJHRwPV*&==#;nrEkCF(LZ zmy_FZ(=ohS@~WMy9kV0=mhl@~?@{|+x}1*X=a8-M^FB^^?x&l(UGleX_tN?3-nU<> z>rTF^O@KSwhOXxCkLxS{<{Rj&ww1c7V!2@skMVz)AP`PO+XuEYwKzE@B~gvz`{!)~ z55hbBDSRExo#5>@?#t8J%SFIhAFx|Zaf(@?UZabzZ3M46kP>UJJx>m`1_7y2Gtv#B zu9`#RFl4+zy&a_knfCq+#W5KbTM1;PT|fBnnJ6B-vDS|{gyBeD06>r7dKU>OFppr1 z#iA^2t6b7z)6!b;XPH>>cVy*pe7~~$Y-Mv-xM3(WysW-#pXw`!NYWk^9gLrJzbCp= zRIbM|tgWwchjYm>=D4-wjV<}b8_*I-It!9f{Hq>_=R-T=?@711QC$zvN9bz*hpV@Y zin4p-g#~FP6_5r20V(M&6-7`$YG_dDmhO-;knWb0nxQ*IK)M;aVdxq<-#z;L&spbP zYZhNn*1c!%ebp~+YpGV;)XfHj?IbJvi)#fzMb|1;JT|@Te15M(DV6Q&Sy`KItiPoz zPFAU}Y8stNP2bnr6Ibj3&;>d2T_+HfYvn4^G<6TwuK+-Z&#jowV~gkBA#h{pb4xU+ z7Y1dmT|XG^zjAl474ZS%p`zAWDek&0UKBR?Mm}m2TGyus{YcQeKl9@m_As9WOGjO1 zU`(0E`Qds7+_eRhyc*R603@M7uvaWCCdSx%0EZtd1*^Eo^H|hIZ+A90HSA?5H5&?S zz0ZQ}4yaXcpdR?qoAtX!DJLlTf~42^DU_i0^(_fje0HKeGQ0P9Emy$Z;hz`4ZG95J z-L#$>*<7FmjSg&u9NlkU64qrgR>z&bu2&3hj?6^)OwQap-2qv@)-`{1KHcTjl*%n4z`>RGvN%+mjAC#f(rso##JO2@`aw9 zf)eV>ait=dp8?hOm*c{*^mEV$^^9BJd-OUS;3RN~)1SG3dQT_n_;Vy*z5BPgV^8JQ zmQ{k73)GC>4WMn0NQ<0_UN7Ib293yBK_EeG{#b94P#l2Kx@ddkK!;HIrpbkU*^Oz(zH%T^z<>??CKXOWL7_h-YAiEMTbS51NczNp z4VeoIk3kByFAsIAKW2nTxaaem>G3`4SfWSW3wpHNinKP|RGkwq!y9icWD~-8#ewk? zLB6$h!R?SrSBns%YWHlu|Lswg?{F$zJuEd_8XXmcMVylPdj%R%>JVll6O%;WN&>S9 zpx?VUFdEGuYEEd!`7H;#*6HCkr`Jjhq^l=^FFQTG`7zmdJ+oj*{AuiOuRMWfEyLfY zFHLH$A+67hUT+Qx_j^$h?C~(y?Dm>_(fPA>l0nrAryS=myvm!M-_DV zv763kXJ@PArq<$05=SGSZ$2J2%s%Jd?V4e{V+s{)=s_qMu(?g0{5~XkY#bM5Nw>?G z*c6A0s%3M1qbBMM>c5ra84CZ@+O^qAQqWNW59Rh^$1Y|$*bO56H{>91Ir51|au>!4|@+wbYkq0o;V#yWjtHdU@?8r(SIz6BL98<*{Sxvxg4O{+EGy+ErX ztlG@BZCdyVp}|RGcOH|ki$61#0%_8-P0)x_^ovI*Ylnov3kUMFV}k< z%_s9h%SG$`Hk-~>ikz9X#4W$qJ5J@wgsJAbRq7&bAz_z~wPdP*Kou~<6wp}8(@F?Z zJ-2#)9bu*}?n z|0QoJAE0YoysKbm_L0>EIBZraiWUX++L3sORtJzn{8aXXoGV z6x=8F{A$g6FAr^i?%i{0%?j%FR3dgn~>Ck9NG+<5T{KB#QFofTH=tm{Hp?7hd+xK(z zuhTc*u^S_6q_~ii(B6pe%aI;RMB5d8C_Vv`O7pqUM5x3c5>WdU5>`(Zttg4JS{itO z+V943#oy|B*@x!dbAw_-zs~(Ue;01u>VfI7%8tbDp+soIu{H(2Sva7Pbv|DFCj;?& zh`Dunsl41)2DTQ^;m{7V3RG-Z_0gTJo40Ajt2REga9$ZB$?0^y?ey1PVJrCS>^O6? zwD#nvPxa2HA$8G^%uTR}PhJs6yfBrrPwVfX61_=IQ1%2Z3gVL2X~Ig956=8O(rj|e zqaA{2InCFDu{P{rMkv1S=Q3Ztss86!{Ssf`-+lCAue)P{I5hPEb_x-VgJezO=DO~f z6u52cL2Z3!0DXzqdXnG4S`;U)5nrRu*?Rci6;KWGe283==S%{I7yw^u*Enfu``glt zLzyU0?%KQ5%@oT@oeV9ExA9`U!C^`vlD&+xFx_QB9(;s+{sF(V!*@?|5Z5 zj=2n8>%Xcqw)(>HjB?y&gbR_D?shwGv|9W5#f43B9h(yE`bjLCd&M6vL~h_Q2j^Y}o!4Ho{vH}X6Pd4G9>*jHsW0J`I~~AF=T|qg>~>Rq5o|FL z3`HIFj4^~#kLS-LIY!VLnt&UJ2mr5V;s#4Tyrck))ERg0=(on^qormF(_{veWY~7N z%v1?QkZEJP?NP^_{8!NEM?ze@gnafz+79rzUaIBQ&gqp< z!qhH*Q+}Vt?0jt#ID+r#L%f!~aafeJ8tFzSit$w*6$I#vOgLJY9T`K>1oP=5+xyL69) zzbioztjD*{7{;AcLcv7$e~N+-Ki?EeyIjov7@xVZUf!k8mEHnxAD4w3#+OaQrfo1M z72aZBC7*m_kE^jHQZDkB%TY1U&XOre92$y=%^qFA&$2;o$vKC)P8Dss$c-j{CEo4$ zTcsCbZjE?PGP~MP?8ft{Ue}(ZvrWgClDc`t=BXM?Hl5TMseQ9eT5uYozcY!vjDhG! zFgy#Yt}>ghF7X7U6cZv_mmeJ=HZYL^iQE)17kL1t{$F9IQnO+|p*Q(UnJ&Do*&2u> z9iN`|i5dMHff1+tPta2ZmIFY|v*wNF7fSYFTyp&HW*_CI5*c?VC@-ue>n1KTYn!%aPd@lj&b^I8q zI}VH|j7&YSZ<@|G*hSW}qQr$h0OkcM%}JrviA$a8J-}q+-kaBgb?(r3WIMj7W&f<- zfibL8E83}EAd6jTbZrm#LaUQ2v+o}p24hWk0vkb?kNEs|vT4@@DZd@G&3olik$y$mFj-(ziqg_*ifw0q3EAvmS6(l2NoQ zedESEfq{XMJNHhT_I}-2NpYFopNR&XI#l+q$Jhe=SSJ|{`n|B`Z_lJ6m>tH>-PRt6 z7U@b1SGc&hR*GbNNa0})13_^)Php3t51o0&S4_ecI*Ke{5A61aJSLyZn<|%L&a`lv zTMXdX9WUK96=f0$s4fWX!9SLAdp}$I+ZzNkT^>;;`T*^b+xikI< zjVqYX4X2j2kx*D#}=m2v$1@mOyqnp*B!$0}qY?O2ZhPB?Y zFkQjr<#V`l_p`il=0un zG>=_55`Z}ceJR0=PrMez&kUCd7pyEQ2Zctd%KIWTB=j1F^>{G8vpf+|0wgBnMhH6> zgI}aYa}=|yez9rQ>)q*b*f9yuXS3O3iPCupM4Jp^5exKsT~OT{@hxxi)wjwyx=x#@9NFBX4=jjrQr?G2& zK+2_CtqcsX7F^0flXku$crx`z9nk2*@%}Af0VjF{`AitzE||xePIHh-#s6a*C&n^b zDt@Dl^tCDd(0jf|o-fhYP{IjCQr0h6;#!{&+6WH~ShyC8^GU&V2&F*w6k*dv%uCgD zpJK~?d;Iu*mm^*{7T3^7U1C$=$^!Q7)$fyV`xUz*Z%m2A%?}1(`{`pabn*z?0N;@sLr;5V6Mi&^bC~L^6tGeLuiv&FQK2R6`z&JSBio3W7{Vv=-@6m&buKm8PD{Dy6Q|SANAdp(E zHQ96{B``^5d|6cYbS)h>3FrRQqs5)7+XO1=WnYPuyfzH0LJgY~*BeYwXX4@elE-*D3}zWkHt&a;QFA+YC= zWg)(~zU|~=ToW9du{IyQY$7J+xFSD!1*RrF=Qm)hOV;)5#~rHnzbVsrj{SZq0PtIt z9tg15*GfO6+B3S7YB>XQUUAf0=-S>88x=o!Z+^bVI=5IH3+I~UKW@lApDE&TGN>E>v%95{6Ww;e$&;vQcV0FQ3KCKpz+c; z7ZD<~!{5RVu}nmAYPVBEK%~CLtkUOBVmU|PTDo5Nt03|>ThD{GW@5NO%Nct{$)DEv z)Lv*C&r-@VbBJPnC`;8EGEnb#26Io5|DPOqktzJ=F<$~W$)uQd2S(0mnan;jlue1R z*dhA0o=0UyYOsYWE;39Ij~|_!Ew+7YAb>Y|d7NFH>|`^G2I&+qm&C z%t=L)Xu?uO-BO*up+~@Mwp^8_lT~$6l>eVZ8J9@z`9*?Ni$j5SBie_?MLus z7jU2WyK$=Y#DKhv_#o+qS~cG`rv<5Z2ho|#7kYG28{PFMyfue=uWKp)wmnB`LwlBS z!U+;@&>)a8VMrnO)dzTbT4IN;|Ed60z)7MT6T(mjl?na!Fc)XMA6f2AlU#33-Z8!y z=^V?rC{ufpv(lXVa9a7`H(;vnWOSEAlfN6yf39g@flV5XPz*V7}=9FZbG`#}!q~RAA*GlEL z4U5@0CEh4DKSD7H6gR8;_b8*y{#RCM)?GvO@M14)!)#E3-#mJSa z+b_FT1tP8<7S^;8pYqJuSZLV~qZjLVboZ#Vy+6vBvI3nM%_!g6h7i;-{m9{tZ2P zXvkH)%~u+Mujk%q{w2f||Bx1+>{kPAN(`1lV9q8#VeRU(u+ee{gkqlNpcK6na9qm+ zu1=b{od6~6joT5MK{3U_AohZ+>_5A_G->fvx=Y2UenlAeLc1hUnbQLCh{-k`U6F3R zJk40!Z?4qk%0e;g?m7~=@6=t=>z#);R633fCJrJx$R#~3zFr=z&w1xsIv6oRx?=UA z@v;<6PWOdT^k|38P z`)Vc{w!~EPqvgEdunKU=RLe%p^;079y(0cDm71Pt^O$cG%$7*|sa$KUu6Ech2d}iC zZtUx)`$i}B<$QdmebF{EwP!RhJVGrA5A1TlAXWzGA6BZ?fl4du8Mgk1WB(uj;)W9a z80aoo($jxq@Nahpk?Ig;>wm=Tc2e%25j$?*O5{&fE^^NHL0`f4h_x)P*WUih^Ns!T za4?N`At7(aa%_KGk!s*ssAz6VT}Z+*&}F8IJ9Vb~)}oKacP+*0ud?llIvduj=>gMR zOg@OhwN3xqB0{;NhVJZZ=!A+3pgw4WFs9xqmRmrOKe$-zj;&f&ElFX-*k@ot5Qdsk zNYlq|o91KnS0q*{r9Jl1`)JclX({BLp|&-^JYOq!XAbblYc3DEubijqTwq2fL2xkz zY$_Tdn`Af-h?cLlyb7nl1rS1%N%5h`sVISxPpR- zbIGVVt2DhE#`{t49D7h{3HFE{;Y^fSeW_TxF7%T1F?Yt7buz1WfWwe6g;;eDv*mT&GjszSHUI4wf9*bQq3ffUxO?x3vflZ4Z@htT z?(Rn3StlV@w*Y?kYPi4E3wNH$RxvQc%o`mS_?cTER1*WMm;a6zLHqd8)TV@#>uSN! zb$q-1PElehbA2claJa^P^*?itT)f{IXi7ozXQ7;RMlB)gj|>|Drc%nnEtTPV&hkkYFEim>=XKL~t^Z1L<7cMP#>g`m z<7NUk$}AJeB7U7mqD)YSpeZ*6-QUQ$V*x!m!0E2wKif5WvVKC=c718FL2Laek0)|F zc;S}Cx(+cwqN1rt$x@7UR5+uCeN<>;A7@E4qd2@}Oa3Z%DQRLovN~26)M8=xID+3u z`k7JL(0EJ?EpgvJEm- z@>f*BsOp-C)mPGXR@@xK`H0}5LrxU!82CncSYPmkl>EcKKvFYHrF%*f z=X8yJfxKhX+GV{1;(w4V_R(~WQ`JrT+i11kJVWst16Z5(WFad%GeE+_R+ymT(n$JoVZx@ew@K2XH~pyg8+cs>80QBb;^-=etGeYb)8lk`3(l3G<(1qBdrB;1~$ zep0MIF!}LEK079I!|8Di_M!NAS$(ZqfvgpMG}UG@s1s*U-XU?m(pi6nDT!r0c=6n6 zbzF-E2^AmtYkKq=dXk(A8MFC@71AFG16v{RHAi7Qv<6p~T(6GL!zuC-fAdn%itkt= zZyIUVbRdVwU)v5)4Kc<^MdUQ{T@rBI|(K-vcD(8{ye)J<_IKQcl~ zGzYO@h%>GZ(x{$g&}M0hG!uTc-Y0~IUXv*Ixpl>>Zr+=?m{KoQ{pZkZzMfNcb-HkF$M1`i8f24vID4OZ7ypXS<8SniQcbsJ1P@)MY1>7i6c zFg@Uz%7SvBgCrn+0aRrL0J+hl1(3RL-ErL9Ah+IScd7MYG5I_AAv%3YABhN7lbNdc z04o$iJMfpWAFi9OsJHFEjwjAC&3g6y92@&+_ITCkSopLU_9mzS)2ATo6V{+rydA z7f_VdR@hzzEG)t}Yz9&FY;;L6R^!HN2CM`fxCKh5r>deHKBlWbrpoS|0fKrr$`x7a z`ZTldwP_=8I9#8ptAbGc?+&mNfjdy$;V|Tki5XaGzT(^ju5puitZMd_{iByPSe-?> zD*}{i5r>E6nyEn_7{c#^r;o~@toiaBCt%n&?)jeQ-0W4U>oMhUw`XcWTuoymX=n7R z1vOO_%;|}M!pV8$@J|b-x-#Hsf|{u_VE!@(=PH=#P^ad@@#_SSw{%Shyhl{>aWLXoi~+qzN~v4w*ZUoGN%aVg8IK~A z5C*l$PcRAvmz({@@ogyD&F?jKf+R(dqkqN%ITMA19UMWYS0bDP?l>(_Kovh$==vbw z_D8HjZe4n8nj8EDTw0_L=EcBuA=(3MroTqH3>aT6n(tAF&(%LVG1Ml5&!>GeEsD6h zzec^oejS9K&b3almYuh-nLQp?fFxd#MBkQ`yv=eUII&6M_ck1^9hvc3~2GH zq(Sq#gHOX-#_iK&rCIrAtQLKFQylB4XR47U#|6}A%u&v5%j`F~rfx^IF~1K&);onC zpaVCLTM~hflXSi-He1-CU!l|P&YxXhqH8V6cf8LwnJBmLcrFyRN=Z{EGer&B@Wyp> zs7TL${+MzB(mzpBj(tnR)qOo?pY0#XOJfnDuTM3)s;oY6l5Lg&qg#}>on?fkgLzR4<}Jv@pn? zE|ng;VWZjD#%FA-JY@j|6zU*w%goDsu!t6B8u(L3<1YpWdNxfI!B`a81l?wt%JtrL zA?o#m)(m8(RNBsQp(G5zR=|}eALwNPU`jRtDoHl@3XpMX10@|Rr*`??WbA*0uCMGw zTW3G2JHB;zd$_E0*JkUyfgV&qQDYJT%e>5KDYRN$YTI|?^qNW` z&;xC#bWNyUJHXz)pqvhbE&G=3fJu@ohd&~5$!cQSX=j8Z@q{C?bCgV>Ayz<7qKEL9 z7dG`U310pX&FEi)U5$fbffBSSHJmp7C|$U!x*`}kZS2SzYlED{kmpJ}B=@ID8JGZ% zbddH^JN=;@ot>Q#z)fCX5y*Sh;>ChWuh*Rw?qUu9D z^MpXU?&zul06m2asug5-!!EHEs6!0P%D*;L+}~*0Lhd z+5gR#-RqMYSMJz;=SwzU$5Z-Q5OM#h@tQ4~;oNhN|MN85cCuZkFt=~pn>9&S>?akg z+K$C+vS{|q=7=wmcit6_=NoZIQbrngo60*t2psSeH|f(!3u5k6h;07LV8t=MquzZ< zjZgKPcG)MI`s=Xc8llrZMh2bc5404Ob!Lokb$eF1C1WwG4o}1!j#T@j$ujj1*}+x( z8=6>fHTwy%37$*sne60<4`+H75v-jl?H=HFSAB7|`!<^8?=ohgdt?YZ@WDD6;peFH zzWg<#AJ_FKy3gQs6tB}p+eSGxHZbHt#VVPB&2)OvQ`3T0DmehEME1dk`)<%h)(D(;XE{;M#T`ZdTuBPDx6qRC%q}K= zYE#vm7XJWdE}Ac=ypuV63|xN95wp{|6_&fXB^!uf?gRgvkf!~cG8fuCbyD-2o9q*5 zcl3Y&0tPgar@OLhRzE)vsf|0SYrv1OA#mtLZS4lv=BO3=iIpqTZ;kZb;kQ~q2U1}*dx zS9p!L!h86Y>#l;zFPoMXKS0SVL)07g;53Rid>2~i8`V* znu~GA2WL>J$*9m{EaCGluhK8lrBpGuFda!T`IroorNfmlcE0$KG}3M#Qg)>vPQ>~2 z-8_o6c**N}ji<|3nOu}0j&!GUdaF-`ZRy^-rpq~;f6yT@!}kMqO}fkOtSfNL=kdAr z#9J@&>$H63i!s3blY8fL5;lZfNP=?O4H}#|5vaiC@zJoo7YlwyNEzCg=4EM^+j5Dq zCe_;???R78Vn>bMj^S8izWub1St3IB>&iiT|Ei5X-wU-=kw-#R>(A|H(9&#Zq3v9% zn~F^rSf$rTgxOn^4+^&=U5=2D%>*7gv~we5iPK0bTe{drm&0uDL;4Sy4dP34_`i|e zcJ|IMtg@#SQ%Uq_`0Gd-Q4sLM{_bnDbq($iWk z^D+mLVq0|H)w5tEfu5ar<(xfD)GxA&9cVMA~9!?ab?9JaB97msb4fLW2uwyXVLtHkL_HniN8je=-+YjBg_WK6!sFl*___9fp_-OU4Imb1*| zB>(o&8O)g_vBw{KJih6z`Vo5~r>VWIEJe_d=mZ^IvcsW_Ee0g?emNxJA7yXOnuWqm zgGZF6-SpF5bR(J9&BvvV-2DkWFPQ0V+LW-IDSMQBuZJ%~+^|XL(K_h&e3XjXBeJ4? z<`o3R>2%9(wVRz`x-mZ8dA$4RDeO{6!|kVVa9i7Gd9XX}bcrm*CtF?d_kp%! z4foBgbjuTB!7(#;D-~iu`>JG+SY;hMBG-(DtEN6OKf9om=^(Ad0BAdIQLJ*Py|#~Y zgQF4KIoM9->c81Y{w~-28iUefd|*Z%ZylIK6OnOfHV<%#vR*Qykqj^?M;m;?tm1m^ z3;BGoIMF&qL&#Z=N%I@Zl`}@n`f82^>TO_g}n7< zR;+0vDz`nIF>LtK;I{jfeL*vzV*TcPY!lu7wvOgu%rlA2j>jkFh`hOhyV>B|hIxS|p3LWW;3wgPSiI*Mt@-FxldIE+EGU4O?Q?6{hHU*y#Fl#P$` zaeqf;kGgO)2&-*3@!Buw$A2{w#?&{l<##u)gFA?!Zmb zgP%0ch^=LGpMGh%CIhLN!QHSm+G!;L(&*GyALpj5*cm^~Cv!?LYAX_Yj}zYtnh&U;#Un^?49cH(#Kc_xZ1PYH;=S(K2cDW4Y$; zZiO%3`%>19t806c?s=IaT}9qolAA)rg)f~>Yd3?r*g3k}#(H)?GI47emRw5NS$lC} zxz{Z;^aY`xLnGzI-75c#<(gJ4<=&J}Wjj@W8N3mjjubNgHR#9l8J{kQXf71zfB@qzK!-bM&u6PPn={|M)!uQ z@n%K;Gu#26#5A5=X>_K6N{r=}6cHBg&$lJoWKthubmKSC-6iA}a#9v+ROmR_wT5)_ zA`!-XL`16vlS6{WtfnD(SP>NVs&rY_ebRxaU*#X21tvxjrQG@5eQZwn=0$EQ!$T9d z^fg2m+)AF2{jzDAJMJN}?It&rV|58OU^C8I(G#+QGr*z~T9G;Z1-&-2kRLH&fnKXe zrcOF)hcx6sYTP!))=)?<3C71mXw>OaKfu+LK=bLR581NkJAWDaNnBHnz0%Tgxa6#fmS-B0U|xa;V#o#IYr!YK=4k4lys9f&;+_rl-3-Pqu2U1@qJw|o`4 zCF0-KUnp~>dbrx)L6vbHl-DX!vP&)Lx`%93mUZLh2<}#$7y3q5cQj8>|G7l%<%&Q74XlAML~>#l zGJb%}^tEwYtRY(u;(kHbNY7ZJA@bce$^AU%D?KZGmdO&+Vxl4JOw;$d zLFycL&~sKgV$%na(Zvi^bY^H>>VJbpTp?`T=1VeTE&yN zXD>e$sr0NM6l+uxdYtTWUj5-Ty0Ln@rQ~NJ+r1A%-s@18B|#3OMq#=d1Fp9(=9gE4 zs!1*9hgmA|U;fq^Wmb1}+&^c7Y&FWe_+2E?ErM&KDTOwfE zInFNy3wba7hF|Ifs&Y#=#sC4fX0j7EvYHwxnK z7y1cVvBodHF69!gunAIlGcVNARxjZ$@ieZ4A`Ku}@8E>N%6e|PZ}5L z!xwMUlRK9&Grs@|1#pDHXDiA#gw1=^u2FcrOnQrpJHQ}aXvfVYdDh5S*PbFxH}0WF z@O*@9)#lf(-N-oaL61C|2MfWuaf)zDMlUDpH$|m&;>G?_$tfv^8=K@@t8tHio$ZVU zD>E)8TQb}F5Hcioy!*Xf5?6R|IqWozml3{ z_YFFe;Uo0>1HBlrGm~^^I(GBNFH`s)qJdySQtX8O<|u7~0`qIQx9f>{rs|Gpy8pqe zn#?=vuRbijjqy;wJ1Fzbpo%Ir;%)6iA5giX))pZBRv#CypET3b=Zd>DwxJTuJc)Ni ztMblqOBuUKzH!3Yb;I`fzFw_GR9%OGmc&b?TLw2;B$eI`2Do)33{PQy_+AA~kGyQi z$)gbI>+M$EpHd1QrP=+iw>jK*FLP%DWZ(Tgdp@(F5d^mX9ZsX4UEM8>dGJh8DM(Ew z1Wx<;;=r`}^i&9Jw1*0`Qn+glw z?-kP-v0U!k$5hyT`#x$j#6GUNAn6-)d~5Dkvcfn=d+7;+@qOHRj55!6r$wsyz`^13 zck#lWBMrn0x-M@V(&!w4rC(KL{oVDl+@HZgwWn38i>V&6cjkJYgC~juX>|&`qC;hs z-msToni^@GhI&%e!{VWH9;NZN=ikTRRVn*UklA0%`uhG;_gsC37gH0e#_Kx zaMi32x{KQSuM0t_ZE>*~o66&At=}RR`_=+AX3T=~~nJb>dSjlj)d0340`K4Wvw~mehMDIJJPd%Zmj*$L(R~se|9p}rs zAMGDns*W4$Q$cL71{-Uub6sDDPh6~lZSxFAL=AOn>Cv#62DES74x~dLW~Gg%eTdfI z`eSDN(mi;m1+4X%aig&KVYTq{@^=#O*nektGG2NjTi*D@^-7t!BdTm~ z_e^Tz`<9FC>lgjM74tbSPTe>>m2aBY)_o|#(3a{7tiK*8?43(=&o8bP;w%wAWup7| zl0)?P2~0}d=lG!@-h%iFIYaWdI5h27LD3WrNmb=U1T z**6k5OY#*{Q0^O=cf%$H#wLGb1n4j?bRm6RcQFbF{gU1#ZbhQ*7x=uEZ&thJP3^^S5KYL=L?NjmnZo$Fja@Y~Z zM#;(D=I?}eHKzW&-s!x96Ka)9J}C?H!@c8{`>l8%X_RHt(`?N6%k4thAS6ZdmcPx` zXvV;k9Cz<03nLL{8+?ECDmAxDhwE90&(_c@dhUXYc}0@$Ytv-eosbakDxqI*w-2ZK0W-@q7Q} zjrcI%noGowl-y$PSG;|+op9>&H)i(Rs-VmnP9t=fiV~?jU&aiWiXgw{8T6*OZq}JNl`8171nIDZQuPp?hH4 z&9v*Y7$e2#a+bUCT4b+{*M0X^fU>xcJBL7UdKPaUNl| z+lq@%_#XYAMVZ?Exn1b6ypYO*2UxoUP4^ zp~=kr-rN)x{nKN8Q0yHvTP6I;y#1TYL5SIw^Cpg2pGfW|v2iWMmvsN~yX;}rV`3AzW*!`6X_pYERgO2(&6L#D zxH&Cc|1O+da|Q;-g4D`R@s&iSlBZ6( zDQO^sB1}_vvtC8T1YRI8+}Xy7Wodf z$oTBl=Q;}MMKrFK9sQgCf}dPECywTjk354Ot;Hikp>8qtED=45D5pQYUQbq2ug&Nd z3nuy~*?A4TwRidKXC8p57!jC?6|x`1{f$fM#ONT=-`}s>n`W*!ju~~Be`|Yk(ziRj zKT|g~>Yi|hETvd%+f?^qxX?PD#H#pi>q}0n@5=s3Y|^IsNez|v6?hTD!4!p){&(YF zzir&yG+n0Sp(ezAPABEdNdKMG+PVCCYU)%MI{D#Y$43FP0{8R`&c#|Qe?E_AKc$gu^%0c0z2tUN7F*dFJVCqtID z3YZk7CRe7N@*K_|mSV-$K>04c^^=QiLUs;NEbOo2RN52*qo z&Um{)dY?}R>0NB?m&0T)%YX(!{Tbs5>HpHZ1jgi$&)Db~gZa!`hOFF-J>8N=_aQFi zchepQ9GYLnXjUcSPgQ4}KSetx*qvHq#j=?pJed!Fv1!JH`j$K%D(k2Q*AL6?S?}UD zH5YJ8tq^R;hI!@+jcRc#KA&EL=D!KDa{K>xSIp|J>y=6ak|X5AGw8&#%*ww{cF<~& zlc_2>u5XKFwuGfpBdr~^Y1}bBWQ>2L<$Kum@K=q^6YKrU@QYD|@css0wXU9%@q$A`}R>KyR;>a8f0uf$)%FD zt_vCH$|ZZKLq`!xT-A|3(?zoexJEqB`MCu;X@;YAl+?O;N8opaxPz<;6c~3tw-xzN zL)jlU@xG`HuBuDz)yL~lEsdr@*ylEs+@BD8jytO2gJ>u@&ViOKBcEBD-Wi=36IE0rMzGSb+rsAxUKC5g_kQC3}0c-3i2)M{dWhO4>1ZmedJqY zY429KxjhD@y@le~%rGe^ds%)T3cFsonN^lKw(XnJKD%~dziUG!_<^8S@}~B`{7_7a zu0r20;UZo3RA z-z)iCva?g^xU!kQwALVg9Q2GnQ*H1#mVwEpHJ1&K7E7$Aa$m53#oBemNh=dn{{;SrSH*o&Y%&TCW9K&zA5Ohs9lp-v6qx;8{)L&{~b3Z{p*v<@V zvee!Q_cj{bcDIhLKfFU=C4t7hf1ujFwZl_#nGyo zWU1ctJCL~v~vUb6lvR-f0okF;KjC~P2)kLYU4(r&+&l2)$BCgN-~nsLL?7FdDk!ihUaE7nIcxe_soGTl6l(K&n+#8}$t}#xIk`t)XW2e^K} ztPrtSoex#jY+}OIdf87UJ5b?+@u-jXv&}wD2slvLB58D7JF`JOab)R>MmeIKw(6Vdep8kr^0=@5#wA(ruu=x@{pA^P-LgfG zhCdcR>W=y*;QqOtlx^q5RYr7X`Zaow?#T9R3A?U%rNAq{vu%_DcFj-D#nqQ@9VMLk zG)N;a4fI#AS;eFBHx%O+NMhzKc`)iQ4z9V|l7Zwqf;o-UPcQh`U63w_U%2|cy*m?V zD7ioDw>HH6%dD<4f261&IVw-Z_*g619cg^O@Ja^O?cDm}$5g>?bLNMv)D%qAP7V;K z`~C$4szj5Vf)f|N{kcB%k*$s;d<*$_^o_4(Q+#7Rj@UWw8ctv> z=|+G$Y8#*`sH$aN@GXq-WuvLC=!;nTHv^zYQ@vL#d!zMMJ9{g3`g$AfPrb$g{+^1n zc9;K7*8B&kT7(lN+dXWd$t&Nq%GLsfs{e9|-xv|=y^=1%Z+q+qhDvN*T{No>*Y3AP zkMC;KNu(wR`t;wt1qI#iY<$T1$MP~hyy88=xwVR#m!FsR@6{Fvx^Yj$h3L?Zl%(iu zl2s7%VPR}+1lV0$=8!CjpNwGopPyqYqklAHnm0sc(eY0XwVW)5c-XTCbx8UDUDr40m0MEX z3Xk^-gv}f;x*XNM%&cp7N{#Cf58VR|((l<(3%H8M*vs9e!zmbr?heHa{=Q`;)xYiZ zTP3QF=YIZzArjlgBG`~Ye>3vF(Okks3}}*PL5sCK=Txhvq819-)y)8zB#Msu6VKu; z6TSRAXq!PUr@C`g_W(QZmOM-*h3LTo%<|Wq2}$@n2P3&8d!2UcOBw4rQlz;c^8J63?GII`fEG?RORgHqViaPa%IxO)Qylcl8>hiiKaltO z1^LTfqwYGK2~{zKrC#GAe(&trmt5%NymBBpT8vYOI6g}vdxke(%YV=(Jk4tx57yr( z>h#5(s4Pl&z+q%Wc=~W&xj~R4K1jMqGb;M1qXhJi_l?$ff7-YPk4Fr~KM_NtsWrHI zpZ<=@lB;U@Y(d3>#J)-Q6SAPGZN=h>`;T~LE&ahDCJsq(z{Yvy>X`$0sS)~^Ea*<0 zim+dPXv1(+9E%Q)*W7m$;s0-?PjJyZ4$|y%S8|N=#v9Iw^4Ti_4}I;VbY148?-DKG zZqP--Nzzwx73q(#yh`NZN=-3T^TTy8=pR%)LZXa&e^vLF$j8rF(^_25V2*3FSuCO5 zK`Q1vL|A!xjBaGvH)j$XC`?{#yL=R>K!=_d~H{$@tvKj1R5*d%tv0>%H#omk)7B z;VF0U5U+4e1iStJ5%v~PRjymxFewXBT97U&>5_&ep@f8>gmiazcL@Rtl7b+mf*{=? zjdXWPcXxdEqwaIw@B7br|1tI$dw`4e+%e;t*PPFs-e=3knbv%f*w5*I#dLZH&){Z^ z2BRL}L|5O$jF8`Bvr)FCI$7_G40egA|Bm~7iShOLcoSaTUYIGbDW50WgT?|Mq(!~N zvbYFg(HBcA^Nrc1d^dw93^O#IdRi$z0CgEQeNulxgG4_Aqc<7!x@T-l1Dyb=KRAI9 zHDmb!e3S@&Tjj%Ek-tczfgF9T_=Z_T=k<|nOrc9RPW!aqE5-*!wYbDo&M)GP(bx8K z%VVX*72S?Y9*>eyxRa((TonHSRTuQpReO9&fuC8hj$;Mek!db>4+qxV@otVOG~O2& zIX+RKaH*+T_XceH6$s%Nb%s|XI4^%%i1rK%;;WNyugxzR4}5=7b+Mzg%8!Syd*jV88`NPdd!t7UAQJ<_WmCM} zEWa6EZzaBGBdACv=A*^bp-87a?cVs5^fRMRZPk&lOS$&$>QH63i$!OA+r1oxh3pEE z)vdK)H@vn_i}0_ZX8Cpr<*twC*qkTPW*w_TZM;b|y$Y_0>Iu+BVj#?~43UHn8Ot18 zk*a)FId4@p-8`p6_-z#YjInJW+%Oto77%_?`FU=z0N#pCip`YbG3%jhz7sWINyEgM z>VfMv%gkj;BPtuEu^014BHAdU>$V<=dc%H$X{IwL>K}OxR2l?txwiA7b5&dPnu7OkelPtuHW!HHrnRL88M`1rM(H3 z{o?W5c~LimN}jlSOnOu1Wc5CJZ##qJvlD#(Di2q*3bc?$mIrsXsnY4t(UdiwN3I{Z zeI`g(dsy6a8%Xa=cVWl|5}|WNI8?O;QM#I< zF4*pOBe~T=CI)af$)>U1gu%2@eaPmymhWqd1Afuh06W^Jt%l#Da>mfc$1_vg(%!Al zu8dEDTeIeS43%0!UJU%D8;|p~Ep~mrl(^aRpk+!e&6KyU;%pIkjc!*3FmATbs?Rl4 zzHZL3O3SK*Z9T zNrO3=pDU^L@?NGwE=%QuYo^EDEf_M|1%q_>i}G$a&FQA1_M{VcNxn^$qsJGb|K4aI zuop49hV+r}1{_p`r)sJ_K;9uZRD(h~?z8-nQ7Q27s@_=4^KE`2NXgu$62=j}<*YQh z$b5rOukHPcWrNdxbh?4%Vs1qHrU9-c4CO#JKl)x$AJ>McQh&}6ZLDtZV|u(wigz2d zqCOUN6HL@IQorZy>4U9NHx*K(Pt#bL%ymm)`wc+IXPwg|e?PV{Qvt^V~xK%2n0bpCUa$ z=PN?c#lOS!PfQ5|`BTc1MbtbEkc5*MLp6{N)~T3x2>?L=TIRF}qLJ8?X@Yqxe4Afp+ROtWt^g+G4Zw^D?Hy_6rw6D!nN&ammy7FjwcuV3QYwu98kc zIefECTCi15Z&TKnWgt*wrw1EY&g`t)dW}FMTt+xfDUHg}qT-X{l zCe!oM4B^RQhk=L&u=5Dx3drce(}<&pmUY#fsaxs|JmX<>A;uXK*>w}tk7 zj~6|!zG&@GxlvP;_sXGUJ2n5lvxZJY>PS?&>$PlHFIJL|rW#;e`)&aUTaM^BGw=w# z&u?wB%7e3RJZ1~PWc9kw}cSGoEZ?$k3Ylwu18IFGDUt{yJ`k&3)% z_*%kiy;69>G?`&R}hg5e!O z_Lt{I#LoEwq3f@SyC1urS76Kw5zyqc{+R3)FHWIR-97v9R`sI;J>mupIM(x#K$;>Y zB*!_GDt1zWKPU7OWQHxz_YJoNLrQPP17gtZBed}azhcn!$ipSdDKoaz{-)-LkXlfU zPMsu)oeM+)*JZ5cr#eT;Xm%o+LIoEn51vh+oL;7ZG8E_v>A|!1yWF0V(1I(>z-ZI^ zdxeaM=e^6n0D%?cwDA3TCD*jtx@bNLU6%}8&C$2eI1jR+Kxpy&!q2k4+G;DaVD=74 z&0LeK209dOXl{#`R6Rlz5!Fn_(EtLW76~j(XW?>+PPYY*2oO;rNCnM#LK?+29y)W~9E&Ro%y2Jg_VW%YF&Wh!X zo%Iks1%_TrV&vKQ+2(TCg zm^G+Pi?n}4=7H`@XbJVCXf7Xc#oTd=B2z{;yE?|v(MOLI0}la6Oxl8E4#-!ZJyH;V z{C6|;+wVrmC9U3+*=~ajCCA{o!Rj{-+Y?8tv%6%cGO{9~FH}_Y!HaTZRZdJ$cQq<5 zF1*rG)jEdL!H?I0C=3BM3Eo#Ng%~J&dHJDCjXNF8ir~Brg67s z-H}KFqrF*+6^oTks50qi`Y?VOx6-grDHM}2{Q-AL@@bUSr>|}6w(qZ-mj*f1!)+oe zHDD{{hknUuK?m7*k1Wl;tb~BMt&)5n!Gs0QP%tx#N=S&5mX=mZR#x21?2A5l1&Cr{ zVc`y%3(=tv~;TBVPf5PjaSZ)v1f{sy7A>fv7Tv)zo<# zIQ1Vf9tKkph^7?lx#N+4iP;GhKsJZI`Itj#REyoS!D{iyl5jJCqiy-!U4in~V_EmY;*z517 zUYVA&b!7eh{kMLRi+J)mZ%=(0t9D%TkBGRl+G^aF0AfVn)cQY*xhrMqx6hT^c_l~|v_1XAV{$2M6lG84j2lEJ;*HEe{ zdhnB}U=B3teIeJ<(xQ8x@E#i1gE@9cMZ1(7K7FIrWks8ru-kM0UV%sLOOat8>OHn~!L zXj53lbZbS4IYUp_IGYE3pjRi$3k3Ye#?&&ivtJWZzX_RBudt;e_qntyy#j4Gh^N2g zKhlNRO;)IUqSI(8v+Hq#Ca5Ve_;*bK3$PrM#NEebu3s4TTpUoRXOB?av6Ix9;! zGG=?6xto?5phBj549~Cl>3$0lt~6iCK}o+^kh68vUNLT;k0vi5Dv7K*Wd?EC+YSPz zyg*k{M=&@^jBFFU24)9FL*y<6CxV8|^Pn-aQa66zOZ+aNpn#CuR_yHVC=2%GCv~-G zZGy_CeD;<{*!T&VUC$Y5;fYI@t#xed*~9L=OG+%v_jX+yIRgVqt{xU2@8Xh@M)><99lguT zV{T7a`<)PlC7z>HG|A zqF4}o3J&92BiFY6=g!I`<`(@(L6}7Z)uE6%ON_!L`J%{%gU}?2X^pOB9E3#MD^{S_ zdWL^=B8x4}r@#90=@XK+_W4RsY;0^pTieqOTu3N4V}aTUYN^S09-?&3H^_;~983K+ z-oN>g>%pp#jITAslPcs5BL&Clc@;_yww$cz6>G@sha>mfU4QTDfo?bo=U@?_Olf!~ zS9b-EVJd+Kz^mi;ym?oonf2u(g}H?V4l(iT#zrwGTpjN-+HCoh+e8ytdiKuFPu$%F z3?m%1_IG#TZf^WH5v#tt@hGIBU|DFdEagj`P@Zjp3^lR#Ka6qNV_*#gM!yv0-PWj| ziL#pAeCj6sewoq>xdxxgtDVJbZdsm63lAT%_Ia-x_F|dyZn)9uk5}%KsT%HJQ+>da z_?QmT5e8XH=n3a%^PA(vp%D>7$)Q4|+|10+l;NU|tJoq}hssAuU^0n5XtiseNCXtC zjS5%+yOAU=D_TTl!Ce*1koZ5IKiXFgJME@q+vwdw<45~gIsl*6z`KTgR`how0 z$zfT)-Mko|0zAquC8Es0XcCY8=%8uZW%e#nkz_m=IO7L~&^``!He*f^aFQvgwRBi) z$2kN?Sh!pQjN<>SVn~?qOSU%L4EyV0^5PM$a*p!l3}|A|BCM~e?+L1s1q!*oU_uQ% z({HRrerv0RRZ*cRHM$@nh#uWgicUIZcbkzUQV+0X1=AIeG2FJ!X{Fl*-0L2{@h-Hu zff=>Am7ijs-(yy1K~xqIZNI-VKR@5zS$*zrwDj|R0%#DJ?F(M=eb|-6BfCU{g;(pk zM?E#=+E8{ohzQq~5+s?(ObhvkM{wA)kZq==TzP&&Mz9A=fW;@(bI)m5DitH;bTW0J zYCz@T(`}(~5l|a3Ivwu|SeT|nF?X-PE+7KjehooWvTCOxHcj;N^=^)^eiv|nz+sDlN+dDftvzhUrm61Rk zn@;`&GzrlYyyfv%^8THwMpPEqRk;%o|0nPUk_SrCOTH{|-nX=SOazLger!`FKCJuI;f@-N2K&(B$j*y`-%ySd~vF zx+Gt32lJ36J(D|~bECxG`)4m^*#Sm2t3`QscB%N{MW8RjRXi7`qpbLIt*04Zzux}w z<41+#+Pj|SU6zOFP(cKg+3Ipy$I?U^Hpk zdb|kLpf%$81{xN51Zd!AetX+o{CDA09I!RjTCe20hESfZHOL7+I)3_(36uf0=9Ox; z(XV&&1do`dp;D69pRv0M)+8^p25n{Oi7XK%!t6wxWWUC!su97a&qN zZx_A3J2AxD92ud4$-Ujj^0_Y2O^{L-B!j>k0ieA#yUk3^6Gni4sW>>Ee zadB}OZiNc7enIZl)uM-}JQ^f}Trol#I{$!0sfK0XUMHsB@mMq{!7i2tA7onLidB_G zM#|TUv75ay2&t^nx|^&tLbgU5w#LaEP&mX-hdF6a@o|Tq z?eS`lo$cD*iR8Gfxg(EUpE-W$SqHO?syRdMrZqCV)Ac+8+1%!4$m10$hMwyQSsxk#)^-X>aCtyQ5V{0suiC3^x# zaSx$-fgp_P_XKNB7?pQP83scH3wD2mL@eszd{%!o@HA4&XKk!sf2SfO!qC=NgY z9GIUgmyGwV8!>~KP>khG^zk0+8}p>6pdwadLpmHXf%Ib$J( z9Bctx=H*edPXdPzg%00dj6#1Wspk?l*8%Au;V~1|RusH=84HZ{d3Oea&n{?iESL`? zJP5|;6;IiBCW800lECD)wk|NYatkZf9^4?j30jz~)ID7n$uxCjSCf0va;PYjv#!e*LJz6EZ!Z z?Kbu(cvbG>W~qac#P0(+`(meS089?I7d7Do{d>v{SQR z$ZxWf+#NNm@Kw-G`5AxZ*;aeHaqD>YH^Dn@mI^4`KBm3)%3p)vE|NevTv*hXa_3>D z2sV6~w-x`&2DDudIF$=!IGgBMS>?(AeRndOcLLE*!x*CCt|YJSswNd~2Ud26Y{6Qf zrfE*tr{|qJT_3%@GR_Wb!^q@^%r#hz9!(o4hBQ4#*b4Gp#@c$RE%Oa~bsH86-`S?k zyX3ipcz5n@fD$4)B#nV^EHU^m6Rd}un1)9>QMGHBBwi~^QC#AFQaaWtlFV=G{1d(E z5;>>WAgR`hYPk1w)+*Iw_bB**;p;DSydi2VheXEj3EagItYY9`hcW(2oI!A`$6$w8 zjHX7#zrYT6_=0ag{<}kRXouQ~E)UvzMGvbgSBi4FJPN$u5p_X!gDJl}RDDI2DM5WD zkz+7L8y`mn2|cQ==%4ox&0$MrqeE4|g~_QR;% zjh#J{JVZ))TK-_?T1eH@_mIRWkr8oLi5gZ5u|skC5Xfmhc|iMy%-k>zuyJHGl?+c2 z8aFG^==i9w0!Brde2Auwl4|1D>h(m6kDb9{mXkzWGi3k#m8lDKk0-b<&V%45Vqlji z4;7ZO!=QVluDJc`&n~N2z%Hw;`X31!V6XMgoFrAA?B{fa*m$QB%`Pe*aw0#{?#jFB zT)i$VV9yv#0@X+{Uhx7Pk|)ZbuH46`ALh)b1KXpygs{luaK-TdqF+@ z*6XKV05Y$}Kwjlmk@2~@yGhj`#@{2+f{tXm==sk;xPk=uas_6mrAk&5Zr@SVWTAh= z4El1c0tC7C>!>&>AM>HkNU594CN?gE1p6e$uC(rWZVSueyhQ74GtTL(+6K=qs}&Lb zM`uS5Z)t4c{@uGKc+je5&Anu>sWTwZy=_lzg5c;tplKN#ss3E5Seh~L1|xUglM+bG zh3xonD@+}|BNE;xI@pP-|9L3uo{dX$ z)Z**V>v<+EU>PWZdeBp*or%-?<}rX%`b-2ag-4t=M3@XbQn>aO!wqCU5vdfhzwDH6NpEGyGw@BOO5)G*lOlb0Y{u_Bz(E2>=*R<}T3v;L?=uNWyVYwMbfCD9XCi>C z6UMzKSh7FMb$o2dtM>REZb}WhM|Hg86ED_`Q(N=+4f(ljcX5}20w?4u5T~p=XK1O| zZ!77nr$e$2hjHVB{Sn{JLBa$33xMn(rSJZX19l(6jKj}Y{C}U+N|m-(Y^U}x^Bnth zId`WkfH#5*OH;JRHib69TsrU8dHhG8l=aNf#oDfd-mxL(ie}9(J4b&FH*pBCH*cDh zsDQNh*#UpzLMk5ACk{PA{PwHyziu{|8ayK1_ThI-%H5;**;iJFCfxxlOjm-rDcVt8 zoTG=vvl!*vwK*TF$anS!#b6QS!V{iH!>V5xp^+eoUdQ9zo(J6~%c&mLTxW|hIaPyA z3ovM?_cEC9#sQ#H#oA=K%^t$~E(e%B>Hu0gC1=HJPcT=^`8x$tvT6B2M$xZo0W60S z1BkME`)Vb2C|D#p;wOzi*NlzCLkSjnD|#_g8Rv9;b{5z~Dhv864-2;1&&;J0V#}&+ z`8q?%Q|0%O!kLRgiA23UhhKEFH{CIYu*j^}$rg8Gx%sDwu^;VkX}XUmZEWO4&I~~! z8_h*V9-9AL492G=L1S<>>n^raaC4~F_>huB9l?14IfMVg22g;H`JNK*Qy}iVY`R7Y zf8_-d_w0tRa1vjH>{r{>?s;yDaVyi&D|&J!*@zTqGTor5n)ibszJ~&`71RZ z>8sOmlaGm@Db%#4$5!bwXf(uI+{GF028P2*d{Rw&x%rsf@A~qfH@Ws?W)f$E#JWPS z(APmT9NvqV6QpBy-PahDk%{g{9_kA_Bv)JgY3~ILeE}BlUwq=1`UV0{TGw0A7rmmF z1DAF=8(rl$U#9aq7nP4WJyH%ZxBy0(pbD2UxQ&Fp3JBY>v-1td>ab`slCP`ND&NvfiijN$i zLvbeu8Uy?&Q=1bt&=~o-MY%ucSxcagg!TD#Sj-qyqT&82dRbzqv7*bOr z3F8q1z_A2&&(xVN4A*6kfly82zsG$D{T>^MB@kR6!NWVW zSx9~%*6ux1?#E5{dc%dr&gXdKZtkAn+oLXLfyQ@v6?Z@4f(BnfebTx=IP|E;1+dkf zHeN3C*4rHq&AM-}oLIkR%w~^Xt==k29tV8f&nX9o3A3C;&@^yR2m~_AIydL>XInNt z77%5BaCLISLt6r7<0XR$gzbrM&gMfXx)9Mwb*(`kCX;fqn`_%aFnN_GMyehtcsGcT zEWpre1E4d4HHi?~2cuf+xxx6qo$eRPa!aXB%RXi(=fDP-J{r?Sj(}0F2f!bAefd`tf)}87P*8BLBQ)08-a=qz3m!s(u1$i@v zaijQ3agAR76;dDyllMz5`@fsaH*`Yr4d|sv76Q6@ZY}MjWHY~trvGkC^$W}AG~i^x zdk}UArfT=GSidMPuWKc?s6d4g$iLoZV2};8zD)z5g_0l);Qfj19 z+|`8JM4X19G|BzAPaP&Pi2JYyqgO^X9o|R}DjrMlheV5+dhGQU=6Hj?oXMbn^Gv;c zJ$55dsbY20^q>#fr=Oo^kaAE6_~-e6==bicNo56Lr?ug3-q}s5D==A+By>S-ko1$= z?%WS!Fj2uVX_z)D#rEx!v1oj@1nx6B3fNjt&qEc6f@$pmV7z4N5A|d)l{$OGn zc;4cLff*jx zz|aIo;mImiu7E^~(YV7j%r9T8!JMGFvUVq9-y2I{HEqZcOa__=qy3C$;s4;M*2i`D zrD|nGUUsEVEGd{Izn#c4uLK&esIhD`n=8@B;YaCIdgMxPH-0~Eklp!~UFG2n#3w#A zOG{18YNaPhP}*a<#6(rwEi3$FF-9Rjw22j^!et~+rbW;qo3`@$d;^+CT(FShWBcn3 zufR<+&g)XHozzLxfL%L%p5AE(+1PmDl~&eI58_@ZZ0dcxw{w{0fW2!~40t(;}*67NyonyZV4}E8TszNg&Tz;I?nfeh-gWj$zCDc0B zcn1&q#%xu>dGxZrlFdwIIYdMB4m z%Y6ymF?5r;FloL+hUr`EkwD>bmsW*JZuMfTxn8x2ib3@u^HwAI!=y2B0X&agEdgqd|N}_E2VEJ0(uiEu>1(BF7dswRL247c>^sMY6uijkG+-w z_xKgEySLwx{=QK}O`gB8bRgUgL^=d*d1RiUaGMY%CE^3HiKiYlNoofy=t*-Ujq7GGN`r~br0kY^?U(Z+N!G1$m9wpgy;wzn56zioe#nH}0`5E|htE}Yh+ zAM7f~(`qrWnM&^3(7 zcgxzruo2}Z#E+rne%5mDGRZ^3l2HjY`$`Ehub$z_rX`n-yy{eI9J2)8z6br$aOKMP z!I@f*95*J9*2hV}eL9U7mylozWRc}`fWM12&k*jms(sW~xCLBuH3_C_icy@pW*wMo zVi$1bESpKP*%d`5I5IARwMThZ{ZXIW2`Fi(Vh;vrXp97iyGrhk@ z_Kg4qI3)oJhZY8KN|;EALsd{zs2J>P^+aAUeKXzq-|7vbVejR}!7{dD?!IEq2Y9Ri z&%3EoDdyf1SSxO>yukb};jV7a@+0MNXSRM*ed4YOLLXsp*--5*_f$C>?!Hm5n-a=t zE)TVA4BnxN<9U&jDTl=Cs(n;5)bLMWOUjY;!Y5N)g(xoO1OvMbda1Vrc6_c6KGJh_ zv5PZmdVJ0e?<8mMw2&sG0-lTzvA`5?tWuJ2I!z_LesLwiWQ8D=tqZS=yo@%7bx_+rrk%0B{-tyz^{-lLD_jfy3a#UBeO@ zuc}imhi;x2kVdFyPCZ>N8I+fe1A{sla{OpG+&XjAx)gYiqz80H&oX zi^EQLn4^>frl%H&zZ_x=2MA{Z7J|Z0g+jF7wUrrpt>lqoiaH|Zay3{9sT<~*P#dX3 zEEzeBIQqpY|K)BIo<+bI&Q7!;@Z=i)#`H*Q4((JSe4NH$VNPhXkDrN;P`J+dbv)zh zUX&tPkj1l59mmm&o(UmyR@1lIqsw^mMg|PA2yLFwc5XfebE4Ge-=Ff2MIYKB%&+Bq zOvOe^`cl1F6fSt*W-TjT9?Uk=nU6f9A)RXZwE?A9E^651Ko8a z{|SKRN-D_t#LOF%_rcxs?j9DcOnq-aP`9??pofN3b<)hgGfC|Qn5+Y8_c^bC6$pQd z%^;Rm4^B5<+oq_4&gl88$z^ma^!@kKv}X33g>3@$LtBbTl4*EtHr@v$geFOe_%p?n z2+|QxTudy~S8!INM9x3UmY05!=j=pL<_B|3E%rfU_ITkF-b0N;j!U~aGe`>TFpLjR zuCY~|x1_2F5Oq?ul5e-LLZ^Pp2Cm~JULgDp6#e2b@B<>{cLaz{*|+{HM>x6%hqeB4 zi4Cv)yBY+tt4=KP3ZINKDWr*~77pKhytyJ zi47%E+>rLYktpocfC9(Vb%wxdtXkk%p}ZKgdAc&IH-Jn!-)D^6wx%zJo! zl1U`y1FVJfwt!4p##WfINH~_+S#vDL9t#-xS(#1p5ceyZSlVqU)Oc3XH#63c(+NVd z>na(mPE)PvhW_8;t9i57d zQ`hb7YbKp0h|jI!#_z|eD)`- z4ut!{nW8?9@r5*O59TQN)43SI88jlJ4jIboh#S;pbKIrjR2t}*OWk|f*g%3dcD zVWu@mmCxQHu|l4v$6SB{Viz;mU^7p)j6Rp_j83tSFivU~S^e2^a=hOCBwPIu3_<_K z%f8t{DfGz0QD*b=lk1vLa3cHNtPd`)=dpZDAKkfKe+$Kve`M~(AK)hURF_l#J6R0y z9DWaBV^Pv8VshEH72R1NX$1Cx5}x+HO(FNa8S`_iytv9j3FYYZeOcLr#7XPwZZ-cd zW{|Dh&Z2ed0(jdB^kNnOY>#Jyj z{*Pm7Vn0b8`yRLAE*bYr5<2yMW4y&RX<3{I#thu|XxHzs@3B0H;Ay^~eaYVF8| z@(K~LTFsc5!)lWs){0x1Z8KZfdg7<`USuL_IMijWh)z-SA|s`|Xe>zFp!Ap4tf|X< ztez>)*a4Srq&ctPR!L0Zu@5*LUCPdV6#L#Jd%I@hZK%Yh_@(Tut+NMcN`Caub;9#@@s`dY}z{gL3Wc32pf!HEvY)qW@jc{x+c3&!d z76?u^2xqnC3Ewz}np!kXnn|nh!N|v&Ha-y4l%80e11c>q5eeBYlHe3n+>%!0d7D|4 z3UE09C-8Ls>bM?R_eZ=2O+J?FVZ2_857zP z6a;7>fi1B-za#S(eUuO(eG~H5UqHcoVCp>?z>Gn)fqn>hiz&5>rF-5dlQyCbz?2FM zq64DBw&h~?#}70LOMpCHm^dTgae(I8Rs3_l$mRpuSWWZ9ckQ1^!TD72N~S2h4xc|w zQt^j~62yi+!8w<({e}yg_ z+jMCU?;UZ`1bM=m|QQF1ty zlxNqQr{cDzKGL$5vXIXk&uzS3O0R^K>|dr= z@~f_bTPmSO8i1GA7D>Q{{C!m#EFMe$D?W*(>HGO>CE2EKZ8L@qNJLMpwA;@cmk=#G z*-wI#3l)-I&C(21KZpzDBpMTQd0)D6Edlz4tzqsbF0XMoOBp)=VhQt#@*tNaZQMZ{ z&z-pgB&=uXfhZWKmU5P`+t&-s>I^fGANd%eUVOh34}f8l0RR|iu@F_6()-#Rwsj0K zrNW@Y!F&+m2f-;931qSx0Hi;-fsan>#I;_6s9q1mV#{5fu2%hga#bJ&1~DhwL2#yC ziYmf^-!vQ#Rp0Bpx`78MuW%42(>}z#V9J&=`=>&o?<=h2{M2mArh0FBfEu7C9lL{im!2KtWUDwek}ad1 ziZc-6#1I)LP$gQGjpNEL$Jfrf%zCBF%Cc5wZdTR<7w&;;QAMk6RXTi`F;GC8E4%k9 zhBIsB+TRt77fa{@p<0jDQ|>A4MH)4&Ms`wbVz+^wS>X3?M~EG$=vJe+3ZAA3M*7^i9P3lXP7NUGjYk z`{p}j0z>2EAgHVdKvtm(R8?5X3#>iJ5spmRMI}&6LxJ<$b=>L0ZCakNDBvNn{O(7@ zp&v+Pc_{+8<<=w@4iHOxJKNB?F@H4UYOvFC^(iRQqojaEZ_6@W1DE0;d^wCh)%Lgz znhE6qs@jx=TKS!|MA%l z2SkT+NPdg>ONS%ln1<}(;d%gQ#5+PzRp@NnX@3*0bJ?g%P5YqNPLatkQbTGN8B3@S zD&d?GSOeL;LgKk)$QyW_AMQmld4H3$Yw}BJCcJI@sz>-l6Xb)^cJ0=P8%g%hVwL4N zbU@N(jXxyT8W0CPJ0OI4;ZCjt-v)0?bhMg(h}YH&Hg1om!o(s#xP?VNMTN(j<-3K7 zB4BKkXLY<=sP5P=NoHnal^-uW`VY-)gEFCa-B&9MuLK^463XI-2ImI>2720a0i<-}rpskH`bl z#sL1T#PkP)x>#BW#LkBh)D&rv0^i!g5rg&TS=fM^e~I?bU%>o6!A!3e@i{7?M0z6R zkLjvzYy4Tozdi&l>CX@U%C&A#I-u-|6@gFzyJK_EN2Xp8S-@rQ(!L6nEgOAJmslWaIe(eAL0(doaK+`hM*8bq3 ze=qj`Sq#V?LM1*q4S7%r;lH2yAAU%ihIkQc+U&zW>ha${4$q+kPgmAedGOEO{fDpn zy^ua@=yc0*mEHen=Ks68f3G`D8G1S+JJa79lK;L`Q(mCY;Gk`tN4&Lx!v{pAGYkj9@E5KASzob`Z5sW_+OXmcpJh{ zsK%1N)1d#`hqr=(fH*U8Wc@8J`M=J6;+9|i)t1dNFtS__iJu5YD^1c(%Y4Q*RYl3K z-WK4pUzBoyQcA!_Rhx~UcIsT~Th|_`H~`io(JUurqy?lqXOq8`&rECrmdbcgj@Rnd zR4Gc$R@r3Ij{vk}@c(>*6?;(f03}Y0f2a0<*MLGM4F)4&UPh4XwjO6%`47A8qeOx7 zqLjiQu4*a5W&@?82f(vT082=33^H>p9;4&DfVPSVw+AVkoz2hHMxN1GC$m2F>VOXK z0`(N5EC*wei30P1cwIP8N%a7cV{?AIHCe*ES$}iA9KqGY4id|iiDub}nnF-Q2b#IW ze|0$64VZ}0k_roS*Q&K_uFO4``U@?V9+HJ+z<1}i)feJ&;vZVjXGRTSA2b$lPX2MzB z$SaOav@GiA0u>7+bk9efs2e`D1J}L{V-01MwxHZ?K*mb&x%@?8{L$-}18@eigSai* z@19b44UyWnQyH&+$#LF0bVN!CLgCJaNKf9oC#l%GnbI*(Zgq#ikayfLMkx*?M;M_z zsQ9!7$Q}T|(C-Q4lb6DvjjwVMJ(4hLEcvw*N)_zT_!0PRw*;@K zCC=*E>FT%tB(5O00cr!rKZyeHr*fCqaTkDzN~^2+V(L+?bibK?Zo&?oxJmZ`U;fkw z(p~t<&)(k4ygYsA9z5E$8s4hU}xF$UC?fWN< zpL6m}TBh5D@Zxyiza^k>@+BiN8_TI&QO7~5B~lAnli`{dOJ&RjbG3vVC%$hyF-ser zRPjEYM^n|7{MltfULWi7+;aUJ{pKsmI%=g@cmZJ>wb?p{wbifxW=x$ZZ9$Mn3mls^ zCkW|jfp;seUcLqlqFwrUz#TkU_6I5&{DqI&V|1?8Rl`c-Q`GbyshfYvdY2I?@URf& znQ>PfyL9j!qIZXDgY<=lvPED}Jw5m)xqU!b8=r^iXnO9ouxgDMTQ^dy{n`n@5|P3L zK_o=%hSpYG_*`x1^h|%rNliMx29fBqO)8hL(oT)z8S=aY%eu4W4&aPGs!=l)K5C2s zh*|`s{w))$Ym&iC!|4{QEwvSXS!b|;<_WiaTL+LAr-Kqe`dDwDF;m4c7dGRD@f0uo zOmEz~5lthN=U<97{8l<5v*}mRLs4-9l|!fnT?0fNmj|GCz9l+|(6^50zOd>tv}bf9 zDB_$T8(q1}aDYSe~fWDe*N|NVn&pR%rUtB=7}K}r&d9_H}Tr;W<_0` zoe$#pT=qcb{X>{A1E(9XGquG@KHx7l76C6V9jE0y-aN7GJg<(+Jr1at7?6f3p#A{f zIIQBH0VU=g0EHxPmX2z7*mttTs|ns1S=*smk4#DE6TZf^kfBuvEJX}R`IdEQvGB(2 z%9)zjrTUz8>d^H9+$D)!w;g!24^lSHYuRM4@YuqH(>MylDe}Epi`uDKJt?AveYwX$ z{vw9R)y4qZb^{~+Zf30p$?Cj;ix&O{h=B&O&Hyx(1&n+x?#R%u zSIy*>Nu)s5dcN?`F6~S3??T013VBwCfdYh`0J5$wlxC+csAhS1Fxacl_*_iR3Wy$B z0A@eBx-8^N+|;Q3W1;}Tqr^wmppJz8n0>^sF%bRBjG5}`V^h46dzWwP9|zo`9VwC5 zCuCH*8sHrh*PX5g6BKDS#Vb2T^6vNA@>0nFU%#?_YkHy{Dq~L(g*SO7*mOSxfUq5LnrY z^V-vea6!^Fq1zhYsg~YgM7*D z$`$f>)^^=%DGHzC-KIrQgdwiaL&YRz+b9g6KdCzMj|93*5~L1{Mb=DQiTYt@7sEq2 z-sxCUmnl2+KrD$t5D(6$tX$XKTwhqf{ekCe775<8lZ>x}thrG^6#w%5_*>OXl>8T) z#dx9K1P|3J)NFsC;(5$jBzjnjTx@bZRrG6#6x?2gRRWrw$xp}#$F~JR>KWVduGG__ z$AOO*{pgK0Tg<%$loC(oP|{@tB8B#)o-QkU1L8W|W!sx-#@1%*sbG<7Fp;sXp$G=0 z_HI-%C~6sf-wO(eMh!t)Qq~(3Nbxn6!@@Alo=z~tg9~dKmR`qq8X;F&-HnoVT<6(~ z@mWVbOUt8*sjUIBfu2bg&NGBYfC6*K{Z?l04YKVvJ0;mV-)ZF+((78?BBc*Okx_4D z&a+zhcidZ6Q9-PsKJA_gC)dwFDGbuPq%sK4c?c95!h`~NkNEKk zBv%Xaybc4e!>I6p}J|WijMgI=*Mu8Og~+3nusz@Uw{G;@jM~$?)|mh z8X+gP7>eAIVyf4%`qRKPJu-{1PcP4)SkR1T#Y{SQ-tNsU_CPrXU>%CWDT>$$_5+Xk z)&dZ2qi$)pbHe1hQ z=u_A%D5w<1d;}F%X?`#b8>QBjOnF?*OEAzFd57CUyo08X%0T__HtJoM68~}9hR7iL zkDi>KTO|o!Ot3T4K}vDs#{}N0?i)JMa2d%!kr2*6zAVwOAdwJMp^_T$FCp-gYpVBV z@sf*~G4l2gIK#CH6<59llys{F5F@3aauBc$Iy=IviZAp4kbD#1G(R7I-sG>qys3te zTyiXN^H?~H@C7WOiVGwJUz`R|=6o9$H~IA$x1`;TaHlT}-H}4Xx}P&D2vub!%Peb9 z_3>sg`xCEtQ2vhM4$9xf|5LyQCqf#A9V*7KAHov-ZaqkfPERAcQyK8YA_-n27M+FD zVz%uT_ayCr^quGF?!0CkN@MbFzkkT8WD_TT$!jVLP#wl|a{paDpzR~mFsFk?qxG;Y z6F5Fg3Q@&AAxQ5J5A$bd9`IG+epRXt_^qf4$B;}8;x1Dwu~1|5CB*b#Gh8;1vR&i~ zWPX*V?jJ_cUaNR8gtwY$1Wf)tZK{<9p^=Ic%zhC7Gu*i3q+DID<0bER^%|l#KMZtW zNQKjHnFZ$SNJw+JEj0PX24d$+LdCf8CfqZFC@k9Rk1GObqTo-9h2(-U$<`M-%oR$= zx~2k^0^tQ{7NFp1jf}M<(5$^W`$|bipJk~JD;z1-=yTR|B8ot@?&^&ib0;o=zM4eX z{~_!xfZB|{wO1S{??EncBWk)WXzEA9lRxD+iA3WW-8#oaYHMT!=8 zXpvHSU;gLb@1FDBZ|2T0nW57OlkC0MyY^bo^IL;tpzQ0P`&|-Sm=Jmic=80r$wl|V zvsA3@8pq_^Z~rF?@NgtXA-*+&(dW}yx-8NDsW2|y5K;Gj18}7bR5!Ni)l9_(V)jRZ zF$Lnl^(ESp1O9(V`XLrl zi9d&d{~B41nWC5j%NH4mY3I|ej}>p2Vw+5m|D5b)kk7S$b$oW%&XssO4Twa@p>5%Z;*N$4X1t8PbInlBa<4 zVOer`BvU|Zbf)6L==JZIpY~v#N5kWXw{2SdQFB>Vg=mXs2(Qgy zvS>ck$aLnWG$`9Ao1<4p^hG*H1qVl!sCR3!U^()DysPu{Cx{xDFvSOI~kGP*NOCFCKKCIKDhr;2+(&q48Tqwdk1q!7;PczlMh}Iz8ja* z1O!9}?}G&VAZN~F5B;c3tGuW(>)KyKMUTG{kx;L&P}x`*++i!LCLh{dk0lB<3zhFB zkU?5@JSf|*IAwLR)vWRRwSN9n2C1W}=>1;>=l{1}@t#DQZcDJ7*KnxDfef?Mu!MUFa`jIn^XSIVB%vx91GLB6QOVY763rKBHD=K=1 zh5l`nueu&T#SF^pO#+gO-oTK@G4HoDA*d7(IU#jLOl+ZBC?3lPxK+e}BHoltNktkx z60DL_E-&vhmdV+g;D_poW0a8`HSU($A?>0oVEPqP&IA+0Z*MO!eq9mf3-dVx`@D7p ziKXi?FHsy$?eHE-Jgd=Ha7~kbdLTQRZW6VhL6y@h^3v_t=+LlGR~nu3+=hYuzv92) zhW!^LA)4`(f^EI6nras zfdR=rMk&}eRY_z;`c5m(_F|=a8yP)}^>gQSMOLUvX!YVfpzB|@Vye+-3|y-GlFp2A z(Auon&+El4lUHdrU9Ivh>(wL_=9Tvx9X_)Yz3!F*5?*_kIcBj*&Yd51E^Cs2Oqp6O zXridSrEmR{7b5moJNJ5l#Np(zYS-4EZm(!=LQ)q+z{nDWlgzzind8u^${MCm?$Tof zMVUEM7)g=LyI$fX2@~MT+I;3gvG}a41=*s?!`|HHLiC}W+bs~x<)iPebx5Hwmxt4z zPJi(MlNE&~3d+N9Ai_!VwgHfO%2%Ocpq~g(c6miRP+*O2LB3stC-}9yz)SCWbMgq zGJB0JdJ-U5zgH9D?|1D3lCjr@*wM|olm8W6o!h)jw~XWdDe>}xIZmJLzm|3=ZwETS zBHEk+BP(#;Dusa@LEV$&6jAq8slBLXg+= zxpY0Tcd=JxjP<|D(^jc?{}g zKCAcPwRxESp5EqyQ>b~d^-ziGx|^^y#j6y5uQpS)PR-N!RO{lB4Ttw}^b!w;qjQLW z`YI+7Ea{PMr{hgHHI@8X8pIGry&5`e15NROB|T41KaPHJwuzDsUu~_o_?dtuok4X` zdZZRQ?dAL-;j3%=IGlWniZ4ohn$FKeUXw|1?6ME2F&)uN{91^~TXAdD46N4)h7JIR zyw|%)1A-~px06fA&hYw9)xU!uzzyfU{7WM@Ohc~t7YFH4{a)C$`|p8)^Z%K9;Ly9j7$^<W(E zyi7yo&m*!#ea7CosozA)7g22?yPq-xnh4rQn5vG)oSQFJrQW9G4n@fyawT>D&2I)p zQRc{NaRJiG8lJUu3=gBynm=YrKC_A}-R@Zof`vlI50e5pQ)OO|>42ht%)Ysc{$U_J z0ddR#|H@-T->o`bu)@XPM9?;1;A?v8xC65lYZcSAn9~ z&~e-`fG$8LEppwMDAuK?)`&e`zL!rZ^loMh#lZ1O0hj*}pcw22l=MHZ?xw6ODuh%6 z6W!`XqqgDV!c?aODxu}f1p+h6?@q_b1}!5vJ(5m`^yPyr6>;Cpl5~mxwK7WoA@9k` z`~R>2NUdlbJ4}XwWH9r%fK}%>=$Mj{zq<2ftbEZO1HVX-Lx0-l&kVxGU;BYdV^R2M7?8^uV#0`W&+ds;e|h7i+V}Rt;GMI z6|Ld?CiMYLCYa?e@W9LDO+PzXtMf{97|{-Y$Dt6@4 zQ$NlK#XyxCV48Twk<0g*B^6xGyTlIhzlT;;Q{Mw}>k%#W$5kX`f!-XSuDvM&e&FZq zE%(n`$9aFapbrNQvOkC;`@|!#Tzo*G&ik(=4Ca%=1}M)+Xm88Y;R@ebL9eVq&0k4? zMEymYynQ!6sJY@NGw|Y72)Nk<0Yj)_;pM1Qw7gS*cBLf+V9$#E;l>C;DVH_ue7Ohp zNoJ>rH>8}G@68rd3l??F+ykupaeWHA4f;q@kxTRZEmQ7LucV)pj$cOn-* z!}D4EqTz6d_D1%Ap{4Rj$}E2tr%6&xfv`sFCbJP#(3Xx+J&<-?g;a-FM%e=k>Vo`p zbYXprL+VCGsTG|ZmJi$?+3Bb6TMV>kFGs2RAX4hqxQ?lk2rf90(XSG|W z*@2z6<<;y|@_`Z2na`hwrmJ_UYBIY<;7UMx*WxpfB-!tk#yKp!k|a7dq!AtXLdW>= z=>!DSY}9ye7Z(WN(|AiN{#F0+8Sl7wRzgW8;zX zWwH=V?9%ra?qXI{Z0xRK8d>o~nJKL%wA7g->+59p&}N0oZN7Jv?07KPBj``r1+}7{ z%c8JIczWBWs8YD|z2>mx&veoxu~@!ZyoXDO+7E9Is$!TAKm&U3A;xhePEIm@4n$Qq zLZT#s>L->f=GqX6>MQ1V%pK_wK<6e<nX%)NG}1Xp~+qxzdshy@cXVL`GlIukXcdiyps%fNAqQ=9q{Z9saB%82I}mdOX>x= zixsocHVW-URK^!SWPLz1O_ON$-{012AxOy7(M;&|?Uo*~h`3+-=-uvZ9;JDX* zw{eZYgnK)RfSOH{p1Ij zO6u7-y32twMexYdhO&d${`J{XZ!bRsPBtkO@wi&P z1wNO3x7b;h$1qch6hF`s|0t_UqDsi2v71)(-%n5L;*9ZyWX+@RIhi!|tcJ zC~+#RZ4}r<$~tX)0QT)gqACaPI^jO#z%r)1zq`Or!QMB%T9?2rrg$~^n}G$0;ZJcW z9o!lA2hVKhxh755!L>}XQter}(cl2wI~}k!ETD~E7e$9Xy1#9nB}FB}p@5R6epcXmg*Me?Rs-ZMMX+LZIJzT&1~iI3aM{fE-slx4qq_+VEtMSS(p%H8PCcbNud% z)D;l{e6CVXJgT9$orOL|Elc@RZ*h_k5yoE+PP2T0A`e5SdMP>({Qy+DDMXhTvIKJH zyyo&L(O6~XAGZ!)l|iJ&I$Dz34h~Mgt2gcEHAXF1S^{+D4)PNOqwP5W89cFTUjcP2 zcuvASNp3G=Vy3{(P$WsdsQJlx`R-wjGFB6LM{EA7uPfdI{hf0T;t(sUY`kVk^MUEm zTwsp#Zx>J|d--RXHP$7OT(iIwl-)19KUWk+#4AeO{(#hX70DwAA6SmDLHcbFu02?T z&AkpVm0t<~HeFHp_F#%^rXam0x5fs)=FN6))$4ChJTGW$f8gH4=$Ut^J!i~Wk98pp zT+fhHqs_QDEK0M$Zc~!OSTtwRWJlUGy8r^07VK~hx z+x^q~J@W>G4~F>NgIppiQoM0b%{taB1z{V4sIKw&<($e}&Ag@U=ku6|Nj15d0*3Lz zNGS*0h4^`-IjV<}(>;NF1SpkHzT-a?+mNPUHoZXg@VaM82K5-sy-&SK2-#9PhNswx zV(lW%vX8Ityk>H?AS zrg1SsXioi>6PuzQ~s*;)$1!a0?kVKUiM-ndS}S5F6j{KxTH>Lqz3NFUr$d%LjuF zMTZtI8X_*~3xHdUXZk!#uI$Ty8ugmxOD!s)(yp@4-`kEq&dCr8AAbdwwEIeE-}14& zgq7nZ%_+Cg>uw?2qo48&5#n+6BJr&Iv6nfUB297|;4=qAQUP>p?bSjJ7t=8CLZj$q{k&3>D>v(kw9zuZ8!ybQM3TsLAlj0rb&f~Jk7Pf8n^cOl zh>R*fwffKlW0p0@h+Vv zS57``w8Osa`3)dyd&j6m0Zsk)spvJ=(>d}{=H9w<5<#y!^Y@J&Cg{$R=gaC6-ZwV@ ze|~PT_|ZYJMNhPvx{vtk&UnJdOI*9V#DDLEAbt*+Yf2nJI|@R7>nydelF?KisnO*% zMJCI#|M2K*dwgAd6Op8X3E{UMVItxUG$jFp^kF72Kgo4uCO_FLd9yElEPW zK-nsk97=wEC%8&7HctjGlw=f@xEx%FPNIld{!;vvvt$VPJSZJ88!OjBr-D&x87msQ zG3aA{xx)(=L752zbZxR;ghXs7U#M^3ky)hI_I%(-mfHZ?`Q!MLvr+%$1;f{b0+?Ge zVv++nW~RvQyw!m3Q}^KYxLhHRER98@DO%vsf0uLKSTLtwPb}$%o6@8i_}NNZx?~H6 zc;i}jZl-{2a|gwt(@-x2V1MPdS-_{z*(&vM!L(4a6SzI$g4pU5Q^QcH|+VHGj`r zOWVW^AoVDy&n8kxTqT^9h(aY47G&F!kCQyw43xeEGUvcmI1zA@(!9sX5aj9bHeuyKI4H-QK{3;EL-EitcCI@#MYP8rRR?DgjwL~-7g6Lm7hPdS@F%^;uC;0jW^&Vb$*?t&}FhRJH`3cLLM<_Nh zT{H2I>zB_mDjI#du6fJ3H~yL$N@%x^$9Y!=bL!F^;flD^&=lRTtbd2v&G*Pyx$Ts50K1l0m}|!EWlini=oW>}-#?fGf&O=Afi*CzX2szJ9w=DEYI# zCv6qz2y0udd{xZ4^sTJx&}_mu)V@xuX9VGUfP-Zww1 zC+C-3oC`J-Te4cR40g$y1K|znwMs$pC;{f|8saV%2bKfEqfrZxONG}O{>#2VS~S^8 zFUymrB(nN=_|C>y>ibCiVMt_%vzjIplublN1>Vt}E9kaw>GHp`PR#~~|66GnaJh0@ zYPdb(-4Z>C!m-)6IEg7sVF3%|HTwN}2rEooY{#Jv6+yT3uX{hap{vg5t9%_)7VL)b zixCXS7omI0i9J?pvB)FGFjS^947Q>17{;ujH5eh&u{R!>quPf~A3`#{sp?(le3(jDzQMjvrEKI{fv-DN3#in}2U#E9dn zEqO^xO8m-17hZ=ErNABPy(l4iowt-*s1qu=%$ACa27|5^r^cAxA*c2@6>ObZQ5^OM zQ-BgO2PaRH!Nw6vvc|E}v!*M<@e*ZU5HBbU+aY~S(zze3!{rUMHB>5U#V!j|dW1)Cd8^IM6vWEtKkg)hCs~<^EhZAbk?={Ta0t5f6X@tFmbb);m z?*cE-);IG)&@Djv^hl0sy-7}8m){RZ0Igyysdd4$(Y(Y+-FVFTuorHcBR?wXG6z3t z`;tHn+~n~Tq-~-&#}qB-_Ql52Yo9Mh;6)7)x|DQ8P|cMZcBGP3dng`*eKc3Y9U;^X z7~NSLwW~4b0ZNFQp%-hBFX zxV9uxtokO#WGmdE<9HQVvHquXz4zCl>neb&C_MT%*H4qL@&$SIFv|Kovq*9$#sVIQ z8-!)p8sx{OlB?4{e}tmU6y4cw*j$On%~^E%o!@Q3%*DsB+zhP zmU+zpC)TslYrHZaENQ8zKhGMAQkp0PKD4A!ya0%VJk|S!N>($1-E2IVMB{!+IsKkTolKt9>uHA74k_nH0tzq)@U3D7k-MQ7*^C@ zo2Xtswt?@lJ+q;ruBjK^_?LJ7bOTkPwL3R!_>ltI9=i%BMcj`=53b#T%|!7H^+t)M zh-iS)oC@g7`DY*V>*PmE2+d8euxQADCEqf1jRt#WmbZlvc;4=#U$R;P6N=J9X%k=} z{$uGPpxtQJ0WwI%=5}2kfhEPKKWL@itNkzI!++$D!?*qZ)AHwi?;viH=n*zpY++Mt z!rfD_B-|4)CPs#9POIHh7EOLr8yx{c$Mwe`6iA2z^I}D7OHL44owE_0qEK0oQtU(7 zJ6NU>s~r z`7!hN?o!Gf(pEdg*@V`FnmpmR@0I|%ga~9^#K8F(9$YR<0Y2nU; z@6p#VW-N2Tsk&8%btyD?i-+HTk7)OU zT#|XJS5TNan6^pZ3q+dflA}kYlaKLEBoRx+XD8C}@;dX~k?2Aw-P~*pjf$8+jExN8UWSqN< zq>8f6%oohEm*p(Q2#|~pRSvm?FiL4f_J;+$<$MN3+S^qVnD)y!o+wQK5$U+6b(|Qb zFPRy)E~BjmLu;F~`@fbYbTAocpk1LTWN!*DKx-l^f*pGI1ekJw_tTJ~0pO`aU&N$s z?H?kG9Q?@vcczqxbM)U)X@%(fo+b*Id?Zo3O8v&qtT1v9*-4gkPQ^j`VJ(k@@+=mo z3P1=@1Xri37HN-Z;nc#y)@5qf0CGCE86L2`i+%9%rcwjl2_CaxyA}p96tnF|2LV@! zm=kbiv}D_N3PVt07YkVdLbOS6G%VK!x`mWvdj4IZ-I06)bT)BT1r#&c0#dO{6NO61 zy)~wSR~_m4fFa_uz!8x{+6$7U)}q$Yxr!cbw1MT~pVL+ZWWx5+OCP*Okn3LQ2QJBlByz-T+F-nG0M~<{aD_v!8=6 zzvu!s*gUzbr*d*@bRi9Divuj!i6Ql{mF@qV@(4tUEy-KeHp6cj!Hrrb>}Al@T>%y z)_FY<(Zi=K?nN+*_IU>K8Y+Lk6@J163Qr(XpnNDjYic`uHT5SSP*6--l9`{?Ss15! z+@+KYO;f{66ct2qVwI>Md5x+RTcPcI(4EBINRJV8 zkU7AY)Dv1QB%&DjvWn>?573bovMa6KqUmjy*}toGX+YBn5gIo2-%EXS!q&9Z-LcZ8 z5^CaXn0bU0pM+{od7-NdioZmeb&>uVGa_<>;c@>n+En)jrd+$#c6w?0-0wZ{Xy^tv zEUCb9N1+>wW>pliEKzAbL~hqYYRINDhxA1_Vo1KQH%Sd+3q1s~Atl3cJy5on#35Ru zGB;Py)+T@eIyw^V6>unmRpPxVKHIMUfAb9y$WcjRjZ&l0TglaLMzcOkGEfu=Nah+7 z9gTMQ;^&vA7hcGpe3|fCO)86g3iuK!?i74f$Lr=L^!(_r-0S`MSI)KI_szA)cw(}c zw>5T`6pnY%BNkl=%t~K4$lq{qlz#Po@ED^cUGASj&RZQn))uSt!p2tNeH_p%K0}U# zzSGztULC%{jF~Ajxn9!PswVrsvu|8+cxR%q5g;m>5Rel(;!#(9yAn_#yBy9Bzs5<{t1-K%6)5}Q(? z{wA;yiWHub>L*pp&+4*+fG8kg$*S||8^y~!DOem+<5n*7XMqS9Wp-$9BM=7=1BwPN zzk2{8p%GF|I`;J`$4ekbOjqfza^0)QZ=QJ!m_^Hq!vx_rbNqk(GZ$U1m|%rp8G0W7 zu^Cw*r~LJM?^JWX;A6_cJJa#f~M4$3J>CcVTzD zA!8qLoPI{lj?JLP=6uOOo?hf5_dl|N8^}YvDW!f#<}&0I$eGS+*iZb}2n05MwU{RK zq@)cb6HSTmil_wipSF}+fV|Lh>)Fiz&>zX%Mb~m-FU?hVUjxLB&njCEu0WYWZ7m|c zOS*~?5a>xEs_zrmn+@C8y;>Dwe3-$>;BAERV+)0MfPe0{u4_kNA1?tbqnMmMQt~?tfJ;v(Rsh)%D$MVwkbYBo zAKdV5Fh2ZEs`=XwdbC^g!uR3ow7n!5s&c@&jJu?~$}bN2>VL6^(~&~6;tR-jymhYg znq3Y#uRp@s9nEq=N%I&E1t5Q&hrI|_Mzux2Rdk`rQ=Z~#zvX(oMHt*2TNhC zs57bn0J=ir2RI#kXsjYif%`m1vI=k}1vXy)dR{hH`BIuI+^M@Qiux*v(n*Uu;e<0c~7H0r5P2|yW91#r!r&^?9+eo<_ zsV$S0pzs6=>k7~VEyAVWZuqB`O9cTLo_W>6xD9sMRwFP+{vZKZz+V3Ox+*IGk2qqc zUT0;eYHNr2(>W?olEj|y9QAC&pTf5lH8iGUm0{Y>utD14S3`>)>7dW-7VO_X?c<+o zPRW3rQM@~F*(Y-AdphFZN2!w%Zfj?5WWU^oHZ)BFcm~r`S#^#gs}y=YCOcNs?P#{Q z0pIk%SAhLtZ?$v8C)N1|*Y3+Zc~1IB>mJ)VWG43fq2u+ftkpML4I{KM!S6jkZO!=a z9|09VLeuieAPMd7(5#v^jiv5YZ!emY)`krc==Y>_#pDbLseH#R#G4LQ0-0oc9{^7lKI?DeRC+7YNSsCzf9$JOIn7&>G z@Xfc+iZx2`04J-eJAMt)xyccNDD*4@t+J1bhM(v%S+JfD04 zU=;%oJ37xEbNzaSIYp25@^0`osT$Mp9Y&G7;p8Y)^0b>V1UGP+ibHtr)>bB`QkeZ? ze3OnR#(ik8)=G=MrQb*d-YAh!ev9;~B%=|zkt2A-E zAAW+Y9Pa9*@*4ijaq9+4&aWC`B8Mju^sDENI?Z^&4ZR2lBta6Sk}dY7;x4JwdAjNs z>-MN>dW+WL!O{7a4-PWJCgYQP~*68pTyaHN-^uH0SVJxI)6tTaX$N(Lg z$H!RKYSy9Pu4u~?xpk+^?NFzd%br-f>hBlwrc1I)AhNSh5mTD+UMWCVjO+!c(wpJd zweutmK9@sgsM6<|P!e(EOnSDR9if?`c%?y)!E->D;cuME(QH;1Id95{Cd=r(=q1aq zu0)FA77hpy!QSTbo5yi#T_5Dl78BU|Aj;c7L=hi)K>Cw(!p>{mMle{raBQ880ls`#xyM*8+*lJFJ|rmONiBDcGj)+jf69^Y4|Sxl^OTyo z@>6s{cbYr!zufi!xYh`q1d$?UAkU?{X;|D|OxUGYqDYs=_(Tr7bE{@z&0^ZEm>7xp zw$uQp+6tg1P$r;_PWZkYv%&eZ@`ulEef2bO%OYzF=_VNvXLD31*^j}KlW2M!Jhd0W z)`MuL{k^PoZOw~Qu!7@A@ekElnNEPKknt22N{D-xFSD8j9mm0Rxj~IkXAOnG|4~@B zlvxUfU3){(2Z^X9GaU@veNwNq_17BYFP%SxB<{@Yj4BMw)%8;Jd|qnj>un@q;(y?%H^y(g-2QTls}_1) z5JLKvn^6q9RZ}fm4+TZp|2s}+eF-4i)q)P!jC#N4#JxMojm2?wY#C)M36Yzozhjx^VgB{OU+~ zwkj2=JJIC#VZ;}Z2+i~D)8D01ikM_k*;3}HPVq6#HF+ft?N~M}^A@wI-^&$+*UNo` zHG#eSR(M@3@Gy#k8wPPEK<~O>{sI;VjNN1T78cfhug@1Q){1&mwU~K*gbYtLp;6-n zOA;wOr2;YEp{v9#**-cNG@>F!YBlCv`=y6QcyRpw^BviK3Uq_~jv_RVZ!SKXD%E*c zA!>jeTlYOVaLFQ19DHSqO4?-LOAo_^-ypM3jx7SyYN3yLD7RAXg9((=bfj7nK&UI0 zGkfWL8L$7fRh0~y|Nfqj+skXd^1(sgvCAxE*DO6&%RV}|4AYf79TH;Tnmzx0=tl#H zR*C4fUcpNJF0LP%TE<0(DGxPbbx!D6VA~LMTp+}tm9?{%q(63Abp3vTB~bPi$gnR@ zxRbHhxt=DQjdzc^!t%2!W-UiWzi&i9v+uF+#Hnl((;#z~Qeey_qAol-5t(VA&UBdY zJ5SDIOCZ3S2#!ucZpGVoSd4Y%8jk_*SjT+IJkwe2LW&;jP=wm09oGTRUPQXnL&k6~ zLD}-iOnvyVQik{W)JSc+jH15}pS(eeU`PY?Sr=!?bH`8POfSyndtM`mkb7$C zY9X4xbZ+(((G^s}FA7uZxazBnCdquqEkurEO$4}`*E*602*gsAxqWjyEgw->)-1fNua ztp7x4=84KG3f@;Vl0059B(-@_y4*r_ps^qm4#N@00V3LA*am z`?fHTtZ7+0TaRyOds~mhfvI0U<*dA^p`spR9Um99FH8)ovpp#1g!gl<7%Wx2pLpoI zwmwVUPZ9fA;{ony3Htq_1YR4OSz%Q}N9F89%{<7GKl*`mzPr3~GqxcwH?Or^DmBLB zS|qjj0lou~q-B)B41f4v>wbl7YJIBj2D~;ighKj;`+Jf~56)F(`^eY8f1O442K|ec zzITJg_%Y;QxJGE9R7}o8Q@v6T^wh8KXZBNFe5MVu@60qFOfS69jo6AV5sj&cp!Gz( zAJWKQ6xkdY<|`KW+aBF{=Rq64JIv~jE(7?7?<#BG!3s?%Tr8O!_sN2VIX{o?1;hb8zz+iGNB_TB(M;50A3 zM5*1lqJm$WVj8v9!-m zbG#lhi?3;UkCkLNPbx`K{J~ev?G1C2#Y0av_+q!yH)d?32AT_Q5`q"f;fY=0!I z^pP@2w^6LTQ(nOX?*DO*RK(0PnQOVw!gxzQ=T%DAP@>5a?S{)FKE_ol&(Ycc7@B2B z>dDNFF%vnXLjLPmMt5&!rOXL2ewu0uKA0P4Nn_JUN&v^3M|QNeG)^;jcKmLyey{#SV3E;X!Z zZSSO+50?(AS^b^0MvL5!F`K_!y|*Dt$cMDNXScGimjDPF7#89w3aS-KhM*ava0q?h zL>AUWXWas1i6V?11B&Gz%pW?`|NBP*OdjYSmjBqqr&H^s*fN#A)^CjFxG%Fv{<}V1 zM1J$o2(%czaE|aY`oOm$Z(;8#Apy|ODao=&DK)Oyfca%EgbuDpoP015gmJm}?*%DI$&fTWlNjI(MUiWPa0XyChZ zfR!GMs>8$HB5^&jPFv0ZGr;9|wI}D-&r*Qb50m`t;}6_2IDokbd4qTtF6EU|^d1p4 zy*cd>Z^}L57jd@$^Yjag(d9Q0MZwGwMjH&*4*Tw$(;og7`_DO31+@0++4&spL7Z`4 zHvRyUvpT}snUCp%HLu8}kJ=^=zXR6n`HxEvV%dMwf3yO8b5SxRy;F3)jG@VA1tzbRuJ-Qg)j50^kFEs6Z`PzWDcG^-ek?`Ip#+WR7 zv(0U%4Ja|~tbW*Q=hqUSyuyT#Jx0{;ksTMr-P&IIpT979x3M6z)~3@)lQLVi{c^rz zlz{Gag2A7wjDT@dXD_ks5`A(BoOIzQqY|i;&Q=M{93@X8Rv4MqPaJ3dYMvdI>o6JC z9urrcAMtWG7ghiaJ&HZ3`Sh*X73G2%;8wkNn0Xx38NMy#=l$eGiFZ*bUT+myGbh7z zL8+AVyPILk1G4;E<9&r~`*XHrNu``(iLAGtH@JjTzVENAeCF`oE#E!YcX98|QQ7E_ z2DlV{2~j4>E(#R z)LcaOKg^F$@=Q)3(-i~q{{i#>e)&X)t1hLkrjGO#O>W#^?4Splc?Fp=mUVq^C5&j@8li7L2KBqG^t}P_5t1jT03FG#ODc2=FdN?Yebfw>cvGN3z0I0k z5Z{_0Ut62YfTSnDffCd!Uop`#V@pcTlBn$GXA+-KL{p&G2Vc=ijl+Va*s}WNTq+?r z3Io3Y^SmB0&mk!3%@#I~kI(+8ctxQoWh37A#J+@;1YlJ1D{^=DgGYzKKm~cW^C{I) zs62s^x+%onx7<@@@^*NJ;tzlC9{|VD(WQM(+ruhdWKeg7^AJ7N@o zkpMio*%mZx%_8hiVBmG3gA!8zZ(O(;@$efaS7sOH-{X-Ek(zzh9r(88AAWpSS}{qV zzVS1BxzO}$+BmMORtk~?=xDnWm!@C70$pmEup;bPn>vWcP8Qy-~MvV8Dx zbr=DM_2Dy6_K|^dFitPSuLzYS0FgKSFl8pKEb>~F>$VAv6OACaLP7uJFOLJV-KSmr z?>P`CX1w{psGFvk_ha=2fMk=y(@c!*@kX>}b*3ix;v_cGpZp2I68>=(3>F?QyPZPf zh>UJx1PCI0yww^zQ^*Jg{nXl{o=hr_?SkCcuv&H5i67mL?n~0Qm=JQ~Fa-F2-*P}p z9vIDpjZx(hg#iv}78zhQj(69~0{?zxHL!>^t`=o>WD>I6f7ZtdL00=r2%Gb;T>c|O zF*!9I_k1n`>esiD^Cmhm$CqJpk@k>11FB5GTJK(+YssvWu&)B%_kdRGsVo$Yj|%L4156*3c<2hu&^!J*f~N7kqpz&ZMpZ*!XeS1sdGFaF9OV*G+G(jA{4B5-3n+tkZuBEK-u>9nyF0y$xa$2n)Rh*x#}5xkdfSKz#H0L4SLU2w#N# z--BxYx6Bb3T?aV>@;zZ8=^+J--T^)fsbW#)XNpy2%W8eVKOfOGN~z9VT{98cijV`U z=sIk@v=c5D%R$~m{6KS_HB1nyc%`IZ&zLpo9SoBUE#mYzU9dQRU#VGzxBpi`QSnax z=Y#G|x;Ii9<-4!R%XphP=ruPJ%B1u76o-7;7l@74sW`RI;vWQzrG&q~rL1TiV%x$m z;;A1!Cfma=5Tof;79mka>2DG>K5XN=lPjG}21}59fV!!oNn$sTrqh8H)py<*2F8sH zcpz^9K*RE~w}h9sT-e_>3Si&uVc3X*Je}UPWRCS2{=G52N4_G#@L-A8LV$xb zx|(F%6ljc|=gMnd}#q56(XSLpetZ|K8?-_kiQ$FV!VK2db|Rs$@{cL zPO|tAEhVEP1d@zafZ;DpFhyFLyj9_v?(%lLvw9XwyjACfR(al1x7MZ=hfjrdaes2R zyrU;`I+zG+5KS#;D|eH?O+^x`k3SIKNaRChJshVzo4e1Nr6i6CRBpPPmNA->RIr?EC=n8n6(!ieaS_Wh8Y|j3IevssQ zMR5&HgSuwjOY=6J29O0EtEcmCsquJY(&#Ap-skVTXnoo6ueVHc^B*u}szZSad;1JI zNc`ud^8jP1rO9Xz^1@|PT(;#ah);i~IjzFL9#{`aSlBc9O(TgHIk}r3q-W!&WDZ_` z0flha?Uo0nkASkCRgZ+s3V#ejLNb1UZt}tj6_$NDAKg-wrw1f3V2%o=WbptnZ`Fd*)W50H@f{GtU<( z(+imN_`f;CTd~)CTu+5h$(VqFgPblQe-72y_?A07ll`N+rdRiW=` z4VBM;?3mcX{@pJQ3vtCS*`wexRj?b3^y5MW&pV&eW(3*6v!lcX6iQXTHx~R;2Y>U6 zD{GgfiRnE9UFn(l@#2!`pDe8Zy;sj!QT;mO zUYi6R5oEx*7am|(jthbfvrn>Os#@^8J9`v`T1m$BiMFhx>*ne&W4lOH$lijBQ?dFYu{bfA(v_9(p^F2k%KLs0cV}Qv&6AI#rh*#EITDUTNoQhCI zrqvmMq)G)RhGoSf7L66wzH<^OVBlLx#&Dm%1kKn zEq&Oz6mZYJ%X!;P;nIx6Jr{eff3xs(VX=$E%OX3L-TR&RV9?_Sm?|3Uj6ZjIj9HDr zS_ag-R~Z}Kr0um{Vk=q7;Z8Z~#yyN{b)4Zw38L;-46m;%!R9x{8W zN4X|I;ildVpB#b=nmxju_l$VPM9?*4KIVMBcqG9kqGxu`++GL?&@io7ia&I`oQ zGiCu-R?`p+1gF%cu8eq}71%)jd+s*>pHqhm{RBmQ42r809z;}u;bS#aY;b47@>z>$ zk@fugcOXd?cKvsC&iy2io=CF`l6a+j*cPJYk*pfMi}HJ|v{9g=WWz;Ls)!Kg!K{_} z0(m6Yull&g2o;!NL2bf^Y$2!U=dwTl4Lb!Sdy4OM%1MG;nlfd6d+Xv7S=FZFzJuP@(Q*?b3?4TCVZjD3_{(M2h(`R9 z9gL|){7%o&(7kt5W?MswpFF3*t%fhjE3kH^ZJaW}+@*SNK_NJGdT;&D#CQNoOB-?P z0f4@TglKU*qt0%9_a|QZq|f=L5TGIS|5gwj3W&@~{9 z&mO_V0c9--zcnc!a!K!qty!fQj~Gw&KKM zTSO~;n5$8N^>iI{AtU#q4IJ*qIe#-!1S3)!(97V9*YcQ#{2YwaUY0Dg<&g_%T!NEHI>~s{1L{4KpXXc ze4Y^+@l(gqj8R0~ApIC-PqdFx`Xg`Zl$Q`P{}QMtlc*e3q7-}8W7!d#fHSD_?U`q5 zvmyD4S(-3sL{I>bmL!p8AT1oT@OQbjjl{kp;_H8ua74(&rP;>M&~@P>_2&<`Uh^|rqjdZzp ziS&FRv*6kYjl#BJ(^Z^0I3x2J zLQe^t6lR-8^g7LSkGn3dtN@>gXqloe3C(~EI@;ak$eTdixBl=T4TUvco&7B=MzS$8^kC<{Vv#XA-pFA%zD9NGxCvT zLQmVgTtTAFd>HbQiLkYemH7A7?(H}BfsB-|+(j~kiDwq&S!oAx%+7b0mZv~xzrkGp zYv|!+j4(^?J@mT&HqE=BSvj+WFaI-kf>0`T7Z3l^x>3jF3mP*ru&Q!9*XX4$lcpt# znik#N^*}h#Ykkcbe1^{!*j1OBB@aEOna7E-5f0rF?rkOExJu}@$b%eZr9sl5wau!q zT$(sa>rBP!n;;$gBRO@UDr}kBCqQdMG#oW-c`t^r)h!x5FRl)eVaB}S|DL7El1fkh zog|p%i{)8;H>Pcp@ws(a4>IUmjMimBTdi(~3|4IJ;L^pvwE#}jlVb28LgQ%9xlro^ zRrHu^!3IxxsN%$bd62e)Hl=tPW@pDhgkmPRS#FxVf3@+LEiM@|+~Z_Q{Kc7eaQ_S$ zRaWs!+GTg*#T>JlAUUwgS^IsF406tPyl7#0mZ%wpV{@^GwsyAjJ*qq){UhY(INq6l zLS+9&Y_QGkQFZ_!@8XY(e1ZRwy!`Xes+1r`WIE#jB6D&Zsg{qmanriLq{fP29P*qE ze}iQx9XKWSwxD#mH(UIz!&FAj?e-c{a|3Dh3wZ=SX35pH&fc@bSDTd^# zU%Z2!%{3lT-&g)<;iEgpjV;D>jWu&9Pj@&Tdp3{({34^VE1u%PFr9T(5VhXt!^7<0cETZXL{CR*b`gx(Bx=a;0wD zg+*};zJQ+x@5qThc;`V=gFCTe;lJCl>z#Wd>nZ_)EUN{j2OUt#E`S{ulpIHg{ zh|byfjm3;>0f7xO-c$WJxpeEDoZ|4I?+vt8JJh?4?0Q#s(^XJFD)_p*<&4Bgj3O@I zKs{W)s~)6xOWmAV*x~NG?Pzt0RCAPO&GN_M|NWv>X)T~;_Uo)IcMF6t@7aTgQ<3O^ z9Fn1FQJHn5?omy`9X=6WG2b04%$NnKq#Sbnb6W&ZKP$k(u?U~3EA}#U>OX=Nxxlq` z#n!K>w}^hFQ6E6Y-oOL|-ENMEz(y5@t*Xt&redSC!&bu>EKUEHbO;duYB>J4<@4Q*#@FjfW)-?o-r$-fjo}A)uP$+H-I{d#sHo7a zW2iF^%>R4u(_V=rgE7lEB;2eFBUow$E&89~>`>_M4HUaf1O8aK8V86raJv zYVD1s%k67eK^3`XNG(>707RCL?F?AZbh$Jhj4pgG zmv^Yz1iD14s=<2II1{&;*q=X)p%yCtj?^vnD8o+feO%|b2L}~NISKC>ekp- zQWfN#zo?@=3KXP2s{0>-9sJWoQyJn%VSVFE3E|54AK-noQ8A7mFrSl6*Eha zAWQ>G8X9{*WvvbQeb6m?-u;NO zGH9Lg4W9a)f2LqC*;_n1q$vx#H2qGjDP)duOW7XN)F2a~-HBHSm#SRAekmf}*B3XyVw=^x>QXS%^nz zt!Z;`Rj7^j`vE{j$P4EdD;%Tv|L*Eiy5I$1H{vV8Kvr{=M(CGN54m8`JUei@K22?S zK;-$daRA7I)-2ZCj3Gs_M?fE=E}YR~{DH*xYyI{kqn=Lh zdUuC?mz1G;||01!-~thSRT|v_1IE}*?i}qNrxam zth>jD_#q6OPU=yQXALBcLIoA=HRcoDfG=`?l;PAN&eAm{9HcrvD?$&XhVE9|o^V1C zcY|)Gl_2+e%0}<#Deyj<0eU$rz?GvoI8dK= zUhpMIEoMMPd=0nT)DFn5SEY9VrO?eLAVJcA%i+=smibnqC>yhKIU&N=-GP3M!^K4L zIZWwS3Zs}7Y9XL@bkWpAG%G1zKz3!OD-4M=GN;RPISsfYi*qQft2e!(2i!I&EJXKG>Y zk(2WPEs3rSA@yVl2B$owvxQ43wRBrAZjTnMQs5&_ ztbuv>`U`lIrtq7P+|^Xpv8@LQcSunSJsj<>&+c1yEqSG`8X3t;3&W)-V80 zeZo~^89<17Qc*D-Y}mnXGF!*(0wpbJ78)s%HvH#KEhN8BWvD~^rrcUvZUh~ASgh}- zF~tzM8`R;%{qnFQW1rt2G@vgJrZw9E*;;L1_2C%u+kQy|DVfyq{qoqp39!*Vmir#3 z!Je|4M7*sbBM0OTuBAh`i?V%q#ht#ATTBqQGGW7jJ z4qS!I{5MznhcU~Gy(E#-12sa~VC71PpT)%WER5bzlOLI;a%s|!mWZ+M5LwA)@w;ET znO;~;zx`w0877p)IMWSI$?0eSBPI(#;BW*h@oWv25Wnu()C*%V*W}KbP!sR$>r=jpS2sE+zzKOS*lR=GvE zkske6;sCi)-;zLyng)Br^LrI+-s4E3zR$mQ!32afX39 z^1B@=hgXuhf*6Qq(YO>TNw!Lq(DP@u@rdDtx9I6-YP%Z}C_1*p9CzR&@mdC?l@7v@ zhd%7Tm#NH5uT2K@QDQF!T%Nd7d>G@M1P5WsX$pY|Fq^+!8FX?>Z1j&R$)?3`EZE#p z7aC-~szvfGvV?1PZbYIBc5~!Oc3*!TRo1jxz^gj#RgC?qV1I6})(AO%A{ul+Ja4~O2yJKb3r@jUx}0J}3SMaiN?x(8Rua)m`ROY&+nwqp1&slf6=g5?Gfp$e?6JJ_)LtguL&Xby)K z&2z-B^4DGd{=6!IY$e_rl*xJ+jI4s+F(z7pP^`w_V~>`IQ(7#uq?5!(*}Ph}mc0p! zW|bC+nOw&DDxLd*1gj zrki681m_PQp6`|bvoA%nIpENt$MmMBSF|c=L2w*0@-3w+mH0Oo13xb5P%faEN5pKa zoIy;?BbHI1v%Egcz1Z^%mv`lHZ326Sj(i zqd5#PcinogJCOwRC57TSnm6knEtxQ7RnRoJXK%NkXdON4?&l3rJM*uW+WigcGQCD< zP7yQ+d>H{?AA(kWRUCP8vZ@=%GJ1F3T!ne1A^Pg=iib>?3|xq}-Xt8g;G_!RZ*H-- zW+87^&agZaVVWM?=9~fRFaxjH6(q?01X(35r$8uaa^ z*m%sh9&8mb|9kD3+ihn*(ZKS=t!`w=cu~5ovQw53&eiud;|)^t2eW+pPTAf_x4n6y z)DG*%vwb-yg3a=7c4j|$>mMu8 z66QeqHgqm6@B4^aPfwqC^w?)Yot_9S>6f`4B5)r^CV7rR|JtLME3Ba63A+VsUcyhi zOazd8j!{cQ8Jj;ueXhnH-a_5ofH1j)2AtVLHM%`o-QqD(m~bC8*-x)yAa3Krz#D_> z9K=2&Ir{a69kz>UlC5=cTIhGbYD+ZG-H~gFShXIZsMpI)P ziXcW^@+r)Wj~k#>3Q@n%K6)@Bg?%rrO-xxU>7A~A?Zzb3^<Nz2nC$UiE{8={);XRCzd*Omeu!n?i;z@F z4~t=<#ot5FiXg;O6LenMc1kK`<7Bg(cOUk2H6#X`YPBb-zpP{s|9pqUg6%$QI0oY5 zpcYKc3w0bZvYM>%qI9wRnrD%Rxa=dgsy)PD-HYw$BWK`Jb9_h>Y)CtQyqIF=k|s61 zJVODEc97KF@8l#9?=9NZ1{z=YrZO1?iZ;qez)3 z{kYe-RUb0I9Z2uNY#h>S1G<7%op4O|v}0@=6pt!=Re=(~F#2zOIFMx<@= z!X$X`xE@QkL>^|Od)<}vRo>6ZV-`(T9VGBt zZ@##+GPlQSKTil%pjzsbY-_CC^Ju1x`u+hqyeG*S64dJ-GLCSWKj8Xz>8BTdqc@IiD=w(K4bL2E$kVRJ3VoV*J!R8d((p$7B ziRGnBwDQ!*xi`82Dptx6Vx-c9ZeyztsI2jvjrzt!K|!Iw(F^okJ<)C^j;@%XEmtu!VFS%A$Dq^d~xJK#59;rC{}&gcAG)!;Jwy0(yxA zqD8M89gkKeSiXDZG8n-ivWb|EJnIY{0dCP7#xXqOrdCz)&6n0SrA6tx| zR&gH^neC-)3Uhmfs29(Uw24%flZp4bUpN5c?Vjq{EbF^GGF$Eiu#UM^x)x4$gP7PU zhZ|%pOS_N7ET*MiIksTmV>~j{-YjSTE$LN-;_0h18!eeT1bXs1t|Zl~e9Y!RUF6ti z@bUljfAG%&#>6_@IM8BOx*~7ep>kFpnM!g& zOIgSYhLOJ9V^-%ba-slJ6P?fKHSjEP^ z3)Er14_aJ={Ar~?3q}-Al_)U`bl45F*4&11u z06(8J9ro%m@=Co!p`#i*jyvpYIs62TJRp{&u`T1I+J{1SyKZ(JP7->S;G;{WIGH4U zTUdmgTE?SPc*6Fj=D9z}(@L&W)g5qCq3*EIIIgZgV(iSRAzR7qZSXmJRd4SZAtPoL z^6owyW{B?N{oecG;(EZ6Jb@B`XXV)ZOf!+>p&SVait<~wFpoJg5$#MOIYrNv!5yIl zV~pu^hHK$--wUQ>Edl~6M{%Sy`t%+7O5%XMM1JLSXDdmI(1GEyPR@9V4)w%cC~=Fg z=fF*rWXBjlM=Q%VL3g|e?u{$tkXe@i0;q3sA2j|)cP6EjSoHAHI zsPuzSiCf4%PK5=llhX@-EQf;3o4GSrqCoruV;#Htd$hn~DayKxoVcgzx=u%f56hGZ z-rO&7bPr)v__*@e?BEqQJ|ae9`D3;zU2@Nz?ysNZp|UK>OGz zp0p%dkKn9@?xv+dF~O9Ejpb=7a#8)AF z9ClK1Gp?w)v(Ju#H_H}gO6SXA6V6U@g}QuHgnTr%5F9q@+a6`yQq`NEq;*2$^IRFE zMLj|b_r8Yn5IlrtPBYvVy<$*4xh!q0n;C_KehBV-p%*0G+<0Vs3!m*{Sx(un)aS2M z3XkfTpXP<$Vjy|$6kWVHCtxEL;72%@6ZEa$O`84c9ml(-R^Fa^Vq;FZZ;3pGzSsXc zs*U>W>X5rLCx%1G_W2|jgoyapIRDvBzGW0bPvTPglaRtVIe{A3!6bbJI1|iaj zNtHNH(RmgIu+%aar}3`0@%A*k1lKb6!v`)g2{!s^So99`YaxqT)lBjuIz_Mj&V$I( z-?ZzmWZ`Tg3VX4*s|qwy!bRW4{79W1&NXErEX>O6vZjlRYw-i=1rS=)BXWhA5>)kN zrgV1Rq!JzbY(>Rmoctti7)nbMti!F`7_LUUeeCxqIlRMP{H<=N3P`(EmKI*1Hj6%H~dW#Zu5$myjA!Ka_BJ9yqv}@Hrdc+lz>eC{N(`lDK7coH* zG!5&ye_9U=`^VcBGvIHD)|;1%S52>;Xpq`LmEUzp+=Oo}qF;6;5E76c02D(@mk95$ z{IL#9?5qM_5AG;OY)gIq${dB+y4A8J!-ll+Z_|qX{e;^jTMv66ZDJRLVDZ3#vBG4D ztLgM2=Z~&n<83<|b|~!_I)!)Ip(j~d^7;U);Jz>M8)K_(l-boeMafThF3KPFQ_`+2 z`KniU))p(g-rY`k{>#VQzQum^OARHrnEOMz3>4Znx?2Oh)sOu@1J| z_x-8u$>nZV`oVjlUp^sKb|@non3%gwk6Hix%xKA5{gP86_e}q`Bi0Ua5WLq91fwdpJ$n*ZYA{ z7?X?d+RAcj$p#~;yF|8SFWfsjPs_g%v4nOQxejvGN;wzm zMhf+;)x&>g&j=hG%Ek-kY=*px_|(PiV>DTzNZKSe@w!=S&1KDv!suh7v8b`U(BN)t zAtxl@0Um8AMw&qqmb5tavjcxNYByR>NFSO+Px4$pt%ZrB5_QJzc!-;QY?Rp-okAG3R3wcx7IK%EUoh?S~!%GvaSO^J05Oj zFdtx28sxfVx<{;z#wJs6d$`#`{5GVOVo(kpP8kzMoO$LUVn*J98^#WL`=5iheFs|I zYJ_w<>c_b!2tA8Vq97=O%1=UrwaY05qSKmUhr)K-#Cx`7DaO}CuKmIfzRor2V+tyPpViQ)y>&-U zpoQ64WBaw=t#eoK6;M<$2u5kCI#eW>co`-Bv<1tO+Xh=I&j!0s-yW(q%2E)t``*<2 zv#3(MKm8ja(Nd=OAeR|`X1YO4lbJ;Rme^@tUuckVD`P+T8|->K>hhr6vJPd?i(H6b z0)O9ibYd7s?fK2cC#9sudYH^3qa!_mA(f?csWPX*&XKmrz3TI$B_0D!?jSDjOSvYv3r$k#a(e9ik5T0<}MuvMl8-I9*8IYwyeT zlP$Iz`}DVV=BPl$CbfqRk&)_r-UEbSOvFBa{CRnlC2vX*W zP?oLPU4=)w%(hxnQgi!qiQy50Mq{Suuc~DhU7o$|ujY9+rcXR;PRKeRUA#IXu@s=O z(?MEz!-`(F{y~Hkexo+BA3%5QLWz6~<|m4uC`&8t8B`892hGkN@McLyn9x1KN7UdS zhEK2^OlR&(C;G6n)_vw{HY&P_-`JP%5RB}4KDYD(*s?80XkXpeLh_>ZP7j+d3wf;B zlZ2fC1x|CJEd5Jkr*iYh(F8eyl}j+`ccO<;%r=zoehN;%=OC~%x?m(KI>r_iMJ-ll z-X!3^!tG*Q#w^EVVgjOMOj=wHK&Dz8T-*tI?Z07)@K&rOXJKynZpudkFJzDRak+)Q zzHKzoWKZZxJTdrV@g~U;+aTW?hnOWq(&4SK$9dt)c`jp$0O-c8gojEaUx7tMbtJi{ z3M#Rj3Z~g#E)YHiSc6(msjFqz)Dw*XA$Io+}(+`}yK_F~~fy#+p^iT@z*=T|Hbp4!KutQZ`tKwccku8>iGzJw)%e(wm z?dJ{r8GGBZm=Gc}`#9Y%MEf_SmD4k8=(eRPd{wiA3`&B86ita~K2;7YnJqjfntUoB zXs}%?l?m>0ujOlo%A=9t4fdSc1fm|YB)^hEq0A(ajz&6A>@B^ z^Gwn~_m1J$KHP!8^62@p5IZs5uAYrt%yxDBlDS(!V)O%Pj0 z*4)=C6PSQe*wg0?!D$_@<4<-W|CCkOeU{7Yj$t#EBMM0|wne|^FAbQSg2;~6#Z&B7 zCu9R`HGo`P?lH0}8veY8HVkeeJ6EBINa*|gOv-A;eEEc!mWsC5j3pVWli+?wA*wtf z9K8MLmo`bfQ_Y}= z(mv3CJ9Rbf@Ur(~2WloWF?n)gk*fQuNMZ8*4>r=YMkX&xdkC$!IGXa&GIiGT3Xi46 zHU5yH*?U}3#PIgpPbRA8Bk={jrlCfThRWSDHob3PHHGJG@>q$z$Bf3v+^?~xQ%K<+jDUnKu=JgzYO!!=w-V%l@(L zx(oH!_G=ZDnl_twdNX_b7N%Q()}l0(2CUvDNZCOt7DHoeZ?t4i_vh2XRJ zNq$NC*Fv&vK{;-8bf&K?sEelLFCM$#cw}-<=Wz;z$QtGNaoX}&e$;I&)30i4ZdoRm)Mj;!Hm5w_R zU68Bd3RFL+NR7^ZVPgt*k7JbFI;P|~W=ORugvykY@7X!giU~-o8^gHy4!8-fAyJFQ zy%7t@_LV0~2XZ)2$V1C~0;cIJd%cpHIYK*DgGAY5s+FK?h%in{^Qv6_&S1Gq`kM4J zIFsd~+4rV940AVXgM!op7%uey1U*kAT7;~XU0jN)=w?^IypNGv3sY2UY|aF89S0Z6 z*YI8?ET62}&EoJxaZNq@2KS4~kCYLv>XpW~9<=7J%hZ`5ePVUv_4n`?;h)`k>6GN0p?QX%!wSG;nb zoLk<8mVn~%Q)JLcr+)9=h&XPRuh2nY5I{j@v&*;EDhNNk9q5^3q%By?ms+p*Gn=52 zI?tu0vLe6sD0epZB6l++>n=&GpH!)bM&nz&SK*?rCNyO`wOXtcf_KbVm&o4t%lqHw zf%IP%yTdez@Z28>de?&G5WU6H4WJfmS~|oZX+A->g9h8TX#|xgd*Vy`dTxr826Xv` zO?<36OgVq%1%L*!svNJxNnJ?IUuw|Z)nt)!e8_Jb#}$(xFe{Pv`uFV+nRCdrF(>=T z*g`5T8b|YzxmPBnQI&7e&Pm$30X(0{BptuKhHGRPMIVS#GAn1h-Qjo*CsrIQ|IrOm z*kXh}A|_5*=#`@hy*_X!b0465$i}peAAK1DfqS64^3C`Ij+FIR!eg&nbd}=a)MhNS zgS71_)vrk3s<1$qK=NJUf`}jYOM3wV`G-UwrDn+v>l5>xknehMLkIzD#OK{00;e8` z&2_`MX^#xrHO4jWleKBBEdf|}HrNQ|`;PFmj7Kd(>6e#h2bIhLIilepe07e;QJ?Wq zAh(si`WBaZFr~V316B_rYzc>T5Rl{XT;b9k+drt&9n1T{f@z~4Pd+c!)heueY?f95LJMB z@jVSW=sU<^gZNAfGD^w4m+}3V@0C^?%-vQ(32#fARku)#mQ{Hr)ww|du)NUHa0t*h3zU2@}|fL5J_wp?B- z3q~zG%E*~&u}*%c>xlp+YGjA41hz(q z39lQI^D?>))98z?f@NAqdXZ5v^?o>gJ;h9{N{54$W+`0;Sr0}*;pw+`gHGj#oQ535 zm&FZUQ%}p%t;=?Z`@4>F{~Ed{#42A<;t+(uch=I9B@9w0ZaYQ0>Dz5_5IW8+UW8#J zQL>Zv#@siS!<%RZZ;Ng_McWV8$f=shKEGL-zN*-vJ=yxZp{hv(O#Wk@H5~w@plIL9Zu{QB%5uD}NQRs6`_4HdY+PpaP=TSi2S{5K*xk~w>bJdrZS;%^)g~7L9PE?gIRCsk8@5>f9 zSNhyz6O_J=ech4*N^RL*2|h?`*?XqXm=JfX9Yn>1G=)v=+3$tCp^B~NBIJ~x^fHc` zcDI(8Yg2xMxp!NsQh!6<=)e@b4?e1O;&+!qUu=?A4e@)N!0%K>IT)KvL=t+gl>k2K zz_0TCTkl%&j0~*$DQ1mfsRjm<-t3tXA5POg0~{jPydVum@Z7`#zCUzKJ_C!JK)AP& z4KzPRlvcGvw{LVDM}9k|Jv2FMI%+u%Ku;d)NnpZ_FszybPjVDwt80zi;rH{gJlg}h z%^vWu+QPG=+b6Fyj<9VW{As09TG%}v%s}j@oSWLhOZ4dRs!Xtt6L+Bd+0pJm^EHIq ze7MBvfV;u_X>`-b=1berW5z73s`q$4ZKGE>_N_HWSUH{Jo=+3{ox0PJ+~J@prHm5d z$8qqhS0jSKIJB`RIsTllXA^egB}R$vdlccoY0}1{OcUcb=mHH{rJE8PdxpXTrVh8~ z-c<58el=h_Q9_BDbjXfD03MH@v<`U?es-XpWFySSuDqFixd2Hm6JfE|fJ`$$Zgh!B4&| zeG<{gjLhOFd8$RX|3i1bKtKt_ z8d$s{$sj&2Z?Qymu0Qz@Fk{^iS5K;DX@unY_FdM=;O>ICSXI~x#c9f=gKHGfvyJyV zMZOES&!|5SUq-Ro%ZT#6R+QK#7KM)nC`NsAi~Y^d5|c^q*5FZVs9r^Blq33>XqF;= z$n@9iIf3og&vVi!QWG+#GrTx#rMUklv&x)`?QSU3!nui;0<8OdqhRn?PQQ_xsi0_P z#@5Hpfl8f#R=GG#_RyZYTjBE~s-1xz|I(aISZ&Y(TlB5RbVr+dB)*I~1FUfjYU|%X zpFwV~W`9m~mwQPAT@e05B!q*XO2opGP$~QyjALOT9HYVVe0TrfV0hlU5Gm(IySLcN zsEB5)Ws@qSK%2joxknTW3YzvMw1?k>)u~ zotytts+L#!I2WyM%Z4fV5*8<-?!e5|VMF%ZO`VCA?SLidljpsET`Neg@uAzvDr!Kt zmhvvL^cg0g_LZ^P)dEE|p#pfP#Go#P7o0o~3wL4*Y54E>`Km}fhDG=$K4zv%wwcrA zO9g^+Z+DB~jvPDBaK^yE%B2#$~7~2TF31|g1ZUrZ_+e36OpZ)Z^j&a z+>@AziQ^~q5*lm_tlfEX^JW2uc~0bwe+>j!`;5P#vkq2e)0}tA^todEo3pG>_)1KZ zb?zg2;vY8iC$~e)8B~N@OSS)#Rd5*shfdCS5lLTrk(SzWuW3=XyVQebI`61cJajBP zSbisHDE3f^!;Bc{Ws`IlpaZCwp&8Nr?`>(eNUh6#B ze2xz=s`Uch@D$U)^MlUZuogf*!F$YAo` zH|}Rb(fJc*1Y5t?L;iDoa9GQDz&N086u*)9?`LZXyNCBYQ?&VPIN;(K)2eg=v`E;` z(j|ZDwH=2YYp;C9wH^NBGpPYM1E=HbegEw-|L+9;_YZ8^;MYjzuF^mFZ-4!t--P=) zD**6rYGWG*g#Kd@{QEop>k5Od;MaV1`t^qX=NJ6Poq_-Q|8MTU#_XR_{Qt}=^fM%~VwomEAF(wek4-@YHYX-?i1g)W{zcSy5{5yA*n>lxYBVBhRU~O!H z#Yr9Tuu1pU#8X$$b@bNP7FTPoBc^|Z`&(iN;C>S2TtI;RwnQQn>q9BOR?e9oMuM#UACRz7ux`a2ly4I2x21HdH5$%+yD=L zCuAvHk6c4(u){iv%i74Rd!4VLOmc1o9szFG41ltu0V8>ni8I+_;5Lr@FqUUN_=|gO z|DU&W9^V2ap%_jI0YMXIVvR`io^-lnE(rkUb+)kzqs5>O;5rM#Y!*Bzu=(44`GX^a z1NrV1Bk}CfWwA4 zFPy6J_+e7>S*LLQ()$HT#Hz6a;^x)Uk<5!F99^RArQ8A@+Xc|r$@dO0x*1=-5+?D5 z@}C>s`VQ;I znmZi-TB2Fhkp1qi7`AmBs+%)C5Y0O0j?)S%lmD~wF?JfX3us;(<49lXF;|&SGQ6IC z;s58V3Y_3!Np|9^{#=$>&HXT~Lc+EL^pvQ40I8DBLNn2>RrMSYy{Moi%@=;JlXZ>& z$alhSavHEK=0p;wfI=cm#%m=eE^@v+_%^KOpDPIj ze~eX}Wb^0~_xhPB*)OH<0+jt9=3k@$uvXQ8|%}CF_L$%I!9s$C^{ES zaIU=%|5Szw92!VY%P#mmCjQIo3LfB8<^bcd?aAs~roul6hDds|6|cshqEj z#II$slKpKPD-+s4`bRTyYW!1RhAkGgSyfTZ|N0q+FbRA?+c%x+`gOJKV5$0gS#BmE zl~KgLCOF~y*N#jU4Di~Pt-|A@rfzI8R${Vi})RYTSpM7q-+`Z^)L6QukQ8I!H>*xqFO}dhjr9=vFVUdWwMHM zfZJHXze%bcgvtHd2-S1z1wN(YHw^$qxcS`W6fke(>O9KXLW!wf05Qc60WN;0z!jco z-5XG_{rQOOV^VaAiyxg>V~8>V-QEHssMMZpg>LfyH+8b^Q6lthQYbRwoj-C$E+E{ffw<%+#mc70`vK9v<36ZDxOg(+ zv!$i=>m2S=sDG5fc=G(5xiV{DKXezC#5hSc`iuV=#}e-koqr}D+4~lpO?uvi86YxN z2A-ig!iA8}lSFnK*OS`n4%mJFoFCrFuqY~#zL(jFU5~Y!#rS6;N^5oZr#(=1vohJW zy86k@jD?bJcasqClhtsjj5{C?+C>T17$rHp^#o4|{WTUWs120SF!u25Bj@+`cnk9o zFM0$j!S1X0Q8a3QzQF)5{62 z6GH?_^vu{F_T)_mJTB2>T4G_U!K<)SaE;USPFPG;t?GImE0y&6Qf0Bt2$V4kg42p= z!Q&Qtw}#5`i<_b!%luIf<0?^VOshij2Q;A?(h7g3*o`HP7Ta-aW?F{n@c%Q8dW5q; zp}-k%zP|hv-Tw~uWpk6Ry5{>Y_g0*&9*&oK4aWtH0>;$ogwF(6-%}%|qn;;RcV2~I zinW!S(J^u%cufE}Wj}ie{|%T%_JA~~@+)B90T(c6>amnm8gE(X_kK(6ODctO=i)YH zNu`a-_8)k75{vilsyuF2+URZ(qh7g$Yw6s2d9*XRbxG+=%+xNyK!Q?)4j?)J6?Hpa zP8_dC#X)?FCXK&Wlbc~i%^F#&!xPi#5asy50`~C(R1t=`!(X66OVRqW=Ir(p?fr!v&#pgndO}~*|IBW zC}w}a>?#|^F<&z42r#xT1E=(t9oYT&+;cOT1}dL#PBSk&@o*ZjL~CtgA@~ zXGXy?j`p-Ljnm)|o&jwP<^lbw-9Qe|UP=nU$j#mJS#Kb%dJFQ>nrsduz8JZFPZ8!f zxs{Fx?HU-HlZRUyl!e;JyYqD1@~M}4cLF*+b_jSh2$Nzq(4q{N7Awp^R-LyKE4%hd zWSMs^#|mR(%G=is^EN>PV%N~jPx#*oY5)XmA+W{gW>38DpQn)HsU0|&Y{!#fq36c8 znC4D>)&daYgmQxN@KSNOD=WLCG?4+V~20&-^l(AR)WhYZ-)-1T0? zUrCnmiDG$$2|bihu^-XCy7|N)@AoS}Nv2>3n|plICU}c6>A?r-vzf5{(7f7n4>YaDy}#a$y-%hs}&!dKqgu3|(gOQ615Nri#!vLc?v2^9hCLjFf8was}1~ zO%)SMT?9N%x*eab@ii8CT-7~RxB4XgE~a9H3==ybE7bF{tzV%fuwGtEscF+r&7K;irOn``Ux4d@sJadTQBYhSx3=+M;WcQKp6{ z6K3Zr$MZKFD8DsSa)5EYfCdk=c=}(IZEYh$YQ>{@69tU`>4~Qw>YV*0_WR z=``<^P66%~rxc0HXtojt4o4ji)S{@{_xUpeC_PWsY)q6{fOB1NaQ`IcgJ0U)ft z`$PZ4EN(ru8ju4hO z@gTn!`Frwtu!gJ{nz4(@)vRZ4Se$l63k3Sp_rLKJk_;wc3{MN?=q$zwW%m=Q*DH|9 za4@Js?8(Z?4$@S-n#nZj5@{fUw8Os1QK>;r0E;~Cf$VDTM5JIzvbFHrZQmZ8$BWX@wjxlw z87^v5O*F%Rh9>>m9*z<^fn!?ruLr!h-Hq0YlX8C>F&-sUp}8qvkpAL6j#eD55(^Zm z^6$N9R{A||%Y4$k*DIP?P9v0g><@13*{-pfClJ5-KaHJvJk)>p_ZcH22?-@ao0dV} z?CVUTzJ&;B>`Ibk%f4?32`!k)nuzTCl6}b(g_I@x5@X-@^**2Uy{_xm)$hLV{+P#T zW*~nG4~{e=gCPywF4m0GC&H%Sxwdt9v+rgBoH^gayhDw4 z2uZ<>Zq=UhM%`(NLdOb;EGrU`n7i@C@&lcTu~c5C2xJ)gH^La!CgdAFyon4jdqLqr zt;Lc5q#?81Vlcz(^&wlVn?a!Ri$1i)fTp^L#CYKS^K~tMcmJY0JXVfjSunm*@~p)< zv++P{v`t$RzN@Kq!C14T^ET&I4fh(->}cc3Cmr{x6%JS{iO)*2HV%lW=;=&A=R`;- zJ)g!@XNRPkSI8Egd>#YJ*+q4g!3d3pc$CBq{slt&WQ_YeSRfgLmu`9Wi7ClSvnqzN z-&X6^=sJQ&ohMloP2_2@%lv=>x+v=jOx@dX=2?ke530(UwxhczwHP}y-zZZB+`PvZ z!nYe6;qS8!jO%xy`)^@tK5>*keb=q>qmud19#STegRGJ@Bx9I4fo%XTyFtwc4jdJ7gD zyAei3bqK2g(c?%th(7Rk1-cQ!3akk<BV~wyvsSK@Z#6cUX}H^U4RrNDr}XZ5ECh ze3JTDEMw~%miL2XLC0#x8Y6{)*^(=i<@-VdhXf7Ik|THH+%aQD8qBfG_ zWvC$f9H{L2Xy0d9BBH0yJOdR;-@RXHa=S1h~5_LFfZUvl6zk8o5QSnlz2+xVstn5eio;1rWDS>bI z1g53S#iuqB6*J3qEi#oj@-CI7WF_3lcDTzI$9X5f`*Fm>?wOUO`;*@!KGze?2c*R9 zyHOTaFLR0m)py1j+2A;5g6D#9qEAIfoK*9ciykUcu(0 zvC{cSeTxmvqc*MD?r&mUMqf*pyn(HJvnsjbUW1bGo;2bK(*AZuKq37n zrNIFGT;#S zrApbQQ{0DogC#g)TDj4k-o0h6!1f)!rKA_akakJ+EH1Fl0KE@i?~3Sd|{b z2eS*G?CxqLJE3j%83qO$)W>{2=sf=9$|L~Jg{xZE!5M9RuV0p`2E?z{&@i8~d!ht8 zr;hu9R&IKW<>RLMozUFF7y`8^i+xFCd)t<{NnO+TI^ih}Of81N4%=PhWp`36BvN2< zJj|b(@bo?T)V*_tqDh*R+>55>Y$rr%iUt+9rzxn{VK3tG*+mf5!IP6zjeG)Ie2r6z4YO3$txRNxRbC+_VM zoM78F8kU%Kqybk`bWW+>_ZHS-#etlppv=XKCu5=kGIdr?e!T`K?)t^1g5)$Au~4TB z++wF#d;e!Uhlfh3w?>Qr8)%M+n3@f^r6mUIs45wkmt1yj*DI9ne5p)@c&wgZfaJb) zE4B?D{=-7oa!pfqAy;;AnM!~z&kt*4A)-z@yevja+U)4rv|9wSguNs^6$dn8Zxhab zezIX`kf`6y=T=;`gTigCqo<~50h*dd!Qc!klaJKKCmW=q1YV{^>Umy`2;-mpcJ2M= zvEq)ztU+UKYxkxPEB*E6FLIwpdh>D4CN(Bf;E(Q&rW&g#u0SpF3>}Ujk&;vT`)5V8 z^2AbqF-?RnbEo3wcF4`$GmDc67*NIi@JU(~%w-iwP9Ip!PTBo%EH8;#@`UwkTXp3z z<J3Q;#*Rg(?$%)_?ETEI@kwVEEx|; zOU~J^F5yWyaiczQzMa6fRPr8hJ~Hw>-wfmvxvOW?B+s{B*n*fm19Nwdw2NUvjBTpA^h=hbj^Ch^J-}Z(_Mcs(Z}b+r>ry63eUSH+^31 zb^eLRLGsn$1#zPQ$xit&4?Ft1Cq!GX9jmXhDdu|Y!Q?J=!WTTrJ32jkx*K%xYF?6jLPb6b?r5GPa z^^}TgyNjqUX*#yCHh-O=IIrjYzBYL~@`9ufaJ^QpUi#*v>sbbLPBkMzK#9saLeKe{ z|H#xCO6mH?vk0G_M``@f(I94bk$hnqE*Hz; z#!uAH;|MIG`hvl+UVdu#o~xxTMSJst1ajzy7U-p5Km=e(!q`)$%CP>9(S9+4t z^|Ns6r!dW1`vanid|H84_5JzT%WaX&hIhwhl4Q z%VP~EpOn`#(+x)+k`ugbW_wFd+cS%#v0=6LK26~twp2L2vmyTSeh|_eeGK8@JdG`a z^!#Fn#kDudqNol0EL3B4-c|KSrlEs(>Is)=I3Ca`ddsKs!A^dn9ubm%IHq9 zIFtnGgE6cqgJ0XOeX?R*%CRGXnK+O}V}IE3C%@B)v73+kNOpng72FF`P1l9ybD9tP z33_>afEgrO1*_TV`|jpsm)n4aZcUb{gZ9yw*8!G2I2iPm#Xz?CSibWO>pqo=&-5+B zj+FXyfa_Dv`*x^;sCT}6Rsr&VxF z$(z&fqMI;OQB0_n`(p~;8N za5U#+#@*)1{9NWSZ_GR;gj-!H9Al!rn6Bx08M)iEePy&ieKDZT{BV_(ue379X-W^9 zOzwl)^E?iu3W=i3(~MmC4Vmuh>>`-KV<+2$MGi$hOOH>M$Paxbke5+&@~;w+>W7B{ zJW7uf>v?_#l6HE+(!SX9#wd64wYJ%V4avB-*S<2gMq71pv_|J)^5awUHy^$Ch+P$A z37_DQ*Dk8RoP;}(?7vGxW`}qi8^e)r1NYtxzsuGCSBz;)ar7zS{->gQ+6GOdoOy7z z#(Ll0ENOPJ(hc8y(Dr$SaFh89`_hRVd5GC@woJyBCfh#_x4sK3C!R7eF^7vF@#7u7 zcXca*X6E^T2{^|7a}e_v!;}!p;Z_as2*|mX9;V1{e4G0OtL$QDEsf-P9~ji=M*rtoVAKW1Zaep?u3&3Dio3RyiO(*^Eya?&>qkTejC|_RIkdFzJW(S~H zZr_bJH@T}VbjIX$@yuRZg>$@;4N3~*TqP-930{f^gu?8xs(S&W8f~q)+O`uH*xK5Y zs%WG=8N8jc$4~9?OHG-G)KMpDUUa|-mfxNEY9`@#cf?7{J&c~4*c`26*zTEohQ(}P zRWPqo;9*bD#t3&#mv6CWuw95UdGAlRZ&(p!;?7K2h~@sK#aU$sJ#b9^&fu%-2>O!8 zJq5gHTuUng`XHXk@c03!zLzY8=Q3Ts@=Z{>Tf)6x?sK7 zVS?QG>a{x{{6xJ+dOsfZBQ_Sl@P(zGVfw>hHdK z9(4m3_QTGtdQGfz&}R-oSKCE6gjhhIANtQf0_Gm!S`Wuqf6g(s^fVmI;aj4*QhdA@ zWt{n*m5z!sY)AA|K{Ss(HPdh~`dDn^rl$s@XBcCz)okd64|Qv$_r6}1G}B#i(kIlX z*G{+?v2GUYWAkBplEmH7dC@JP*H>(j#@LXqHL)%fTPf7-{$kGUa|GK&B$u?nBNF9Q zejQBkt~^0(qg~KzbaLG$u1Uy|W&`sM>F7BZc!a!he^CC5%=Q#a8-dqx*Jw8SE2%UI z2Wd|?aso^1Rd=UT;^fq9*}r)2uRgQGnC)nn4$N`wUrTJ*4$3jJQjQVZuLg7Bx~~`y z`2fMK%dw}gevKxb(+x61odD9)S?gxw8ctrL#&*FBGIT54Oe7x==HeEaU9Z*3U_Czx z$q!rW&%(qxw;F}DStH(9&O!OUX|fMlCGR9(g}{vw;9iK6Hv)?Q?;|+Op!ZEcQc0|) zWH!y9lf(KGQ>{+=(34x^d<~JJ8P?t8!nxA+Dv>}W=Ot$Gc=*-}BUUooK3hFG<=6A8 z_U+;s3sgt@N}cJJRid0OD~3-4OU7DH(OwUq&gD1 zCnh=%NQLpDiuF~FxGbnGoFladnfyaO-0*=6@aDY)^aR<^S zBzJ0&^11`kOsD(Mce_IHx4zTwKNH7qn5}il72+O4|kfG(hwomv500&|CxFVvBp3IgP z5|8kAFOsk2rFG~#HyaViTvk!mAuBi2YZXYpbRIEZF}-x0(Zlzqh*7X%|_$Ly+ zFA+_E5^BRzz}gldfTVqnh$hb*y7gRlJ)PzbppomGPY>Zns6wBlDIkU((moIxC}ci) zK^wEo64M2K$e0_Xr*l5x#9PP!X!q%Wjz#VFlqBB%y4Ld|p0Hz08)vBP9iQkw<^Jmm z+?J#qZ34Vyvsp&Pj@+z_#zS9{Qgb&J2)>U>2@Y5+4jHq-FXZ z4G?bodU0|A0z$$J#38*|Isv*$4w4u>o(}?(A`6#+1CyY&NmyG*cb@>alvDKP2S(8b zsks91`>~=uo(0c5eSj4EwFEf0<}j&G!YpV9bLs@XSY7uSX5JL8{My2VTHl`^ftV!> zB&@eA5ni_>$RE1E5&L1+<7yA>veyQ+0t}U)pChpdHpoW^Ll9i%AdF+^7nfbB6DS)O z0i=ulcqZu`G#Hd1ywQh%g*n)wNy(m-%Zy*H5w82lT9q!PWm#CC7js`|zSaeHWDvZ0 z2YYbD#IoC?0jRf{cUl4(x8RS$(-7*n_n$bzzX#dRhw+#c%8v|967d;(E=(hh(z%7)(u~K?EBLOA%bHA@e0qix#%s9`!;A>6cr;}yERUY6`DhcftX1f zefisA{rWS825ngc8q?qcP?r>14b&8Z(6AMWsTYbvMnA#)$A>38lRaCTOT9@xHeg_N z_%;zbRcC%DKqt*XkFiT*cxL9x>+^-s)}jW{3r)h-YzVQ$70q;`&ITD5xO(Q`aG5t> zy=E);>9ltT)XG-Ipolz_CDC1qEcRZ2^>+0tY<{QmXETu)T#g8TIsE%S#bfZKW41s|~Hh)Sq;!ihN#5~-VQ~YN1xKV+OAF{BmzJ-Go zvN3FW4%eqI264>^Hb{L%aB+48b*!!Y%c90#RIoKxGazwDC;;nTs!)uiwF!}jKUj}X zS25Vra9HArVuXZ&+ChMKGmwycrD(IdnytU!<5EkmTTn*~H*Dn1sMd}n$gP{r8;$+r zt&?~`;g*h^+dEiuztK=c4@0NF!v!)gZah43XKjMYYm7JAWe@AZO@-&TWBogYzA6qN z^j?}e^HMUkj<3{Gr}ZRKQX^CAkN6KoAn|HOfXe3Zyr&+my09eRzM}9`1ZD>Qb%nHo zUa3wM*XFcu?*sIhNo`O#5fl&KX0sTuA^y$cGR*f9gFA!l$_Q6Cz;^94}m zhkD5Ln!n}0?E$Wv4BjGz|K~LS`#Hr3()RMMBXoG6ExkS-0qg)ac4lldw1+{ z@f%>^7@I~^wz_a7&!(K8?*_NS+n}@@MTchE40c~P%(z5CtwZ0ZdytJ(vZSx1Hf-KV zz-@fo7&pezwG8=n`AraF2b`#R+;f{X=vEAjg04!Lt22%ux(eUvl3p*mp{%MT4pHo~ zC~xoA^_1-Tdp*lFqIYIKGAk^ABP^~XNW-dY^TiGEBBf@=pE*fW4rtf8|nA3{kV z15bp63H@2}ur1p9&sTNkpK?fmWbaK$XEFmk^^JVU6#LxwD<#BbdmOtClg=)FbxV7% z#7}OWc_}aG6TDn&-bc>7(VsKsK%G{$gSD-EVAJkZE z3FjZ}>vLO3*7w<1K1ZUjgHc581~bpyK5&OR(+w?XI1@-8;&rAlc(saI5XiY0n-UDOl>Q&xo3Q)9}9)Htpk zBWRQORmHeu$Dt=fAGFw2@;&uz|E=ddga?Kbn_zTlS_OC`EM?oaz?_{fu&!W_l$W!D z{wJ0oO1AAMd$4>V(f zCih;ZR%~2=-1RE&+W~7~Q?66a*V*`${*ET@_S|QB2W_%pU6!v zjcx+z@Iz(;1iK(ny;2M)ILruUSVv9IpplYIRNoIZ0ogT&6sH9~l;3>o4I z2`;V?$4WbwD8$2nUc@+^3&mwm8h+NnNc)Gpc}JBsN0rfvQg-ijLh;| zR##H;kciub{Z=g5VA!e4$Z%_sHd8v$+{4P?(N<_3G@TL3Ae_)x0(tdL-wy|_u-gkc z0*@&(;sRdTXGMt5TyxqqsE!@A*&|M4es|w#k3!l}4pJ6J9(cuu)ATsFj~PYU_;Qld zL8j909+I3oq`0#vr%Q4@@-VYO>g&^5tm+?c;x29!!E4}*kH_`dGQs#Fu6={BB z_6+y%2&!YL?h}f$nz7$(Jjc*1Hvn_v;bjTlvP?r#%Tt8&fA%yS7)?XcW&>prh$ zQT|&W*xV-w&%;BV`K-74Kq6!5%W==|+~3BO$}$KFbcy|M;?7}2h+}s4o0$HZqRV=; z;b7n?cAXsV5W#&O$LqN%2M0O}Dl1x7VBil;cyv`C}Ty20YzNTpu%1BQ@*Yezvee-uS$cW}u*xj}>HBDbwBtxTQC5UdGX*l6$#NZ=*;VQ3L~T>O3QEkhjs+FB&ivk~hz!UiKX8B`?%n06B>|SkWS5v8pndbW>vWxN z%mCGuuP5ye?6hFRLRRB(sr??k2Tx;WAeSPUGN0LYK`t8P&a)4{Ca=Mw?WCR&KZ+0O zgky9(bbG!29}Cd!>FftHzFZep72Xa3&r539O$$H_`f}X%#gZC3u0?gC zz2se?<|W!MbJD(kHNqtwTR#|Mwl2C(DaDj}P?VI0o}y*s#(PjuqR^OMZ?+V;ubapY zR#a4+oRB}G`dwN=LQA*UA#+{&x{Z@{0!tlK3)EgaSz&EpoKztg#38OK?Yf%t&UQ>= zMSAN};mwg<(#y_pBE{sLqS?nbCiZ^##^ptkdHkP@psFt{_ zWYzXXnpn+_f6tC&JyU4x9Jl1yo?YxP6N?^yyGMCCa&zFVr7|J9HESs6s^k3d725gy zsi{R*Bcu5FBg(-G9r+f-or^hoCjE>tqE^>Z-}<9a^T#HWgqeOjE1JvPX7cyijL6r+ z#TkV{TSm@BsYvwAEiXIJKFL2-R_3~<(VqE(qW*qAZJ%0vRPFeu7w7)6K5e|4MyZ2% zzlU5Od1|a@cjMQgBO70sZ4zuR%C4&yCZt{(Qe2i65z(kz&N04-iLPB%&*fd;bc{=P zYA=iPk}j#SCKyKvG*5~930cS4)(+MYlSf8IW}~{2swBx#;o+xTo4(czfy-s2>sb0G z(B<@=GW9iMcfqD8Uam(!+}Zb`F&rF}l&clr>6B&v$8ADmgmkzotWTB_iA04DorRqo zyI+b3m_**2{qZr9sQNad3ZI4N`c6K)z#H?a0%TbC@2{JP%8DBs#2+T(X;z=w61EI zQH)}~5y$5BwY5)~sWv$c4Sf!eUviF|mU8Xql5ruN98cFNRP|a?uMjo4SvJ{SqAhb= zQ&%^&rM0!rms@k-g`jb5)DV@o`H)gp1}n-vz=LAL;`@n)i@%?ptbwU%GP>L3)$GRF zQq$rQO6%SE9PI3?%F6Tg)MSs(IbtjGBWepPbL5lPT~OcA1H6|bj$iFHnQ0Qgr`*kZ z-O=kiN9>CjiO{LHHj`6R0!y6W4wLgfg^$jwUm*83smJJ-xw(=T>bX>1qYjQbzFCim zkuLc#M_K+o+c+8ej@aszk{e6}1ve~moxBFoBX8ZNT+*a1HUsormL_#WUB8>gMY}Mc znp)DzZpCn@!(BStwZB3B_w&%=?z3Md8Xsv)Q;Ux@wO0080$%swR}1DW{e_FIue-d}Q%-(9FR1LZZhqMM%~8eDJ*z{H>!F91n*7#}kI(K6-%e^_ zj)C6IF8TR$qVU|VYrw881{ZJr>kqA0P!c&ygFFMJ>A3nVFf7 z$|)~6rJqk4A%=z3R=ldJs*0aoUtgKaO`dUH;27e;d*DSWDV;?3yYv1}1B1ro=x|Ty zsrpCR@zcJW>MT@~ou60knfiNhrN94%u%x86Zi!RwJNGTOkwLxu(9do?JsWUDiHEuI z>92pV|Jzb+A0}RbTGfAZVXSo&ve<*u0KPY$|KU-G9-itc6R-|`^eCiC#aXkfyJ;fp zE(-00<;G9_l{oT`wfonpD(!9S>`d9?1Y@{>w@x8?0j_XJq1!^^mnbQZi|}=ob9fIu zs*gwi^^5=UrcnmYb#1Zp;eXlFpI?i40M>TLQ-%N9?e?dxV6_$}3R#$cvs&A`z|+IF z>5mY9x75ErT|=XXCpxT89sB(<|NOouJ8YZ%Z+^HR|7qp7e@o%HNQ-Ig$R}$k{^?Un zlrU^t__5CKrsvm@Ou%@_w`fRx{)a8YjB*EqX*A_7y#MD<+j+V17ClkgfBnbY^XsUP z|M|wq7}JWsNBiebbCmHO-KEm`H+~-t+xtr7nP%wEK_6)ec*R8l|1Qd3mP?a0@cKV| CJ{i^k literal 0 HcmV?d00001 diff --git a/images/data_set.png b/images/data_set.png new file mode 100644 index 0000000000000000000000000000000000000000..bec3009a1d7552bee637cd5dfc1742248598fa24 GIT binary patch literal 206021 zcmeFYWmH^Ewg3tV5Q2m>?(PJ4PjGjFySqcStG2es#X7NdlO%JEx)qMFDJSjqJbkAi|F(-n}b zBngEpgGK{XWEK;@6{5NWDACa&-91(1b4PeIJD9*qvC>8C40L&=a| z#{=S1Q~jwSqlQOOgrM&jkdb3Cb3`E^S-!qg{~FqjzT+k;67Y`F;CXd>8PODRyC|Mx zraj_SMSjQD-x4B9EJ%?5zu zTfQ;c@e8Va*H!uycLp1zOxX5oQ|zewPNs>H;kz+^A3BrX@DDBs%C!m)LBg2;RjoLz zL)zcYUwpbS7P8k{S~4)PWB^-2{Ttc$PbFt^YH9KNOBswU;WSsF_|@Xu_aD9?s9?L* z5b~0151?3$?soeNO8GWuBw^tZUwX<#jUW(I1A?-;(!vS7QmM}(V-|F==Q}G~7%bQ% znJ_frlT@_bq%x*3B-h|j1bR7a8```SK4At9M#kIyUOTu5j=4wQH5MK?sRZBZt<(;n1*X``_}P;gWt~F#Le6LydaR1W|5LVfOhY zCgScr`sW`kzo5S}4JV1V82TZ#k7qzUK>{#fd!Ic>vo)iTu6259C(6;p;=^_%d6+sB zgR1Rlm)^Vl7F?f&XX9SNa>2SZpo|!nxFUH#ejofIbZLig*~bOX2D$c(qXm1^$iU5r z@uK=^bprrGc7u(Co&D(Pw@CPjCt4_4ZFmO_&P#U$LN5bJ zDE_U8;!X8maNu{$=RLf7)}Q1ac?HKg>TPPD?D!ZDPcNhQ&CppsV1>q=dk1h@UmKwA zxUg>g;@c9Hv?OzeI{Y=Fi&6Q#p$jsnizY7mE+jm8<0b)B~ee;0HEr#T0|VNkr-JON};fqa0H1-RHzt|J&tP-0-;TmEM)+7Mp3~h^Pe&z>GC!# zP~qQ9vds2yYanO^W;4)C5#1oHghn$G#}7>j9+2^RAjl&N4IYxvcET7dVZVHo?1q}t zFM*=zHLq|hfqofPspPZ#{1}8{$2Ib+bZr5l%fOC}?}JWQc@NFGCy-<%LZ_QxL-0=J zU3`Xg1!)8FPuP!sES;JHjG1W_fwp0`pH5P}I=P9X3uIWxxH>$O#fAv!2+PQ=$=E*2 zqPPb|2LC2S7LPR)x2F(}QqAE}U^Ii@huB9gOq`N^_?kd*7=7ILvPH@S))b?oIHdrS z-o}8VMYrO%!nQTHiMKfHFSlm~juR}Rn~7)X*#+eDk`$Jx7~>EIm?WTcLG}^$kr#41j4grzZzVbT3OQZsA-T^~CGvB{w(9G3ojOX?(|!lS(pfw5 zvvL-NCWS}^1g4HDth7NrnY5Y8H|^7_=3 zap*M4RCp>)g)AjfDs{>cawFfhOIvjAvo0LaVnTvLz;L3uVn&GrYVo~}Vb)?M6Z2Qw zSIbupS6<3lMTO>3<^kq~2j8aYriob5YN^ca%rB>kreq4P3k?p)5566!9au~w6|c&@ zvV1f7c?)∨KtyaU}yRXO#af>02zHHJ)LowHZq;I4R4l=+J5$yW>f#IVfO}GNV~) zrM_DOLs2B-nA!(YWja6W;$A4I^LLKBd3UU}kiPJntBDJetC35?apVBupy<$T-+0e@ zinowELv;3XY;)ggiaYoAXJ*ftu^}Th=5ZL2r`7XU&*&GKXS!#=dqrPWUjbhj-^Tz{ zL6hG~zrzEp0t7|eMD#@9!w$e@YRbo0@X3p+11)pELk|sE*|>vV%rxu<_zbL>KZMI^>HjUOc(VZdqz4V ztW=C#hC$}1Htk()^Doz^gH%gYi+M}-8QgxHCAOvxcN=?Kl(r=oumH66RS^G!QayBwSpMlK^Rshw~yKk{JW z_v3T(Jn&res)1NRku3_<{E`697FPAMEmzcMOymZ>Gvg?k&)fxUrj&D3KzUpDAOSH)F{8e0 zxlp-prjnT0=(u%6N7@Z`9Q-X*?}VU)ErS{e%&<8rF6zy?%%UfY@_56m!qqXS0n(8m zyjK1PtuWc4g{0<6CreBx)k?QhRa3iWCuTSkFcZ9!gOeXzrL@UTokVndZo+Pp0m<&n zqSYJK*j4@W{qw!|)K5}g?h)1_EomUl!KIC*HqJ5!wqYz}KiC^sz`B&41Bkk1$1!9` zh(8#A$9+p>+dBz|{kD&1+x5vc{gQU4Jmt0ISNmEb^xeCgpLPBZ@QJh@4Snw8Bi(%) zaotvu2#Kh)`#RVaj;l-qRYOMY7z?NgXl+{f?Jc=t`KD&$o8Wg|MKpP6@F6y3wi=b5 zWNk6^RTlBjMYP3j3APe+@e6SYiC)^n+MfF+i(ncre684~Jd4uJ1*^lL!@EQ4l3UI8 za;e6WjHB~_3dC?6EF4L;wq+Lg$?glP?L~G)wotZPWxww%HjE2Z)`PnPR|AL2e9DN^ z3)96#t2Wz~$ICmlrC!Y=HxtKT=QHP}1+0qd%ATA&4-7k%m$LlkO=p*q+Va+!!aC>no0nQA)AR!CwO?WHmp^zSvCV2spIXY#pvzZBg{jhbjJKOqE?Ty*7)~>*a7RRagi)EloZz22%hB|$d zHjh{Ty~3nX?_hZPr}SPgm%C@xL<5ygw0xT3Wx8crUPX7A8@C%! zX(PaWb7mNe{n6UanzudO>G3-KiJQbFafM`wrm@_y{mJLXH^n>YH9K>(^0Z5EH84Fg zi(uJv$m{7M_^f~TB`bd_e|z)_G|gA$ZCD$kAQ)n-dHvak+|ykgD!L7W4EBlQizisT z3-H5jF1UPYXc7YV=Wv(gg&_o>BJ%uQLF+RxHke_0MFu{q#83Pa>ZN=0aARy4m z{(K?D6-dt@ARs|zN~(^k(o$RoHdb_chBo>}bU-WHx84vCJV36uqLq=O9wE@m(%OLw z$V>dU9$atbKh^Zagn#SeXu(UYDlJDSXk%|g$V$gT$3V;nM@UG>V{d58r645okKu2> zc!^CN9c{Vj>0Ml0=vlnV4wbdeAz!T080iX{{Yd{yxe7%p+vv zU|?@%>u6?UP55VCJ$)M|M_yv$KY;%E`TIJJfM)-KWbN>e*Lr(F`ado7jC2h2|D5}6 zD9@i-E;%!xk)^7TnU#^X!y61fMmA0sp1%$Fe>MFJNvca*JSp5@)@euq34Z=?D;ZJLPTFxd6MmHz&etAxm}EV_Kiy9Jjc(*Ple+9uIAa zMI$bW{eb%GYYpz>R>qm5Ka?xi$0&%ux_%IST@S{1_gCHC=K0$6IpZvj4%5ur54Q)w|w!2TC2fbgf#eoy-K-Cth&0zWzxn{;yk|HTR*;bdE2{(4t` zKu!2V_~$!zh>`py__q$IARyvjZ$8Aw9QZf*`#+;a{+kt0@|o9HhO6%sk)tjprR!Bs*nSUI2sMi`60Umq&z8=}ts zB|iTjqW&ME{{J0OqmKRZ*{l|F;4%M`So;>B@?_FeYCn8E75@+VB!oxqOX!@e!>Kp! zD9jlAJCoZN*45qqc4vKca>XRd{r5VxsIRKQtZ$+Knj(TO_J0$kq3avxsd_@ShxmJ6 zvyX4&E$R0+U~3B`U)T2+QXL|a{I)->=Ts8EI5o=F}My zRJw_IZl#Sphay=Klqk}NceL;A#K@lCh{{UpfR9c+k9&8L+juoEM@4f8b#WBm7`-xY!J(7C10l?P=IxWJrUx^401UT~?r0sIvOdgTqxc8f0 z9lWR1q;3a%n|WzKEN)Lc6}Wd$%+>GHpv=z=7k8mR644#q$+mAlW3-w~YCftL`2lEl zQKH|p9jiQgx@5>2>B1(UTiioSBdixE`>CIMx%p59U1B$A!Wex%_w>kzRj+Vv`^v6G zbs5D2X*#X)f=BF7Fk{^Q2rq*RE6ZN?+CvYD<$M$H1Gtx8>HkB)DdTui;Y_p$086E_`R9d`%Q<lBXW0lm;9LPImR{WU*&=-oL`SKPmns> z$IOU1r%xTTp*Zv#Es;24ua#X5AJ}lY&Sc7+0jfkHNd56L%qJiPY;k>^IHQn%0Zqv0 z&|tiVkFGw5Kb)~Xb9{K|j_^Vv%@6vulls%e8#q1K*#L5=@O&nk9L){uKHQ=K8ZZ|w zAJ9!%IF%dhkCmZdu2|=4JK)KUt27mb}YyT6T=)y#1w6PDos3GR|x_EoOe}Hv% zUfo5YRU#`R)gy`2?l*%}dv5PNe8URd&&F8CAPx0}w65$c?rvPgOcn1p^>TrCEL)ss zu_tSmI}LB*NVb(Yx+f020S^m7;JJW)@!YlbB5CU`c+6pIM5dEW3>BlTYEnU>ackKh zQ*@K-*=`a6pH6zi`vvonGUpqN#iIE6yylOxniWh{&OP8{RRA~MOYtE%Wm`g|q}}U2 zFlb{{7FzU?owCB2-jhhtBx-FMLTmEt-RNe>!WDZQ3SAjRMlB=BjK+*!skiJ;&+mkB z&u@`STCkf|3m~#qxqTWv8BE=9wgzzYBfdOXa<+lan4dh~hjZKv^yS+HbH93(P?97nzk(OQa7rz|M*+RYWL8^SQb;WA?g%emgBzZjJ zvf0mu#8rxP#1oKd#sBRGI6|X~=yJ}_;V#DI%ZYf9Y>4oQzzgtja5n9OmT~K2_RzYq z#S3Xx*kY~tkIu3 zFiSssY^{_65Kp`xLV6&Eaaa!D_DRR-Ssgv?U0U6F@VO~N1!P3eK&PsV_Z`f@hHg=f zsLbygZfgQK81&9redaO#u^QD1d&q~8y-*18_DurfQ1y8!;DlH{svdZdoju`7V?%hm z@qAS8vEPcxSZ!d?+B|hu>~)b{1Q_B%^sVffDKq!{I)gJpaMJq)YSSCrTkTzu1Cz@? zEU6^2u!6H30KHxCc#wmz{uPFnooD}HiwF38M*peJHWij9;Y`1anloRwP!p4-G+kve z`-5zj#%4WWD;B=vg>$`lS5pXcJg8Vmg-89W$j98tn*B!8KGLi4MYjtSZTba}poDtB z)5LgE@_l6AX8x)6&T$H9LYD6C{^8XEQUtLG>Eni=fCNk46VtDKK^GBcP{6V`ZsKX5 zE&!yo*MB#R-noHnASX%;0$Hm}?mMnV{KlMegZug3UMm`NXP*RH{#$Q^tWp@{is^mLD$jpL)ytKPplO=}V&ESP%sXkMKa&YBEr2pAUN4 zy8d8!&TII|iM;3KE+W`%!Ze>q7D>32+hRU&_)r7f<{z2p752-67qEn&&QkahBw)A4 z)I>$S>YX~dI$`708y3w^D3qnbN`0XJF419w(^)gdnEqQ2>S4$)igv_v^Yfiz0{z>b z*n}u&Xn=^e2>pdfqp6UZlt2yugzZvroL1@bNQ7X@+Fv0rFJmG6k}CaZEAA$UR!_V+ znlUGx34EO7izp=1Deaiu^g>yeoqHMN!!=myk9ku9jQY*8C;zU*{_{TnDhYJXs|#t*`m2pWde_V zV+Q-$;*}tWN^BNhLpLdmekeT^nKRc+x5qVf%s84urSRM0RV_5(w+1n#H{m<`4{5Z& zOlzW^#$QJkawbEs57QjzxHqcBu^fq3CmpR)4s;UrMq#~THfZP2e(H$695m!`ON+8} zk5u5D#fp_*2ICLNP>;H&=Wq0F-+|nM63Cb#B8LZ!@990O+*y|MufHK_ucs~COooY` z@7ID+4YVGo2bLoHTPYSx_2A3M-A<8(ly-$q{^6lul*EjFMGL>n$O;WXTCY^#H#KKh zDme=NGU4OF0HkAkshJf*H>1tV@ZiJbY$ow|E_twAFz!v@-J95w-a@1^6^j1a{@JA_ z44>D1vaPl(Chy*YHv|2oP_4sks&QTycOFac=uRS}T{XDxfT`(Y5zm@gwc(0{6v2IK zO~1uQ*}^VBtyNp;#7gnDB2CKlQl&J_v!s7M5TL6sbOx&2kluAz#(EeaJ(>p&z?!8j zjLcuP8L!Nhk3?5H<9c6-nS)0ReuoH!iaL5g9n`eJOLGAg2v6p{K0kv~gO+^mKU1<2 zD258i@E1N-wA$UqFK9^GhQ@kz8lK4NPle$(_wfn_cZUvl>y=|t2BT{e`$mO z*a2obwauNnmjy#GFT~HkEr(poWdfn&Xf@Hv;NpJyD1JB_&GfF=KI2!dHbImT0bkV- zm0T@}TDuC3L}L>)HId)E&ecO&IG2A5_8=SEXfu&Nd9bHUY9@>bB*E;infI>NH~}(`M9be=}&Aw#hL9N&jmNP8T z8C^lb0em3bv3Y`7jIgfm@gBMVY@ol{RyA!ayI&Mgy1;?v3isNl`Q%{AJOjV!nSZPO z3n`j7R&Qr#d=a1ZvT!y)8{A7Afu-a1^eFmNV?>1I-Zkv9{&h1`6$ajqCo_ZrRMSH>Wp2Odi1EQf+lr4^rqA#R`R+alJ(IH z;=v2Ah?SpfJ11m&szCuz7)XI1j&$BB77Q$&E+6L!STRy;n7r%hP(N^Owr%WChw z5kbziA7kFw@JC!r){*d$i(97SIppdnAH*)1+U@=}lCRsiru?4w87^@sQc<+C(x!Os zGxy>QfzaH!X)gg9h~-(=(Szflt_eq4Ta1LKHjPl;=pJvqAKztU?CX@J`p0gYFMa~u z0@3W=GD4u>j(wEqIeO1h)e0=p+jP57<(b6PJoT{XAoldfUXA6*nRIL_`)b-3OK5bD zhJhSzDO%gNfMiPR9}RZpa&SEQKb#WUZxqUOx@3qo>gY2hx>3*>&qSw5OK3=Uv7X)_b1m^VA8BV$c2@gb9}QB){_4|S*Samoa_;mckX zMYhU6e#WF8m-$A_V`fEl&M1eD<34>DzJO-I9qOw+(y&TON~U|2C9it6E1+m1Axu*( z4#r+r{$j(3V95ZBCgBEBcd574*55E-xOuE3P8q_$DH>PhBc;e)3lFf#xH$&J2~K)} z0ubG2Hq*Zwq!-ZkM!D|>wtM~h)mTm<>Z3$*mGJ zUo$$E&%Ss4d6{E%(z5Dohyyc>=hvEl!|^T@M5B)CMNl(fmd`yJX7)#a|JEvT-NIMD z+C|!>JIDUJ!tqeSU{H?=amx4yYSXDwH43P0v0BU&ociE&TvofspU+Qh2&rh{KcBkL zM^-D}G`sJkj@CNKzF>8w44pIj-77$xUp6jxa;w@BwO>nV$C2=aay#9grWSD-DfE-z zY_eA6_8z|otRm}V#9b&iUSNMZ|F8EhJZot)r;}cHc8f^gr?jZs(_xnS8UCCaf>j=i zrC~Jc{U?blAzmk(6`07WOZ0@5!%OHF?Me*D4n9oYU1g|U1pA)L-h=k>@?}-O0Mw=& zQwrX3nfY7Y>XeCNOW;(#D_M;s5e4NDU zF#`<^`c3gE+j&>r)}It7TFinw8Pz?p;%hm)HC>^dqlJ%s(#$=I2}iFif#~%tJ}Qx9 zRzB%4NcM*^y8tx!<@zzxYnvji4r4(+Gi$a)Tea;{g@murF~@Voewj9D$~h)DrfKZ{ zrjmUZ@%NK7F<;?bE}tZCQHLzzxAXz0Bl5fJavk~mo`F8BxXJq?P43e#*uJAGqxOFJ zKGHCt;^fQu$_j%5_9{>i{s7?zZLck(8n=pghbIB<{A`)b>#Z3MfP;W6E3uA*2iy#T z&Y{yn{b8GMIyI;gi09ZI92_Z9Z8vQ9xc7;~hzw|Nr>I>zq5W_!vWO(#e9uda>blyj zZFa#GaRiH@*Y-n*dplvu5+l@k0@XWML5C8Xmze28%!NqslJ5>p(!`2IKSsn?m_n0sg9`O}fWd1tqs%YAce7n?NJtgVzFz%~M>QW!dx8TUJ1S7ZQ@PS6^{@1Qjuzf_b`- z?%q-+^7VG;g#WK7~-Ph{5%0F#v$(!)@L8o*lKdV{s&6dXHsOdFw1T zzu)Mn%oJlLa(->P#|s4o!V<#_JDZz@7OpgXmTnUjoUVc`Obws2LP|7q)!r3V+0JYVUdl(x! zT;q?a_Q%B;m;|67se(40M?^YYFI{9^nLQbzQK(T{IUbIm>?s8Qh-A5z`rz z(t1=2A^g(YOUqq1(}|f!AK!H?K7qitaJjW6ITPIWmkKzNX4!A16++z5{!NqZ_xr~O zEvZ_+`}k$yR+4X1W?NtHxjdsk?^qD$*VM_yz{%Q~jL`FltMiAeQ#%`YT|NK0OwUUP zb7Do*(y$Tp(Lown)A{4rJQF;MFd{k=44^tV$dp+tXvwD;(u=QF}t8Gc74QIfAc%tB_ zqgWaW%){jIE^74VLZuV zs4j$BV2#>h%o)UmdMOom3m+Fp*Fk|Njvg<@3rt_o?M9}KCKwE@XA$0_AhSbC4jKPx zSA@NhloT70+B{yke&ysJs>$dgd^&rHq>QTnrS@CB#skpQvf3>~4s9ON`dMx5ax#w7 zgq8R4y_(h(i+k{RaMJR&WL)D)H6hz(GZyCaFl8YIn(4$*Auk%VcHuc3$h{%nz~Vk& z+jPD?7ww)HTyz?#?1>Po^ZLsyo7*X1x@X^Sa^maF;B0qBk8ewai+3?jo90Eldj})5 z%d#6rUOVUe4xbL0=JVBvUJ9DLM(E;EPMLlR)XUXr>+ zE!%j#uBzU(wwSj7Jwg;e5!Dx2k3>LJ%pUgT?g^=!?OLZavQ(j%>T3f`P{uBaCWTW{ zShID@pqb0w9TCgP3TB`TE(`cxLOo~2>M`Sa@;IHX38?D5waGyzFDs%HCe=xBYU3EO z$jyu{-MfbLfrOD!d?8n?sPXaqe5?@mtR9`Nc6s60;(THXW1XT9$qD`%se9?<@-yz* zy5rv5x0=1>ckZ7~8Cz^metKd@eKJYv4z1A4Wx?rn#B62=oBy-8P5mTD6jQIOegjY__U7~XWp=)6@(RdwrPi~Mz$eo-=zkS zT@dk43(huK1M}CXDmmXOwWD|jx(NITk}IrVrUB5uQH&T>Sqp=00# z=Hu`ENb2Lbd@foQ?Pz?*cv~O&85MW0;jzEKU$qt3tU)Omy;qHye5+_WT}^ku;?`$Y zZ?Z@P_??$5#+Hu69iK7zgL^*VkCfuBRdLdFLz+1DC|8-rau)fQgM2>f>jBqg6ZpoH z4fleTk@Sr)yI6Euzom%faD=>FIwIyytbo0 zLOpOS^sQ)MaJdSbdKMq>!N6{zWM}W+BG(TOA(gEE($Uf9yMr-YNG~Pmk3-D?vRtjl ztL5S&ZwtL6JXX#Sld)aT&DRl$oZ(G#evCN&t!MyZdM52A)i*@}fKG}}ac9$;%BMQ& z1Q)|Gv)UKQDVolNYAG1%W}CH-7upx`4{u7D1)}m;5$ybRmnjZg7I@~b#Vxtp&|YH9 z$LQyfa^VuXTH02DwOEWsP<(eg?@=lZ4h+P$kdS>&dpu2u6OMW|(ZiXulHnZ0iFvGW zU-LctT3%W&ZCLhJAjUEn))T%QEA6E+0%7nAjtZR|d5$>DkqV8VM6`x26-yDdi!Q4S zBzJ4O^=(M{2nZ9Z5O z6vv`LUDuz}LB@7MuY))#>`}!YF5qr?mK`J&#?tn}bfvQOsSe$V@pp*qDJu> zO6HsHZ%J&r<^6hT-2_!g9GN#?JYB?uUF$w&R^0i$IPf8PuW;>$roGKoW5yYa=a!3t zH)Ue5o9Dsy2iw8)T&bL>5K~EvmjHVHmzkWPNt_rF88pfm9GxeY@qO99`LENxapM=Y znKoibgn`&6PET9slcuv7ABbgolUUrSb;-n^bDP5PMNZju&dr-GSJa1atEYG%#_WUy zm*j_I1C)+gy!MP5w+Cfa3dT-PvIrQ=|Y@uKG2TYWHwi2i1XRpCQ$uVAE#aJ0U^lu~IP15XtV z0{0AFyrbugAi_tc(`aH2^Ynr|Jf7%o`So#N?uh9Y!VnFy^4eR%T(A7e|D+SV?7koK z&R*b830Zs@A8q(|`#y&NQp0w_Qu-nL^ms_R(7)j7Fgk%L<&B=h$UVa6XLULqGx?~v zKK4iV-?{z5jidYi@CEL$u0(M0c7d31YBh+2e0$XY`@Mpi9H0wrSKzBYp%;!Bue=q3 z*YoDAv@}`x)j68aSFoXMoLJloB23@pr0o3gkcEK$yBTW@-|59!U0+!I)HBOap z@ucIbp5Ws^HrYD6g%hqS_|Y)eo*;=bN(?rcGjveiQ2Nj4YLTQir6Y0q6{cI>)GMLp zfMZ~#`$aif5B&L~njs^CF_^0Ns>9nnp~%-=Lfn z+c=9FTijE2ArX7mv4O;JpV)tvSipx?+MtE^<~k_*v^z8x8tleYo2VZK3rKf_iEYOU z(I*Q{+b+v1x6sNDggtCSK34h)m61m7wxbVVbS7XVcC6piMq$NX+MMI7Ii+l3bHi~J z?t{BP0_b&r_*m9(DZ(?~84IVzNSt7nlK`hqO?)3JhD^#=*cbEK)N;34DtrzMJ)qR- zCxJ2RwQ+ucZDzw|=IhEAN+;uy2H&Ca;jyn`gQv=3aus7^7(^5%ht(KA-opVWKE1R$ ze-Lqbk+RIyz1uBcdr2-Ol*lSqy)&oUefQeyv2zmq};YNX?s3 ztdyA~E=oeB?2NT%i#Ae_EMADM-|$}neL$HqT|BTMWDuqMJt5kD*Pw;+CmRA~GEL7{ zik72MlMV{nRl(jwHJ?T5U$T)@7q+Xn_xG%dd0w+HrGCHLpWsO==in0lpniJ@Zxih6 z)AQ(NZZEGqtr?!T!4BbS(-@2q29c=WDNDMn&p$)Sc?Ffn{rgWU#qb1 zQetEkGn8qR5jVNq=|f!8DQ#-X#xA4>&yNpm&Nl-H2x*iO7)aW-hX8NUk1w}eWYpvm zAYgr#zG3$utjNMwj4zj4Lz~leyS==XhL@2ddzdpGNh)2FDebcv(|x-_e$~WrNt@}}G>WwlAlFT-BZNggb8f0)a^;i^lTB?I z9M1_Yf3#gQ$VHcZmC4Oq8I%IzX|3f`rf9CRB*Q1paSh-Bb0*S`O_I&|_e@!ZV=@U+ z^~J!&EQ?EP889`E^0B(I5Rt2Z_JY(Q2V#9<<1%NP{-zD^<=FXqPD+qoQ(;3v;YU^p zsZn_!(YHT%NeSn6`=Vz9GdCg-j|IDhm@#gWt_oO2XfLDPGVK;3CmEc_RZ%i;%#T&Z zUxGhHq&pn@3H$5yKM+)&-3qHV8-xp4zac7lo0wAC%rE4eos?P1c7I>=Or>arh-6oq z9lf(9_OODTP5N=W1DtvUiZ|Q*H^AiJ(-mJL;r_8ca%b+&DAkf$>lc`aWBY_rX8yE5 zHRSzd6?5*wAAmIss8z`VNW)o|kOXzNbP;}EiD_#mOPiGnJVBkbpFADVQqn}vG7YHf z;usvtwhHI{6ogpQ_{Cvx@irpK_PKI3hD1;>u3ZlK%(o*IDion-j!R3kn~GVZ$RLp$ zke~9ZOF*y{E9ma-p7L)7nil&kF&+J$5=6m+ZCS1K+(B=F?M2AY@H((w=I= zmizR>i|wlEwpWRO=1B`@>rx8W1I`oIsch^+1&HTpj77RDmW*dRVGk0+9*RQuC~c)L zy?0T>+;_mFclGgX5$W*!aKkAmG%ApuR5%mPfqIN;S15QRBmznF{)0qDZ{MyWIARv$ z1&`fR<=aFKRC@WR__C=H!I#~r&sM6sh9LnfPAA+sBGh|W$;TmWo(VLaF?+{Cxc^4f-svxeI(VZS4SWnTMeH?2= zzb{gI{R_Q?@6hRpuXZsAmmQ-4i`jkT>fq3R1tEnI_Ht&F*)pIOGvJ|6;n=g;p3zO} z(Ck3r9$MV(t6sslXy(Oketn{=)1;bT{;Co%rT{0r6HW%9$Ht%~yDbI5DhzL(TlzsD z-0(m?pF4$jVrg(>yQOfV5l)j2xdWZ1b23L-JHL(N0s5)!)ddAIXPif5FP0^=^wcJN zHU+4#RY>XRlGywf41H*|oMYM=O<%3NzDEKZ%+3D(jEPODA5q(9M!ZWpAeP-;(-S9R zb8jjkqVusaz9z_GRl{V0mQ#ezz~pAMI=4NOya|z!lc91@NU8aEY{mM*fr_^-+e*5-9@QDUkEKiC$bV6EwVyNG`t+tcNRAxUp^r3Wcpz3ukm7Lx3QCUlT^Sg0FLyOhKMhb-tfJ3dQE$7Es z%Vo_1tLhURWz;GSd3$aj2c|;duHYHLI#NKmj};0dWD_~<0%{&{$7xQ#{I|IS4Vts0sK23^NlEbOpPy z^o*XKdU!Q*GxySVx`0dBYAX)vqo-VUQ9&0$^mIZJaSDw^-D4J8p|JgCxx>wJ-s+d; zJ&U20dh;?+5-dsOL#YVbLUaI-Py>yf24#T9SpQ(xkKNwQxd=)UC3)b5Ky2yio9kv~ zGIiZ|vc?U2KPO93Qxg{sz2+dodcLYVXGu|SKpSek{glarYYy^%a#Oyt5of$cOwe8z zzqm^X=cU@zF?sm;`x6loLcF}h5J?b&?@migTp-`3c5_H56{O|jVD!}RlP(;@xz62FtGKE=c;Yo;AM;3gv+s7!}d0cvqG0VShciFB`6aj zVz_V$>qa((feSR9u{DZ%BL4Z?Hegzw7}KUaB=7!^{n%7cP%@kb2WCAj6V7Ni`NaB8 z`j8!~9TAug$4P(Pu;sCg{=`RMLkk?7lS0;Gdduu^IxP!CcT!&~gF{}=jeOA2U950_ zuMN6EUMs&hUha$)$|yX$Qkxx>%M8m$pKIB6IPaN7KF`@FPzJ`_EHQ!pXwxQX^X?Vh zMB#*Rp}fH_n_L+ZwILCU*sYUWZL^=T6<{0RT@3glC!!zcz?1}0i-ReCiYL~mWZBm) z;x=1&-J_h|q=dhP*`*xA@f)JfSPZsqW9;ebmsUOO405x8PF>7rNEO8VR@ooVKhC|} zYKybizoqcqf5ibG3>RUSKG8oT4w%H&jFD6V;;dsB5QQMy)7-&9z z%{XOoQDJb}H9ol~XF_;^HWVJ|?J;?;>5`S>r5y65D+Q<2p=-%(TiasQ@_Huay^gHf z&)n)+tnb&0MQ2K*oFq=+6wh*s=puc%!7l;Ecn6!&T+>nQx_tT1_s%QFd^p@Q1c3E^ zw|6rB6tzyj@u1HhfTux+GKivIo1!QS(~zfkhHpJ??p=p&SJ;TXnc$1vw=geBF`=T$auhpxyXWII7 zYPY&P6_Cu}X;KLE=lV-8bjIq05qxjm)mkkW^rKU4+f|93`4R|ARJCC=v1m3>=XVB0 z5>jA_wuKY+ftvS+yG=XB^hrrTs&zyEAjRWw4LEOo8QLJ4WaYzQPiSP}fdJ3Sx!qIi zu1)N_k(W7!&y|wh04+b}{q>sfad6ZMU@_sin$AfVY97xS4L=G1IcbczRY4>*4=t8! z-C2$1n_me|K?4I7WcY+ldj-7jWz0GL>@GG}Y4gF{xj-+=iKROe;4r1N&n~R6FdrJy z=EK)xQ#=wMB(WO=bi3D*1WvfAa(%xRSH!_yFN~%rjSmJMY@vg?@{@UuvpmcqIjWrx z)oZ|GG7r_51sn!X^5CJ!+99*Hs2Zf?LHb7z|5QnJ*>8Jm4-v<{$*bPhTB6o=qKa$# zKo(`NHoTkkop>o(>1d8q3X3!-?~7CvC9O1|fVBZ`i|R*UF^^vn+G)pg{E6tezznhP z`?1zZ0}+=mtF23OQ7y_n5pb%Z+KH$?W?dB^WYX9HvEHDgG7OP*D%##KH`#Tn>^@_> zW@_ICsnUE?zut6#Qx}cw3D50x$bz$}iw?d#bj6@THAk~?8S`HN&_?H(Wn{11;r<8Q zW)1e^p0Q7gVP~j>wSkV!QD-@#YGgi_JmXP5!r zqh>^K%FT@q1`0^z_6bwtJAMGKOlxA%TZVuW_B^JG$}OzDcj;mPIi7dpP}BSs_AcpG0m-a4_A3lG`o{$R0W%<#ZaT z_?~76*0nM?TA`Qf+kxt`-@xs1#DFqQpBJa=z_DfJ-Wdo5bK(Jo1lznOaWFmzle1m_ zI%bdQh!ZFBym&XOxXV7_B^9j>$Ui&Rr0Re%G&R7v% zts|oIqaI4`u)t15=cMi-1{kf`#042w&&!SCG940^irS#OvO;^U+uWu*lUsgMh2oDQ zE(FKh=N+*h#vL^kQIxaI2A4XhwXGD|EB*5uCeKw_ozd+5x9mS5rSQSRzoeW3KwBaS zlk^w^S}G$`2=?M!EYke-JLRkwTh2KEQiZP5&ijyz4idz%d`|+0*lNVGl{##^6&w1W zLdb0dFTRNxV>X)nL+V_ELg<|GUv_$^OhWrIQvqB#ET$@R3r(Dp?x0Lx6yr*rv z3r$FAe2IA)b9yGpndu(O6IVU4ijm5yfP+g~MQ1Eo+ptruqnB5Y{S_z$=Wf!)J+VPH zJ&<~;<@&r=-u6G1)6YvsQfuw@*7U-xS+Q$R3y*OhH=5P+F zSEl(O{{z2~QaD)}k#eCj-BH&2hd4-kX*%7mSY|~Plfcf&>Gd}$WG9YYf0v^QP?gDk zoHLQ%*OoO@kaEOb;9>bSr4N_D^(_$v+Tf$?IdNRtw^EbS&T2fctsL%(3j%Lyi_3oJ zWYDP)!pCnvc+wb7n(?*eqtn$}B8G9CQ?Nx+@MTVkk>6 z_Uegkw|&6n?Tv{=XK`C7zAn2iqGEKiZp{Sk_lTPxhMACL!yamItf_StuoguPO!Q~A zg!M^&xqcQrEt{c7ynrT76(KMS>3H+*!A7wFsfl^LB9z>pHDnkHUp>0PIHxVze#KDC zDhIPGT90Z}@K}yTLfx6;-WU-H4>UA1XD7pfDqnx)%t_kn^(hLZAvmo#i~E&og)<)Y2eHlyv_`Ai z05QOuq%gtHKp_rJ)|;!>@&6(2t)rq0-*!N%_ibUc!GEogok|D7lvet0bWC0g+`M?T}7tc#XaBeswo? zaE0>a7o*29+f|MqdJHtbb8A1dJ-Qw9DL4g>q6fA`LrT&#ne`MuTj!SwqKn7b3_}Mc z#3sEg&DWC8z7I~Ti^o^$lpPY~25B%SFj;Hop_44luhfjEW7yaB&2{bTtPlK8y{K9O zQ-)G)RURqF?zrZ6`qk220~t%F`h4i?lv`zg>U#s_MT%PMDJZZFB_)5{T#lvB?h};T z$lE4K>VBg=Ps1xSQs+%nC@CahJ zj>)fRZ@(voyLM`?gC~TF zQhLvMprNLBqrU&L%n&=Azx?UAWP`LRN z{_UJJ_LJAM2c@0w>Ng*KWe;$mqU|aO2>G9Rx?e;H`>WCe*Bg&lKMHuKDSV8J<20K# zS2_Y^plBEv1;8}hc4ntKetN_3M%@x?9FDpJWS|6Ef9PdYo*u>@NK9r;Df0+4Y8ZC6 z7uslgzk@bu3n@)buC;E>lC;f8q5c!+H;P)Y{}4q1a;V7|B~f~nYjP2yT>VcJs3IbF zt!C;=aQgTRPyQkPd2aSZ*Pl3~&S837)w=WG$Z_wyLV@!y=bOsYkTJ1wn*fP`x^(G> z3{j$W{8sye1P(of_sdDU;LV@ucC%Fo)mp=yd+DVrEn<#;+j22dgl9kC{{~xmPao+- z5QutrNWm@9T1`emJ{O&wcXVQ&^vvlx+$eOoh3!o+rinnVq$B3oNR^x3o9(*X*W551 z@YlV(T5_QvUYtbHv@hSA`nUbXN|pD)0yR> z;ip%$EtO>k2RI7%3AOEwvK+Sue81C9;j-#w!pkT>V}DdeAyMD*kN?? z-LX5@C>v~Bq3-Pm+b0vp-IqMCyC712cnKP?MwOCQt1g0MSOItjd9Br>l}xDVY^rbB z^s+l2<#Not&8y^Z0})5~?<1CF`{H_&bdlfDuCk*nV5|A-S)}17sKBL-$ScuCf)W(bRM?YV~AIdbZEk=ws*kaK& zDO&Mjgq<-F179A{^H=T@zN)>I^SlZlA8KHzlM7%G)RQSPa$|Fu#{DbU39agTz2)71 zcX~PdlZNSTm!ru=@A=7nNu?zsDD6jEF8j84M5xH4%>C`%XUWe*xR^nU#BS1eg@Vx9 zNxr5((DFi3%@0=K7A_1KGVa}Y4J49j?uVelZWwKupI>X@A9JC?^^*5Byx86LnLDI9 zoK92<__e+!b@K-OSDN}-tN8;Qda63_L=sUTBo$K7J*Rq*F?X$rgbv~ycmjVh^DtxX zJNgj?zuODQo1&PF7xLS*iLyC=<4SZNRa<5j^$%LIKmxPoY8Lmu4heAbx8mgL>-F2C zQoeujOfQI-VxUo$kS>V}R-k62?BBocSbq)wO9G){l2Q}fOvt&!<|%O2uQw2W<7-zr z={B`odU8Lz4N5RR9S`3rSS!69Wm|v7BG6vl?9fQ;3~pjM8b|IXdhiy~(oG40!jDU- zh-gn+X1AZB2vK=W08c!*+(Rd`-bEpef_{;=r_mdFMcz05P^g+?V}jeXL{n3^C0cTa zdtZH;1uDc=Gd}#bCvw z1u-vSv-{B5p8 zJQ^frPA8aQk;8bYWMmjtSSC6S(8`abkA*ax)UkQW`x@(-VExwoM2=Ky}(Y+A%Zsq#4b&5Vi|_oh^kbEw%-Z{w0{d`p=gHN>d}M({1}={+lIduuzQ zhqH%NF7X3}_@`(&Ga3PTJ5yCuIsW*s@QM$=CBIWBm>u5R-$m{R+E0&FOR<9RHGV6E zDRf+yufzWsVrD)`U46?fjLzu`BAD0&(X;Zw1uSI|Ahx<}oNk-b26$j_-#v6Q-*JcG< z35qXbn;&7JzOlZd-_x$J7is=u>}U6c!x8O`06LYmE&3DBIBrIKF`es(30^+AiD0Mg z?e6)wQd2sK{DrXAyD|Ia=f`t%os(7Ocxp(lFFQUw&uUEr+O(cMvGe|xu5Yx_tu5&n)|H48 zgTiA)lJj-Mz_KZvp;ReIbq(Np2kiaAw}p7V%Q4uS^l?!NWkx<>S2H}Vlm~v221_#p z>06;K+XNEFEN3>|2wZiINv)+LsKduf9{P!rX7U`OAmJTAhYqluvQP5uu~?t)(o;0Q z1;Y_$B8P6E>S6&U_lBT4%OFIG9q;8!Np()QjP2}@_l2F~msP&~I68l>H;zeAC`1q( zsA~T05d!@$Jn7m#oW;QmhA2#`owxOCqv=8;@%4HKDLk*sZ)++g|9hE=zm1rfG=tEZ zd~Ui1G(0+*w{z0AUbi-x32gol2Edz(?UQyA|1dWNnSb|urnf_rbUiWddzrnhnH|fr zPj&d)&NqrdVSf)n-xQE@fi#-%{6LJmbo~L>Rio_hu17s+v>#_^+c0m&mnTl1+G9<* zZ#8NwaJ)!{CR8$pN%-XK$o$At{#3)W1_hV;53Rh*pZF`0Fy#@U+*#KQWT9=TtI?G9 z>5m7)RXX(+>2P7OiOYW=Hq=$Mdjntc#&yt}9nO_BkkpsYjq?#H+_ESj3@uWg865RAY4^oQsO{>V7MX#0e(L1ScTZhGjpw@u zZvA*`WVRpY$B}I=HXk^a5>e`2I@$K)lozlk4kt@J>^2Zw7)ItGmlcU#JoqOb%esiY zL98{5&HESMxZ>ve43`Dd-g|M>o#cHJGVJ3PVwqYxi)n#ZOjb0~Qp@erO82IVALXqnWHRV+k zdB2%*MfEW6!Nb|f^!J6-oQ~Ip*CrifJMZ_*|9YNMZA0V!=I&n|KuJXjL!`RbCh?X) z5L*%#>2EnR+51@-j5_@7&KXBR=@@<8s*_bV9eV1=3fAh#^5J4pd*OIotnZF$ZW<5E z-|c|2$R4#X7pNchfVRh-ws;W1HygF(%{Rj|yXX&C44vwW)0*RXl4OO(QP90*rvNFf zOn)yQpzk1v`DF3& z zl@)m!=Jr47h8$%xmdfftG;|`=8>k*8CSODbcE*PyU$Mu3RV~b~iw|e|L5af=aV#%` z1^;#nLh#7jDMv$Y)NHB5U)1EB5R`?-eHnp?V@u~1-+I%%%|t_+6QQi2bF&Qkd$YG{ zNgK~*q`{6VhB(e@8Wcpy11#1!kbKkUe7rWj{+x;HlTZnu|H@KoP z%VhJf6?y*3UN(}o#)>wweO6_4kfR?5FIQENIjKk(FGVA1qMyjNa2Lh=C#Jk!mjY2( zWr5E?;ENL+FYyUwq8l^_UQwi|9fEA%cMfe|++ky^$BwwAem;y)vlt!3G@;Fp5>h$I z6(8HN7BtrA*Y8}B%e%@Snk#``?gQap1Sb$K=j`%Zn&onq&6yr+2AK3E3zH*F~XJJK6nps)Z8hSnV}hP)pyjEeDO z+jHGz@Mfjbz>nTE7?MGBQXu=Dx_Q4A9FYzEhK=$DrF(TfbYqS`lI*qH%1&}FeQkzO z?p_R!9R+B?fRS7c(fM}RvAhe`aFXJ_e5Y#Z4$7|Fb>C}*lXhAuMQZ|El31cM?+TG>2IL)*;6dI7{eSo^dKAE{{ z$p^<9<$iz3yXe)J?^;R{huSn=e?ykk1MZ!v>m%v3Rf^Z>ps24haWNT9pvojAcnxxL36Reu zG6p>j@Y`c8Q&Zsj5_%@CpQR7uW?@BLyWl17 z!+w_DPoZ>{8jF1p{|O{XzPj+Ssx3ZnD`htO#6{_YbI9AcPW6!Ne3SnUlnB_IAjtD@ zXfTl0c#YYIM2});d_rK=LV5uLapR?jgPGH=Uxmlg^4MxLa5D8usf;5tvhZZm5n7^w z@v^xUWO`7eP{uE}NI_rNX~9H7DRq$USSU!cjp#NCMC$TePrG<}r4R5%5z~LU#s#s- zauJhniyuoYvsIZ(vWj4)=P%&m^LMXq^{9hyIRe6CV3K>yXrIcjY1gaK$eF$AA~0_o zFSB`FNSVoR!k;|LGygtS_1Sy>Xsg|dyUnJKy0nPVo!?KIqN4dBPr*EBDY}=NdA-T8 zmQZl0-ZuEJ#(DnzBZ{J7&lz4-|Ev<7XL4Pqko*>tJhVtB=gshSk3F6#aAkfE5_uHx z#pnqxiOe*M36k))@B0LesW&V|2S4{9E^mWaNlsebWP*<&xzAfRa=TTLmzGzbh02!d2Vu^0 zg~i7kq?^hzz*tqncu;kS4<1D0Tvc2Gnfm8I9%4+4)EbiFxnlX(maVBV*$gcL|1Bq8 zGyUh0-c%PaP3uI-tL#HEoN9*0uld!F+=%hM#=Uf5m~aqGlR_=-!$wp%_{Sd{+Is9n zkfFv-m=f&WE|8x%skQsnXvMXo=)Z#7h`^*k&|M;TX0!mJ}jvWET19pTD3fH7O82F4BFB1VZQe zo*iy;S)i)Gtf%`JqGP7KSy6ZO_FI#Wb2EQ!PM!Ty;L(VzykMJz43>J;vD5ayqs$83 zc%U*|CSaf3V~qw$HmBct{XdmVH`?E@!UO)&C9|B9jgi1(_Q0=bNKFnE<19@p$1nlY zE*Qrz#)^QTqtffF`NmOI)h-w>v$verKB)j?tV;R)cEO|KVbRC@&S078zl_>1k6pdS ztloK!T6#B{)Kz`g%j5Jd;inQQ6*ED7Slg}D?sU0YxoKl-4K7~%8%x7Cz=aq3*)X^QTm z)bz=4IpZ%hu6|!6mrL76y%*Z3%@wj<%HNa2jp``2yfW4DX-2=yW+`1Y5KIzyqiF!yy!UrkMlRT+{r;=6jApeN9iEY zg*Z)RP5HNQV+7x|Kq;Z(tejM|_j58dfi>wYxuIBP&BHL?Va_6@>Ta545mFITNN>cs?%eRzDsMx;R5 ztg3Qt=o`-SA!w%fkT4rO(fe*lmECPkuWfp1!1rH&>ij1P*{+M(n$vH~ziHhXiSk{U zn&g_D;5AR{=UyL9gZ+jZp0(w%?5R6FrOvdrl!QL|ojKh~6f*>LNz7 zTFNt1J4fI7f2QH>Uuy~H+L9G*`2CqWRtkm7>XCNO3SjDUC)mCZ6Ui!5h$lc4{ztU3KTJBts<4I$3myB>vF+ZnXRIoT(<=OB(9MI z$L2BjUaHqo(b={a2D|zOzjTt}dO7iniCvnve|)O{)z!B8)6uKJ`PS8%O?6^Yt6&tj zUtUpRBwg;+JH=}2PE{}bp%>KZvloUy-shg~^<9@^q<2y96!_@0=>#P6@{kVmFSZR? zjJmE|_H5;3ruy36?Zv}XMr-q4EvCMk;+lQfO^PIYFyIxI-5xi|HcOzW*dPC#^drLC zj>s`Hb55DLfLVv<=foSs%!4l}rB5TTx%&!e{HRqX(7yofu$Gq#dNMce|LsPjeOiZ# zzh;|8(0!7lEx1=5m+qlBOSvs@Ad-x4ZUjNOQy9RPv`5g&H%1im|Ef4|q6B6eY$`x< z=Sv6hj;1lI^O%@|4jff!z9`RM-Be+e_}}D$XSpe8m+oqQF6Ey$@ZjGi zo#*y_YT0V=rRb+voPn2~e3oU|jGc>QULc&e6WuuCU=vR5fwaAkw4@s^rY0vM>CMr{ zdPh1Hea&>YCDeajd~jhvlz5xB4)W7jcxRd!-FKc?l8&N0H;q4CX3tbgvETCdaqmVC zQw3OI+*hf~L229p?!6J6xexR`?4!0<5s&{2>EYSzJDj6_-g1|6d``|5TzF2e;Prp1 z)GNTQ(}6DP<|9?;VEKD5ygqaMrxD|c;#RbRhket;tK08=ELIly@incFJD=-Y|9EIA zp4GFTr0R)dU*zpxhHo?bBinO`ef9e)AmTKN;@#>P9me?1G|;)l zKD=Yhz1()0Jf_U*%l2*NzcNRU`Cnsj&)U8%UmmwKga+Lbj$-eLF6NaR2IP;vV>fEX zESX$4yK4}xjY%q$LHj9|NlRWDQ%~1^J|ZPxE0qk+sNUtpUGD<^L2BT`~8*6_n_gZxrOave+|FnySzJ}z2iC!CDP`MvF@B(N+v$2jzkt>OHEx)pFdkt(Lg~z(1Z99v@#&`v-VUcp%aRjI+WMB+uUu7l8W zN$O0P)l!-{?FfAMp11lYgZwcs{_XtmO*uNwKf2-vy~TMnj+tG{&mP6Ww2RB94& zAS~jYXt%h0W!=b4H&@`_H#N0XY%X!el<+wz z`20eg!VVVo-K8!}%|gp}ZEbDX%STC0PE11sS2+V5MlBt_@=s5YX_qat&bgN^MlQY+*10DMMzrrM$N&W7 zZnyJ~4vP~aqo|abM|iV_mN-WULT$J!XkO*0jlGw+uVS%bFm>uq!gVsZYe&kmaT-A4 z-pnfa*PQ>G?L_gM@1nttVks)#kpYwh^wV#Awk=c)Nk(`JFl#R~Qosxdc%pH14{6ip z;n6W-c`(RL_=eQ@+Dx*bOu3F|+5&;?7aXpsc>&PlJ|+*EqP6%<*sO7-28t<8uK6k_ z#*@t~TY!4e{f12BaH7Sa z5V66Zb%}PR(l9G^lKSkz zNVU#J*X4ML%zepY8#y%BmVn&=M)dyk%FcN1$<>wYQi})tpn5DvCW<(b)yS|ip4Ca^ zxI;0Ky@w&wo7$?u{4M0D`LYyE=rYE)yz@zx!Y9Fse1(kjNTUc@r$h<)(Xog+5IzMC|HhA_P`IOq3Mc zSD=eH$(u0t*DgD9Q6Mrv_CJ{ZZrMh?s&qwi(AzNVl0W z?G=uLAVuSdcprd;9s8Qp}p#P)J zwmGZ%=4`t!2o>i~o_sud-MTn%CkIMmxgzIASrMmJe0cF1mJKRFLv22Hk+Z^%Yf=@H zJYPO7G&mNiWCzS_|GSBLBrz0lIj}U3X#As7s!?o8J^XISeg7pU_^a#wbTVV%+0DaR z1V@f~q4F;CU|L1R`J?yoQtS2d)1$lm=b19ym+6`3gL{&zyK$8kyD|WrIzJ!xprc$i zmiwkBq<73DFU649@&!Y9`2|x7IW6+=OS;x*4&)a`Y`cnL$YY

TuxlJ<3Y0+cXmK zM)sbIyKRR0tUg`^wTeKz+*M<&Qt|}-DPs6JkU-0HwH8ln7<1o1i>5%621u9glnKRG z8e10f939R%l&M)$ZgcTDUV5qUX^8xag+G;gpw4)}|4QQawv?NtS;Jy-a7MqIf_( zOUSA(-OTuC(ZXB51`s2NV-+Jj-jSsN%PbGrj$6Gb+^-%-L;H>v)6>&$Muta^Zbk%N z6L@87kiex#etkq3qOUt{e`=e@9P&OLU?B0cE~}D(^5fk#B=ro=pig(?%Es`b6gR-2 z;WRnRJy`v;aE-DFK@Oy#uUJ@!5@IMQ2vn3vL1LGnhQqq~U&iuNmDDIOXbDPLgs?ga zW6)s|m)XHl^RZj_CMpj7#vrgq<#n)IkeCt;r|lf~l{f!>Sv7u#$;xm4(N;a6=tUr~ zjVZ=%=sKl&IcpYkBiU%nh7HkJ5)E{eyq?y#|97*UY0uGq|I5EN@e56ccVpGpK&fuM z!~8^}(;nA(ZX8IPZ<|D>_i31Oao_#3v~RoYSk{U$NN-gU5tC^$6pE_j{&VF2*ZIF< z^+$Y#6}J5OwAWpvntL$FQc=@<)Wo9A0fGoH*3ck*Ax7Bp7Y}^(kH{iz)wJ7#6ZTTJ zEOpU+d9la#v~OJ>_gdT7r&bZ&YSsLod17rx;OqHb68i(pse{Xl8DsZp-io%{FBpMe zXfvFGBiwdy`pCV?B0xJah3U}Kixd4@_G#bqWfduKu%%@?E|L`ZdqCX8|HnDSMkp!Q zig{CR*JDKMQtjLR>C#;jM?g>IELo6(eqY1aqoB&$Y0k=A#<~b-_z#01FJHZ3%$`%A{=ao$8WdaFT2}9{ zxyP_p>@=&TK1!WYQp}@)Po?66vVv{b8%cBtNRG%cOs~e$#IVVw%I$DY_iSq<0w20H zoIDyu>fzv%%4=ID8$&*-R`O#_X!E5)x4OtD{9{KDB!b|Hbx}CJ8>bYN_CNZk(u{Jy zE&5dT_;5GF{-UJuKZ-ef?0Y4I1J8^8qXNj22e;A1kYSC<@GyS@&A%t?1w4#c0pF3$ zFF#f@qB>g1#~uVxih^2Q;lMSBl@&Be5kQb0E;Y1g<^GB#M}$b7p*H=Ix%~OrS%}XX z{-TH{As=X7va|s~YR5-Q@_`>sg#k*mXF~vjO#NfGV*L&)~*4J`6> zTtwj5f02MEe#uE@(UJ#2@B-^f-r>VFG)J;KflF60dw%}tD+0Ji`e9tJS{PKpth9Le zf4^BQ;AF_FYzBg8PLVQ40*B!V`LDw`{Qq#6GS@Y$ zjsRrWO55o&-Sp+C8_-y4%V4sfPTh%-{8bSx9CxWX&h^cH>4Ob5*0JIqWZ;lBEzYrc zEB8Bn#+nbc6?qYdh-Ao{s!3&`5s`=U$%T9%-v5Hv_YzxgMBk)WzS(SOALCmHxjN}1 zaRzLZT-ui8*?@bgi}r*6%d)ffumEwpD&-)eA^@UFdA?93437dkorvzqg+}Kn(LE8r zNAIg`l3LADt*s|O6<0A6Tcnxr$0+g%uS^t|*!1gM=0i3p@IL`4q|vMD_*lH{zSeGW zZZYESM=JF6A%yKhx&Z>{?V|9*!_A0e7*>Di3p4ry$N^28DA(uC#{`bd6Mhd)@_wQF zb;9)kaF?$dJ3#cfY@m%15bN9aeKm68J2xtU~MmEiUF~ z?fgEHBk><`;XaEC&3(%*BnQQOt4z1r2C&+?`_rLj!C#$?w)1t$6HC$bs1 zCoG3imO%G8D+Zy>1oblGc3)*xV3K7l9YiBD8^yO|2@$?Xux>vgSLA4|dD!A>ugbjN zV3@A982g0{IZp%}=@_Lo1)% z9i)qB-}?+&V6%g@)_v@4A2 zo*wV!Is9%EhqSfWX&;7@-y3@T%YkN!_%uD7bYa?Id>mT#d%820T{3hTm#*9Vp+DWo zut_B7Qe@3?LXY_fZ40?^828vtPqZXcXXqlnR#jd@{T15g4S-Iu})&ytJ7dA@IAtVljwYgVTl19oK(n;d=vy3)bsSx@g1-(m6uU7wnpv76f% zI*;&NK3pv~`|ggZ&gB2l8;s)G(#!z0J&Gu0|AZAv?Cco$Jlh#XO@h{cpn#e`pjR5) z@n}rXUayD|aC6LP_FL~O@PJco07#$?h^s>)Hyb#GFqz#HT1EE8yo;UjF1IBQi@P2U zUlYc$a8!jJ61#>Da=&}W!XOzc0_=CI7mO2Bfht>ZPj&NlBpK`tF>097|4I=(GLu_sXbcxrrM_}52zITU-LRyxugHK89 zTUHG?#4EFtWOgH+oEtZPI4g`@E&DAqJy53p(EUubKmAib`i1pOxncH!Yk4nL7N+<| zBahAR(Utk4aIi$!8-&rDG0~?5rZOSdy^UL(ZOS6v*^hxOd2D8g$mgO@H)Cn8D%WX& z*R6obq*G@&hC7i3^KJ~)FZ=Gpa4NusV?fB8n%1=-lhqQZ4u0pfAt$T#uuk#B+0Syi zuDhOZ))#H}MhyILJJViQJ7YAT$?SnX?y{ZkK37`N_GQ`oEQ;hwo}ill>#uiPSF>iA z+ZaEAtSEvOIRent2_U>0Uy%lNuiUKGADs1_p_5YbQDR7#ix5h_diN+Vneo`fNnwY< zn`&F9o4!xLr16%N@iiQ28X|I&x9D};+S~c^RzJJ()vr*IeuLlCasDq~&o%9r>%T)y zkphdGlKI`kWtJ(pEn}m|g$4Ntx>LV-d~Hk!M%m8vYukS^5e+YldHM{Vc+&YOF1-76 zUU9V8+-!l=zB{C&&4tOeeG=L5c)L&bZvd?GK?;l~DYvaCE!M4GEXS1opV*!E3UEKg zR?K)B&q}4j1q5)-H*+cd{2KkA$JbD$7iX)?4l(_%16v<1=c8RDbis6X#VO_BN4Lbkel{=T_ZN<4u^|A!ei_{WJ!Gn=VD~-S3 zM_3SSyy~Mog3_Oq>G(Zd>^C&6>mn7)rjchzu6!UlN&A3ZHqPiJM|i@zp4`cWB2+d| zDJ74MA|_XIa+~L(D>|*S7Ph_HxSe4QfW?}9%o?gO2RWIO;Ej$}a;d@hV_-9^AK(~C z6OkOucOeQ@VhYq5I_JOddmFqTE@l>;{YH3ZT(tZb_5s}Le1*y8OEkt>!w>Jqv28xA zb2bxZ)t-0+u=&Duj`90rRX&&o>q+Gi4Fo^tqwV#A^Oyi)k~dVwrtN0SZ7bQL$xEUI z4;ust{xjZq`wWsqESY}(Z{<)V%-^IsZxIL0+6=xXUplJ03E%8!_n)dm9_nbCC`0SMT zCN#((!vH_WMxVIPpr9wZ6o<{nVP*Qksl9hbBIKu06D2 z&`#6vo7cap+>e){9p*m8E2ZI4->5?5X!=d%bU9)Ruq0R~zIL;11bl}JG5#vZfpCc= zOA_Vk=))sFvfe%pw+w>E-XnXrRO)P$RgXGJY2OpAPFCWYjMd$)P@-5)aQ>%N$Kp}XYR)y)GL&-fY*^RW)BXTHWHFe&#oOGg(3KMJt z*`#YTAb&C>;nTlpH%02AT;z{Mum*hDwBmeV=rlF-(jI zlRn^Blg)1FW@cq)lvn*wy+#^=RdK$|>%;`@KqlbNVfBsjoq2`G7*-Y1wbrjc`!Rj} zPCYJw5c}1;_(lxVV39B}&)Zp^n?H8|RNL%jT&KikC2AB!bHTmVfgA!JFB;kzhqQ)j z&6q(IYiy*FA^9kAAaPRG0IWN3=nUxAPyYz_?@R;F_Bo;Ye+>MzrH8^?!GGm($956i zza@Ye7W~l==9GCWQAdX=^}?}$a;Je~9ZO)ZD3??|a#LM|ifwbP5s8XW0UM5+VUa1Q z_PN||^Skz58a})RD>?)l@-bp_f_L7=%&a%k5golBL{Ktpe_l%K|HgYQjA3CR7+r${ zt9h8N!Gn!nzB|4>qz5Td9A8&VEV$DP`2lvrwM0P~O_@n)9pC$+d;8{_zQ`5^q`|IkhX6U|G|w`L*SNybTZR0RRtlO;ifccClC0QCJ!tzd<_%;<_Ka=jv`d-Q9F zU6}}SpX7~rBPF1!5`yM3kthK+8FvKO27&!ohpa)fbTV*^>47p_e%)J;JnsFcf5pD(>Xe(4GV=8Mlh>)xfkaO^=&Vzb#P<(h=XHSN98vuoIDvLG*;vv7$6r~L!Le$XUQl2o3 zJ+EFOi=adyYzj5@uunztoa>^*3Sf{vro^|)mu4L2AbggO{s|Du64;?^lgiFa?7NV;Sh2N8fO5C`EaIH~8{pE212f7;kPs>S?yG#x$7RdeTNdykvd43Z@koM`j9&`-48HXYf+I6WS4g5=~oCCY59|NOx(Ui1E(-_8Hx-J8SprtikrG@ z!bCry6xIYr&}{wPj68nKGmEEKNest4qCxdfU2pkZrrFEf693{Oo;&xev0As7Huya~ zjw&F~xo~BRnx+Tovl$3dGv-yv7+B?h$L8RW0-La*I0n(l$7S&|Y~gm7GJN$G?Bzp3 zpO$J!`G5^GVr?WW%s`SDk1iE9$fE<*8w5(zYSHQ#QR(<+uk@u9&FaWH#<1}Aqp-@h zOyS@sCGb(Kj`|Shg6}Yd4mf?c@-)`M?%*xRlPaG8V~zrhxq*d_oFLD(0s5lzwP~h> zmxzf!(gSKln@Yp03H-JC*bSPDO2UoBcv~uelvV($Eh5Hpl9^$4CczJa+Y~$;`$F@x zDb{0uoEsXL;Nw)9`u3%K+eYrxF+)&TU>@40TN|LswlxE8>#q)ytIr~1-4D?Wcp;vEnl}37i#xJ2_g3tm)@0 z$C}M(>GtzCsDyv8Y1DD1ibpfRe)B7)OW3)qMCKNu<9T<>%$Y{8E!2|x7$9e>T$X>; zQ5vboc2w8NHVi+p4cP~m#bIe>t~+5`Q=^avHHj(ru#r)AIc!S5Ni;nLI57c<{RDO8 z;`kaucn~59HHN#A(QgcNdfXrRte?DrsBS0(Ed`Zvz+`*&T;&fbUxZ1P;hWN$G;Sbw zqW;30aqbBMKVH_i3*>~gV98OKl8bNA%8RU_P9#)?2AjrtiDnYyv5bAIU-BHHaMJI^ zphd6xfriT7MH%H&_8#E*sHw{0UGbPkXm$F9j4CK$_>+DkAMn*k5fj7 zq0!!H1w!JF)tfMwOkrD&ZOcXl4abziS6aOv>7UOYbCEE7;ueIHb8dpOCYBX800NWQZev&2eS@C z4mKsB;|aJx)Iz`#74gGuj+EXiGSxz5kKYkZ_~)JLQOXpZ8zjjUL&51$_yK#cpjw9r&#yhojbh1Kk!4=RDHt}z2@ z5*&xBDXvnM;^R0(%}}gqAx26W;D5q2ItgDd(g^TH6Pi@~x8IDR;DpfrT&l(r=y=3V%)ESpy0wjj3fVk*urEUi14QdQ?ym0oiXdU6GdGLbKYDu3yW0qJq zV%XG*5v4k;t7C6Z4Xo%u_5-y6wJTVQk)!oIP94{DD#-k`0^f0CXJOX`_H#)i1Q1F@ zGYevc7b2`1Ajq_eaf--#7y>j00oE!}d*B$m=g}-1WjR|Xz(W@xjL4Fug%WZa&S$Jr zjgVB1Ov#Y`?frCUay#7XUw}T1X%EpxFiga8m~jmFdw>tx`ROIRJ{AVoT!PvG*_t*Yledrk%AfU zf;z-Uz*V3C!dK&5+VRTn4r5@oK}AKp*<)*NAczp4j8gz@+4O6g>Ul&kly_~i;D^hP zp@1Oyl%?GH&kz?kA%T7pxT-;yvl1tsaDcucw!J3)$vY?}l6K8$F(ttAB(X{pICW5F zW5(m=O=p#)btgfo`1}`Y*1SH3zvRH6_@J8?h<)fsC9t8OX5r(xzD)Fb){m6RIL;We zD@(7Dxw_*B5_%as9R{||Yp1lT3p0J^ei-}S1l-)6+vv7pz;PMAt8|+wjaOSh3X5b- z2zpD_^jNbfGaN>=!?T7ZZ$gpd6D7KF_-#mfuBG8ec`?z^NzHqAP7M7)dOjnk@TXwNpfFO$CNf>Mf+n@#GTfTu7oFwF#tQh^$@OkNVM?x ziZgn zy=riR7?4EF2036SyU-&E4ROHEaMEmt;UC^J920V-_Khm~Czji}u(`$H)>#JpSZ^uBitiqpTn5A6#a{e>2w zDaMHFF>nS4cMeQ1b1eUG@&)jaohzC6+q0j))?bFjD2Z%&r?F%*Q0UXhL^`;B&KEW} zM=UsUq{_-M)`eAU(wgLpP-OVro^y%l(Me=!0FL*2c*2A^0)of_{NIQ{mosU-eD<{k z?-9{8B{f#H6v|&j;Iv<|zq4rfv0_8IC8*fdcGzQ%g8}N`FO&UQ>r*IWs6sjP7Dz0+ zM`RmTPt}yy!ZZ)Mm&L@RCb06|ccNpw*4oe`qSOd5yzwpi% z`fYhw-uva+(geqklQ4&$1Dz4HrQ$&CgYN&-KGb8x8p9aq-y0dMecpc2Bh`=gN^1-1 ztX07o#2Ikkf$3?$KN?PlRFC0{y>|7pereC>y7N0a>9$dsXUrYzwn5wqZ&zWDl*rNX z4{H@mY%#))ZElV(lz4uMfU?+d^wNuKv2JY_OQ*3ud^_eMzIflbSkX@@3zBr%xn{x7 zff$7>eTW#b0cG`Nh6VlD7VRoc2;O$8T~o0zP|uZ@clm(w2?NNclC3A`f2!bzF_=;; z0<>&M=MZ`~4oit*E%C_=oozhepl#cMO!$bTFbOYc3@4u-oq3I=Ly;Xq@c8|!dloh|Bhzm9IJFCW1!2dWp0#HRb>N^ zFEH(BvMUL|7>ot`>0K<&CD)*>cSp^36gjvP`TF&C(cP=M5g6!;de1lMdzQM)&yuG` z@WI&+U$4*btm-QQB6=%{4?dZJ_o|1^R_}os9LYZ|FAx|0m++ITEe!CtSZ@z!Xc0GQ zGm;41{+Sby2sq_=App~}EWSxQ*RbDGX#~Rnk^gR6FaQsnx5|G+%TGW6BQTIJ1K1%~ ztr^g8BA#apVGi_@(;6N2P%c9Tw9~xnH9dt@50YP1(#a_mnkufbYWD>>3%w1!i`JT| z9lfH~gGsG)x`&6^L?LOJ1QLPw@6bnUX)vBODE)tuBPAR}aGMDD3*i0IS!W0iUn!8 zk^qAW%W*+)4KxL%%mUJG93v;#zivK^j8Gk$P!Tj?B78sS%I-vdL^VBK1{FGW<$cd2 zAZ_J4HFecWv>|&#?p;jy4}Fe zPGVE(FRtRq#=?X}|G(IK>#r!kw`~{^B$c5-a)$0uDTf+B5R?W7=@yVy7`hwj5D^dr z73mI|7ZbZ z4hYa3s~?Fk-kHrlABQ2;`4rd$rJOFx>E?Ba_NWYVBcdjXfjmxLY$dYiGM)Tfk6|_U za=tZ+-5H$9>c(*fcYIWkV{NiO_uCOfvt2D$yT@3`7W#QuYbt5tc#vB2x)KA|l120y z%S3SDova!uNf_)=azuDhH->a8r`CM1;ohf*G8u9N`w6Q#SzzDhg3@v#55m)Yq)O-z&+2jW0p3j%u z$v!&ecXifKYzn*u`fRbSajRa?>bNBmeKdCTSB$O-I$mTG&NW6~XkGrmhb_YQxQvbY zK%K8mVTD|fE!Kr17C82Q?H`3(SN=Ob3@Q=KJfO zJ^l|(DwSFz8>kIZG~gU|l}7!vOc&BuM*BqBNlTH)GQj?%~be#r?22)KK% zY8FKru>%2Ppqj|PT30*1r*n(Py$Ot*aam|q5IxHPyO7F=dOg3=u`XoQD zSG45{T#mbB1bbW?ESjly9mRg`oZ2`ho~I>_88jw9wT~oIa$oxiNapl@ZhL%Gp&u)D zRf^^@VG<8i0`aw9i^x1y@FvY7A4&Q)ixV$+GcxH=W5Wlx1TU$gVeb&QE(-bS1i8a| z4c~;#?&dBI>(vIF?W1+aMAt^p2onBOVI&o@OG6i@rW^ks8qvxPX&36 zPSJD=*y>X9hk83oUV5Ce1*(lI1kH31O1dpZ@Uh$GtW-bkgX550sV}{|4?2FyP83_3 zu2aqp59w5%S`_>$Pe-4G_2{Sk#E-askz3zTFAaef6eFREBW)WnYsr4`VaB}i6Kl{1 z94*J`UDumEgGz?@2t+PYX3`Lu?)Wu5BB1ZxpZkgkTW8 z)UnmNJMUGIxS1RA=xwVy85_zunS6_xArzTmLneYCS2g5atdB@UG*4R2a9tzgUT6gA zoUtYA>C<}DGZ=p3((2J=u8K@>&$<-Z#k5c9DOV}AkQ5)TSrF2Zs(YJkDCTA&(21Os zTIlX)o&yaS4d~F3K;8zSzhGpgNAuzLk{n}M^H8WCkx;v97ITbq(|8;Mip1CUE-t?Z zK?aJ)`}c(X>R8Ny-~I-`N?_>hs@tYrOveAOt<>v2ub5#-PDfF(zJ$=lv%mieD zp^1oFPY=uv(J`1ozL$+-+@)xQL|QZtQTAyG4BAKprPXCJ1gI|+f{qqF4^t|sk`g`B z0*5aa@&8HL{v-xZq66_{QBl$Bnx`O<&-MMzM_+S|Gg8Lu$Gxt|i=KnxX-1Ed`Se~i z(yrt$zmF9tzX#x?FLzS#6!l_Zw{o^9TeDFiUoG>Q=8Vv>(+@u1*0f}PVaeLfMeh=; zo=n7wX@@FQ*|L6K!ai_pjI#fZ?9T8N3F}^R?~B6k(E7xT1ycNKs*>~pBhO(IUiG2=zeW1MV)v=q`y zuvP2_>+m9|Qg1Ko`|D@a_xr#}hdlowe;I|u{pk6g&Tt#X`RyI-fuZ2D6~;#+e0jr9 zt_`6dz<8LLl#pUy7GmywG4+1uJtfm;^eRL+)R~|^CnKD6dn%1$gFODxVmIeA9|E*u zQzDrm{`RLXf*1k0P_}LNo85OImT zX5lA&#tfeaE1ta+-q#r6@gLq+>?;stBMi$;SZdUeRhWy37xK9Xx0e0G z=F6jd9E*t6!YMyEg8QiH0t*ywoZBK?zGkCVoZ)vWQ{SCq zCq}gu6^{3l%&_aK12~iVmS?VQ>O{Ju1fPB|zJ>1Fms@1jB9mwpjWpBmADDPM!Qx46%aCsHE5p~ zK#B~zqQxRuAE9kJuHa`@S_(>`T;~(KdZK^6t`POc@`d@3d53pr#er6u6yk8^FY-;= zG?Nipc*ReZ;v^msF`{#^a@_GdBiG-T4dYx^@lq+ItoW-^7M?hjy9>B$Kc1Hh&4drG zamBB7gfE*OAMD_S*z9+WI{M>;WBuehMX&dru(3Vwjt^DdMjafyQsUKXO}xoA8VFp* zP=G=P3K>Eao)OKH*jQhL0QCj^!Zcwr;%7^p1{(R8z{bFKk9q+1>5T=FORorlWsac) z?vy8hjm_@lrWN6bF#N;e&jZuDK*mb<6!+$_LgUZdVc10JXhIJ&?fC-by+X>t>Djk_ zQ_++hr2wHJXEZCMZr3a9NjK;ozQthpqNcsTZ*OyxVU4|QzZ|ip-6-F&wBuv_)4^RO z!FG)7BYwN~&tp7F8h)VL=fC&t!|JIS`&Vs(P$97!>a?v7_YF}YgPlrgA^uY_7=GH0 z2QR})Z9nqQjV@pf(gwPH3WC0$WlaWD8G z8Ci+Ck4wIN2N(A&e# zc}pCW0c+;IYg{kaJJqkH^}@84x?1|NasI3^$8W#sp|4Wah^B!i`e#Z-_`*^gDvIA>(MNHg*Yt^)9IW` zp}D_3B*G)ta_-T9Wq%U9zU$KUQKO6f(!_Lz@5RpjtnSx92r%!zB3b0Y6?79Zr)qx- zO+=y=2pjbdP;%=cF&5=$HAHtrMWbkaEG%4t_{{wo8nyxh4MEXktLhG|{zdgFv$wshtz|ECJtH^UW# zpt2O*-6oHR!yt6J+Y+agU|~y58cwrykR%*IU{XmHTA6j#A*H6)cDI&(8bANI%W;5A znLKX!=QHj2G)4D>F$#4t5e&E)h~SGK1?*{8D*oIp!89^k00i;&>7L<@aM<@+d_(3P zFl(DDpSVmH0w#| zi|%<#Llw@=u=%OL_TY1yrU|Y=;jY$)*UM8FQ;T2%Xr*WSc0a1vW6+Xlbxz94u^UJo z^9K~L`M18icMH$CN5nW)1GL<`v3EQc3nJZmuU_q~b_&G?KDa7>FrXE0|CoL@U*|Uu z-)z8Tkln`&-e&^Y4;A)V*d>o#pH5vxW<_nf%Ob-}Nhdc8g~{;H`bk&qI**>cU(6)ooPNH5l4xBvnFDKkcC* z`LR-$A|*DR{AP%w&ze=IZM9`+EZK600gKPJxXS%R-H1drL*%w@Z=8UfUDj7X_Q+8& z;gBoS9_K=s;LOC;pi}w|T#i$ z6+r@6+y>T$oB+nkpiOh=*A!Rq2mMep00Mfcq$MR;!{m|-5j2;-jDc0c}ce_fG!}clwnh z>cuOq+Mi!qlUYWHGk2y{wOesMz&q%_)B4VxtoJKP#A$pk+`Mhifl(>mAi7MuQqHF1 zKD(*LL#X@5BSt zVNlosIOG=kujJC+47Fw7p>A%}t`xWK2*?+sej!q?HNh~IG$hz-(NeWV-?(@?w(8OH zmG>my(dB;h0@)*(M8HCpJ9L@~8A3cLwG>2oJ>sHL!qPDpkGCm1qX?-P zt5Q(Ef!w}Rqiim6eR_COI4A{i z>OUyeC#Y6O>IBW=;I~mKY<)(UUMq2v;U3xHT7TAI- zyBHF_opT!QO*O4xbrN=p*Ms?*hk4<{CGthoOGhvYAAWmS(q!rLTvO&9yB%ju>8jFD zc9aiWP^5O?;NaKgyTpQn?GI<)@-!2w@stW{yKoe$Y~eA2o5n76&CO*dBDI^ZG+0;N zoS~czsWR*MMA_0Qvy(9VI0&G3zw>@z+({xwCbE-}-VBK05xw9PF0*4gSc7OqGyL$; zoDWSC5A!@`)O%&(fK+9Q-2aeSd8kNFlcENT6|}JUSiiOPi>poR?%_F`Tf9lU$TuHN zBa}ItznXe~O9@=2Jzj`U$!5cfwq zM6SP+jT7jT8gCR&Ud0RXpwhZ^@3E^=r6`{Zz(#HoCT9xB@r(9EU>3T#Ig2{2cJQNo zL{Y3s+WwWCBmxM`Pmaes)q^=v*Y>vA6bQH?x{E93XG7C3o1rPw_3gM7xD86HAJ11- zTkUdCGcV6CCk>3Yp%0F~Qcb7QYlbJ@a@icB; z3BhBd<|REKUdU}wAv^g`2;v`>b_TdHQusVELW?0^aMfE`2*z~pH+K8 zdD3Q1OOh#oyt-VINsr`*@G&v%a z_e0lFb^9f3tbZ|Cr_cAOWkP}9I`^JGkVAOvsT?$cRxjnekf z&U0GYmliMOxes{8oT`{dv|HW3qN${KfV3T?QQbzh6nsr2doPWBp5Mn_VVh|>&iBnn zPV|P(rBn)nk7UU`nkM_XeZGVNcmdgj4M@FLOkebPTDO{l7??&@yN(3n9_q9MSBi9B z7l?L^CZ#L!-6nZ^PFOi6ab-ZdmtL8f%=YG11YuPYS@}U)Y-NjY zm_+EVctGKE?%*AB=T3$-&MVG5b7k(A(MlK~E)B|huW5Yq?Ia`}tpJsjk=GYIl6*q# zuO1@Qd~;`NuhTsj%y{8?a1iGNPsIGO?l@=o>X*@{8eXP5H9vL)fv=mH*?Ejxp+|bk zjyECq81-PczL7OdI+nO-xuWlkqv$g?uEJYYoHq4oXoAVcA-1!~T=yhA+s(2ZP|F*8)q>u10tfB&{3 ziqEV`{g(dT=H+hjpIu{a_a9Gcf6@m5g2WqRO05ZJWAP5{uz)qL+X>S#@rt&G$_+rf8Fk->aM!O8}$W6xA>%bR4x|v)OD8w zVU<=Dhn3fag&*|oRbl6Sd&LPDtp&?#qRpvKBOmmhSbRd5&@~hYDBM9!v_AqB$MgB& zRBT-G*3{LH+~523vSdUgk-@Z!)B>V;zDIF!C=-NZ0th_Li^Fns3<-0nIN1;L4@nCJ zg=ybLT#n^i9DGyPf8Ty_|CJ^tb941iv-2-}~@Z(XGnjyhq&CW3eEs4pp{Zb=Z(uxIZ6AeF!UL@a()zo!f8fZI^#j&PX={!n#D|0uPoyhy59Fc*W8qP zy)SOIYa^dO>+@9N1DM9m!h^IxeD_E)rBYpWo$}}VHg$3t{k%M>+q<^o_4Tl4e=Kqo zm^tZc>8R5NU@VO-s^IiuFP3Maq*Uux?bI!xQOs*^jF7T=ii#eM!l2-f43_GXml2zr z+U=R*68;m9yBJH*`rQ$$H0u6z#a2DUO~DF+7&69QuAnrQ9(hASWE;D1JFh09Z)+jw zOB4oc)LU@ZZO4TmK(42LKAa0p_0jOhWbMZS(D` zH~-k1d|=yWMF^dQt_u59Rz8uAJ`GuB_Pk6chDFH;9(~X{Xo{|i*`?WAX1rvy`2Hi0 z5iv1i1TFPRi07|s(X=bNhq-yH4AeJIuA3$7yB>1NNSg2MAMCrX=;l(Q4+^piH}fmM zJ`IfP(f`!K_~Ox)lGQ>FFs@7~WsB3UawM2Z3~b;;Vf4w^~~6i#u57k|lFe z;yXYHn7en?m(PfS`cQi`y{n$iqnr>M)OqVt+Z5W5vB3(d0_UuEJnv2VCo5VFKs41`xZvie#mggA}u8Smph>a zDBrcz!xZ2n42(=hTOafGSzl^Bf2N|%`JCK-`a|ZLF>jzw?JD&l_c(ccvTk@)C;C^c zdq2yd!E0^d@|UH&Ge-AfQ=0S_?mmFU&v7nH5aRHv9<57EYu0@GG8cBV(}K^ljh#RR z-YhiHJv~KJ;kv)}?2r?9@lI!Zg+1GGrp*8Y z#MDcow8EcT_seyKK2dfJyAL*Z0K%sa^5v#yZ)fn7ESu3)+kG2RI)0ZlL zb$-vn|}~9n_cfMdq*hc;O$mGfd_q@mZb7e*UuM?>k9T^`iV4>#oLgNNY`;FQTL` z>heviPSB#e=Ca1ce)B+%`Oe2m=iXm=lb-?zJ{A{aQM@oMHC-0s51PY5NN+|Sq_xkc zxF)+Q`@s$f2Cn>KTj4pRBA{G?o$%bmlzS$kIN?4iz0}gjFOaaS2ZPBEDy;e%iMDu= z92j$wBl&>5W_o`6s$+qG-0e8b>#Kutl0guaH)zI`Sf3VuU!j-qLh3k>y*HiMFKc8s z7`w%Piv-LQ|2a-BN(g0b1MxQ*UFS*fRDhlhsnY8oXS~H?CH5E$!i-K>R&v57b#zRX zkPd$g%A*_|9}T7fT#T)oK{<*&o!CNH6Uh^9z_731tJS1TTzC--=inrke&>t>5(xZi zI@{;FgF4-MLUr}u`2nL{h$EPgY&^HosS80!Z;Q4npzbJ|1Q1PUz@T%yQ~U zzu;`}PRIg9+Zo@Rb?fyqp~uc}?8?M2yZH_xw%Sxpnc_>VXla%Q9~31XeAB)T2<7*G zefubEI0B#=_L*kB#k+verRjSDfuT>KvE=O>-k`emChy)_riE6EIHUktJW`-Uc@DgR zcp_MlVM%ut0bXoz!B2iq=&ckC*nfgTC!khtTQL>YA-mb!DX9Z9_ zwV1@L!i8#v#W%eln;n6HN7=yl?e+;e1IP#Ha~HQj4+9J_sDrNp*Tp{@cm+gSX$Rcp z_Xt%0v&YO<7@Fr-qy%To)7^?7X8=62&DoxJfdH+)2YB+n0-B1wKzU=qMP{iF^^=YQ z_6PbrRe@mO5A4vg64&dS0;qt&yP{4~=zGEy_@K`t8-74H)CQ^~P%>ot>Gxt5-#xijl4>Xq-tHa)SfI<1 z#!t$raA_~bb&dXE<#IxXNsvl)M#>d`1g7zpq-&1=;MHSc>lgk$C!rlEuxtPbzn7ub zV(+68y)2xhk`|s|41i7Y=eQ_x+*;M_?!SxYBi?>0>AO z9s!2-?I`L#8}b$?+w-Nqo3u%%!j0N!uiyClpxAcFIe+W-az~|AIkJBBLg>o&$$Doe zh{0I~NS)&q=JHMx)yq~w&s~HGsv%&DV7=pvObq6ATvXuM7lbQZ03e~XkQ@56;G<#q zkCegD$8oL{Hv~Fi7$WUm@Y%2U2-vgTO8VH2oF{9m01tDh%1?ZQlZ`|lcqpR372eqb(KMF0%UtE~Rdyg4X=W%$qLO@sE>a$jwR2hbGI zC@X9JYxB??-G(gi#f_G=EntCbVqaMPG1Gq>%Agtaq$GS`v_;R7UpGbr-G@eZ{i}ap z4onIAE|^^P0BX82FiruCFXZnE{@=avKMQpA8hHOFmvJxJ^1yranRuUtOvJ#|g74|X z6Yztcq(BPUSm=${SVS!5HMUph|%sjB>4GRV?&Ax}6eY59@#U+ytnVG?@ddOAIyv-wdE8=+pF|4=tv2Jv;)J82S!BRE1s`th*@q9)9x5YI?{p3-Q1L^4$XlQ1Jf@;Q!YE z^k+!u1kn~i8LAo}2Kr_LkDMVbABaj_4-squ)ZPV9^%LtrpRrjW|C0eNzQ2w9&-U}> zw*V(KdtJ-Gpgo=@QtSvQs(b}pb9(?0bAC`3NzQ0>#csF~DB_F&HhI>K)y&`Iz{1`V z8U#WMrmzUPG7PzsG!d|{>BHA={^QBC9e^nsTwdtOYXjb7?!rak4oH9iK>7+~fewbx z4m$8)c_T6C`1wXvAFI#j(d`&;R8FMv=`j#+r3 z!?!uNo&0_@BC^2*I@x!P3s(KIH#i$#$JIc71F62QUI zY(Q5OMZ@z1nL**Vzdo7NsQ?t(t8WR>FJn8Mz|M%P@Tia@SQ*K2f&f+=xhd*jfP4kS zuiW^cL~&cD3_#~n!PXwMsgW=$0w+G>X!BVd_BXl+gMJkFJPxC7$z;7&yAa7VIa;iD zQRNeuQ%k@VZ%16qf;4nIhsAya)&mmOX?m77j<`e#hpUPpHlVkai8k92hcPIfYazGEBXUm}Grx{j@CdNe$nk zZ|<#q<~a&}6^UX;fo@l`qBZavqYS?u{KITMJIc>|p{SgZ6etBplwm-tP5O%oh%`Lu z1OP};arUl)u5-;h3C)hTiwV~!-|o$3OF9eX!f+tK5jX(>;YU**(Yq6)9e7J%k6mX4YI6v_PUg`4FhxC8F z5?JwP63~xMyy$Uh)e@}ofi2F}1Kbh-AOj&ooq_6;ij&)z!5!&4jzChR4yY9M_xvIe z34Lls_zO^3&RCwffN@iA)65_cKy?Ptv>5T*jwZ4UKHmr=8uXB{4rOj^@KC;@5$Kot;2wWhlfA7^&vW6rE%Q>PP_x z%b8wKv$(5~z2F#Zg}R4Zv$C1L06n(`NKcGfDjmmP`(pBW+&m~CQ#kV#>vbf$!wF>?qBd~qj>E@E=V3;cC{@>~muuh&x4J7hbu8d0uoC-q%_ zpvLc)RITYT*6<4gD-P!mDcU4~xQO>0N|LjcIB2>Au%F9+%t!8;280I=1URgMbfej; z=oCh_)KdkZwd|9;Gt2~;T_Rv8^P+6eY>apr#Of?~lFFmE1v zXs5Ee`v8sYosoiDuRa7Rv7xcyt~x3hodCoK%7p4hbvGF^(pFM5gsUKVjNY9vpEns+ zm$?`6t?MAkkjZSMYfeoiuI{m*$93=@56-err#t$r-dPqbk>p$omlJR{!h@autp zmsL3YCIvY6K7BSUFNEE;&-HmR6|`2A$xNbKN=j}*^QHfFNx35kBHfRUqpY5M)q;t- zhv-9CI#02rV;?orw8?J5?_aB)Qmnn9zF% zpYu+a)N(Pt32Z=c2iGMLaQNU0Posn|5K@)hOVig3Dr@-3@q+OL&!62E6=K2+v}4ve z7Tka5`K&NrUn@){-{uo;J6;xHSqa4Y0v@$T20qLTE~b+A+?)e;Z;6St4X}_cRD%`k zY4yI-#o`EVUZ{uZxm%L|0lG2n-A0%ZYOSE7sktA(a6FVPF}VS~hd>6xc$E>Rm6|>W zV&G3HuT}Yo=kF#;TL3wnO0eBTa4B!LTBqKHJq@?n`uJScN`{37-w3!hy^OmxYwL)A z$CtnhhfFFe&}mJ$I)TW>X;J=ofg;i>i*~5n>0Z1=(XX1kli_53-qAgvdtz@8LQ766 zSZcz4U;C9`eb$i=mL%o;dQ!UK-GNI0g{O*wG+83ISwkK-;d+^76ki>& zS{5DWWAJaDvpjczub8Baq$DHK;N4u<6KVO00-Jo-#HdOPNcOGkh6vDg{XNRAaMi^fbXZqQ0fv*9llGy8_C(x87(2e z3G;z5fu(pB0PckzA+-Z?FkTytd$WFDsxSzxe(^~v0r>a$IBvm87|qk#VtPYf1&ib@ zDh;RL@&4mJbMSjTKKHhz-O`$amY6 zY&&>lX{*}S{yN@(3Q&G3K?L!Y@&zml){LJ1NCc@9SoaVv-Un3o0b8OhB{Skes)s*- ztk!0W2+s+TQ?*q}BBr1%g=qX?JjGxoHda7pn2{%*?Yn}hQo%=Rt@yI6EB2FGf!ox; z4{l61`T;5&vx7z!6ho-Kq7yKmd=E}rDCXEz3|?jQB%!NBuBQ;Jo6%u@-tSE@1Raxe zAjqxzFqmHQJo@FJWy#ZjXI5CgqX1w@gOdz#q|xkYKVifdX=!jt7aRMm{Q%HdI<#js z3ZFGXa`k9$YfCV#g)oXIS1m4-xg_sH87tjw^mTXg&JJog;K`QMNMR+%`SMG|1+TMr zw1^AFV6cHO`9?tQZ$E#KMLp;S5%8%9o%mflu+*68O1jRmq)e1p?kjmtdQKvrD12!= zoxT8eJ#{1LO;flcyQM*o1dZSXyMo)tNC60BJCgIen_Av2>w-gAL?S&+0u-SfG2V4L z*g2@T5c9_@Flg0EE9du@N-UYZR8zWE|PRYxcVf~F&aQ}|p}f(!^EO@rONv3-9U<;V5V>y$_2 zo#gqZ4(1~|^dd<~Ny)Helk>$rUvc;YO6Jer_CJ3NV9D`A8x3=_%ja+22nx2@#`htS zCO)`11N512CgywH)DCceIGNG`2nJnY6-%mZy#-=J2rS=FSxNI4{khUycwyzelQpd% z$Kk&J1@Z*tnM=mY|H^p5l1^-$hots;VR+qd6hp#$)RhQ5RzTq7t?rbz3wi`SZyFb+ zIPqg$x~a9gwGboP$c&3N7YZ+gB3OrLSh;z7N$w|5;UU1h^@C!jP%wo?3&yazJKs{uG&|XX zEQ-S)QkS2wk5qcak})VgQTP$g5YbJ&Nl=9(B~(Fh;(t-<{2*7P2AU)otc#fNY#Fs} z{w-o>4Sx}0?&w>BE?87h@H53|M#5ynTVPjPlECSCZlUNgNp9VeDB;F={4Y1URXSCk z^JsP*iCthIOG_8$Knu8Q3D&XSYxxj}4*KZD>#T*uDSK0l1Of0`x$yLPNk2KctTqXU zY*4A~XMH%TQ(hWhCMA7SE^WZrN){9ZFL@^TVI4q6$G!Zw6dmbFxZI<$%O?|Wevp5* zaWID*tlmQha(pz#YONoiVtNu)N}pYG*;C$BfZ#RMha4Ndye0r}V880J)c?CUg%HMO z&7mYRL%&;3DcShe7t4*{?U}wshkIfzyBEt_w7qypVjZJlYIOZXYQ$i9(g@d68^e|H z)IDhS8$Wjq5-tQzOA1dD?YSpiIf#Dwp@1te;FBw>Rbw7UFU9yB(2#CPr=df%9gbC) zyiFx;EZp>~itUX2Z0eMKo zkg>$V_lsQI_)SW4?Y1*OdGzUZl^~I}qDOEwZq29P)R_9St-$f7#^3+CF^Q*~tP0hM zBHoK4E~kgHMQ=pJ4RVIu4<#s)tt3`p_kv@p?81~gZ8=seKXe^Z48codI;FJGPx8M; zJl!qlHnk%>)j;I72nY%eR$kShD$ND4Bds^-_GjZiK3F~^T^s9=RKIj7nJXyW?yucC zp~IyWujt!e4#qRg6KrMx;#tOzgKdS6^6T8sSC4U_*bSiCh=HepsU_GKrm3$K{u2f% zL_+m}{N7YNaG5|ztF&P4zb{~TpgWiB#fO(=@PM`(O z*#cU0p-Ulnor67O!kd+^;N_Ht_6NkAd9$wWfUXlvI0S@$)+j`(cQ-$DVpMW5{7Yu; zLqZJ?aJlR>Z>Qd>h$pfDRhq%o<}H9I7E>$#z#sis4Tfwi*co@PGH%XmjLDXH_&P3c z*>s7kXr~YCi_IkNo1wHc8AwZV5o}04hOoiEOkU9&4`QuJ<*`8{(KuJcEH%8XXd!4M$w&|@y0OUCUDezY*iXhz{&dc zbUU+6Dl-j`1s1jKKv%#n+mKcu6i;NUg~!Bqt!QM7cYs1_9xv?cCIA*Empr^nY(ob5 zBFFbH${#@$FO$9h)^N^x^%JhnP$Xilg{pO)8t3cP;FF_Mo2{FXUVXYKcrE&N7?-wK zrZI?c-YmQz5$TtRF*9YGAw>Ss=NSGNII?w;zH~{Pdt>;hN#gClL>OYQbSR9Fl=pk%E*uM@J>iL zv8&8RZXp-;xLfZ$8{~z{x5p!J>+qa!aiIKB2dLdLfiik+DoESc(gs;nloqG9t%18^ zcV=kg9}=H(3M^99=!?UX9HE+9^8uaTf(laTH@Eh=|5oY9p(>ua==3DF_lniOqP(ohV<;o4k zN*7QJl>uFqj&>Iyr6wHIPrPZa=5{mMmXuDfdvkyX7J|MX;qI#r&-MQyLK6?7J5=kB zb!L$sU~tKxf3|>q)Tllr{H8Rn!C=*nMBeRs^h13yz6eY~nFEDeulmJvPFUNIZAKgB zwMiA4V7S076H@lebNY`5`I@%gCAy3wGg>(*+eVd zKAm^rd7`Zh_M?x)0O5HJfCwL0zhj9%A<9?r=bxs;W{CdJ;mZZb^MSPAqy<1kD%0eX z$PgaLdaLI5PR~x^RKVgGr)`7@aOIM- z-73ZOs+it$UM$nAOk+f1+z_Pbqi2{^MYpZDd(DlyocD=wOV&$nvfX5b3MOtHt0Yek zVOsf2^2FsJbGn{eS7VZ&TSTRW9@e%ieNp*6hK!RypdWrcL3)M3UWH1F`t&z0k^QdQ z`wKqFoM{x>oyL<%+(O;d874_aywVW3uA4z?lxW-Y_m2r-VZBUYQz?CIpcv#MxMQ^9 zu4l5bkdo}x;rxuASiodgERfxAfUM*N2&bmGIwpxdU;CZ;KMftNL(gD+UtZ!c(b)+ z);RBMThR%3KY%0LTN{a16HV zB0dp{CticPbBh+oTtb0cTHI1#g|U%JhUZ%-Mnv=jId^sL+#89k8z!$U)6c`lLB zqd{w!ZSxV~B$)j-{Rcnsy4eh`q%DJ{o21o#H(>-kLqm%V>T3tQKY(G(~l)zKLQ zkivrrua-;t{ra|$YkZ#zoRN>?hN8ihL9lxeDf4pZ6Ht8o@5$)^4psh(FR#7?eYH>H zVL#fb&MPV=L?~65z4fRIA!w&%h`pcJORaru=SE#}0f9Hf2gF0hc|b+jLwHELbP;h0 z@F4(yvV50-GVCdaJ zJkYHDl_P&0C3p3UiRW#5$}UGEHjW{#_|vX!^0>^ZWCQ(go5OiplfD91u*9IP93br- zUYH}{{G{YO=NC|4-HhhRi|Q)_^1e%4C)Oop_2SV$W8~>xxN3mOhWiPmve@X`HN)x? zWvHCw3evMiMPdsfs9zg26gmag3VlJbR-5g+`ULxf7ECAA_AVfdcuDPh-k05c8dch1 zb%{(-r2F?}iTjU_NY)O(4#@SrkQVHv!>iO`}8=Qifn6<#2DMrLu^2SAd_rOb2&-B!=?-|VNAnjJzc z80s1#T~hq`Z9g1=8W3Ta=D{K^!Ci?-`l|q!2bO;QM`c)C1L63nHz;^M-2A~_)lU9& zf+9xO{7WIE@v@D`{g`E+yB5tct)*CvqFUHY_EP>v247pdbmNaDTsfQL=Jn|MKVCMZdB^ET+2C*g6|H-C9CU1aD`u7yb8)By( zC&C4zD(@>Su+gWDLqGryTkPtwYiKg{b6(EMV`)Jd;ie_3mk;*(zDlHFfP#w*BxS}V z<@SujLMjqCU{Yc>n(s+=yf~c|j(nBR-7(ZNRr^6n&ZWO@O#C2Rr<8B4R<<&>rf2!M5XVoSsh*wH`5jfSjTBV^|7B z0Rfe0nmVOcBkMG1>3cdSf)M-_nEkZuR$_RV!5v;$Fd92wT`uSH?6MNlJ!pE_k}@PCn?3kEI7<~9NN`8A1AwK07m!weiqym5F3>H=z#cs5=IGW|5aNqaN zgSh9n00(+7tU9dqmb^oM<5H8teF4E7_G@n=<^UrC+xQYRwL+RV|7t@EL#?hmeuZUM zK@oS{iofDNU9co>f)DQ(dPs9vnk|0S|9GBy<3kQrc@b!EjbzhaxZuH<_kvD>8kbi7 zTm7L!9-xu!DXe{|$m8(FrXPT+{ZnHxLFr0vJ{}UPw#-1Xke)}ui36cS!$4Hp(w&~i za}S&)P22_%XS2Tx+4o!cXF>=ggD+YOE>id(I6#Ov)NUOPHnj8to$N}T>bsoN&6Lk0 zF}E5U$OzZt!zkpw_B2cYGSdbSw!Wn0WDcpDOkV<5;Y{~TAnG#;TcG1dBzN$v1)p>S z3VEx>UcVd$!@U&Jr}|Hz!0rb*LbL2%CrFYaI`9s82&hKSL51kdKM?8$gy>P85m85H z{h0Ozt)Lr8TAHg3C^}mDf+8Tk5d-a6@Uw7?hb0DKN zVsGD44p?v1U^{U(FT}kZbA=}v61bJAl3yWMZ-WG64@w^r{W6~b39h~bZ~9r&jlB-q zE6$${R60N=ta9ZQ44misWcZW=S6w%mv#;-7&z1!jE6U=SvafGk&t~(fa9~YF30;3s zD>2h-yq>FJT*CF{Zk*Q!eTp_0m39((>6-VXe&*g&-apcFDhKa#ZRseDgeJW!B{Uv3 zNN9*yJ2wk2Z%2hYigp+XHNIv>J&Qc+TJ-`mIgu!DzN`u4p(8J`ID+;^9jII01={ST zu5+#RKnC7O!;F~|#ok5S0*cBKKHE0N0lQ<)kFJeJ&!#dpQVDi3q(65A;E|Am?X&2* z5W)(rxwQ3|`U3ph8^Q-cVESI;hxB8K$zDq9wbre%1>O5B@BiK|;56&R6-!_&YTbM- zPf`*aarbUX0!x{SvQ(Xkosm;bC;zxh`dFEB#VjR!3|<}VnB2y{B=24R?!=`!;17;S zVlkD%d1PPY{%m24#MY4mCF8XzIt!h#7mw<`p-$hHcD;5&zq~eH?KSk_3v(EmI9tGZ#C)(ZVZ!+#2REDevgw_f4*0C@FQznxZ2I}O*hrJ%%p_V$LS|3 zYb*YsT^$o$V3%yGJN0n9A%W?>hsk-e;YLy^HNHHmb2RiYv;jNjQm8516lIi&2+NU1hy-nwtH>w#SWyVLJ zuf3%OHn4JL2!?;bJJ+Istv_+{FhE0Kmr5w;qzh3d`VKX*e1nS$fvwt5g&fq_PsNM$ zO?=TpTFuGHeVx1!uGgpLFl!l+UOJ;*a<`NiRQDwfOM z4VK&;qBX2vnen?@Q@`;J5%=m~PP4Yj+~4jB0_$|Qa4CK{Ph!Dn zK?yr$;jLbZ*7vPVPS1qKnw~#=RGKN{{5Gu4sIBdq`D<00u43A!pA)Ow>5g4<-vL&^ zyMR@pqq!in1|!Pit8Z8+2lZdvVma^*zxOTVAUG=wH5UN9!**!c5WNO!34>+;Kqh_hI55S2v<;DNc zRWnNvf}7Ri!I?#9D*^BII={DE!2ozKJbhbm*eN)|9@A2)QRn)0_MV*FHMTlMt~af% zj0e6kE$tB>lHR^|PV7FSq=*;qb7z~~M@^bGh6cYR!yUvYM;B$ecdWZFZkv9XmSGid zZ{DbVQx}U>a1Z=${HH!9Y^$z`!>p=Y*7q*xt2KDeI-(sfm8zNZAt= zd-{Zu0(r>s$0zyPSm~Wphtxbqm$@6`24sfDQ{%@cgyUkd0!0|D;x(&cVczlEpgC7@ zJ6od6tdKh0WwxbhH$HkCC>r;HHt3=L;)k!DaTrIz(6OMm;Hn!}j&$vR5QNaxH@^5U zmd;Fo96}I=J(>(R805!Y^<25NSfNtbzX6)9Qxfpf=5%n<^C?)EEm^sKauS(nG%l~P z%L}lXxnush`A21TUG(%1qn&8t&bc^Y>b@VyUpO=_AYRjaJ^+IrG9B;>Tb!kag%!sOSiI3A`|>$9~S~- zpOso&cyO%X6ZV1v>z$WcHEgrYmZ@f#$rrctTv!mgPP^tgE@cHrSL4(KfIa~YJ_x5m zAsvg~AiovyAe&x=5DfKzuHF(w8Xh{%jbuy&-f^Pt@pQbfwix{)njy9{ zhi*8EJyz}2H}hXzEJMlKN%EA6*Z#a2kXW42kyu`&a6XkeDV@qan%HA&v6fd3*LlhN zE+yd5XliU+-08C&Jb#y?os2oCCx{Y9V-zi=@q$h0nTd3P_5We-t)rq``@hkln*m8h zLR3;p1O$c#XeC}T6^u;jx+aM_jP}-Z+zn7#5Gzuyr|%d`=VCTcy?0pSx2F5m&+gB&}uuMZx5KR zsT$*d`Lo6g`6+DvP!y+xB)bxiYPAMZhHe~eF;n~ zl(#;(zH^xcZHMQPGUuON)-;m>@`G~?-8wf^I6`v2Rmbyi{I7Hj=kL+eMLY#GJ8$M{ z$z7vjk9x4M3MTSZ0CzD7l^Qm)UmEQIz9}MrbiLRMS~ezM0_u!A^V!R`r<*=C;%Y@X zH+A&e>+GwHmd-x8w_V6@ZKHu78g*+Wtej+>lQ=JVz47^Mid!|3npI@>{BW8!>0s+| z(ruRyRfb-CNldjnHfODe)k7fU1`Ust{@R>~nU?GAo`$t>*AXnyS!h(cygXz}XJ5|^ zl-CSh5hcsKtC=<#u$)#6q)K|@SseU|9r{g2>ekg`)!Fg8BQOAgV*?tLwc%IA%T;Ee z=^xaOtp<1l{lWlU^IKt!KwtXm@ts!-ZBtc{Sr*V>l4vOaJiOY)s`Be#Z}FvwgMTaM z{IkRUlfC}4TsNsZ*>~O)iipRO1rbs#M_)5jsQ@vN1E@2N*s z6|X-CImKTuli;f;;-h}2U!0)ZLajojn04aQ67m%rFeryxaJekaVV{9ob*sdZH;G2i zQN`UR!0Tk-WF+$syifWRdp`-_ULb@@H2{?{zKn$Ao~aY1ei|@2oy=|&dc3UYWtP-C zJZCaU>P;zr&~{BEH18TQ*Rz4PkxhXq{=|+Q);{+iB!WIuPpOW3lZ3pB&H$dH!oj-f znzt*2^nzBt9)wP*F*0)z0ZYm-cd?tGpl1i-gEPGi8TnOzz&sDT2ft2J%57Y|+ z!aym?DH6js+nHJEJ0VjX03fqgJB<9}P7wkvNcI28f)PcDqdrL?YE9iY} zJP4rS-$!&U8E%_m1Ndlw!l|bGjqgcPgI35?i;?QashZOo)1r@SbfAaLXn>OwGYEwz0g+@|M`F=@bdtK4&tUi@6aGmQ8#u&Lx zTSD-na7Lk)pKq&ZECzvZs2#un@vo`?!JSegkc=OIe&?tH#I@H2u)<5zzlRkP%UIb{ zZ;zyt40m1KxnqJs2UxE~{ipZ@`7KlcR=q)+A%^us6H2~-{5{B0FxqW(j`5k{g7L!b+)A;RZ#@y_~}{6#HT>>y9xkQM4lA~ zWM3L7r&0%{GT*B9Vn<{R&?NrR?m;TR);nnIvHA0sL+hg6EJ$eg=_6Pc2mI5<*@SU- zoZIPiEOMj^g8x|sK(p|3D}Sx^ueD!QDCQqCJID)$wvJdo6j5yCgtL+7Z%YmpYy*ou0f5#zUMtes8KY2bxV7OxItObaG zIM=8kh&(yfSrG$nl|15mxLH=i?;nbyAOlDO$WOj9P|noYKb^F#_+I2hJDE+}Y&qR@ zzApetc`CoZ-QKP!=S!Gh0W#_bZ%986bPMdU^S%Wg%WnXl$;>2d71rZ#(`i0 za!u@{clP0HM-eCN3n1$$dJ@`a7qQoK1snNp#5m)i!Si)zGOnj6ZXys73X#tMdTN3V zmd9b&M>Qk}D|HDL6V-BgS}!nw1nEeLbP;1C^Ut>$B>@t#8naDZ|h%|WJZnZhk$uDdCZa7}}W zWh%ktO+rSdkZ7og{Y-r*eoP^lAGKDGnT58M8=|gZX)lbm^BRv1%k;Sj zve2}h;sp4qj-PslO}NZ--9X|6AOxzlSR3AKe5TXpb^VDlU&In)vq?M-q2*^Co z>8o+9g%aC#N^!+tKuSh(5_J2PV{-Ab1k>rRZ4rBjfvmPkria^q_r;?j&?H)$htD8! zj$qwb+ssBr2eQXN^zjZJJwYqkTAYsYjx5QFW{eOQs)dA;QFtPssB2MN+78zvES6aq9c-sVlX-L(3KI zuP~#~b^j(hMtDWz$Z7J}!Nb&JcIzNJWik1rma9clWlZ&RjSvP&Ab`SB6A>Qe%2CWIy8MIq+-LURSv zUd#(~rz}SGt!9Su@1|*(o`ASH`7u)38pJ$h-B_AFT;$HSm2d9<(G3~|+5U5gM`@;N z3qarp0N$fqdkR$i!ka6g zQCx^6Xp%M&X~Ot^rO;%L|vkb ztN&aXsZ+M$b)Hdi-xj#_Xz7PVZTI-vW;=W-G#)07~P z>nWK!b>1}>^4!y#6%*65r@2sVaK|m;dz$blsoVJA>on(hIyb$>mUq7&k`C$k3YmXJ zZO=e*plY-5im6kE5!owSexG-T&deqHzd1 zrTLclHBm&F|1A|yge4Aw+B&jS7PSS7$I`d7J_F^}UdBPH_n#N_08hIKoQZ+7+ILSb z2`iVw&B+8aM5$R4q+16~M{C9bn?G4k3V{8tKoWmT#`I=y+R% z#2VKm82Wf6p)~?}$=vS}!%+Y*H@VOr>g7#|rgwqQ<$wM>=3)Jc3Pa}~F@SUL&W)?A zGe)<$sl*7Zynfp!IbSe~+7B^}^fnI<8+Ix!2d&)Z!b$DMM8UmuW*p%0=!fTl1}mc6 z9(vV$Nr75F>tm&knWwHC%9LgMsGaxv^Va0cSdHI)N_kQ%)3V8Dpk_v97~Ds&Roj!+ zTgFc*O;>HFGcWl1I>A~YtTvf=_-&9~X`Np#)aU2_a%5(X`$$mw={DGsq-nyYM#*Ue zsS8u}mUc9#w?3?ef$FlPkA0IhWaqe->kKL4alva%b=kT6=o|W~WCZ0D2x>~o?T>TJ z_$bq;Fi-jB%()Ot6a~cLbpqr_r^V}3yeO-&Eo;!g=8nA2KI71HMIHjG< zzrmyMm!Ztv*A8LE>NmXkA|72~zVWI_Pq`ob_S+hoxeQ+Y+up z|0n5IR1Y+ zEElf+U1&#eoH+9gJ@U21LsrJ&T$Ls7Q;SSVzfX(6K|;o^i;@~Vtp=o>{*;W9^VIUe zUm)rVaU@YPdk1xGB>FCMvQ7Xi7ry{ilzi$+ozMk%i3%Krq2%&>me$^b|QHy%yg+#;%LsF7gM?PQNEeRrP)7J)gyn7;Y6J^oyJbq z0FhhZr{C4_!-G4@jx_d`k=dZJPuG`*^C!HC`!QAalV2z9!n=O)_Zs=ue@d!-22VkK zZz>nFJna-9<8zhgmd!5Z`t!}Z8Lgbkw_|wT;kP?FpE@UYIQc&Av&XcVTc3gMnz4O( zcCp*)Y;kGTo?KWwQ}<{EZC()Wdwe8tqMdEz6i6FxPE=}sc9Z6sV;4S1sV1R_VqT^C zcPX8qr8G<^Z2r5HPrxg!Xn8X03|UdX+z%fZ2#_ebO>mSR94$uXPK6`rZ>V2@oaOWn zWJ?6GuUS*KLHiY(aYVfSNVkzfbPU6Sn!~Y~uB!?X&X8rJn*WV0V86kNr-YK!B1*-b zBe}NSx%V6N%RIJkj?Bl&Cra)jOuObtkOfc%L42l@GE5H!jqxK2zIS=BJ)iqFm=cy> z9Q5?*^(?T14Z>@qr)v_pRmblz^N{UhgCopxOT3S-wR_G^Ty+<@bq#UCSAc>En&L` zqj`w+?VWkRmfA6Oq#<*f3&d!gO6tvVpL-S2KfwX%i=zsTZ*KCsqlhlFeyR%K)syJw z_xNaoB~hfcDaN4v7+U~KRT2M5dtH--5Y@7t_aK!1VImubVx7@~P}*f{N<5p03Krtv z-t5Ffhte;%2!TirUktl%Y^w_rW}_|!kut{*R?(a-uq{A}$_S1H=QX$GfE;&}s>y2d zQ`@FYG*0xQo|4=FNu2;JP)8T4pKQ304~17Kp> zNJLxv5nE*T>ktqc?a3JUfA7UOM6<(9lU5-YUvfur7w z>dShyKjQhHnvzY=z7?r6m^_15iNK{>b`7~y-_t%PCV(nEcqpKlZp!aKmMjp3jGNQw zhUk+Wzb+<-z6f#-&Jj`s-+qSeF(sOF4>;F0h?U|!&}cPrAKE+MECY|@$j9(W7T??gsZ?+ZG^aQF6HP*;KhYcOwVOa@ z1JLQN53$x}^4G0ol45N@m-ctY8^Ck>Mf9E#eFc#8`nVsA<03`4i}uyooJemaNp|E! zz8;i5nRMt$6C0hN|7Bpn;2Ig_@gQKz>DmDr`MrTi)7yP3*Acsv5mTs$Mq2J1bhmB+ zZWD$kRry^L>5R(EdRO3dg*s7=QE(&O&FX%4NxoY=)eC$?TT;%gR%)*NbU>F1L`mBifr1z&SbF z@o!1D43%`X{5t-BOS(Als^CTl{g51Zq6(S^K{fX5#v@h{>)0y$*%^;puNnbNj^8fu zvMt1V@;uKi9Rw(jXCRBHfx7%7`5K(O4l`r{#qPdjwF%2}H2vH-saFGV<;B_JU@BW)exiYf$n$Z& z2szG~SdY8ZPx^wULjxuZ^z_vUQw&px%fy=6+~tewzqqitCb}@yMLJ4~oUTRq64=4rzh(^fT^LXWR}jEcdcuPZg2YMV_kzmM7LeM4TsFppHY2W=3_>NxBW9P_ z3+0||R=LZNG5ijOo3`z69ZG@)xClQA6QlwXuzEdcl6q}%$ucyBT$V4|-dR*}J+J8X68ioMaaFCF&Evyk2)=e)Dr!3Qzx2?XN44$O@0G zD==vtV?D?FCV6QL`8FW5i#nG?Qg_4% z{22pCZR-H-ypo+(OE7Z!!Z>BhG-)aFdl<5bFKO6)k|_>mp1EfbnHK6}^dk0@nv&sV zpoeraiq3~+U6Qoy3I$mB>_&iVj6($9S%lE&YgU7dDHtakUKnOR!52yklZf$YjsE{|ZS(%ya7w&D_ zgAiYB*&{OoK%@@lLIgc=&if<4P^uZP0E`YKKe8ZC-w+_6hWQ2MeVX6I9V*fv{g&xA zO^5@dd}T`us*y8Kx3gtOc;bHBGa@d=W(%JaPyoEP6cAQE3w(1T|52l2Tktn0M&&zaM?jb#^chaal z0{KUWL_vP)8>F|)=g50UZzT1Rp7AS=$cvpwpGrV;zcp})qvir|rgj%!pKd+rU_7xX za`@b{Ln~r31mMcnpuZdbpQaW@quS*a`tne{=-etG3zq|#mcdyrf!d{L`3i#6OX?P< z4_0`6bHfxTZ;;WVto5hau|t)A?pM7)5pXDfSdvm!z~ZSE-MOK!fzvi2qZ;_q^Eh$K=U07s@Q|{3 zR_MIonixEtnHB_!jpl2`o^4AjH%`iwmqp;7vwk`7QE=9O>6D_QDa>G2vOM3RUz6fm z<@bxP`(XGZ?Q>azBSh=iQxS)rpUP)y8z+%Ywo539AJ(&hSF`6q~i}}*eo(xXw z%;mq>565T>uEB?MOzGGvZ*`3wPnpVY0SmJOJdbaeIN=>&%4|*k__hf&kk&~&n<*91 zSXDO}=3&EDTJQHAe0;`)TBw=N&rSV6j3-|i1pKABsI~mgJ86Lm;ujkukIgC;mOwV1 zZ%5MSM~i3M%!Kp7YqBg{Y!o!t8BN%;n6K6D(7pzA%nb}4T#0-^Z3~ol7J&X-D0J5i z5Kgb)y;kd?MX}$I^!G76kZ>XL1BhAu1Mp_X;~Yw0asW>wChI)#CxWYJ5(*QM;IsWycK9)0>Adbjv!)%F=mqXv~R|c*@jl`A?LDxIix5P03txzGj%s7+D*?q5Hg&8EU)K`Of>6D6Ns9p)C!k%J0-Ct0)ZU#23G*5oGCZ z{;Z8^>Xldzcp$!a3*56$^r-G~>6cIDxMO~_QzNvpBQY9U-4=(AzPUNWKDbEbLK)4Z zH(F@lddQnJh@1T>yT6s1IczgbxEC7=%$og^Pt|CK@0U0|0!hcz>iV1KFRJ}H9lu52 z54lR)e48XSu^$#DzF9fA0Rs0ykV${BWly{};I-1SPf5-wo4&c5rgx3u*0mFu@(q3X zn_Ox<_mw_x*|a=MQiPi5wT=6CqEy`wRoEYYCTGuo-P1fd*z{tKZl>8MR8o5inyPdJ zPo`aDR(~#UP6lmPxu->x{i0-~b}XsFQ(p4maZJx2YvgzIIo|TB2pEmo1FPCqjKt)! zU8zk$pm^|9W+uDt6|1|!b+^vx>#?uNm_0wNM>MiE_19gTKVGkzy*HAxJn`wVPAUiy z(YTP`W?CuLZiSOBBG#|w<(*=M0-l{(*AcyE$EsBgUym9l!LYuOQ|oZ6Hla{yj(hn1 zr4mahF-fZ;Kmt6S$d~^6LtV8MgDR584Ud*o&FBps^Q6qIeSo-v^p^wRi@a{GLsRJS zFAY1yw3ciU{5EcnTGdp`D4Dd&6xO8cy8Dqgy<{J zh3HL^$D4k`Wm~mX)}FkI9Ez+n`&O=a-j7-@t_l162@;(EJv~hcL`CNgY!ak5VQ_LQ zDQw4qfo<6Xvy(S4SF#yJd zNN_f>B~VYstR$F&A&@8}hBf=B>idrTOQDwMQKLM=?qACweVM0$5cR(=Vu@mzdtT!8 z{@Tw&OUXaUdyar1RRb9RQy#D*=5?%~X$wAUY5>CO)P!S%e}8dm?o_4v1BPalUA)vU zm(AFLoY>*Z4JH}au0g-R%Nf4~Mh76BnBNr3n#!X<+SF^QkHo5v$|}^!56f8_wfta? z`?%=G$z5J-Lepvc)|Zo)l3=Tz!HgXZE?2Hk*Vi=7LW%b8!}BG(-^QeEYGCu;J+NM^ z3fb=TBwAu2%_1fNoN#$m3QU*Lc~|&^sl=K)vTd8H!8y?u{jMa~!BI`{5&<$r!euv& z$dfc{FHrI~F0`DEk1HNzW&8=enajP}%iM zL(lke$*Cx3=Q4-h+|HesQ=d!g-*LX3eI;M=n8jbomUfW=7b&zgwVOkNu+(E6rANHd zP}+a+K>*vv5$?z7ooEOufA4e&J^JVpDD$JE-)r^1cf2Cuo#@cIL_{eA8{>q1EEUEq zf||Zi5Ua(EVxQ*~^fwp6_EDr*)QafYHPiH4E{2O8wD0=c0Y}~RRrSMJf4t_dY#&5|8;?oB9V^-}gcg&Yez?BPAF!gkkf74GV^>=s~X ze!k+z;=Ld3dWfQ)U@pF%q22;FfHCgu;sw9m>Qhqs!#;kOVTBCA8cl&Y1fcKNRB;Xb zD%+qM97?iQR3;VtOurB)d?GP^w6P!@=Ftxt&&x#E=$Zi!ZmLI6l{{7$KAHpiduUqk zAVCEZye+{{2~Rhx%WUCY2J=qNZ9m&CM8NCXO0|g?y>E(=0j(V@+=}Ht}}) z;O8yY5cv#+kQfZ%*c(cRCdM-G;q`HUS=4Yluw*?SdovrWl+0EsNwb_M<6`0f@8b;X z6Xi(9X%a+VS$F@`#bqDe^Del9en0(Igks8ZaZlOt=G*USGP8-BEY+r$813FxXXh-w zXrvAH$K{=NDW5yx7F~TXH+Wt9_NIr;YRk%Tl*iU<1q>%q=3COeX^|zlO)WGsLZWuF zQG7;|F!hO%G3PRl97>8P4Xv`|tiO`VKxJK$S4($hMPslG&(#g05H0tk?_Q@3a^jwx zz#QU!eF+pvp2)mn*Z28a)k)KN^wjy3&$gBE(p*Si(u(etv|&$v;heb8G)~W)-Qym4 zT8;`q(QoTei++`Outz?Pe(S?>#pQ7IRVL>Vr$NxG&R^YEs1hL+^bh~hwG$9TfOmM~ zrKRZQr%}fPm^tB8F*R&kf*Y(Ghv@2D&Gmd9|811DgDFj9l0`{#0Uq*m=(U7Nx~2eGn#%Oo=v(emXy=vc%%YTF5J{vH|UTvR<5a{C3V@T>};*uihN zygFh#0;Md&%mkP{EH-+!;KGR60^U>NR0e*revEYnU5_yUoLMhy-neIV>4(m#!^fs0 zfU76&XL#9*gTU#>YA$wgdqsRX#mJlg{`H7n28%_L5+-M*oMN(yVM?;(Gj~y*JNKzp z1`_8&M6ss$#Ac#5I(`Llh6EoAg&Z=tD2_s9D7>&gD4=VjFVY0j@VNh*ILQs%^4pUl zx>|E2f)95sf8)0;xCBst!oze0@piDm6<0oTp)w776+Y=8vKVE5)ty4E(Srb9Q`KvX z>uzJFM6*Gj?(>O;+bC(=5>(Fl6wO_+MeBb$*}QSMUcyR=5URii=E{twlruJ!AmUO7|e{uTN1nk^2ufjjJ zJr-x;EFF}p`E`qL>~6bz#@!?+SN4s2nQYoyLu0#8fgF#0mUidFJ*TR>$L-o-H%7y$ zA$4khy>-j|C}24TPt|ZxmQxJ1@ufCCXbevx&Rt@s!B+3Gv;Go#5ZCQ$x<+%|S@Gz* zj`1saH5Itt{`DvRN~A@k1dPut9A(VWYOMw#UF-hSH|#mS37h)$-RHPO6BpE}s?=-c z_fYU_d7{NP)-=i5=TP6-#W(lX`XWp?&sAcM`wsjFZ^e{Ns;$h*h!*kcBVL~TeIJ|v z#tjZ~=88N8%#|VuY?~;Iy`dn}e*q(4Wp%&wJ%y~N#w|J&ZZIqbrUerw?4AT8{u<>#q*b%Ue7GFi+m}JT*L1tue_ko&}Ip}+61{$GrJwxV#xT#2` z{IYS87;agChnJop4l}=sKMAJn{wbh8H>Z&bnqc;P zQ%_&ryX@J5SI~JT;*^S9@?`Ie>HCh4z`Y|G85EF9liuYn&gbYuHoe{+*sk4QlU7{T zhcjZ+cUFW^cA$6e&aNn0t%_6VQd()><6aUA8!6W*G4}Sew_g_OxeJd8e$V*b?QPz> zRDZ!$`K_*YDvx_)zPai0o?v!XUSyB=Eq&rWArkeFN>pH+(eqi9lzX}ad4Dcx)uYRx zk}+m~?_Q~tP9XN2aOyrI#sb^+J^9}27Jk?l2gTye@1McVx6cOX%*j4c%tw4de`@In zI75RMjCd#n->=z^o_vWYnC4GG28Kp<1qdJQ)`sO7(AEXKp6~iy-4ls#ORV7W5yT|4 zV%M8xDhKwur!Yk{6{4V%Cf+vS7n6v!=0`uyHGiF_1@d7-X>fN(Rh(Jt+r9NLA9VNt z*3I-OhK5a49QlL?+a`Vv)Z(=2T;=o-X`Z`XGd*Gb*HK(%YM|>aCAW5S(lm(qS7RN_ z0HtY)^2TXR)brOF0vSaHg)T`nU#R z$4OAG1(H46&DtC_dr;&IzzYIFTTWTW_tN3XaRSMr-BhQ+#_~mj4M8Zq$0JaVSQ2Ee<4WaN;Do^(X3&hNfb{iY6@UGx8XEAedD;=M4U=t-)`oQW&uFXTDcB`DtoIF3VY%agxtOB^fJO(lO$!in1B zo0E{XsT-!o+St)&;BIUed6=2YDdKKPuxHX!q4VNH>R%`k9hsfAePu{U2jt+<@}WptFM zM)>LuErDp4i`iTpj&6(eo3_rb$*dC=xZnhl>d#goW^9|gFhJ_S&(J3MPJaXL2K#a7Y^a2_`F z2aXwR4k0E)5yd1!(11B-Fv2npcUd030dt4k<;t~c~ika)OFoe?MN~V@k zAq-Joh~J%Vk~$H56z-dM6Y2UI@w72LYv z!(n)1)cmUQ9Ct)xf#~o99BCrrYdx%lmC`^A1mM39-r?%yg0|;~i(X7YDMlk^jZ*6& znDTQJ!B`Y!P7m)hdF<_1V?+Cj9mX%&{KROG5qgKOp3*(nts1Th-;T zn>!3)WqDY)m5iV()ONv{G1k!zW1I=8&@=^1bHU``-$yVVXTBwx?`ll5Jz=vyI4H26 zAJegvaA4(+0~XDFrnGU419>`3FMs-r0ReU~WbF8V;xg9v4DU1|YVrDLq%X^eE?c z?<+YRvl}UGiacvO@=U?-WLp3-!)hwdR2Lk6c6|yeDy`z)wV&W8PJ0!2;&G{JjZG2W zjeQ%7tNakeL5@K>Jw0mQ+@cLpEq!n^w6bLL$>PNJH%B+u>mN-t^a1pj|KoruoB4E& zcY6-(8!Rlyz?W<+TW$S_^J_hd+7o6(Y4mY(J4@*r^#|1>pu^kOcu*s1v(H2Jz2@yi zR_hbr545n`)XX8oG)j3y(%(}gN0*&JQdq_!z?qsPX1{eES!$@A12)EKAO3$*n`%E! zG)1b48Zs`gWAGjk^Agcv*L8XRD`Bb@N~tAaHW15j6en?w&L-i0_OK0j8y{5 zqlr|n1HJXxrl#-7;uX<{s-V<^Ay26|#Neib4x1D#!o#aHEp!ikA8XBVFGb>3QW;Y& zilp8ic1Pe4ciF@$U}+oT^X`LV=-7`iKTMDF8yC)>tS6_54e(`h_p+m1*l89YDAS9p zYz}P@FJQEDU~|w0`UiyKPi5bhQ;%liCGGfugG5Q-V=nerVfY+ZYn{OV!cB*d(izQa2zWs<@w4d6O%Q1Ld? zN--(zoBL*1CtDGWJ!J^u1q@9zp8B+NNbf{_KlyDAPt*T=&lLa@?RXquJfJn=^3;$S zrN7#;QCykbYhzJ{r$T1&~tP#Og<0Jx$cX|jx-)9x!Q;6`xKmoPWD zVJ&bCseVurw-XW8djC1tT#uxT!d1Nybj`x@?;VJRA7!ebI3dE&tpW=a;6R=odZUGI z@D=f*NK=g`2Nb54G+xr`JwB(|&9ntZ_tFUC@)Kcn?3d*pc@V(Nb~M>-mw-h2uX*())sO_S zDF=VJ(Ps#bI#yBEl=-UfN(sb%0% zw&}P)+4~ns(#a|#uXC!Bbe~4sWETOe(~JtQT`e9`@v5`_28Vb29s3tjM$)-69`FiR zuRr?UWgH5?4MeRl3sV9T(6fREhEJhpNgrY2y(%Xh#C#5^2~N6g)v)$VE7x>$`5$yH z5b|#c>TQi#0p(ooEYf+HR}{3adA_!vl4+hvc4$(4ue!VOKhL z5kxpNrctz#6nEz+B#?1APGdci< zfq0L7F2~^Lmt78NL<7eCQ=EojIz$Eyi$2Qs-A7&&`NPOi&TGfR&&}Hu|3?epa|H03 z*RUkUtVoX^>CbU9c__Pl3dQwQftY#cbr(Rf)U=HfX*s{g7Vu8FDjWb&K6A5SX=_;Q zrVfY^BA;d?K7h<_N6lm)jMeS~S-n_SbFRC&OcgGJEBr`v1(8Zz5rmTxUpHIa6I?r* zQ|!WAo>c77IY07cyUtI=_?pyX-y>e|ffv$$o8**&{?=eu272B_?IQlHd<@aXbA~bK zn*T%IiH%(tU?Nn0*(t0aV7Ysjm$UUWxeTem*Fgh8vYR=2rLC&3o;uqVIKGGJaz}{w<(>{pjIDv1c|QU%qP;#kyE|=f{vO=c+6?H# zI03k#o18ULF{A)_UK{ur1m`5iZ=DP>Zvq^wnZ37O*r5r~zjoLAm@(d;ao_8N5%W{z^#Vbl81*0A z!@CS1Qr%~jj>LNEf^%pW=7;)jB50Y;njX@i5lb{i{u3~LFf`cEbta^MqXzXA>Z3aV zmdzUNFw@}vP`3%1hpyCr{(#Xi^w8dXk`1Gw{v6p0T5ZdAi|1`pA%|1Xh-=@@7l+p5 zD3LC`1u?Al#~{U^3OHW|w6Xz2D@qdFmmQ*{-L=qz=|%YX>Gqd0#Gxc(P_DYzSB(X4 zA_mtL3#00ZukI4erZ%Upg;UfI`QmWZF@K*HntT6sPr!^-W*i7Br7(tZ4vm2FGKp?3 zq&hl=(4KGi2RX=RS}Ednp6%lxW0|a?@a~`~)k@poYKV5mA;5Dy+W=))LrtkMV^(sB9~unTJQt<6!o1Mzd?ZC_x>wGN>f z*W)~>xd4x39BZc`EhI&hMfe&YwC}N5qs*ys-yuxZ3gM{CWWcjQ%^j8aobl=x9rAqK zR*^Y##w%)v%Dbt0YXcqvG!kYj>t6nWqEyFD@Id9@(C2EnXj)Y^&I@ zjss5uGz--%MwIDtV`)QQDwR;9b_4|<%p@E0lj{I!_8*gK1|seR#Qu+tDuENrlt=&X zjqyQ3iYu|Vw>3DfwC-RXaLpi~kq0-oeK$V9AT~i9&5=c z1OPjxqTP|;Cu)o@beXE5ev%l{Jfv8SE_Vi?_}DY&fgR>!NArhYf9*7 zX|pOkQmQjjf74t$z`kS;GnJU}bCJ-cnN*m|4{-@D7~~?IyLJiyFvne&P~xs@LtP`r z9(LwbbYFTjBfYNEGudl>jDci>adcw^|7?iPQl_z^s9ULXGPw4n!AXwheJshGm?axIZqTyi4HY+a7?Ar~iK1W#x&O(0AK>Sy(*TN1D7G11`yTN(+3x)Lwy{et@DN0Bj5)b(3te$R^un&mI9D*ZzF> zF#Vhy2yw{(u3;@x-*xjkHrD7YdjdT2s-Mu97?r>^2tua9T>SS}FTH_6!$2R!@DmUk z)U|*9MQ;K!3V`9nZXL##0kolmx|EK?=i1>ieE~dtI{D*$!bJM`UK~etZa2K*8uDxJK(}_>Jn(IfCDPS7!^DS;)e#;@Izdc z6}rfesRtmgfcy0i_-~)Ib20z5*FvfG95-cSp6I{-n*h9(r!zwgdZTYLwCtSqQs&{{ z)J}}$dHnBRhA#Ubgq*?#JxIMjDGsy!udn<2y;0!zN)WAm1l!GPXzFADj7|9(33!~aFsw!QSlXl&GJQh-wzT1{Wh6uf_b9yZG< zT^fA<@FS^B@L>IWJ&%3YAfTmj+TEh?o2a+`&&rwg2^p%KG3ha!gBI z&QHc@Jhaff_MdnE&!vF^2-?95KVqzd{#g$2L;GpL^;*Aej2@Q&kDE3!j^jTU`p+(b z{-D+`NKOez(;*>KD5YkEW<;BNwV|90JZ+}yg6WpbI3~)Y|foPHih9z|W{17T1f^#4` zk_3f`+6;Xz?2u}Af#H8GO(F@R{o)pQ$p7~|2>ev*Yw@E0{ebczc;uOdR`ne5|}=PgSePm{Nyja;@?$*%5ZQ4{`b5lumS1KUO+9k z|JgG`&;y`P8XuTMhOjiv&F}u_2dg%MZ9TmHvFh(?8G@b5&G5Q*eggb*hlv8Ht^PkB z0G`T=tN;HGhl1Gu8}sG=n|J(4MI@-{Y?1(UclI@KHK+k^nT%~|OdUNw^%;EHC=ivNgdlGoK zoP7cP8oS~H`;BlgPf#$ZbIylEIUq@0xXh~s`Pm3i(vJb)&ghtyb>$+cVZQ^TK^mV1 zNCjTM=4Hx&IoQyeDs+ECO6L>s^puxReo)E=C%BSM9{WGr9BgA*a_DR}&E*hLnB!K6 zDwu(2t2Kq6>bgs;Ob{|MO$Ey46{kS`qAWW4k__7vV82#Qiujy+$|TNYJ|MFhF3_4d z8Fp!fWJ4c@U$KPTFwOvWu-HauLZFq@5P(G>+oCauo$m2_;L#xe8K92U0F3a&T_3@lnHsgW2hs-V!3qW-D5e=cwc8i&krKxd{B!V=+?0I7!p zQzpH>9|Wl&MQ|s5;l{06j0-6lQ7}sk;khG_;JF*#I!DF7 zVXg+F@xkjB_69cgSAORAZn`{PRLkHNkZLPyXh1-b`^QKHn8H;%%*#O#>rDVSed5ui zRcp$F4R~}D!w^{l7&|6f+9mfQ`66=(<8%TQaeQQ^z>I1GoQ`|e;9$?{gutbaWuwBQ zfHC^*MSk@E1UzsdQAOZLDrevE5WvP-rI8{?5ZUep&np}WKr?2I#{{VU+Wzd0I{Dx}#=ST$(iJ^3`}tN#PvWO49bx3@15X$bltD9N@c(0Zy|Id|Bq?aOVy1t`bzNxqYv<0eOEq=Y6N(~fSKS0RHb4COw)Lr{) z{N#`f#L31%6Uu%`rum}<0GO14Zrq53>qg?(ek)w25@dl8!T4Flv%YHJ95Mu|k|n27 z&1GL9?^D#tLZ|>#0E)Go*w#$D9spqWj5cuM@Cj?fnF_ruY&EuC()4nrtqgPOCjbro94bWm#riakkOCD z8@yayC)`jJ{j-prV7wbj;tn|L{}YLldu@FJI2m-(kgCXzBi=z%1L>R0*`$`cJieL;##AcaI0jEfXZT_ zEhJ9c>62rxS><}NQ*Rlhv;4#L`1siMhXUvL)AL;h8_;4hlZqnf<7T_wA0Yj6qMgMP zdk=buX(qMzar3&5=?=&y)qa7ec`1Y6t7D%~wdG~)Px_B(=pflT6SVvq&e%^D2SEHl z<RPv+#K_qHrikR$>b$U-lB!DcCN`?h&uPt9gHZq((IH z%_VF=pptbg=+!2yTnNTdXO1ofe{r;_cL-1a=KV9JxMIgFSq*LU2}hcd>{AX!hqJx$ zm{Yx}*va%dz*K}PQSO^g6;}aRdBd#=jJ*D>N}gW@(elcpWi5AF-`qRHC449|!S}xA zgx&x=x`iJ+=Rl4tq#HW#vIC}j9s*2F7^!4H7hz$X`P>5NFB3&5jK!2Vf^P86*aNXF|N?N^%XmEc_KNkB5e|IeJ1` zf(s(Lc44VwECPaT#Hkvw{y`KSZ7^$~#2xPQ9kjquXLA&|wx$k^K+T**4k8?FgDU+t z-h>gL40_A_A%)*0SEX&RJ@wlqf_0?0&8#*)2mHO1HXax?i!k{QR!?m6j5)qn{vuG< zS*U64*#PM8#~T{cWQa9voqhwV%wC|R-feqp(g_5UE2+Y=4|*eE?BE1L+oI|3OoBWH zF(+$Z3E3OV$P7>dTu53=ZIByX)VsP@DnWbk>n6v$KWE5@`Z7%bP8xl$y9rn*c~ToP zT_xLQ{X~c8|En}XWGoLe?WL|<_9S??W6IDt!^H(g3j=5a^yl6bNe@{+9Xd;$XELW) zf0+v$A)ww^4RVKL58My)IBku-2Yde)Wp5o7Rol0J4>@#5DlJNvK@TCID2RY`mk1&y zIrJbPq7q7pz)&ik(m8ZVDJ3~b3Iaoe)bHG0*Yn)>de`q=>wW)WEw1IdfZ2PW`y0pc zISg2EZ53o)KaYTVe^)HN*%m=^ZGx#B8vxTpBAx}{sn@^7~;7CBiOqBMbkucF%v*{^M(Xo;gIRD_cdS!y2mW^4RSrj}h-) z=18;h55hJQhcbcjo@Tz>FEF8tD|$E~5)Y2JT-_mPTJ%39z$0i2`*meJPMsFiN8S$P zV4p@!YDr;LgNq|2X1;97E(R;P)y4mq7jA<|!67OBTt|gotL~4sBR(KydXac%7{x>J zcoQgMXXd#I$V1NS;jG#`RyEJBS-x2&O!(~ylllPSN9MXc4(Ij;z}iQ##gVo@YP+am zf1=G&yp#8Y9fi{Ju!onZcj6WehjPc5Ot`a4X3=r zEfy@LrO>!Y-S3~XH%OwF)rV1}NGY&t{jRK_#AY>TNHOt6li8p8_{C0sdOBw8YW(uO zaR~&$#i1BnI8r~%tCT%QNe=Z;8)syI3r!paZi|IhM&i4StHB49oj*;ZeDQA&$iX;b zZmepzRRYUatthe7XtpNDd2J<@f0%m#=?kz_f{Gb1*)3x~V4@Kyu(9Z;?5EvrB^N@q zgNK0l{R>GBEkQGK*v0ggXFv>-IL>fb4l3DWcXU_t6`42Wz(_;Bpach z6=hI5yC;uiF*KH!2ww4qlk5tvZh<;9jSRtV_Khp`umw+ToPpMDSxH5=7Cyld9XvnCNFa>b{>zNLBNe;tMQ_%cBp z^B^S-e%P{4;X#mwn`kCU>Od(d@{C|5t@?2ZT;b}&epe{YbS#wiu7-cH#w4Q934e6h5|6qm;yYCwuT{6CqlApxYc@RL@UCYK8>`(=uj ztOF>hd`y)C=D)Cy$2cU~{G5pdLpBg=FG~`6$DHL)^sN)v7iL1jBG?qnC-;r7D=T&o zWQ(Ub#FF)rB;7%l11+_mODUP)Gz&rlg~Ys|aVsdoMz~X@$C6b(GX-3S3mH>N$VS%< zJXU*Ib8qcdZb2j^o(3shxa}pxGm0ppf|}L5{7k*O^;BZCxNh-?+s$;#S8&2++`JdY z7)s*(RP&xnq^QOjvEWohB>VfY?To8!dn`)icWym^X*y~uz#eAZ;nUhKwX&ynY{8eB zmxm3i5vw{XGs~s(&X^*9fXnCs_(jNQsiw=nxONrH?d$u?!R*LbJAQ1K0o#aD6^K>G zRZ^yTf_kK3S-0s0m@MXUjYI|kxA6bk|NlP8hMu56DU?}fS?j{rd?H}Rgd;RQ_rfxe_Z)J?8J9iVct=O3$={+F<}MnGjc5d`;ZU#qy#596 zmKzjeua`L(!9i_M{2?Vus?h}x9JZlMzb9=9M}~g7{wMO*I>417wfZH1z>l4`=bkO{;WJ?#Kl;xT zl_Ed~wwn22zgwS(WV5%TW3O{r71dp?isd)))7$G01;=TU)-~^5V5psLH0b@$OzwpN zxKwlE<|C>!;8caL;-mRK&^$uk4Z}05=Rc(N2Nupr{_GU%1v4ucIz{d43H*-S?w~R; z=iSA<=c*Jw&tZI_&GXU0$Cf~Tr^r;3{O}^d4#gm^a@_rpY^>gMULq7v{Il;|DOgaU z*L#zh3y2%RG(#&0ysntgKL$Egaz-H>2CjL{?MVhdr-X-QVtzi}FU@KFi7>!i9Fy&OFS0)A*Tf2)auAm-?MR3CB?XJ#!C_#!lSLITkg8Oh{Z%=7>3^)|6Kh*|Myyb;pk$i^7r!E2WfK^~dX&&AHf}@vy>H-9a zXB?!Kaefzk21rIo-l)q*D_vX|C9^tZ#&vubB||?nbFs2OOK$)OMOv38gPFnX7?@n^ zX&u|e;`{4wUrg(f)xq*7`#$vSD~GO;{>>`T{`VA~=|BC?HR=FEFu~2PE$wrW!3Nr(uji$g_5?8~cU3GeWE|rx3A(UzAywor zswhx=W;U3#6s=#(8Bcn_z-(ygp=cpGJ{$B2kq392N| zxS)KffU?xXi0LJTHe5Ne)ib|imFC(2HITVVP7vz;db_Ov+DmsDrm>df@KytFWGGXh1h zp`T!+aG@aX1Oo_vg04^3on)iV=ZS)rGC&Q&nh`&;bsOKgx9&1u&0L9z0J}k{Kyo zE}0dL{kL@iUo$elD(XLrjD-a7Fl}uD+49ZfYVa~e@F3~0b)A5g_K?OtgqU*MoSXF$ zb&A}<)OSDOIpJ2vM@mbkfPfeA0itho$dAWr${TTcE06Ob4R6}wRGcpmABIZs!0Qm5uLV=))m7F!5=6<2A=XFOF(|AiKV>M%QOBN)OcLZ(I|Z z2cy@xX%jIXPirteu>x*WS0k`Y^|SS^8q9~nNs zZ3Q!@>^{=3*19Oh`_WW~SQAE#fum_DLLm;v&1+jHLFWfSGsk!uGePI4p{fSfA@ri) zRh1bs&-K;HZ3s-^3h-#aGz3hoBQ~=cg^iibtrkWxHm~IGS7Lz{*WB;ojCgm4PYK{q zAIH23Jy$1c$vlRYc2N_qTz+!_%lpGHikFRxpt~Z3Hi6pZh9ZeiyOLpjiRc``RzeFt z65pEkLbR4&=q@=yq7?@k&p}bA-TFPD%Ar7uINq>Ly7+4FvfwXvd#0M2!R=Rq zMYxP3Ljxdg(rxjhU5B`t9M(5jMGXy9`&>dcd=AyY(H)i!g5A-ze!vDS;z={v7R>{=b4uHU? zud$FC*-{68kKt6nz>3o#?bNdcz)TwVvjJKvJlF*>Ze|pWFZgx_!)CXJioIk@sue{# zaP3c?iBtcgI5S{yh!!&h_S-!!e?DF_a<1PwH?Ta+o}Z>6XeAhYPm}D?Iq_nMad@Hk zsE(O>?(Uf~0e?gx82qx!#MrF?NXr9y4Guh_=LU?YFP86Y-e+Ef!lh9wxkR-#SrKVl14 z)b#FnT=elDBoqFnY#y5ruMQ1oGnXtht|)_WUVcKQqLXfpEltlv<|tJ}I1!m7$#>9# zZV{kCzA?Ae7Pw127(q=`|6%Zz&5(H%(MQbdS2kf{!M{@cBJt2UH>9g!zU4k8$$Of0 z$`6DTMF*)kNkS>~EkNb3l8!BZ@*VLN|KSD3xAS-uVBBkywi$V#F*HxgHW+#g>yU$q ziridiBp7do&?VHLPFN0NM3BC}OFR9|Z|=AH#Y{OT-2_)NFSo1=x(MCMifh|1Qr-Kd&!*I7qTQdHTA4Ui z=!NO+@}eJLK3XcuV=mKB<|I*|$El>0L`oL|ZP;icZEm~2_~^bNPK?Y9M8?zJ*#xuf zEzU&S<`ox2EKE>4UlhP3${~P+T*~W&28f-B3x!=vSJxrZ9KJXpS#;{kL9!0ZeAbUI zm<80}ddkJ0FnOQ_c`|Yk>`(%UYK%Q6I_E%h_-y5N#Vzn@>Se%6A{09AwcIGC3lf~( zez?51z|&EC>t3&SERuYRWB$U)HDG1T(HnA?`AlzbN>t4&X5M)yL>v4vuKj68?KQVo z^B^x(DCIJ<;Alg}v*VmbP)6q!KaZ?eD6s^~&lz=+&5#^#O0H67q25LBX-5BSjDFm*%IV(Gn{K*(tq>|~So7OwSY^NSo=ZeKdhCi@jVdq`xprmlQ zj_`RtLH*qOcA7)0X zPC{1xRc<)_t6|LWC-KOUR1Yf=X2=lDbOGsW*vkN4|9Tc;=k$ip_+ zMj-jz=Nv`UeHG(5_FDgTH$h?k3WlqKJu`Ks9Ha5o&l27(3Kq0Qep%?Vusjm}V1i~b zbY9;^Rk_-Tv^%HQD29C1D1EKR%O9f+-b>d7>|%xPV{`9$y%xCo&$w<+8~jB1)h8Bz ze?9_S)>ot21KogpVR zR(t&Ww8k!1x%Shw`d^k;wfG=}Q)T)XHBM(5kF7pH?7L z#E4G#EhGzC_yDTcn$h_rr(%rG<2~Ic;J>x0;}MS#xB`M-F8o1n3e)#j7nmLlH0L}7 zE^duaHz#j>zK&g(*_sf>2TUI9lc5EEiJ&QDvc$%X^$L#;nFNhvJtxODC5 zv(pdUI9-L)GAmG7JFZ+E(f;SR|940Ftpi%{2OEMRE`6`FQ#p|HiGLWDiGlP)pJ6^9 z66hWdgnj3Z{{F6A9bqrh`VLKKXwPNzS9IYISz;q zH`;YoQ-0qv=&08MqP*`)ceGxYlZCBwigU@-B&IX@Ec$53d;JFc)`OaFCe^I2VLitQ z@!4-MI{IG80>b~?!z0i#I90}&7y7n~5-Py5(pd81L4EeApa)2aIFlLp>LhDV?kn=b z(_or{3B@>UF8zw`jMVbN+*i4{knA$1MHji3ZsyulmWA(cj3orf4lR8>`?2&j&5kWq zRVP0xwV*`PrFU(rX3FNufS*i-RdVv0^lots~`fUJywZM_fMa4kr1CvLya%aD9@BI!K4 z_+@$g8>z+QNm@|lliB+vBd^E`%?8XzGlPP9Hz(Sg`Qcwuyy?DvL#;qNc zOi8VMa2BkwAou{OIiQGX4K(5hj`+SUv<7(FspFvcvqBfkZ+@CP`tKeJ=zi{H2miCE z|5p?Ej8GHF=MTmp63$anOqF?EfTCgx#v953k9t-EI-@x@_c-e{*G3DS!0vd9E1-+( z`*?@tB0xF&zvMCZ{yjcaIph1(#Jx{EK+jOZrh~!{I5OpsP?6*Wp<6&R(ovKbm6%0F zb0^xb>)WR$CEott_?cc(9HEJuA!+rnP%(wf(U`6I1KZx_2a8LV3^WzP!MIQTYfrkT zd?W%+qy(KudM3(UfCE}wYp|#=US^!oAK$s=X8~suX4&6i`g38$vmnKBzI4j=H6yZ{ zarpiUoI&587B@T=Z9L2z_|^6iwF(Z93K=VWk^{!D3H3tlN>K)6&px~E=|4Te|DZ7O z{~o>l&>GL(3_V2LNsGXf5UIxE*MVwZ&hiJ~r<|aS?u7Mbwm>xOItWR+F;yc!Cu{Z2 zcmMaVoz9zHH<-&GEu8=!*Ga}bMNI{$kvfyRv8Hf{C4iz;PL7?YYmYAO11PY%je%Zg z?=7O9`gO+1>*;iJdnt*QPxt{9h4)~&kX4EZ6SurAPE?$IeQH;5kn*tm_+Cw!TFRJC zqu>EAlY`5?=$FFwuSV>|OnW?2=Bk3vT=NJAcyS5GX`5~e3`~;V*xb|#_ZYGmfP{UVCZYOCik5;G)OmIc*a|3tIWYpI`~DPneI!2!r7tC=3<*q zG6mZ39N-Ok5W`^B>hAe;c7hLs5u20Vy2JM@V=tlDa0wBkAE(UQ8T=tWtoi9^fzZv5 z@CS;#?tt>9xD}p%LH|s5|HVOHfyWHOWP9`6_)E8rqkiCxQ~RZYl@hW{=R%a&B*FjFhgC5pVLHT)rh`HU-;+yarsOS(}U?@<=a1=fd)ZO zN-0^w>128JS9Y57IvWLKp<4%{8g)mYTaL+W0p@oyx3+Bn5EH7?i~Or>U8scKG1KP` z4bUS514oDl`!GbN`jeB$c1(t_RaMAM$bS$l##e7Yq_q5OVf&giEHqn(e{OFIhB)`% zxSAdtq7j<=)g5r`SPY(^V(ru$@oeXCtk=jo)Zu9T+Urc3$v?+cidf%^wr)c~$?M1iHE4y&nI~9&)NbjXW(Nm>pruyHBTs!t+vE6*ey$S4++Qetp@~;NdD(^T|cmZD-ZR zxxMX_>nwoPEOap76u_-t3?3e=z%OK zlM4Z_S01qnUb+qee|Af~)+dg%3ZaAo&=3A3M||SfWprUw$HlduX5{@x`3t>ffgp;D z2wJ&Q#DBDQ(|`(}gKB8@XeeBejL$ApQ*ZN{NyPQ+wxC%~!zXqrAI)q+5jWe!*3b3+ zO!@;20R6I!B8BOBos{t&tenjk>cb`eQTMb&q5J+tA~QOPXYHT>Dw6xcgB&>aKjbIlI;VLq%Rf*Ga-d-Ou4B zTF!HN7sFdZa)%Sn4uUEjCvG194&wMxzsWQ4fq>XBnt-}2Q@pNL%ui(C`!<8fK-{tW zVD86{LQ@f~27JU5Jws{PE^y5=C?x&xx*lmIqudrt61H%etT_QV;NVprZQ&Uv7cfHGH3lvh5P^5NM_8CB} z)%|nwuK~q?G6a=4@%t10XS1wVKwoB&8GS6 zAZs%S{e+Epw+gRrW7RZ+b=#rx8+eJpk#1wsxQI1MxKKU%6)S9IxF)~CX|jJY&}}dF z9&lrW=l)NNJ0;yW9clEpF`>yydSp)}yH3D=P0Ie~;-ueV=(>a3O=96Ap3yph@+vUF z1cITde}L5JH(~!32cE8>D1P0IUO(+S5-1o2{ZjCh*c&5-p&z{{-)b`N*k9|^QWr}(0 zQxg(fdEsc*Hx3D7UxTv~rch?;2MJ?KjB~hLFInf>c7SM zKPMt|fDkiiMP*aGO0v0a%Yrlpl`e3uO+lRaRvSB@Q!5JsT1STZNPJ{1aM&W4@jt@S zAkJ=+rW+GMI!pv50HfLr0r6l4Gu+GIGp2rhasy3F!Re<-SQRR!0;wnc&A^kg}f+g<5Lnv4cvf&?tagdzrHjxUuJw!Ee2BDqr50=Q#>d4#Bd~P#(OjpXwkfWUB zwsr?lPW_r>Ot8gA%vpt@uhiNRAC*|O{s#K53Lp}>$$AHXsP7PwWJ@;VO>3G5bUy}u zsim5oM(^wq#~;xOM#UL*Mr$WZf~SW!1l?$I!EJ8jzKmD#t$7r&{K;@IH$>chMs%;Pn4LYBsj}i2H|4L)rd-4OQvGhbSSuKsn=Q#y9{2Le+vpf zC0a)6;!79`t6$^Mr(1#e_}avi5K>=0j;)g*N)8y81En{EZz_J45BP($Z)uDx1=8kC ze!@Z0L6YJePcaxZT^hw)FJF#VOU9D8K@knR(BUFkSQ=&+>4 zqN_xM^VKWCs*|*;th7}5cKk63_!e(`JLLnH_)Tgby{$OydokMKqa3(aw8(fm_9b3q z!TgJnf=Lxno;UW#UOS(>SGoPYRKKL%rLg@Di=p}JB@qF1r$&U0Pmb=3bi^C$+ZVmm z9DiCMwH75rj7kO>HPO~Otc2*3rlHXvX0mcoQd7o`jk!%t1+Jd_M2gZRsc=mdE$N*cqg*oAElIb8#a_U}MMb)BP9*zo`$ zJ`PWmVGQZSxJ6(Y2kw58KClA2x!J6IcDcuz^A}|8e=SnmU-u;gCVd6 z`6-uydJv~PF5fb*&5NPuIz%alPC#sJz_6?RJJ!BhX`2R3rj>bnGB=^%o^v>=g``52 zuMup`UaTIL0c`Sxv`GOWLNuEz2G8ryuk7R6vU8yPUu$^zeEGr=8U&jxsRUkaS)B$9 zS@!Li*i~o=#BRqL`zJ%zmnQXU+%rf`0bZ?}YyG7+@X)~C?*eB>rUw9_)|nLSum8bM zK5YM&5!vuZn3!FUUD`NPaf4%1wX3(&pF$g_sl5^Zt_LFJGavTXm8mCGm>w4+clrv| z)iqK7!vctwZIX>TYtx_fa5r%pKhqyBZ3yX#;fAAe)<4CA>bK5ssrR2K|FAaq!_r&o z1)_z|_GL}BH{cR>yQ=%G(K>}6omkeqXNdH*OcxM&+l6iG#;a}!pJHBkdKdK~)smuf zX~o)j`=ZyH<84}M4Jv-9AA{b#YX25@{Ghgz%l@~vQ;Y}awjO_^{@{8}Y` zVqXcwB7G23A1s{H$7}}EZ|#E0t&?LviZz7)a_6LDEgPdh1J4H2v(&k`)O!iA( zO^_|&2VepxA8(*2H}e4xz1SSi+E&ACe2N6<446;E(IXlk6ic zl=Vmed%l2<>ls^ z=Wja;kl{{+6}@_uZDCnoH)pLP+fHlCKSF=*1AJHl?``F~^$Ty!OX+AyiK0FI} z9NC|}ik5wtA<=e7(xxTVQ<iki^Si=B%K%8ohXk(POT~Jh6F`|Z{8p## zpE51|7HC8-#odAbt)itNe`!C3r<%-%C)kK?mTmSv*VuALf>0Rs(4gBEmh>gzN6u&+ z`b%7VmM>}c@g6yW{AGEMMPP;4+@nGhD{?75yzDovp+>hvx$=CjxqPQzg!fJFahr=c zC&i3PeMc|JCTsoY(ML!LaHJXGy~QnEp1mL)`*Tv04N6K4zl{=anbAH62k%@%z7#tY zPy@w%6I*6c4*elvy6YEg+6>|5XC)C8C1O5|STjB*G~Q#N0uEjWCz1RKR^P;FaZ=9f zx1q&HX$+lbx;Tu&Rdo_bn`qWt>|dilVLs3s)>zjR8dkQc8Hjx8*?ySsX=#^RSG+x0 z`RqzAW~t%N2L`F?iA+xxlU27{g&v%hd$-_5jXR2~XoE)pFx;`d{I%i)@3as(ys!VQ zA~`>+BjCYsbB4HCvQ1p3e?^Fzo?bjCxNt=7k00};o9-m+vw838AOKOj$I3ZKE?Q4RRlI*c>M9}uc8z&4&1dQ2!Bq*sbG zW%&q@GGO0oQxi!dSp}s3NB6GOzl6GI>JWQgt6yE}VTmIUiX|{}mz`9 zjEQ=GWgei?9Y89Eo1>dhBchl;oQE0vi%s%g^Z~6C(TCHcfuMa%pbbbc70{H zIZnoSPM19eQ?5-D*B+RyWh6@0PPsX=cnU~6*ujRWP+iaQh0dpyG=Nf-1$v5GktmNfP*0Ph4SpW=}L32Fuo zvSZW%THbG9KZ-IVC}~$)o^$^B!8JIvgM2KDMmlMuW|^IU5FBk2_~}IB7XNpV9=b#ARP=3((jFtjJ+5j;3Jw%T+;5%ugm{R^OE%f_7oB6=drxBFL`T zsL9Kt`uOv0T;k@oP@$<+Xlrk;U`b_&WaUvm`Ljy$BqLeZn7t_*>a~V;#?hXzhJ4S1 zMm=3=!^L{;*JRRudyi|#a$|#}f0o4773^5L4J?u~PQ22T|8gCUZcJ0?1hd|7XX84S zl!l4TFNq9DzwrA`JqP zu%k4}W4oQU!KVJE$BGv91k825BXY;`)%7@PjIg#W$d<^>4EU9fxsW*fDMk>U8sWsaGA5e_Ex;pq5}#o@v@y52D<;ONTdbc$O=cv19r`8N#$=}kO>)8V;H}t+V&<2 zd2sy}D1>P(n7(y*YKB1^G%f`a%Ph*S#93&qr1{9Px$quH4>tSY6%`bfedE_DT(2h@ zwYr@YFIAk=^47#?=w+X9adlUdMaXO{T(fP|op^lvoB(ag7Ei^aS3SToqfoJ7Y%5Yf z`%zQA)M%i|@^t$6DaPE-*u2=hEwNn9VD8nTpwMh{QFF4hvsvANtJT4)Z(3I3{FBf} zeL_Nx5I4`iFAQqOT<&bIf98UUA>g$k&KF7bU$x`K)i{rvOqlQQuh~GBN{t*2MH1@l z5Gt824!g1=0D!N8YlFRcB**{_+L3-WPVI47XaLvK#$Utq>8+-QsN>|2PQf`u*M}suT)eB9QYm-I9}X8y@c0f*zSmKu>zGaoiXH(W%Fua6IvRLy~ZARZ7MAMkl_ z?Sj0+mRlU#(j!t*6~F6ToX(mo%E=BI*CjmM*Q9;z1TRVqlhsz&t8dhg6hukan0cZf zZ1nwhm(-JW$-e}T>k_{GzA3&p@kf~`?~mQ8*)K$VW)h}#_xri^ox;Ft#tG{{Q&EF>c?MhJ+;<+-|99}(Xn`nkmY?=H;nfRTE zxg6rI0fe0ckcOETUQ!yPMT;!B8nYnDcnN%<2F!vNZ2-K?yEIRMos>Q9Z)Q7WRDVg! zjW}s0&*O)L^_+hQZmQihIt5lz->!0xUk|Bk&UUjEe5yl57D`*V$!#8@rwoz$40ZPo zEipXUAD}h_fEbk_cVmGP$1Uq**&ROvKVT79Rj2@mOm_DbyEwsJ+?Jrya=?Zp#po6 z5c&Zk$Nh|2!Eldm!06sDx8#wcLSa`=QE#8m#=?e=lv5M+)-h-Li=4W*B6?3HJjmB( zfDByNrG(W!4t(BlBW&)Lv8}^BAVOl3t}yv$%YF%RRor^w@z3!826#FaziMTF%=$rv z#+`8~41pTTvcWV*0CjJeBqQ8=XgMut!yEW@N4=oDQ;A7O8}AvPY$)hiUX^Zc0q3|n z+Z5E`F95|^vjG$ywDGi1wP~iK(^kv}rqdtno^y4;@nr(}(DQ?{@g;vil`M5jrjyHW zFM0&+D;K~K+haFS%*nxvJanp=kCN>`>l*q!S++He@=scq9jOqkzTB^Q`#hgg>}Zlb&$8D zH#6}MOdB1O0?voOR}L=*KdqYQd%8H&B+MGRKAl}WB86IL-K{C}*)aX8`lGeC+X1T!}KFzv?6jArUp}~0^|S( zbII3JgzEq?up$>h6G`I=8G7OO02v@DJ}wR^oUNJW44H`6p>e^{oAG=04UlBB7DTE; z31?g00aaGua^dbDYVW5+BIFJXaA4%B>j%D53goYlKAGBot{d zHws+nznbaHRe;|4IwC3%n08r8;FHMt$kU4M*|@Iv_2x@FEu@oh*4Oxzd`N2rE&@EG zL{qnj4Al~#kspha|6|YbI67eAr4q+3pRn+rlXOSeXe-X`@*|FP5!2UOoY5m7wdrXn z-J^nsv<}oxuoqKs`?J`zleUm1B*_v>9w>$h$l_$BZn{skIOx{OY>Gnpvg%t38?PbDf$t@kU!0jd};j(R!2~`gMR;3?^0%^*P{Lj|u3ggWcz9 zSMKyblgGhya0^hXW&LFU1*ZU66TjUHnX7DlH-WBK288wapK2)D5+u*0lf#YTt$)4IaA0ns3SxX35^1o+iY*@xASW_ZXt67yQfC_cj-8Z_ z@ZA4y@4+nF@!Q9Hcg#Sj{TB!w&{aqHvW3oJ|Mw4hRt~PC6}ol&=d_o^4CxVJ0c^5f zyER!<2%O?9dr|Y1%STDi@oGqJk)-^T_W=Pf6A|h9zHOp-VD9W zkEf|9Jn;g438a3?!K`kc>lWZm#Nbo%VdUgmgR^rjG|LxXGgcqIeN41*sQMQ_3aY5N_3;!qLv8IjU@QkH$=O;RW@11)a z-`l53vN&YzkN0{33+>vdT~_Vmn}eF5rptxmkhglk3iy9(jKr|@CF*3F^W+hut!|4i zCA}IO7X;4@@2P$>dpETmZY#nP5#8F;e>lk8z1k9O(qdzI!5foW2{Atz!RBH5=D=Au-r7Ro8Xn7Y$h<`;6 zhangpEBr$ZUS6>G4^m}*P>Z;b5l`Vw2w5~vK~dOpq2rn&IkTr5-d;WY+00tR+~;(2 z`yi9^^7)6RNsxv87-SHIrJCHhJ4))Z?-M8WU~vJA3N9t-#_zg&7UL&IH%#BxkqHWj zxJ6$$IOOmb*ewA%`fWw&!v%K*@C7~1(veVefTe(^s%77=AcH5rh#H@eaU32atMe+Y z*V|0P{?awkSs#xLQD5+MOC#_!*X*C~b{eaO4pH(({8Heybs_P4?$?BYR2%Zf zlb!^6#>x5*h~u!3;>pd*@CxsAWzl z{>Xv8cXE1B{ETWEylNWQk;-^&&okK8A@1)9ekF~u7%O}xW{u1-k(AQ^$|AE`<5JnNR1l*3Sel6+o|2Lsd*EeEl!9|}OH&P9 z%XedcfRxj#wVN@iAM2fdj=FwO55R@Oo|uZ!iqcwlNt5bFHEf>EwS~RP$I7R zK-7SVry}>+i5;8Cc^90lIcDx7Z_Q0N0V?qy9CA0-^Z~NFL_-e7<0eTfu))lPPwkS4 z%wlC%!7yGnaCOF={Pc&Ban0az@Wo0u0XAlT?$`U0&j@pEXp0s^HD+6u)0yYJJ57c10v*V8zP-H^i z9S+Zc`?|3LMtGURn0x$&Klxg#ug9vjlSx&nzmnblhOLj2v59axDQ2i83 zfyOo5f}-$D&TG4Vx9BAO`62^DV=HCT!0c*IW>(u9AFGga`Hg7YWBb7+P#9hym~ z@R||_jpJ1NK%D19b!=HZ=m-+1UFm9hal?c|9%^?46~DRbzuU1n38j006PzZcZOe>Q zIQ^v=_%qrjl*hIm@HrQrga2iXSWoU6H(hGd!WMm;?ou&)aJx`#f%uN?OxlT3>d#(z373;i*0F!Gpx< zr3*)KZggO2#(e=t5N(Nwn*wM5Q*trQ04e1}T!ElJt3xKpdF4Oh~?G(Zgm z`+Twc5vnO)w%K?(aVs6nM2-J+&t8DPeWkzX_fw8>X7gyneEGB^&I$I-nn}j} z2WWF|&-&ZQ)p}MHP5T;c#WX+WmZ*BpK3$M-kX-k;!f!TI%)qsVm6G`LE~CoD+p znwh@-s$5!+*-Z9_JmaUa29J(8_SDy=y|Y4Hr5dAsg^51o!DhXYJ7w>=-@ZMM5z9t? zCzkCH{%MKF`I@T5?q(-4tz?iubYkV;v6Sd!+K>{KzfKjns_Hr=vwXpaUp==vQIRj& zwThu}$arS=*o8kh`#0O<=Y61k&+YkDe_t0h=*vY<9TTD8m^<)`ev}-t-3jx8MY($^~sOCiV6_G z=yTYzFEwJl3U#{)&k;Y3oWG%`oa2*)YpHo_oH;D6ddASY7lxn@K zp#tt>y;c2Yb(1d(t4iNaIwr=(9{dOt{cLi6IQd$u@T>Hd>)V_^n=iQ_FVUUF&oVX} z4wpduq%H=oXltnia*!GSL!k%y(sA*7s|xlP=>B(~bwXLeO~%QCZvK4p=vuI=6(5&u zk%KJdXW{)&R6$x+7&PcV5BX#_fR?}JxXYaHM^cQU?MxnlH*;>aef{jLFIo;Fxp`Bs zMhN1vxLW1nnAh5-AA3?|uy(PjoKhA(eq9XC#F=eDQf0Ss&;bwDrCsoAXdg z%X8FL6M>@7U$!TZ=m<;ZG$p))Z>FS6Q*{DBKc(JAyrVJ}pIIT=3Uxf~=7l$mTp#I5 zXN}D67I-%L-y^=y0dQKABOMV}nnXc9L6b;lW_Q$Szuq|r+u<#3>jSSS&0VdQ^@?EL z3-sT4J19>{HEyLGsBn?R&+})rU9194{rrpjl;&`vE~8s$O8GGeh!iURc0M@X`{bFj zJhlE>8E66V(!jZDYjT~xZDmri!AEM)G2dZu0@35;VapB_nxvT}=( znrOSwj$*umy*lH4nZT9yENVnvoBOjgmI6!bQlNFdW^rD7Y3h|IojHL6&{f8|x9q`Nxy~loueg8A!&7&o|RL=y3-F7C6!xW~7o+oMa zT|8ilR`%rPSdaxFdbDY&HWMgQe`UdTt_qqp#uqpJ`8E@@>10xFiDqD6yqKPCo1Y+0 z&0?t>%#D9vC^^qdh+VhlUGweM~g(hn)4>MezIK_ z(O+0HbC{~|f7xJMpQ?Y0cXM5r$)Q+;J`o%Nh})|O?OwJwdAqMI{0@F}Ef!2pNU$um z?AMU`C(+;igkLWT1%Gl()Jqq&`h}i^ERe9?wAXUiP15!xLD&wviszOBvd23O-cL%w zDjwSSe(B}53oULl0G?zGb`}FaZf?80 z0T8C3+>*%iD5lQC=)v_X%!T zDa2=I>4+m?v+=lys4x>tTB4eUJIPeQu+-<{FfBO*a-~p{H6vW(cd)@O(q8-rb5&Zg zbj9avf%xnR2_hAQ9m`u?Q&6md-*x*cHJ9WGI;A5i9FPNU&ok*m<`z!37wdqXT!N?L zK6Wn{II@Nt&(Hietz`=-Xq=P+`qI6Fa~0_kS1dD76w-IPv+*s7{H@Wn?+ zb6=TRNVF)mPJfQ|n}~H@{Z8S?!Zp@x~p-|NsAg4#~>M-m`2)L&h;8X_CyWtRj0m_E85(Mxm4yvMI_4hfr23gvg%B zKFD6*`_t?Fd4JyD@9+D)T)zMRzW=y1aL#!?pO1CF-)`62eJbG)DGfo5s1jB)EdSiv z6l2th8X6|^2A>2z|CMj&6h$JEKZHicjEB#1Wt@*Xe38Vr*osm?jM1{%JH0}nFu*z={-1DQP&lwuk1#bT`kIfx;9pP4AMKR z=>2GA<=XMQ7`6o%uOQ+@njd3i1r zyljF|X-i57FQ?z598?{W_%hOgx9JQQPWhu)nm#qkPBx&X<@WSUBQ$GLcjs)@fWX7i zz6|@~D~8{IglDf@hApmMYUHc|=ay>jDW~jOokp4$97zIX#4nR8aRfY``HltIu-+-r z7;2#+P^WEuXqK$5@+h@rEqfc2)VII^Cj^{M zeCrgxhjB>LA?$`97XMBs)L%`(rnKnk^D5PkVK`M1GG@-ghXg+Q) zDDYZFFE5RV;(Y~^xJEZAEHnmZEpx#I#diE<%;(b-bonCYkM0W-UN=WDJ6l|%>|ckx zzy{h_Z^~x%9F^tEAyVGQ2*M70YmkN958kKQUOD@|ONUaLmDM?0j)t%r3kdH2gvD&` z69q%oBUc9OmDjqz=YdZ{kk*MvG(fAqCxK|o^^eD47qodJ&r>FxNT@$eh|_>I}_ z{PL^8Qe9J@`S0Km1NK)0Y=62*@`XM%=6J@lFIl?5DA5ni&@tVmi*c#T!uO4vsD4K4 zH1{9+OUb{|Tz+VS@7z(TM@0@34pgHvnsSp&U}1r)(QBLsvD62Cod=1R(Sd~h!8#$;jOE?XQS_s7yNx~DtgE>k zqA_bo4QZD?(~}flYiV~HQlYt*#Pp7@#qlL_yHFC^-c z!C&Y~rwA#8rnpvgHL=^kp*Yc5>iH+pxAx~|i(2mf9F+XxI9L&@S9Qa;yEMNxmin!M zp58cGcT&tb`$|+*0M>AIuA{SU{D|8~9`GYLRme+A0c>z zm&LN!3G|+OYe6o7H6UDUG3$_MnMFO`2fWsJ*bQ#m`y}9_IHmfq z2DH?Bb09bU5mdu)+C+%V4G}w=aIOBHg*NKSz1)|Gm6VnYcZqtiJ`0W~avOh3+gx?# zRgR{uQnjp1s4g&%tWIE3h+b~{oMu-hPY}#9R}x;XezO+$BIf=4cD)1=Nh-l|IzPZg zCYMYEw>|$FMfMagt*ls7~)$RYIPHM$!3 z67AafR|>*q@Ii2XiC({3pD&742^cl`tk%mfbR4INRXBP$8XtJOidS2^jdxiE5gsT# zlafmz>XT%RutcHrC^DZ@VARQRm(LR%C=@hA}*RdR4mPnOC6cGH&_e=sS z4|41|P*E94^6Gbu=fZBfom5QST_i*a*%o*KIJ4rys{o9HK-XaN6Tw}J#z>ckk)>E7 z{(D_(I7SQFWIpwIh~x-S!_$%C);X4PL0WPp-W3!kr<|I*Mm%+KAvD>%MWlS3>^}R+ z$vF!zV<3i3Pkhk1^VbPNphZ=gzMhHs;5JQ>z7yKX;(S`Fdzyn|Rpl`5Xv`S+dj1-P#yI1DeNuR2auFw1&qNjx>L@5oKXiV{3vkE2F3eruS8|A{Ok^62|Z-aZx7@5`;1trO4rJnjD7Z4`!nP>@Mo+S3^PT83Nx zgG<1Ivca2YTv}Mgim?7kmM|8>tE@(E)wXHjsi)(dAS6|KOgl8Fs}~PwkII7|5O^Di zsrjqx)vRuK$2pnrMD_UKIX*ldj@S4BGpP+=p-brAdc#rf^OkB30fA=2o==g85nH@A3v;GyN1dDZ-nK0_rPD)^Con6%b{h4z}1xq#$nr<)H>o@RfZdCFU z|3WR4vm)21)b0-Of0xWK9aQ&w7`A_)F&(s^Xl_CD=e!(LZ_l_nbGv_)=5i`&cp$84 zJ*hmJMUlA-f%;ND9GU zYe@pY>$U#9L-0N|ZbIfK7=dM~9#UvXXlC(O{-!TWm;3I~O?y*QE3#)c4axGi6v{Ws6qm4b+_qn2`&) z{pN}T6X}+rXg-MWRt>ACNm6)%c3c$z`&jsX`~2nfo2r9H4;Mc$-i&*EoJ0$I1AV9% ziTWdLwoU#MOwQSJ=q6qo__BF%6_8*0Lcz<k3Pyt!R~KSc_+gCx&H2TIXAXGO+qxtX+}1`j%W~gdNDpQOZ5K+W zC^WHrOC0CZ3t8nUDlT=QzH`;Y@Q)?vcW|I*ka@zH*R1}i#hcFUoTsbGBf0xgPG+wP zsap+h-ZXKxaP-Yj{|U)N?QDqJCgbMa=SQ($=9XIXeuDfl#0p<17{|r;h_bAajejt- z!m!r=m2}5No+E*u4v0?t|2q>8wfd7HY{1dWo!9>R6LB9|!<%i$&`!?xs=iv4=w3hLP>colZqeFG#r+X#nYCamO?#19?9|Y1Giy-=Rq}q zpG?AffN0(79j>(`AEDVrg*l!d==+Qnd!@})JO5?|%EI^~Bm`VE&}1`QR{1{^z`R6j z{V!CI0-u(m=EsjyiL>cn{HIvrH4~Q$kJ4oQ49<3f6v%$3!NN?^E9yXCNTSFFIE%Rb z;Jea@p&viKMUwd_J!&vBnYh}-OhRn4s%{n_7~U0YL9a$gHtb+ zQ`7^0`5mGo!wL0DpJ3wT|HWaCe<%2uv*MW?V;;Ql(xDE3ATNg5)|t%Sl~Yko-up(lOCJSL#W1G{jjA`2pcLM zmZ$6Db|hNbXHR(>kBGWAX-aBoqFD@LTBX>53JIxl->l)&o$~oBnxI}^S3HmH_r@z8@`sfoV+V#6D0{&ypZp+mh)BKS{yuwOR`{1;QXI65;fT7yK;Ul~-1TiT~i?Iq(I{BKcvfxn66g zS4Tv*8+8@I(Qdvgeq-|Y<=<78PM)sWAM#!EHpqV@KlI^bDMSkShc=pc&+2l(#c$>cg^*RghX|UL!?H^+W!e!|~ zzR@@G++XHH|9V-zCMFQ}l-8Umb1y)UvihXV~V>ojWpEqB*CcZwcf+ z6o!em@Dzz!qAb?c{YPkb@Zl~aANjR8yCD#mNy)EY|CcuSEL_Bry8#{t-}=9+ zD*V?|0l#s3@!$<0ck%ycuN_=)2%13-Gik^zI?yZr>$2GEjDRcPmhn;U=OmQKpcaYn z`p*!zTgWYEVehPbT0p9Guds~cfWGs;{E~Zb;i2iHd%_{|uMr6IToE)p*)iBihss(V z!H}EM{~n$H{p$ZPe5{hXum1Z#%|9XH3=5CjsRrNVi5@_Jd!x1MA^GqB|JM)y&_x4k zr8Bq%cNehNwS2kZ|Nc-ajmUFStk&}<)aE!A0O)&NwrJgh8xD{wtze`)BI7pEJU5%* zdys1g&#(T-{_e+p8xWm5yGk|=pZF2ug_Hjtr?3}zj0}d1gnLHufPtWW{PJH^t?LII zufA!>W`HqShSVJ;1uHDJ_>qs$qxbLM5Ilf9&)ZGVyWDOvRE#^2u_wU=k~=psQ-s`- zS1Itf)ngq|$Kchks7f&ZXENGTc=h9=hKE^TLaRNm6Z_BaHU9?xTzHF@``}yuyTP1M zt20xg_wC;o1PLYlvgdd32L9h`|G#VgfB&o%okwzl9RRzBcp)H+Mz^m#5a3H|pxHK_ z`kw3vd(o&;Z$S3x8yVRlA~=9qoGS}*JPA z9;m13k)otPs7x$^rM=hUasNLiCJuzzoRRsZ_dZM^G9F0%XC5Z0Vq`lA6^y77=UwP$ zJ7g!hJ&J_PW3#}`Nkcyn_Fjd3Tj-$6CmOFVZHaNBH$gfu+sQp`X+mO zd&j!_WP3lj+5Mcj+mZ)z?_qlQ~|Zo_KtGe3^9%L(t|4(@KY& zyJw~=|LL~f`9Ol?Jt0ET5Bs-XcVu1XL?GP`J*M8J5F4XAtii5SV;8uLjMuj>zHg+$ zpx*CPHU5vWXzPURJd8X3=4*|J?lxLSN#$GWxl^iolMZ8s)9tVeP z;kgz7Xv~ALx!kPU_c-QF@=ZQYWLa+1HVq13z#0V^&0hKUn^IXom{hw~Cx~$tR!Nd0 z)6g|KOOU5v?*+cr#b{L_EJS;q^_A5tLc@FKpce`sB+?Ij>LAAX}Q4Q+@v( zX?ZEw6QPkI;k72Z4$A~rZrqNUTEkXp( z)UV6J$rG$@1R!Rux(N?~R@w_B4coM%EwWhR$k*v4BQdg{NT{bLy%w;nW1S9AT>rwt zyw-&O=(?A9;w<>3>n?pwR_K8k`lH+Mj5|WKOIeFhVlTiC?m{B?b4Ua(_*svI)P^)9 zsAvsNbGM+`;|PL>GT?3h>MOM`@AK(kEqELV7lr0+2D7++FZ?2B<*knB0uXq1SYCFF zH5damIni^hp#=2#ePB%~NaNBfsUQ#r*55GRJFn)(jUhT!CKeSs$VDM_oq^-XxT|?N1^UXPA9}ANG4W0V! z2)`=5eEpj1gpa+nYk=b03a6|$Jj(nV_7Ab;0#^q@;`>bex-zb0J-9 zk3@-hTq?%rUC?lvaZ?m`Kq{D)6TAB~ZVg=>xXQLW&J%@XlYM(8Y5e=F&0MPQjOaFS zNOt|A-XXbL0f7lnp6Z{93|CejG=pcT|6z_|t}fq>j4ZH|=TDB7CbXhZ5>uBioYxK7 zyjp#A=|z+Gsn{IE`oWDI310nT8^+Xp5k}TKSKXf5sUS*7{aJ}rm;M=`F@7+c+}Tf{ z#yE~h-(_A#Tnp$M{yGVKcbDa;@bwc6K3oZ0N>HxZu@3rcqC!fKYG!ag#;pu)eMdOt zErrdU`?wjY9b{%^R&8b9=L&bGAH2}B!X@dGYXk0D+btke$=2aZJVH@Vuw1kMf>XV8BvWv zlXEqTs0WOivUO@tHY#8I0hC+oJmi%{aFaYkIgb?7^1evexpT}l;7thV-|JHvu30!j2J-}xv%60Kn}}U zF1u@wm{AW`*z3lQD0PlIwmdy9W8F-@?>9Q+w^&+i)zrw^VJ{kk&>Zee7QHFg1dG_Y zTu=UgZ}lTVjn;obJTT>r4oP^JW!AR@5rkV_Bhv0rU1)g2 zs;Jx{qY`r2^T>!wGPHe)VZH6vswbtxnJh`A^AkP5KH*1kKHwTLgYxjDI(xyc9wy=; zT>bmQi-Lss1Z&|QvfU;WA6|^=unTHW(x{|at9~EsN>Z=LT*&Fzw;m3{!?^Z7b@!_? z>1kQIhapJyamYA)R(iTzX1n`s;N*%cN(;bG5<%4=)T~=FV-*bvq%60gLS(3?O=Q}_ zA~891q9x?IXlpimf;*9+{?9&AnTD-PiYw3h(ee7TA6Q;dl3J#d4q^YI`P`ehy*G}n z)!?>;IT|T*J}YvqR#r_sy*h_f?s`Vp$G226ki5c25fO?^)aztJW~iw2bOAa85mpJ1 z^M63u{N+8FAGo{4&X@nyV>S?B5f&@`a?iV-BneEp%S6nDoEC9J}MkV2ZP6Tfa*z zNxxo;i8|f#xQ8c|bs!dDBdlK=<2m$*?34Q=KQ7W5l5VN3*6kyb?Yy#AKUTa&TRfHw zUFWg#`zqapT@?FxI&vQ}yT zJDk@s(GZ5!4O|g-z-VID#@IS zvdirYG%6R3rRxs?^{?AmqmD85QSHh4G&0glD1qP`SmzLFG;P{BsnN4jxoX(z9P~Go zyLKTu7Hj1?2W|XFX64O^*nq?eC9|{GqiFsIM}Nm`AGN)}%@#0$F{kPY4<)fCEPX}F zvenP&#u*n@P$@YNq|q#735_+Skiir8sZ)%ql+C%3n=}dShBK-=QT_KOoi)x3{T1y5 zQ6c3YKH7SB;k0cZqC+S$D`cpL?x>upKYlT?jTCjtOZ;|z0HB`gh?n(?dk;2Ixkz#G+>r3$%WWiqPd7@qQGmON4VSKuE3d0jw zrS{7&gD(TB&lB96oBU*GL zB(ba5S9llq4)=R>Ly~`2!1w*wr}_+p4zVTho!4j-tJ%lp#t2h6vz}>4ADQm?xK~QI z&*~`Lk1ZdO)4~wOq`)Mv*uDj>}ea78{0`%SlLnj!-k}DXBs(3v~b5!qMI)nN~0@Vvd=ntl&9bz(do>HexlT!lOpd*S}Vb9kYLjN*NR0`y_Wwgq)6M zxgAO^JbO2q_f>KfQCb4jH-a&zQ1{`nw7I5#`d)G~N*eHV)fT}ySD zp$p+hoEhA%oF&7Y)ji2$h9wzguU{>Okf|Q((M^u!zkFPL=8`k$E?r_=&PNMgvpcw& znAALe*z}ik1dt1j$!QErZ9V$U<`T6{A{8=qRqf*K>C+=m{a(9IeIF7eXCt{Zwpaf^ zM1H6?c|2Nq=mBBm_#spsDILsj2@LE-lv*e2tDa;~QICWd^UqnlgG9JpnlxcGZhQ|l z&*kt}ETe0*N*m_4cc5`Cy?ovRKSG_NgJn9pMn}rz`gUCMFX#-?I#LeP1PjlcH$L)^ zd6i*B!C;pW(}{{2O`&X3YnC({&(ug|oD3NIP|GL=+OprGxSnY^>P@g7DvBY|>bifQ zWPgyVC4vc&!LE}TC! zSzm$195suQ85_LcbfhAT;TJ+O<2TT$W%PO9oXPB5w-VNV2TNyhZrK0*I+s!6^D7k6 zrf!Q_ zD25|mm|F1^iUQ5{n3OST;)DR6pAmy+e@(~V#<)%KEz##PZsBO3C;6q%3_S6TI zYq?b~sw*ProRuN(hl6B$6ah-vRi{-qG*0;{i>In#Po# z;lf8*>IKK5*+x6gS^rgx!a2g8KRYMiuyPFentHKaxWYp2!x<8hY8sjpFEUaXah?N+zL* zj-|E}QO1Ar4%r=*qe@Xt;Z}V`!zm-dbg%2Q#qgNgl)Bc0JmQLHT)c8HLyV%qcJg40C2=t64!cBKO7Ssz=&| z-)k2opOZua?>pC3K3CTgjxG$d>D9=_Ah^V!R7_fa_PzljX&v!lJ%o4~@qUS%mzqvJf*p$%s$U${!}n;Z4PEHsEr5fZ#rrxNa|%bZ z*e1pbpXS*2GQ!kh>6_Z~~P3!zlpuB?LV?GtEWDj}lLKSyahY0XJ1dZ5BeC?yV|i!82_ zY4N9apvk$+uhBPh#zqV<8oJ|zafd51h$ez>4G8F~#K(2WF^BF|uUUm#=11iXt0XU% zpo?l7qn@Qm#;H`mgqOe}UjBL1%{tt5eB5V>m5Wii7g+i(VVmixPMFp)&fEC233~`G zc7ui_;ClhY;JjgGP~RS=$EwoJG^DSq{52_~Z2JI}yV<_dS-a6)HigEB0mF$IfmG&K z&%kgOSgRATf?I94q69t*i}^T`Tj{W- zK07jTcqX*A^Du+i^MeggK?X_bpBdXOa@Q~lkb@J_!B$fm>q8H5f2m#BGU^DQcGK7@WG6Zy1~(> z4}5!;LD1yg+3X0yrD6@2)aiqw-J;uVgcO!G(ogh7j$Zy0a1rQ?q+|T*vMnIa5Y|^5 ziQi-BTL52t3Fri+yd)e(mdLHsc={+m*Zp9}Akk=E2%%^@t}Me|Z7VcT$k&MilP03Sh>x<`_VnfNAwJlId(zDmemU z*srlXO2LyGF5%y#5u|fWEIR-q9*}NER)@)cz)`Hx{>#}%Fa)e)NlpxyI!0~}tM|FI z?O80y-No0tuiOlD5*uD#<`(&qudKx^p7Ql@+M3ik13}mv@dY5QuHoW)Z=OME^ZC>3 zIbl2JCp;|~QYmM13}_fvt{J|6%HEbJRX3nZ#FHQ5p@qgN55q_rqv<@CDiP(E0;22$ zgNB!t4c4rThBy|2XEPa-P$4Cd^={d05|q0-*obFcg6C><$2rV$>7%r~B&kd5(U4=OKPJKCdci;S4B zs1I00;^uj|$Lq8ey=*5jM@7TX=`F1xX>uxZy%3kU-W+By#W0O+OSm#vUf=9xPWIU&KsKjlMJ&+ zam@M!$xh+Dvw92K(|adNUoL0r>y*{niL<=WJK;&p{i;Z@xq!QovT{+(b{b&lX0GI| z&c7O#BTPj$>n)p7AI+#RO+Hju}%Y|>@t)G{cizFwJdK7Mh z@uvuG#7n0&7G(iu67Vg?^G~myu;}y?7-dHH)>Tnxu|IZkRmpAS@Co0@Na1ChumwXl z-vb%ar_BL>;SP{~k@3 z)`F9IOh*jIC;@c-lEjf@=Ynl=TNUEgQ(it=z zBLCRFW|k_dleJNaqbM+U7K1hQ-WItD-#JENFnt6y>xmMCr8*^A|LO1_%ALm?wUUo% zR4A^eZ>o|sPb7sh{8}M%2U4bQ?_q1w&!>L>`Lg?9uPahR4=304{QF4w+EKBiTKtb) zC#soIdBeXR2BAJr{3KC{<+TS=Xro_Y!1mf+bz^VFQS(RbK3Ihj{=*mQ{U{Y*;D-=8 zc{fE>lk6+ebqL$lE^66M*}5mZ&cA5&SlaR$(dd{1FOj)TVJm(CBBvJwU$33bCXqP7 zJ|3t>uN2?@Vkc{)y4Bw8`;ubt(u)Y;*Raoi1UC!}+PTwUFR=5_D@1N$Dv4)pZhdgp zq<*!3R<}gr-BNKIL&r&zu&8G*nDyjiCUCk+DVOpIPwcpL^IXj|yF;SXnT;LI{947Q zEjA0cjRHB>ZOIF6rRRUM!f`^_$3v9~y*hn0@G{&h%<*B>egTe$r% zRj3w3F)3p-I4rohHui+Ko?5Fb(jU>1H&^d!zTFu3*k1#IDgJeFNIYr1;JWpVRa5E> zc`g620YO;5@UQU~PNx<$Wd7tCL7Tf-fNX$dqHl&O|HSRP-4Qj# zeVMVzVV!5l<9=6ao+#ZRAx|=jGd!PPMyoXXt*hQgp7|%`2qC>7uS@Q{mz^RCmqqLHe%+r4&X$QWtK@H#J8sGgPSCMsDK zD0nZ-sZBNXkUmr|2c^4@v&cegjJ-t7TqQy1HdD;g7JF6RyZ1p(Q7@7k`K=IzOCUr0 zKLa32_b0nREn+~OO%;s2gCs1Ov2XpiLDkf)QwmDSm^)M-2CkoFZY{KHS=TQ$Pk*49 zny7cJbmu9Rxb5(FA4yM0a)?;5oS8G!AwNgGIHFTSs`VS3BX5OOI~cwOb}uA7<1`N3{#IDjnWf)b6FtfN!F`bH*)=MMOJvP9T1G__sd}}^2SOmNe1(QZwET#* zgur)ix>wpL4g7%M4CPUb$%$DGR2+4ufqa8wp!3-X8>3arDN4Q3Wo6HS?^J%#@9syD zN_>1s^jjYBPHzF5hy?8(G_(9Ku%|B_vzMSacBc{Gx5Y+rFRf==o-M;^;M7x^b+wUP z3rCNC*sgIT1>b9Rp707z7;-53dfc4KcUeLDto}xM|HSTOA^MnH!RI{Sl)Mt{YMaB1 z-3%qqPwhGGtD)A@j>za{#8Do3MlwxeHU#_b(`IEmGtPxM8sx3BT}{Dhl9FvcqLa+B z&d2Fq%JPmd@t`pwCR*AX6J^!sbmF`9zm>n7ynX9i{mDY#p(FWbhIZWzYK7SGR3q*3 z>&fGBt>niy@E_i-7Suwd?{p_m%x#6CjT2O6ayy|TPns{;yMjq>duMHyK~zk8@I@JP z$vZDfY_5T16*}q%O|gQk+IR!A>A?prWEXQ3RgZzbaV0;#BVsil_aD`-*BP)%Ov{SB z=oEt6%_F{S8>5v`QqncmN>Op6v#Q%J8PWaOnPRKIWWF!3Tz1z#J#|OiuJkiirAP67 zGeHxjtU~VFZazuomxuBx-yVbP)AhMDhW zbo&&J`Flh;@9rNB;M_j{1)Bl(Adzh7B;MI~LB6o%hrt5(+AtVNdz~^GJ5}ww`VLH; zwV|}!FURupw$8%sEfMncfU_SAMouWsPBzMBgYHf%_hy;v>eF#_&Sxq&{jes#Ge`Sg zlFRWoXCvL^?cvd-Ne=I`h{Dgjkm^Ir3Ki?#8~-su{VL*hal7|Fs47=I+V8z)E}34` zygk_+$7-&F(j+u?-s`q6*VD*`;9Gj9w=%WDYgI%)o=b9VjWaj%Z^?hlyGyX?b~nX- zTz1lz{X;Ll@G;|oR&v~8!)$I4l$yb$YGILPieUYNbb8*H8mwRig0|ta&GY(at4DIJ zSv5W`M%<>^ixz-{G<}i`BJp2xZ)W15B|58(4wQ&7c^9<5Cu7$oGTR>9PV$ZhB8ECc zb#M0^C<0%HA@^OH_C+5RtkCD&5IpT5Y*<-T*^7&2J2ZGr9o-h7XZa54XdH8HU)%UsE&S(;z} z$LHj0lCYQQd}6i2UoJ?h2rXme+G0>?STnMeoxLw^`KC%ub=h=j-Hy<)zPyM7slK>tBkQCYgj2L z@}rxYKhwM1zg9#TOP3GJqStSGkgeC=vgpn@Gej+RtsrdbVUy00Q{8A0Uaz)AW3pFv zNmDv^;=3hYIO(1KSd>@MT2R&?HMLoi8vl3u$s}u~O!Mnn-y0(^{EHDOGKeN@z*|>- z{=wnGr950bY+`$rw&$#3g{~VF&LM4S$k$l%yzp^YUp#K|BovhVai*XxeHZk&TkT*% z{wGsS?G5dL;C2RvgRU0C{3S$GeC)H`?{pHaZxT6qV5xqka$T`s+d=bp~<*_N&19(erqG5f~HjWmm9(=Rk7lb_3oq7ng_UEo3CqXTuFl;`4nG z2M_e+mhOU(k9%A8sq141%VTv7oI=nO%j;G>+A^Md>$m~5Y|=UXyrXo^6_2gv+Mnv;<>CzPWaR^1>aCA*RiVA`MeF7FBK*trE|93x``B7v?1&q-iviklO&08Q2g(_LW<~{H<^c z%C2+R*oOfPkCFrgN4bH?}Ir^>#X=Q z!__3-0=qTKe9@t=k1nQ|7j8K$e4jLe`xQuq0j&m7yyykB42%5$!i$A8rIm{G<=}F; zgCY0l|7OUk$UMk4dj9@6jyt8ezFrk{Etx?@+|DX|LJzN8xl)jmb0U>0yz@CE)6ZJ| zD1fN3pCBO<_ZlrvZ(MzL^7g{{o24s8BRf9}jg9m53-wnlAEl@bVkm4bR4?&IK1FMp zq%OUt$;`~G;qB76ZA-e^3d(3h(_ka=KrxnUrIU;MgO8@7y+>F3WQkqF%f{uU1c7yS z?YJom9kZjgEs7=|stNZoVUYu*UK2xASk=i8djFa&sS3?ta|gznujhrmzg3!?b4uMN zpyflR`o2`g_?5=LNusVYc#lodYfHHk-)d~+8C_j49@V74R<>oM_2E7s^F#GVpiWVq z|F))2=vo53{TB#JnFoPJ8Bow_>K5w_M)a8?S2}95$$Zxy&}UNG7LW#MH)e2vkpe{K1k~dcmj&NUQqtnAWQ<#wiSAv zDEb42=)WVjAh#$-w!^b73y}I_aXWA`ll(GhHQpoPE;7HYW7)n^_8`#tIgn}<1B&8S zs!{-=cPjftt6(VLEF_ekljs|)Y7*<7{?m|np&zY@WUL#Q`7~@qegH*ODqG506vx>w zJ#-#dOU5uN;w23@JKMzk@R1CwSMziFuPW2Kz9g0FOwSq^M|g=B7I}NOF7`GoU*Q_y zC-77x@0{+h1zXI(n|JT7h#OD8Dt@3T*4gE3)JT(2mxy!S#+ zj^1qG-REQ-YuOt<#0jM~yOu?KQ*4;lgs+EP-WOim!u86pMjkVhc~cjF z9deQkaZ4jsBqThtIMfkpe+MRoQET^A1@#e8F9qv)7@vCDg|8w>^@ zVn&3@B56}uA~E43(~#~`LeA^o{vaONd%USysPs)yz2<)qr&0^FZQn)SzZO5JU)7I; zIru$-*Lc8I`|azC)APd0o8e%O_!bBP>^|r-{5EhL1{ukac=#!{sj+V!V2|pDrq04> zHncTYH|6@(jk)N?~P5q#m8ZPkE<`w=0!-E6oMolJhYnoHx)c zo(B}8MU$8HmeEK^dT9s`XHhuk#19fJ&I@a+z8xUqpVd2Wda%*^x2*x`y67Sz{>!ai zx!TijRkDJ!$*5U+<))GjjDhI;kh|lE=oNRb%)DA_J^9fA(XG*d0w)lqf^UTQ)x=%c z4=P#n+|h!-l+=iH`<^#7Z=fr+v4!w2gRg?dF`!xg)ir^P8c6hLtb};a>c>D<*}l*~ zc-{ri#Y}(rl#bz2HFn98_vs%HL#(C|iI3CgM`h!|;4S@PwU(3)Thy?MzRkwJM_ho= z&E%cHZ@m z6er=j^VCn>sX-=p>~ei~ABn+QeAvgLXtUHY!)Gfm-RSMR7DyfY2M-%Q=W$H(W-Myi zyoml_$_+`OJ}DTiQOyrKmJ`K!4R5OF%ilX$wUyt0s{iKqh+ceTMuyUzrzHNY*Wr|W zawy@I>Yz`j)U zD_cM13xH;V1eS4hw*)E4_FOxb3RX=osMmAEP~qI59l$>NI{{@38EQy3xN%cq;X?+w zvWlos2uf>?6hro@ic*W;oK-4J$`^EOA02)c+^V72&hg&c*$h0p&bvn>M}qI@PG6`3 zw1njCs5N98zLtM`_lw`TVn)8dAkOSSve#}mmGwJ8#_d|4U97u3sTN9*kcD$#n@3w8 zy%;n9?%k=3BfDg;jy|KWRp+7oa_E4+3C{erA+u|=v{1SZyGo*qxCq5=nBD>stZ&1! zkM8-U_NAYFFs1Kzyd1w?F-f@myfeJrSBbzwY&kDnmY;m?hoEUrPt4A0N`SDXc})#%8psRRrP@DUYHUEFQYbsR7(qNnk3zcZfPamU8{3FDp zh422fO+kv`4%`?W5~Q*%fo=EZ>)(pLe;;y_b5z4%`Pt$lgL+9J30D2lrO&RIjK(PL z*)*u)`CEbPySR-^J%?c46$ItLUIeSC7-=i)5+)S@(a0~fS1Qx``=#SMOomT%Sq?u$3YTd;36sq~meTdQ}RwVU?WiyYW zh6A@9>1vu=0422ZNv+%^Dg{`0qBn{if+ct7M8$U(O@EfT2Qz!Sj^swRvKyF;@BzJh z10M!U4_2W`Gu4txeM$u#(H{=IyEM? z(ZhS;rJ`TnKa-?#Tzcwe-(MX$Ut|!(S$W5M@z;c6GBLp@ek%9yTj5$ApLo5K;-$+z ztqz;-7-osF`Gt6{|Bhw%S|F)<7{~czA`6N`O<@({euh3)=c++8q2?rIWqH;xu24jAKajC$ZZUFJZ zcOlg!sKLKMlg)SulW2j^Fzj|NjmIO7AvLVn6MM$lp0}xC79XK|Yp|kEa&t8D!W&UO zHnR)YzK4{(5yz$nnjghczm=?KKk7wCSAZ2H?*bKSzhNRYQ=Jq>aHItwYN-)1Gs9j- zwhR7@Wda%30IGzB^SF3DW0|5)?x zOT+i^T=if{W9>VNhrLT2y{4^p$;-S)T0*)%jZ?a)KUCz|zx`@_9mi<8AGCL8V`WwN z)7$dfY&AjF*5>6R=JZ{jR_3D<>Sg!h6gfyd=+N!Q82?Zhw^!p{RkC|D@g1?Xv#VcJ z#fL}g`g)Ar+i1d|P^kU=I75e!|B63@6tE=S?$xHYwaj%Pb$aTx`;z)|rm;E2pF@jT z4~-8yo#9}%a<+Y3&1nUQldA>AX|DwM1THP!+1^`Rujd~A{+*1neLO{$`{Fx z+rPhk->q@i)GR&S%EyVp7MX%DpS?@aQyn=oLFp>L7G%WAaHuyA(CS=54jXXzI8U`R zyuX_YyO;pvdox83EFUnDiHnLBAHVtxVQK}ejyFY@kBwO(yY|~GEG$M&PEI;9h2Jal z^70Bmop1Q#4S_)DE#8?^p2^9W19!#xHlotulyOMd_q$h%L+@=QB_;JPS%kdH0)#v` zTIHozqdIXYBvdp&$ZVtKZ=mZZXcYb8W30Raa$e` zA09lt>^4wo%rg1w-0klr#i^R*4ey^DX*xxD&UOEk;p}SN`fER~wBf1~J>WE8<5E|D zYJ09aS7tP*Q?e(ou#&Is=Wt#XP49=;Qb$ws?n%A7@e3yFd0uyP4Jy~2IQ#Qk#R@H5 zbK}2>7cZ0D?VjbnYZ~YdHK~P!^BHMxpvdR%tOT-4uir0he%c1YMrHmpqt=+SP&Jo-)5PwUGUw&3` z#Dg-)F->u>BhErxy3>M51ACc*SfdvLNMC&rZ1{~AXc6!~;;)#4MP!}P9LHIv9;}DK z&is0xZR%1-hC~wf;DInua`=m$w<4(5|Uf3PkKmk_D<9?Ud1t@zI@8|fB!U(YujSZByp`%Rb1pt z>CmiKQQ&OZ`+>a4_T0k*ca5X;Dz@tgWXx-;VIOBjwuJp0+PI3lEy=2 zEr2!p;F5-fWXM>4rr5WZ4mg6i(e@9mLA26jHJ&&Jlz$y?qg9tP4&7V=iaVl12ZxPp zT93uMy3T`bFsJ|vDL-zk3Hj3LDon=d*kLipweRU=(!ye2Qd=hs0b+f3G-j(8rNkYCwVvMg z{Ar{khO?Q6Sz=!C9-LMuIrLVlABN3S3McWk{hIs&PUsI8P9Yib7ish54;-h>hO*D+t{1-!p+^YZVYX-NDH&fa+jYX)DCoQcul6iW+WUMkWh zlNgX(4Dr<8Y0YITJD-I8RR3`xXkibp$Eff8YvvSjLUp$Io3jn?>?A>~@Lj<`aP}#2 z(~*(RbUX1`LUm!qq8xN^s!m?rzZ{&UKLQ`P6!PM}Az5(|bc?>=Bk2W#oE=K!*D3gT zr}nQvRp9^X!ARe(6~?4CD=)z?*&4WrP*B=(Yxh8o59WkHjDP*M=wKaV#mgw!F$#tM zLEU?YQ~mex6 z&eX@)FmvsP!f%zqeb%~Ef-jg?g^WO(tF+%ownp18hq9x{DGRK1oMSdV-+tj(hE2cD z;+WIUkPJE_M4|W#3L+#!+_As&9fvB1&$Di(JT{g3%RGdi1xHhAp%b3RQxFJ9G-#HM z02LJC@b@-Hj6F3EN9mEJr!59g%7y+V91XgnJPJ-3lcXnhd3LJE7<|2bZLzGCzhkvr-FSaIgd(QX zev2^q3%1VD{ybf4$#t<-5CPcPrn=uNg4Fb}GU-ZP!QZYC9-GD@5O%_iXA-qo8an&M z?Lsk?3_lb>_MjIbjLd%fRy%qH+n5-WhgcT~L`RJr;2JSR1+a_sIkZ2IJE*jdA$!Wj zBerq3dHWi5^|ZMdWcZO}XyUPR#g&JLZGa@7p~m|WT4VXm1Q{KUKBmUF6V_LD-9+Y@~v;_;(Y;RK@CSSJ~b|-k%fPO~#%|FZFq(5Us)D5iGB2I;yb8q%jzM^5f)tZHpj1(@$tD)5VvYK(fHc6_6>$` z0RnD)#JLBf0X(9BxsS1qV4qkK#ILG4Gu7+R!e4@GiI!TQ=5uajiZ)q{!t*7~<=F(U zy9tzkUhiCfqxEg1*N7SsqKjF2mRdMjbP7(U_&G&VSzh_GPd;+hLroNr^VpZILWLE6d8}aYV;$citbUeI4)jINjyYJ(x1vz9m7v1<3}k9Y^*}4YuPOk7>%5QvpvhR+9$IrU zk^pedFud`_cYR1Kd7I}M&=0%@YU?M7eh%`l#c&UN{r&k9Cy0!ckKKh-3Cp0pX-;Rz z?;6ax!lXd1rglIYGBcc+PCjiLl?Diu_{W}QPykneBjQ+?77-R9scufj)O#0E(B0vI~->dtm77Vi+igm%gsN^0^a73zrlFOiOf zQ(S}Yy(2GbdH$ML+$7SfrT7cZC{A1&QoO*Rc9w9+QU>&t%SfQz$}iWzb=H+tVzZ|7 zz#V()M_a6UAln7R)C z3As@%bCIZ$3WtFX;tCC^&&^?2rLt)Gowl%JhXXi)7FYz(iv{U#KY&RCqE1ESL;%$N z89_=B3%(_0IJwnzGxM`Q+>8wDdtMh)>$k9McoJp9&Oa&rBf(dQ{2kw2e~C&lG8pDL&={X)yDno{`5PsZnshnbpu zl4u7lKkQo*Ys!o=ZT(FYX;oL<7k^RR@-8)4mNk7?nI=?RGJI2guO;-)>&{x%z-ma+)LyPgy9gQ$9>Z8p}~AQf{h*C zgQ%U&%#gs-tC%z2d!L3S1-rQ;_wqLo+FS{lbJkNrV-FshzdV{0cOA)goD601?P+?} z^YeROfDb*NX1UAP+Rqp!GfM!F4fehV9*;V)(7@3lvo&#d8K8k8Z#M67D8+su%CnVs z#P&@gv0`I#(D|dcxzU^JbKhqyLNPx) zmFDXp$f3hb^Eut0{8OHtYgb9L1is9bG_}vxWvrQLzPO{*DJoP7geeL(v+Hta>l=KO zXQio6DXk=!w10YEX*cGyyR+O{8xnPTb@epXAjHnPu{-~8tu=(&N$`FSfDuGh97BL85*RspC^UyH>5XvbT%LbZ~QN zw|Ce$;sX#SWHRH%0}5|@evHJW;2h8AJ8phuWA&XT<(-}!YB(&T$wLE-l>5T-JJ^B%9UI1D|xrm%y4fXofK*2*iK`^ z<#&8{GQZ7!{j1byr;PTj?I*DpqWsTMS9ya|Qq)VqR@M0v4gD=lzommOfa+)ejGR>-S z^K+&&ua*Ocv`0bhON*-ymmjWl6sok!4_5jGEe=1euUH=G8}XXIUNqw6)>=`ibX&Cj zc1D6fb^2OjK+9L*_FYriiDuihZabMV9UH1M!hjpE&yC!XIqfv|A;bB1M0=%M%L!B2 zO}@o`hpgqZFJ3dAi_ZV_Nq{sbwW_a4f;7`ZxcJ@0%3oH7Chof~uXfdVqa$|){V5{A zkL2as9fxQ+e3gRuqTGyjE%i%^n&7vi%e;)suxl5u z6HDx@qYVtz3-7wL>HIV9lFJUu;baE9;qdbuSazD|O&?>4MZPC{zxFHV7i|kmBJVa( z$;Zy+y--R2m~416BRb8sUR~51pO-T`Q&qB;otSv-OACc*#ciL*Z2lgdO^MEhnZwJS zqFz=%;cJ!CpUoyST|(EL1U$2TUQQHpvsyoDl-GGg|JxuEvYqe2L|0zgoS(*|XLUZo z`CLia#o||b5*?hTEof=(hRH5?y700I65`39R!_-;|B(^rvhxiLL^Cb~ z4I>_s@={wJ4_5keqp69{*R6rH+Q}x&u^!od8sL`ojFOv`(Nba=+@Grue;ULZkEf1? z+J(R~58*u}pxd^2DzxBv6uFVTzdKH5u4PN;C;MthdjKRtIpeg>yVo7)|BIrtAl+J} zXsuA?3DI0=va5cL%&+wibh{28*yaNCe$+i?>+$BQl5G|CG=G_kC4HP&|K-8xti=zu z26~!g@;QOcDo5`e$^=9GZ%I*7G6E`8F9dG0wI;78ca%vEIaw1Atys#qTrdt__c~q` zN33O&BeFNnVrtU;RjaJ>&CkqIkb?1h5lD6QKVGK?35+TlQ;DH_6$Xrk!8 z&8T_RRbC2KM_R%37hi4fAnd`Bf}3y-U%e2#;6Uno^h0IFSY7K;|MhH2m70DZiP>{n z&;92%;$3G4WTdPX=vdEMy`5IkPmDgD#d8IJa#OUl@U=peeq({qP_dBd)I;O%N~^Rx zrB{X$D;r0gi|$gc8csDWCP)+XN?$bjsOpD)X?rwgDTU(046!K3C|G3SrG1J6FD7 z#7@BmUa-HQmf0noN2K=4aBcscR|DB3BMK>JL8?)|0-}Q|xQ#uFx>{~baRVuYQY6zg zzOn}AJ~uGifbBEp0fnA^{AhOGw9}`~vqsy6;$6gfAN=GQ={<^vXZ<_~-*+!Pbn56= z5z&gHwE2FXj$0@Rouj|dSNbA@!$2P>w@JH2J?C?~gq@4zi;5gyD=|GP{&IQsmdTWd zk_<{ep|5d-YWQodt6y@(!k}wHe((9KncNgK`cvQs|5^@c|3~lSF^4^W#9!%0zbM z1JWMcZ-^=mvCqKTddhDnC5R^5`Cu3gAP9l+oanQrZ2tnUteG-9M90!#PEOJ1vIK9JIM*DJTwUY5buSYWdmBhl@z#G;F<(~X z{ds|AvE+vomB;?$D(4*U?DmNQTsRpzGqI!Io55x^po4rV``=fK=Oej19c zUzkT|Q-F~yY5MXgBafsft6LK-g9l6r!uSB@O<@r1B|Ya!PpU6~a%#oL_bt>%JJy$| zwt!nOg521EboVkyDK%jA7l=nkfXxu_^6;8X$#1~hS;Z~Nr8kR-`@Y*3csa`%%{Z_t zaE6Lq%4t|^Rx>ZhXx#-20WJ3R{rUvl5W*Cgt52;|AWg-lj$%0ZI9cxO9v|1}ZC)VP z>bb}tgGP8?4O~*zOu(ep@z)myl1T@@wsCDUZ~c0VF!TBYeUbDjrBQw3EXpdw{^Q;I zKf0>0qz`#Dt~n@Z7~h~|iZ`~&xzaQ94TB9_JCx6R*W|~{%$rnyThA{?NefJ5werW_ zj2IQa6fV>cj9T~bNY~7vl1`{*O4pp-Ht6xbuvq(Xa?pN1jp4fJ>`MkoHHyMoq#d|m zlCu~KOF`Dde&k2XAuX5;#pb@>b3|HPF9}QH<a zM(Xl&d32~)^$)Qbx?PN`4Sc1Jel>U8k2?3G1c_a#gbjQI0jwdpraX+dml!zvPO!{V zN$q==3;UuF`Kg;>WEC&~zi3^adiy}!o!YVye?fPgKu&@-{9d<)oB;&t$(S5gG|O{H6(*KOXvt5s~`-F~K1xUiClG>xpra9(Meu}Yxi zJ>$TyGGc9oKc&M*MTE)(NHgmc9^KWFX~?k&)b7N``7J(>>O5_DF?eHstYc@x!P)tt zXVHj{G&+@R-0&MVjo@4Qz`xUZsJnK>tIpfZ)vwdFcci=D*RG!jF)X|Mw0B9vO91EIJdJj-d3AxTJQP)Ubt*uK-b;~_7v1A`*GPX@>ZC@3Hvdl?*@T+|<9&OwBO+zqre(rUIUyEYX{tbTln#geo;(-MtcO()m^wcToXHmQFd@^U(f zDHo_F=itR|8o}1*MdqRHGWKsv0tU}yh$tG_B zNrXATBn6ZC&i%ybJ5NgLR7=E6JPoGSZ{ZC(4=UnHR6=s{p&rnONlG>eO_FaQp&IY_ zEGc_1PlY-T?M=urEWslbAlU^Ld|V&l^5c4aqGe+l>24y(Y~%wYpoEotxB_qSt>4JU!oT<$I+8yIm}I$F+G_0<6pQquIuaq zo#>$P?H)JO!SeiA(8$uVo?(fcXl8j9qq3bE}qu^lm<}582 z8CM8~aL5g1cA_IIgp}6eijLR@xYcaA;o{NFsGEm~ohHNI(aYj9PAO8fHj6%;;Mc*O z9f{tg3ZhxNaZZe!QVgTTzTgZ|ZT`I+pJ>;je#h056Msns#8&<=2Z#Qo{qedt^VC+m zKWZ06cEMs`WpRQn@Yys*+4N#0OM=)8XRFFGa*ad?6C6ae&qYO7h7^up7)2{LDA!fv z&1cGpMv!Rxx9q)ZMy)(fcaKOBOx%QN?obfl*ZFpl)p_RK&+W+AKTXxBe4saQjM8JY z3MeS7`Jk@_H$(@Ic73Y{0u7s;(7>E{{9Ea259da+`K_J1hO3+#x2T1xyeenE=^MEOR_uOEp9biP&A-EY#gi>)&Ha~~ zwudLhmWIrMv+1aDi=?k*dT1-u|?%1A85rVSIGgg;s zZY%K+0+0U~aCl7L#gS7^kW-)hb+R<3`VF`la-48K?A&_V9w3d1x}Y{5Z&?=)GfFze5L3!|QRFMx!J73eTDZ?agR6KmTJW3zQ7% zWCI;x8CqW@aM)&DOy^S?pA5fO#T@si;5zuI-k-hh3*-j>lu4`ye`vVwnU=P720RZ} ziHIGk6NFb5W3g~O{C)I6p=bDQ#%Us)DJ`z)F2#MmD+saoDv}@aT*neRG%a#*{@!2S zZU44O(=Gr2PZ-(JI@S1cGa$R8S3d_N2r<7Ya9cCAI{F6JuiVru#l*cWe;+4b^}esQ z_KQ}T@OTG%h)1BNG`7a}G8j_Mm3Ylz2ztxdv{RijI@^Zc-cg-AX^w!|7iKzZIaajX z8+7>iu~1_rvQQ=0!a}<1S|yz+rD-|XA9H<#o&Ite+BEVT1-9s(ovh6UBiRK1f<}4v zCp;4bAr#SLL+dW$+G#HSfUxUTj_x#wH{9RJ&C{dBgT~s<@xarBMSlX+uU#i_n z>>5qUd4@hg$+IZ;a^cRInHr)gOWZyxsU+rFIJtWIW4<6d6s4;`T|R-0Xe|`074j8f z;>7wrhzTrk01ikMsebP|vzFIXv`$@XTTy82YeBn8IM7x+WPz&yK)$X>NU1 zriiRSEvWhy^XW{J68I?7mtWt=L+~7j=xCE9EM_YZE#}VoEsHc_S907BV&X4ZycaO0 zc$SG=sH9KX_n!#PJ;Nd-iG+9Y8ge!8ZCZbwwKTc@@OhvsC0~&9$y7sc~Cysrq@v(yR1}?-jwo zIBT7a6^Pop~cnWYgYBi3Oe+HcO%y+NP~u zgM}&TXNZfbUkA#*t*lX8u`G)H9Irs>U?r>{ABIe$z4PG>^dytHQ@rY!cPmw zqKd;>`IhIy2!S?NG6xawCTe177{V|5Xwbt^Q}cS|h^(C*z@)bwk+kWEPtecX|A=&w zPgCRbU5{e$Q;5$n_3mZj>fF_Uqig$;SDxzSG1wuFosV_)4!E7>x~GuP<-Bbh{9o$Ch1Q)?IWtCOz$oZ;4k&N}Aiw#X61 zz$=}O1MMbWKdgmcZ&nR{1(Nw|5zr4(7R(8~O@DUlawrI!dTzjal}zdXXb{_=TXrcU zjqxlA?)Yu$$*)MGX`K|wf4MmS*5XZKjm1+ZJh!(G7BOz(xO|c&6p8f;8$O40H@eQP z{0uupXr^m;)J8~ee3%dA@YpV&@8K~`C}bb_aEHofE1vN6H(x|o7m{Jc8@Hg?XkN%J zgdrFq%eW0%a^~$~gPSv@M0J)S`8+q+wK}4Yo#y?9X7n&XCxfinMzfa0rbNybtf_0U59c)?dLxfFekDDlCA#Qk1haL@Ss zG+KTkYy6mPsudCq6c&MIpv#YaONM=4kZiF6Aux`0{Ui4T70IqPC|GDBS!2}XY+%>s z?HeLhcQFA#Dn#Jh&-ql(CF|dO07U`*7_!6qiAl9sZO@_`ztsi3izTY4lJoP0ZU<#N z+Rf{sFe$IRW5ABRA>c6dk;1gnTg>4zR{2z1AW2EWt!LU|!!_4u z(dBTH6ZHd?t0UWmHXfxOG@guJbxS&3y|pteyh*=e0HdWYKgG@1G<`CkdWF+NcvY2s za{bOKDTvmMRgGjVAql0Bma;Q!lbS0cRSWk}rxmIM7gXMki5(yJK1%tCQ)zfmEqU=P zKr`PzpcIQZvbuYnw1&}=l|!>U(lMIN5*L(^m^j!`!`MZ9S*NN&SNnt7mwYJ00cyMuoB&0TgFdYKjgY9Mi~R2IJe)tlapeNc`p zdS0r4;OeklNLlhOV!6X)aJ>4SDm_;?0WVrdxU&y*=$~U6SusfL21rX*-eiHVxJ`!X zj8@Q&?(mzA&KSOjuimqUi}^LwBCW=Y$J9$DYHHmkn^^E-zBE3$^OQ18>9{HKQ7~Z(^oxA02)8b>79a{~VzPl& z119X`1~D5^%S3F5?a`VCciw;!kfXYXX+e4>=0cN5y+6=bu|m_-O26$Q6z*x`dc)HY zm8aj)fm1ga$6~@9z~1Gj#pUyS9_r#Es~4G-QJg4h(UUDFhrt+c8MN-dI7~w1*(4p} z#S{JWpjSHd?i46bou6NuQK|tiaewij-oR#fB^HQ45ko36>32Hv-as7V@~X}viy`{$ zT|)WEdiu?`3CG5?cY^CB63P|m8Dd&>c_Xf`Z=9dV+b%c!2=Dw%9MO-nug-3o8XeGu z)GA?Zw;NP%cY+-Dw|HCr(K95trcN8^2v)Yo@%iEI@O1+8yzGgdL=S+ga6Ko@p*k+Z zKIkO4;&+qHNob47CBjZ2uIXSieTv3ox5&Z%%X%B}$vC2vmvCl2k9PCe z#qkhb?d)oYA<&Ksn)Hy?&Hid8F;msV^iNS+FU=`FRGnepqluO z5SzzTXBxT2wZzuQVx!5E87tt<{)nw@qpE)YBO#xhcZfJkud^!i zqGtkXx1WRcX6Ey&QIOU9_`!rK9Yqer9yA;S;vWm4LxG}8BkKj9hE$4#SzUYv_H)Ra~bA}1yN ziB3$#O@&)|#))jx?gMoQ$Vxx!4T~+L?0Pao_FX>R6E2Q$C;kB@GtWi3e06cjttIKzNoDS_t80hvUy73w1T&P=dJZp;(dM#; zfj+4*Qh3T}f?x2SaoR!9$=^2fB{-9B(!C`wV8l5nz0%iT7o?$1H>glqov_#Me#oI3 zh~z!C645;TF|;Fr;Q+DxIj}VMf61rxtsVM4NGgnM{&%(mz7%w#2=T_#pZnj?;v5{_ z>u3CDs%acdHM@hURuD#u0h2)5=PQ8CR05JU2HK{_Y6ayi3|xn~#|&{d5X-V(fKrGr zeY#4~e+3@Vw>{_X0U`Mqmqwyg^}E;86T z5PkwA$Vxw<@O$eiLcb3y!G=$oI9#)pBH{`$}FU1x~teBl!_b}85w-k%=zE3d!9bOCAT z^aML+yFf!HwkQAK84gG`ZHSkhM9?s#d4jtB-F+g&TD|buvu31SvG}>n_D1&uLxugH zx=*B>A8#xUbqCY^w36QYWoz0a$i<(968JJ-k57?ef3RJKBddn1) zhNey#2LGRj6B&ZwLhzmBU%Y3=e&F`dkHpy~o*2=lh6i8ZPNe!Tn_@*Iq%1$z(jHgc zpvyw_`0)X^JcdXR$anVdckGG}=IsB#9RDr#`VVUGFRO(`1fZ<_$7-PhzREutF4d1j zeEHtbx$s~5K5Z@Jf%uJBIAEUKyZfB??~pb;fM+s!B|jpFaGKgk;G0UV;^T%?gL7x> z3m*N~FF@wl(81Wh@;zV;w#g#j?9w)1b+8DKi-N?0e{rp@EH{$2YoP3mCN?ML$1 zd?^y|g~3KNnVHxAck-4XR-Fcg(Z3Gd21=1c3@7H>(`3nF3pK!&8C%*hNHnkFVAyvbKgFLf;4xxkT9YbWF4}b45RqA7CL;Vu~5(% zC2vyuFOviLw&26aOnygl=KO65IxK?9k=N#H{Oj)tQ|tj&R|Za!H?Q0t(E2+xYMBjx z_Q(IE0Bg~z+&%%`y~)WGub6-Deq0y>WMBp!2^VQXs!YM;RqMYK%2FTsUd9Bkh=VC# zhOGakRgGIKhteMvm2~_kp{>*ye*Obz0P@d2DQVuwoBsMwLYoPEHSkE8bpf##k!${x z^V2~A@={8UctU_BO5O2c+W^1#3Yh66V5z6Tq<76&U<3L#z{d74@$4`xPM zrV0Prjt>4lyzqJwWb6IM(_|2t%-;WanjmPo-W59M7s%S!pt%xuuqgk|;LLPnNOVii zU?CXq$bW+I7@-6!zaCI-c%Xngf{fz3Q+&nIaKiK%oczxT13M`Hdhx-y|Nnc)A3tq} z26X=Fv|~Y0W$8=v*HWtV26SzBP?O4)xpfsn485xamKPcLl^ z4B|F`xJs-}w<0H%Gw?-t)l#hHi(Us(;r* zMh|s3Xak)QlQ?$Y`K-i@jEoQy{bvkn|3ZyFW!bO-F)v{b5$7}%}>y~5anCH4QBf`K#-^fjQulw;Ki)wiN?E& z=24pe{EdDIewqW;*D{cR)Ar#GWu+TAYvNdB(~Vt^D0?kD6wE8w7GF2$sz11RO$KVk zB_K3ZK!dD39YM-OuVJL>VKIGFAaMw0Fp5P2<4d6z_VKx9n#0%Ew>PPYol4tz5xaz8 zfX^l_*w9JDxz&ii-O2{V$;%hgF#5-y!j{u=*rv=&c_PpFhGEWshCUHl>)XU&c(`r- z<&>N{6G6|=7L&ek_4(vzxAgR3KXC9~+N}TcW`COVj~y;pfO{6U=*uE~Q z@^c_-ECML}7gQQXaG7*i3Ifo`dAP(X5JaQ9*AVp8VQGjJVdcZrTWFKgs0T>$qU`_x zF#kG!ZXi2yioy>_Hayc3;<^jvHL?y6z?M}(Pkv{f#}8`5B2YaCvRb*^L0kpoNqb=$ zPF#osAmmnMBMEEBS1I73?84~m`*l41qWlY9>~NjWy8nFY_};g(;Z&EZ5rPOwMAp~x z3e{+iN=OnO1v`oqG1BIahCTq-9T5*MjdbkiO5hef6$XCn#d%H-)W*VqpcRhuSN(d| zIVsHJBjv(CIj{Qx`6d+!6TV_ipZ*@1U8zq=08-n27O_=tu~ zqG!)80Gj1swS&kd{Xg$6S7l5dW8`$8F6Lhw7LysO@w6T1Sa`^J7vPnyx8R=?^Z|ar z2`qHvt9s$e`rT8#H!NMwZ>KiDpkN>88JS7D{1s?9LcSU&mfUVkFMTfCm(-6iVp~Cd}*8Od0P4u7+HjO%<)*`^0>D!M4y&EBgy4^tSUf9-nC+ycQG?6yWi7 z55k8kJ320N*2XOUL}(t+79R4$B4DjW?v`V0j}}7H;k5k;{a^0@KL~ocmT_C~ZKS_T zTl;%v4`+|aI_U9K0%SM}?8ud3L678e=g~pX)=*Dh3iR-G=Xm@yVEk=>^?MJY4Aqg& zxd@NN4qd&gSEqK>uGtF?$?xZ;Lz>C^4zte`(;p;1y$$d~8j{Z6Kjk0>YQ@A>6oqep=QJ}S=iEE7f#CXaxYPFRk{+THv}>^U47k+q|C$%c;3O5J>VD>f} zhEOf_AMQdivv(*(N}fi^cD#Eu-wv78kIg~Lf>=y{2KTgMUuUzJSWuY;@5g|B6~vBu zcaRncFkFQ4nvV7LjK%wxe&dL>KScr2xMgK6a|ztJa0=)rv`37dK@5CK0Z?|vO?*dPx9H9AD zM5c_u9`(P`*Mhd*abl|@5*rT*&AGGRTRgEuTB<`eA^61U;o?7D01o&{aAp#>iei{J zGS}}dr_yPa)^7gN?`1Tw*Sh8ZFe;vMXb>H_cXO3Qj2%>~q@Am~cEkb1_usS9Yyv%( z5F;GOiQ0mfxXxXZy{lBM+`z3JwT{kHRBz#?#ZAcrPFCd;^IjbP4d(|G{s>3X3Cd^7 z;6}B_eaTOh5P!yA-;F|`;Wlqc>dHqzLTe2ugBwsmze|D;mK#7udEOCHpsj%lhM!)w z;`8g7Vy5k3>AnjnuR9N`e|^#`BxPsbr&gfT#5CTrSWNIq)El8M({N`}URCH@nkzJzUh1JuG6E_SHuK4w8Vh z73lPSN5c>5}gtcjKH*Bv?5s^wMjDH^S)Tme74TE2h(t#6;Je&aU~UqFK9c0 z8(P+#gXJKq>B#-WGh4~WW zD5ljjg3rWLHEf2>tm$1NILF+~6zqoMA$cL*q2T2=15~j|MEC9E)1DEA44ZQDtp2WGjPw7Z z5@4~9AU>2W&AXTKg^IpCYl~Y746)J`YD==pw#|x`1N%dD;Pb z21kt4QhJ*g4b9v`H=kc`ilVs@9}EN^SqtH4h2PbrN_BjNwA`J^C9U&30Y^waSbnIH zBBLffVU&W7Lyc6z z+Zk>uu4xuJV3&}Jl*p5M)TVeNJCrhcrZ^i4Yn2)tfzz7YW`OLqG2*K|vMk?3@O;1e zL=-8kHpO_!@$Ocs$F5<^n&ysdDZidS%Yv4BML0%cfyQMw#ED)|{MZ~$?`YQfyIJ-( zOzW@nNAOuomJLcf_gasSJuv}o0SsX5SwFYwvO;__A*dIpJCE+$Da2N(Ob`nLG;Y2lGUf^OKk{&wZR?V+5k;gw^ zV4n9JwMqTM+dqTu9s?o7owKD(hZj?-0(FGbvF|fKbtm{`YV-9DYQ|E=7ccY8ezD5( zo&BtzhsZ@)5HbyM^OZPVOgf8wX45mt_u~9fbBg_BuBvOUSQosS)gvt11u}8$k!<{( zFKP{xye?<~e4-_eA6-pw;wooJ#|WOT6G;vs%@?C(ON*zPllc7M#A)uXY@bBB;M|^X zG{1%7X%lCvtgb(1y~Kb8T@nDl_cA7;eGNiA+ut=SW5>>+4tYVqTN5ks3&zT@brzy@ zRH(W^YxEKNpX!CyGvpLLDcKYJ9R2P>^vmj7lam)TbG9mp6!4;W5zCnlA&PV|PSqDR zIG#fGtSPZNQ|2l#{lxWv?Vqnc$M8wcA2?aXnM;oT=nZrgxa1TGN$a7x%NM9OT=Uy7W4E2)0(z2kXY?N+5O zNyFi26`_!bnct1Jv^*697OY4UQmH zL-37L+RMi)W~#>rf2amXJTOdw|9a*Td}ri|8x%}DgnqTVz_$X2nqrLTouR`Ve7MAB zRt`ROr&hl}6c)v)ZgSd({qTLvhwE1#UouxJmTV@JHjF+9=XcU?(1i+F@Mz>a!pr&j02W}$^ku|!Ms^5J<*HXSW6kaJ}2p7m5Cebx%0Bl`y=NqO1{6Gu&M+*OgQzaxcB z$v8D<0Krfacn$v-N_aYsySNZc@oT$T9L40eC;UFYiDr34#()NtG0q;XIgO52uw?xG z5Jr7Ao5OU{ONodiQ+-%Lk##!(N)VZqv}Vb~Haxcc$n?k*%ezII7p8_8GDq)!l)GQ& zfRhh#3xu<&0Hw8Rz=V4&>z&{2^PZCuXGGg2W<+@VpguQrzuf}B8dIx;j1CI7=$UhP zQlo0swF&g5g#5by*wYy4gxxIA%G?9|r(YXWw(Ad3QXD}W2$`8gU_$A>4*s_m8F8Kk{n7NDEu z1+qPsP}qiRISCA|ArE=tnI~(>ypOs<&esCsi5Rs^Vulh+HflBH#wm!M?^2e@8iFPs z?YTgG1EBQQ*qyfERliJoRM0_?SWEpTrkG5rj5b?1Hq;Fd+di2>6KZncP^#LEkk6Dd z53;wdiE#OgU+&>^l_#6*ShL8j#RxXDYpv^84A)||$d>nCa zWZGn|tRZf*Azqn;(EN~si*Dl!Gz{uPJFv~?z3tgpmEt0T3`L35LL_65h;xo`NcU?HK?X2is(VO~ zXz~;e8F-)&y@{8{kHg)Uef>V!MBYo!MIx^#?s&7mdBPumDb5b8w9x3#k4r@1vmjw;n*tgolak|~g6 zX1+`Scb8-(m(+Zg@Tb(~ z=eU2d6Bw#@bCI$+cj@UglbmQFv37OWQ!#OTE~>lfmDRBZ-FjIpnIS1wM{06|B4T^LWMNO25_DbM$YhO}#WxWMH$ks`Vh@a;|UPmm%zVL4lMM>k|Ot2r@ zn7Zu6!J!5=gpa!yLz5U_c5E{JIK5g4IchC;v=bB+l`ebyVMg4y4toaO|EB&>^qese zgdXJ-c4!!4nurB)SJvJL{crwhN{(U$v1XKnOj~(>{^gsd1D{e1%w-)v7hF$YEF{(% zxWcYRgq0CJ)er|pZ(UZTPdrS(cd|S+yDQQ3%X^P6f>keyh;`m~Q3_l`b>yA65`amr zpP5yl?tF4(CuSfrJ8nnL1xE=-^h>M!B-k9(c;bZ!%Ik!t21g!siZHCa`RiL7R!asO zycd(JW3Jrq3Ba9l0>nkKiD)W7sk#D26PrjdYa-kt8@m*EVWu8M1A(fB$wtML9Pa98 zZkV097TM63CBMSRy}ryD`!;R5cF0@P6f~8Rd_F3{fE4TecKh2euo`Q{ z7Sjzp3}Yma@tol5IZQdEp?jC_+VI7aWNGM139NELF!p5Tsm zT>FTjiQ?ns@YT8hUC^QF4;1m*PWl6d6cai!5cs`$SFV+Kyq1Mn?=AH4_x9Oc=eB5a zywh@*uX6pbCi$~kBAm3oiT>xS1r`z?^N(s)cBo9V<2_F2T2WD&pt6A_w2Q=AwrghwjQAEA0^l>Qj~ehAUK>}~f$=~Nq!V>Sh6Jl0qf z|1e?h;Kn8;kG|CK@TD<$^-@&krSMy>V?!~~FSsYZL#0%Sz)FY}<-2LoShP2p%Kgw^ zrDJRp;dPhP#ZV9Ee9oi+1z?QzL8?Uvjadql7D|gvm8wM9XISY^9(D44cF;zS-E~o^ ziIv}7I=zzBw#rR90&V7rHyMNwqMZ{GzfVz&JqnpWL}PUXt(6*G#kI*W5>a)`S+NsL zDC06O8dy=YfG#3V*;UZ$a?#7O(Qk(^cnMxWn(;rqN`7c{lZkyt3Ma_sc#y&q2WFqhHr>0x(aR{m>Z}>)|2qiOs0G@w($P|204dD@~4{&b~ z*E)IC8`;+78WcB>)R+{hY>iP)IAjM*4^m?;QdEa;=6_P*kWSFrZxFDJEZs{)xF-iG@$wlO!-zeIuPR5E*ulT#uGbwVE%XQ6Dxf}?8j2qtHV$s)`t5J5 zoTZWCRD(1STgSfqL?P(yW+D2%3OA26VkWaI%CdH7xn?dsYvkrCj_485m6QgIFOg36 z#rbn}AyUAH(WfwG#%RUA-#V13TGL>Xj%y^#xn!gq(LG^c>O8A32Rgv|ufQ~sRJx8% z*y0IQaH{5`*%4*7pvEao98sl`On*i$1pxt1u`QV5cEktD%J6O@eYyuuCYDm*%hPH; zv9}+gwe&HkZo!!f)3oV_aN_2p0?!hx$)eQ)nXO<$$(@W9_}|C&_X1Sbh5%FdEe_3V zM(_1DX>NQsYE3kgeiLP$7WQd}O1h@z9?{%n{IsQR6lIYu{y1rxzb0QMy(p7|=r0qh z43zeOh?d^K^*OZUJDCgnminG8ra8O&CKc5U`KHd-F#(&UdtLj&RV4|6ocDp%rcr>Z zX;^u^BF`E6pr3q0lEd-`I4B2^rPS+|eMLIP6tI6i6W5f&5iv~0(mHwbde@wvT5ckJ z(r(3@g}$J!cbZ?r4Rn*@$?;^^-lHhm9@OI3*Hxq}<&49qcD@kiS=bv| zC04!LPbQTt@a?oO6O&n&CjaVrshrgUq|4Z#o68kLztXQGy{WUlyuU$T!%0b>D1u}` za*`EPeZKi*`_=Wmwu(@fyCg>>Ca#`|peqUfBCp6>mvsx=B{EFOyV;dw9_5CmS~Vyq zHbTvQig;LsgFAhXtBQ#xRxHqr-YgpRP+2DKF_^BY!3 zD-m>(|KK)Y<`Cm6+pEPJ1b>zFPtC;XJEV;Nhq1Sein8s)erM=VKuPJ6PL&=~5Tu4i z8bzhM1_2pBL_rA=L|O#tl+F<(Rk|bx0qO4E=jHP}@BXy+dOzGBxRHw z!gkEXlqNL*J$dhWV>-c(1niIt1c=c<0+}aSaf7{1gh;mc6hXc_Q!V@_r|eSs1t26f z2*2jual?+x#~HRd?bVXm{4}^%{)4T^c;qoA|LL3Z$(1g-LQ6|u!qD-e#T`j+Z*8p& zxGi}KT1(-}LSL6`=^1}O<~=~1(is-;v;MfSV_f;;+@K7T|KZ|M{BFC+!X9zYX`S*Ie!zy>bC;bVWbP(NAq{$#IkV^I={}Yk`HxEfXvTjPZaKlMAZ|pk2?!(-tO2A ztOGl*-;hi>=xf_%@0UYp#WDVG#nDB8yhAB@ckIqZA_#P<*naF8cvbC%t?HK3p8zGl zS;cQYi1cKLH3=)I0j4Z+<9~t%`jp1Ns|vnh7v%#2=#n99e^+uKb$A zRpHmU{qilT@Q^>w;MQ5t`3v?A^!(S!Sy)N;W74@SFq9`SXGrrK#PnTy-iQpbrEqzZ zE=={Id|xmzT|2+Sd({hJR(3ZI2k>5auTmps{(5^TlAdj~=Io0I?;+EoUiWI*^ ztqvD_Xnv_A6n}KSy@`t&w+_7;aD+g>J~EQsyF8wpy&unWh0XFAWU^?JSHZP=#At7u z$zpgG9D0b0<(}@$QQ>Jm3ebNGPut?;T;po@Mgg6e}xck)<|^_XO z$u&LZt*u*!teKN;$TU%#m(a$ESz!vS@5)ZS?Vj|e$)2|!DD!ter35R9ejvH|Ec#T5 z7@45V%)Y-&07Kt5K_IpgA3j2?h=~HeMUW>aBZH-8fdfioyOr}Klyg2lf}EJ9o0Db* z0QuGd?(IO{j_BIU90PZEcgZZ>52y=Gzy`pjX<`2o_fN_Em`Q$R3AbIJ1|_|16T>~Z z9cA*-T_{adQ}33Mf>P7oJNtRgQy|_wm((YJ_!~tpf6eXwQyHUdr-t^U0E%kbqOI{| z5b$!9QL@x>{cT7N1&!yQ@2{EZZxL&DHpMUZ4Eis%lLw7cd$q>7skDDMJldXXoDP`Y z_V_b-v=z+H_qplxNWk-ab}FocW}5bwJ$Q@cHLbV^;U9^94}8fYg{ttl{8NuWu}T=% z8O6~GIQcR7wPg@`V>x2?ocMA z(S$Sqm@5f?=KPFo{+lej#^dDe7%0E;DWs*iJQoGx_)7}&s^vba^P&g0M%6o-?c?<= zs~aYHh2||(f2>wTEmUnTD$P`SYr$x)y=`r5;MQYA?VRFp{(0bZ!}?@+&R!~DN5tWy zs)4t6b|{iG;ag6gO;JEqC{j=y7@7~NTGEnDT>49RITPaZF0&OpsIbpTz5cXq3NSZ3 zk&E}IAjfvd!!V3wu@P#^it5+?a(u1=l6ZP@#_-MIr6wm62&o$jV%_3IEgMi}K_1~T zcBn<{`OxG6u!x*6aI>w!?rjq|S+gf~c`DW1l;*l%Y%DPg2J(fC&y_i~)N0@ZtJmr( zWZ@xWT)Z8vYUz2o4S;Mv`;C78n^NvUOc>dAUPH5w>!7*FRF-GW#|H*VqGL@wf;ZuG zT_);wt}V}gyeojkrN8iE50GjfJOGQ+k3nMsH^gp>cH;2`&Fo@qJTFsO);TQk6_9_q zYA$*}(?MUG|GC2<(3?89DnG)5|D$9#U%Tw`RzD|U>iDyz_oGcEq$R3C+=MX*r+nfx z51dyK-*S({YjznQn9@8d8Go3I+M374)lU}<_{rD$Wq1GXSzZ3XQuxTH*5uT=$Zh?+ zu=Mn0LL4`isibh4TNR#Zv7I4E&P{&f)_0==1(`#~0V$ARAa?<`y{IB;zl&AyWESc* zf}SkEDF&Y>Sl`tLCNfU8cXh>)(6o5M(>jAG_meUMU*K?bkUu<8l1nzQ^R24_WX;BV zLdh7)AOVWciIaxkWw^|3J;9{cGa9|}PiS}Nzp|6%Nu1!Eli-|Fiwkp)EUv*;xzv)J zb|-%XiamVJ>SBjB{j^$i^^*Xa(sD>S1SWlLBi)W9?-7u1vAkYU|4@SJK^pCBGbI>b zyj}1XC_iI%G;;};6DqeXBQ0BONMwBPwbvm=5Y1IRA4nxV3<4rr(b{Y!ab}0pNOvsp z(s$8#GIe;mI#WQ>agpK0&gXbxFK^$8;RuPNBI*jyey4!c_xy1uEe91DcAe)i+w9D^IL@zz-b;MkX2_z1=JcSmgnNj6-Hv2W{MEBir; z0rH|s2xAFI0SkAlx9>21Y9ne?xZpvsq1ZJ>M8HEz|HVo_Jr#`c<)FAp`C8za{lpOb zGmk<^7n_$?f*R(Aw*P9f;E(FLY7XS707)MK5?VDK`VfY|IAO>$uKB}sfm)J`V}L%V z|FNvja{*=^GmEtLYe`)lnrWR7_VOYxfW2g^{*Iw0mbaEecRd5S@Ta!wXqQ{ic4v@G z`s2dk%4R}iN{+t954Oq&mc^bv9wNLF^rpfjX_Ix~N^mtn*V{T>3+|=_87(I}htKQH z2&HT1(ArTUrj?#Fd8Tz^d^wj`r3IKDU*kUL_VwFK0JN3^|4D1I%;6AtUfEsfqDBp$5~UudtHbb5GVu$< zBI@t1q;FJ`B8un`+d7;&A++R7*IZtmY5$h?8yOmvVLR&j{WFWnQVo^VrpjvnMjX_l z52;>zU_!J19XO`f`5;~S*1jXZ-=eG0*t6h;lK$Zx=@NS>K_=^-UUv{EVCkjdyRCwy zq+FU+S&|(I))Np-Ky$shDU3)J!B7fUUtKa-NZ2s6!1wa_LE_7}Wk2ggnEt$cXF0O4 zZuqHD#jiZ0$yyft&MXCWz8E6JHu?g*kX+_r|L-$6E831vd17H;@EF*$A9g>x8XFYR zp#S}n%V!zHb^S~4kV=h+jMRTHyXQbJF94~VE<+#91RiRYwA(&(k2+ z`{mBI?ryFReYHhS0Lw!mkS*~JY5{804HB_`F`9i&(8rs+cS9GrUL(FyhW>nU?b8^H z87145qz!LK>tnuq`B;Iw`!8G{kp>8`WI#fdN{H0V_!2>kxarP0DP|<@8XB>NBVq0tIQO9kZH9mCVb7`kM_)=e-V+>!hYyLJNZL<4 zu=5gxTNRUoT~oG1mBtI0IKvt@|BZ!~jRy-U%R=+hUIjePuET+3r9Ng%v)B(CcNGl< z^)-U!0WsoW(zEwB&@I_qwIRa~4?PPoC;U1HNlPdHqw4=pX5Rm&zVstm+R_Z*WUhmx zixNo6bT>;b@Ptl^o9J{GnAm>#hNeBhtC@38^G zy?~X|{^Gue$8~+-jF%}{Rzc^LuB7YPS0UOGXc}&sDmw)NLvRx#A}F^6_*aR{M;>hI#x+vEQ{v4|?^t%8_nk7qj&Rdj_bHjFf6$rdJZW_UV|M%y|xx1Eg zej|Ir-Cs7$Nb|d>da&u^84?d&MOb%xsJZpe)GiQoYeW#m16k#HUQ}! zufBI@ou83jEwov31O57`&ZV-YB*27dk=qmO(^nM=2$#L5ne=FNnCzBdO7(XO z+P};gq0#__gb4ztmN{O6w8_)_w#Y(VEIzq*;*jl5T9;^s zDhS$ehNfMMZ|OucwYQX?BO9z=4Ztxq09#QAurg)b)o@x&2qZ5Ge}Rjj;Kl7zP=;9( zQG}kgDgPk4Cj*2k!WsBmxC#(6OCrx=_H!`I6t!O3N(Kd845|O@DLbrB(Vu4|$VvsW z8s>q%1Y%0AG0^w?nF#qnLxGEi2f!=ZLMhVjLBc~>Jlvla?rqd^DG1i9)~Y73cpxS$ zVLD+7I@_-5;z~w!UO%C>7$ER?3@<|4C|AMUbbX1;)Ha5gd?))CJ(NaKpP81-jEw$r z--!l6bM(iRLQO}HSOVd)5g;2f=l0Ah_%=k#$}^rX3}j`sPOyD zzUuLsTEWE$oPX`Tjo*~Nq$?P<=`S_h4#}bXfkPNR**s9Lo_yr>Np#r-2Byv-3J{@*6-kDuAs8rBk@M=X05 zmREdUaB?rNWGao^t?RbjjLj`KMP7vxAs$0?o4^R1jnHr6|I1BjBAO_7=LIs^&;RvP z{r}rdAQbaZEr1BGgMHpU;62+#yEcn@G?FbtH4dI}V{Oa(Z-bPB{71e+XaT)#I!LB293ih{uz zcvyHsVD71Nz)nAaRGv2aL!LEA9~N_P1Py#9bhP^goBQ^WU2Exh)?S>Atia9r`4F7W@B+E{9YayO)<#)1WzaCu=Uhe_jm`L7VqN`)i&NBnQ+oI3S>NMY7?OT?FkDz` zRK_}*;4{@$wxjc`Z>yYxBDEX1bN~;;kCc6^s zT^zMV9}dqpczK@O3~WJ>D`z(9es)$6M7)$_i7p0C(>p$$Cbp>y!E_JdqFke}M<{kU z1}1{JqqMS(qvL+%qyZ?er&}Ytf|TGmBXkpX50o0>ww9Elfg0)lFTm(({Xj{Nuk%^< z{cBNP5{1^gS8$Eqg}&JSLl4*Uuz<7HTK2t(2?WE#2)IJkY~_m%s`W)_I98Wzy+h-T z^tO(Yemi54+{KZN6?b5!P{S_H7Kgwv(4j7u2&4I4jx-SU68^-&o-ef!+*5pPfh8^? zvQ?3XTia1K{tduCDS3%wNd2U0>D1S`|MIIZ4a~!E@$_OuVnYcJ2S0?C$S6X;LM`LL zry9pH`L?1gl?Z(vJx0?E3^_@*otyB+eb(=kN(hsg^Yled+gcf!uQFdvl4UjtlRwsa zE~FezmhDa+o=!KlJ)`>Nv7c&g`rT6YmwHNar&P>}xv8vf#<(9 zlbcJ&pKoLgo+Mu_Yr?I2mUF!?5AI8%X?MeGN1~^Ho?vkFbO;Kt*#YVkR<0W+Vn z^rG2GeKNWI4MPVN$-+qozv938mhqv;C)7Rr6`g#G?qn7Y{wW%4XaP1u#;9v6^s{d8mu~pt zyz6TGz7UY;{&^`=^+z=Kq&5amuL%AIEjvlbdJRpF?FLD$D;9c?Sl+5fUVxAU#$7e; zz%R3u5sIkDXvFh={*Mm$>d^qX2tIZk>=w^=&*F&E#u9vVWT42ot>wc+JUqVHd}4|h z&i34uk^p|!)|!PSex-CGZA~mB%sK#tTUi)kD7XgPRH5)5W)k-RYhto&P;Jytds7d< z27JalvN-L@gN?GZuGoK6Q|+voMU%wxqB3PA(-YSo2jRiifaF}HNy4*9f0e{q?ffR1 zYz{941d3kF_wp;;I7NZHn*g)lgp|dS?P&E1CM+HiM;`@GnvM6&nqT3vu=b&u(*Q7R=A8ej%F-t^RHRFr+{E9O{#3B z)Pk#YVG>(_YQ8v?+E4Er5asa+XH%jdE1MR{tk&A?KfTod`7?5H4Y>G@$Q%DJ50x^B zOpl-5kf>jDODW7w59Ry1% z(8D@_@qPxIzg0T(-OP(n8+Hfh?7sOT5XNs|h$KV(!>QbdY)N8?(psqhf&wYAc^pyL zA*g_(bKP8ClOPIYR^SSzA-xdz8F(n1$*_!HP*?A&>b49^gYm%__Bgay_6rj2Y|KIY zD;N1li(HGK4U91}9m8Tx%DW6xV7moJYDT=1j@~AB$th)7;fQ?~Q?TnEpc^?4h_<9i z2{a0G-+>Rm#sri%GFfKd*YR{X(N2uF6>^>w_z`vZ5%N4Kbkl{8pfx0$`gn%k;Ed0r zId0nAiD#|LAa}WgrCikF+xmX|hCk}rQ^_H>8-3a;4*1=+$Z~uZS%-M5v%xy4R|W&k z;fAy{WApZrP6yEo;-j@GPcI+*&F_}^05<~aZucSy6hEMP)b76_M&~vVD?`-9h{;esvsvWf+*B@ovls|U3Q8Ub)4gKg3e5H2Xi&a~pLDG@4o<@@; zL+YnKl{YK>4%Wu<#J|-h^W{4fW>sKLuC6`hk6v?hjH0)@8(u4I*<=(qL74Gc-<#LZ zfga)BnJpZdEtWEQF0HpIb!4z1U^Mup##D->xBT_Y&q_aefiiW%y1GNRje4yV|HqGo z`Ev`)Bcz@fsT`M9KDWgcpXw#4-+x#_!rS+hqyi7I-Sib0)clP3y-z~os(;ac#FwE# zb%!XL_Hea>6q_98ar6HKEBwzX^UrMUVIJ&+hrDtlZtYC;6Lsp)qu)>n+osWPuo`Nd z;7(%ak)E%4?UteGl{fcF6GLhL5_Si85>s7qDbFRf++eehU)PnM^&}sMSKVgT)amCw zK)qsgJHe1}%RqYPamm7wbY&KC0rkb(!g_4X~zuJmYJE<)l=Blica-|aqLR1{U-wLy$vy?cC9^QHI;f`TVj*>KA zd)%J?&^rhtf0dgicyJliQ&nKGCQ}!Aa#|QogRV2czK+*#6k74klDSHiC_igqw$)5n zv=v@mSc5E!-&=WPWa>22H_&t&neS=|_EYZ?E`+ohnqZMc}X=X~gM=QC<) zqsp2Vz7*Vo@!*{Nc%Mq@Dyi{^XJ_;GG(D6B-{Jfy!hnrwU{WKgPz~$n!0nGe@X2aS z{bp7tMiuM6=Y`|og-%D zaF=l~j%gxOrHCa)v0Km=v+1>hKseR?dS)q)EMF2RPIg-C1tl*@$BMC+FIoej@e3P| z{zNkC9T6`-;qRk$PyjK0gQ46h%7wJ-BpPU57_kHSP15o1s-8->*F( zO8xIZOKO{^RH%qF+3f}vnXT`JiX{KXTl9aZ z6ME~*jCOfA?m)8}z~nuodjS5~&+d<3N4TSx2Xp*kxB}lkQoRMz=~F5v2sZ@zkFGN6 zEIkKBA4&%=AXA8Z8CPFLx)ks5`nnnoIvR?wug`4RMdz-YOLMYcL+A!Afn*y$y)8V7 zf9+(M8lf88j}Zw0UU0XRQ*Yk+4dz^}Yz$NHHh_>M@|6OAyAZ5I6Qi#ml{12atZ4-6 zBsr_@dcVL~)b9H;G#Bx^$Pn?~m2o585EZcFhPh z?!&s_U+U-&Q8&=HHgGdiNb{>QyYmxj=#l6gkV+_JO={*odK)kpQs%8qIq}C;;npPS zW&vb4={2xWs?2Y*H%t|$q^B4CE=g&rUo3ho7=db=gGpoSMVJ-ae{6-d|4oe*b1>K- z$w>RJIlhFJeJhLdQ#Q$WkU2EI_KG9Q4rHWk)I4uG+tEm8C-c3&e5&@A#$2f80h$E3 z^GpM~r3MP!@lkH-u`h{iDcZ(@g*5FvZ%SnZdneE$+=oxVqBU^5-mMs`jf1$UQ8`M5 z%52U`!Zn|TwQS>|z$Z}b!tKTkah&h17Z`x5$qg~fPHMj@%>e!&nw!;_C`H|TIK6wA zW@IjbDhyo%!lMUeQW6VqLe5I^T?paC!hOL3;vCdg5oxExj^c+?r$yEq;YI`Xopq8O z`idVO{SX!^4vgTN{~t{l|F1;0}a4#I_c|;z7uMj097n+duV;3BMx%=|L`U} z!FX|D@_)REdn7u!me{;l0n?Z-&?Axcey-aAO{nXob{U@AGax#Y z6=1iRf@q$`98=R!ijW1eP_zS|!(Mw_<+_DaE_Oo*OX^NJUx5!S&-Jo6?S5DS zJcX}2-?{4#AHSfWn|CG&Q?*AAudAPjqu-K&ZDr4_fxd~O#$TBl16`ZOXEjxl8HTGF z`dYPSRaxELelD@N=KLE@t-grq2!FCG;r&HaOH?G9$>P6cB;99v(l>XMgh;UnUc+jD zIG|s+fuS2{yn5qS zRxDrE8(baTbUVNuyExW#K!}Y$d<>6s9X0oSi_DSmKXCd?M&X^KCLeA?)c3-Mi1nVo zYwbe9y?tRfR}0`|@d3PYaniKh?TTOG6Gutv=z{MsbSw_>nBo;?#Mq&1);A42WX&@l zkVI?6C|4)E*A|G&N*osf_}Wb+x-T3_a||lJP%h(vU68Y^|G}G$FBfty#UQkI&=G!x zLyX<#I;)nyR9YYXXg{#VKLx?=TcvMK3|=c<-X}!?x9N!dKF~f)5HL8!Pz?;1ymuqC z#Qs`pall6h%aYZ1UvADP)?k1G9RcS5y#{lN#=jTBNB%WO#(fd0TE0zNzgs;3FRL(7_%6fiyT6V+5mDMMCfV#N?F953Iq3dH{xjbU9khUUlUH)WRRM7$noi zqE57-CAV|c@24Y`j>gSomoW}eKDa+>qHmKXdV>__<9#T@BfW{-n93bm=DhcSwvmBJ zikB}=!$oVrWLmcK+ms65m%C(A-`n5ZpfuVh6ZFFKh*gTU(G})YhM^c;{TvWr!8#tx zOi^vrC&CzQhM`-0u*6Y(XI$$vuBcZ$h1;%;Wz~&L9_&yoCDORjUf{GKaT|X}omjmY z1(wD0XPBYKQQUiY86K7cgj~K-%~W~R4-hsX=UW?htCj{;3(aP(ua5u7o>*PcTaTCa z1)8<=Xfx~0bJv7WrFe0V{ppb)YtTr5xLZXI%g>T=e}4&9-=7gKUB2DzG=CE6G%9N> zuBofh`swE3<%{jzwKiL>@ppbtHe~Zk_8Izy-+F$crm7R0I(<+%(Hr6y-?LED*K|XE z=6Tbs^+dqu;E|~tWR6T;`9dY-(E(i9~ z%QLHgt|TKPgBjuW1`6M}prf+v*xmyx`lE_xk{JgxK|xlYuWjO#-ipte;;5Gj!e);^ z%y&$vcT&OjcWJyp&TQs&I30X3SKb>8k5BmfJ``6{-Em%Ak--37M|M+f;WPJSAtu~!s(I-kCf$qCp6(iCpu+s zQ1=KW1cEmqw7NPHeIzflRvPMx`|N8pER~KB`|uU$eUdEfqF1jRsZ9xD(%CC<7D%6$ znrzCte6?yGezw_d6QbYT3^xrwP0b-S91Ae8`mb$wr(2Z2jqm2b?`LvMsA50 zMwT0TOM-b-rV^H|K_e4B$G=v@o!n^CweAfZ*Bsww&86VyW z45fA~7-;{lS4kY>He}rR0Cq2M}BZu2x$Zw5D)t7@iKjY?<1FFqt`TTkXF~bt=yT zwf3T;smiK*C6I@jx7<*Dri??#AXcE(d@k0_D32Y2ge_HDCCA~R2wU)H?sfm ztW5ixF#OxNCv2}R=eF}~h(|h2^lsQ4Km4BKp|;=eUKS2bjQqAMEn30qr*Y`Xg;~zW zcyD-11?g4>p7jfyu7oaEJys0!)flcjr@$BTwxTt@n}10n>oj!lu2c3!kGG-46YrjF zqxBWdV|rcElsWr{sqqu641PyeMULsz=H1OLow{DeBwl3rC?sx(JOJxn! z3O>v+CzU&_O+@#SPv&J!Qllb9O<1?6O12GL|1)R70F`Oh;D5U}kZDOK5Di^PYWjpI zl6_wo5{e~9deV4dv_eQD_PjOED9vRxQ@Obg;rdyxaSLGxHw}o5Q}Ti6v6`+gh=%cd z1=EBPz+%UGAxsC8v=h-Q9611Zow|!>t_|ZES9&HpfQgNY3Z#%s$(?%P{}Qtf#<3Zs z)`Zq=Sq85_|7;xpm5FymNu-Mq{fGtqYKt+7Aw?R^dvJsO28yIt^uF4-_(AXm8^mO+ z2l3Dd&CE+Y${o#IxEWgSVPF)#0j?4}r!V}xOzz|}d1Y0f2>m*Kn&jUpp#}E5Yr$Ty z1{l>1)f1$;Y>ES(jdHi_r0*Ni;JhrvS^U8Dsr>WD zH;dc#B`|TGoYe7DrcM6Qxq={MyXW|hx6wzfj};i2pTfIayuGz)b^AQ-WZ7xrPT;?c zpgd|B-#D4PIOf8U+1$1Tv7X8ZQVGB)+HKJco?@&$=Q zO6#w0ok{A8As*N~r!r3?LARb955g=0*QW)WzGc)2KAs)-mCf&y7lr9%SWvURT?G}p zi+LeM$e~!mdc$td#krtBZ@d|pw?|j}U(VaV$G4b^zIA*J%YbQJFUfe?lJ?#P_@rC| z>*{g^vYJ|haj4j{=_wy6dt#R%>aYDS3~%UFi*wtydkH7OD)w>9Yn-f41Ujz((+f%l zUi=1&O8TC0FaU=Cf&Ok~Fk7`Y8Z^Tyt{B>?f(d<3T^vIs_6{cZ#+fLC2r~z=xhtXZ z5H1;3?G+CSCrURG_o|f7qZzczkQvEF+IOXG%~H4)`uQ8mISTLlVKyEbZ@EtJH6IFG z=O9U=^L4OP>5w*^TYj&vy)9Jn{h$d@Hrq@gw(;=mt9)~XyaVKD?tz{dZ;>xuZ*IBpLFxn}?()W8W8ai(KNR|U=dg^;D zao;n*W*Zx|3R>^21azOF)^az2DK2B{uEI^{zx9{pewY3jb$=RxqTP7~9ryde8eztE zejB}0WhBP6_V-na1l_lC$G_bi0QHZ8%1Wb9wu?piU%#b!OJn)Qipla$_oX$~tVrZZNI z5ATYfzAd=DU}U5gEUtqEJ?(9|RS4HIRoib+^^3_RQ=__D1uvi}jFfro<#<3t(6$tv zccplBa}7dxi|RwH<`g+#)Q>OS_|N#KQx8|FIRoJ|vk6KZ7ggj$}M?&JoBaz7c(D{1Sd2hV}YuEoiZ<0ay(!7%T%PCzx= z`}s!kjV8x;^wBkS2#|Yh zX>*`5#izi5<;PpU0Lrk&$cQ`PXt_O&D=_lFXF%2dV@Fx&Lxkj*)KB$^G;jjP>fahdhk)S zGqidV&C_5|TU2Gq46a94c?y-wvEItsk1WnPy-J0gTXuz&wX_>~Mv5|6c4Xs~uH5@4Y&8h{1 z#KboCH!db0XD`$@BM4K}ii{U~^6DH8$Gx$6Ex|b+;LYUpFg{+`XVIW{*!la?ZqX^$ zaBBO*NH|G&UlEm^AUfB`<5c$ zsT0t(9YAV}zz2pd@Sv_iu6Yo1tOaN~|OFJRZv%>CA>Uk>7Xc3)#(&)uo)bqg4$LgQDXDaXgn zmA_G{bOo!U>DkwWD~Lr#4b0vJb7Syh!UOy7g#`AMXomWfvQ(-5cx)51EN52!+;fiZ z;C_&lEm4IHB55Fce~BfCkpunNtIEbKWWA5KqU@&WSLauM#~DU`>`&B<)0=??M(f$E ztC5_0VZ4`baSn5v(Rfi`>SawD38R-s(1t8W^x@SNJ}{5X8pdT0Gkbw2x&1+aE=dGY zxj|;LaIu1NcAp-qDf4xPOApsI^JT<&8pli78XPMfo^)+GP8rQ~8BH(a83*MLtqTkX zzhg50k)?1#0vX(!dRU8%^}_#P+IUG(>^B99Zwh_Eo?pe1<#yQLcjjJ^-u_MXHhwCM z8N_#eYIX~C_7FYNyoQQ6>;&U@|A1kcf6uKpgl>pyE!O@wK%@sA*C7Qm*-jleSKUYJ zoarm}Yf5jKQsg9kVDyt;NblZ4G#FWt;U@vF&qfu{KrJ^_G=T*_em+fa^>3>Nr@^$w z5z*|hk+yF+LN#f*`vxhS3cO^pge+6emKSdO0c&?Ka65CSF zrh5X&K@TKM-Y6m4dNG&x#fR4`-v|4(C7AoeyON*TzYBQyOWy^rj%5@@l|L_V{d@S| z33k3=N`>yIo}`gmp5Ex?RfWQba?k3YWNN+qBh8Dd z{wR((7FjrtRfU`B+EtcbX|0`6b=Ws2^C~4r>Qtq#-Q9lF8j-ysX1MdRc z9)jdo$v2M%A&;^ti|jvSa}172F8G(x{0}E>_XOPBrY3!i6R8;e1G1wODbF<^z}+|g z5>AfbC~tiDn~P!95{Gmo{$U~8ICn<%9Y}da+&CU zkS0%4ucwjjunpFzB?`#&q21~_7Yx<*2583E(7SOtLO#`o(>E6C$^1>#Qv-}-ZKKMk zWh0#zu1zr|dmtrE4UNO+y0S;ij5hPerBd_r9f~q1rBWgF=xISQU)e^1lRdwad+ENp zd#ZrG;jdr!@Q*Crz-yMSGA&o-6~A;AvvaY0R#_XHmTA*mluS>L^s2yI%PVv6vN}qK z;~+(uY$6;VEpy_32W5uM_>Z2MA`p&nsuYqnI|kwmCJMjJ3vh=E;6LjUWEjoBh^Tm! z2}2Pd`%?k4VYF{r>Zo!o9)?k`eCSvw!+(Dq@)e*$PS_jvqJ`zDK66%0di=-=^E;1| zI*7*TM_sL{`}dKnL5%3@x)nUm;G-T$$R8}~JbZ!~1Om)i?vv-+kyc{>(m9#wBL~JM zJ|N6^?9Gka0n(svau~`@5yYEezgDU1!;jUQ9X2rj{oZ)Fufi-g z{=M{8#T7Yf$tC4+S@mI^#k`T)WUheb&WqgvgXH>*mI!xc{MNx+TL!BKS5frhHOc2b z(brt8$jpzu{5KLeXmSj+Dhsv^7gqWW4a}tax`uu7^E#{FeOooV)H%K~xr}t=CF$5x7gbyN_dnah(B~uM)~QRME;1IRg~Hhrpqp-7KA| zv~~9U$FS0t;B{SwHl^U5+Ck@)g2RbScblT(M+u=wKch7V*>k*f81e^}vNDzNanh}V z$?2mlRkL|(U0vM_ZTT)mUhYRa&3Y5|yNXQ+gVa#nN;2tLpM0Mn$y7dzh{kRY!qfx< z6X!6Qdz*$uGr5gLGtv`g_oJU{_+|!WE6DI-q}0zru+>?=+t^5rSIo~JKa(YTtthT) zveo%+x&)r=l?hqYq4Z(tOp<9HwO{oAPymTP-}UAWu(e>&pWz73=@Bi>!wf>IDpKNs zZj-N1fA3f>vu<&2eXr%*dO@NA_C;XIVic-p#*eI&dwj?kWC{8hC}5Pq7e zaqqz-LtF@zkF8P+sc_;N$AYCsCNSC}g*?J!;=&4mFo5f-8GBY$mjgaZtF}d>%5KG2 zeD$2$so&Q%F}}C_>`z_xR$dl{VWXd-`CDr;Ui38^vd^g$r;bb`LS7>xo;LkzFPlR+-Tglb71KCTc1LF zy^M1zY{S)=8)zN2qo1se%=QNfzCFTgw_U1%poF2n{T$>l6y6s|AVPRYJ>>j_YfpY$ z%0`PK3eL$;ep>B;=-Ph2aRV%+iuFu|qew*hp`65LTOc8K{q|ub&}* zOd^jZGZ;NdCc8Gf?s6N?;b$zYN(mOMDr<3P#A%cneHbR=>6j z7iEpIDsrdB=&=%jQ`Tlpk-QuN63uX)tPX<0u3!(eSWIAWJ{qvme^q=81LY|(h&w&# z7J6rd1y0}{V@)KmevZ9-?~+ApXa5sSx-J07b{s_BJ_gx9`zrf9JrLC+N7FWv@H|NC_1L~Hv75Cpjpz1l#o1E);g@qLWc041edISPWH;tPC z=J(7{8r+;;dl{GyzC}+#iQABy2O_BkM7$CkdC&^wWt)~*Hnuoih>H$SLkq!siDhu za|Yr7qkv_hWz_!B+I0?#E#+qSBx-8v-^~7Nu{8{riTqWP;?=8#U!zziviR%5AWn4e zC_}}oV%2-hSF7Bacy2d?`l^UOQY`` zoyQFZ1xbILr~#Nd3Y9jWue;v&=h}L2KqL4Q4$hH>b<9L*Bo5MCJ6xY|CS z86BzF^ZS}J*5K|s5wh+2pe=e%pxNP*ulxe-NNp|CBFZBO&3(CuiJOSI40Mo{-t=i} ze!R82^?L7FC5-#fSbrg5c;2ii{(+@^5I<8x!oI1q#%lcum(f^u_{9C^al2R6Ou)8W zVbK^2-gl$>cdB%-_I}iBSre+?2El}4U4H|no!Jj!kZgdQ#7wwuY=%&p5y%&qi8$qm zSs!{701L!xq}VYX$`fc${L!&B?4`jtr3&xtQi3jyeE{L{i1=j5V*}R;i3M zEZmG%6!k`909jxP>&Gk-OpdrOUOQv=q}m#=l6I{Z02%r#p)e-%yCirOzFh?1z3Yw$ z__PtoUH`6iZUa+Zx&&UP#tQ+BD<@DUm;{;*j)3&22cX}a0Aq#sH6MY~=>o#`W=$2&Bs$eMDp?`XcYYjt_@;h)Fk1(yq< z2+pnZi^FEuErUAj>x*=+f&0%Vz{#6b>7_T&ve96Mq6`R&>Hw-A_Hmz5Rv{NaK<~rFB5Z9%9m#E%}AM1O}19#_g9sqEjidp3I{Z zM(l_XD#LasAQxuvWa;-2?^YLg`kkYne{UZ`34csrOgV!pP+f)`@M+qn{I#I<>+_S-$t0!J;y3AZgKOy}6u_#{ zO-?YbHrqgp0=F@JP8CgVysenGP?)_v3;)K~Oz#_Y#ru|lo~u$$g4Obi&rQ_} z!7)9(W3Xuhm2R2@<*!|UlZZ`QT%H<3N%11Yhw3X7M(7OUmG-q`z-IIZniaffw_V=w zC_gGEA-sP4)7?^sJ0zsA<~?}8M6I&C!Hlp{mD!JzS4Zv31eCbUeeB+j4S_~qjgHHZ zd7a`36mlx(es`9Pz2$`*dajcrx&lh0395w^Li^SOaEkmoD5D9<7#{?U!O|qjR$){= zGl9O%f@nA`?YH4s03lF6_tBan#uA6qZ3rv$YRjz8@7B!)JOkD1=XKd&xBh6-$lTBl1yd|+mTi!3pf`09n$A}gFxmrlnP7hOLfn*q()PWlJ~t5j;g?? zARfX?g3r7pV{)LX4Epn$8v%RFFw${@28Rce=q887!EtdH`jd!5^DZJrf#c*FyTw)o zYWtBHh<~uK{yl!tX>?M@C6D|eLeo$WZX3t0#BECeR<6F02t78H-Oi z@YB@QX+3e7&KM8nKGYxA&3zIy8RI}+9e4VA`2A2w zL@rEv38ty%gj=tw(id?7W_n^)iFkuifv^L|Xm*c1%vAas(2#OT8$a-Aqc$FctlJy( zc^A;qKS=%>;y7$09hCBKfz%mzlcmXrVeVPfR}>wjCq*Qqml(z=;0X820S)0w0R2g; zm!lgDC6n$1LEYwRq_k;BZw3ryFRp5hN7|jRe(UBp+-_k__uyQ4RB(5NDiF;%3Gn6J zCtCI#QMU(V-)#tqN_JQVoqKO)DMeE(hj5Q{XyNhT+uPjSu+mLZ#EMw@yd?BYFmKn5GYRrAX+OAHbuI^!S7Ub)rn zIr2qXH8wvL*P(xpxXOB9u?lrEY9#6#F`Ur*HKdMD;&^Fiad;So#tZU@yW?`N9OJMX zF=_SMQ*ysjDD>Wg=!cGG(X);wqfK{W4KGAo;=T+Vebop9CE@REaL|0-8f%#H zZw*}^F1JozdNBxgPsZdQl?IPPU@@6b2Y~R#i8~EIph<`n#w!51kiG|KM@c5$)onmg zwPZ9S_8YD8Bqna2u>03>jY&&MWAOXf$z=C*X5`Rq-Nd{{C^;w3-%mdHbz*L@10@zQ zMo_f4@xb&HvLmp;wBLJy|GSsbyF__)S^&J8%&aKE9g?^8O7ok(+w<8s>I*|`MGPW1 zV|S$$q2DJI5p>tQ0M*ioyO5w@CDcVbC!KPWq-83IIMJfnqNF!Gz6D5>V71!^{I`o=vbVLg?XKoJejpe*Y(EgL%KudX5Q{g;OXadF`5sG_YT zHa8wf+xc9;jbevxEKK7Kj1T@177M%o2iW2EUAQenAsmb^^$9ooB{r!AZVYk*9OLlA zL0qMB*3%6VgcwImT2v!W|0d}D%UE2zMWC!C-WUCUDnPHNuEACG56hqH%K`rcI(hS= zFX{zCR*$JkZOz)wOpI!=s*4dxwqo&5qGS#4#t1Z*j!Av2Gtrg!pjXlX<6mC5c((WT zEK~2$cx_;%mND?h_1&92u4*3O!uSKl3nALe@+`rNBU_tBo;KBuUc$v3S5;++Ca)=% zSdl4J=QF_}Az3DHY6;n=vR1vV%O3bxkyG5qa(Se>Dcy2@eUkMP)8sAtXn*34pTHuX zi4?1|($$?EteJg`)0c&V%wsgkn&7CsVP&ai^+6kN3-2+jvw69-2d>&Jkd2UjE5;iK z#fHy}VN<4R?|-?a!e{FH|B&~dK~ZIG+h}(a1p&!9spKG_NDh*b&?Lzyf=Uu>BudVR zL_q|RBs3Bf1SH2M2qFRkjYw`l$x(7XYdg=(Gv}PQ>aFkhS5q}LV9$2<+H0?Muj{@7 zFNsL2=Qx6Ngb=5^qyQeI0TqIPI@HJ)-Es+rgu}Q>=>1tRhBjku($h~^%%D?%={SyV zn3^MjV`mbSsFS#Zb|Sw8SX7VEbaZrt(oJ^O6oAdt zO@5Psa0F8Get#>A0mq>nIK4y?-nMf7;~Oot&7lmPMQF6&0gN(XhXh+YH5=g4+LK&y z`K5IBOXo%5iudo#NZvTIJVi(j>3`dmOPVuf9NLmQ3;k_PK*@;CASqlaaBFXuy;01XO_f+&@HB$;eJ3!G4F!*Lbbe0lgoR`b-j0x0bO5p42qQjNUzQ<`9W zMIOdut#R(4JV?$B#lE!X%dtR2!A7?jbL+wo(fRbK?~)|T0U&qdbR4s)R$t(+@}=%V zH(ursBE6@s@PKe>lXMxh1OBsVKZq&YHl5aRUt5!mc;iwATLMid-6-zor3p6jclH@P zamqR(y;2+ul%ruzaqjVj2$+eP*`guMV-~PxCY#5mfX(u|iq>PT;0?K;+oZC;zW;bv ztpEzN?IgOo6sSOZ<@8nvS~YD5V5(~~J+cP4TBFTk#{PrX?I$E6T>Lqm1{_|{h@Y7P z)Y(0zEo?A>Q+WmK8@i+2uuRnbgwYrdE`}1cJDy&MOi>}n4h!EWDo!QCu??2Rj)K=J zhvgU0EV;Uro$Z!O?ONAMYY@Q4pw1bWa-(Mya$4r8HsQnWkJJ9Rz?34(M-?8s{LfI5H z(~8hVxCDt~t8dEMiD_1+p-lmaeLIrlQ^0gH&WdR$x|nPZTntiE{rO z3UXt32r(qvAv~22qQUG1Jxdl$x&}K7J zthmpncxBLkD!%&Sl9ez7#7E~&`uNj%JIV=F@_;3!Tm|mcQgC#mzT(tC;JVcD9I{F) zIR9ReJ#Y>q1MkF)LhqjnLS*^{pEpS_+me8l&thIrkuq6Y$b*syDIgp3_mOtw5WSnF z3&V#IYR@HQl64ZfB=KIh4#bjup^??cTMWV@-{|>_-E;?i{DTUIu0zE%@pRjMANf}y zJO(?Wngf7Trl6m?BH8uQ1K`3-1-T8g&LCrU*X8ZK)n~#2!k$v;tSe>}_RpQccW1-F zLQvjtSJ08u&w8A2XbcV%M~_2!;wX+=cId~g-vnSk1ndZ`qob?JYL7T+x#r<(ioIR- zhpLKiFq<&D*W@K*hOW7l?-F1_-%HIobf>Wp=PwfB4yF8d+5*1%Cj{Uq|6EYLTt}D$JlQ znS59g$O_La;0jlccJ&5m22*7cK@9Z?2MTZ6@!9v+H*Z}!KWywInJFn;A~kR+!bg|$ z#Ht({_D}m*_MLW9I5pgW6Ey>GPV;dt z7uHJ_Xk)M&IHW`%Z%0&|QvTWdXl#LfA*_yfgJw3^csR{SG49W~y$5Rh#3=fh|4WS1 z4Ysqv$4^tZ0PW#^m*V}=uOib}>`%{fBi|ru7)ka#U`SWf8k@f9f8+WHz}FozMh3y? z1+@>&r*+_q-43AKL8Vs26Bc$~AGt?8+sSH@H&Z7K2Kof;&ks`@vsdWP#5rJs;7z); zd}leLk0xdBs6UlfXfbQs0y9sM$vW%=mzi^Fe61iE|6Z$(@)w1HQc5s*P-4s_XBJV< z6;mir>iA?q0j+#F`H~Mj8}&Kd+!RBDJ1<;d{~{%YS0AQD2rBn3x0RM$aJ?D1iSd#zBG<*3p0F+i^6(h*jRKR-W$@3Zk&!~ABeiQOX0j1 z2n2h?9l?28bm=^t24z6NL!q#sQK{w|OwAs!|0WU(;a?)2eo1nphkqaiQoLMg zWmT1Kz5oIAI>4F8V947%)5w_*z6iP~TA-QG$+W5(ofPj>5k1sr z76=1T&N&Bwu`(wmryb!+uoD$l_FwIR((4-3%$5H&kA*4)Sdbif9u+Q~nJ*p`HxQ|D!8W!ZtHI6xe zO??j+fpv$@;K*vV=0%0z=%?<^oYFu#Rw9X|6Eww*>8^73N_D&_132ThE-#Dhb~vs9 zQRlxiWMXV&^wR?$10&g2Hr&;ezR{8HV+kyA*5%$m3!?~SWc)m+JiMHBBCRuulBb9Ld?(hKY8DTz@kNES5VS-**_$9TXrK1HGX|EIPqKE{O53Z0VCrcOQejJ#jfF?{6$j>)-QPAIxX2qWi z3DY8|9co2V9Iz5{4D~lovxI?oX#;fcC7mgN+09#t-L>Lg zckTUleRt3}7!PdalcJbG;AgtFtnUv9;%uJJ2@~ACh5Exs^=k59H`^k}oUnca`)?E+ z2ttjcF68&Cv6g0+l=Kc~lGSDqDi%BYnphe z17{vvdZzbbKOu@dU#3dB=CIE~ny?9bo*^v8UpqfVH8S5}naDLq2 zZS_BS$$zARGtiU*Rs(v* zj8;Mv5)P;y_>vgBgzlm7UP9yLKG1~!Juk~3Z$P@XANP2GiQo%$F$+(=K0TZuoi7XakTp& z{Q3t8bSoiGR~w@9Gkw0~|9%bP&*cDYCa-!)JVhh6;3?#+_m7b18)Tu-!-t-K4N=AU zJhs!JzwJLf&6h~<2K^em!dwL;v=RCS%rchX7v$_AG0Z3c1@HUlJ~TBowFlNxWdPN? zID29rx&rlqWIA<<{|scsTX6N_!Ut=sS~$MF4okWJ4(}**?cKq;+&B;)rvGKR#w-t} z`wFZ8KbV}}-+fn7=V)9hXTp30HYO-q()#3Z=c9hEn#1_x6%{bLWpER(KNJd0FxEFO zKBLPk29Imhz(Muzkp^Gl9z?I`NW4Emh(MZ2+;c4b>$_cpFgG`n#V6256_25A(-}kc zeF}oiQ3I=0i+^VRXAfv{1QLRQ|65C{*b9|)Zht4vGJ&748dO4`6~UJ|-#$?E_sBs9 z6o@i?o}jyRh#<54zfrsP=HS26s<(}7;CcJ+{V1M4~J*!QmsK({3YaHF%o zqjsgB`|c&HmHv~7YmWv$UDB-Jzyo(Fc0udiztV31b9@yfH343it^Z^UXFGt8rhQlM z`}5JqP-KTC!>=kRV|dKro!lQj&VN=>TsP<_Eqrp_?N>(NPGZFq8xo=QpeC4y43?H5{JYkBcDanj~-N?``C7-7xfGOF%DntgG>rfBwecIB0RSb$`^C3;Ox_ zqtY+`_5S>Q33ngxZKY2x6bAqEcopd&B=A#c%7Z~$qD*py}ZJ^Xp^5PmY(P=wzV_0prO?@-qA#=(ztkzW!SU_%*b@|M_Swbko8ykHV$tP2m|X{FeA-{56W$9gY(}raEm{FLdz>40NGyj$RGTqZhi;Cf_?xHq~5ZA0Kr zdg;%ecN_^q+o5$yngD9si~(6=109sH;Ki5m_zPcmo(@Y3wToc7S&HT3D5#*`IRs(v zTK$V_V1Hl-aeY7Q>>d1Qp-S*9{k7Qrn*+KfRe1%^VyY8cB<8G4+3uaUk8;1~BcB5ej|jYdhc27pv&iHGoCSO-U?{p`L=6oTWGF zo5t3=D=(ir-uD+A%#42!Nx*rA~j@H*K;DnLLrw)+lTXDxs<@gcAbDEc5o^Zl3S@&0Cj)sk$f zZn-x|={QOL*1Z4e%2I|**LSU|^YncXUk=<^BZRZuanSJ%I9a|UQ9wyk*2#*U=g;Tr5ktp9CMXbqJl1pq%YfkTM-l)#BU~2Wffc)Q%WZ#C-VHq4 z3#a?AlJbYqYn(T zbf^5bV%fb8*=9g&aTP?KgFqh(hrDFJ3BF#+j+9vdT^&{dwvM@`rsfZHi_oJ1$!Dqe z^5bYdWCMT=KXd5u(pwQkpYi8Be$iNcKcWQoZoHGg+KAVVOV*a8=3hqeJVZjeWz4CkY}0#hEh)b zI(CmBQ+j8kz_s{2tdejYxHHP&g78*A$oj*Iz2CndTRi!dd~$?c1&X6w^>~+xI694B zNl+Njbm}`d%Y)h}>$`L!*qlcSVa;2HK$LL1C_m=O`KtS@Qk#Zf&^(|?104fSE&va5 znfOg0U7u?qVlUBlTT2KFpsm%_(0QgbKRiJ zFhgR4O^BsKxUCgaVpTs1=&Q4LwYO`(7i{8Z+gkqVn^yP(2MqY?$CgH3b@=4nyFqH&Tl#Pu`J1ek(&tVcixZ7o>C z-5*9UzXu*9o7IXTWsZPtQ@3zERzba(k~<8h8wG!wO92k;T7E@cohw@a@2OUerV}@f zcl(pg4b-Bw0a7TUNP0{x)(8ua4x!y9xDHo@ED@AD7o;L@r$=HM?Kei7fJ*hmNwkhd zQk7pY4o)+jeg@vyV}8hnY85z@oyvCyl?Huj&(6T`TU$Rh63>L`LYdkR0qA;n=+J_L z>O&s{5C@pmgsuU2%{6xzv9Ss+u}eL6ccRx1w7y@dt2;Y66SUd^yI+Xwn>(>3PwG7v z?LXt|nwwmyNYW13FEEfjAaYm572>H3bAk=|GZR57(Tu+s{&{`{g+4f!8~x$jQM7+< zb5@&=AG?r%fET@jNnJEc^f*CxUckgggA4ROv4VAZMgcg%tjczP0zcF%U<2M0CQp47 zMacn6>Q>}MNRVy>X+E~59ov+R%lu(>Wr$Zy^^8z@}nfO;U{8Uy_cn&XSE1= zUjZY{@5ll#5DlXc*IFqe6_Gm!v7Oh*ScJ9fu1YD2aFVNB0?q(LXDml=Uy_YwPk=qf zIS>&2n1W!V6{gLn-N~v6+o?Hn@I=zWq>n_g*vOpi{`VjsnhT5NmW-} zW0eUM360!NBLqO6cM!aBqZ(C}9bKxYKDrSQ;*(#XqbBgP(rOKI}Ci z!#O=|B3W0K3MF3_Wf&F9gBp8a30+SJWNPpiQouOzcN*X%UPq8dm)-MI2c|G%5zEhq?pjTeW z@s1P!g_7$!yR(_IxQH1KQpLH-mZJzIl7F3on$&+=kqqnAZ2ev3lm>A$D1q8;Atlwlw6c!h6uE&Ciqpf&qi@x=4pq?JN z=*7wF#wc)}?dKHI&_7;h{B}H;f={8EV3V=iNDee(^0b+Sd1%R#wrY4$_9~(566m7Y zrF-1{g(Hf%&x}_e#AL~Gi?i{4%V}|Y-$ubcFdROQ$6-U&EY6D5cEo#?sH3!{8q)Rn z5Oa^dHxBS|HW^TEgE|u8s8=wM*VI`SV#~9ncbEAvj{Eq+We+y$*+mtw5UpUWsK~}; zXe{RWT}$ZV31?eGVF<|Lco|N+T*2*a69_?G?6UOq3< zwd5!ah$CQXaAu7ZH8fskYt_wp$iQx)si@D|%$@2K= z9ZyI{35xdF^(~6S-=lf{4RbJ5Kju09@%@Vo)}NMN5y$bY;SEY=F>KicUX331b9B61RAm8afsNLAfS(ywSG9$D{dO?R4Yr0z-_M0=|#s;IGNPd$(EW_IY z(3!{Lj7e$9TF9vV2DAIP#H{n^HlwkXg&p4E-p6G1_x7OiM1_eb$vZOOPzR;ovol3f zSq}`uYz{^zcreJ_x4%vh>(t`W<_4m=;5s)&xM$$f+DuSfqNYV`H$Dv0R5+wuLF;YP znl5mL3V>Bog`RuJou9iA16~g%K!@{s4HM0wWT8i!x7~fdQbeE5a79Mq0`)qaL1pjx zN`N6Q>P3KLC&~=2M1{veFb)raw<&?yF+*~5Tta`L-4({!@`~U%=Q@Lll>x=mG&xxM zy`-m-35W_OXHaLMKWfEftIyP2#zUqn#5@wa@Hqf}5p&s6OJC!K_ty={8hoi{Z+|Y* z0gage#I?th5isMEC6nggaaTKn4;`_}ZB}8-&#-R&l7PJ+xBZhP5Ma`|$f2puk@jVY zL-Uvr9sqGh6IxTwb6}pm2nVEalWm7Uh4g5BFJrNdc3S|Tp%s1oSz&b=IkuAaqU}I7A2AAtobMeyN zD&GwDgnCC-zv3oZ0AEi6y_5iomSQx_jVg%;JnTWcy6AgHKM)cox0b*}%O_a7I1}J9 zB9d}|wx}*4n{!7=`=9(8?p-x{z$N^NZH%1#di&w_;sgh^x`4Q0{c|91OoDKcE}{b3 zG|<^5x%i-tG>A-?IA{Q>?+8nXtl{5+u%_Bg)RL5`3_Os9*D}Z^XwKS4q6|bAd*q*j zW=vEkdHkz(9uL+yil!LA5UP2pWL{A!R1Me83t@h*TvQ4%bC!eH7F9q<`_QgsZ0J?8 z{IBD+ZeujETy7Tq!kEh&;W$~?kA6G%iyCM29x{Oa$KC;difFfY-e})<0q#-LdOOwA z<2v|a;Dy?$Kpex}6JC-R^bcU1RnuD9w}k4NQD2jd&AaM%a{As}EsYXg2N@w=R?`dc z_U*L^nYyB3X5Qre(by9F{l@7CX1^sBM|Dd5jTaBcy&H)N&R;VFZuYtL+k3&WlC2t_ z7{>LwFor0_a>_VCYi0*(Ljv~Q^eZ(r8kH%g`2r7#9_CCk^a_keW=H`XZ)>5z*|`|z zqCaVflKegS+37W@xp(|Df?~WM2v+_Fq$zmCIB4bi6f%9q@W{~CXU%etxzfpNkM-lX z`%PvzR&7u?c{t4ZVr5>XzTRIM>~k)1(|q;IB4y30xEfDaIr4nD{F;QYUIoykgV4_v`ZP||gtTlh6f&J5|SDi)zUj-$BDeMl7GD8c>nK#B4qB|d(sip8SgwI6X^ zkFw7>jOSFo$ytU67pSY?Mzc>1+$bwFf0f?##o;9_1+flb%N~(Dh=9GXNS=*4=WlsA zD!7C*gM(a*LstVYlKDKnQI3<~3Z4l~Qd}`vraZt04q5i5O~*4q=zzQ`bHWR^iz;Fp z_=+vH9ZgCwqeX#iGH+TBM1)7;#N#HI!#-vPFa1hW7ea!=qXLyYJ*s(r96qfDADy{A zyTb@F;Rz$z4|f*_c@EuA{2gnjt(QQK+J|@T)F4B0v;n{%*bjZIiY%y@Us!UDxm~By zmU1F6q1HJiQzah|Z>!wFTsu_ru(4tCR>z548ulzt1@Y!c@gGJ@z4yjE+QmRmNYAQs zC5B|ini>-g8_09e~;*pQzhGE$%*(^`6@Pr{Bo=iG<;z2O!xvEwQ9=YP*ZphC5Kl zi~vy`6ZxIM*XL!YHKw0=uv~#scuwk~yfjSqA+mNeyjD%g zuVW9l1h4N(16iCX>_Q>yVC+3yl=BlEBL61}8rYO8(vn2|p?kCgByX7|*HJi+IWSIN zb91Xa!VnGl23y62FVL+0!mNfQ6?vc}axQc^-V^$#wPODYVfa>i2N$IkcU14AJD9Ii z?XrgWB5ZZjQZq<(tqMEry|kW9<91tHxbO6CRpVLjk+J@52dfO~qSr^cRf8m!0_4Cy3_=nHRdQ=mxbRf}qXt!Sg+vupNfEF`;3XZ*k~d2CiQgz$x(~(O7@L9H z8$;3or&41&AXdakj8gq@k0fJ$fRx*LG0Y-KIIcyvZI^t@*dfWtx0oO^XO-KZC7Xzt z*!>j%?*gT16QW&6t>Kweel>VaY0>Rlgpn8K;lkAy(ur!Qa&gg~h|A}0ziWx5tJ3sj zjvHd}uKSs&b^IjWDVip5QH_6tX5tiR2e(mCCo`#}xL8{Q<%a;wk@sgC+mP+;ev8n7 z{rqQXEiQ!V_Uchn?ma95Cq9|uTOO*as)VIigoJb|i(YC4{{ZC=&FeQS32{J3_jEq;CF>A%ZlzYghPJT>T=w$0TMt(z{de8U>IPgC zg-yCL{=DBzvQChCZ{WClO%;r@hv3@kgynMctzWSA5BkWS-`a_|4d2~s#c;vxu zxO~*SJpKIT)9cQwvmJK>WA=b4#QGO%ZP&t`n=foo_v| z;Y>}-yEG9qh~yz%=V_ofRI&x(OY&|Md&<`Z=K^X|Uz27%iFfJl`#hXefyL0b&^NvHX@*(yfrpQoNDzE=}L1Q_9M)$AiVfg^mnsF@6 znaBRf8yl;MFMxh%EA|Z7VL_g@knip2^|6Pu%eej6OJ@n?E+9#8Q%j5hS#zbJxb5dD z0Lx!)t0Pey&x&Z+l6_|^@^PObBkKffg}2m&Dwg>^hj7dAb|DypS+8{pzc zpEAf~H{WRKS{SVAPYIUAQN=a^pi0ggoz>OBRn`n0+L~t|n5y=<*cCH?5VNtpKqSI$ za-xXX0FUOBljAX?IL50OfD-CNJ|1C`*%%z5s-)K_0 zL%byaJTZP)_>hNCfzF=&4tl^fhs$MZ5)?zD7Ot!xa%o^ivoG!;xFidbD!KeTukTDI zKa>#ysmTyC0MIf!tL1ueQGMqFv`{xF1F=f?e@7nXp|{?CchNYSq`cH($Gn;odmO+z zUCyi$$nK@`x_mVidwb3c?}qcR5&Z{YWb?k2da-F-o9df%i9$!5aG&eI#LKNTg*kZx zcwEfEgYTE8vlj0*~Ix!9Bs za~nsdvn;UBOSy?3bI;n`m#^Lz{MDFvaAnd7NQ<*{3BkWAo-WG);s%?Ufrscc5WNSU zg`WWnzlvz9FAeP&D_0;fJGi0}lxMF4X!Fn^*oj7!Cvk-6k*6XHf`>=}qbv)sa8Kau z7#`^mnlEbGu`gjTsZu+T#*W~u89mGnB^PU2psLAD^`p2UeRW*8%TczB{ElUR7&}Np zbB*xIRB65zan6lbf^Qxuer8LTxgQw@=R-`fNvlsCl1``}VH~uS)E?thilPQd;lwD; zBByJs%+!Z5M3m{bBr8yP;h3(7T%jSA0Kf))sO2w&JJ(B%xf>+mm+I<4&=(059t4tZ zz+iL~C}7z=r#k^9<>l~ZyL^xgjEjTF_Dgay=l*kK)0mzcU(H_YR+q~YGPu$~HZttv zaShIqdR)&^=m7LrhT=*2=1~=!(k=JH#}b|j&!^)oNfkUbIlJooo@n5|V_AmKL|f%7 zNg^f3ra26C=dT^4Pc!hD_9dc&MOim1s<9-lqztnzUjQ27`w*Vn2xj=?PDd@#IC-#I z`Y>7?|3|nR7xu}_j#`lx#)Y^eY>#U8jY%B za&14kOuDxkiHPY2GI-dYyJbyz9<$x_TyuN==(FJSnqsyqx3Y6`#zXU8eSBb%QZn(r zKxFDcZ|dS)5lS|BG~R8lmUe60$&+C3wMS~Q^fx0jeTNTm{zG%UnND0*TCCoW3wK$( zmwxrWhLg*}vwuFsGQM0T5ix1^70NQ>EI8`<)ZMVIR~LN2n`9|9()Fu;*XDK-w`)B( zueMzB0Yu-!L*+M&+8wjMHO>bS#^H0HJeeH@0Z1;2{gQN&QLmc!Pi%)+UrRjaIkK$zT@@3cY1wH3Wk4tg`Cf zOKqqygBI`u$o8$q3F5UzY6ZOo%U>Tj!QeF?f4$oGek%XYx33By7r{hwdInb{JuU(>LEMEos{ryhRK(m zT{!-1GmwV!2o8lN^noL9YBP2YU zb!FM+(^^R9!ItajuiB|BJXUX}C06}k_kZpFCSCJOZ~lC<-iy}Tk++cTlOlZ5H&tOq zE@ICrn3 zu%#hSy8+5xAAH0s+v$m>C*`YbecTi?BRk{B4pRdf=+#&6=d~E`TvtZjr>wk-nt_!E z(ZQ%nFdenZ0PQrTFd;D+xf>Wys1Ww2OFx~{{klF2&`epAwk36V;}{Vp=Pr;$3z~4j zUIj_wn|MxhENX11$kgz|0CSrKPIsKZFgw{M8!#12{dIwQyx0xg;)V zVFn$?W6TlGv6?MxXal3|r{73tXo$y^%yjEtTc9|~4IH@u$fY7T9c`WXF?;9ayK9Iq zi^6)erQyY)zE@pY0dvq5q87&Gjt2NY6Y!p?=WOQOKh@e`jvFSKa)Uz8&R$18Bsu=R zSb%%xDy)Vs2JT7B1ObDaz9G?ikAZx&g?&VucX2>--gQynclOql$K{fj?Z{AEtH>adsb$Wuwo1}f*;-rBE7tCd7mu=)6(fj zs>?Ii1Vc{SD1uE{%?vtP%=jR2h14;EcYYsGg@uL)M5K{s!`6rb7+_36x{H=@wPIfG z<}#7TT<+3i*M{ht+GmsyKCrO;Ryv(Uf)|HiH)_a55GOjoicxy~CfOt=q#LRiB9Tr+ zNh{m;L2$U5w5%eTLaP!i%bv6(NAIVw>@cItLE_hY7lk#YVV~w`f8}p3nSlWp2O4 zylxW9K4CmoK>TYxK<~|Hao$;TWfkpumw@QuQ`Gegx%Q~v$lXe#YwW}w+q&03C zS}!T~q4&4o)NiZC{9`|&?B81~MoVjhtH7c#F5kuF$)3ENthY^*%|`Z(l8z)6tF*bY=d!M)nf4L2JTw4ZJfz2&8=DEg}i^ z$UZ89f~YXx*eh7S&#IyCgm_tyRva#cUAYN}+PC0Km&Dc_{xPt!hlapbr{c0d!3;^J z#?{`RM}U@vTraSr$~@1K!AJWJV|Y04P$cd~CM)`+Yu&osQ;(Wi-S7|PVsdjEb7r?L zi2GU8yBElj`SAKV(V3Pv7X)jR%W_(@`e{FBFuXgjjs(vOl$!*tFi*}E3&_jprf&S4cy@}c}F}Bkk)T;kYx$=>Q%~9sH$VW|X z&N3BV$&;JdA}i*=+=qF~{f)1O*j?7H*6^Yg`S@V&7cUI~>w$TQ0D*hGn^dw3wbAS5 z?xh1_m~0UcK2~aep#!cb44O^jNoh_4XiZ~*D4B;r_!A)RI^_F8VqO7crSDK%r>U+U zE4(EAoF8wP<-k_+QfVuRfN4h7+9~ z$x#;#<~c+L_CGI+dwZ65Vvom5(t9c3fs4re0?(+PM4IT^M~fl0Ino~=5#OF4#kSmA zGmH*5YR9%0JFmH&pI5c($eg##suEjQPCG(nJbt1Q>0s#RXh)INbmw>DQ8oLeiq>Bh z?pM#)_T2nl33u1rZuG5TW0S3P7#y8c_(0)1;a`o4a++mDCU?7|oJT7?R!@BMBkvF` z|0v9*_U2Dve32gTTV@k*Bs_ut;oYKL2?s~ui?fgQ0j77WvqBq2_41lO_&2clxu5AB z9+Oi09bEpf0h&f*_(J_$T4rz(`rn_Vj;EG{i>M|j2 zY4$#VNcfvX`SR$>a6Nku>At!e=qV(p0wIY|*vI{^A(DZ8_d|qZC+^U-m~z-rrtW&| zR2nM5(oH`H0=3ixU}8Azz(xYV>R^88l1+97tcNO%?u15%`Ltsx+J!##Bw^?edvi`e z19rWju&oxx?z)dxVAGP7Rw9T^;!pS2h~5Q%R{vyc&g^Cdz`Z7x$_Li!Fw~?|P!#pi zO!SrarZSy+eUZEO5Y#s!E!ke-EocgvFXb7$e(Ci4s;zF3(xEQ=NoIcib9WFk?dism zaIQvejwH^Gtq~Bhj17~+HJ3GQYUckR-N@jDYgj)Ef-1r7?@H)R~^8VYey}lWn}r==_ZjQ;#BJdzFICS0(MR0X85yJ*sm|(%BLc z@T6yKiu7~x-{Pb+Ss%__Xh{|6v_Autos(^!B`i%pFy+bDAA@Yx=5>d)U)kgGkzchi z7v03qm3jBud^n(?$bMV*$iHzh@T57=cYkEO(qZDe$J*$~&TdvpM|!3@X6&-sEx(6rK^nM#(XLOa)pCs3OGb*IO#j#4V9ah6u$s>V5fNuSz9Gsa4}nDNl8i` z{xYE|-D!x@)iPi@V3M#Jo;7H^P#l2N24Ue-aV zgp0$B+*{-_N?`Gjt3I@+yMWWT?rQ7II5=)Uh+Y>op7pVzOxw2OM5W`Ha@LFj*Pj*w zFXnP7Aar}5rO03dtX|x)>+svZobCRF8`zg7T?#C0nxD zN(eflq_psfIO`shg>2$W8(e+1XF=mL^WvVa!BMz;**bub9&wO(nNx)XO#9{RZet4v z8*)EHE|2xeWccif5mB!@&0T6~%8EZ3_ZRgH33PU#$ds=0WaYQwS$AJrw6e|cD*|}i z<*(0vFW_ZO0WwkbYhu(+1dcnrC6wqjwO9jpr=i}(6QH~Cu}a)7!Wbs18Ty0nJfyn< z0UnyvH~tbh;AdVVV#e}4~ zq=s7uLi9{SLXAlbL$pR=O#~Nd8B*yWhryy9(wB3hg~cQ&j@*~9T~GX8fVjT(sofiJH*Kjgk7IIeEOP*S21CZ*pA+ez4c%8Hx*0%q1_|V!qX|XG)yen<78MdG zB#ekV$cgm6Q8sqQFwS~Tc$m0J_sfgrv-m8$aRI>~*Yhdj$^cbHOSfgGb8C|iVykGgq9b#BkJ6bW(%)#8 zXVFTNos+euW7YH}#@t)O3s04)S=AVcoLvGuU7d`~fCMvq+~<(1eB`c#Vr%&8j2-cN zYQ!*FzEjwJPE_+WEV?(owAhHf-=lT^oJ-M%1Ea-Y^Rv?vS??vYTsHdklf}UYHKObB zo@a+UX9rA3Rx2Wk*Dp6q3T`)%zc5%$UOLa)=b1$EV#*L$f@++@*x^eE;Fe;PjDquD zs5oQ+y=pR-{uL0%=O{VE_?Hv}sK%rsq50L};Fz^L42ViJ(G zzdE_V z@~*h*i-0?c|BXn{hW^SyfP#Ocwq&u_{L&2h5uCc7SG+q~;XsIMl^O`3TU9u+Ez<=)t z^rJalU;X2V7$9*Yp?p6JjA>4uG#ijxBV|A%jm!vsqVbx51OKVmx`TuWod^_! zOc*r*3>fZjNukH_^gb;&Cy*pyePQp>_3#d#A%)OdfWK0)P>&GgY2~ zwU=E#IDd3Uv(*@^12H*=|B)pRf%2`0J2K#pD(eN*ioP$k@?_b)FqnsK*esjqMX4nD z<-3&U6)DLq8DLOXWPFL3jQRRk7CFI%Nb613jT`*e3}RT9ti)>q5$z;Ln;Op)CY>ZT zgYZFe1wlwzHaijWp~70t?0J>#r6B>IBJ38gH*0LE^*z+I4xheJF-Whmh< z4w%v?w-v}wn=gDtT!ta6!;*-8z!XWn8q`~;^+H5j971J^ZoM;}HhN24ItLu{Du#C_ zyzaQAJ`YL2+;;;tmdp|%B@wH8LWW(e`1jJRwm`IhD?Gx92OZ{gej`jErb$#-kz-tS z;Uh$G*WtfS#1>&~F}{hffi9LL%xOu@b^S(YM~UMrx&t0&I%&e^aU!NS3N8ertQ{|F znH;M`jNv{Anpw9$LYs=j7DkUQu9P49_>r6^vyHAGfRzy+zZJL9c9)hw?2U8Yz6SfN zJzIsN@srukEUR#$NZQpgMvbMFH&hAN@sAM7>g4Q;bYCrS=9Lc4xWd;Th=!_>kA_=9 z`GHBwOSWh;IA#a30A4d5?V2abdgSN%9zYx7@&eG~)cHSroYK8B!n&kvX5-`=m-uhe z$WG7PolZYgxx1MWfF}g0!e!3?2s6Z=*Ky~RN>BQ9&*0PaZG;geS`Ci_jfV_8o@FOv znD+TX1DGsh8pVV-PJhOe(J%FPQDn4K()S&iqwg(rD;%o(vm0EPIc+V&yKuuK-9m*% z)?;maWMHcp=nBMxIO4GJdIF-@22}P@r2;rJXRsWefzltK6wFp}UWhe7S!R zGbP{LqZdnVbBwn8BRsYfAI=V|v(A!Bbn36OUEbN=dgB(`N4k54+GddO7%-Zjl56TU zP=rQFxt_pPx=7EW$nqWeY$Xb`==VY{JR6z3xIoDb8#qe&MkP# zaG||Nz^`LV*6(HFz>6u0@$*67{d6xcx>eLMbscMh(9PMR+ka$6Um!tlIa`3oZD`N6 zhH9jX*HnTH@R1|i)u1?C;#j&?me7ZwSYsV$b)7e=p@Rj7dl9G9!>;%8n%M+aB|eRHt@v2Fh$?v^k5#&$H$L*<&O{SoNljze08D@h><+Yv#$B?sUf^){PEM(+;kJd&HN;N1>5bXiz^PzvR- zwn!!FmxtdE3T5?Q&GK$<0YwdldJ%7sfNxzRNj#wE=&jG-Z%iu8lS-{Sc;O3g zQah5r|C?rSq%-T_)2}Q`o;y>8@sYYg`Cq>5B9QuTwi^~`aBlnHR8TeQA!%{Wns|o> zj>KkZ(Ib$HMh82%g-ar2;U>SyGGUDAzTgZ{xfOYxX6CufhehgA z@=n^`%+ZU?8~EsRl{q={MP#z@N)7R+7J~RL+?M+AhOpr_TiXyGm`R=YuVj<2J1a)mtfKmuE2uu@RtQpOP@n7?9T_n;*xcp*LygF`G)AWT4)_bS#U^JFlX42~k-*8oV zXrzviUr$+PiEp*=?g3?1mS0nh&!Y;9h7IOnhgZ5KQ@>Bn%Wh6aty>677iHzWfk_yj zXB2C3=x9v;RMY+d^Z7YbNndHTcz{ zJT&tu`W^702%l&#+Ds{hgaPKSKJEFT)h&P5Y`J`Lo2{o3lgC zV*KmUWvlXyI>|^UlV9|`V!QoUm~I_xOWta_ZFut%1;ziv+j|B@wRP>H-9!ON5+w%} zL4v3Rp+Q6tR1hRfMnn(4Bq=#Ik_-rvmDqq1B}vX_EcSliy}x@; z)xGD>`D0Z#C3LSf*PLTK;|Xte(u+CIdj9$O1|rpTHkHp0%yVk!4qtq_0gtNd$57^R#)5kJ@3t4iNgGYI!cnyyQf zzL|C%@m<$lo$YIH8-?Eo4zs#f6KojdjNkmhopKe~TCj+n`vcT4eb2>b{msTJgdEDb zvrVZNgWg8|p5@dinNOJJaIKlwKBc$0qSY(9K=kGhwsYms0+ZQ=oX=UbZ~xGhHRsq= zX=oVyvh(<{#D&q_th^<$MkThfrLUV9?d;v6{Y=ACH&27b7<&Zoj*KeT8(6>v_uzyiWw*0j!`3>v%y**D&yMB3x@L7HcSbePj!8)7pJ|o4L1`m>{vHSt@%><+HTi8cgee2;vepe*_0|${Fem! zzt5FI4bw^M7KWTPMEes@TrakkU>DwP`I0EFd|XyK**16Ssofj7&NrUfgdL)kWmI!# z+v8!d(NvN7s^wmb?+J7DCHcmM2`yk=8TcBNU^)tJ^q9D8BcQ0pqoNxA7{&3KH zetiB`{DNIt5BYS*y zv$kNA@tXa04v(=f0srsonyTX+PrRy|YFy9IRD;&on|Fwf>X&5@xPC7Ch?&wIa^@ap zQRAs<=i|@Pg;NN3gQz93(ehi_7bzFU9EXov&dq@D-Ydxi@0UrR{dM47l*34QxCYSr zQU%pfkJMOqw^t})FU^*)ZvSB>{nLw$9|n1}#p7zH&Fh70eDw?!o=ktOS5b0 z9*$j+aAi5Qmh$N-k6Y-&izI5i*z`e2KXWT{uQZgCmq@7svLlCo(6}m*C_yuQn7ZQ| zn+EfBdezyf}iOBv|WBmwRsHG9~^&GBIYa1v5sd5Sp4JE>>Pabg`KI_ zo{Q(Ezg*ed{r;gO=iWkmiOsy%+SJ58I$6k8`iKA!#9#YK{1CbMC(rK3>%7^Sq#JTx zo*Uh{p>`$_x$h==Rv$9jU`T{Eu?r~ymQINcg>bnt0UACpbNYcEBHL$ddQrvWw0 zN^=5;X0QhsKM`~tSMfZO7A#k(F-4~zT(e%8>WC^WC?9(`4}#4rA}i#Aj-Lz5q0);s zvT!kL`M3(I_V}{_D~`2oPnK81gqsFIz5dfDl5*g}%pQITzgkX{GhLovkT!lDv!v7_ zu5_us3o4ZRgm6hBch#a6lhN|GxLf!apy>Us#T+6(G5&aV5FXLCKJj;q-UzBQ0G;cb zr2al?C+p2fDQ|xp6YxfQ&PScuTV#vd zcd?|EWARx9tMC27kw8+a-^R6m;hYa}V zJN?If!YA36F!Nf{c~PG6S|ff8FnjX8cP2)Cue|m9hAzFSt?}-i<`9(d?H>Ml67LP{ z3U_xL@8GqNhhT606|bGvX7*^3$wR35#;5xUB*}krv)WGlb)S?Ge+K%)f$<0Zq0KEA z#>9J|uI~JS{y&@Eac8MTmP5LjlV=GiCkB+oQ<}GllWRA|sECE|ujy*(DhGfHJQ#16 zKaDLz1wfFl<@6xVfF$Z9^V~W}p}Q4*!zSKZ%#l{{R^6Iq*87m3;*c@j*=2$K0S%x>>% zpK+|wovU2^rF7HRM9D6Zp0^ct)AibC3x2%&;^tT*=P~BYN0Z#_d#3m6i!(#J8`1ui zdUK}+&zMw|I}BBo*ZO)@mD(E$Tx4G5O{2ts`oQ5sFa=qH^E6)y=?>Q>ICZ{lV`$N$ zjfxM*#6~tl=B!o9WJlkVJ@6Zt=KnpLwrPgzVNj3rNZIVn(eXYmA7)#7Fop?0hBBH8 zoTA8WRK-CbPr=%F;Zs@tCjsk(z!rG&_Vb@*bYSmpmKEBaJH+;iv=V zy)^3Z^bqz^&E`ZxPW-j*tW+|3!7XfA@JA_+vFc1b|J-o7Bx)S{z9{(wUjA^AJfZ$i4RXn$dmny!_~%asR`h2)ondV`x=$YRp*FIs27q zn1;NMzl@VcpwzMzT=%Q=J*EN2wnmnpFYPirs01lr-nT(59;$y)4N8G|@S1Ze?;I0M zDL-LP^aiUUSCY&uV%U9>kmEerHvjDsZHYL=+^@%5#=`kegkl_t*=}S}k>6m%h&$l4 zCyXjn+i~p8f&JHDHd1n)e!`Fg<2W>xIGX6V7<^WEXwaJDh0*Wm_u=hW&3AwR_3dyGPVC%#C`nYX~kD!z4>ui@2%F z3(b!bg2-7-BzuuesZ-=9woOx?!kwH-v4g2 z^`z`J41%lJxDZBvH{5>ovJ=bh6@jGN+t^UK`IEM%M!hKQX}6_T=(Cl5#rlcW8ooM1 zno5tf$gcJ1GjV>-A;GM~F=(>IwqLpgWTxE`O`qfq<3{nGK zV2{h`)t}g4rA?k_+v?xFP@pkDGiU5wcfW-u$+*t1X4f*b+aoTX*|vc3W2S-(JY`qq z#WJSvo#jkf>HFnzb?Xq!z5b{e$Q`(!K1Cd5tfZ%A4jh?y5Tc11-R_H61XrKppsL#8 zM{$=Ijn(tf`dacPk*-(H@D<^>)&zW6FDyrgxJOyhC)qV!yjm{0JvKq{?ZNKZIrgYg zubpv&wO=n#tRLj>Wzbq&C>{S3zQD3puwV%|s{V|PW1mFdYxR|swGiLV65is+zB8Q( zz6P1czCX9i4B{L08sxlgbSPhafR$=5#P>Uw>3h!Q4em)A%WJY7fp$&&GRePN+2a^s{<;nf;*Dv_f*JejIkaDD(N2qu{IlQ(=dSV&5q+QZo;9iIl6XU-|6J z+&1lRz$*5@uj|Af{jYP(k#bpMGUPSy?a5nM8hk#L*8G^4YVXTEx;{PWFj^gwUlCep zkCC>Wt=G2Nc9Y*Vm+I@0O~%=iun}I6V1OWxuedWTPUgWkWV(H|uP-P|bXbleRa-US z7})XYY}-)6XVy4U3L_Q^#vby&#wyv!5|B8*5_E8U3j@7O=!-?WQ5I?PpA)aHL)EN6 z#PmXT(oSk^T*IGOBX6Lb60f~Y*;kvM7m(#(BBM{NG2*{ovrQOUm-8^3inA>$u1MOe>;8NZ$-`Ho&+=gDmC)7z=VR-b1(24GT)yG^7xook3l~l|_R@ue zjp(x$0z7i8Rl6Dz1n+Ax?>)w0o(<&+DP0K75 z6M2SJYr~`6`R{7%ChMVttaP0lGu#D+ytm7zvEvS{-Wh`*NFxS2MG`z0yN9)w(aBq@ z^W%0;U00`%cV&sF#W~HWpBGe!*RvJU8gKySMlaGM7|k`*?X4F4I;PxT3y9YLpUD=a ztKKMZjJA4vr#*SD*UaCSSd;pSUGva1Djw`xhHZr<95g81ODq~5Q~=QQHIh@dmvF;3 zzmdoy#69~rq!7&m=P_Rj|E9gfRc%S|wD*MY`Vu*JWfN7MqljG0+o{f`k_FA_uDKHN z#qOb?%#$95(*6P4i@V|uV5X3N^UFk>ZGpP7?1ilUs@fW_3ajUH4ht0zs{JE0j+bN) zG7+4eKR*>DOMwFBmXpiWw|Z(0>2LN>A^#H9c*B)ui#hHt1h!J{_j=AAG*>@>G@(;^ zsUYgWK2Zzq@T<&kv0k83)1mE%pQ3BFg(BJkT%NHPc2~5660auCLV4y2e!Dl*@m-*) zM7S%q?t`&yZ{_QWY-PLf; zH!O3i@p4(GdF_zziqi0#Z#^L~@*)}@zcKCQ60E(f-VWT!^v;F4x3j-SwXdbbi(Of$ zN@qJQahZ}4+5eTLPkK6lqgXO&&$O-3Y2PguWIR{VmLyvRXDM$<1A-St6$AbWox=8O z(}LMgP;v_^qgt>6hJuYy;!FZ1fzwXNJuF0Q`sep%w}Ct(scY0XD1C3RzfurHZZTy> zrsRQ}CS@*cFcz!oTR%vXpU8ihNr8=KRTtNE3*QyGK%DF|Q>`ar(vm+!jVW;$>b#UW zKfGFe58~ZLtlM8q%kO>*%2GzSX49M+T$s)7$T>NWndytV?Obv-mmo#2)-rt@Sc1q> zdzcYtlt7y7)OF3f?@|E7wR}LB5DpMe=>&y^Mv?_^G)kWyg3dEf7A#k^3i?)qcLhI` zfnQHKC+&Bh%z$uJZSqeKp-y`J_n8V72pjHEev=DK zS#PmL2A3)mK0)F^@O1~*TpMJM?@znYK$(fEC;~*zhFD`-w4>DC$Q=@DDu`*Md4}%P zoFF}di1PSCOFCqZFLv8#%_;&4_4EZ1S@LT&=Zq0ffWQn0@g?`>WVUp?lYEi{I5cYH zTtH_Ys!_#)*66Y>k5=)WVix%$k=9@AHYek?*j@WUS5MDNvuRK6nQcMiL_qv0Qnokn zM=mi5?~RitKlFcewKn7>z6%hL36OW_BRz3nkN?F_l0Q8@>j};Ykbc&O%l?OR+i7kS zY^Z*l`fXaB%JyrdS1AWO+`)N{<8pH#SNR1)0jmKB(2^*dh_{Q&Rhw~tiJX9Uh?6HF zmgd(@%_J~C4QM=xzqM2>s6900ez_uK8RPM%q>jkLwyU&cwyP>@mXlcHtenTzRE@a9 zXds-u1;n}?IYD+tKZaeWG^e*brn;$GVzuUu--*iR*WzJ^d;9K2PVqXuhtS;8sqkLl zimcjK|2=mc#fZi1l$dl`UsTe4~_M`OG|NSbTk zN2|q?1H0vM*W2t_kd_*m@jjmq&f#f6OHW7!hrP*Llw+JDg42nYo$+QR0%m0p|cR4E;e0I=Qh`0;tU!I%l;tE zy^d=H)5G6v#wp68GgodCX#iGUx((ykLEGHCiMrb>ZyaZi%9AewS8b{}n)^O*HU8{P z5G8{>`vS7#$gYE|cVU^ltiUY^z{oD&*}vU#VQ=&SHT#4-VBk`aK-mYegJpm`l!H@b-sKB- zi4D^Qz0PX<#bcz3YrQzp2f-qDmcw>uA40l1em*tJvBYTe~%*M->r&YzeVWm@^t!MRYpr5ZqgZWM-~TcePxvZ?C?7nC;w0 zE^gnI8(o$#AS$VF5WBO)y;?CPWeFRJa~X7B-%C6elq~_DnMYhTpZ9_qqu5pVg=}kk zoP6{uC|oV0M>&3iFh(JXS)O0oKblK!kb7^DybN3z9}HPlR&nN(aCWpYrI{*E?HB;7+SBee(23!M@L*(H4g>7KWjMx}6yr zm$@++;jT}sE7!ArZLK>G?X-(jGdwh(n}K_bg@~1Q;@qS2W`0Sj5_i{RTwP3d{7&T+ zR?p7cDM{G%f|RbaLqPI%$M5)Lginel7RteySrIfuD z0q;!&As`yv!4G`_l1R0Pa7(nsjcGs$T@W9y{iY$|l1TFgon%Tfckw#S;}TMG9T zNvhHKV1swJ!|f-7PQQ^GK(m0SWBkRO!VA$;z8%Ue6)*=ov*k2g&tN_d9#GEsMvv5X zAZyv9_$nhe|9~p40*OsYlUpYCV4~(}gt(UR&ieOLewaEq&^f7O1|KWYZ@VmFfzRuJ zWIL&^TdPSqgcUO%JlA@q|N1^I5AZFriN)c5%V@cKEE5Xl zqF$UHga9(D?;kPza=McB+mld-pUY+#;>NC&)$NM(Xq2K?5%#CIn4|r0%jh+!fh@I` zW2FFU2Hi%S4UwsY$B#heaTsrod`*^2rJ5`~z_ zH5-1=MIv5~^8lQewI>4RdA9PCOD$YHC$DyW*^Bghu$Ko1rJrC@Lu<{-0jFtxy>7o| z*YB!(+T!_oNrx%b^(6iwM=y2Cr-%joD~P`yaRYO4Zep;pQwRqC>kI9 z5E5Y=Qb+MFB2?vzSl`Iroq}u|{kh8m4*7`~$0rFgcOM$P`)O2GY!)=#?RnH$W_2|R zibbVQb2`=Id2v?)6p>=*kZ#0mBAn^cTvRNg#WGYoH;7d?ms9qQGbGT=C`yCs6Ig;~ zRe)^VP3bY|((y<5dIpXYi2k=e72By8kOf<8LlQusZbu16+V}=fmEXis8)OCC{1KQ1 z8rgQ{_Vc`=0?bq4`ewd8#zLb$KX3w3mb^5fpAp#$OfVba2UavGi_7ED7v@W0`m&h8 zF5{BTj`1ig3txXf`+yoHjw3CCC7y*MqB&Ab?o@P0m42OW(*=W0`o>zu>MDafe4uN% zhiw_X$7c|%R7YnaiWb1#12?q;AF$c(oY)GhsS8EGSgM3H$1@ypOZ2D7r|O@%1NDgY z?osW2{Lm)q+@KyR1EIl$Flyo;lPSyxmjwa2U*rHq>b2&O zw+W1MCB;X~E-SNY2J;sHn_;ceu3^V^ zVIH$KOeTX4fcC+_xgXuis-Mb}!h-N2(QVkg!qirSBjq1(`Y5GD?fTUgk5SPEdNM|` z$}{a1Ts%~`7f+i&pL1Gv#ejx#(KCoYwp~l!tgDHX#h8GM$+j_DoSnnPG4rfY23<9Q zl0%ET{ww!XdQFP?50R{9I3GrctldF0CX18L-V**^t( zE)R{}k1L1BwUM=&r(PpWTr#f)E^uV2K&$WsDXq@5Nc5iy$jW9@U*upRn*O8e*qrWk z&LFiVAW-&LWnpyH7!vD9dP{4(sq1-Bq_2VM9o`G~#7I1DEpbkT*t1zPD?DJl%?qJ^ zm5ewLl|0^xC^j3UZn(7%-lSaDf7QL%Y4K~md+9b+vZ5Dnq5!UtPC8Zkf=t?KxInT^ zRAFI~{cmDciuqIhEe4N2KPtW~Jg>r!r#Iz)X0B=$r?E(~!76?$cmPgx_N+ovp(_YB&@MpfK@;>vR z)ojocrk%AWDfX}ma%F+8PW|w-KiZ<>kb@M5;>uYY)?)jx@$gwx7|!s=>z8~(CaNLG z0HPPA%e%^N_7t6X153NT(3ed9Yb?TQv9?q#q$S*8g#`7XS3a-$ zsmv)<1C016FP5L+<|}`H;(FqXXXAp>x3P;ThcPqbsSEBdFy7(tjJ!gm# zBqC>|Io>(;I6kt;eUO(IMI^1x<@uAo42GQjUxfSLXKQ@r;8Ci?OOT$!=MlB?{vl0f zmD0+im&RvvGt%~Rn3ENr=r*Gy}F2S7r zbZWx9!Io0w*+DPhU|*Rda@<~p^!v?C&C>%L|9y!j)nBa9FN%*NVCp*)wfvHf)OusJ`I07{YqbdbR}bh!Vdq3Vb?eM3*hkNEF6 zMEdDXja>Lbhi)N!EfRS6 zm5E3*O_VmLU9s?VBr!UMzBBd4zzGF9=9ns%=_76hYpjVn9bU8{C=Ku|eCJ{*Evw4% zLNxFiKYI%Uk5%v6oB5L2%^##CUcDpLkiL&{#M7A5NBma8#-f#N*wMunH`=XQ*}1F`ukw=$Ls~|6_dAYvn&=CHPu-`9JE?kz zAedAYwM_6pUp=yP&Ufur{C?r*@xuDe%eEJ_4nIhpV4*wiC6}m!VRLy?Or{gDQz2GKoviadJqpddUSW5X=ZPQ=RsI-~`|i&(ubm?C;QKlZeD>BKK@9>X zh^=hY@P`s&P5ctW3})$L zxh6UJM`e`0V!xvKwbwc>%%AAc5NpgYV~bRmb<@$3V}z)_A4l}EI!s0&AyO+RS1ff(kEFp z$BHy*TaISd-?$`H32=>+)dTans?@TsbVoKxEGxVzO=t zAm=i$ej~@+cWFjiE6TpO-6(1s_DUgT_ z?BS-2A;X6xM3~=Gjg7Nc8ogQz&V&i7We?8Mpq>kU--A=^=9?;)dZ#FNj!62rl?g^sPTX`-F8t0k z4|7Cgrgfu)vW$FSJ89dO!Q*mz*Q3g;27Mo`NPB*>rn$UJ9QLEf5+foU9&Njv=W0Zid@I9K;xBu%cPmsKz z$Xw4S8`vxWA&Otu*gi_YR&R9dQ`3@C&8dD$4vYF^LoMO?3~Dw~k0Udf4!s!*lnP|e zVQIA1=riw)m-h!2TjK?g#okIagK<>xetk&7Th-mY`Ka}G2iJfs5FkoC+oG{oyjrc+ zcc|d3sRDiC{cg*2Q3fixVlmT3dFeF>dl&>8tPg^=7&1CllT5^Oxir*Mhu!1W-kIoS zP|@X}(SE3remqu{{%ag@u$5hYcErVJ1Dc%%tOa~{GopoB~cHySzHk<5dOY-<$P z(;zcXc80Bqxa>318H-s%@pDy5D+m3xQ+dkBgb;3dX{Hv5wIpa(E{AMgr~sz+dvH@@ zQ{`LbZadNW5}ju7lf3dRFo5*FkcTpt6k*#z1Si`QuOKAR$=y8bsO+9j)?Mwn+}fd- zcO0%cMOG(}NS+kw(f08jXU9EKL2)|cPBMCo4W{KYO>ZVcT3OI>T&0IeW|3t}d?`nR z&lep+a?7LF9m6C|!*4a_4|R8v0AZW6&*|4&4Kir-P9&JW&Ve)h&>D=a*W z3dgsx2kNrxr&5`Ad3TxWw-a@ucv0Foeg)IlY`4%{aKiMQ0s5>}?`5MWS*R3lB!m5x zJ159bd`<7XNqb&BoU5Y6^B#8Umn9u>mB`{Y;-BOFi*SQ1?f+5W@Ey%9Uq8@#^JcFAz;Y;3hX%xVTzDjN#}J&-*M_j=;4zx4ujGyi8S?NCzsa&cqr8I5dh*cKL2=qA@ySS`xx!ej;tt$?-3sqA(`rY zXqdfP#iL!^>_ruD7h_+IQwdTKW5|w$RvNx+mW0P4D-}BdQ-aohn`?g<50x-(8jrgB zZVYOeYV`06#w5V?ub6&SlM8;cIwrKc2ZMya$6!8CU_RB5h*&lTkp7&gu&G9(bO&>{ zqlQwwa`DT|vsFk;c1si|wXi+d_T+pO{tX0};dwwTib?nA`7dXdqWu-$oStD*X4!2> z*ZqFpXtCI1=~fx|rIjz#?GH0|-&}0Ds8qU(3!J$?T{ZHi^B4ta3|;AP_DlJkOq=AHA<4;KAc^-4vr7hr!UcQg^{#s z1ZK;wcUISe45Tx|d;$d8l;`*o4a(!cNzSklolK`%Cin21e)ZfbOqsWyfrTfD!?h5l zXw1D4e0k|mzKGVv(J;!wkX^sMO>1&v^qD+JZJGxL<<(c=w{{$3(wwuKnA+4SFKm4& zKe9=pQ5^8}c`JJ=TmCD$R!7t#pkY=#&)qH<}?vL_bI!~ohOi7+$T05PXC&6VPuAEROd4jrbAwf zl}I@Z-26LIU+xn2sq)YIz1~Fyx=_vW=5cIyNV*X7Jz|sijHfCfZiOH%Y_j1`1`N7R z^;MYNp^wCi790XsPq-4J=3#>RPGtNi%oAn*R@Faye^iMDcSHb4Hb37>C%* zSw%5qzT-G&6C+2i+M$xD)t#Acc0T5)+OfPsWB)egpc3d|6!eC zuON_EU{d8av4O8>;vA|76le>IIQ+H0)ZQ+_<~bXof6Sj&)v zOsxWCvvvVsv;jOT6{=BbXrds9=k!v}_(q_>Dj6!fJc@QL=EMk)j)Rww75-Rlq`3Lc zOQ|J1Q*f;9_d*LncZO|EZweK9=L8uWz;Qw(5%a1j9WUH_8&o>0bEnY*6c6$9Fq_IR zg-IcYZKIY<8!Ezb->5`$P0Tb@;08q5aLS2M3YU%jt49tEzt7BK^mzDYbpXPA;^U{D z-4?=sWgJv}at-3a(&N@dtdP-_=SqC-9Kc)`$ZP}t+jPYk!;hZGmZrhL<6=0UXX9po zH!&8Mk(O^>#7*7`MaAKBXix{woAg;sB;!Yy0a9kY_i5rq<#oz#qTm?O80FJEN(qwo zGcv;CZZkJWn~6T6&wL{bRVyM{BvGN-w_!;Qu4-dHwSl{{6f-MkT>h>3@e-{>5L+&1 z$1KVW+Z^LWr=X?ZnjqEQuklb}(5bjiBSqeo^A0}RlQxXc_n1UI8$b5Eqlp$Jk(mBX zD<&k$rrL~6inXuaA~-`Zb75RDb7;JV3e~{GME=P0zFK%P#K0+$U;lbQ>-c#CDm~1@ zn-8*%cnCFI)PH^uM0IdpUWP&?rz6wh9Tf#e;^m5jnA#B6%sQeaPNbs_kd$c8*N0gg z6AvfHb@5I{B6Sia%G|Ox(<<0CN@g?i4t~e~4te-boe38fNnm?u^9X`I6xLzBUkTo6 z4cR8Ly-JFHtfg35!GzbF~j9?^l)J)sdsweD+Z8 zKBjpT|4#tXF-7>1(qYTIB&Y>+lRw<|0g1nG&-ctLv4g?%k?7FZU8eef zkz)>?MI<`(4@8INgtxF-e}qs1^SspS-(Vk{1Oes935RE*Vx;f12@g-@7kXX)Jp|Q< zJ6JFt%p|LVN}e;GOodBF%BY`p@H?L(v-aa>G?n|+UQmlu)R)+I{0IMPke86tzIPLOc(b(`)3*aL=K1@ab}OJd#r!Q)xASj#_tEloCp86 z8$p*I9P{EuQdOPku2mgO#t&FRT0APqdyH>M+*v$?>i>zPbc45T`&5h${>(3g4t@TS z(PXwW-uYLx409NN8swixJ(rNT6@DPIPPhL=aoQpP^`#>gXX z|150y>K~EEii7l2{SayL)qi3@vk|zpf3-vJ;H#WRK0Hl^ak)GthUvOd(*KMn{FFi* zP6Fre|0WHylCd0!A~XHU1FsYe;YxOXPG|Y|7iWR@{_t7eNIB+6$jR=}8~^KO9Kc9_ zOOmxxr;thc7OxiZfB$E|5k0t*!Q^6JUPHK`;8V8)TdD)r(tm$Jz#rspW14T){F65x ze;K~j>y8@n0?qe^oH&?~0@8HP!L6p0^#o?CS>kSCMTawS^zl_dOk z>;3zKUeQyKNPdE;44H$FCX3acAOC#ZKk#t{H^);{7hT{vI`03o`(TN{)z8L*{`4o1 zF<&@VN&fW(6#g)6)a`Fy5P-$(D5?XouavLewjFp-{rwpykqwCo`RDIQ$p7p28!5Le z{|Z0VbVJa-p_tqTh_#m-UlLq-J4JTQU)Yp(MJ?nqA%uM)*e~`pk*f#&Ba3;Y+ zYbEt_<{-5<^#Qz+IMzXhJStCv4Ep~a0eT+kCo;^BmsjDnDQM#3|NcrP$f|-ArGs$V zlgOU*+2Sb`5`tx*h{{g$61-x2G8KYc zy3ZGd=l-2`%K;D1=NpAb22BV#B>$w{_9Jbl3Agbm?DT1=*9FSbu#$5Alr@|Qi1G^te)u(!cq0Y?SiQf^f$(kX)_BEkw(Cb;B29RDp{nYTgw5go!dPU zCC^0>0o^%20es^RJcf`oXO>-{u@6C?Zr=_u=0<&BD)5&5?7i=&%WOLM%79By1=BXs z+415G#*^;IZSp0{-aq)9@Fbq2VoQf>aH+ei=wBcG@BQ<@Ux6rU>|5HUA;`0zqeKkX z2VkVzX*vhy`p!u2W6mOU)@rdR>R_9n;j@~AWHvx1AK`rwYTb8rLccuk39#0 zg`SD4ZVNjFk0TuBSv72hce}H1l;#2XWgequ|fr^z0F$)VwTDD$fp5Atjs4et07u1kP%nwwbN&O6`d(%@vzA?WA5 z_ItWHl6?{ql7*z~dW8o7vn;qN^SzNWE$T`DQdZH6ubi`n@8T4vM*gq!jmHk&dl&cS zwmZzp7QdNzjE2OWh%9!={G6Meo$aQ~(*=b2u}Zf&Tg^aH-aS=$Fg$uQ*Fwu~U;G#X zMjsB`j#URdPtJOPG}-oJccvJ4I#Az@`D+>fLYxlINBeEAa;`4{Mr6)Oeufi#aC($B zVA41UK$5KlFJuW44TNf#hAsB3C)V=YQQw$zs_rV>k|9f3;p3#7Mz@S3*f6mo| zMe@-Ujb|7sJ30LaR6iAni^M#zHXL&cYAcg&L%QglN`g0w)Y7uAUCyhx&wE7u?>`}j z{~{g1iL%5q*<*~N3_=HVtN8rsMnJ~k09+kcz{R6v5sx(_i_~32#of5r<}s3r`}_DB zZx1Iuxdx0*a<}2W4uQ?gG!im7wOd^nTOC=NGo*9 zX;9@<^+%LsD*bf`ClemS?$QMakIdQal!JU2>(;NzN#UU4J3A!m=F1!rp5)g5Y3~J< ztRLv>XilosWWwWF2~Lzh$UDG=z=2!QqHb{mxV04_R4j%j5iWg~G|utO*m_G_d%S(~ z=ABDeu`5{CIKb3S&pX0Pe;Ut_U)qtOGBAq3aJ!CdZB6_V=gaw%95b%>A&y@$^mEQ= z4d7hm1YC(4aBShscwR{R2X(3|61|0Ndr?1tEcvG5-3GxL3|*Y+14$+4r`r8M9+T~s zG)0SK*?G2lpiQsHR)Dp?;Yj+n)pnwp5<=a+t2}gM<-`#G^3ye?psGE`_&o4vT;mFJ z7-!LErDZm+a-C%!`VHKwQ&nWkvU`5NcAJWT+43@S7uioO>p*bYz4c`QNHVV6K8pbf zpr)Jcd=*jiykZS_nEG@59o#mPVANyboa`BJ_DBoILZnNbjTun0wymgB=OHC$-1n<% zKuzr=JQr;EHU2LeTGfr8z6^A{?az_eS_FYI-|Y+Q$$I4Z&u|Vf z7Eoa%LS`!OXbWN?NT!P2p}bx`W%KQI79?l@ zQ{3{rmkPt=aoDq~@LPMJtBe2xRju&l5m=C9$v7I}&i7cQnk>5dqfPA{IzBfRR}h*n zc)Oiv{*_VBt%OL|MTAw%CeKIcBHG@7@Qu>7xdCKWbKI3h!rT&E+9MY3Tp&KyDe@pR zDL@v_v$YMHs^I6ja(lnT{2gHwR#zXWx%`l`JT@VHDwEl1p(4rV1^v{E@r#rm)#-1#$ zXi+1^NsLkkr#1L8O0t7MYtZ~_!GFJsDXb2FSS{4qO0yNuY;-Sh|kJV%3V77?lKC_J6My*xWsZ*k@#UHX{ z)mEg*9vEV1I_^tHOAtjJWo4%B_x^T~T(|4oJ?kPOYeiJos4ExR7eN&R2vf6|$+Lmy z>mWc>Z-B%cVJRXZ57cj-968JO?AbH2`HiMF3D5S+LGl=|2<*X$4g5%%O%sbb$A%M< z=f_zzF@t&l)3loh7y)X%5u`7I zg2>lNQNe4Mlhk2&FP(&a9m#RNv;RTYgQacY2in)uT2sU?I!i+Si;g*68&7kr!d=89Ju!r4AF`({7oYqR+{*1sA{elSVW8T$klb54;;Zf5UV28IxB|t#- z0C>>O1##ov18JZA+$C=w0h)6}(ho#=fq+Hh4vybH#K^P*jR%q1BWa`9etbCggmrxIziO%G===c1CH*WMK~PxsbXG6yO?`(?7Bpoz{I(Q zi>d6VW!Nk(CanKJlXI9aTpG@jCUd;Kv>CGYTVD;36Sa)AQbt2`tr3=is_m}4SeNn! zR|kmvtIqQd$pgRcm^yL-N7{_92~Z|Ob=bm2v)ybTng6$n`=BxVqooj))yaJy>LJ!k z%-T*S7c1xS2IzWDiWG{GQoO|EK znHbeDM2u(a%nUIvdP2K$@*YJYkaXH{_o%SQCWhNX}K zt4xAZl94g?ydiaTL41NJ`o?peV(QF2;&^3#d~G%{bzzfVW=Z4SW<|$yxK8}ZHfoX& z;f(NT`b9P1Q+WrlXNVr9Pg6L~iVqtnls-VIE)AS?bjpHsjOIyCR;79q zb;bp=wG5%5jXZ5C9QWQp4fP=KY-ot3ImK!`N|Pj_7Im0|v->eGPD1*`MuPy2eL6wV zdb|%y={gnb6g!qj zIvnUc-GfAz35{$rE+@0Z1*oRE?y}%Wq=}zWik1+nBN~_$NO-6h>G~}Mb{71*DbaV* z&-aI-RL@vLDeV-b20Qz-)Z}r*07KvT_xFgqd&G@ng~WC1$q9AuRPrDG6NnoTpeVWq4kwiRY<9KL;&`>(D^Yim+Z{&_`3Cc2Sx+HwS1$lKhm{v?cAx- zDeibT`L66=P%{4mG#-K|fm0)PXpNnQi*4)NwV_MC;R(YVE$#oqmMP#j6aHAe;qj4* zjTYy?lGD8>Z!X+QdYD4&@p(?mNP7LPNylje89&sgY*c`2lG;o$XSi32VpNawq|6J!^l|<$9yqdWP{2u3;W* zRW{z(p_qq-qKm<@Bw1AGR+R8-DjZKv2P^}$)7ZTaCM_oDG)b0{3s`wHDnm2@rH%wf zJJYOgRIiQAakNhr`X&@VChnF005iz~{5&xK6sJih3MMWm{NyA0 zj(*{IxIo21G)gkjzN13Pp5Kq`H!7-&^!l+0LG&W=j<`d$|6KvmQyk`~f@~upKT(BK zcqV;Tf~X0>N6C`NoY857Y_V}WZvEalRIAT0UFM$*&W zlqvsnIndc@{uTv@e2!9-WaKaseA}%#7p}>d<%oTBcDQ^4h>bS@XEMHAd3yKf``Efq z>7)gl13`V?nF-qE7FnnBzTNy6y$25UC?DY z&A)q8*)Jn1-zO+5+mfW5f%#|9OBTp75sxScXW>=UgCw-C?$M#}#l zWJN#kYzCJzHF6+GWrhJb;*!QWG?PAI2rzN z#Uz2w7P#xu8mf0$`{_9D*K;yxeM9quvu!pJ*<}l=Np$aN4aYZ2DpK{K7rqgz&_=xg zWnblk@$g;MX{COd3A#cdHj_%1qRp?YRtyT%oz>{sjY}!1oV(lWWm{H{I9=Pvz_N$@ zkjlsp8XvS0TIi^|f=%`^iB0`#lQ=GiuD+hhFMn3t)GYkGnipnJ3-ADwl73lOW_PlgWob%y)IGiKf0u|I@nt6aypi^8JnR z3+bI{yvVp-FlydOmsMed7<}??Y4|+6gbH>G!+0IL9;!jUjKVgi zSPL}pzn}*K#|*vvqFcML=b#QtmkV%fg#K6X3I7V%$Ii>V7NR&O)9y*Je|}Qljs$gHmeq^ zLF=~HTe)NO5^5rufT2M#dPjYa3{gDe-fXxakH10?K_vhdU9R(Ghb`$+U?|xjv4N$T z8r|Gyaq*s4D;b;hO((+CnEE}TddB+QQ*VVelW&$$e4e1~e>%p+z%JtUknHF&LbI}+ zT1cuz_rW3g-j}|Zo`b4GqY-(2l=Pug!>}jCJ&FG|ublHD>Z#CrEB2g+R;VAxJeZNC z-@Px#sgVULrn^?$txy;QvdSl%=8YGxN|zZq$B{=r0Q;7`82=g7S`?d(Jv6f2YA$?2t@z=*mk` zq6tJf*~RY^W^tzWs{NTF~Phk{4WBEP?62A{zmcy?wn#Mc{0x_Mr`V6uqp3)gP6M9yYWYvUHLNxz2$S3>|BBm}NDd$w87VymyHmwJV<2<&uPm7Ezu1^=GJL)Z$zD!*3KY?qT&>2Tu zt3LK-P7)(Ck7uQ5?_&QwbaARw0Br}?|rR9S1K(e`fDQx4rhAd@~F1M{F3Ut|R!>2l5Ih6-SP`)K`(K~YbpT7#t z7UM87XO?8*Gga0#LD!GH%?zPvjTenWt-JMmx^Q9W>#6e9erhGCM(G^;>p(z!t-vyl znSrDQc+;0m?Sp)0$wyf*`*^HFy8Sd^&25|xq;xbM3itG`XK`d>5R^_QUhI!$YK`9P1dlixQzD^C0tZ=gBZ;Z3?>#r%r^~tzB_D9?{0T&Nf|h z&xxNn_<8NtRP~)?jq017m2w{m1+ae>B=&fvsRyAx2H}*j{wS0P{V`3oQ+*YBT@BND zm+lmcP^BVVws|~3=d4vRd9%6?v)XTU=q+xiG}JG`uu7iy=`WM$es=|O&5M{5IUcFT z+=T$U!(Kbsm)tFL=rUO7=J_qS>L94NF}9!?_DuGOAnxk;(^0YN-0W?qFX3e`#@JAs zzXTeYgsKa=EX`T+UhZy+Uzr1U2JU`x48!CSajE5zo8)E&Volg3k5aJcn}PiAADjwk zkBMn+aImwZPVyu19eNBm=Wl5Fu{YCLYl`<#n5jb)4>?*x7Wc%&M3l0a!SPb4k3MX+ zG0$^DtZv@T&55L=7knbUL8^(<4uWni;XeqAqgpFsW^WwP4nin~*~oGV^Ub(PKV!OJBqDT>a1H?MsL^-Me|ERsOC za}>!W=!DOrnilN4z&}Pe%YxR-psSbR7}JqB;&@ov)twm?rjBaTEzwQSYAZpN?>S@q zjTpp6FV?C1T?G?B5}{XFrHku>pv_hXswUbwFn@DkC@bdt(c`=yZPBw$6*BM3$X?QE z(y6s*shCDG*)7MK9syKWp5Tr6n^a(% z6D*FLhycO_V@{wX2NGagtaw*MqpHIjVj|e5ucLU7PfvM*4(}#SVkKie1>8cxGLg;o z=!|A0E~8-BLKy*K+pK|~qWtyH`$ik}Px*#jPhHP62V*7GCS=*eXsmg~EeTeXLtgA8 zceIgxSd~^8H5T*5L6z8*4zx**k^O;uosY@N0}TVkAbO9NZUk_?XIsh>C9qi!P?aQ^ z%p>f@EEBF|Om5Wf+)pl2;C1D0(l1c0Jc5AVWIEiFp@o4MFAR-+LeUV7vw|GiJ~AiG z#ppbaKCrC!A(+Rtuq~8yJ-ee==#vg}jNro#^ZGq;J5Ujl;#ZfJ+p1BA6?WSP9+1y? ziw|DLu$56bx=mNv)om=5a-1mR6{c8MljRCz#U60(2Zx-?kX}uhMvamP?KScnLyGd9 zDF2S|HX>rc<}>zGYA{!9~J(GU^GTARSETi|Db{=mLz}*9+J6Yh&XE&G@Mj5J!Edj>X1*!Ywi^z)R!! zHU6(To<|s3nLg=pygS^dVU%D}}w9-~K0w(SdO-RH-&fXhr_M7^a5knRD_M#&f8Ev?AJqsqR*95Vjb8~KHx6w-;?&GbG1YW!5ED4v#`4o{o zWI}ftKIr(}1ESQJJ#9fDVRO|GX{F#S8pt0d5l{03B~*ExhhT^fWXXu_wLR4o4{JLWK2_bzrc{KL zbRkaIsXcEOBqz+z@k>BJ7k~JC$o}{&SP?fG(de~(TEQ}f1xn_T8&y=pJtp!|w#6$J zQL%YL_DUGkC6>Di1IbQ28lrO6x~Py7ksAZnDBcM%vK?;HWZZ7H=Wg}Vy}cP3ndrfF z=Z*A0RSH;Mss{QSIzo_0)NK>K@?IG5I8YH=W9=n0Q^V zB0VcLM+twGB6aUYK8Jvro!R%mH>dyfSxuO1>@p7rbE|hJO=?e4zx0jq?kgT3n z*Qwbv(G#cc1VrLq5ESI}s_e`zB>3JFfyUe`G1mKOEC@w(&XX+@)&JUYf7bnPbjO=) za)1D&tN~(iGRkjt!5xXyt@*a`wdAzoZ9v=5AfT9_kV46yO!L1XGG)*H6WL_UXNVv< zj_KaZbD;{O=biv!4`30PadiQ*^_D7zPM)7%{mm)l8IF|aLzn{gJ7L~&|1$}HBXN!+ zAgqMFqK8lYQk)(m$GlZ;8Nx_o%vXsN`B$zSz&X$G%xy4~sjv)ESznbTKd+WtR^xj-@8 zb>D8qU&Zoof-`=RQUB)8Z!;roU5z_Veg2&j=bt8KoI{2vCDT~rmpzBi3SRTr^!VD( z4o*Ngcs!cT0LbuntA2eqqXJo;({o1Oe*ez{z3@)s5H}Ex0DosPe4B>zq?gV%P4j2< z6A-J?xv=BN>_EU*PVkyv3@u2pVkq{C+iLN|e-;}wmN+`c zOBFdO$qp$8924m5k|HV-_vkC6UP$2>N+{T$Xq97jp^`O<(}3A>ugj&c3Bw7U-`9Xc z;ZCz(b#tiDXy4k8_LtXZ`meNYq_;Eh$}V3I*g}%k|Ja9h9HxCHM^1@m9#$ej#IR$P)i)5VVo%mn` z0|)t$8I=OF=MC-jRhqx&9-2`&8m=A6Js9s3ST0lC2PB>_BqN=j(R=lDXn&111I#ub^!xLA5{z56K%?mgqPj^>wK3pP7`AggQ{}^@v_vZ<7fUL>2St#E0U3t!HAbX)zcWxCB zbY~QIPYsF&6C?vg7s^Nl>O`4$xdOAmm7fDa^{NPq#;%7?H&?$A0P~Xv(2m2t{UMZ= zMz8{Lre21BRx|pP8fNxXsA%~Bm(@`$PLcq0BSIUHu(~bNfYR_hR25m0?E9fbi7}&= z`e%WDsM2aa~snA83>O z(T7-Jqc}Im_s*Jedq&TsPPcq^|P`kTwf~$6P|{C zj1)gl*3f0V!>iJm?nH{rer~^o4u|r0X0O+}ckw7=gMQcov+Xs99_%b|Gam!SfzzaG zs*IORVGk)Xd+*2ed*_0YIC&MWeH81?o44vDjn6gnwx>^Qemk?3`V2S7LV_A!vz2to z1&E>UqLAv3W2p$r5r9lxAh6)=US$Ds-{?5dXc#~y%j@)EX4dXR-+l-SO!uEp`||ZX z35;rScbX&T?HF>VqvV%)w^npk!Bu~cK^53&=F; za^HQ0_Kt0hPcBdu5q|UmZcC)DoPTN=0QTxoQhMM9LpP@zHAVFoabPAe|1ha@Un5ju$Jo z)8GqD#AIzef=mn)_Uq%775o5aX9%SB1M0h@zT8IM*l#im@!sDn0V3Rhw(*Q5=#u@s1_vwioITI^4 zGFZ*KPNFV9OQ@(XEGkY7$wvnXoQxo4`A>o?^@o0)z}>=t;-O{YcO7otba{6>4%rJQ zs=g-Zb>5(1@zA{r{7!^eze)S@o=D7rBwb7I&tCK6KqgL`1nH>mdjb(tE`#5g#yC(t z71VUYS=r8o)r#wO*WAN8iiF1gC~%XXYhqF2Nzy1p$J^Z)0ycwAh;51Ut6i>{8E$4! z9Lrc=ozoB}V^eM3JQn?e-O4Gx7)WqfUr6KRPAc(yn%ngb{a$50r9J0#=>;$4L)7+j zBaXnHz1v4}#2+BGxe$(hK4=sonoB)_BW_gA1uhJ;swElOz%=)|d~qaFijjX4OslDo zjjVd%m7%{!CS5h4Xn%xI&AEPsTqP-X3`avSO3<~vnJv@t+qzo@hM>iQ?MlnNqqh#| zw=e@Ww!YZ?N9s>cwE>CM`U@*c4Djlln9hsvON1!Eco*ZbU!1lt?F~7+*m)b$Yc3qvw877^&3*Wd;J*(mi z+QY6c7ONpMEl6Hi5$o#r&FaS{Sj^%*VNQ+Ks5MGeWeQM6=H8`0y6{#xRsc);uwq)N ze=Y_gvd#g-hY~Ce_aDi?gq92F%h7oQ`GFf;)>=ZRDJeP}*gu~EP3m$Lc-gteKTdG-{V(NqyC8n?reYSh%(sjvto>#P-DGfs{yy|H2g;q+kXMBSOL)gL6ZTW0tv3IvKOdegSm zZA`gd6L|tgh%1?Xw{awqm}t}i#ZVm6Yj&asR$9O_BJO~Cj9nC`oTRsr*QBH<-gTke zKbCN2W5RrVVX85zM?L5z`E2qr)lwiXcS_(;M2S4Np}Q^R<++Gu3l*s(#{0a$ zS*2YC%<82^l!u5G-8_a`v#ibjUj=!O0TgGG+(x^k!%sY5w;*|yMdw5Rro3gu@IddA zl~z;>Nx$NGgUqWpSLTMk8NN<`A3HjjjQ&1xMz-AqcIZR1u_%8p}Y34uY!do8@KHnEP==B-N>P>0w))SXzZD{eXoxjKW zdcunfkdNnW)g|z;)A#IH8%!woYMC3&SyLY1-5ArEj|I*+14T$Zi6eaPvB0}dekiHD zl2sYqWxU|8<^PrZwX%spMhY?nt-BPu4s6>iaUM|>-el<;LSmLca z`K8-^>;BjY+#h5W+u_b5R53NyiX+=7`3-Cg6F+PAKd*ud&gLelnSHCx} z{eF9)f4NrfbHLWdwQG%I*hm+`7(R02!I2MVLk4Gidp>xJkqbANMCUyI0y49eBFh8H~m5R>FPcH-$wA{7cve>AUaP_bM zn7?xHoiG-6G$sa47%EA&*Ym{3-qIXid)RE0=74}%HC@qaLKrWl?Hx=&x^UbuVAaI^ z_|#?Cw*g}t|2%1>>b>RVVV4X5>c|nli931rczR?Eajv`pc9FqslFtmkt zK1$jIt<-Sv;=%)N+40t{oYlTDJ;xuhV)J26gIsUfLNNI1Vl*u0*y>aktj*;d7(Yy&9C zahCKIP3y-4;TaN3CsU6&Thg|V72|4hCv>3oAJRmZf^gIM;1KUVleOg6tyq<6*K~9S z;NT9Bj^?B6$liJ9Lw2$G7BWV&-MR$JSU6`*rAnt1f*|%=nwU^BcP0wGZeOSRf8XC7 zePRh?j<}PVwI-K9-E;sk?oCi5lILyYOiI8WaEfiy5wgOmN zx5WHZwjaSxp?+*n74S|OSM#4%g@n-A3y{H7$+?8cUVif#i!zZjl?m;|g^1&}jx!)g z71x+iT0tDiamb(W=JllCV$qp51TQ&kFQmfiocvg-RC|h`+I)Ei4(ZA+ktJ`$Kx@2m zh(pUejZ_eCP|m}mY+7V{;nO@h(KrjJ7EG!J!Z>|4scOiBnBg2dev;DU&%(xJNPu?e ze0u5o7f)Gk!;VDGNxT5W{H;5D^j$2(Sj%WP6XeR$0y zfk~RD=!(J1%Iw$ewJw?iba*~fk6Bqi^^nNTaHb>3A@A_8W~t>blbQaS`SNT*iK_c{ zu;6hV&EKy9hRD{OKF$7S6aWQgQ%n;u6=9Zdm}s7hQ9B^5I)nY3@?t+qnf$jB>#`F={226kk-=zM>NR z6k(eUf>C|?!CWLb7s{6oiChz@28HQs^Ed9Keb`<=OwB*`ftWx~QN^^0GbCauAITYt`5LV`DnC1(zx!H}1jye&<=Rl4Mcu7*{M) zKGO6FwnG8iboxRtLKHd@Rmw@SBM9k;}+V{_)H(+ZW3&t4@lSD>%^#+i9 zx4V`n!sU2$K+Sq~XF>_z25HVb+Z0A~K-D{fFfqHQglbQUErM$&ceSP%gbJXRP5*+5 zmMp|hHP&uwL2Su_<%23tWvz-m{Ps7F)opFebU}yO1iV^D0<7;M2J|x6)N-LRs@~*H zGDt33Uw;+Fyd(YCq0lxla;1hY^+UI>gSJ(fkm7cWd@d*${UQ6))6y^H?&D+3HDGLK z{{eX-Ox!qvIzje2ZpFc}-8@2sc`RW|D(ttFZRmo-vI~*ko|!@p@`f_t|9J1Rg{TE3 zbwr2@N#u>J!PA3$**niZ z-YbO&m|WPLzv_SEoSI|hH=j&nMKq2FS8aV+2EKr*m_qS*rE*AUF&$Ho9dfG(2uc}`>#v}txj!k3L{?{Ub$@}?XK5$Xg=!sPVGjXWgRd9~^(N^d4j ztz~oR+8=LR-zQD8D6@&a+YrSTx=gkD&QZm{A$$nZR4x>I*NEA8y)#v?7A?;yTzA@uPQ6$CH}4 zsVfcV`SST@I>`#Ytv=IPPax9Fpa7SHFm$ui&ZKP*qAD>OsGaFY0;Yu?7l~f+a7j+hb z1dlze{(gK@?kr#qek@;KUx!3uIS`^DdPaKFxniMHZ}*2Z zlWF5v+9))K9YbVRsR$1eG->QPq#4e{f86uAru^Y^FXOl>nxswX@OEt-pBHnb{6wgA z=B`8mL{3WUX6G$Km6X9ZNvkmg>}Ke0Tiudsn;XX5IyXF+E)aQ+*IZvNKFZy2>c%N> zB(}$DS+K=OSJC3_#tEfuiedqcDvcR-2ov+QX{H;*?*S#sr=kR7^)P7-(J)- zg>z`{F-4ZJa=RRP^D2{CALNTkeAYOKSB$~3EP-RPU5|~uUF(jy_?O*kUw3di!2~)h zx^4=|mIhONOvss3AQ8h6>NRdDw9MqDeSW?Y=YBDIBl)v>&W4jGHLmu6wa*rqLR0#fK`lyaiw%$_zs6u@%XYr4*#}P?hxUn{Ry%QX zo5uZw350O{g3rQmzgGtes+3MY#UA7*vKBO`VTVX~X@uD)8)5LAerA{fqFs?VR$@+Wme$2+zi-ym97`wL5S!d`UXA?)c<8XfoslMTZ&mvHLMHp(Y14HiH z1_ZruAEUR!@TlI%#I~xPQak(o>nqdbJcVuA7$zf^(oz!ZSTIqscl#UuX%O-Q6AIsE z6HO}EUhvP%Li)7@46&kDyjr9GbTVB1(=X6l{LovWxbuboy1H#@pn_!Rzz$-~eP!EO z{O_-zPwB#*mT8wF`X4X<^O}rS=x7=9=DzLU{&O379~(2HvT43W9`xk@;WfggFp913 zq_;a`{{6oHcFF(fy8m{`f4k(r3+LZk4eWKorS)5=IB_ST*9r$@QSf(6%RsYO{cQ06 E0xrL~cmMzZ literal 0 HcmV?d00001 diff --git a/images/date_attention.png b/images/date_attention.png new file mode 100644 index 0000000000000000000000000000000000000000..a74071b3d97d2341bf7568dea24aa8e779eaba83 GIT binary patch literal 134251 zcmeFZbySq=_dbjW2#N}l1JWYhp)?!>M5LrUhYslm0Y#;iQb9lwL7Jf(g#nx)M5Iev zTDswPKlq9BU1#{c-#^}e-nCxVI)`zXd7eA=eeJ!keeLJDnu@~Zi&Ph}u&^#G-o5hx z3kwg0g>^m$9}m1E)Q-i8g+<6j1~Xy8Apq=YnS3SMt<`4==xA z6UScjCHZhSiAw+116*nbf*bLa=Vg%5oa{y9ns1r~zHG_>BrhCgzhDw0)w}{qvHm4;DQiQP!H9j|dSR7M9nH;s+lr zBH#2eci&VTb4E*o(hsrp%~q}{@0wR!Q$98mUrgTB6>k276>Do)Ab1{2ON2*TlIMJj zI#=j`OgqJM2B+YGr!3R!49A3P*(oWXh;sF091^yTQX(6W_o<`5&R7vzz_~9nTnKk% z9vpdnGUtBi{Pk<%JTy=uYR+O{!O7v)m2WdiP`@=9vXM<~y_kX?7D?N;hKj>wa(4j3v0UEDs%4_4?>?CY`)D! z(dTi0sy@S^_Zr}l?&iSSQ#*m{=H@L+SHHhyGVua8RXQbfaYC|^g7%!fly1sHuMvy3 zm`q_ocD`qncL|yCNb<9uUCfkfhM%Ktr>7=o!+)BOWyL&4Pdj}qp*t_I)*4{u z#I1JV*mq3hHArM1ejYb7GJRJ)FR)ajOx**v{bFugLY29&bmIO%lY~@s%Q5#YNr$GO z(q?jtgW{e6z9r7S5Fu=GPg46Y+@?=wyuF>pwU?sab(@pD!yAc1;#UDQvyK%#Q zuOLETBIk5|;vPy9;h*oOr@ayS^6GyyGp0h>*wmlNi_S0M9Y{0T zoNH}ldq``D-QP%4sZ-r}>D#5T;6NOiyZAI_^wrOZ&7%hxRi24WhT<>~-{pK6`GFDk zjPeCT$%`j<*&ak|G9R!|I@R7|bJokfe_d9)KvMaqWi$+&6S$ zy%)QA}svRG=)3qNgeq#CL z^~qUNQ}e#2xMs_zXPUFQnmJ2aA{pz_Gfc{HRCgsQA6~8{zk9dvaT+Zt;S>XTf~; zVGejP#j(W+E-$+?<$fT3OxnQh66}`y?D`ja`+m@7yv>%7tEht8 zsGj743Ypap#$9*wUl=p_Fe%BeQ2Q9r^;UGp^rmGt$en})rUk!~c^2Gkn*Z4)lveiR zyELb6RHi=Fm?|3idW`ROgyAHY*;GiXyhnYzUU|>Pb}{f zc`YUf=Ft>wHRqh~XyV90-r0|rnwY=CUnnJ`DRge>e6p{zuSkAv zkTWb=LA|2C!nXonu@=XtJx9ACt}ia>TkSjRv$AoBMt5?c?X&tziW4nxEh?e|rX43c zw#Jr5=bP3Qw+5$s=IxizTls4NzpNKpcZO$oevA)E^#moIps}7}**1QDwBw+fg87(D!D6fH8Wdk-?e9D5EOTp`*k_`+|$-iGn-*mPdW(1 zh*d7dTq?X6L}^CC5M>j6hpCBCM}91dKjxZ(kbJ0($|mZUA73J0k9i=q!gUIP0^gB1 z-PVD@;;bo37mZ2Jmb!?m&rHaJSU$7MBz{ZGPQ1-mEW8%*!1RI7gSp-Askun0w7ewF zdrtQlGH-lzP?}FB5;WU-T=1NmB!a~_%~Hg+&A;p(EOh?p z8nJP@T)`6+SI(WE)H<6#QTOv;O=qnJcPzy9bC3J#=K7{JYz)RBQ2nI-%SE%8XIweg z>QICoBd_)(IYjOK`lLM{Y^Pp#Rk7=2DE@d`$=^I@;s;Da>_+)ZbHzEqF5BF!t$R(G z!>%tz6swed^nbqykg;MuP~4^;XK4^UY1(X_Kd`oGC+e!??XjAD`C9c-$fdy7Pr4>M z?2;YD{XQ>Ua66oHNR4P$P97HSayRa-E!bn&@ZwD8Zqxtm_fFQ#XJYt?;-%yW!thxN ziG8-|tZMUKbKA8jIpYXn?iPv&@(LaoV}$3|{%e6>s~$Z49{#-xUW;&(5<52B+i3j0 znYoNMOmfs!G2}K540y5{PBTL_gF6$WEnncEi`3UbEG#du<#uUDej2C@tClbSSi=7v zVVgfVG-EHNLy%jbbwP7gFRQ`nYxU0J-Xf3l?_sruZc~f-7S-fC$xcpJ21nE^)HRBq zR5Ayl z6B;}FZ9B=`MBAL(O4e(P&xS#QS07M% zH)1WG*Q=KN_68CfIkE~|3sM`%J@Th~zicJnx;gf%_G`o5lJ<7KPQ`}v&iLz~q=yyL zsrz-|2m3qr$3@2$s#*4P6BmN7a*Id$dCw8Ac1N^U#YlOPNxYN#d6&7RVTgc7Pprnn0 zlYp-mMz4xVRtJe6vCa4N9M7jIrg1dr2H74{9dE5jcQ!tH%rV2BicQIB<130)SaDuj z74OlxaiSjtsD{^n5zPcW2yP7ef;vh5%kW(G)2KsOrxUIz4=4GCnZp1oZE7tL%fpkF zJM?Ap%F>5OxlpO=U!DdB-@?O+eRFP?k%sb@i4^Z|IL8gYOON_&QBv;=r-QyJUvYIG zw2|6XKgO+^bY-$?XsiP{1Hr?)dTv-)F~iF4b03*IifnzNm$>Be$8Q zvpJmG+wmdzG!~Y)w8w;(q!qvS<;dU|nJODoX_cjW)|b?`3=+hpua8?(E?%!N>^R=s!Py z#tHYf{qLQe-2OE!FhL&ZFFbtQygdK8Hu$PI^scCytvB33_l~V2+{q2xLz3^7z-{r< zFZ|W_n&FIf^oxTg!OY)*P&wtil^5PX(i6GdH z>$Z1PHNkIeXm7yI^@9Jg{`n2P{;pKz@<|s9OBze@j*O=FxusEp6u4FZ%kLmBuDb7n z%CaS_-yAM~Pmc|I!5X1{=Z=daso}$~EHEjvh)cPbB5F`cQ$-RbXMQGtyYb@jV*S~9o?Q& zSy&kRBL4{M95xO<5xw+3Uzmmv+`ksDTtw?tb;c*4?>u>w-Y$*l>;Jmot61z11i|1k zw=XBYE|~}C=1bvg7(d>qOHLFYH8a+;?ZQ#yvoWh%Vx^pC(jdvtn=EMiptPbQW_Z!V z?2M6^3gY0vGv2MF;NTJI7Msf*{!)+%A9kwA$43th4ZSZZDZy{Y%U*CiYp&@s=VbIk z)xwD>*@9DKwg)U?kXe#jpDJhH*qbj8l_5W|sHTcPP<}{z#szp8!2LU4+q?zM|IFl@~utYBgauv)jPNUl-pnhql1a%$TR$NeYaTDjVn4P^+<7^ZZ(EtqGI zB|8yiVDR|K@s6CD=iW@xB~)12FzhTVxQLIsY13M>WOoT4l`|@(uYh?bQ?k-(!jk*l zT9E?hWCm|9swK%{{$K(rQM?wyK+x_zxZurw{D()FH#Dy!4TfyXr!EB ztEKextoG-W$*`Na=vk?q%vxD6F4;M3;t>9fN7A^sIB>EhQe{Srp9*$i0T=NyS_o+g z1v?|Y`Q9F*xnc$9KpcGaHd>kqOh`UHo&n>H&tZp> z5XE2aRCUB|Vgy4V*S^4f#s>}X@loYJe_sf;121yAuj7@U`r^M zZ+G0pc*S5oW^hA|(ad5JIq(g2-yx4P&ZrI833-k2DuPWWde+4YEojVJCvA!k)dkA9?v zssvfCc0RjR{7gGygdYd3XI(YJi6Cq(9}hh6?yxr|S@r4iGyfcdi?pBl9x3-Z@R;d; zwZc;xrU0SVmYsvdxT}A?_x>4tA^ag{Q^^QF5&E_H^71lL(mF9AhOh(G=x}nh6Vsz2 z#uY8O|7*Z5H$S|8(Ut(UFz+36)|8@v?b=+YfnUEgUDsN_o=`|CGnf%0ssGp<<~id~ zyk0!&IgE^i35374R!ZWII#_Lxq7B@gFz?gDv+`*`gkF`rE%`h6YICmfRt_U)uEI^$ z+^i{yGvJ9=5FC(qF7ELzoJGD{3zd`M9Fxu`+s;gBt0i5MYu}UV1&#MmIxS;H|vkL3R|xR{th*N-I5Y4>^9qOE~XbT!N62G`x%`HK6E{g9=$J>i4!s#eGAaF*nXt<;02pOD4NtQXl0R8whZseH)IJou@|Jy11+o9S4dSKB~N>TJ@h3 zn`#&6irm|n+Y!sXucocq?|0TIv;o(bo%+Q(rAwcr+^*mx!og`BJ!6s1m1JgE@9%TC zA$8*BzaEzsnUxk;oqaOYUoYG#wpu$7baKR$DRkCul|s9<?*^la59eYObVXb-(S3E zUt5R!y`%{`Tw8k)<9}lttfY;z^QuN;BtlZJ_AX}7#0k>`$M{3a75Sf6v3+6?hE8iF zX}fm}U65qOfk*qVgzU9b{MWy_d{<;a*7|IO|6IB%bo~3i+V+J@U6@_yqsE5>_^2?Y zJ{Oi!Y3`az&*h=Y z^|3@y5MT_?9yP`SFb<3F`HX+Z#TjAf$=6iu)+xeLe=xdA{!Xv+rr#9xI3?Iv-z9MI zqt2U3vNEq<+&OE~CScNsEuFl)Nh}|8BfJ z6)7n&MQz0Dm;I)pu}<7Qsqz~xELx?mu<;BRWNCLH3n8S*4919Fp-{r)Kg znmYo*o%J#r&jE(9y-u$dlS8CQ^Wok`#Lv72zqka=5X6Hosb@i48i2T62O1x20!#XG z|Go9y*;@^;Bx7IO5s!YOVzZ_&^X&luFSFh!2jg^pD^=F+o}R)V7+LL~DKeaOG+4n% z(|0vfe_{KmBK*bInn~71R|9X=AI|W!E?11xF7_A3LuU zS1LY|c%kVwwTO`f_ z8BT`0k0AW&T7^teEbkB=Zthl~qsdD3wX5Al@V=ZlTrPca) z6GBLgpvfCn@fXyrRPVN1OOjNKdK&P>IppS-hxa!eZ=GVtxeM2c0K9yDY&p-#n*1xH zV~Yf%lW4pPf;{=Z21QzG8)rL`BVJodf#sakNZZ#e9+|B6STtYEuZY&Eog|aHyA52V z``y0~&DY|i_86wHG2@XbA-H0TG>h%zuZz?70l@LCDtgXmCbcx295g6|SqfOS0}BFX z*$@tJT+pgB1qRT_F1uK-z*tX4Pd4%*W_N}aECV(Q51F-ohp5dj_6W+sf(~1QBGXO| z=Zb+tpG1I#7`_eCtB6=m*%J9AgLdCb6x@;EL`V(|4G6PqDg<;VEhB zuUtfW9uHaJS%ZH^2Eyp`1>SWOKgWH zX_kATS43GmC3Z$`AO3E#*x#J5iy#fUgxa@UJIgpIA3$j6Dmvgz+Lpfbo1dD&@`){LevQi6{oW~6NSi$E&Y<>P38*evmU!e(I1HhE2 zRKJzy{*nWZDKKyOq6&Igkiu2mUl?fMZB-0=jY_J{HFF2vTn%ka}YwG>B}p!GX_vwT^j! z(&;`R+1{|SBck*KdtXE%cJ2(|z?XR~Bb^=s%=@Be_)X0A*;om(!>Af=51A<$;HqhT zyM-{@hjcF(z1Awja`L~Kmp7QVP#(aQ@Ry$|3hBgPoJ{vnn6HNw{24mcb6LW{X3!R1 z$_>Sw9AX7?ft@pWxEm@h1YY$1x{!ay0X z1J6N5oXje*EQ;Ahm6!Py5x+&Vu6KMO-1Lm1NR&WbGyrM&Elt(a}$9QF~& zMfWS#t^}(?>rPcia>fvGzz~(wJ3T*HD1hbk+`p%E#t@f)b+tH++wR?lc&@2V4_nM; zqXq-J0k8f`7XJ`z^#3NRBq00?+!|k83)7vmOB+8Z#xc@q4OLfHhtF!}8wJ4N2I%eW zt@{2qU}{2hnS#N@VAZ1VOX4tC0A+lmF1{9?M{tvxNCy zdR2uqULgoy*D)sEd(gE)y!0{5S{Xp@o5lrhc2@h&TrXQ0J?9rKC*0=|t~{*vBPxp6 z84&A3=E;JA_4x)MGmnj1M$gT#i-U{Rk5;jXCm!6FB3|fz7JYCxw0+SvB^b`7jXZ#; z$V3>t!&ai9G<|9BW>ozHJj)qlwZ7~WR~&goU^(}Gt0-YuPXb_vB)X$=0w3BQy|1g2 z5ET<^l0d!L87?xDtyIu+bJD9OY(v$h=lRGA;YUIz`A*f_$bVvuv=Ug8*#R7QhtC%G z+dvSNu}2*l{TainPE;2`ZdwY&;t*u;r zHSOpcesA_2tqqQ0y%qamkxvK6f*c`TKm7ad0JrbZohwND$E-{_@ingnl`d z@ayWxbcd;ysA8**H;kq!q8@gcM>&-7GnME-E;=n5Klokk=qAM5(>z4_2|!1(1wv&E z(DN-unk*DScn*q&Y}bC(8{&};)^~Px{`&PRyLl;}FipF_P_I%sP0~oMubKC&B$xG6 zLfX@tIWfB34%W*}kqF`pFGlQqa7y&uG$Q^n>PL-tFUEhCUXEE|@;M%IgX6~v_yP0F zO@QtC;K3n!Y6LKBAo_TfmvtxlmWtZt zh9Gh_UwRT{gX7R^>WzVMPk)cCbrHpWuT-uCMW1OWGe{nl_nU5BXC^)Gi@U*N%bDAp z!yKoXh~`}YU++4y?0;_G{OSqYo?m+); zfAtb-;oyg#4j_aW<3+izB-=c%*JV8|aLQvno-_yH&~u2Z^% z@{JHY_S!QDtSUS@8v7m*CC09pUO6}p5)})GmIFjpbDXLq44udoLB^ro46Mt%B@)JG z-I+3A_LL_4sQtA-#$hW0CMlyQppU`;V3ah$>lF<{bfXGc%obC5A&Adgap`#;4gB;R zJ7sAg9a$`}Q{fFh#Dd>V{5O(y-7Vxo!kRq@}_{%a8?k46QU;rQ@ zh5iLc*i0gWvEwuT@A6xnNr76IP$(Cj@*0%qVBfm>u!@Y{px-vm0{(Q;v_*^r`CN*d z%4t=M5V4LHs3&ll*fuLhkQ_GcPX&ArA0ybS%8 z%aD;JwLyA;G9XvgY1r>|S*e<9`SRov^?rj04*bYHED1y01D)SKL+ki+a=nSh?Z4TA z&Ubpwe0Y`ufST(RnVVmLA$7@WEq^ccxAa3R|9fQpesyat)Kll_cBQ8!zPct0SgX{| za5+EUsap*wUM#2~H`5LDnTb^9AjNaYRxUl! zgmMco&Jr}M7$W-YFliX!kK1U+bHHz>7Hcez@^#lE#KtJZg^ISm8Yva_lIa1H8ecT7J~4=QCX34pO{JId=F zf2;wN=X=LJKj(y_oZA_kM+g&it4&m)?_5W*&O!F&iVoIXmbp3tp4bx>na-PNILXPB z)G^cgDn;#2+_k~3K;dYK?SWVP@Ox_$g-_U}9AYH*ZBkrOY*0;v%mg8}T&m#@RxwiQ zWJ4-uu*AAw+h@#8W^m(fEruFVx+?_V*RlxTqXK#xQJz{{tQ1b&>IHTNEmt-=h>`uVt94{MhY=t;Wc2|C8m!b5B+khVuO?0`Z-wS8{^ zplYDfMzey{ezz{5mx{%wlE*eb-UfDQF&?m!e-OkB!p>XQ1)u#BkQ+B}a>(N)3WLe~ z7=qk79=!){3HfT@QDq;DZn2`6%rE0llw?lxL8O_3`KI5z480{^R?@QLk~M$95O4Ka_@;VHd!rlbulh2&A+p1Bo^j zrbIjYBLL^BKw=Qp_tuoA=T+RD3QB_F(<8^RNMKh9DW=%3+s8eJ9Zw1If`;S$$*{+u zQ1ZOXe^$WdaILlV$0v=niY0R{^*(5MBKF4*#&*K@A253->8te_d{}EhgJ}B_DC}vtVqb!acut_~cKhUTBjO;A8M#ukN^5dB zNip?J_G-Qu6DN8$vJ?=)?<>;=Gn0(|9IZhN>2ISFu{mg7?zvAZO83=KVcwUC5}@uL+lx$Lr&2eAR3blYy=T3AQ0jF(WA}rkj`>J@7%0Gft zUMt}9J3JDAcPt#s#D&+%QJvKM*?Jc-W|pExfi7{9Q@&~=?ZjVv^P4OfiR=}T8}*>b z(+Y}^!>fqr%zA-8`5g`xbQ<*A@A&~A7GAW>&_sx_c zeN&Dh{~AQ4x6=CM?XCw7qK(NRIB}@k>br~!7l~L}$Svd!DHfLx+%*QYJH_Y02;)sg zQ0b?W<^E^+(9|E~&ucm3`pBP-f3YUX6-;qJuK)>{pG z9UnswDZ$%NwI-3A_&PwE#W)8n8Ytt!^^P;>j%>vDe`QDrprGqp~}>OM!}IJRhEe3#Y#26j^59FTXt(&!)k?tb-bqYLbF^=%HK5vh%jaQH}sZYaj&l}Umwsb_n+o02wt!ncAf3t-&%~Y znsotLuisz!h~yt?7Nmpw`~|CG}twNPBXoNqDFF<-)Jc?03Ur=Lidt&&LNP`56M z4p9+G;7GXlA)OER8R(;QOm;&+oh0?F0Fvfi2 zy6W2wsrEyqwsN|C2jX=nop7=Z_0%8`-W%W;`yBZ!iCcx~S9NinFHa#)kmaEKB3x{J9}(yTqn{N@oI`tV0%Y4Z1B=45zUxz~-Kwv5D<*D^qw950 z|1fGJ;bT;(Kuo_~9pY_O;pn{{e-N^9Oo;?j1s^ijY!BH_y^r7y2YxDJH~myCkWlE) zeC77fM}e{h>qL8>J6@Ze?8cl>2A%8#(b@OqJx?h=NDA6ZS_{7FPwzSAGZ%RBjz1$$ zvlK%jpk@@ju5b);5Om+{)r~T#&Lp$H_5y%U*c^eNR*{S-|tD`O8d}?=j zmn)~D<$iC0g1=|ui5q=`KONA!mm_CfB2fw>BWPhgrKw8Erd(FqJ{Oo8yW?wYOhy)+BHKF1TH*0eQ++hCt} z_AjCksrmKNL%ovsdh(cAbDif#2{>aH0C`XBCaZL>3(fGC8iakz{};xVC3+iSO;R5ICrP#kGq zKyY9kv~7)ajjVDv4-)vYu2wa>d^KpdX}9oXtDyyi=;0@_lSNHeBHX$pZe5Ys{1%vG z)LtEe&@93f{g*>=+A-Vti@-lR!2uV@)_n*lx!TuMIN`RhstzZ$bd1Q-cAHryPmae= z3~I|wKZgKxtS5SU-SuwQkDp_Pd++=pd4n_;diFAPsE2|olK-Uf{MF{KENRzojd@#4yGFi! z`?mPu#24=_zcCHY&y`2p!xV)QN1HusAc#fIB$?2HjX0r#B2Lx8l1@>MvEO00?l9fT zCXI*rV@SVpKrPz7Am$H43bF>S@4Mq=40jV&dGx}}L0}u>Rlo68E?f9p-B;92{8M)6 zp9AOxl~1AmTX5+Y4f(T{kL7QY33`RC8HpYVI}E7hnOn^xXZJ?pPB1W91U$@l#%Bkypfqg z31moYW~%@6PU+RyfW%neL53{*!g=7oOQKL${$4k~y5yQ?65~;ompC*+AufCuwNYOhz zMLZ`n4X3n=E=Y{qlW!H`f3=hH-%?>aOPSV71o)T41~aRHI0Nt_^vJi2arjlk3n)SE z>_llH5mH(AUq4v#6RNuw^w9()qQ%$v6B{;?rizv{Pp6tL6I`n>xITlPsy|qX@LR3B z1?ha-Ozi<<%;&egG~iUT96m!1*|oWC3t{K_rSjLx5N(h6=U(B+E2M|Z=!Idy?r6Di zoQ8fdNuadIc?hB_{mjr75NE*zt+4b1X>&xk0SmbVbEJyH-ZMiz77r~x6;y(RN~1RM zovx%STgxG$>%=XiThFqL5~OsOF{gCtgn0UUmmg*qW*?67gM@0<9h?@Q-o(x|Am<}n zOKHR*YvT!Zr4A1w#f4{nl)!NE7a+ojBPgrgQ_BUtJ+qpnm8_m9qpI@kZUvyXKkDF9 zvn>LqI1+&{=`mvsq@%mi)*HNc0ToYwP78x~=Ea6s0Xv=w;mYiQ zfYP+2QSF=3}Q)pi~)f8yhi??YBPqqg{cylY$EOXBW70WyV=JFA&7m+tueCr z-kvqu;ENXl7cs#02E+H#lK`4gv|$BZMB!mk{dD~Q@Aro%FjYED*l^;9K`9iKl`y0u z!pd=!W0yqp+HnL_vmlkRu;Y;C^LnmPREuUW&#>M>w&UD~m0QQZ=h+IIQ?Y{80YpZz zH^gD60^8h82Z#p4DJ?4#`f>b%JAN7c@BBLh{OtOD816ps2l*N2mn?U*Cn$xuC^bOY z5J(m)Pbo-Lmjb|g&x`*H@*mEtCMK4d_P*)Z^>{ZeSZ+n&SzCPSS)LN! z<|bOuEktU#q|VRGz02_wIYucgTWhOnBWZg+5&(ab{96|5pO)W9NyHi&46*IGgD@;m zMe5-J<*47MMIrkTzE)84B;b`JAhH2Px4u_#4=~}A282((@yk@o$@QIY-`xufht9eZ zPk~WQIer_^Hk!{P>qQIG`caRB0Xe*>;jU@Y=?Th0O^yO6`7-;I6zOrmWYingVyfWW z!-msq9b_EXl=Fl>a?QP$jM|=-96mks+IXy)fa`MfBTKaw%PrqDcWlu9oZTQC57B`K zx@vuCZ~6%$--BaMy7m@>C_*|E@;_7#+u3C3*!O_Z&JGsznash1D;u|Dlk%MA(9{V| z4d4#aqjw{tIZy%C#iX0HQ1I0OGZ9D>E%fw4LUpzd1l z*{-}0SZp8Ls`C~rm;umkm-(`rFhseOc%XXgmJL&|lOAuiVaDjyQ5mU z%T&wr3%t)bpbEH&*a{9j^pRG=f0VKqat*?_(#HeFl3^>^Q#*HI52iU0B5t$IkOVit zz+iZ{?k7V%Vr#L#6`~R#mIqR;zWDq)-z9hxr2rd96av2K|3N|!Exp_xFN&<~<%-pY zVmuIa-=2<@HE%fD<_Ib2Zuzv_M5vxq4ZpoTJbo+;8VF2~Kp{selADKG&VOUUtpfz% zWsZRQ00dn+v}57!kF79>D(HDFv0-;X8CL?z6mG9nPE9^zie?QdVGxsvxPbBtV9=Rs4B1rZkMDXPi5&H&Vd>ug?Sf2i6?BRvAA$MX4ZbNg^(OwlvmF6 z$Bk>=0aeBq(ccI$*b7eBefrRNAmD9&p+F03r3><}-R~{rUeOY^WU-l$9{dQYX$z`m z-#{h0Nv%R(t@gKK6|Orf=yYq)YUFaX)!z!`ClzD9_Lhyeh73Btp|IFj`;*W%+CrR4 z4VS5ffnw3G@wQa3JTR{_+Axn}Mpct)Oa}w!SR*}0W)Ktw zCn3dr!1f@Eiqz32#E^u;9%wC805S^(2Q++vp;}_eS5Z+>5HC>)4*g}y3E0aP*Hv4w ze;%20*Z~BZe5`2CF;Mhz0o_xrfHS-fiTNx*^qB{S+Y9Q{WuR_iJ}3t`DWQcr`A4T3 zh{OR+Og%^GU!Z71J71p+>Y%Xg`G^Gkyw1q2d^;t4Z6Q|lMB)w`nrl@ zF*&V*Nnqc|3szSD0y*f$NdgBlbVDP#@fmnaK4pXe!GS^$ z&dy;sae`Ee24H=)Q6K4_ZYm~jpsR6lWx>=)XZi{lX#V+2DE$ib8&F%``=o5z4Blc= zS$T}Xx8W0(fC$UO6b#8zPvf-Nhaj>NIF#nEZ)5-I46uUDz+#tO;bgTR<+cYw86=|n zPvag2Z2)gOwiY1@p?p<+%6sfDadK}0q7y2c&FM#A&iZi zdp$lMgh7B-1{K8&*K-zwLZ@n#MoP$Ky@>vPAJgtrk!Rbfm0Ny&d3!Oh1ZrM#*`Ln> zoc$65t9_A3oVV28e0}R3!JN2Y~t> z7k>E)+n>fv`fot`o+rYSiOEW`>mk{Ura_ITJr!%^|rR4d8&egh#I z;k=>V+wna@YZ|F>?-wojq1@Z=p9A zQV}Dk0JpNZ=ZfO#0}X6QW4~oGptb(B_ug^(0l-OCHcTCpjk?#eUDdQb6u@Ehz5B=J zHt{Wa6U_!lRK%lcbl0yi@%0T_dZGV3@XpR4zVl)}4>@FyT?+s%;L�V! zsRX&l2p}j(og&=4qb3|1yMt+uDD8oP_W9la`_YuZhJ^<#SfCLD|g-IchDd4ExNT{CavWBE+g*xR%GTI{% z+L^r=3Q5wYwUAP4RsHXHLW(_eVID96QDEJp*ZS%Y`xlFzW{nd zx=2{1*vshNAAaX-xZMxbD>c9lA^zXvjU4R4W)<^e z&F+H6l2dU|iu-rPV$eWN_D(f{K9?$f=6c|NSfg8i@*a zyQ2MPWF+xXlw~B!mXHE*C7>Tez4uY0G=%DaJ1XBDnUkbAW&1$a;#vqrEpWhU*2gD1 z9jx|5_xP|$Ajvqf@1PKdyo3H*4g{XHiM3>%P-{|&RYy2PDuT8Ty{gyhT1LKn!&+k* zoYo0i9s(fzkjOBa0;!5{L3I!EpKwA%&)W=*%C0H(YaELX_YJfY08rs(S<8VdVB3ZD zFWmfn0nCYxQylYVI79niH>`(j0Gqo=_9p`Q77LCz!_6m{PU)+32v@`ad;VXSe;FJr zD)R>zR>b z2Nc5zZ%(;4nhpnF5TK2{ypkS9jC&)ECk1@Pv!uEu_*z!bewNGh3x$@=`JRY=;IbE7 zE#sl)MCh3b>Q3v^U*+2R1_uY#>Oe)9{G4K{HK@{ckBu4MvP5qnh0as@^ygm?qKrW; zqXihQ_LA3-Z5BkMlMFkQD33PYkVSw)#|1d+RZ=rZ6hU1Wuxx)S!m&@B=z${nFlwh~ zP*nibhR8&cxw=evQqaCoqp1J9k_mffQt%kaTC~Oa1#>GvZY8@`Rv5qqv{CAhEg?bF zwFq*q9O^{4=ElMJiDW(Crd!Tm6({nE1`R#g_@q5toBX6JKB;-PVwDm*HsHDm27{fT<~F)cCGg9k+<4ozuS;RsO8&IH6%T4S!AZ@* z=x+Uj2{rj2z5(%E`x_w+fbTRl9v8HMHqqDtxX~j#I+%l{+IC#p;SKJZC4@Oa9pS(j zkl?g{I@I?$T)MJYSOKJobLrL6K>|iOLVD#CR3L#w9%2Yl)>SeF=^x)aicoV6AAG!3 z$2PXxa*O<(n&aSD*J|}*!R}_36pgCHmL@S_BKrPp*$#y<{MiQd#0w;a$#t(07X`By z=Z4v`QXZu6TwcJ1&uidG!}Ko;T5u1i%m|dCKxsQPD+SqSLLKqf=*heh4|=Y>K6n9s zs&6p zx8~dD2eeC|IWyfVxDP_?snBDewstF$iN5 zmQD+J9U&SR{Ol4~7e42)+Ug0dJ~W(p6@+Pw-_UNB-j$%~n@r|Gy$KI1hip3HXr{hU zII(bs&z{bw(`qrHm3=WWXs4pfbC#(>T!(235mnV|Yyp0&^l>fD=(Z{N)cQ-^k{JvV z-Q@|E0cj4N@-HlmW?>ObDDOItWQxAcI0jsBi@E}h7LFzC=8WG~Isdm$m-SHTnZ|Yg zJd5#L>#IW>GkmF_2N~3}cVo=^27nOfy}3_|zeLyT&-bd}x8q`b4Pak33zAyV3UyqI ziSJYr(d%&f_|@J^D7zT3Z$5VD*$qTTM<2)HY+2&6!!%{6gbCAJc3q3Oi6m;!t;~V} zO@Oj16KCPY2Ut!2TN6W1g0$(#CCkPaGJ`KhOTI#Byf>gjjDVioXJYW9fm0Q;RoEO z!;P7@_J08gzp3d}ql*a+-;n-0?bv7+ut*Eoehx?2BeiZ6Z-`p9I$tR zaHqvh_%#g9Bt(_+w2}4FG{pm_nR*A6K$xLhhtOJaOaLdX|L@P{IrET$7V4RH5kRH* z>etLjUEKR+e{i%KLn!d;>?t<4Nxe8!h&9)1Gx8c0f(omv z&J`KB#t^rVP=Z4F#YZJ}NzZk7>ifFTGp~}^NYhK*_i1VXk^&0**R$g@iHk*nVBsSo zxT{$q4f15f1Sn!gb^#U%89zFt#+j!2nx7dEyW0K}ef3GLpq`O~v8^|f0`kavV$PDN zaa(ji!bnMgR;_|wLgYdj^AQew>v63DRNv|zKiV0m16&GseY~CXe$whFNHSe|ly4zH zgsgMjWvtf6rI}cvd8Ep%;_L+CC$)u|pM~uGF2E&lFL-|kOy;U@ ze@*zoYoG`8MDjR_kU+cK$-p6(re7e+7Oa~1+?j31`m=Lv^U;( za~rgYTR?$x{1(0+h7PAkjozRNQ8rfccQyp91T)#ju>~YL2ja?)yAQW&2dCp|g9ag5 zs*2F!_`G_}YxT2Qz@cWsK3|@Tek}y#m zP}ijXD%syx?*DB{=WCV(9L05b;P%v>&ywL(FjOR>#IKmmNV4q>(ZBKv->+kO-AglsxPMabP zMm9&CJR3;b9jj*&4Nm*7p-_Ge5)l=nxoe;XaRohlbdL_WbgTpDe(3J&BL~l4Nw`F* z1Plw5yiFq^vhuEiEyhPCT!!*01B9g_q~Jz6ApQnvb#G(_L8o_kdR|5b5OJp`n}e<# z@YEw}thQlH6OR=6H>GmeF@C5_9QzhZXMlSBB8uv|5gZ~r+d*ca%!iGG2l4j~A8;^5 zYZgin7+sVEz`6!SB(v?WNkIG*4m5c>PF9);NyZ}}sU+r{bxjy-)f(Zf(?uG0-^BI+ zM(^>kR_>n_{zr|kPLUgM|GI#yDfTx75Ah-1*W~*B39u~Z`Gyk>dfUV0k4{eTQFcPW z{osL1S)|7azQAO8A0e`GMlPN~6}B(vVaB9ZiIN$_H#|;PWdQxt@6HoZ>H+W7<|{^x zX>v_GAW3%EEew2U4OU>xxhd@O3-q1YfL8T#ttjyP~Bt!;=9L*D?OD z7+=V)t6brb#Fo!v;l}`Yrji9Jo=qLky6OJ+-xDCchS#jWFxC>tMS>zXsGa=h2?ZFt z>6K6Uci~ed(!6Srs3*|q??yE2Mhw7{jLbpyqii(%kfHz(lh9-28Uh1AWmeA5&kx?j zFEjWsMy-_v?@JZI|MlT%(tN`VT=w1>S)r13 zcV(58ojtON5Rs6*m9kgaSU#O}Zw@4!1QZjsO+)F!$~k@gP(1}Xn1x8Ra{Y=WXR zkaYGitkPu=?WzMsjKY@$QuX2r?HAbGx8L}dx8~h8<@y|l{UvXQkqXIm;;J4NaXY(@!Jn$G3W<}gCs~FXuSEr zn*y>dC%!1@SZEtD6|`k^-yEPzTJ-#g9Fd=DPWUN+E7`~ghme2<_ z56BaO@mPWWN_8YKqW|NwxFnBKJiF0K9b;fMb@`mPBO3gWqQ9dD3tv;7*K_!F3gIJl zcwdFnYSe$U3-w4uH(_UIR|Asy;qjzs_8FOwW2zvPYwhIiqXZw4LhmEd6`XJrJ~-{i z{`?>=q0eB#_+W}a_E+pb8Dly>(ij|=!^oBLOz4jF%{B27LT<$EgO*}p1Hv>LV+8`a3$OCxn4RR0Ktmia? zFr$t=OnfB8|KK%v_u1cj+y8`?ipHP;*eKbJ2QHu3~m)s{POkK%C7Ad~n6Rm-TPB}@| z_=l-*QTGaFRAtv5oflKxqlsqdzy)sb!DQwukr}8#>&T87Jor-cMLL&`0pV!tRTtJJ zN@wgc{eY&S&)(OPQT}~m1-yZ7+%rM^M3dX*d^Su!NkLLf=xm%SB9uFcjHO=N6%qf@ zFG=(jQTZx}X} zANVFMROmG?`Q2JSjt1NcS4W=uk)1J!D%;wa4Fm-O$du!SQvQJ_y1i}xw7?H(B7$mD zmzTL=*Axg{&%Dm$aQR4FW13YOrlAAN-hpjKk{1SwSC&B=tK*~UCZ~(+}&@F z!L?19VwqbI^cA0wnq7Boy1*ebr=vC`q6$W(X)kH`{_&104uLnu%K>d&kO(;cgP76n zBs%0teB9ulFAS*C*tS6n1^b<^Ak5|j6!sHVQT73XFS)oUO)ja@o4_>eHcp4eGLBoS zXWbUt9t(ycWXcAP{P(FN7pdy9pQulZ)Eb$WE!X(TtV_vv;DtQ@W6(J?ig5M%!P;w^ z-wM8dn`ND<)sqitU_t{hl7t8`j4!0_1|uNVb=P-iYr#tl0@}k}Y~bw#T{z`3GYk+k z$kwfa|77mIc1Q_>HK;?R)^gNF1Fqd*n#gJ!#tUrh`rN2#O^;N*&?~%e!3`cEflB3v zpbXcgGi3U63=wB=GeD^8C!WkZGH6;Z0L`_5TVc;RBi$1{&1-b4f_FyvSL+_ge2H@? zYT0ythmYA?0+Yupkn$++aAco~cHu%;DDuGkDb4QWWT%Dx@^1lSzwHGU|>#ceX4No$g#7q6zjKuhRFCc zJuJCx>|XG(lM~C9yJ3Xw{7vIYbIVRZz?&D5Vm?*Sl$jn0f;xu-FAO}HeWLEL(!L1u zNcJdXYW9D;*tyheG1%@ZmzyzD@to~LZj+PhR@3HGQ*p7^!wewZi&IOgiXpMKE5131 zyRrB4%6Qb74m;qI?aRhxEGC>PiM5*BftqL+mPqSzXgYNI%^=iC_HZ}_#I<)(Z``O$3{{9E2 zSgokTO52lHVz1!IPZz^rcS-RnOYQ~rdC^yr`$sm`%hrIJnVyK6YFk9Ls%8@espNu` z%*k;rnw&{Ad)4DufkQy?s=sq{M1rZe!?H~K#r^;(E_W4l`U;}OsW`Y>ET?q|D=EHUDyO}i-6$6fWNY~7ZI8tlc zDy#z_??2=IGE5-i8tcq9ke>~W3+1`D#Z|qI3oTN92_o=3W};rImh8^c=`mv8;&+ONn|lh3rXWMDBPW5!*_kHxu>t*lF!F?kZ^ne3Xl{GlA0`QGd+as&Rl zj?1w>((GvrF28;GV!DOh5pc|{;qvRhbxE_R?bDT0k!^M`xM6GOtJCzDrFI16%8a-G zffq?y0iznl*@72)bq=?T9*J4Qzs8|voU?Z8VC&f7zpugV^(lIG&$oi{7iY@4IxTu{ zx|qczP@e`lcTkylZ*$|W9S5n@{I$+!3c7|8SM0qZmrbX)yj2fg8z9Z4519X1XRjaCQ7KN zFmwQD@seVL2s_L!Ws8H@y$|p(|Bt5~snXC%|+AV6{xhiwZdkB{mRj&8*v&OLwo1KmXD%JB1HA=@{ zS`*3>jk8ascIb2}+zlW^b`?$~V0aX32f9BRe*uHu$cjRJQ{2t24PxP3> zoTk9`YtFjPI{Ss+E{fOmAyXas!r^v@TpWT;jUTlG8p{l03GwLpkZ`SJb98GxT624L z^q%e>Op(v1Ki|Olp+`~Q(*`05abX4KM4||E*4&y7EGLjW=94!rN}f$4e8aOV=Mxd`^ZUsRCn?@NWV>&r zAX~8PAvySWK@{bBz)h6|I!dz0E~?qO!}mWdF`Q^=+btIX3BB@cJgJ5 zuYh`YbF2iY1Mje(Bg+5A#jN;IyzGvK*eU6-+j2r*?`=Rfql%b+>rKMK!a_wu)O7U; zD+apGr)ItRjb&~f;787RrmgjzxUh8}V;f`L5tD448a8gcC}I}zD$Yy$&g0TWk;@Bf zlsaao^2J^9&yf$5q^|ezxs?ZXT#-|91<&->VSKS!Af?km$ja-qU`V`ZnI~^?sh|-w zeY&yyO`CZ#PDY+N3&+>}ci|E;xc|@poXFTErn)dHV(!ItBnOuOUlU|T{@x>pb3y7| zIKV^1K_NR98>OQr_vB)k^Fo?ehqII6kwspUuB=#ZA8SPIHl-&mtCH0{bbo!ey;7^p zsT*v7HOpQorAHt_ioJ|OIpZ1S8MU_d)aIZVDjJ$LXbTNyUu~5GR%9?^;YuH2&;)8^ zJs9wQ+1%$$?jR#i73{m8{LgR3-KnMz{)DU4}cZs<$#!!g&DYcXws$ zY6{;NN+_D8cxU|n?4soj*S>Ps5?ay)Ph$40(;0=YY52@dq1m>d)W;0sVN?}#j{I?% zlZi5%#dFzL@40INFgW|T@0w2I3FZqtgVtd&&#d^QRKLGS&yqfN&*@vTLlf)-jYF~Y zLPQPRZs9(;tr~hvSFx6FF(ACr%sjeyT=D+L-nUoW9<5Jjx_fdh-fq*l6OlRvLxFa& z;katvm>23!hQjSPg>TG)Z~k$<&!3>D(~qE)^H5Ww^2|wN&L;iy8f6GNglp{9QKt_! zaxX#3Qy9F^X2l#*=j7`VoA}Ml&UZ!Yko@nHQ-wi;eFAKQ%{LhWFy}3?=xMzxm3xpz}YR8M4r%eXS z%S<>nAL{}^~R(l6M4U8%V`36p+PP_-Cf2x^neu4v2iuwrUynMCYsL>ia)EekHC1HsbW_^@3NiqY?Y{D-Xqb0VPcXdj+?zAC=^$Iijen1 zMy(0n2cqNwv+f)O*cm`;k-@TlU04Vld8PqhvD=#S(iUkoPwMPZnji6}7w&Od82h++ z?8N{qi7H?r^*e95xmI5x*<1g??;GFW_DCV_M^7#cO9WA}Zf!umVaxH;P)YC@eW->m zUN#lZ=;`8rmlx@oaZJLeYwlx}CcRCIBy~4T(|pF|cGxK0Jr_kqil50H+kd z>uT_(ti;hGzb+a9BO(^fcvh?4bl;y%PYYwXXnJbd5!kR9nNRNoqe2}`DS2U;#0 z8<&uFE~QVm`AJ7!gx(SsJ#daoqjS7Vu zMv_OO^IIvd7z--za)bh{cp94V!mK>w;b;N77iH_;8WMw~%RW%BPIRxuNaNq&D+J@b zTCvIM0m~|qr8Y&mq8ZQNiVuEcCET~#V5&wRe8R2!3GALfVK{l}l&_3ptJ{9JQ&H~4 zk+NZ&l^aLjalBgpG*J)S)ou8;C{3`n3g44HaWm1af@b-KoifWyPc@R>t}5c)C3g2!k|Qel^|ZLsBni(`0924RCKTeq3!|9`2o(URqfI^{EPYnzOZ5SH z*EO(qQ$)B!Tl0ndHu<_IG!xL`mBjaSL_+G6+t45yAcv;}2 zc(75v8>H>s`DVR|KAZc+Z3w?rxC@9Li6NCINZ#FsGqKC=kNO_I7)hr<_(t|@_O;X{%2#0l=0K!j+@S# z^-oSKt}To|c7jolBp-pS_0_@a)fV?FeOYajsb!5JhH7R}US&|Eb_`jClWEMasHt1~OUEMa!|~*c2e%B8cl30%6VpIFwvUthW<3 zAqsR0Ql2@G>Jxo@cKfS)l=vEZX#7HR3gj1*!C@G8b6vddBI*%|K@E zOiklJdf`6HsBruOB17skYM+Z=v(B|IIg!e6h0)OL=F!RIcEWx=TAQ|B8*G<+>hCLO z`%*oslXv4`S`4VH4r9+~7IOouY$0<-EiZZUW=FZ}S{pPIpohqZQ#0B^&Zrm1h-=pZ z5IZ#z_%JHuOrRak#;`(#6NL1n5H{5hi-fIo4rriZ;yyW}#>QJ_w${0ro+W5nw;q3o zrn9(ciJLE+9@M_F)18^o#COm2@NzOSUwgDwXhmLiC-MKW)a40st`iW}dv?rET|mzi zH@pO!Ci0DMi@nOlPb_6skNiK#A4DvF!MR$Qy% zFplDCl(C1Spo+5CSXkbY5D4hik#(*q2-n`Q@T&FLO>iBmzR8n&gy3Y9KFeq^iyV{8 zGTz0}Xt(#a<-(p^o5NvGw$A5}F5dfp?9QM=b``ZT(q?1EN0sl!rDPnpBYl7=3{sU} z;-h3=*#Gt^6P{75mJn4$+`CKuG#HpC%B8g^Z4no?VQV}1PW;KSUJOYj8!^eKVQiEU zul~D3#3Zi_0ZuGgobK%umk`unTkB%5!n@%BQ>D6@rQf!*nz%4+f2FUJpqgPh7cst} zQrsny)awZky>Yow28BZ`K2Wi#+=c*=52Ll}V@G3C3zD8$KNJQj2V%ullYP~yi|Ho( z^+8dLbp;o5GD>~D5_6<19j`mD@Jt-xwr;ujW zaD-r_=^JT##q!r^M6QFekV&kTexi%&R@cp=lo2c|L?jJ{Kvm?(JDI<*dC{OI zH+ci?!hn@alx&812~cFY~9+Pqi*Zku^I8~`-nyMzdpC<*(QM#z9|(@&gG(G{GK*WFNo1RH; ze)<`$(k>zj=G#!U$J$Nzw7=&crBmeKJQMCsLc~d-?*bHC2ZZ}jQ`UFQ4yAwyD}nY- z+IeYZVZTRCHN^W%i!9uo{lVIl?Fl#Bd`Ax21iG#*sRAIK4yO)fbcQ(vpaKjCSzRdj z9ilNWrA~;cPQB-GzVsJ(#N{9~xUG2-U^8qJm#qmdj~(FU$oKq~ez%NP?;B0|lMMI= zh=?HdPQ7__V^=K2w+NGrY&aIIqLDb^@!Z&k^IS?&$4m|@5!zZn@-DQVQX&BRB8Ow0{k-VT4+qaGJ2md069!u69ubhzS&k=&b2T1&30(k?QeMRUZLLx^l6JEL{Sn+opPV*V zoIbpclpc_y!|}|i=I^9q`CC&F4*jgE{+FeX^Mxe!6c1V0kPSa7&V5LaOn7n}38M1W zg`<3IJVM2}NX(L&xY?p`5w=#M{WZ@#R@^%c0HLKoxAiL6T>^Z{H#jMxL=40#_;5VA z2Hz8Y5&O&X(m5q6PgUmHw+B;s?DPs0)K6%|zk;Hx02u7TDE-RO;HaBc-0UMvp&B~i z5EbX#F?dfexNYSf0etY$_qdopgGV@c>tqN$5~_BUPmID4HRPLi>%7|9ERlg?`J_z5 z=aas@B@UTu($T5Q;UlcAWPTIcAy}*)Na(C=B8;?hXn2h2#;+t2)p)u$;o@OLqL0-7 z4GQ?2j)1iRtD{(a-;4@r30Cug(r%JUIEzfJH{a~3^Hg6^Yom-3z^&J0W%FUqM(yg= zhmnq-9srleb6Vl~J>q81*-wXY2Js2&T`ovq_x~BEB&!pIcQ}?F7#<^yS6PY?U|wVp zbexMJZd#fhoYhL@Q~mhbyZ@QqgeH~H4UaKNDpw|*hEi$hpvj;^ zYl|i222of)J!V1@ttFUU>O^sDfmN{QVD(bbad?QQ(_H?x<;g;EMfPBPNsm~s$`qLQ zYmCN2S*Zr8VsE|m3m=wU(6B}O9}(;TFIi%6k$3_4cXwN^^omjFl9L;p0GfuklFfnfVUNY>e z{Uzr8e_3{9+x3AFRKJAo^=b=svRaRoBcQ%cX$JiQw_PVKzjgd{cW&)Rs?$pEz`(+` z1Y{^_;@(7PyYkuU*blwTcvFY)n|=*UMD8PeoIyO;rGkuDg1@}T`;jP+PF>6?A1x%V zzpkig23^|{aE5A0vXQ26oGAN=RM1a7C7XGXnvnwr{@qux%-StJ8a=WS?3YShJ62T> zdW^xBJh#z3{g)>>q(Xs$TN-5FM02MIzbP>2D*(OR;Nr>CH($W8c7G3?6sq0%nC%ez zSwZ2q9}dzt=8wPfdqrMn1To|p)t9xu;n^#c=#%>(0p;t|5KRL7LTmpO$PXB66n6gd zL^%zroq+(W!y7C**YGwWdMqg)9Qa#sKX4QJuJ0fb5ep|Og=CB-$;{f46=v$5@|fsv ztSuJ+mFCP(uCb8hdxpGD1%6tWdO-3osp5bF`m|hn_%t6a4cK=`D+M-soYar{K_$8b zU5%QxH5bHUJC8HNm*Iy4WT_b_@iFz0;D~ULR=_qHy2~c+2<@!(Gdy{C zZYy(Xp9}+Xp!4ccwOb}JwP#6|*85AD3IR1kz5)Hw(HM^cD zeb@vv%tjRDFeK3r*ckT9w2g_RX6V%5t3l1DW8bT5pZeLF9%JrH?RePAaQ42mUS$gk%`qekfCletM>O?sN(EPf8 z*2(1wp{QaJT>bnQ4EK!LIsI;qw+&I;lY^@zA=cO)KWT^U8$~RTzu=w1v_)kXk z-Hk=%HQ1DBmSpBlT*dnmz~B^di=3CuY0q26EY9@z;<EBC^%=hVzl07m^DjbmH#Imfx%e3@^+uVA9* za=;9;je$x3O%an0Hd-EIEbttS_ETNKf`Xsaf0T@uIXz&UJ>oSN{`HAP`pJPW#Ucu` zUwKSA3a!UaGHOb!<|jWxbzkdUqX~{hmrm!(Pf#pE?HoQM;xz2fHw9m0?OhI`iyAfUYpgf?KC}P zstk2J6qoQb87+cKq9IwkWJiI*^(m_OsZH$wtY*D012!RD{f`)KpYZu@=4Jq#WC0CZ!;QVJ{=l4hbFRvK(7WlU7r=fqP{=H0x@|Oo)X0>>0=Gl6 z=io`{ETDc7@8J=^~>(6z7^Qm;v<9n{WDKHF52FYkfcqH=I!|r~Wm7 zkkv&%T%0Ie+Sh+e=kN&yP$FFJI)|GL^|{{$f6UG*`@!1>b-^BOiFAWs z?CT=h`MB*yNzi%ek*ErMVivc{?-c*%2XOzk@8I`}vMG0#MYSx$j2D-tdxB<|4O{x2 z%wd#{wVLR@{Mze#=t{!h7N5H!PZde4erzWdOyPYx$=vF#G}qjRsnnevD9bl!qF+W{ z4Hl9QDXiuL6PVhI#bT)5$y|yFQM%vx$2#oCi*9CrJ_?xBM#4swuT6Z;bZGrkylI@yS|s?vF;Z)Q%zxjXy$pEe5|-qs?wQ;=nJnxsj*^3cm5VFDhdD+WHjC# zF6fYfirb0KOp7n|Pv$esykgjv>_QLh$S6dY@JjdBlO7eB!p#A`;4KjPx&XT%M?A>S zy{6C#WEh0cJiiL<-R8zxFSsii5LJ0f;`9a`lQ4z;Bwx3dR51pXt%Bq6kJCgwa4U_4 z7>Azh5(`&O@_PNNT0<0+=HGPt*eb z5-DJ3E!;v8usGG-3erk9m6qp{WhL{h=TAl*RENco-E=|fxAc}x4Hyteg&zpRu`Rrq zdJ0<3+wMR(-h;<<)BE4Y^o-b%7Rz!%k$DM-H5DM|`ZX1a%G=b_E2Akdv9D!F;WbPnEz^gC(l!r`rlwIX<6o72=M9Ce zFd#yx(Sl03?UoaET$D1y=>8iJ{?}<ocr%3RUMJxSgQ)yS zm1@ksUt>d19d0?W?t{%FHQP#`zQPt7UQFHMR38LzxgqR5@qtK>=X4GWXGZ1;`Jf7C4{gWC^f?=>SA$NQHN_%KL$S?jV=B) z(Cg(KmwXsjKh`TQKhk?RcBgh?2nu(Hs+v97wq+UEm0qA5M|@Ztp3uupoNJ zy{=<<>Lx7vzOKGtPcBW-_mP5~;G1m#+C7`HriFe0_k)a9E>YpR9E3h_`jI^SuieXK zZb&LQj$cnP`-Ps9JhH>~RP1F+?w+ zqcH>gs(_<><@H-`vz|8ZZ4nrRs-oqb);Q_Gl&>Z2ani!=ZGKab(riDf!#2@PYKkH! zWQ0%M<5Tc!(%j`Cgyc%35ix86eEH%(S{RS6y^zz42C_k2rVa?S*}_;$2-xbI^cTNG ze0k$FDjE4iKW_Z}uun(BN0?07UpzsS0$?f1t6esZ5b5W5T|9p+)d)X(qex%>pGaTP z5Cg&|3?lN^06plh&I52bQyA)LU|zEP)SizkB=Wz%6hOC{6eC^5nZq#j6rzuX!M$(4 zMW5$T5J)<_`9s2U!ftOIz(V=jbfD6ihUz*0^JhK3lgxs)V?j`E)io;cT7A06$8lJK z<4wkg?9q3y9J%;(NPb-hq6~cSx6fOd{^u)+kVDmYN3Ma~+E`qm^s!EFYAr+5B*NTb zN$jDTC++l@O8g!;p5PXO@%yp@60U{j1J_g>dx+vdtMH}E=UK%ITRFuFSOED1Jo!TGLTe&W@RtXxtf7_m0koT zvl-wY0M<`X##`y~6wXVEHzxD}moXUu_sEo0+^42s%-aP9WLNTOEgaO~Z)mx!0ew zAGav{xW^feBu|6&Vs2RbE@*|$qm&Awt%=o=?{6z@T@_`>k74F)QNL!$hS22$J8zbdg8?55g5 zaWf*$j;{u}HW$o1>JVf;avGtu(9|@6?$ronZ&?tMdJ+6g)C^un+F*27fb=XdQey`G z^4Tz@sSaPQu}c~HR}Nq1xl||l2o=~yHCLlHb~@{wr@Dn+ZNBaJb!QlQ(R6-bjtkJ5 z-`@J3`aW%VYPIU;!tr;Ii`LV=1AWfg*LYWcFHDqmc=fO%Sp*J9E%oBm004nWOCw*q> zUt6~m58W+*wBh4c2E=vC98|d0$HEgs=gh9|eWIvn_~__`fjuNNdZ2f*GZS=*{#pN! z%_+c@u~l5>Ow2;v=n@pDy@gi8rcjr$@A9(^P9T;PhH-e^#t5F=rxxYiG~9+muerr@ zL_-a3!D@05K8Gd#wZb?ciI)5fjjI$NerozfJ{)jD8Z2oA#;KnrR&?hz1wC+IhHRO& z&;=9%xK_SHgu=*?r?5!?-)n%9#`5#=vu1MV7TE=Xx!%Tn0I4oHb{OP+m*sM#S@Djp z9fO*p_D&4N&sUGuNKhd{NCjvsWva>-PY@de_{&iFv&pOWgKt&cbr?^d#@Gs0Y`%HF zKxeDz+R}8s-J}vKtymxeWnWLYstQWAbm)DRz?qM4;dogc?vDs1Hr^^VmIYank!iBYBK~d%@i)VBC&# z{dvdYqU`A>{`l~-c$jg?7201PB3Yd}YI;illSM@PU@S^u{5YEmVKwgFs9^-aMK#f5 zq<*_1be+Yym;cj^1U!ggvv-*~?9m4xbHfqka?0Po@CD>VrG(8=dI(FxD?eZ9I&@d_ zTXYKIf%u*Sk7!7_9V1n(cy4Lw+l-K7F^P4fzdn3-(HU5olB3uD^VOxK^*J;`dZB?I z59gkK^Zg?pMUWY&+(2ZZ1FOvMP)N!ECCl|{fU_~cSo@#1pchj;Z#D4iUE$z;yTp(R z>zh5N_dQvj!^M(FyyyMA1qH3y(}1d-lznE1O3t&oZ@Qp-KfbB;{^_}Tt)CFB$0Phw zU?h$R=z;e8<=%rQy8x5qV!wl(o$%!3=kEp+M(fi+!Y2wlKkp-X%5=X1G7dV{Ef-3F zCNLJ!{pbW2nL@1!;<)Xu>7zHb8o*UmtmIhlgpa#_&(Cs5O^Pr`qyioEaEb)#1RSPR z6Q}nX&#GkI_5f?UngwSrCZ-zD^=p8n;cE5Zec$~@^C8xE!So$kl8HGy#%*=blj#HN zLO2;a4cw{`)UkHG;|@k(2QvNnv7G%Nxw*tfet)*EuRrW>Xpd%>tm;{kV5oR84O|I6 z^4e&30r=VXHATkYL;Mw9ivgit(64owt^B)U?!Sb>Rn>B|WvnG``oXCv%QD-06n$oP zdAEz*)8OQe#o58ZiH>yIub$rwmur@4%Yham=<{}KiW2VMkFya*STIKL7HQ@{zmyMM zlGHl+MR_XO;N{_c2jQx9+Yc zAm*a~P+H6+j4X#ng59=KvV82m{nFFNzE7t#UtL3HtHh~JixU_)|IZ&dFiz81F0-U4 zO^&jKe~5c*4;sJ;mPkcwUj2BV!y%`0gk4A#3Sw~E$pI)jknmXrc6XK8h&g?GW4y7= zVc<*5dh*^bO?3~Kb4*?Ozpy~H3WP>eXe>Iib){M(FY{CW^HxnPeCFAA2;Wo4wA&Gf zcG#wBW>{3zVb_GL=*HLz6#xB!o|ZLA`?>m=l8@3TYu#aj)y({#)ht8?kAr2s#X@v( z?!zQd`CT%6{hx7jFUR>NOND!$AdyNYOGSEvQ)*D=GUm&H;#3dbdTwUv$Z~Yq5phGcO|hnk8sk_J#y5k&^h1;7&bGY zNPJxDzP`b$w5MUX#SP{Vs^R=%TTuSWbjd3_OpnJNl`B@9i+?Qp@ch&%;rau)B35lb zKORNrp+M3280lB|?Sj%cL0YNlVpSXys@gXSC8sGObi_YKXqjy2)I5}&qD-8?4ZT3W;xff!^&uy@`Z*sfn#9JE+9)S+9q;E-0xz})D z`m$I|{fiAFb_M8b$Q|lHFU#{A%XFzA7sb}n|(mx$P zZCCJw{k^S+GN2zNAeKyr3eO%W7XzcIIh9C?CE5$Pm4O5sL-J*frY(U7Ho86p9xEgL zll+>&0tEq9kGuQ#G*!-)40XGbjkrDUmwm+_dPaT3XTI|pI)XYE5Zm)QLzGyK>D>CT zerw~kDbpl*Ik9l_>-2*5X(p+A1Jnm={_S2?PC(^Kb#FgShwMjXC2F%Izq9=*c}N|e zJ(H{uHw991>&lC$wSY-$D;w;%EOS5plP7*vX*1D_WOXc%Q=a|v+4<*#*iHbzlyMQ) zKVRz@E4aRPzef;dVjn(q=oM{xb%8y}%f{r+XCpU2k+bQN%d}H*d`1YKs^v<{fEk5p zQtUq4f_A_P48iLzoVbQt-x1p6G-$5FNvX-OUIuvI)F35g)^s2JwP0bGGe9WmOFL#Z zMZyGHKR~G_d`#DEQgpYd0o!ZBVcMaEJf`+K9>HQ}4-UF1m7XC$E-LpC9q!io_wg!UgW8ujVx@t3C- zy3gTi1NZs5VvhIM&tnLZLXfD~LCDWp*~aJ#gZLPftg6lc#b5t@Y1#yo zFMg3C&X*V-L7{Qz(7^94$Tvhb3K;$eueE$ffGHM*j8)(YhSg}Mz84ZAV&}kE!kkY| z_5T;1K#LuJ&FZKZD%ES$(x(S`nrHF2Gkm@oWJvp=3Y^n$yaggg(HsT>hTvS`HFbN3 z%I}1qQIVAK?c0~%pG6|7IgMxK)qSJpp_-=;r@u^}8S^VnYpr-2B1z2?{y@LiGe5VV z2iuQU3W<^tz9|UILkQ^!l`GVbCd2?0-cm667j7=~XjEhq*dY+}0-f~`SaVFbFhToBJVIm}zg%X;SEZTMDc z|LA7Od~vn*U;r)7gB)D5hm>v%H*>0xm07VaF-ni90Vv|zU4k7jWdMUKOCVeC1*J#dW&ThN>jw^Iw0M~8^n$4)JHL{{0f98}PPNbequUV#*$($g zCGgjBSL=WhtB(c0xCz^pdi{(SdeU^MHu&_;{mC`nl%G%-&(wLM|V zwg(PKp>a^m>Jf8M8&eo*?T-1G=7T7K&*36D6%%tCsvz_7>@>Q|J$ANd)e9{@G6q5` z{*-<~`^_^wqXft4RKT|~4ScM3Ac`L^>p3By>n!fqo!_tXQ0fk%)++2jtrfi0 zsVNjYp{ITQVeWSkRuICOT3}4>x7dke0o0I+(cY-}i2Fs2-_)LMB!KkeT56@qulFU& zFpJ>2bN@w9;Qb7~Rsfx>64@@BQpaxO}<)w~;eV5H^^v0)BMk{`M zX0(1WqR3p8l)d}p%)?;B%dh)!p9!Wa=K8J!E`O;1T!%~%~}!CxS8a+{FXQw zf|$0;3LC?ShcK_&HPc^`4y6dl*KFe(8LtsMAvm4#4En3wufw&yF=AeQhGOdZrmKoi zW$7urH2;NiRjJ@I6ZIA5;hq=s#aWJiGo@FN(Xn$bTi$$~KGQX4;J1WmzIZVr;CfuSx2 z8ltZ=BU+w0Y|3YqexeO>cpxVK{M_9HFzW5#L7v=m>>G=>OuH7mGXiK|}jQsjJV5>2_izp&-fS_~RmVrQZSRY(i{-_`h1g)wEwpV@iT?N7%7d#;sD2lKD?OWiVCUx@QIVSH z$GS-0`_d$oc2iz+5n3{1G#+k}QS=66p`Sguyl=sZ(L6*iU|Y9%QjvNK1S&l+3q1|b zFVEuDMu)316iJAnu&iQzL7-N+i_I*M2P*9-snOu)bh@y7YrFP-vHW%YGRz>^VH@u^ zaD?dr9?ukEqd$5Eya0RwF;%vUQ zb>n=9NZkkgaC(}5M76gu=q_H+piqZI!W{NYMk;ia#UE)Iy>ADL2-4W*OER2;NA~XC z%D-^mk3ggOVEe-Zxya$hFo;vzdZI z?a10_7~{_+vmJ(B;kyvmx4ns7Iv{f`mcQrmKmYWVPM5PB_)YW&koY!S4_rYnns(t# zJVwz3!ud{O)aD9(@MFu}O)S#6oMI5}b9<^SETd>-IIs!;U?Ep+vFX&& zpTAaj8L=_&ERb>=Ofon6yxYLgSRY<%X+nJbMV@$fpHpDcnvP8LXK<&%m#%yOsTcsu^vKqfVX#e^K z4)PeHUzC4Pd>L&b+IlM>q1owLT?~Ys7P5c=jOY7kfv3X`Mf$v=D9&%|uoA`l)Ls9{ zN$7@P$923kQAUzU;(8?V0=oU_(^P2*Vm*fz$p|0Iwr2*nTo<3vR;|IPW0r{PcSJ1b zuGyspivC$Ehk6~!&wJO7iK(j4i2T&i$>9UrPVoq0i5&_-slcY(kl--R=>-#xk{AT@ zf;tBIG{ABK0!8WFMGh)4)#shN0{(pi=%aMb1o1MPv^@7lv%if`=_jpgsy2bDHvyf` z?EsLTsQxQGc?VUE13f5-E2Hj=99~;~wPgkpt1LL3xt-*(Bd8vW2X1$d-%Om{jtOtR z0wD1cpm>C{Y8rMF*%w!J;}o`9<;0bdT(QL-~D3huu42G=!z-bU?OWOLR^`{CSB(Lx9u!1O>_FI2LIsN2$%W@2J0(n8*n_am+A zS(LJFS2ETBS4fBik*&`pVaQi$M`VDF3H{Jj((qWMjM}z=ef_?0z;Z zs7G?UN`A#9J?>ExdUDD1lYy__OR;L)tJC!5Sf-7y1i%+Bw2(A|Jx(OdGBa%$uOAU( zFzh6XVoa--`nm0Qqiv5UWiXIXfj><_K(=&YYyJY7qd>>T%Tyg{OHr(aF_*q|Ofjdl zvsJPmp)jb`E#U3t0BeR^H4sgo1)>mj4_y4IH?$Vqi|noaw*h->!nstA>+uYVk_J_| za+05$>ql_P0Na6=7nqreeYB)|H-q|Tuf;F&EIbD<0%n9J?XAzb^UVt#*k}6sXDR?{ zg&I44-u74)4EBKAmi_|khMxoqTy>zp@|Y(^7x|n#SXJGPKhik z;NW`ec$7^5KPg1FPeUgZF8*5IolnH~jHL#c?Tcg}7yhY;R#zlffnkyoz>YNqeJx@G z>&H#x6UqJZ>fZ4cy_q9tTb1 zmKOvZZ^gnHLG5Wk-k5hu;+x&myRP#Uq)6{N&q);h7JC%%T%cCT4+0=r1*MA6TX(aO z<`89F%{8AMU6?xXq)qW!I(}=?y16{TfNJMn>ReGdd!(41(DqoeyD3PFmynJD4zNUC zm#8i7oRp596qlN0UH>3a_I{xmmOR)901{jDzyTBhIzak~9EkZM!r?5+ur1m8zsjp0 zmk9XNpc58ftecplbSN?05yYX>V8H>a^UYqceb_^l`h)BX5=B6y!2U{2ZW>uDXux?L zW;FOlQH5w)8*oI59!)0HJ+AzhY(ZvAHeCUYoD*Gk;xH zyF63~f#$4veXL~d1am`1*R9S|%xkH8XMdE-K~HgEARwXaHlY@Q!*wY1no7PF+05g8 z>#qf^a(DI}Eq>Ntx6J*cID;e1e$@P)IdK;h#neNiRCm6OVHqD(bHwZi5LbhO#KA7( z1HI62l<+rDz#+ALUEq~t454l7@iQNTeeCR>qB5|T&WE^$6lPlacG+K_A1PAkRWfJAAYe!FFElt6v_^t{z`RMvp9L_^KckIQPf3syd@eJOLZPGJ< zwhHpp@y)dHFh)1wYz~&aCQw7&?l`;C zz}*C`ty76j`$6u7>m3sETz1@9G9G;g=XjZ0@jb+IP}qQKYYK?oYycVQ4~r{Qoi-N9 z0SgL&$VZ-Bt}(Ong-f6iV!Fcr_iVgK;wl$ z*KC6O;m{DIoja|Xqvs>0I;V+=^5#FE;Ug)Cwt%^DCgj%ePk+!~R#Q&l40_|8BZ{Jkd+7xn1x!~s2Bo^-U z8UGlP+ceSc$ZbG+2$dJAp`ga@0vLS~_kM1ZNH16uNT!0>4JAx_XtwE{Vs5SZ9KmBE zE!GVkTpA2%AiqOZuq;4xat~ZK`Ik(=tY$phZR;*-uaT1B#w~~G9t@G5ALZ$hkp?uV zMEglGHcdQtO3VEq7BgR+^*FZmLFUiq z-ycBM41$DKhllB|(7E|zX&ktW;6&=Xr(+9buYp9C*9n5E}!KeNcH7(6->Yb|tB4$H}*vJhFO zktY^T6~aY;JI;H;tnjJM`w=@;j=;k6j`s8ahqCXEr~2*VjwmA~g(9PAWMrk3jEXXk ztO!}hCfQp^lA>W39m(FCV?;$dC}nRAvMHPJe6FMAzVGMtyqX&IRmXc4pSzyfE$sLWR~pToqW?X>_|qtMHW&rYb=#<{*nauEO;DS-WNCwQ-o zzP#6MYO>=yPc~f1wo+JW1>1Z!W(ktcMcP2XY8eNvw;~|D&WN7=0{_Mec0M)>jqn(X zODl!9#ShlHgQjhd?Ne>hkJ1>1ivb&D>wLNq+u+^h@neuj_Vnx=SkVyN#_IaQ`4>G{ z@-td34@>Jqmy9wJ+9Zy?RR!4u)eCX@(qFD^wU@#k=4^UmN_AA&A%2iUb?Ev?N>V4} z+u>WURV%A}B~OsF$kHSv_Zp)RN^RP5b__fPZKnr;3pQ}Uh1ny(4QHNQ14?`CtDw)` z0Vzs1rW};^(q%(fGkeWzYc5brX&quY^9PDaeB^dlD~nDN?AC7Eo9tL(QN%bogiBpW z{I~jt)aSnq@w-QTgp6vosYb#;@gPEp>eOP8bku23GxDXCe$;IPP5zmc8CAx+XwlGc zum$1?qg^PsI$@TS;At{Pn?=f0I1R7gA#NN-d4r_c5c!Ef56DhJE4BnPQhoCL=&Z50 z09L_h!1K8O`@|20ede`XAv1=33`X71mD)1>vK`)Ow_VmjS1_Y5%CN zKC}gM(D@cifirE|Npu3j(SI!mR>e~zXr#ek9C!@Rv3;R$>1!K`@a zE56wSkO`wl_oj%Yy1w0gUmQAl&_8LqEyXLPrK8D0wSmd-<_4;1IbacvYTBKl2`&A< z7U?DY{njw}B_*c^_irbXcJTk~+0zCEh;w-z45mjxPlR^FGw~Axnk+IJo7J8or$H$g z2!PR=ydq+sMnktrSr73NOw z&4cQ1eIHzJw)y-;8sju$3T4KI(hI(lALbZH+klo<4$^}Il`uo7Mjd?o__np2l{JXw zW1lJVr7mynHm-7~Y86gW1Br`q@JKEI0lR=0P3}{+>F#6HV?Cv96>F>RZJQPB2U3E~ zi>tv$y^>}vs-rO`^>Jzzs$ZBH)MhVzx(svAp0jaLBc?KNm1VfgHe!kadx3zSCudIC z!y3be)vCcW!-=+!VVy7m@NwqTF4@bv8N(DFm(`B*O0^H2jS}ScBkVmbxb$THR{#e6 z0YK$BB!fI<=w}dX8iN^lJVT9 z;K2E54M}l&iRCdNG&1YK#8R1nk;FF9ZAKbyhf^m;w$>xWH;mov;3kx@U`mg5MnjR)cSh8*F4?fidn<@fp1*juookP3ByGJc0~u%%BxWmw066S2 z+DT72ow>RxL0m>}`5BW5LE%Fp()ELC(troXdR5RTVe_om@(Y8x<5yLy(0T8$qr7|CypiD zesfz=Mx5YK6zg^ynEys}w@{XYj{dKH56{s*_c2l?%439r zJfBB9)4LZi+v%-ZW(p-2y-ZzSWGk?8QBBKFcIo{e*sh&kKj0D^1U@aFSAO?Yu0kM* z{Np@lQ^+B5Y{$4tB5n+zl?$pNf(=?4NlGk$!#ZQ`u@Me+|19YeO>&<#A`mm4<=+yJ zFc+L3r#w}m{2pOR19x$B0vQfre)6EtSWr7XSx0x%xZ?YY`?f14d`@Di zgQh4yyydOfVrf(hxKzwvjs7Q zZTL=2*mLyc$cR~5Jo<1i2@x3(P?X#RqES#j<+jjq(J!)HD#|0=g@$$cVWfnMB1 zu4(%K=CfyvpP#Fwk+MYvoqTRNB zNFa!&JbAL->_Z6Etk^OPLUcXfnX&Y4EWBuI#eFVFMZE;}iV2bq?74Q_UjqhOML@-p z`I(W7QMBFzTpDN5#c(9Ps$=&#kOSYy)BS-nUpv?M?SsaPFAnnq8zBvtG_S{-d!LP? zY>%Se{)oX|4d%dL{_bbvGmjUbO%f@{GxP3DgqO%?OkEVy+ot#oQjtA&1<~|Dm4pv- zH~-$5rfWkp^3RX)kK?NftMUr#2!+}brCnw(s*YFLYs^PDT`AwLS%cH5nzz*bGaMH8 zi6qA^g{;7(>+ydyf%(`6aoTCu2aCJb{wALoGSaM(+Q>nfyV;1{=}+s%KctdKeWqvl zc>tdpy=^z#Qb3uND@-<161e>hh<9uU6QJc%E%)*M8@?7eXt_9>6dzDMSOq7DPC%w0 z#w6M+rK!Zrv`?LtO~xsl-3fEo_U5w+FLxZwPVpKdQ;8!C_pyj!3GfL{9(-Zb5<;Uci>Kqpe$??7AyUNb1?p0Rq0K$D zKR?K_l^nB$MPKH)?7({~l`A2v<`MN?&Ra)Q%giIvw`g|qwI>z69a;StA(FOSH{w*~ zCe`tgl{xEohxU!!kS=ssVg}D_0ZljGu|{1*d@@WP{8zv%&$hhsz$|xDA(*Y(ihDZv zlo-6);+(_9>ZzPf#<&}gBWiVlE>I#&6eF z=U?dJ(%k6HKadx_>_;FDf9nyFl>L0ftz=`IAGPhP7U(iB_=ZD*sr^b4>O-q>9?X`OR0iJu6fd8V{Zych}KDyf%p?am%#UaTq zq$=#@V_xh7Ov(<}%M91dz8jL3dXpY>md0Qnv5I5G@cm8h+E*EKn1rq{dUXcea@=;y zsrg%iT$mk6HLU2B+nRW~&)C(5X9e1mw8X$$(E^Piq&+n8?8;f!kzhPvK013m8B?~W z=w)8cdFeJcHaxM^6oSLW_5lH!A>|tg%RSL#y|bbIzRphzO^;7XgVc+~nN!MH^ugwy z1+wRsVv_sMb|nXd>6tp78dn99fCX)=nT-?q<*0Gxf#y{;rHnK?6YQysta0Dtj4Y1} z@9ic_eWHD}d`uWpV&w|Vifr0tJ!>9{ki>lHe^9`C`8Ne5SccsMMrb}rOix#MSYj2P z&#{It4p95amgzU0=!YJv02K;79nYzc=|1PGY;;!3((CDYkWgBRNDE+tUI4JB;$upT zjxZf{IJQC(F++93cpxC?E>nN@Yaypw=dtQAHfw|z1zR3$it;n0SdCsXsL zKBamGvS|3*XK&Djp5$BIs2y}W>PF`_!4Z}4LP@C$^fxulC4y#_%!-%`- zwC*Tuc(>Z@6c15A!Qv2mgLBP8M-r{AA?equqknaqv>B2Ls6}DQ(>~jX7#gz^pv#)D z0!#!uDUIUNM-C5gtYXA6ebNo`65k#!$=V|ht{Doxg=gf(rAC^P&hLl$PBf^@0kyPr={cJmRS7797{O*e(1jyrqzlw%t%32E zjhG1JM$l+puj&GYn_bskwt*CLk=}LVf16@jHc~B0!sjm+eiVjUlzy-cWpY!I>VVy$ zGA6u1m3HHN9i8hqQm>_94(Oy}M#t6Tq{-cf;sVAHfCR=lH)*n(-4z}UAb%>^n(5Z| zb|e#54h5f$!Zm*@sf7gGSw>U5`^EA$5U+X)vJdZd(@`uoy!>GK=UA0933(<^6YQr$ zQ&xu#sF&0Axqf32UG*sb#GN1Ot1~Nu^k9Z<@IZBS2adY#jy%vWW=%=jyZ8Uqqj^Wi z^GwRodMQiYpv(8Zc~xjqLZyR(5d2Q}R@IlGiolHDLGvi7042epN*EBdqBqeZ5OKdJ zW`R>-48!lb>~6dyrV@#nWkn61XnGcCNqk#h$Gijx~pn}EjgT^gwR72VuH zQma^h97H}H%RL0U_g_0eONVL48^5I+1u5HmdxdJq_0V>^{I&3N7$*|0x`mNDsy|}1 z{AjA!oId&CTpg31nmAjY;9?HxCq&|G(Nfy-Z?b~jPcPbL4;LkNN()EK0lZxCV7QrD zO#V2#>(S8fy=qEV{c>?J7fdQj5?ZzqQvMm!_(YOn*CNVKQ3s~3eL1ljk9*A^P5Fvb zkejQHlZyv4oH!-Nd7zG`bSPEP4;L05wCxVh(XnSi(g)3|f)2dAKX+43Iy;wwTi)uG zSxzo~VNK#ifa>(=lciryj=1Ybn-8XEo%|5B_+)ZEX(W0Vhf;f`e3%dwt(vP4OdWPH zGPVut9W}!&i>U{*0CH=)VVaNS^z`(&Wnf@nj7Grlb7|hG)U>n)Xc-hNEz>^aS65dj zK7amta!IU*LT}8T^xgOPFY4nASG2XQjv)}6`%fr|-XzZ^`SPm^ao4wePi%dL#bS@s zYNV-mo+w0X#{~R5exOGwHkfmR9fESm$zVw z)$7Lh9#x$7FmtS9I>>p$Q?feDnM3eg%lq@cwhhqsNFiu z4;N2q#DqaSqdUEk<~l*)BESjM*eDhz$uH%j^Y_Qb#$Mo`6vxk+W&og==YZ#tv)@>U z1tWhy4{1hQ*x1lxQX5qqwUm^CS)8qawdUoAtbpyO2Nm;RyVhkQS(O#+@wM`m8%yV9G}#1G)20> zyvPL2s%Mi(`TVgKTq6pPqN6QPkZ;x&21|(NX)9owxU5pW`Y&eqMjQF=&|%Vx1XN1JCxx@Z@X@(`B7e>TGst}Uq&l`|nC>0^iFM0C(O<E^>SW@cOU~)wzeJwn(CZ5IF;DPB{A%%M6paP>+A0@$;^81+$H<|VdNfs2wdZ~RFy)qYrGhRQ<98?Cg z4PF@r(N=wo885s3VT((5Hq|)fS_!j+K*_ZvZ_(>-MmS2-7Ru@3Nda-cPSaMR;;2 z7rKFtO-4|2I%(zW-JPl(_RHhiqLe?4wuBRmy~?$)Ohp8{E5Ee3bQWOp7XchlQOz&GuW zc3kv&_kkzC_4nr%CeZ{$Ck=;kZ2p&rTr+YPFA4zM$^@`oF?uu!yU1og^@0#$%p?%M zO#re5r%%KLX01|P9VynaFKN_6TiV*XTwAEF!5H_rEwxA)#l6rJx4av{=UJ4m^_Jzl zc^+H`+s%$jO`mjMP2CTouuKs$cuB^5fA})Z{GNlHqYbhr;y$0bQd+~IT3Ul*KU3!7ffJ)md$1N&k@xTG-w6t`KEcSy`0W(e z`<)crIHOA~Mq+#-PO+?xZKD>Hsr;%I`vK}*dBf-%x%N(=B>!iZXvhyh!l;}IW>po2 zs2HJ$Z84?OOd-DulT+yVs((#RDtwt59nDng%w%c>jolGZ(fO-*wTGIR4+G8-^5CkK`!aHx+9@zV8=;~Ud-Skl(*tJ@VXh})=&B` z7&T6Z6M%qENlwllz0?vNo|F^s@VSnLBnyEl#&;QPV5;G=D2L{K-#+4a45Aeu-30FL zc#7lM#v}0vpsYThejQ%JL;Z4?#I-4rSXCpV_>MByJYY}Uu{KCLew(R{OGKn4c|^YD zB-7f(FF_(AA{{w#&7C%Y`E#l$D?5EfF;TLiPjS@s$JapXJeToK5$1ffQGO!kNVp45 zBip@3uj%Q@R`P;wZqZjQ{tb~}Dg?&j#X=xV+YF45hXOUX$1sqL!o=kn`Yg{y1+nK$EY!yfp%Uw4$H;ia}CXlS9!ebndplDwSU~xrUg4fX| zW8^y2gnY}?Ik%Oif|S(M-1)&llj+$}%`3CBeY%=1iTd*6d)vTm3XxZueFYj7s~*<~ ztG0AT37L-NZUyB40)e35<+VC_jIU7;60sGy# z5HaUZzjoDzhx;wy)hy7Pz-X8N^V+w~&CQW-LO`PWt(chDm^&H~eu;p{(P3)^sIMbJ zLQRD_YSmh}t`IhfyIVqf0C(j&)$bFdR(H~Q;z@=~Q*O!r{`2rQ_`SHTHUM5`4wH~$ z&CSgdv$Gq8j6#P+cdzI@qYiQWp3Ugp22W`9DkX?q-r^x4q6vI#$#iH4PiR^w^{!lb z%p$KKr3KZCbzL$}p2I8kkm}>=nHh&unU_60JTCC=67hzZP!6n$j!c`cwGT|7z*Kv5 za^bYwB>?0-Vxwl>fL`^yP-zL{pIs}3Dp#*wE1mxO^=te0p7OZ|E+;vg3Qrd4GhRK_ zRPy}-X7HBSC=oL=R7V<1L3pyGzb)%(q4?*bYkhY?VZ+R#;Tt{!#ZCVHg4UqaBbMgo0`&CsiE(jN zR!DKT_q%rgmjRr@E&SVhOPdN=PT>1&dA}akA?YUh3XW$gZSi26?LO&xopqdS|Ibf6 z@{h#cmwO5BerY3ckqspHMmMtwmTnM7j%AoK#LWF%v{%*EwwUNHF(TB}DMGdx2A71S zeY4AT^OJq!m_1=(VTpx>txh|Cyp$R7wfN>7XX|Y=@@_mL&VKUUY%bq=Hd;!(@y$24 zVo55yk75B~n||M`-#CyVFB1MOST$gn?8B%q#IV_~V^JEf0FKRVl%vjT)(p-h>&o|> z@BbdvMryJ$m?pnWE-&vn?Xl1}bjnCZ=GI;arIUQ8_4dzOoR2E3D{(D}R_Gd1d$eei zmpA^qNRw=Xg`{ISm;5<)3;5B=lv*1QhU~OqHyHf{Ir^`Y?*2BZGH%BBKHYlSVzipC zwUHi7D1sicVdenp`%CGD8M-@K6)h|9j;0-CP zJNTFK)9rJBsG<`Ylwz*|c#*&slMP?*h9oUX))uVP@vhk-*fp+!z4a1*I7 z1v4}qXjFuM+C$c0u_1_%NWkBE>HC(!%9V`sCj5J8Nkh8z*MZ0MdvDsbX>Bcmu|eXu z6y#XX)+cH$J!{|lUh(mi&mTBXPIf-p?9c&M;T(gr@i~&1_?>EGig&kEv(ocWa?4ct zzJAy)B13K^T&*X0?|{0P_tGUNpP$p>%6w6}CP|a;qROATme)kZlnivwmz;fAN>s_gleK&?T6g^2u~ZV&}Q3P*EZAuFM}V=lL>yE^pNe_-zZDT%e!PoPMD z>-6Y3_FE9-x9zLgD2&7{32#EgSl8qLr+fonJ|gD|YAXaul0ynsrxi}yC`?SCMWjxbTxchV(zWo=TH|GRAeyAJ zK@{xk2#En9Bt~CtKz-!@l>d5jL8}Rz3Z4_}?Ladc_6*}z=i%q)AMlI(Sl3i_KRjvRhh(KJlDN0@ z7yP#yk&HwWdc_DWKR`MpWDE1 z4W89p8RL6skTLDdix{!(5-Y zcUx}y&nP%kZ{hVG{#Ly~o#BRLBH{||jz&~vBw6lk{~dhOQMoQZEOs$5LyrF%%)Q(T zI1kQnWvI>d`KV86&xLyYCbvc*a8Z*~B{X4U2@!g^I}ggV!@fjOmr?;*DP&A=DT37E z#~N%&I{~O>4J`m4I}u^BDdOqVrBYWtL)?Be2v=*Tz@9JF0dLR>nmJ+Z(1CVV z=7*o@Lj9jV>rnXjr%!3HYhw_<_*&hleARA^WK%YBEWAVrCh>+8gokeq^2qnzJxP2Z ztDd_)zVMbTW7?}$O^Mg5R|^tk!L6)JdW-TZ^Ag0I#)h<$K|mz{ch{R-58{ri7Vqxg z>ZimXAbp5-Zz#>a6UPShY^2W(9#?O3ge#>w3gPFZn^THV!99Iq-u0oPuXV#PjK7iJ zss?z6TmF~uL}HAh$dlCY6I`)H%$?aZ zmc@gG&{r^q-rFPa5=ox;=E4qC8^jVHF`dw?Q@enWFr_efwgP!74ILe;fPHqik^Gho zyB=PVVtQh7vT#@E;uX=*ZU08xmmnJzt}Q;Qy^WV}DetH_d=B#muUCW1Y9ibBDG=)> zS|^|MEm*25q*HSR?=T!IWj1RBD_oGkEC7j(PSA}S!OQIfT02nRB;pvb+P6qgIDSHQ z6`=0<9*tg*pCUv8Ja}Zk$bD>se+#>uM`}|Hb20woStsBz+yU_Lg zu7wWmCc_5Gg*^$zr9a=g4qAQ9SgVamWXk~ZDGH8bTby{gxjR+0J(FIvFe&(GB7z7^ zbHXDcicF(juH|ndw{hb>hWJ+0)yUzLzif&~+`p$>BPDzKV#Rxu%#Jr}{pLin6Lrm| zuENJy(>^q<)MjL+5`On`N0VJcs@3DmeP(Q5*W-_*AgLA&0X*MNl@3N*juo`&*&ApK z`;G=EDzof)?q-WyY%VwS@~S|CVz2K(S0ih<(_s5asN>O9T9sjMf};_|fOXyY?d=eO z9xwBZ+1F7uhw$x-EgknkDJ{EYZ7tO#H{SI00sjH}alg~+ap3~efqo|AWvk#E?sY`x|+*NIIuYvmQ?ufwO%vvY#p%s&H%JA--#d{w#l7S7okv3>ik2A zCw^~Q8H6O(W&1F-8y^mP@GVHC5ZN`AK1Kp~^I6rP`ZznH>T1Z9mj3U@h^pD)jzq(s zuKi3JWfI^l#$WsiGk!&q=m}{HaFAm0{`ozz^5};Ey!ke~RkKfg_y6iXBY1Qxe73=f>z4FZT{W7tJ2 z4^7aon2n}PFgWU`nMz5KkZ55>%iLflG3ZIJBKhxUO8$yy!1xpwXwX0xp{N7YSgs*! z50Hs^ic6=P45+wy=|S6=2bXHPMF`Ke^x=i=>$R>VlJBBYS$ZSyeU$St*jDy{OC#Tf zQ$XOf9&67*fV0pYo9sUYoKD`Y2NGpQY#ZyAT%z+WXqx8)wl>Ol|W<$pX7anKQgqO>9TXRgeKLCZE^( zn(GoG$p>L`z%WC_WW%>sK;L@AO~vRD8VJCq-U6@mvBJ}RGV>AaFea`_@!h->)zw+g z3nFXw;XJ6sqXcm-Ggv4r(gpmDN8}!CB{hJ)iTW&W-o1bCKz|;>b!CPP zF}(!|v-ITT+IwFz4UTxY!*9rxfnqNY6?^v(-^=G1H4q&AOQhSKkQGaf7x4)H`NLQf z5pGMF0<&UpJlE4)ROv#icimYP2izXx8KRp5=atG)T>5G6_7m-#?n(WR5p@{*;y=7+ zZXzY)f+Y@AVs`52l-^0CTg&@V7Q4rLT!9z~?gt?heU(%gUauRf92s55`*D2xAU|7* z4GrK9#+UK%oP~qE*VkC!-!FPY@(%oMN)>sVgK&7~^NWwV7pCDK3B3&ZDqdm|Ru(m= ze|5tbrDtU90uqinQAD&epDTV=74jw2UQsasj7E6&roPj(Q;Kk{i@~&U&<0$1= z00T#)$PC6Z=T!sO_DX4a99+*hoLq?a%qB!5w~VS15X-a%b*y(oG3>6cu1NLEz29f+ z7|w6IT}GYU!zo7659GpTxv?p%wp^htLJv0U0+!RUGHK(tI}f#0!VyJGc=VP061oyE zTI-5z@9+`F$JwPhEAYQcMj|yjbS_Y8MVuc9+XEvUy&*cbQ@G)0ifNOxY8a$Li*TIj zP}qTrMep*Xb|-RURB!@}rF23ve%vUBA;~ifm6*9$`FW4j@EyCD3FOjIBgih5-mO;lFBvi zi1W>T`BJ(K`=z_YejFe@*E4Pa-$tL~iLEcPNJHr^fYmJ-((_XR0$nxDq63v4vYJOY z2*f7i+w*AuhpLRZ5@ws?DrCqTgT$)8c~0?>8P1%HdrmlJr*#!B@QdqLg1Dmo;Pv}cWPFVEeXdi zE-q5uV+^ZbiYm0DGV^u=XTot{*f{gj7leW8pY8i|+jT?~5r4Dj#YzSX=>Nb8DTu^C zpYOUr_ir^r%jpbBBA5LJSS&pN;Q+Aah=1(6>m&!SbNX$1vVrHL)fAz-`<66{xNKzn z-^*Y$K7CE6g`ZICigf)IQn;%{mf$nMu8$U3&k>Z^Q|A(w2pXsd(AI>uF!9g_kT;IS=R9|Cth0%g5|UNoI(|ta`26|vXno%WL>gVjyWmq%h|n*g$OuT&+_$!aLhah-N)bjfEoYK5hWU_NxJpy3DxZ^H0S7g7=JCyJFuaEH=`Mh!K9Vii@gNB>l z(gJ-qthX#iqmZVL7(>o6qIc`HPZOk(Vdb8WbZOvOBAck=fRRHUH;9UX-}dwX?S5$A zQj`~2VN_CtB|3d*HS+3y`CwhU7&=gj~U;ycmZ=J~4a=XPjfSmf+gb^Gy38 z1R?_35g@M@pf8oYhZWB??}b-vW1#yeSg`4{kK}2ek5W;-{Qd@T26Molr$nIMVG~F^ z^TK^7bZ>>W0Fm_2%!S3ak_3#~4>kpA9N6KTdoDC`qgw%|1WMml8#>0Fq1B>>#P;6j zA*w&9@JPU}&uck@x>SzgWehN&aun|~MfPrGS?k&BqFH!jj?1wx#Zz{&B|04j9f=x7 zBNeL459Y3nTOz?RL|yV!TDCzU`fR}Vx#_2C-NMK9fLQU_srmv&!%26FX2YfmvlCTc zT)RRO1{tjRGPO`i1lk`vzwigHR{}4I+U;yY1r!LMISvXe4n}uU1nCwZG?Cm)Y*MX? z)SHcprFx6-OUS?G>B^WXlA@b;z04gwuAnT523Ti?V=d?tGk4Q_ng7gT=Ty~<-7Z{Z4Rv*S2ww;Las^(d78;}U%^-R-GZIwtYqR`|9pHdQox7R~_VnnB zf!^q2Ve^NIpgj)Mr-(+!nC8~YuHWuB_TYZlI4)gD^t``y{p-F(A|NSPCE8H)yE(?* z{mlb0u~Zxm`dyj2rx+i`ICYw5o{y3i^nAbB=N$QNU&ObW=&t}Oj|K+QKgT<6ROOR4 zr|NIm=}jLA1`6JJvTUBsz!~cIy;8uVDqjOe%B}Zw6Q_a6JFsEyd${WX2%~V+)Q=Y<`eoE*ybGtX4!GHz$ z>a81RV+Fh^HzaYs@Nk8&ekpz^5y~ znAAyQ^GuXHaH5hz?~xW?(*br87OTU#Yi45OrJVuSN(LC(u<^b^1qYBQ3-Z2mYLwbq zvLY1C0}~|rGaJiYZY6dNOyab7PkY++me~r3(XF5qA+9?ep)RL8*;nw_!<%YbKiR6ETG@mhoVDi zyQCsN8^F8pVY{B+y#ackJG&cK({|kit>9{MBk*f;T6O?=<#FJ6cR}bQ9D8GP-m(o+u$tG`2>vV1U7T}TTtC!{Son^_!vN&YiPS^}<}^*&QXeN>T?3CD&&mrgk5g~+wu?uoK#B{aKX<}Xi|PE~J% zYRC++{2(KVIKI#Np5DUE+j(|W6*C9$$4<7j1=;1#LHs& zG?c_kf20mPkv<>8JbgirJ-N;7lk${qSweWMXv?DS?CZxbW|oAnmbnTm4lmM0addht z-TfW6sMPM@coqZ{XJm!74kgO6tCRHjCq3Fjj)l~2#~}*M7#N3x$ZtdOlJ+Z1{+R{PiFQ-%u_fhOv|3?pZPMzVT-o6Rm(g>pYv3me`N_b%oa7`|an*VmEv>JZzHAfyES7WiZ^)A7s+7xQ!}F0pv$PYXV|9 zg8uqUFv@RLf<*6cEG4?xg1|QZCJS^bGO1+>TFqhj$pQmN)D3s+l-*|lwQHiIR^chx89$#^*LSr1u700-+XA|g{9U6kS@ zkw2f*6NhWG8c2}I-++o53`w`QCCwro{{0)ZYT^XyLd;KgM%0N7!OAP$D{{kHiI$Te z)#=8LdT3ChJ6uA*n_%3;R{6MSb>g`exz-mL?3lv!k*M%g+7{22%Sv!@?62T(aX=7g zec|mbI(He46w%flS_0AIQQKedK9;Ui^0DBI>gDgycu$%KCT_lqas#VNKgp?|Q?DrN z2)+CZgA$~jj3R~YpjabJzMp|y59vkVQ1;2arxmp;a5 zj3->!gk&$EVjw!sIu;~L5?g6xeg*~d7kow&$=Q6rEi3FJC17?9iFO`QKx}9`&>Tu2 zP6UCAmsRx>`S!T7W5RFD$@*&)^*B8yvX++Pw=c{#uOSa(u8I?|!IG_By|45u_wMuiPLVNn0BWUeHnRBxajS%*sX&bTq00 z{$KFmq|u6rNgctN>p`0t!C8@qsOyZ&r2z2-E)PswAeuoS3Gc*KETroKM9~U{ZQgUd z{I>0^u(u>?`=LeKS2rdb%7m-(ZqEHAocCGmd`Na zQ&b+ev`|mn#Wj8vx?sB=4*)InjK6?AcAiTQuM7hml}mo}>l2&xZQ2dVYHEb^FH`;Y zRP3sn@{ti&*>6!5;%XqjUEd7mG#0^~TV2=x-}`src65LO^El+&LeSfooR~;Pes%~G z&?Y9E;rP&VNYV~1Ufv##DCXNk9~=Xs7MaWE3zk0lNb->Q7j*`}YSIFxI<^@EIQiG8 z^joA=I5?N|bOlBZCBUTErd#k{Owz6hUtiL;7DK_U#UP7qar3{1vPk}?WEjBTJ@+aB z(@r#kf;}i*k>%Qt2=0Fn`dK23`A(hcLzph&qlzo; z2Yx)aMY$rBtJUfJh5;k=B86b2-8TCf#3=`S5#_aG(rf+{=mIDaq&m>PEC|@oRB!n3 zLkECyGzzo1_FXQsa_w~|Bld$;-_FO(~QojdTI*ozt0uqS$@C-I#kN?ch z)W`p$1ptYVHwqaq985#;SDO1wpIpCniWcD;W2Wrdhmd zhPKFL>cs)jky9vGpp!dKd`scB#;!(+Z=BbkE*Tn`;N>lVvw9pTJ?^mSLxCt!pc)x- zq21}gz(C25H%r%BL!QNIhri50`wDpYCy#P-+ws0d!9TRrZrc=kVt`X6$cGPXjO~Gl zvwv7)WK221QUEroDFK(;$_4Xo5lVLZ<`T5BtmvVZ!NejxtIo?SxZw%T0`4aE0%&3F zNuu!dh@Fc3fnZdS&2j7~&GSXa2z8h_c>02&k5fVC??qc4TC@rMo!Vh8A@8uB!!|IaLc&f+p=KN$ev5$P zgvzH+Thi2v0xfhCH@9)Crxqt^hYXh>_W&4~dctM_S+t<3%d)~W8exJUY+vO5sO{(S zyFmfTMU>O#?Z}rb0x0NdXjz7j{|jyN(Lv*_j6}#Be*qi+IetSbeLaUQbOgw^P?ez} z7YaWs*F>QeyC>9&ceI3sTI{H_3U7V0@;odykwanTsElJtvX4y*KK=Tanz^Q@tIc55 zKBE1sTCBbH{re)MR+aOHbyPdEI=b)>hxh*bd!fFlKasn8LlFg?5mX&te|@~R`2V$> zQMJrPorp{bt2LAxLgc2X5Ri(zleL+=;6PK_mQ3|JewIp$GqZjfHq0%#3KDnSS{wjM zkqcAR()q)bbF1=o;A;DH1zcVo_CIN@-VEJ3K)5bgw{FDPj`2#uc<17QrvR*a7TPWh z_>Gfcv3GFk`4ry7+xmJJf=5Am&4PmA19Bb!I-aACW*N=fuk&JiRy*E%nZO{Wm>Rq* z1ykyB>CnSJ7ij(;8#Ay5m2U|DcVqTn`^?XP@$CTJ*l`#PIO+0-^Vlt}C1f&+#3EyE za}|x%?)3e4U;w;(_nCiRHwhUx1}zJ%;GuRuYXC5!;^9?OGVJ$zk)&wngnN$4H@vnE zaG9yTvUxnlRNxS{FcjXuub^giTp~LM1^hLqtJ>)Ap2n& zt+?y$=)CDZ=d^@vp6|oYvN|DhGyu945gkO|^(7C)e}+LSgRY(bV>@x5`15)$q}x}+ zq?MS9!2mFCWv=TzQL|gHsBeib^jE~P+ZeIPus&p26fUriA5_6&HXKxn1hjwBCW>Z5 zXmUbYThQ{n3qJkhLetdFGve^VHJSgUi-dhzy_cK5v#f^*pY@vAVbf)RIJrFq@(*ke zCqy`11hWz%lKg7*T}!4mKdmnmv>t$mp0;ncR^wOgL3~z3OSS|JXZ)5t&t)gkiJ!1< zM>506`_9>uqu}r@XTGbMS}96?0sNqcv1?o;x9mg3w_j$!atLR@#f~NYt^m*9n=tv4xn((tUrw$61X8df5L}5IZ_jxJv5Xwa z{vap0?I*v|HtAk~qD*dh6Q)k}0z&*bGpa)GK92B#;Qw44jwRWWMX_)I-jBQ@X8XUN zh$0Q%4@i(AEhPY&nZYzeVe!`IAL&iFC%{>9ZnFa<6uyu@PHlZ9Go=yjOhRSS|;oaM7sEzlkNc6w1Pny z(tmDy1}_~HbRXf;zphqZjRkIz>!qE$H`M#mfWHjaZuzyF_=|^oy>9Y&m^>FGSR{0+ zEHU|?KN|x73M41mg=C_%ZxleyIeezLU<}AXoh;7XpI+udTZFH%_ z>+PJ9flBUi>PDv=+Dj;vaO<@hH0Qks;VR?>blh=74G<48VHIYCY(qtO zG_yUL!x}Ku0-vSP0(f_Y=1oUH6?i_@tsSI7${}7L@1T-N5Jw)+_5<146Q6Jjb&Wnz zH7AJRUeJQcMtd9mG1!z8!mRKLBt_&m>E2q$Oy&WBe>&j^=dXF-dJMgZoaYOof7J+} zEwA?3TL#0>2fEd0w<|{lfUl;IaB0CFT__LOqI@&@;~K5NI{5V9}A#t z4~xACS@D9Q_w-uX>nH1z1lW@O#uUQ1aU7(lovT{CgRm2uxXrNP?=Gs?UczCAY_dU> zzZW`pDF{C#J$y30)4fNbA?N;OzpnHQavvxf(U)}~-e)O{3SIiGCqv}QAbexuW}fp4Cm)=fy2WHP?j zDBsfEG!#UE1NQ9jX_1h5yv)7MqwwIPw}1B2Fd1Q0*_!;;;Zd?*p#GVLuICqbjW#8P ztSq&?aLR%paFhfx;sVMLsxbTh6M=lJD2H^AXa+KF9&OKwr>@IY5C1sY;yQ}ddtB4r ziMK3qM%lN1tgD;p6MNcva^Cc*=b&EDojZc%cjR82Zb1&>*oPDAG-Q*^vQw@NxnS3|yaWVon2P^Y^T_9wtkL-oPgA>nQ9Y9?mcqxe0 z(KG4Cu)3804(v2`O)h^Qz7W@X7bdKUn$hPztcu6Xi8#I}2B$l)I=2kGKK$tNwnu+{ z8~uU%1vrH(Nqz|+GZ886Q@h#8-^e0b0`6Vg`PU#4Jcc(@(+?lI_&_Py;TT+LUB-Oy z;mA9emVYinb$>yn94#ls%B|R z!1$up1gYMG>w!V$tcq)v=!b!IXe09Zo>1>OCKKz-f!~*yC%(L|ZRf)-X5STF7eyPJ z#6Mcyu&x4B)^dAa`rNeX8Cgcp=z0Psoo>NU=0p=6ILBEd_!5%?t8EVhu;^p>ZDM zxvZh*yG|Eys!FsXPmNJl>7FC8ki9dpd!#gl1pNC9rbV)iwQRSVK4b@DTj}f(>CL+@Cm^k zWG~qPuyIS?|$Yv*S`kqHb-P8UWwmjp@1%P2FxLX7db% z3z(f}C|e4aTco|93DHqkYVfZ$L#-o8pI>hO6ZI@^%c+^_7+ifsG;ZJDdbENXM!}SP z&>L=k(3o*rP0J(^8b!gwZ|(lp+ji=e^Wg0ZW+duy9-WCp^BC%tqq3o;RX=C;YESJ3t~wZGK2vf?;KcieG26uR52p) z1#youpzQ!a){2hAkDJ)N16YH-bP$4R4+Z`61GOMk&7?w2D=snk=OocmgdqH$_I*_Q zAI&N=)YNqhL%YrvnMCbyfP!>^Cf2nb;xqS=*xHQf4l)nuB&IWDICuOh5+u)~0-Xa2 z^w{4tI)oUxDT};Iki;gcauE0l6K-{ZL4mDogiL-%IrknEv&5H%;#o+y$t=LF=!04gJnsvf@T~%a(Y4o;qQAp4Go%n)+P9T(?&Lb z&+il(4+iQPv>`olVC^I#V~$Uq?LaF<%>z=B{ROCK2iXpNe}8`jtUNW69G?#RRQS(A z$PeBfdpGx{Yg9HVj61k#AFKa87A}B83fC)uNBHec_urHDX(wm{s~*ip1&dGl%dB&3 z(br(k&BxP~ZQzGc2dK_KV8JWB=1DOoAd~E56q@3wrKcBbX&pZFBWkDiz`*pEkYYl02ClzL*}=KXlnqKcG(B` zg^App6n~D-jc>@eAu7A+Z5>RWtN}%c+4T%-k+zfY z_v>IjkXCHPGVO8)F(@0WaiidqHGIYWq?R9_2a1-50~2kAwQlL}3$|0oecXzLiH86| z&u#dyGie@7^iZl52e2uE?Y5=zXdVr*)6|2jLby_7wfE15lr$tQp$$dtD|Fx!ZhR#G zU+X#1UeSH`A||}ut48hbi=$9m!YQbydwqEU!242=*d2q-Pd;F*x)3+bG}bi{9{s)Y zO(c`>eah14sBZr0PBB%)@1uF;TZCAVT2L+s#<#(=(qgrgZKgnmL5Y;rf3Cg zr~!8tl?qza0A_#eF#dZB>ClroOf~w6jSS1GL3RG`1Y+tE?$TCl6^j?lbMryMz1Id| zKgf;X>W={;p$O*nfecu^iSXTbaCbe4nT+@c`xr!k;c=4x4zb)2TW(l^H!!l-?8-NP zG?hVJ3P;D@iFv!FyV=QWWaeK8u?_ z{x<7s`6yF-{_n2=nPRttCrBp|oflvaD7WqYzATH~p(xfvcGYc11`=1w-3lx(Chp3B ztWv_a2UZxyq8eI2i~P*{aB^p|EnEdE4paZXZx~rtBxvscAHNTjo^hjLntC}1`rxm# z#1j>u{oI_jd?ZB{q7qtFA!ToLrL7ST*WXxd@w3m3Yw#K>S||qormAE_y`FguGRXfK zi1$LW&jC$6qUWc@&hU}5J=_2UdjH5XZc7B^Ui@(wLmTXTEh@@dhvEaPF3JV#LI%YsCz8B*2Kljv%&e{uZLUbrgU8( ziM+frZ*}s|t*%_794b@%=7i*Pb%)qM43r39`sUc-1VD=j-m4YeJzrB;6}F$Al62l4 zJ#I%n%E3u}$mO49A3Jf)dMDkMXOAV%+>x;rYhzl5o2Jp+Kc>sSecna(6ZMx#e4Lbj zeyOArna2)7^DYAFe8G^>X=ymA>u`k5XZ+&)K-nW4fz%fG(?h)LJ{a=YW7zosx& zg2L+;<7GWIu#1x0?dL@K3^5y!zADT_B0=}9{xP#K*xuQ{Ncx9$N)IF>jqii$JAI1b z?OqRz{Cll&52+!(A?^pPBaI zWM^h%h6a){LRLj&AEUAxR0om0D@A6?YEWH|=c%0Yd5`bsdtJBR?RH&%T<^bnE9bmk z&+!=d$Nh1C+}T%du`gkJk&!FwR)X!_Z?iwM<1?XjR18L_8a9XqCDfMs5_Srn~EEP3~VK1i>e zAr3M;apIIhTaTIlH|IUGILR!gac*Z(KOtN{pyyzaMRJqxFv8qy`Z5!G==hY5XF+* z-LaeQnL~HJJp!sxW?%IM`2UuuDA|e_De&V{IK#frBbxUEAdD|Q+P8J}WkPOK!TxAD zoZI1J1r}kQofpX>$cw!;z-Aj-(LJmEI>x;Wnt(&|Q$=+Z&{Hu0e(!UcsQw|tN{yt- z``AdCaBIYX2bmJ%l}lHG|7ZaqJ^|p`=r%RMe|?%aU;m(|8VVILZuc<@0}k|#=bof5 zj5o;e#Ck&;zcIX4jpKvSynP@+Axl2g>MZL=A(%s)@p=kc&F&#A-#qBM7d<5&l#MG3 z#dqs4AD}9VwLCWr{cDn)1T+f77Vo6TU;ra zqKCDcowdqlbJ=a6rc(ehjkF0&ZqQ(T_Z#^{S^iGi@h?WoVGA(rIAX(QD;O4&)yiES z^?GxYRPd37S*YO5v3dv*iO3;*2yBsm^;|bRG!1x z(z#Wh6IO_m^4<$N!Y}&r6nrY+1c*Q(t@~@HA7>xr|8LXQJKQJ<`Z1qg;r8~xL7MXpAxc)KI^I?M!R=c8a&es5QDu=)8qM9^7$x(dqkMbv-ZJt~UJ(S@RY{qIW%vqRRsi z>11&SkN8w3_aYF~r^FY`=RsoBw{RQ#kSG@#`QG{ZHw}(>Q*iVE({z}5!d8@niuxnq zEvi6Ua_*F^-jHJ%=vpwUd^w3GO(PEkFp=x_3_8@ilGN}50v(5Ajk5!Oe0~2R zchsIMmDye;^#sy69LnOH+M4SmS*r?Volrce{PauQ8?*u*re$-6_O`Fk$Q(1|H&x&b zdc+C7j|yZVKJ*-uBAJoXbl|7V64ODr_k*bmjKzuGjG1UWOpWyzYj%4&<`4}rVd8@X z^O6@7>^o4kBOH5G1-isd#pF^G6J*mvWm1`{fh&q+0D-k}LVs!xwJomY&ghg9bhTKN z=jz|7{B$2Ea8@A58)D*G4Z74ugTSLJ6h=MZM4XZT`}o1a6io?5ALck}7IJPrvk3xL zDx=yihJ>Dj%hDWwi~>!zTH=`&JAwVou1a70TGqWZl;e~`YBnpQS9xZe+L`yc<*iVm z99&VzZLi#IYcx?cBb4~mpNfSY+ndJ`+aJRzVa&D*<_Y4}h7k}6HA}AfCrKINFS$-C zkXDAUBg11~^rt*-(Ju98hqtA^tK1yLj>(OWceyPtF77F=P}ixG=)le~V=7bJ@!+;g z^|AZ6Cp>F&QY6ZM_{>k7)qgshth*;*^16kY91x5Hh}5N|7u(CyPS(Qh5|fLL&7VIR z?l9@A@zyiZ8%Aarto_ZZB_<&CLDYDV5Dqrqwr+Cm511ZOjEKcvMwyZG4%gj_q5JZS@GbrOa0@OSx#=OIMqpwTOEQ@@4 zr)Spt4m-a%*`U*s8PbiOH;U$41oC${ru{Ur>YKV$t`d-_y_uFk>HNFdh!|L0kU${c znISZtqLAMwoU(FWS1_US;IR`NeU~82+5gjU8?%F%oMX3m6&x#PAYVyFb)sw(WeG_~H(B|#OLA-&ZZu4FL zv4U1ktKoF=i5=mH7%xA5ZTGI7&$#u~a)0C5#=+K?9}AuI_j-6LY+f`UxO_8l z*=TQ_dg#Vc>ezv=%+;Nz6aT2Pc;Vx%i?a?stDz0|&+CH1xk4Opl`=l5>*1DT_mj8O zJJ9kUM8SqA@j8L023-a6pO{3+rwgcvtk;V>DkYk2r^uP-q$Te-&?DejeK?pco#^w& z_rrOEHiBsG3&Tev{Z%aW5=#d@vQn&nV!0=L0}D(~t*F4L{HkV;seNGt48lgW*5ou9 zkl-&+2*v2<39;EQ4hIT3mfOAd-UOFZEgviHN81u1TJckoFH(TKeu-4~;Aef_0m2)9 zj5zlj7}+HK0$#$e?>Mw|831`17RmPr9b#N_+aTWFh8q>Z^aYYU^&5AIEKDX&wO@W? zL@zU`(ojg1R!2?ie~FAuQo&ChJvY{lAMlq{1;UDsK*TC4Qa8Rrtg~P}Pkgm5zP0|# zPdOruSG$9P6U8h@!mbiDnQ9w10%qZ&X)r#EChXox`iMWW(BlxvoPMa1D?T#jIiB5M zvyd!T<)^SNRAejIyvibwx2i+`Im{%j4BOB$MTcH2rZ8f`X~4f|NX`?1s)-b*si@M9 z^cdFmwuz>FAD4%}sH`Mh)BDBe{X`)11>;(a_>V==LE96=(Wsp7XH|(}5!Z{06$V1o zJ@qqsV%$XZ)Ak=gj<_+gMeLF>pk@pYCYivv`?UtFRQy>3R%sDMdUtut3+9DMt1%2= zOf%YGYCZRqkem+;`iKulcyHZ!5j-Ghhy&&mgA>3*vDmlidR&q1IH1?f&c^_X&9OLa zp5*eGESA4C1M+!3V!N?B@uPkS3^f(vh~rM|Nb%kAtu_U}HyG_pzG>+==3?*2t#q?V zKK&kS)neYP)-(1Clf$OT`A)@-qN*4JelPQ!Uqt(bH#?;l$V6J)swPc zOZFybFxmvrhg?NuzLz{#Y_qt$08g^EO^j>>MBR_%%E=?auWEf}%~?gdWGuqbs{@U5YgY_xEU=UGwj9UGBi#EupCWOo_VDB< zz@rT2A$Se!!JIiatIESal+z+J4)NDW|G7kqh`=CY{cw{dW$bjH_%#~WWF&YMk&9=vuPT#MEA?k4`#7rL=%;UUGmNL z3SP*Tk}^irg{+tHw_)#B^VWAM4Hj8G4b^C22v#P@-#UDFq~KwtiHgx2`@`IUJ4<)&MAOsgL1b+r(q-M{9mZhNj|1rGsf zVcqsU?Z=^v7(X1)ewek5LI#^H=^5e`(SP5{Jv_{&EeM1qG6*MKD6Ht;-D*DFk6FQr z#&R2z8}$j6cy~f*p*siW$SW~MT~Dr_(j2L-dB!DF0bjh2KwI(M>vbhBAo>#pE#oEm z+E48wc0VIQm5JdwXZtVg0~Y(?kH6Ush2d@*CvBJlGwjbCDZXl} zC3@0~I?_0?(p!r6KPmpqjLYw=-1;po&MRzU!HWOzPRwQ zwOzh0G*jBiO*mp;D<>o`bvhXKl=;qJ@u|FIurgjbcKyPGgb2r(*kbYN$6xheW$&ib zE?3Iy_8B?yS&g}$Y-EplJrsM;l*Nj#89i?#V33rm*(ecNL)9hy3uRYU>m(zB9xZ=(InD- ze9~nkxL}dJ^E6$=kxYjw(4HQasi~Lp{&|ca&dWMBs9HhLl0IpyFsP{#k% z-~F&jdLOf6hAQlAOp@N|8CB?nq*PJ(w#^lK+hWG_pth{6UWsPr3l5e{QcN|6&H5KT zt{=Ej67NOnydOWR-?CH1?PC2!x@5`#-%k5RLpd`a71AN#?&^;u7mz1=s%@-!H+ zpuG^8&Eh_-uwYCt+w23|ep1zoe+u@VnqI6u3}r_)pY+*HK1;?NZTFL@KfPpeOe(ZIGeAc^QR1(F{13&q7|%D z>Lfn(lX}L|i0+YI|E_)4li*j5pSVvOnpW@ou#mpkAh<`ZM{eaGJFRy%BR}wta!^L3 z3uon3VPOV>aL>Kc%6;@+ZM=}SWuDtoxB=NNeSms*cTso|VX_r5VW|>u+m;(E^g2ir zqOABvwy*uhlW<(mc($|R{=|EwnuIic1$kUeT;`3Ej%#Vd)r#k85_SXqPDS_}A0}Up zmtM-fI9@F+2tds|7uxg%2EWUM1XT%RfZvwvV)>sa_!?tAu!D(Edg<92YDy)f>J9rG z#+ED~t~*Tt%Pj&a(ol?{yN3DCf_6x@LK-qkEePkSrs!|0R*L>%sT6VFU4UaI7dca? z%7mLZwBKCz6n4jL|$h{@UOnm{Z24dO} zCm_=%H^0A+`P_zfjaycbvi7! z0vkycB>b4#U4DQuLCEkT>U2dRproawUoJTC^hIz80-@o$ElYGj{3U9$MS9bT6$>*E z-t+1Mrck%gnvT-Z%7V$oVF>om1NHz3nvhd9QCw$>=8aEwPDPuJhC7Pxubf;y;4X3z z-Nk@o3{>yt5Hn)l53IIW^sWzBbNPOI2yP3~IK9$26m+0E5b<6dE1a1s0EIq&qi_$k z>`pWeWKOi!Q(QuTlIA-g0@z#Lvm>2VJPkAsfGKWzx@qT|Vz?TX4m3++)mcv#rNUlN z^dQY6TqQpITs2+CI;~Rd{ zPQU0L>xetLjUWjB5(0Sjn0F7rQszZMxl>H-6j#wDz0i2%eJX(7?i>hQmU<86D{2^2 z$#p&u>X}k?o8ERML|`=-Q-}Z&=%MhE)z7C`N?#?j4`sd#L^Z-jExRsvp7LmVhrkrg zSm!WqENgC7RL!lD=ja}ekMy)lsghwf!8{I5x8?|#9s~TKT9Mgp3z9N<7YEArwu9yM zEQ0ZN;rLBr0jNQWE~OOkvb5eK)Y3$M;wGXP5R|R?A~^1hx+g?(Nys6FD z9)-c<31lWs&2T>HuSsBEyuK^z&E^Ah^S{-Sl)PU;h40v*Z1kA@tFlex#LBSJYocdKlp@j=smta1&_Eb=BtP)xlrkmXh zvZ;z6r^8GTsb_6$3OlCSquuI{0nM0%9mJx?p7Z0hz0XRz9m&Q5#s5$`*{5;!2p$l3 zXJ&X9#imOX&{+=YDs5)cGtx`EXN=&FZ7DZ(SxM)&dNei=i0a?JOFfeR@{lvdqWZRr zWqlVO714F_HAjY-2(CJ%glbForsmIIdR{QaWszxkR1rxJSDh}09!8x8nsnRe5sW`D zO$#xzcpd=0*)cQWO=&{=)ckcvF3(0D7fnj@AoWSt=Hu}YR3C8Z4Gx0%+ zHq0qa{lI+ zVkKocE%(#4V=!TD>1axxh$F5ptw%MO-~6_+9+TMM&q?!1#FVmtdYy_Ev+0I;!rfBl8)PsP&WAo@d(n!A zMBzp_KQ?}}N=xKeF>V8eAzMq#+^`JfhVJRI=XevUiv6W^Wc|M70HWfgX+MLU1aR-O zx;PjqaUw@3xPuKpCr6BN28=Ct;=s77QPJ22mi>+W+Ri&SFoZq1?iCTY7UNHfT$UnL zlP5sC2Rmhy-D8}?$P&kk=}b?CwqD2aeX)usH`LqJirU16cFCCH>7>*N{*_C6iML;0 z20P=4Os!hsO3L%hX#Q`Y7^E3yTkf*7VZ#+%6u7NQMcSD&TbTeVjU2J`g1wX8XIr;b zDMhLUYv0m^j(6~Y4uTr913N;7#!P%K%=DZ|27v-AFTI_ml=+py zV$&VI4fq^Zz^$mT1XfW8p<4EXGPo!8lvP(dQNH`nZIC#{pfE6cB^m<{$-l;D26CJe z$tk2{YO_>8&0Ji|rE7EOx-O4v2CZ=6Igwm4;@1=f?FJjQ^s5!1&7EkKTnXW!N@TIh z8`p!ksoUvd4u}u4pE^r2UJ|qVFkm9TX0kGF-0D97(R3h;_j_9y9fuCp{Sd!4dCC}{ zQD!1TrErQ_^&3otye?obyiO{wbjAw~8&z~ZH5}-*v5PW`iz3e*L2!9A4lEkHrzK@w z?rL}5NdeHq--zoM0=v1msN4V2=`r*BS$+mfL9qN$q$`#*UBys#az2xdwo}v!)TGbK zllWT}?i{6xun#1u==QI)??|$Nle?n$oZdKfv28i|Zca9gF-kNi_S2zNu=uH}#D-!Q zo2G|ywn>#lciz@eZj&~M-wHP z5ScnCtPw$QxS=lbvBb13cRj!jFx4!=M@MUXBXb3D)@xKZO zA*^t`*HncVnl`%Dg$-a+$(T=$sqwIT(mMhY=W`GJ5>$PEaaHCcs zJ1-+A)HGn_-<{_6i)%*qja5YyJ!hoAr@VVhnC!!SuxZfSd>F9G#7*C>a1io$NQcLc z9y$T<;6nrq_{|mC#j?!#(OgA;s=)HccnrJctUPS3KYCi|$MSu5wEwNE@+s+kQH0n2 zC~S2rAWE}`=QlSOSp1t`>QK3ZdoGcSO>QG-mcd1TGI4_YL7-#3wzXr`>BbkdWJx~ae;mm8VXXbAA zj0&mJB-#%VOHTD^9Nv}bg+FT|r3rg9)_t1vvtT7jZ7Hd{w)aa29F_i?azKBaHP$M@ z%k|~NG~LN$kBqu#a2E`9@GXJs{e1EsO^@6i&c`G|_i-;q{l!wh-yw854UOi>k`yYp zTp8ZVT}oXt5Ucs+{p(L5_t1CMl+lRNq2?AQg5D$v;l3*S4>zAtM_#%=(^5UNjQq&B zf1Mgkmt4x>nENpX-}A-$l68VGt;z$IWgFdxzgVxv(v}+vS=ib06!M};r#%z?o?-w|D@oxP!YNo4GDhSC?$iLtTSGvxaL9TFY!{KEO1assR#t0>{ z0tMn!c~s?bnxz8y*?oGzOH1$cL~786{DAEJb8nvF-k$?LHxdPa6C~2|IIBE{>~Ge) z&4hOQP!<9U+73iXzpuUd(CB;i^=&#<5wODO`~nYm3T)PyX@hLkepf$Qq$MgB*oq1F zMm9}L0U-_Bi>p7b&3k;b-$hRPjse-&Yoq-*m>maMSO02tuHQ$QgozNDMfMoOknkzC z1QOStUDj^}P&$OfidAX+txUb*O^!EXtp2n;9O|YO{ZzGR@wq|wKrAH9P?n~2ApUxW z(v`BFH}`VDnQIi8x&-1A6G611$eN>K#+rTF zg&1R+W2(bjRjHACY(%&NEG#&#lPZpQOhrb@#ER?p74h8)X|R z{UR>09%D89?oW`Tqqu57yYRzx{C0(k%(}mw0a^l{V?(>26(+vMxZor>F!V@QY(<4F z!{t>G|DshCzYyd5c{+UY-^B`qXq>TPq0jRZEDt6yXECz~WAFlDF5NiADoRR6#7_W* z5Yi3~sT;WHjxoK7(!XC66kWSn;G8Tu0amRfTMq$yA?+u|i0cg#4DtjE)v?Or=jpo> zpW=)qBK$IM=E#rBTy6(T9k1yg_WyEGXkac27Hqjw&iQ?ibUx#sx`76>DIhEYg|Qlj zfXkzLUUH>q(##x%OfyW;LX;o+`lp?;9~Q1W_ID*?qAYdZ1Q~Ss2?xUA+y?>_ zRAR{FY4m~Z{g3IZOINmB75Zfc!l&P#r;pf8zp_1DR#?ti?8CTM@+`MQy@R1mZ6iP+g$L=0|MisiCF#d40yw0B1Lktjov_ioZ> z3wMP*cpbt+J&E{vgJ1=p{l$~}uX`I4&-hM8VWqxY*#71`z zfmVwBr#=E@QW*nUm4UGu(jaHxKT}|jyp?Ln`1f~jP-8WqOW76xZnmW%a`+As46RwP z#=wsMPy?ry5zB)v;B6CUc-tWMKF#yM264cha#YB}-MJU|#z;|u+ulAEICC~hAhikf zXYFkE)-~{ zepZqqF8-L|d0Hf(w?FX35w+U0X?D=`L|*iwRPwX9Z5Qj8kDmKXL+d%PQ#)HHBqMtB zF;@Aw)2%{^U})8_T%n6RdlCG%ejQ9jnyC#v z2!#QU2=j43p#e6J4O_HsGyZ!KKlW+drTi!HLzBC(8k+aFrlrbgX}5x}j(o3{-JMwo zOM^u?V!&W2`lZS8s;O^WI{h$@y62y<%9i`K_dP-D^r+Im+_4K*C6S_Vdyh}_i9^Ru zAnl-aB2imG$9ni|nt*gAW-%Ajm<=<5+U4chzHM&YP}G~N+g$atn#trf3ZoN{)=Gv# zdbHymqFE4c%h^V|#g%mHOYaFUkEz;gP;|3@Vk4>gcO{M$5r_uj##tUY-~s%Z$cUn{ zbS_S1;~${^Ew=yGCU%la8qib!c<3?-v;haKqGgV7mm}c&x%8VkhmSGL;Cl^k)`j=c zZ{df9Ss^fBr)4Ax*6@-}e*@?8!WklbSjz^*OupOggJHIyiT-A13ak5FoQllCw49OnMwF&2< zEEZQj(Hx~Fy;8(g`YD8|h(cT0;%c~dGfXb8XL46*5!TBqb{QK=7P#bv8Oz^8-;QdW z>>=ErFMW6eTLDj+$d=)~0+G;tLSxi~U+q>nFAef#w>)y~<>qYpKZO;cq6ldMJ%%h+ayiS7po@S-D)ng<`+lG?gYuhhro z;#bv14D&Tka*({<-%jV_ixSk2<4FR}i*{VC%g>>W zR*gv~wlmeTEv}**IUx^zwCnA-uK(hyUKX_24TYuHl!uo5TDA-Pd1gZy&4bd->s*e% zsXw+!uwVO$uz3J-h_I7FyI6xgr`wyabE0&!Y-Id+8GEL6Koi=mG~7vcD*Xzp1BN7K z)Rbe;2kiBWvp2|Lgr^O^Ml^EsIoS2{=f>kG+r#|!%R(S+B@cTXsJ`$+I92PPh$Ce0HJGXOoZEw(E21u=xm+r!l${W=`rQ5YfmI;pluGx;e06vS)!`5tva>~o~A0&Q40mGCSlQ4gLr@cEGlU*t!-;y40NubMrJ zI$J!ZS*Pv=_5%JGP6xl}tCeM84F5{$SJdi}k9DB^?ZQ8=Ke%eOyWL!Yx;mlRb60#0 z%atS!Kr$^rAbhv2sn&GSHAqGlTU}gvngQPQ)C5To^JzigjGO9>mz1n zutv7yzWV_8WHdJd7AS%mtOYiype<)Wvg1HE0e=o-9_d5xrujss2MkNs?1zI;ew)7M z^Yjz(H~;R--rVsW);49vEE00*?V_(v~3KX#immxD3$y8hbOU(1_a zH61aHi!VERy%-@rSX|!Q1#=lCv$WwEY+)usdix1uiP>_Bgfn#-V zdzW@lS>L!b{@lt77uO;4`%KiEzwZIM9CN^CU$CDJ2d_bzPeob3`k$OZMT%+CqCeZ2 zPa62s&yjApv)F46W7;(^aX!e-{GBGvC=gOh$YNw&t#gcd|9@n?1yq#L8a6tFgtRC* zbc=+5Fmy^ti-I(W2uQbdN{Eznr!+`+cSwVjbT`t?-Gk?x|G)P-OPAuTLHD=!yWe<% z*LttmTUl(LG#*wAx)RxN_s0avXACP|emdwqA7%h9YS$%bi4n0XmS|MPJdyK$49Cns z@wOswR>%MrY>hq0-DOuJA8o@X#Sy~4WwRi?#>wPg+H0lghWr|`x#wEt(wh&xh%^)< z6lHL#B_#IZ;+DF&p@1a-v0REg90Mjh zR(bs4$i}{al{*5J;8yOJ5HJzh~Xon5V#x&>CWdo`MQxc3ry|s0OO=qX2QSnbbM#g})vyMQ$yH7HGCu2EINh z1*J^t=9Iww4Cm1tNogl;hTU0hKpp>B&k)cYK|;V^wWqjUFpZ0+y(>ZL^3b3MspSmod%89oD*c_}L2ia`1rUJ3RiB-%YQ z;Y^x=A70I4cdqd|jT?WCJ7{n+LkcxAv7@4L3(eJrey8KG&mFR0Xhe~w#pWPEe*^qF zZjlqi!tAHh0xr|eg5$#eVRw^Zlr@X77dPkSwy(P=EZ>k&Mv1UdR)Xot1dYaU5?}<< zgEo+=@CNaUW4htf0Hk1uD;M# zP`ei(1N5tnx&rWzNlrLQxs8g$0@O@;38FwOW+4Rnm2=25FK}O^r9CjBm%zFF;tCqp zjZ5WeGw5y=Ql3p2u1lVY3!sHAF1>8)e}uaj-(x`kqI+3{F#R$z+%}#o(Jk_?X}(mf zi~QGLA37SMT9`Hm%#Fp zM%9XVS3D)86hfoCxF9GiqpXI!Dt>lC%dH)xxSPeXZ+Fg$erXN%JhA01U7gkV6f`><-fuM^4FzmUz^(?K1pHUb!tS3wns`rHWCezY}PdW4wEx&Uz8dVCf^_6;}^0gp-F2n{=Q(|cFKN&R`Q21OV z)7fC=8@ycbBl?1rG>?j1L`--A%S7ONnIK_&0W=(TnNKg0M1;;4kV1+4Gsv=q!p&&S zjF70z!PrXr0ZeBcc+U_$1Ccg?j*%=j%^~wL(>P4p$XWGw7V%bd`y-L- z$ueZYT*cqQQKEAh70t~Ob@V6RY7$J=$%3Kxr!`M=Wr)7soE(k)41ZtMC>55R;;5Q7 zXW?C)?dU7vt2C8bJG^JN$BNP>fV&KRW$iG4j$I!shR*S$o*aJWKsSu3{$^?CcioN7XE{D$>1oN~_eiHXcjC;A-$X*~*|0R@?0#z0? z3mX{oS*UQ1csr*CqxrrAr?V`ek1}Z)$JHU)dOM1?7&G-qy7i&*scpxUcN?nyqm#|- zl+(aB?lI~YgGTrXRP+Zmqx0-dcW|xFFW5*va}i{MUUHD`)|QCSaeG=(>w z?O|j%f3LicQc7XlrDDiPmGrnKk$LT)@Z0g@SUrxnPrX^bM(z9LG|#<8F*>J_RRb;YmJH(%4Kn z9+Tj9pkBu{?>r6~9$J8L4>$6!pZL2$PK2FBt~l(sA9c{bTa=*Bd;R}*wI4+Pg}y!~ zad$gk$P0RO;tk*X9bcS@s~3gAOsc-vN{g*vscJE%2CBXKp(N0r$&D%0(u(DJZ0*^@ zrb<~#5+3sk4f)GyRh#-~SUWt`H|iu9I%7`RQu+p73Tlo@2#!jod9S-`!d(h2!N;$A^9?G{!$qWe5vfFW~1vG+C;03Mh@ zHbul%5`m3q+gVa)Zdr9863qXdbuFbA z1h33!;MF{_zTWqjB(b$)940^7uCna0w+-;Ro)Wfv&8e-%^{kfQLg=pgXxN|%MGk&OTwbicM^~c=l>P0TDW=~f5XJFWfTQZA|2ye`hkez zzDqPWA!d3CC}W1I(Te9Y#qPw2&cQU?7Q5;4UFX&-F-7;w&1{{dx3oJi0+;pglXYO( z?RwV_Xyk7CZ`b>pmcBB(QWz%Ug`rw`KYo-LqP_%Swv_xv6pnGFm7^eUQn2u$gJuSw zvc8%1)rw#Iv@)N|XL8^V(WuMF%mI{HKjZw(y@pL-Bk0V<)prm#FnT8gphkzNTV7)K zDKT?d;8Vx1n*6S7E14gckc_ynMWOSPUPn`8zhPPOPygr#Bh9FGz0>Zsil#|2ZMTnS zOau2zeA5>y>p{pI^_zAe#loY3Kp^ZlG7_S1`gIhk zX6?iYlz5|lctm!%Gk~tCIVZ%SY?t`Sv?`S;je}?Kv?R}EjwNwTqv7*|*3(d7HfE&2 z)GNA)m+c4$qY?wu*b76QB`jXu4~Rp%;T^I+uI&h_(px++O$gnFuI^|h!a(jK_uwG! zI+_Yd!J987iGoA^^K^S+@FGMbS9&TMo?f$fIfCj6hqdBlzo~f?o_^6kK-{}OXaTV1z9;zv zx}XSt`RThLr#~j~lFQrlfP=Q3rf)~@;hVD=JykG{P*v>$D2XVFo7X{9wIBV)UV^xM zBzPn?lLTaTc#W_Yll`$s*G_xYWvb?2GOMJSK&CEq=t4xfTcUE&{g^eRz zJ&IP0d}ZYN3N$u9oD`?r8rbeljR?zPEQz30)7vpE!9k1oO@ct$@X#C?EopGwTQGKt zkgx8oXf#YjO`WBqu>g0%%Dc>a3+S8JEfF_m`>siy0itje4R&!}@;sD!Q^aAE8!0Rl z6r5dJjGLyrZr(Zkt_q-L6s1~f2BKJ-*k?dz&e>RPN2>gRxVQu~HHG>W=VpEYx&*G? z{0>|i4XzDS^;A#u!L1HaC}zdHtuLdPZ;I*%WYr{nHXFEX1)661Q{zF?!2pkY@Cf5; zWFk{!>r`n9h1hXgyjaulskxfv-^agmf?i)_vIPq$#Z6BUJTTwQDL=#VyDKv{JH093 zH7UhI&6@mNKT3X;MM1$&S+QB}8nI(*%Nc*>kS_aN$QRb<$hiMKOi`U(OyX%JBI`$e zIdaenbQjat{BKlM@(;uEbM1oySYfqNrq%7S)S>iMA!&+$9=#ONdw2+`d|14i#8D3L_+> z1*TYzwLk-|0d4Vb07|NxIN_V0jZR_YpDpS|EK52F_N)-M!)mD@?zpF6td+0Q8j%t2 znHSa!(B!K>AIVPkK2-L+A9)-IVJJ;pnrxY;KC=O_LV*;DcJk6ji7#RZmRFd*oyy|N ziRwJuLyMtcer%&izFT4r+PH+9=4K}-v~-@BQ8F$)RiT&-(VRBHa1_wv6I5J2 z3o3kU)yekI8iGhMjM?ntes~pN4j2aM$Hn7_t(K%|AF19PxK#iI9X&OsNF>7*fsas(-Bnf-Cb8*iusRVhsrvwMj?2-#XYqlj=|QfT^R+R{_Y=KW|0^cccRGUQZkL<)Gk1`O8S8 zecg&O?Ol}=B&rl~zVYN^tDoEr-Z$d>0cJLJJMNVy2>$i+31k5~%Npjdal!>{64PV0 z<4!RHxIC9Bx`Z?tQ&AhFf72H)k!wfdIb`zkwvAL_gez^}6t%+7&6vK1nFii%*de zK~%R?q~_(}_!CywG+_Dt@i)M4z{aVNdZW*eyaE@a2W}R}gEVJgwwOHA{nY~*u^n`H zSBKwK>w*{oJfaeT*5uhScxUQU(a5!ZaPNqa8$c>?dT-sujiLMwW)`G8m2?Z*fjO9u zZU-o(zY%lNS6I&L^!)Ea*L#NB?v?H)p#KhEQtz~Ue>B0MNN!)pL;h)k08>RiqvDfF z`4*^);JN$n9j^XL)_3~Zx|u}`N$)eg-X>TnwjE~$K=uI!^6j0Sxz{b*Ce`rsjxVPj|J_1^^L~hgo6Odw1R?{AalJYcEh<9`D$3jxv0~ z6p{wAPQd`A6ESwDc9fUUZZ%~>L(*N<|GSB!FU5iuGN0Ex%|PZB7J)l0K~YMRkst)?7$Ry&l!d{$!LYlPn z?WK(}dY*ae9W~>%-Q>6^6t`M_1=Y^6?EzE#9YY zR#)=5tC2Ff^fg4TN*(Lq8vGo0&iRA^sS1r(j!mLvLuM8jPipw=}ZVr;$!qr}8%(8lZZ;+BP7~C8w4b*!sMVfTa`}^6Eu!s=`rRSj`V^EhIU;=hx(~0mH z*??=O75TD6^pX1H(@;A!lsz=SAE3!&I7BdkrS@cFqwe;qvlu~5o{DR3EEaGbFVy?L z5vfgFjU0VZYZM!SgLeTa@nCq|?H4C0!2Z&L)bK-*up(x_ZHx_q0TaReTtnl^C|E|LH%u2n}^Jj1n}P&mrlX z-=*|AS1d;o45YFhEo)f&**TW#zxI}2vYo!tHh1whk|QO(7#KM8`Vm-!GQbpBif+A`}Tmu*$R^c^M}PzyXav+ zM@d-JIqax}n{P|gF9&5uvwsB~|E-{<*6nfs`*}aB%cQ%lNEt`0QOA17pw#c4Z%;CN z(uz22YE=}m&3df{)yySjWSI6M4J+SDLq6ra#aLeLzE=%~YP)-^6h%=Gsy%{o%DM#Aoa9R_Iik zVf~rK7J~`e1ukSwz3xe&=2gQb^Rwb$84};iNpEvAYY}w@);BX!>Mv1>TO~iTYZeA` zv|;p2zto-*6}-e&_C!Myu)N$oRd@4ss9{JtM6-WJbrJwTl%ZM2inyrpBcl&B|8)w; zk%{=(>Ek~xKcj9asGR;}0o4qxs4T$@Uw~DA+-d$y17H3vzvge2^gkw~bff1QcRR;& zHABY?y5sOnQY~;LH&G-#9h)h!x!7~kSpSQG$YBAh= z<*X2KvMkR0VL)*)?FS&8Xp&8MBcXsuSm~ck=|CVOA1-%0d%+ z;SX)QX{HYUh@&wYJOK5GS<_Z}ghBL_Y~#+#w{C*oA^Mw$Lc{S8tICgh-$}!@ry9F; z?37}}FLT#-6R@Ww8hdT%$+{Z(Z}RtZ6-hVz&OH~xvRRQ4q#weL#zX9!MX#hz4fjhr zGDH?8c?1g!ewyt<9zeK0CMZ}fk<99$%OIzJVUpu)ZrNe}St)gsi8C2EL}<3;UKZ2| zrrT0KHm}9)NCIq{Zcl!WV)O3|*!PyQQZxs;KCL2l4ko#X!Tf)9=}PUYnLAUl8@$pU>* zo?-GYQ}DLVBpQelR_RM)pU_0%2%TuSaH-3>)Kq?5V18_c#UUSXa{UrNH;Wbu6Ru#IejC z>u*P~u4Ee>GQ0W1`J^o}!7A~fm}raRG%2SOlz8lk8}`I5A~a0bB!7~UqGJ zQfW}>hUABz^OM4#g6t~fNnlnEs2&xCc|U7gU-A_P7vKI4;NM`9BA$+BnS8~2iOuW9 z2-%`BIksat97;JPb!VZ&Z^xIsfkiaRigTGO2I z=v{oVt(Hu-d2hV=q+alvl`W!o)bqB6P+>9$dt6iq_rIVB2LMWsZ(5}ksr0%0y6N)<|Od+qYZcfOjX3Gk?rJLxzS+P z@Y_-=oF)X;8i;OhJ-vLc`FII(!w;x2qj0dU!ymwhRruCSRYOY~fD{yB6Ae?MX!U%i z_lQy!`gu1pqd!gSiE=6jY3bb4gPLW|B?W6+64M9#3ZHm;h8fbJ_Ez6iEd2_tqJ1=0 zyW7-R#1JL|s#FSt3elw*UO_5H2%LGxSSQfdch=vX<%!o#zO1v!QX#*|r1=w}s1Dsm zbI4%M59I?-%h!Q+s#LC=5vQSi_p&hgAkFnR$}!+sWvb}hq?)nL9+nQcZRLPkL-jdf zMYDOa@KGs2Sw>Exg2-cp)kB&bznkI)viQ=3pHO?HE0wA<>=Rfcb{0=jr zY5olUlRs|0WjNmFHY+sEF1om=hsuFh|LrpYF$i|#N&iH_3Scs}!RG>It&5#808@ct zO7r*u_>fH+Fu^nKE_~=qK42e!Q1DGkRm0@R81P04O+5sr2(@K*V5ogk4^rE8oyx4C zzdGHwPC$5J6u6&^_@d)SMgo2z#LLV4A^ee*FZz*Yf!;7fddo8=^rhx>8Z7HnsZetJ z5caTnjtIy_yO(;IQB8)%fH`y+%Cals`l4PQx|}Fkifsw)wb6>`su+O9#aYn@bE4Wu z?J1ZuKl88e4NtN4)g+V9d=l2RXfp0JB2F@lU7qAU{kl;a?GJusLo3=tbr(YlBHqB( zW9F27%46l2vH+YsafTp-dx?4w3tGwa&7Np1AIeXjdHW_ryA;9{=9E#QMU{d zeAm;BQ51-Z`6LXDXDbW0v&pc{(gk-Oxwp1*j69>^{Vcqzar48Y)aP^vDIAHc|dX|XbqQ1H!mfFAX(R53J>%$$F_HS(thF*D9oK z*KT5tMTAapx0Drj!v+LvyFrUP>ICD;pJNKih4xj|R})TBufvVq8$n<dc?tU8OC*vVaACb+O077s z+JESO1mw?B-vW>xcm`(vU&rM$@*W8KcEEU*{22iBY`!O8ddg#hkeA)#)z2@ zAmG!o(%%JS7H4KOB3tXp2<<+o>M-I5VadH&pO*tM1qa$^qq98L6_{clu$&l!AIAuZ z?1)no#P;Pb#oj7V*!upHyE>Z;x}t7WZ5O_;Nghk~Bq~Y=hjgW0&2n7wx3U81Tym7r zHiECsNHAGswszuL!7X8U%ZW0A+%N9U7hm2EZFI zLOo;bzmN9A_V)|J;(m0z4GywNv07?;D;9y5JM0fkOoI5>+n~2*%%a3Q&8pMl9?>7D zNS`!#a^oE+k)$AXKVT_vmw;M*Uit@Ahj(OF@btccTKv1mui=*a)m;Qu?m@_7?x5M$W2faN~ah!1h2)22uDQXE{BjRjqzV+3F;**3U#iJV*Sxex* z5ZQ#q)?^8UeCq8f>8}`}qzFi)1TYV>>0Z9Zni$rB-sL})@|w1hgNN>VRlQpUjXB9? zbV>U}$fQwU4QuA8Yv0cfw<5JHQla39NgsMBj8x~=Hdd8o*!xh1L=>NRN^*;H#QSOxet@2da@4pAc4*|E^<4K=VA{XxkmMpfaR`;L4T) zxM(^W`d^+LmMsZ^`XV0G_wRy%6?7HP=1`iCC6%WNbEXL;*x5@?3UY`a04)GZXe4Rc z=Fu{2Ej|#D-qRWuL`2EJdj?x&V)lm_Nu!|Y-%(L_Zx%Sq3H2$<*SJc-%>P!gCPjv; zByw^qqpZKkUlzqKT<{(XU~IWyyOdGsJ9J z9d9_*P(A;Rx@!1GjW;OBq>ME6_NQ`JT_>8_>DWW8+@g{j+}H5|Fv_t1YjHuiWd8qz zOYlcXr1bylXGAYL|7I{biUL5zhIU?EAUAk^>@R#xCCs}A68=^y8g|>qTX)J^WGHVmzZE(^Dj|}dsL-=eMItE)Zw|Tb|V#h4&1RV`Sr6gLg>U!x)+HD*u(9Zv#OWg^_b+n(=4O!R6RXpnV}PY)qOaIPxLFE*E;nqDlO`8G7)sA|`|Uf^Vh1i+giX zqgKLMiK5IcjBG4|<&);A49>et&eBRMPS3xXm7j|5rr(q+jDD0$!I7F46+Ritb#TIV zKr(HU!BKd&I89=v&&N{-m;HeV|G%mTkN;E=Z1*+10P<&H(Ca5>v?jd|ZUhMQs>F=Uq9M? z#PcWnKM`+*>vvr787@+_(T^I{U(2ZjjvN52mpHHP&o9_H9LyPS*E#xRtyrom9U(`s zcOZ}4wv0O2#wM!{OI3}Uf!7%?021ki>1m!hT4eT?#89RUdvhhZZTro32Gkd2Gh4u) zf48UX)OEEXN-7jtFfy&7V7GT&P6!cCoI7moow#bTP#CM=q=>rRcR!>QbF8t(OB5Y6 zhu2c8lsHN#e}&?)kAt42+KuD$N(?{A$q;&vI^ULgbKfMjdh;LZ7d(KK|GQB~+&hQs z?r+pXyah409NJhay*B^lbq^^6MsvY1uK2By zKZVZ}f8w9!#W$FF3`n~Xz{jmhBv`IpF%kA0t~!D7j4%#tWTokUJ97Ttj{FALW>!YF z6{B%YFQ9#}yj8}v*i~S?Gv#votu-T-;?o|JFaoD9yhofZ2e!ov2Nq9PrP+~_e_yn_p;;A{E zs@d}#fW#EwN;5c~^FUpt9H>$}iywKE;|8$xa7qZ9dBe%?O<0Ei=U7LQ7hYYDZD zX^|U2JE?u1XvK5qZwo5L8~OSKZ9rBPsRb!JNl&XWH~5BM5fJDLfc<6^@bQb~v)c%x zEbj?_i+TD53qumr7#N*KGHV>@U<~z*V$!8iMh7|=e;&oDHQ;f(X64KL9&#qfShhv6 zF2FoL%qAt|G?rvxunjKe^A~*9dihvIC8%95BKoy}jF{jjaRn=ybiP0N&nk0- zCXTGCjS>&XsB{f;vbk%xUk0L~tcvQc zN8wzLHA`1DoV|M7ji=yLWTcTWreBBHDWmM)!IbHHkT=q9W zm!lVVf2FyfytwS1plTRXNys$WMoecb=SmRN@czNC-#lWRa=0OyJyFG#jw8a=EUFkU zaaj_D6rMC?BSGjX?b-0?@U1_WzSI>|?^XOB(>Bce%Vw+lV#ic2-bbF#RCDh3E@4z4 zQvhn8Tz?fQm0qLa&IWfYT=(BC5jIH!tIt=xk5GZ8N6HUC@?wUYkeGmqU!m!8{O9Yt z+Z!?;(0Js6ni z6+JmL6ZEu&t~c@LTQeq%zSG28aP6$|Wp#X(@QF8tNs7-9))(I2koY^YBdzciPNiVD5g=hW(ErNUk$4yb;ZHXL! zjW_+;?Zk(RLG~Tlao8Y&#m2HmwQ}_BQ!yky+!5aDbvc(28rMuX_G0Go!lcv(ehH*X zX^}DRlSE2AbEUcGB|`lb>k8^IMEawx9|hr0hf(PtObR>e1DyBI&)s4NaARzN zZ;P#467KgO3qNlZ$ROFK82g&7fQ$NdU7Z~stu5$2E^-F~!=r2)M$C)nTIJ}-sCRoaP$bxqQ*W~rsr4^pL0a%kM?p@#u+7BTR&jf+lnBWH*PbNvp)}^v2I{#wN&fk2eGDs`>1KIL#Q|<~xsSMe zR@Crs1eScV%g8kH$v`DavN3#%EsEN=$%Sa8n)Cr%?a%m&aIj z*Jb)ncSruDpmWLC0Xml^lvY4tE*tJ7yDlEB{*idT$QoD)%EL)t7Wv*F(8C1pu8%f> z@3R8jwKb+@ulDI9JYR2MYR+{7Fb9eaE@!8VA!Zlv7#p~7gLFWNi;CcWMeI`?wKA5g zG73odYe^npH1OIqNNBuBn_sy4_j%4mD!w4reHF-sw=l~GdZrg<8EWu#mPL-$BK=fw z0Xl5_EC5%JUfDp;Ynt22ple;p8P*vXg4_5LSQ_L4J8j|E>ViU@UimlTQyX^n_ zgoh~64n{_*0PP;|R`_dz=eG++3q?uL>4LDl;8xh$fTwzUNWA=|1I4!RG3S47`I+s% zXYDJ+{QmucEM5F(Hg?NlYsmtM6VX<;W z7HRI_#brc5o{ZK5p1MLQEoaEe$mc>7JQi9ZFi@6LoD+O8Q;{BnY>7Z&z%h9g%yE{( zA0)e9n%pIMfG9T#lmK+u-TcWM7!lgj!BF8y)bp=ADD(%9LXz(beF%tq0fVCO6Y7FI z2Tp$Z0N?hx#I!h$V5GyG(>kAitLzJxJ2I;F{B)(c zCPTyHk4qs9NZ=t`FuWL(Y+31vNV+ZtlrO?(?w!O&nYIJG*^+K!^I+~Y0=|POV1v^e*_qK8c&7i33yH?Ks66gO8k%=&^Nu0y?hY-!K5V`cjEA`=W#1gkigpGl>dWeHrA2O6&mPE2Om?ahAdooYG7E~lw8 zq*+ZxUMNp7+EpUZK*~R3k|jINyBo`pr^fl53E>~5UzLC{@;uA&$syZZBDeNNsGMq0 zd1Ty`c=M$4QCO)SO=4yr4bD5>s$uq2C@SJ#FBVK=QqA0^sh0-e$Ztg63SWMUc30e< zZ+qRm5oeSv10;gv?+NlDH$WpkOO~~U*1Wg{g?FhL#LEOQt1CJNW(7Zh!vuR00A%0R z4V)c;!BI3Y73S9UECF2kA8^-k#IItTNT}Ea!jsCJAQDHz5Wl?yJ?wV@>LkMMu1UZ2?S&+e#7;#qHvpibNsp7s z9XJwa1LM(VhVDV(yKB1<8HRoy1oZ?zN(#H3$rA3D>&z;nz5@Cka9-*~FG1}Ea0DC$ zH-!#kz8;ASu~=j3JU+dg^lYs?^E=i@|11A5shef{K*1lg*L3I3fGzT_E%3<*7p~qn zJK%nN^==U;E9Om{XPF$ApBH|(P6&n_Y=t%MB_^8;P~2u|#I+F_{gt~)Fi3#-$`~Z} z+o&p5F=}ezV~HrNanyC1u%Pm9M(P7$DO54O0judHIX-&{2qgun^|9%=;A(H78}!dc z2CIFhnh9)stnkuj z7JAC9&%2<@L1eM`i?*%x4`&`95WmNhaCdfFY9olf; z3#1H!7=VWA2fV;-_`R-*Ru87jx9|ICX$B6XR5fyc-xwVT7!Re|0q(mCS?ft#{a`O# zU65@o6R%$nsPXlGWIHBlZ86DCT8r4;Ayggp#for&yK!tA1R+=QFw&}NS$}Do#7FlE zl-pXxFn0wG#uq&p4R@<-9-C=sRM2_=E2xQ*!zd)WPp{$0gqH?ov+p=?9NUtp$0p-D z&$EYGP{|{C0hw6(ll}SmGf6rP{6Y3iYux*^?fh!9E6b#kg+PIdH~6Hg<1?ZDpYD0e zWeG=DQtQ+|l@FDY6F0)JiL}#$xc00IWJA@8J&1f%Bh@nF%03RPe~W30cPPep8ESj# zYA!26zFO*!hP07Ar?oYGo?JQ^oJ{;%%5oy{SYrxD9nss{?y0lqlY(h#1WkFui{I9c zjmuV+hP8CZF;6a54D$J>3-2}#oK<6N)t%xj9ob!qzFbwgTD6!cA|slym=1HuC-Bnr zR|xbP1hM0?);fBltQPEYxL~i)B$gl`*kWG}aQZxhAV6kupA0=8Wls}u7NGW8b@D~n zNpBjztQWK@w!y`tUV@;-WF7pX>Y4`*L7VOPipK#I1?&umQr$RsdSX$Irj-OM+TgmA zaJ!qi)Bl^UsITC)kF~3xY{`DJderhe;G#7hmGr=4yv31BYf5S z=TKaYyU<{3jgNXu0fF4znKuO=|JM|8XBO4d=w&$j!CbxU0Hvs-@*4>ykvHGEY@bT%89e1FZM43NfE!j%wIRu0PqUYS?pKkro9W~Sn1 zlfch7Fz@T%p3nwA_HX##+Mi_7A^Z@H5CN}dSVVLB%b;GMrS=+#jrSgAG6?2ggSjCI zfq&E8&3+#e`GIG=5g<&~nQE1B8lB$co%q zH3Dh%u8k7GhdTatv~Eez)#-}uj0+-UV~wDf&s&yX))-_p;Z1&_z(p?q=Ygo{T7kOZ zs|B_IYrQp<=;D$zeiEydB#I^@YhzYy_bg<2yWt%~t!ulk=Hv*rY78I0>(MOv{Ns-u zpB;4$#>m!tBT}_YWG{PL=f8E+kRNAjb}Ic&|6;g!-5mF#ELwRLuR4fETZgiq)|g)R zv-%?^hH!1)sD1CB3L}DQLXr4k0_oxUOhM`H;khZ;x0x9}ku5dbktQ=>%w(YdXE`mJSqG}IR|mCyo#ax`bbD#vNZruV9^<*+oVb^U<7Rw= zEp*_86A7{tyCpTV7h?IijxVB z!mj?WFCew~i7D7IaWcilx&-&E zks@N8g?7tFdpT1sevvqWv^NIG2Y<@7!)_PjTX|WZVt8ZMKx|F>{LN1Q%2kG@m z=>0URczsKU@p1Zmo!)fveRn(}I^rt0ex*wSrtD>v275a_j)L@y6CiXF<%Fg=ZDnQ}P1{lR=cFc*3wI0_zK1{h3xI&SuA5INCH&1tL) zIrpZJb1ep(VH4@Mi$|$<8s03{EHEk7%wE1prq*^hwBPpronB3ZBNyUo91vkNVIVw% ziR#L3iU(X|sz^o>R4hQov^q0?>)^D6pHfXQZncwd1ITMJgiYris~{czxs4p^wqvmU zerq!3&nsi_D8a+zN8h*#rix!|p6sbsw)poo@Ra?KmUn}>+~bkskyV3`pQQ?}GAZWb zJJ%8Hx{_iOvCq_`6brQZ{B&JqHoUtz`6QYmTVa_)svl(p&sTw+revM2AtGCsstLC4;bqgJy%|89LCs{{$e$E z;?S;6VCxgd4_W^eBV#P~@@$GG+^9~OkP&V9G(iNNgesn2)( zt)|tPQF8S+#ncb!t%hkAg(MOXZ#IK#ZRZa+!~gq-K<3SLH|Ni%q7HD~YhbbdstZ=v z0jm2kn{G|Z2^!1(GynNCST=TzN7VqE zn$OH~{Q2R+b3NF>Xv(b}6C0$4k%tJ298x*wynUOQCV+TMgULDc;{E4+mwC-Ou=s4^ zi+~UQG}Lv4Cg!UV7hGiaZ3c=Irde4(_YFq4EEV>$7qptO?EJV_t+CVMq0%@srhY5E>w3B%h;}FvA-RK|{h1}yh=>0N#~16T>*5Alj?F3~vN6Bk zQnw*3ZHJsTiz8*W5}S(Zy=3F+InXyPdKeJl#yoR{u2)0>TPA?*_{z6IN+a9bgM{LUTrv&pliX>X#Z$3M~tdV97h5e`!AHo{zEg zct+)+(yJ70=_t?)-lqjT~#Nyx0 z4nqCK2To}0`F_dxeN>Kp1Q!7Ai%34sjNb->0#+b-)luxwM4-_SCk^K&<|+2yaZJ=a>4~qx^%y&#TsRR- z`Meak3S44t0=7EX=P$AwDdvOs+xI8pCItShI&xDlA#pHu*@Mmz!K!yK_jC?PS+!B! zbIO^A6gMCDs+U7v)tR0*wSM!VbUlnnd1mQ6ny_X07XZFl>p)Y0@*PXwzY}^b+x$+n zZZ700(cONY_2m6BgHy_$0v0%fu3s`6eh;@wd-jR^zAO9KzolzNgngvNqXP<`7Z{HD zC_~~be(yYs*<(Ns;F?;$Ot#M|A(vhj;H#K|A+07Rmff?dv9{ABt%BCcO@iy9$PZX%oZJl zRAx5kIQAaLmd&x}IgZW2{r36(zW4q3-H-nD=#Mwob-iBCc^)e<^s8H0!yvvhi|Bvn zu@`v7{J;gf_v@o!D)L+ZB02G7_AYVShkLnBvTg@oiH+CN#8%qQz6)8@^TyL;Slu5? z38oDjZ_SxDO|3?I2m?z(i=T>_0z9`Io=KJ9hsj2L83}Jp zj9a-k7jAQ$mI!Jwe#WHH0v_*%{{vATEi8Syb}CCFI$BSO?`0M~Bf5=e+wMdKp#rRr z&06rkyHec7_0?s&wUJIh=QZwM^d?s_knwH+jVXPbh5PZObM`qwfBv?;B<%;I1Kx_- zsJ7lFcV1sM-#~AC>$5)yXwLvB&z*c+8;A>h;r~olKQvnyl(QCqqcoG{gq0?h1pdWZ z;C0Odx8o|tNiGYx3b=m}XwQ6?Kijoef`<5F-TsV9vHSz(+6{Rll{&tgE|&3I~Z^ivXTE_tT;D`xL+BE;8` z?wav_?@Cfp))cDO4p%Y6obJg84#uAC+|%8vu@k$hW`$#%-COT*utc5yCAvexw5a1N zac-C*wm?KNm3|aWiFO!H2Pavty)^+JFr>2<<`tMwJ1#?HcQV06FQ^(1RY&wrzZ1EG z@unoqddaYVO16^e6$_R_Fe&xOMbL)4dP7-BoqXcrgw_V$tZ*L$Phg8%H`Qf0n@Kn| zxm-}G|Ix};>t(g0#K#0R!*xDR5T80*Xw<4Y?5Kce9y)MZA?o){+RiNGYS}K+G`#@D zi0b2#!3vwy=d#>Ps0uU{WL2k5%Bq*BNoEexDAo@2aI4O9youi$?1ch2>Rd7^NC?1D0s-I?v%Oew4*COkc;z^!(E znp-Dc_PL9sh10`lFdGVb=E@iJP7qt74e%xVz$%E~NR9bB#n5H@V9h1l~GtNY77Y zmlv~^l~eaOuX<4*3_}(L`oH?Z08~2FHTW=VVmRx`0?Jl)$-EwLG4=xsoKclCa6Z`FW@0Up+2xmGA9%6~V%S{1obt8452=FEPw;;gHv=r+J2Knm><%Cl zLz`|Ol14y~?1iT-5k3lx2uS;uAHW_=UyRqacM7~Y+bq~nd`jM1?XYp?`XBTd=Kq|G zr+61+|2>PJkIW$4Vau8={|HuPgZ&zqeUe)?HCs&T87X5SAm&2uFzzr?j2Du5yH2rb5R9(V<_RrB_tslPr@H%1E`_5dc-48Zd0Xl>n%WR z%qWZGSO(UKrwvOV$&BiUlg`5D_rz_-(Ooj|zk$I2z)oJ+DMcFFKoIXg(w%-#vRvnY zPL8P}T0sgX@nkS;a466t6fT9JP{De8J0Ir@^_JU< z;ljd7{CHW!XmY%tEr?6#NJz1rCTCA?GQlJ0IRlBFnQqoknBME2YT1;9JPRC$-gK`C zEejcV5ti~??V6Bmf8P1Gh2M78nWa@nUiwMw2fqB5 zk6&qpPOioFs@GArX__~ZJt{5XG1Js#OWzsy_j-am1|DB55|4zjvuumAVC>@L3U_=Zb$h;)XKPd+u24MeQ zSd7#x-m_f%E)JSiah!RKXfl$Z-Mm*ccy#HNzAlTeH^vS4@X2ddOO2}&$Z0Esc26ub z*@f!w|9J621h-~RC+oZH^gDazcpv2Z1OFxRG@^ATUkXhb3Id<+d zss}GfG+R(<%l>>J#%;9t)NkDpcb-qh^*Or^CIWH9l&G#I*rwHk*Q`=UOLz!rK{gSu|0HD^yU&Ev|r8sS`ACu3OyH}4*+6NVvh>iNE$7p?kf*tqlkP_Vh3!Fc?6V;sC@5_PUsh6i80HNuthCl zlIJui;h~An{bRgD2~M921CHL6mryt3L;ypfa`QhlJTtH4=d%yWxt2RjlvreG`JcV7K0+dUQ&8eAxv_o+|s$ zxn}bEf3OCU_y2QH+LKVHwp0No$I9JWp_Nf&!CEl%!E54p5T?fiK(s|vBkdLKxMZnq z07Rg_JGJrh1adK6WP|_%QAA$0yrOp((2+7Jx4_WVNO{2gPMZI|?j~7o@7*x>R{6#A zp@$(;F*ddC_=j<;nXzDB+h2L)&2|3`tenZAa#O#HAZ8Lu=e@dRo;=LfAO7IZL>orj zA_r?g%&Z4jd(3mTt;#=MJnw^72%Uq0jp~<#{4 z;If9f-^vTFA$|Usc2Unm=Q^Ps*S~74#lGDqE2UO(IW=1UbC&k}i%O+$M`nSa4M{ON$b7mD<82sQUc@N|1cO-zlE_O^ExX zJ^1EFC&`2R*0d6Iy3g+TILi{@#jgM8*En}PzZTsbDxdhEaz3sCy`wz9U&;cLUDp7Lx**(_8QjQt=>N-$^8JHgL(ysf42OYS8Z=2>T89_!ixY; z_A8XHDmmsADgLg=q>d!9xI9I*P=(_Vk)Fp=W-vkSG6)J%hDY@J>_$~8ti?#TWXW35 zu-MsD7P4St*n4sUN0&5CW387vPIvJ}EmMnlE7>$f`4;T_o^8I^_eV9vhzL?~oUV#( zZ78gf-=rOj2mp_CS)}uAV4dZF4oWsv@6uq=6!=xuvp5oP_#4G&=qqC^8I-6ZvCrv)CWG7Uf zU*+**bRn69gJ{}Rvru$k4dM={K9e0TY6o>|yh2>RP~uS7*@djFTV_876QNgh=O=U< za@Op=d8IdQ_NM*P9goxglOEcm8c&Ng3|3)x<>=S_hD_bb9GS;9EPsv0wah6ZU}GKL zLa?t1tB4>4;&=t(sL%x#SW#(!UGWekVSFt9`h5?Rm6Sh8W7w-TGcbvngzEZe3V_-D zIeT`DaJYgSNB#zg&H}VJaqw9?J6&Jha@(|Rpv!eeXviH*YiJY>5&jZjFbt9MXCim~ zCELv_S{Ar?xnP`%Rb7^Yb0i35u)g`THaIeZmVc4|FlZcL#piU*JmC^pb7j+93`=`T}ebNab7N#=N8-RS&-+QIcAx__@#YKyakkoGjWP331 zfvqp5CN6D-H8vt^xy3I;E3Wx=veQphW}^IezNFptwFR)=S}+HJ_Xg@zLwH5qw|q8f zF|_Q(cj&;oFr0j`%)HIIU%2r=Hkrq`zWM}O;~Ho~3*noMRC~lQsFwZ}J&M7uJP+*- z+y5c2X>yl-!zz{e-iDmWfpAPT+%i$}Q{lOSmc*G>pf8SbqogdOs~hj2!u`AGm%ksD z_u{L;!ZHJY|5MgtP-N1q(=yK{i$Cjl0T~{`3~OE2U*&X>wLI*i-JYxRPjm4N@u#&Pe~;=e$37bSO2n+|#h5ma(~ zHyqi(0O%i-gLVhh;SuLWlL4BE1or{RjEXYs(t?6_h9khnk1&{oN9;N8V3H{jn5-Vky9hic`5I&6j^HHhaD88an z^`Df2JEOqU*9Z;{Z5lekXt>e^lJB4lbN10p3q-(nL6#rL#>v3qWtWIjy`R$AllxO0 z(mOK6UxlH?ZU*!|pYPZU#%_G;#{I~w#!$L=`o#pp#(tR5osx64Yaj9B3V_hcP+n^1 zL_cR0Q1$pNqD#Qi%p5&>6X>;z6AU1rvo|G52zR}ZRS&$J>!YH6fI_ZHiGsBbD`A(Z zP7$_)Q&2VnqIOi*8k0)bSA$wsMwwCQ;>0s%=T`~`axPt8De~0<3P7dL6`iOyfSCXJ zh$aApHGVT?m^TG%IOOVh;f$1MpWokymGm#Dh#7Rg1B}Vq?IvW6MbbM>#t1k5f&n7! zvSmcjzNa0))3H(Z)=(NRme0FH;ycY3JKr}Oq!ulzAdSMC4pQ;ss`?rgg-h4nMRxq9 z_QUmFUHWV=SgqmYi*?#y?cARa#~nN=nOPrRz8kdQ>7r%sG8?&QXVNNN|5J;+cw`e; zu6sUUuV~OcHyNmOlt*=crRae2zrhjKT-arOJ2?J&-tr?nVge`#DZXvT;QTRvEQ@X- zR;<7R{e`Sa@jA^=Q5$_^O?l8>;+a4ex`RjYZ#E!#@y_cKBb*mEN_$41kktz!_AsO% zb^-RuNraigetR2no9mJNL$i3^xp&Ykm;1EUceuPWNL{Lwg% z-*UhwdEW6Ew7-zV$9aZVbL~zg{71ZC|0Q|;N6-%(U5Dv4L@v(v9+s)3zVt?3YZ#gC zQ(3vbXd8=Den=(c?B0;pca_ne3TS2Fp+zF(PKSW{e5JM@l6p8zx3OAK%l{`>{SS4v zG5+U*<%L2DCHki1(>{Zg#bQ@fmZn@xI2Eywts`HN^}@;gd)cL3>n{9wL4ZyxGBcqyOo z)5vO2ix>$+LJ>9d);luYyWE?UfQ^#(a)g~1Ps3xh{QLUF53=;O)Y&*J z`tMU-=fA$Pi!QGo7rO91Uh1`RXGfeRE7>huBGd1+Vcm902tX2U8FWDhPhwKO%B&R) zVes8Ag20pCrHX~$8BMEM^u4QF(XlFx#K*U@WV|BACO4yQk%Ozn6Sq#~t;<|ugr#Djj2vA=mASu~l%3aX`mc=@| zV8rC)(eKec{dqQQ?^!b=tRf!)>rIQ|WmVt|GbT4N6Vz)D{(_aF%)B5hz z+e@&xy7+n%7s@U9b6%~b?CfPjx_i4NZ*Sl{6gPm)z{d7$HCcC`JArrZnA)bU3qVB0 z9zGUlq%8#1M`r`MPSK7vu`lpAQ(Lkir_0wR+)$!zxE39R8&1dD0aX@;kZrg=9t#{B zH8>E+K3dw4N#LFtUGvs88(qRZ0DsmBE;tVo;3+Riwrf{00DapG)uu0+*Sw&WcB}~9 zh^2=}2bnb+hiOjealpv6sUl8bgx=H!j>P9nwL`D}EGuif{Cq6UQIcP%yDTjSqf>5? zU-*e2;f#gn6Z;8g(5bT&7~>s#FE3sybM8d@+9rByG#vLe8uR6VJE)!+D8e)hbZRw` z)CIj%7-5C>`J;hkP(T+xw&1($Ja(bfm$M8R3HsUn_0HQZR_z4e7VYKA<{Mp0ulJGo ze4Tcvx6|arX{r5BKRZU^7jL{6%p5xe*#yecI>aDC5KbNkNfgTtVf z5O#1i}TGxGKYFwoJT@j0w@JNhM23TjI zGGr;v<{dAbwMtaUkGk9<62CV+Fttu2T}gpHx?jLOnf>^#4{81bawT_xssrM|l9&oF zgm5B=hkX;rYlKq-YyqJuf7r?Ht_%t%wIY64$!;w7IoXcqdx0rw2fJOEpa__jM;93r z@{d?)9)L>TNvU4LsX*wK>r*KUy87emkQ>y^1a|JimjcHqZE_kvp6_h34sHlJ%-$f+ z{N6SkfB6aM-hti1>gTfjzI#Lw4>$>-;e#qs`MJza?P2CF4TZM?lw;rjk5NqZFBg7D zThjHb%s^M6CPe6CciV;n3hZ5Xin;hc(P=MWzsr@Vp1{KD^x9_=(5W<+M~FL|LWAdb ztc-JR+i<5WvB8%)XB|A-`WzSh&4zdGtCNYMx7vWb!B-*7)9iVBmq;YzW(>n0m{L3l zw_pB`vZ*x1vO&(B;d#IoPbPvlGuBG$LQYi8`FlKX_qO=^eX#RJF;Ibiop1bfn`ZI2 z%-66zcUPu#B9mU?*Ma%zCGIT+1Ku%TG+O|iqf;B7G3qz2Y(I5k`A4C@PLWMJ>K1Kp zvsdE({$U5=3rD&nO#Z?ptN>Mx%df?9Uxe&C$yO#|&ig@HOar1R2UdQxeVm`4RSi6I zdP_aLFUC+WPfk3b>(@iBo;hLu&N6Bzi@qbFsP2T$F@{c1@G#^i%45Z_S>P1AS8mtO z%4YIzxB88#Lkas-?3P4-B(pO$%0F3Uw(_g{j7MA~0an`i2n)cR`tXyQav`;s=I0aT z!8M>2pa+mY7^Ij{^ljGZ63p*4l_O3>0OOOjGGs2fVb+{w_cXTl3cnrExx)?~gdNdU z@I$w~aeS~m4$4txUSbDs*|-%9BvYaOhPeUSxH~&Qkejz*&jf4==pkzW$QJW<>x-pfpeTIh6 z2Nc5JJ|_r+z@5-bR)$v%tKMrrpw)u%sLvwJnickTz3I(7Ytg!o=l$Hz#2pN{VS+SP zG5`Z|R&=JTi!)bnAglbf=@IR$!xB{w6`J0HU~lW5eH5SE%g{vg>@61X(ksRAu4=x& zWa9g#aKFT7Wbq1mM2g%Ie{q>`ARs@~WO90VuWfWi$KN}xuE-yG*V}^S6#?t1!X*n$ zfH|r{KmI7i7-@tIg7pxKxF_jg($@qec0_d8>aS2-Z)FtXBW!da*mfxPWNaJHNP#k8Zn;$(khUY9o#_KccK}M&)@b+kj*&Mqog=j>wor^aNFY2!%+Z~YIn-< z=UHd_Ry4yNPRf7R@MaP)E#31Pb5pi{O%Z#Vc)RuTryP3&N---bQO$PTt5Tn+Q-!Oz z17fuR{+k^1C!X;$_Nz_x8r>fmh?7oKhB}_jDI6}MKo)HdS#F_+qa)gS?#Sx;13kv2 z%+Vlor4^}AV`_C~z1_o;+9|7m)LV}Im^VEv5+6n+`WR>OkmdNZeRmU%CvA7qM@beA zPByY?FkpG|e{slcdsi&rWcLDe?>Z3*{^uvgQqk3CGFaE+7KaRkeMIdDxq`I}tIw^j zo;@SG-f6xrW?_vKi)VlSruybQ=jJ!WwGYl~}iQE@-Fn9DyuM0ZN%2+_plzk&=!?Ktm3 zz)Vs7p>pfp)e2O~dL`roWvpggCUzk%hJk|7bM|Q;jV>^xUR(krt5$!$f)qelme`UO zEVpz6Wy~1h&TxM^#~|xUZBMpl8b5TlQsydZ6XE(2*T^pHr`9D(z9=q6N~r_RtvkL3jkr(Di?*z6Xe?_MsD=SyWIDIs_Ka6<5B7aehxU|_=1gK zRXuCT&Z0JggtoI6kY20rPOL>;9m3ag3Brqc zBMEY2*;#PerOH%&DD=AFuOFxN$&H)1?g?}>l^ET@@t}!XmM)ZaG14{+k3Bx$=Vz4d{M@+$l?pxu;cz=_$`iymbkITiWm=Zw$LpY9aUNHi@I7SvJ z9eA=kec!I2o3>|w7lPz&ZQI0<6Jz0lO6T&)2;Xnbrv(yoP*ips3TOk}^$i(n$%$&c z2w)*hC9e+_h|P~2-Z|*XVRY|5CcNkvJcd-rw2qxuXuQ>UHB*9U(1>K5za(S8q9Otz{ks!xH-G=^Q z#~-1!v!D+!21*A{hPSr@p5s|&gfpLN?d|n5kufOK^ykXzG|T!8`0Oe=g^h; zC3~eyQ~IWesZfI0tepdbWv(}^ZD29VFH%3wjJxOKv9UhChwi=3c8<-_Qx%iW37KH; z!zy9_T6l~Q+RdBz__qX$@EX+q1I0hcq9^JQy8(o4?T0Pz%s&_^P?7uYCa=|80yL|; zH2FM?O#TqS0=v`cn>N)V>i8Cv0XS*25&$CpuWKPxrCGC0WBHaSzC(V#H&mw;A}YHS zihm)bkZ#OP?=YwK%})W)tgytsij$DjL=oM_=zR|*|I9)<=XV=9AO&*BBc)4ZLC6|LN^-3a6ku8|w@uH4axxm)Be=WGD8z=tp2IcQMSNF|cm_y} ztaw1~ku+tQLO%p@XmK|sAKZ}S2;F%iQ7%Zst|>r&y&R3g#Qya1etu!-cn^d$n8q~Z z56(=m?yU+O#^_octBR-uPSL0oJiCU3B}wuV65)|r209*I(mp_1Hkg#`1{%RHUQkfs zCAVci_FY^_?s}4~c|VcZD;0(5zFA6sn6EoBqD~{+@K({A6F>2|ORG=w@m!#iTftX8 zP_;O_g*#o1@}#EKvHP*#&I>F|An|-Ssapb;GFZM3Y8v=VSikO``^9NkX+a&3gT0cZ zd02USFF0-U)78+oOEG9r0vYPm)lf5eRVYif>u{)oy68ipUFHU@%baAvYaIaA| zk&UWR7HOalkv~Z-#tLeITWvB&i;lGY_x;?;?bP9pBf3Lm`BGNIyyt}nflH9U_BC8v zt8sY>vLmp>N)LMwq;f*t>}^S4?uMM5o>PHtIL#W;(2US7LO;5`_uh~f2uEC#lMq9c zskFAH!0)L){5johhl)P#8=c*r|E~S59AV*qZwC+9e6iK>pD&gCUv{!}?M>lMizArO zq`}wk+xk{D=fZr!|LJuePGn;No^oG3Pw?+y(o4Q>o2$?Lq$QN?xQ9r<8wmHXjk*R< za2QK`mu?a`#a)EZ+SJD&=${`qaTl$U)w6`TsZgJ=+3;dE~ zeT_-Kx}&`XXy=Wlfk0mVKT(l5GPy%#6?~S@0&z_Z{_{&?rC5H|Q`Yw9gGl(r3Y*@ymcbqBy6NBtClFvCw z4m1BeoviaOcJA60BS<*!K+5m)hG5S{`i^BRt$k)*_lvJAQwfl9wzrvhO4z%tx0ZNM ziI}@qS>7;Bd@J@Am>zirV3@9Zvq$b;g6pxMdGrjxbEaKCyS)uC4!Zy01txe6!w1mC zt1>fCLJI5iU>Y_uoR+7dm#xBcfGni*5fj6|?MEKVWicBp{6@csd_eSpK-#Scu>0B3 z7b*>m;UwU)uT!?iyp$q&1n+feN1Y*Y(YBP9&k6Ar zlINp1%3w$sT3PRB1lX}m_=R0=)`6yaw#Q3Sp(b;xqa|*UvzL?_Y$K7J@SlV+J_ov) zeRtb*p7k+#EGyVJ!X>B>1P#e-mVuA-UQRT2d?oO~8WU<3*s~_l`ysiBAs9y5N8dYM zC{BD0Q%#!=QXhpGfUDs9eDrIi#lEAb**L~>4u3=#Wx4anMw997dQp9tPsx$;ED$z2 zVT(D5G7_*36%}dnlj)-vbGYF;AYd=^ODDYy27npy*O{XCfZ=Jv`hF*pll{Es9y9qP z;u#nK7uoRZ{D7^ud^j-MfrRGzF|ryk1Q^`&|Jw0JPlvYv)6WpAn@CiH<>8W zig~(i#RqAa<8IZ~FMfdgLRHfxu;b>cai?D>1l~CC&nsWlCfH+>3VKWV9&F}I2olW^)D zH8P3@^q&?P_(2@zr%cmt9Xu0nvzC9iIEnh+u2lB}x27(<699UBx5rB)kkH?}|Cf~K zyVpx^IVlF0Mvay00fP5n{1^CG3rTG=>+?S2J{|eJSMs8hldEVT9HE}+e&7;5`=)Pi z+8Jk4Q8qNWjS-`QeUqJED{;^%Ws2K)N7CrHRr(-6%Bu4Zb z*_)4lIegT(bKh(zsRcRQ{iuVnOAkQ|N?3e3>AthX_^273ngBUU$vF{lcZxh~U&{3rR7r>olS|~W%kWyG*LmEw*=oprUGQ6J zTEnyT4X+rme^kssrgMnluzik$RDotmcaHu)m2tPooGjXs?yE@iRrNbry+Vm2_C+sX zDlk)AQ7F8f3YbT&9H7-Q#dw>5ujN*c{aj|&rJK@ZpwH(exGndFO_p|gI+D8#Dy<{G zwXHZ+QCnB;e9A(?G|-rzgPBEvNM70b*Vdp@lCR7%0d_8RLK6Y~Ske{u<7Bzw#L z(E3>PuCMI&*EKK|Iq^8V;1?_;oj^q5jc~5TasN@@8+H+uUwySFatn^DIdi8&Jud_M z@Dgfve-+7satk2_ZS|!&!my>F1fN$bLG1bGJk4WWxzDBHtp^McB5lqXwn;UM03+(A8mAXB0!63XoO5?5*1ttB1-gb!3BeHAE8ZalI{E3}w( z1>VRmK{xW2ZpHey6yDB^6&H0#w%youaCg*w6pSg2t!yRG)@mzh3EV=&J;AA z?cT-M`ApD{_G%&3we#n1f}oT)Qh`y@!40#=Wa;z_-DZy%*gX$W8DvhG3tS@9eJFov zblC_X%_`n*So2e*vSRAZ&5XnkrVpms1mZ1Hy@g2Ni%NOZYtQvNcLA~VO;>tnaIlqGhN2{8c z`QA%S=`cO>@->b2ZS9AB-Vhc#7}*^y%uRIp!C$U+T98h5;?N_)9xAY_bB@z!=Y&6u zV+z3{D|fY3IdS6zyIBRTb{QfU_OA>0sLJtT@%^YY7`dpnKlvWSlKj*mV+;3*s6S>V zeCq9YADw;t%v@12DW^|sX80J} z)X*x)f?b35Vdh8D)*&%xt0E;J+08^6@ZTf4DAz3v#c?()F{F1bs?y{|;LXnQE-)aE!lEV_!U)ja{*j)lgIqy@H+o!9_^2WR;zD@ZTNL zjIyh66&ss3_?_V{kj&$5>{S$6SDa3-aHpN1>tIg0oV-N1J?z%qbZp@Z()SP}U_&i| z4lE2d`TsQrdUk4wJ=2`E*-N{H5dh_`c{)i4V8sg=m3KVvUuRr8&N3Fj00*Vet@*uh{kw_%JP)zt-4nb7vdw_x?Oi3z$0v)v z9m?zRZk(O#k}e zw|JRKF=<(@4L@nDJXX{dF}Mjf&t!oF7rD?vvJ`o1TsZ1B6olWGkJ9-N$}iJr# z?b*#!d$|K?Ng5LOAu(9)C~zyy5b0}rrBu4nj!Pj@U-yVLV$;aLHYD_PU_)5(@U7e? z{+3@va|UvCKJD`Fpsg{Mv%{>=aSoC-<|ri-Tj=%Y*2muwBOVoZ_pdHFn#mt^ge zrq*}(QHqu(Vvf7uUfJmDBHmrzS*|8_9^`=$#ls7y!i&k7I0VS`>(I zLvvpDLE+Z)*=zt>KE>%EI50yx0!Utg-6X(H?4By{jj=E(=Q-te+&R11LFXnnNu5+j z=kYcN3BDZ5>B;9M&K@0h@`6->iO#54lOD5i`&~7Cz1i-T-(Rrs6LZC9cQ8FUlGRPW zchhv`X2xvvmK8dKSI3N;IMJV5Z8D&3 z7$%xiF5fM?p0JZmeC~$@^WY~urd3*KVIol5!Nl_~bs_;kaOFq90V z>an$@rMN*Pg=Hvz-gaC+n8(XiyysSutS@reSnrjE9w62%0>B4LAPZaKw|TsYP< zw%>0W+`;*}8{E_l!Y!<`IsjZ&)E+dBn{s&C4^{z{b&uKJnoUDjNtJ>xv(aha*a zKgM>nRC%>-o_36a7)ygsB--6LKz}osJ7uPs>$>Zq2se(Y`PV6Ihu?bb7A8W3Lt^t| z%A1#9m2U#A$LgjV1!K=A+DyXDt2rjS@Lb1)PzL)nUHAe_$#Kqm%*SE3=4gB_50vMv z?wd|%9PsjqQa(x~W6gJzO`Le`{4M6=ldb*hfi(XNJyRh!j_B< zQfMCxu7Z5daql(22<22JTO-_(sl0HkctLbg_dOjbKbC{_A!-jnCxXXSgW*bv-2TGV zg`_-h>zT{vQg$TwXD_&4e7L{s*U{WqWYMF{!oc834-XLX0E zs7X9{2ml*r;1@I5Wy_)Ycd9jKBo1nV?)Vs(e&5SudSvB{`0;%uEk}N6X8l>fJ2AR( zA4!Lo5PK!Us8R5Hc1qvt@ezNbZnDr_=ElAEU3QNZYl=z7j;mCd*{%!hF3GxeuJ7pU z&8O1H+Pp)D)tw*Gr=0)Ylm>1Gur((s!owlYj@as&kdrq)T;wRlOK$#PzBP!zoXmhEUC+RJa}{Iw`C zy#CKU2#8oXu2Y(+yd@Aya9W+mfRND(SKPN$Hmr`&0Noj|1;IR^c&A- zGi3R_EU(dyyC_*s2t-P{86xGS+x6>ig-ZhEv1UgU^wxpyLJ1G>7jUh5TYrk~37Uoi zOVE-+>qvdD6WqJG>h>m)Z+BY?5joRru)m(GlqI*EBrR{A`s6;6bmp@T2rKORgCP3* z^j*Rdu2?5NUxd(@&om#1s3Wk@6{M6X?-|}Og)N-(>0DbwOj**fk-tkn#&?`7g93kW z!ZjT0;vkvw5hC(;8@vWxVVjGi=V;m0pRdrj*`CUEKRsC+3ebn$od*s0OSge5$D zCZWSKjWeN=;n8?L`NQVx*BI&r0;DxM=?VuXXmEYqNZiD)<%O?AauN@Y-Ux2T!Je*l zzfnT8-Xyh<5f#@FI>vnLN=j6pa>KdlJ9+nq9#=eC6hCr%@WFnVa_F(bQ2^7XK)N;! zI&Z;`Xj_JJ!BdL-bA{I#-^P5rd;=q80h+s~sh9!b8dy+r_{$flm^iU7a>yDhTG~w5 zB?v5nPZ2=5_?)`%gd0|quIDp0%Rg8`F^oF!<;e%L;^(^`YoPuQao*g6dVil*yqnGH zB2&C_kNqxN6;sJP_3i1vlfk4UrTmPq8a5^;<~7)jl(zOgc{~%2tJWm3$f&ec6@{Nt zm{QqALEG$DKUSC*_d_tU9p}famG{A?tH?d!BG>{TS1dlzJ^7CBK9y#V5#v6DGbsI* zS#l54zgJkVl_3~={}~xeX`gHyJy})}&a~3%1FGL^-*2_R^dV_QR5nMp26Sqd200hw z+Wd73O!l4XtmEBv?@tvv6;-L(M0pPzuI$Ix{K%jC5Rt?`)v!rH|DbRBg=v2i>N+Wt zw-DbyBGcyyB+E9YeMELZTL%X(n8Ld+<8O|6#>q}PJF#3(VhOG< z4y{ubZxD6;wIk~;m58zTjPK-QiQ8V*gV1?YRQajv4dPG5UH*eV`2TPCJx5=Yw=@N(nCv_y zTLy0*=@AG$%7T0iV@*jd%8lx71l_gk{=h}6mG?F}#NueBdt${}E-!jhLi=ud;F9q_ zE^={ejIa*Fl5sEsJ*QybRAq700Ts`I`dLw+HK#>F`aWG#)No6tZUc-jOLO z=kqr50EdxVX&=L*M-KS%AYP~au1clCjR0PeGG6K1ocT_+qQrvxx%Ta$cYS`D&;B=K ze{PJ7N?uRZm~mk8xixMA^|ye5UR%+hO-QlaTF0=Q{S)Y(dqT9dTng%I(S8NW2}M-f zxry)Pv`8y?Ts~rRTBea~ZC1NHb2d}Ph^}yDO&X=urvn6!%XQNH3c39VB$O`gm%KY6_=1zn19BTKTH@3 zusI_#Ly1EfHXgj%qlx)_Dso@DM@SatSC{TJ!Ip6B8i#SOp4|z;gf0?#BmC`~BYfSr z=YZjS^c#b%aN3^is$+|+`;t7nj!^yT{(jljG$Po@*M?Fpyz3(GCF}IOemS zZ@91G#Bcqt+Y_P7IB%jPS^fdK$(_H<^KklvO{N5i$9im5;99q*#NjM&G{M8(*-`mU z%>XPixm{MWtlal=-Z+Qg+P~dFo_if)=JOHMP?)45Iu z1kC4Lq2hA!G>!5w8bnre#cuTuXM4}Pe0c1hG}|L!<%tX?16Egu>FShQA)^#W*w0}r zg(t2aRtg?2h2%nE?U0+V!D`{8>7?H^(>1?$K1Pr>b&buPV|r!@FX2*ZiPxGE>PIB`1g4lD~3kJ zH`YT}5i8WZKgG-5MJtV_PPgwc8j&Q^bSmnSkTWF_*RSI6pfsBy^z^W|=Uc2cRwnU9 z+Nm+b<&bndaWp(B4c6v1-e2Wg211N7@LL35p7v$S{Xa~dby(AX-0n99jGhXTBNU~i z%K@WAX-TD1T0pvUAfSSPQi60!ch>-Eq@`nYccW!8&Ods2UH&8Pvv=M1>jsb? z-VuSbK6}8=g1cKWtOlsRzH?DkG9rHk;JR+)Xo|K~xA<8R-T(q?O3%mxPUk45T!Oq@T?oLv3NZh_pzKv{` zF|;*EyeD=5A#0^;%@XWrI_R&tlX6Ifr})_|Gi+Nb8U=N?54eygrS&$Yed47w*WR{A z74p)<=fq#r%cHP6sBEeKO270EQmf$_^ouKvRV-s|__nmyO7QiutF7Xa7 zq5MOBNG&2_)s=*@JhSbepbjP^Cd_}@_5dMl`d8gR+iwIN-k6#k_mSwp(IPzX{8IS#0bYl|MV&Y9_t-^yTTC$Y!Rr*?sZsjJg zT>xlo1)a$3K4N9cpVuqFWeZ_0Jz<^5GDVVN=0+Zmu#qKktq0bo9Xn2Y4UIFTGUPLS zW@@#&5t@M4W5BJ4(V)yP9>~@ct9T*=2mgg+g zEVT=*Jm^5F3k;`$FmfOlE-QS9mgJMv>uAeBS4{vDZwTTdQxiw>$)~8!#byQXGojh> z18)X87W$&KA~i`5{CK)wC|I>JD?MM-rmd0MXr*#XGJllVAMB?OG<(xlitD$$90_6g zJogitjST)3d0pp`3S}uqF(2cyiQ&e^)Es8B4@Ny-DKOBcKk#@;m#~O=(#6;~9PxQ3 z%!)5>9L#?ZeSE-`;!Y76djf=h43rJY=u&OOywIb7={uIM7xm5eivsr~fIg5H8FDVQ z3p_!*1x5e$yC-Py{WRAav0u(;pgR3%ZO%HULVwa=p{~l-VLZHD%4fC1u$Yf)irZnT z!bbOq?q%LP@vBA~xB8t&mpv~O0H_s5jqi~F$2!FCV9_0`=feu_yP1sFFpAV!6GAov zL(z)LbxdG@&$lYksabhGOXptMxr4|#9L!V0o+r(}^UFT38Kg{DujQPwUd8;h^)Xc$ zs4g$;ZXX_gF5uv46bZi5tqffAu;c&KfIm_1TKedzFljU*3 zDPEZm&vX1Pa}G1?s|f*EU`Sr(!E0h%vPV!_XO-7eoaEKD7jy*U&vAq0i$C{Xv|WMC zNX`KOgHDWSujHPxP7>g<;tUr(oj8oGZpcarIiSN_UYT)uX*ij#^n~lL0|- zgxe{NU&a&E9S!U6%7p?TNl&M>EICz>_-Cgmc%KLgPm-i6P7&fDEB6X&AuVPJr!2|% zSJFn3KS$8lYnWw}79rY`&13gN$V*B4 z-j)+=+GL>KY`*oFfe91^>eZ!etY$QilFF)(lTyO-Gy8`(S=Tt*5y+P={= zzzS#MMm+yk-nDmV^BoVV8_kc8%Vf&rVXsL3I+BV=HY7B>VINuFCfW8h#f!6m#u^Ro zmWsng9@l-r*;xM+#mP=$_!j@3$o+#Qp$mz5zT^dscG;9NEMm}etG1tlUk_T#M0U!P z?N{RA@-7{qzfls@4}XiA#ksr7Q?c-^q}mv#7VWRR<#K0bwAvp;MV&7qHMJFqmp3hpE639rEnLh{Ofv})7**r_=kdOKZ&hUU%`SsmEiSGZdBU^w10jX13tepNgo z(*><)R<+F95t`n$sTPG8+z*KNv=RYR5B0=(t%Z4*jKgKlmu zs(U)cO?8o^C0ik?0cEV?9%d@Q;c)TM5n$1~-Q+=w4iEJS*W@((RygCt%C%!wi->hs z*;r&ub{ZF-Nmx~4vXmC}F#eSc#dN%F6vptJ=gZK)x?y{%6QeLQ#2iOe8u>@%MUsje zdu#M3C-xU#L(BFF8+!G_g#bIp8!N>`aiQll#1WA9wrflY_|g3RE_8TJKLMV~hD&Eo z1(){%;mW`3lz)8p3dNkJ6@`dvQkA%Hn$+dt^U3E$i&>A)ZVou;$#4noG+5_J5H82aBQLrOLCyiu`MNy1A93Dw*5QL%)AOmGsr~PXGnOf zKs{sF-e2>hvd^aaU-w7P$+>ae+i2!gB6LzShC6vWhGEHo-`DJJBgg-t`R3H~Wq`-N zED^LTsAy|!Vsb9V#2V6CrkX<(c0|8PLmFv%+lKqJU4ktVXuK!BD~d( zYM+z1CcSLrJAlyZv!_}0qf&{dJig&CInODq>D{_5ynSRf9cSStYC+i$EuV(?xeAMUXQ$_8hB3!mHrn~^q~E2DRthFw1B?j@lFYq@OuH| zm-&HOrw@tc9hFr1Wi0@W)I)xUf2Ow13IIJC0Jw?x zAU3~W{O--UC8CNwjJ$_rhV5$m0ek3}_&rrE+NfA=q{P^!PK5cVIuE5tu7g2&>RtDM zP?^0R+9I#TZ=r~W5Z9a@HQ~Bl&~EYGt>k|-92tDMbmy3mlC!w(1V-C~qwtDAK(z~u zu_e6Y*7>_{%dD5mi2JIPL|EoNxPI~WV5xwV=IFuXqsPg1_RI8(cg&WJ-6L;aRRx{j zkF(`USgiPpcFN9B7bSdog)gI1RoyyS)Y>VM$SyONNl0O;yRDsY3HHc?;`+4v`-%~4 zvu-g)cw1`y{y9uhbn&7D-so@=jO)ftA?1YU2gCzQhcHM6P!B zq0#iriS{r4O$co0`Zlew6X6w|=D7qY5;eYVt2_T~YBd&I z6W-zc;iO#}xQjzzbEf3>2CCgNuiu;vF+q1kS_Kd05>DCsfNBu(l~|zMA|m`Oq!d#+ zWb+>YNfw`y#xg^*dcnVR^Y&`b@b;ek@EL#)KA8X`dEl6i`5*H0+5bwx(O?>6@M}R< zwe5KT8vWP(>$|xj?qbis`S0~vjyD+HmEy-fhPGX{tlt)uSXp|*cB z5S4Ph?D-Ol@naxNtcIE=^4k*5vF4qY*JFXuP^&#I7(z#PS`zY>3oF9+IK!HD?#=;d zC%V4>$zL$=698k+zV2*Au;BBuUBbCx0@W2_b5;+Kw*#S0PrDR15&4e&L)d_B!bQ;h?|}Vx+K;(<#cC5qGz#$@*P769O!1^bRV13$UQ{_yI?&$<>2|#7>Q-ua{q* z+MoNiRmcwBog9+9k`W_({2>FqDQ=n-tah=-BwU3)|F zNoqhe=27cDaE$vdLa8Len_b`i{x7o2>PC1gv?(Kwfcv9NJ zWuJIO4D+8>wqM>sC`r){hBriEgmr@hnwW`PJICl1x!z|-rjx908~9Fe8q zwUz3WF<@nb1%I;LDA0zI#O9Ms|F3$hPSpUKTO4DA1eKk!{B*W{p2&8f*}^t`o?{)X zGu#W;(X|%H8_!=)7TrWA-=sTV zl;2SF3qJhNVJ#J9=78ndc1Q?kg`jd;t3wu_?iPR z%Zyw7Le+EFQAT8IY(=vn^brVov8hU6I+jxs4fAscbz7`FI+X5U>usO)<+!A+SXMV! z{o`4ud7D9WJeWY{KrT3RWPoz_ur~avG5FT+WcFlYKrjOGR-SZCx&O~`Ml^c{xWoTH zc=sy`{WsmJCHD0V?c}qnZ8v$%+B$6Nt}++Y1<{ibcaS#I)XswZ%d zI}@7QvO?Xq(G^}PHdwvCPN-@tK~&mg`qGKIVHa`n8a%OY;$jy5xOd*Kt# zWFKL>wy`}4%t8DsQERa}`1xO=xXZu5BIkMp!}4&_B&{%7Ey3E45Z3uc&LC#>g9l_##Vg-FW?nK&z_T?<|^h~JiSX%$6tGmbHf3NbX` zG~j};XZC0{R`=goUKwUgw4nx+=qZ2Kkw6lNWrr5<~U zPJj@L(0=FBZW~6j=#+9b6IltoZK*Hj@gITr9ww{v8}ZFQi3B&{Zh5y^6ynf2rqe0i zGkL%XwEj0bn#~$%2VCG_NbR7-qFE&I@A&9=Q!L{R^6{+N&2&%t4~v{dQXEy+AF}_8^RFvH zdiefx(Sq+eN+f17Ec;R7Zqis$jLBspD{6#c0wb(p(17+=X%Yj-?xoRvH8hRHYQD!J zjGC3up^?|~3+uHk1@pF&9Ipypa@4=RKqg3loB~U|C;wm^J?)<6ji{TXuY_xA4~HpK zIl=p_*nyb8q%X&_;kpX7-5xb1ECW%ujo#+~%$@WwH=E)cb91Nnp61L!BQK!GdIt@l z^$u^>0qo6DHuWLc4RJvCTwmL)S}r0Cl$fQ42R)#SL*A}DYoWSIg_gvy2&?TjtidT zu1{g-rRDUah>EN8m(ZHtd?g~fnev^u@T!LHpZ3ja;+7lq7|qLX!DsxbKgg`29&-{D z9@GXJ#-D>)MU^~_YYx>fm*)G^wUD1PaNa%QaR>KA0S3KHHNy#!0<)gbDzCwOUSi)- zNb=#cuXy!2(2tkNSEfvK>=JxEYI`^i*O1^^^|x;4pR4~bzx*BWRY6Un;tF>eRn6!? zRQHEJ=C01ZSDG=BKr`Os>Z`UmA$hU-yt$T*FPQCzwK*D3~xg?Y!Ml>Zn-++)HQmM)Iwf5r&yt6$!P@0`69;PYa^*>W8 zvfiAJmeckFbTKE*1WR2&j6#to4n`81=y!Wj$z|M^YUscpP)dt_7C}JvFPsZ>spiS* zV{uq_$JZ8H2c{jXla7oO9Cx=FRApc_&~OMS`2nzLW{tp)XANtj0!sfbtEw9dPt(Hn zwY1yn5^8U#zF~WdG&dd|9v*Si-7^pmW3VXV%csW8sRo@IIm5n=6#{S|<4GxJ=hl~NvEgaZ+s&j|{~HDN?Wm*Y@{ z3KIixv1)8e63Pb3ig@Q$3HF#xeP3SUBFUeGlw`H+KYkjmK2e^CA#i}Oc@SMY`u_;s zUTj}URS{b;qcbz7`W%Inbpl^xu07?v=yR@-dw%e}vu`i?L{@AWFb5{H*0HWo1cO_y ze`FTW#18WOA@QxzuDUAkj6?S9cz{3Eol-qy$>}(oJxDlFq+*4-i!TR3H7S-QndiZE zoDeN%$4EB#(1DWqOCiy$?==PLs|r)B&!Ubqiwk~thOE8WzWTr$7JO_Fe@6E=(nT7E zA^!UNA+(dvb9W9VtT}gbGfV`PwY1z%0ye|{zg8D+t3pkZ_-{2%W@~Osy+U;u{8S*w zg;++n_>cU$-5%CivVEM8(^%iFFZVQZr|Hxl-}BpexuC{npVkxIdk0oFaaOZsZ1huo zHPKL(_MkyOcO#9 zuW}BoX2v;FKj^Kn5C0V+9{6tP$PD9O;2HZt?Sm5)aB=o=JmA;tF;&_x*zK~a_{~=O zgzaxxf7FZN1UiwpyaT=C`t^mcVCbd7sOT@3E2TN226czO^)E60I^(h?75+JwP3aMa zCH8X1CdSAI6;!;YweFt3LzIC!^VXAeZ9t2PB+}n5LU#qYAXSHN{JvniX=0h(Ih_Fn zt*^K!+__|*h6TMPxQCfux{tn|J&SYL?J;86?{{k|PoC8y)jW*&Dn%y$49kFY`w-5N ziuMGoWrlZq`B|L^^4b5u>Hu1u{YmPq08DolzzV#JYb;%i)%`GO_a-6^aQaoTjj$H7 zTs!?i9|1tH`Y=k$bRIEviW|}lemYPQNd%+;%#DO}bRaS7ZpXGAibS0(7f`G@I9DWS zT$rT}|C0aMy;C*V1aDJ|dp$#lvbegv_KeK2J3j-4$>XCw$2sQQuXE6*3naMkuj6h) z=QnBT1eV63IsC4yg_bJp;+p52eI~h^s$Ir)i>W`oDTeU$r#zU$&HgyVy=SfPj{T@w z!Pnpe9_%&Eho)EYjU)YLJsGZCQSX}Ge8qj&WMr^74K$?pecZft0T-ZK?af|wZ0!+6 zEYz-9YSN;aBKBkvVA8HWN%dK*?6KopE1vu5khdgVaQ_e))0uYeBm6FO{M!NU6xt6^ z8?KGrvE_dSIt3nMYrG?ynQ3IVdjXux)ZRUFv#9;kvwMdR+@unTS781XWxmnB*eDr= z-i$_j4r$XU0=;r+jAzf}WHdSIZVB)KpBrBC!!mO9fgp<$pl~+}uwZ!IfNv0x`P;PIWyJe93a35HO>Jtbz}7QG(v zt+gJ|W0)>f+#7o-;;PB6^M~N6;8PJjd1qVtrvjc+o(HL?u=|PB^_%5H8~D-FeC*#} ziOKI<>g7Mj-pQ=#F~lfGb{efu^ z46lI*t(wEy6YA~WE^>Y6UO}YYhGi{C5VYF0>cIAG0sQ?=5&L-+oEgv2!s2=H-oPGO zwDWDxetm*0@S$NEo_^nOhxWE~s@wza(W!FHaz^R$=!r{j8e`XKa}eBG@6+%1)sBkTQUPp2k1H+Y z=DjXOuLHQvDjc3C3yj?Yr)wkQ6~KO}18DwL%*F4Jmlnl;KZ5;$fe(Z#!0-?Y;Idh& z&mkpBDn0<&x;&G0OEkG}E$R0*AGRpU} z6JDSE^*W)9oi(E%cby+DEaw~1&&{X*%cn2!chJ>)v(avJq<Mn-UX%j=r!&xN*mbn8dcaQv~@NuM^uY&DgTWap+Q>KeZ?_n)V3?B-?VX~LLFFd zR~UNHtG}UxA62M!#xY<@#97OJuXn7<6j=pUZ~fjldMFFIhl}Ew8*rKBgzu#edBv`NU+}=deZ5O1sfH{`&H7 zT$xgJ?nKVpXSrkPS($9!+2)iC8Rq8Mbfz?eXHf$AXI{g8>?@47TAsF#&Pxt~nRc2Hu$5>4^? zJmC=|V}|`FTsB=RhINl;F(1F^7l5&#?%ie%Nqpg0B!&zYLy3Y00UnlX$xy~k@BVi! zvxGGjJP}|*k_vyE2-p74I6jTg@U|`V+T03eik7~~2u8HSNvcGcNO3zDECsO;bqs84 zQE2ETejP^)&ruNN?poYACN^-#^47(|pfk`=_&8OC<&xN#8~hr9Uh02rd($XVzue{r1YJp$4~eA>A>gkYMoL91d+T8r9(PCQ(-kBXK}QyKT;IkNMdo z+83K}(<+#!@9Y)wM}9)TP}9W1wSOnh@5E4Pjj0Uh9;ifet((8`thQq(-Djc5^?}zH zqQM{vFqX8YEw?vog$dt6TO|&urRZS|arU1Th(_*4i=m6JH3)p1!OaOpbgc$?ZYEX@ zKroN#cT}>9vB3cv#eUuN`QJO3dmalH|?mLbRZFJP#D zLTOLMUf~`~Hx4|V>p#WW=z-Q9w*)*JEF|AYvqlw7Q?HAHAD|_AT`(1eDGo`Jgh)cq zL8sgr-$FkEQY@%qqufd7{GYCK+0{;!FG`R{_NnX6^av<1HZhqV1o?cw?>-ikps3!z z)XUo6PefcPfrZ`&F?D*bx*NY~EjP}8s0 zP#S^JkLMfOilQLY{AfWOgrlY|1}*QSL18tv4H8wT;)%3Oh#v;)-^)H_L*X z-c+J*GrqF?`T4w>>|brm>YD)u(#jXchRHsslg!K|FKG>pn*n78uhsCA_~&-XI|EXg zL^8dx98Vb;8Nolt@8Y}IGGrpEYzc1DSv4Avx93ZaK(1XckPlPUeu^_k*DnbX(Sm0ZQrP8eg%h9GD(Z=FG#NnY=n$U%ooUJr+VD89HJBI< z6>a~O0u3Tdps=*=VYFt!JZ2cTLC82dt~V#n^R+!TiF1?ulRr*2TiE+uN@zc9Je6Ng z9yK9!F7BLa(Ioa2oy(tu1o3!NZS_}$m#n$esegdz>9p_@Kyw6#HflMMx1Hy;iF)eZ zM2*S@A)G!lgUrIvaWe<+&6X9#q$40&>78ZF zVR=rTPe*s+Lm0KaFmCbb&~|gxlB}DTrA7O5%B*i4Gx<*4(tkcdY&TiE^0BwKd{Q7Y zVotcRI0*BUb0TBj;b0qY6pRCdU`Z?;LE8`ZgKrco1;S;fd@o<+`Cc~4t-O^86o`Mr z#eQj)`$3kk2acLUKSF~%_Ya%wm4;HmwnM2XEr#@iFKygwMq81@wGN|K*PoRZY=s8} zw?ek050Kn#SL-*AON^t2Ghvv=fdlGjbVwmB-lYWjmo~5h8oPzz7$$15ans@^cAuBz zNA~x%h~}R`XjD3V`8|ZnvB|wBc+_~*UCp@eMVQGa*d)t_7GPdWv;eyKCy${Y>wNe> z4c_uGxpw)7SvHdMB?zmy^-m|#gra!Rn)KpYz!cF9qy@ILJ zWb5^9Qh6{C{ z*WUt{{*^IZyUHz%1d`vy<<@nnR6rUs1{}I-e!x&2Amtx@BkFnFb$=Py+K`>rr4mtc zOMC#L&EX4<`A@vCrnyw4!zdrk*1HYdcdnEcJlUQcf!_#W{eA}M7kO&|YyzoL=!_9y zBC_p8pqpriTB~qQw#MUdiK$=ax48_WIY<1t5lRX^3tt|Xmj`@B@R=@fZDLcoomABFs*^D0pbYuVfDRs z4^XEQmNTYBa$#;|nTQi%03$l9cmze(Lh=hzd`%25u((L|lbGOGx zImDxL216>GUuPBkTjC{#CMZm=QC1VZw)Kb;~yxx z$tMe^mnDhUsQS(s7B4A+NiM^v+RehlVf^~$^w0M7xz?xsWajACJNBKoptA!-WLBjD zMj+(43?7_2X6*vn2viZ|+cyO?|5XvX?T4|5B&%(C*hw`*gZ^Zud4MF7KB8a>`jQuBBc65(?g6}yRLYcUYSjY{D zTlzki;$@^@Wuz6mD?`xuQq?p2c_G6fNX9$el4jsxHXqx=2nLY3!oODfI;Lu|VixtK zSIvpdCp_UY;v8C7ItRXzgx;4elA`=+%8`M#a+%{m1u@Su|n%AgZd8P8f+z zk~;r_eLd0P*iR}*c1rf5UKlnXUv}sAY9G4X4`b%9U1TDf-xj z+P*DOny2sDE`%L^A1e7)VKqA?CU)SKy*#EC*;HfY?-n)7W^W_|WoSl0^7-ZQn6JCO zF_N;&i8%bqrm`9j?pwI?E{R*_LbpIgLy|RD zg(_yrxn+S4TGcD@^X#YVW-T*}MmcH0`Ao3~sh7a?m^2ve<;rzhi{^=q znNjZe=p-1q!*l+FRKMF=Ur}?=KiTK2oGawdM-cL4&`G=DUl%G$u94~s#dICm``P8M z=ng@Gt~@1{l?DrVd2Fpnt4#hj z73_1ltpu{f;J+B}dO>5qA762;@3pZMUtHMqM9^yZ_wa;=VVm~$ydoZ4cFypH91LFK zH-E6OFz@WZIZ8s7y-%nDkIfz(Kld*6l{xQdYNFP!O#W503 z>qYq@OepwV`WbJ;a72C)uPUz5A(oG}SemA7HXHV1!dvpNC%nE0)$I@r^N92d38xGu zraN^exUhvz8Jm99KKfBO`O620^H}~o^?nt18Dl?*m!L42d1~-)I@Mb(X7^Iop0c9* zx4%=e5%$xBRAM`FQ$@NUDL--}^mXcy`>|WQQy>oWZ;$%qbWdrGI4ZIASTqQWcAdV3 zYR2wUgz;laiLG@Qw`mYJ71{jdFWddB0n=oOW{zEIaxAFLD8U}gnxmklB#VjO>%3gb z*kRx8uA*pB&-w~KvNyVNq2Lb04ZwA6#C5O2LqX~d_E09>!=M&O)F?f|Y?Dm8$s6aH zY=W)-nssv1tJwY@k3ua5Mhp91vc1V=5`ZC9}>n`3d}^v;pK z(Yo`=0}8R(FYLaA;<}F$p&&SvU$3!A?(w73_h91JM$r)>yFePD3J`Euh$yvf0Rl1^ z0Xa-^ zw1!36t-fG!b%(o%J12#q%%YaE zTo%d2khUUpzm+QLOQ6AYO)%$m>cV&tsij(+Je#@83@MpJS~3>A##coqMc>!XP0KWg zn6e|%^~=$zbpvf4u~V121#jG#1g^_q`CrM&vXw&RE@@Qwi1{OIIfZ(~ zq@Wy~pg5nx4W}0SnO~Bp6u~EBFKO(VG3?*ntv@fe@)erN>rh}7vF8LlsM?m!C$}2l5wB?AukEp=S#@QgG`iw^;l2AWVz|(Kl85ESA-|?qdJ6w z29?ga>_4tE3V_}Bn|ytly!V2r9)Z)*H76hCAwR!@*QKsnm5vX)yDV9}o=@pkOBR3F zBYY|=n)a++5z_DvX!5X#F8DcO{XVb< z_UC2^MVYQUQ-X4&KK-$f3sxHx$d*7Gf~VMJAZ$4ZB8+*P_vU^Th2?mWzH21MuK3k9 zpAax^ye6-5UY~FNN4~SbWSLrH4UFF}Fz9~T-2c}-8RcV>@f9_E=NBf8UEaHC>R_Av}nlv_B^P_Ylc9#-Iz zt9<`=`E1@V;-7DIFtI?pGNjS-_r)&L1LNZVnNGOOo1HmZ)8Lgm z=*yXv0H3dm|H}e6jdU$4HPbU`^PbC~TjR56`jCSVUH`pp+DD=*di@yb?~wdK3Y9VE z&RQTe7V}&ZBo=b-IBRu!^&Wh7f5AVv7sDUf_$!g;GiFmnQ^BWP#{d0pFH+;zvDn zDye8$G@bCfQ`L*v*h zE5m|9V`IQbYh+bA1g5?=x22{D2EKKSuCWpP6pGP?IbC%}Jdv!2V}x08~N z4b6ZI>m!9y0I|6xTTI^D{8c;(wm{r38MxjygeS+8jLC{(< zg`Fv+|3cVj*CF^Ngdh^NSO$U=3Dqx^J*L3XYj&+o_etx&@H9*k+c*`#evu@>0~O;1 zL&Qa7s-F2r^pf~0#?e#^P$N_OVU{&?`knoqRtf0K&Xv%)5$L8qZqt;qg2MBJJbc?w zp=R`f1Be{S%T%B%Lod(V0ZQI?n-!vSS#KMt@bc65Q-x#nnA~})ZtET57gkIl^y3em zSt`_1Urkq>qjtcj-dqxjXLC9 z1~w*IdZyE}%jhCwH;p1aD-)ig0i0~Cs~4iX+t7}{jG7K}<26Kssa2!M&CUGdop|B- z#oyWC5IsvH`cjV%|IVNPi3PE4>bY4U&cm0yy?s;Zgvk;w5gYh)sY$lhg1=^~iaY@!WG1>b3(@jHCgC%Y42sCuU~)y%zRYDN%+N}L@a2cC!@Z})DQ^E?>X?p;jz{gy(jg^FC+#?dMffELL^PXGmsJAxCst<@SYm`2GF|rZ+5rl*k7Q!Iw;{tBjzd4$ z0G`qFOQ=lfl9MZSqDR_kyX(G3t?OL4vSGIU!Q$6|6D%ea~#zu6HV( zyQSJ*L#~ukKRO_^fDF@6W24lz0fP7uaAS^6#0*cPR6&UK+NIwc_N%E}-i3xtg^G*T zewKOlEoJv5+IE-fJ}uVU{9*|zygy1?ZVVwIe{EdIrAqVMO5C;=o0k4ceD{eemA*{V zQ&2qg*O6FT=gFQ=FgSd~8NG-l9h7vl9xKog{idBB z){Q-%qR~u`1yy-R7c{RYHQZQdAq;ne=BIac+4-e+3-AA4Sj9=A9pW1}Qs`f4&izZRd8YNKShOkb7Q;CJP< zcSc&T*TEAxKz#ifC!8d3e?OLY1NhT4685RPF(Sb3lM3lxq6etwC6iwL0*g%J}SH;E-+})^VKbp z(6Cl>foNEao1SG2#H0fqVx;FbF@Hd0ar8?qER=e)5_V3@$ZyQa@7UeWx=<` z<(9*;jNNN}@r*mu)f83OpU4f)J-9n3yIrwN`MUD;yml%bflvCRrt8t_pD0oOcDag3 z6b2IrtIF%7^HRK1@>?DW77rknh#nyVqU#KOPW}SUO<<|uFeG7bxtH(_&vQ<|lSI#P zTw^~IUwQE5?yox+z53v%t8b*QxKSAA%Xv2lXsX=Ig zr}Bh3kQ2rmth|;uSLiA_xYM}+-@Dd+Mq85Og_WO_ESSRSu*>iNdlfU*s0R#1rjFO z)~3<{4yw7*HFU{aR4#X?__`RdVEmPk`HOu61^ED@B(iw{49%&Q7?AEm2Js^ZPHzXY zv%xAJGJ0xE!}?*m78>HUS3eI4A!#7ia#DE)^zqtY)2OkZd}1H2TH4Ih8(k7&phzr8 zU&m&%-@rQ%+?JDY5?3|{28Z4pd3-D06~%yLM3sCpD5@v*)FTOHkV?*$ZQ`QIJf8$H z*EWbzo(KuUm2q(s9@8jrl*Z^KE2LtHGplZ0JNcV}vK7mm!tVXI_VWPk!LrO@b?1a1`) z;7W@x7nJuuD5Emv;%e9rxCT7h<(u76%nBpfuge3MJ?4uI#i{r$BS*(%S+Gc7;8V+z z6Jv**7Eu9hzJA6U`l%c7Jp|gjtF2n3THAefKg3}Q(TAU!iEvUjK7ec49lf&dgobai z5WAWBD;OWpQif#AQfwx{24JIC;N)r{+D+sj+RFaa)ozK-LU}ZIr(uDRt4axDEfXUz z0-uH@2-^SMG1^G}`zp<`ZtAgM6pQzd77EDKAuGOgcop?PDcV-ua9)CCp4oJN$5dO%WFpZ)Q7|>X+KPN0g-g z&awTH`1Sda_?NcqJh71x7dU??*5UAN+n2MxNB4j;)mx!k$$_Urz*g{RJ813vyBct4 zJ)n}?w&k}+SF=gHfM1&}UYWle*zR?&Y(eCdzTItV4}Ui@V=xU*7aZA)CNVs6dM$cg zf$Y*v)XV;&C`*-S$bA7M4&uz~W+ zR3o#Zd(yGvxvK_g5B*_2mR_Z3Lg#G$LHt8cLmQ&RrjfwlVJy0M7BN56o@eN0G!OW} zoXwVhzwV5HO&l)CkJP8v1O0P(=oFXR%kgFcU5#KhXXl$M@Y!D3$4R?e8wKE2DL@+9?*7UzPT*tB3yy3` zDQmpyIN6=moyhi&JAa$6q0R8(O@ns1`D8k8lwi2msr#SY1|TVII9Hw7`f|Swwz8fP zF-K6)oK0$yG6A&T1Sm+8eaS;3&WCq#PFcz+Vpaa=wm>e#G8SDP(3gM34UqC0Cwet_ zR5av-`CgA(wC%3>&LQcQ^QsW}?|3PpUrWg$kI2<$zhS*v<;S4X=-mH3i1H$ty1^KK z!EqrW2V0%t_!@r7A@)qP%JGlL2oN^B>JkQ&9P+4ozF;NQ7ALL5~+giQpKK@FQ$; zM3ceHk1U^1DBd6mN&AH`{boxbxh-P6@@#blG*8Gq1Q9c6prbzS^l(r{QGkiDY3y<5 zRw52xR~8bykzP>{wa0$Uf)f<+mC)rl#Pzs$@(M)XH1Sb6TX-i4nC*Nl8iumQ>pA_; z7KNXdwDQsZ@LdlDAO`z6;r_&2gA&jp=yFN}o6TFyW%o{>d-O6IwQkqzg0`#8yjyj9 zOFy{!XseUE!A-$sz&?MxW87-IcJ9_;cc11{*0^?;%|oRRPBzvwh9y4>N4D1O$h^zb z1eI<2)j*jqyN_R>Z+LgRFH+P4GL5Xl`%q;hRWiavC5dr)h=oCJ#+Y)@M(XV&? z6E90wX~TggheQL~2Gs-s>#B$RNX*+}1JP+1M_m^Nos;aD*Ko1=liU>D*2tygE@Dwe zynJk?PR7&>)a2C9*NfOSsi^c}31guOo@Dl49&B6bo5~I=x>}x`MK^?w5B-SsT!&MC zKhEd+a%2}9NMV>*#~$u9fZQM<-t~}J3}ZxjjIHSyzF8w8IYA2%cOH2GCmDme)e1DT z2*?%@(;|tB$!PZ&gxaTH`*+4mfcvf52;D8!Ljv)%)440^oj`SPP7|HF4{fQ2v(^J) zf+ZETHfXgqUPg!u*`7!PW&`+Nr>;Znb{k2|uKJRWO6Y7-?tDbbr&t?3(0v62!12}AAZ+J&;Dn5pZ+&q0aKC=vy1$|&f)5(xTmmJ#d9qK29{DJQ$&J4|Clo^J@fb?G|cEky}u6$7IYeX zCYtzfy~U;V6wBI07v8ie^TGX*VeH(qNF3@^_2M;~ars)kgvBC53n!xMhSXkm9}*T? zzcB_%5G#IXxeeGMULUqjoX{0qKsMFDO}E~9`SNE^m8ygPQ#2MbBY(UqE1)&qjsSrl zUpeQ&E7-NH`*fmltg>k@{vN_8;aP(?pl_1?KXkoiT$F3n#yi6RgQN=5DM(27&>#XT zjUrvrJ#@niD5xkQ2!f=vbT{l4${aDGR=`USn8`(Eq1{_9%r zs0A?hZLF*&FYaxsD@KqWZ@~F*NMcs7z*6Hfo=hj*ii89rHLG|Z)s|k>c7Dva{1MHS9(++i z@Al6mT`S9IDB2;dO}Lk$0y_c=cvGqP0|ll-NvsX|I~o>7TDIC|ZVSB+WvfyXB<{uMQP~aS6Tfrx zFkG8L!{UB0No3Nz^P*2=3dESa-e}9R%Il}Pv>qALwz9vmyh7qJN#}w20-MPK8O#h* zZ(yedP>y6?q%6+M7Z9?^CkXG2nR~kzkO?9$3OrQ|3$)Yo2a>q%<=C&1Q=mKr?(;T$ zI`M*0MF^DO1t<~1xVNH~9)t9^)1hk4W0bJVg5ytkEu4<|Nx^Q=d*(Q6I=jABtnz#n zoIs+J0{^h*th%YFBrfSU8xL&QAW%8%TyX91K9YfF)NRT=W~$+&h3y^xnPpQ?otWe! z^d`N0%iw`dWRTlv!cSxU7@c|;(DEwp+o;L5fXKN!Q$#cR75(VSm>x}8MbFw*=Hh{G z>b<8L@3Ke&NO_%v1j4g?dlYJL(;+4<)AkTbbUP&;?DvAY`CD7?o-BgQd8e7wdEpxe zXQt;2So3>tzU>lHJkU6}M1u3kt+~e0vZ$4?l%bseN+u4+SA#qlmrASK!V^;*(XTX) z%WbHV3tCf{|M>TdHZp*ST8r9BNn=erP`Zwt04ezLFC`2l*Y!cRx?#28E)4O7u>3A; z7%*3!^b5q8h=hov=eE90t-rh6oPg_8FFM0~8RP zp%=hSYwk}p{NFk4EdtN!{#zFdl%kM=mR$s9AGE{Cn9>M9oFKp3g4S69M9PKQm?&+1 zAZf-iUhuN}gu-%uG?rDx1uSgUb9WtGTguBekRmY}N>BrOKOb{%VL8!E%n%Sqe%)ak z!y}1*MsoJ!4*z;nk*j9?eixnf9;WTin00@`tzbiby6_}h;E4W+TBMAXmKlzs0&K%> z1=Ti#b{r`U5aU~fga;EMbAS(y z7L>=p%(<8EN`j#AoEjuD@b7o05FYtvu ziNDrK&$~|>U!EUzcjE-X_`K-%PXEF+z6T_dOOr0zUa-`K&EqW6d)$mFgGo&_q?Bqs znR`M(gwvdRm}KEVY4ktY%eyabA5wz~XLQX-_H*)rjDiNmsUol^;2Mf;vQCx!TLlX` zjZq>Y$!>@@G$7A3)Xf5OmxIOpkHb)OU}c;`n7GTN6SmB`$~N5*E@JfC+m8HMOpXV8 z&L{k?g)?RLlnaU_M2juI){m8@8vfM>l(Khxn>7NJO6xH7pK#fk<;+gV3Ct%5nNqO~ zVydfVgzzzoey%+vlZGeJk&b@}IR>MW8P#%LyOi zIQs!d(KfuoATP`s(gk%Y@lhTeD$6Hx}B+G=2RjS@aFwHByPa9EYE{%M-;-#eETF)|!} z_Cp1CQwRF-xkgrp($g_STVN=?Ihy`<0qOye>AmvS#Y=n!9=10^K<2wIY6)DejbVW5 zY^8z&1ulG8KMZs6@L3)pqy*Cq{zSG9duUk=qoV9E$r_4I_fnOD%+ADB-b!-A3C{k) zh_>kmBItLHPW%U9G@O{jzr->h7qz<=NO9LZcJWM`oTSt@7Vzk88M^|t=Qk0@=6LYf zw&lYcc@8PpMAp9f<#6cn@P5aRs3J%KyeZC^9xrl@qZ7tC@~XyH3kfCM`_r@#tBq>; z(cPB4w`sYalo>r^3K#PQ4}DDQ@idPLE*4NxHpZ5SFXhOZ2$RIrqZp2q757JV#>%r? z?p2Uwe1GL-n!}~Ol)=nz!~*wDRap*|mHf1EZ>k`I@kef6qWa#u+)W}$3=6mIj>&{{ zqJ;XIn>wAqa4vjEUub2le(*^b_@!oA2=#a1za;PDM=wjj)n5ZJq9@o+84_3x7jV~Z zA5$g$>Rc!a?{%WshNaE^{?#hSFUyo;2l^B4dqT5CQ!}`#WnLcVB5diQGC*3=ebed8 z*M?*K(n(eavgMmZD?r9*)~(1?FR}QKUOPLJ?PXuu<(V-^=IZsSS_AplWPR}2hB<_|!&-;+pN4V8h=@;+ z+}@@0#a)|QcCwoX@LH~^aqrx=T?eJ$v^&0}fUAB!VSpe8*f0XxXWk@xrZfOkDe%z` zk5oR_Wwt@cbxwMHy!dwm`yWcGAx4!nLFtM$o z)@F0Oc>4kXQesCn^ z^h<=qpHm%svq)qWI zb@5qDye>AjpfQ2#H>z6&?>pAo&*T+scih?a0Eyj&ikKBCjvi%ROl8#Q7iScN^G}rr zxiIl=%FnPrAvYXGM)%`A^jen`w^~0DNpcij<8w*O+QVF)5Jc@7kbI*$`OCG`5U@ ze@cQ9@Z33Y6N8oA0Ka4BY#x})aw-*~ygD?ROwMpy?5aVui{bFMoV`iQ$E8wBf&Iq8 z>xyD4q5PS){RG0Zv-Dc_YELm!j)KynwC?Z68F`N)Cc!sv)slodDQSAjVyH^# z@4W5HKt3D+Si-Gm7!df0&zxW0u{rkol&a$0+lm}~Ld78?9bz8^2;L~_PaY7MwZ?-w zL@mBk^6+?U$Ka7DQLq?!%2T(fmWk+oB3ZTr%OwpoLh0$7{;==v{VRPU#i_{GS{zv! zSDSWiJQuLgs!Zk!p9TMtk-j3wd~a!J)hU z_;MHQq0=#3waUv72o&MhGYR8)4EY}cuU~ZbLM9$}LV~hP_ z^53TXL&rgiGf2cv-HH!{*W5${qpy}3eZ`2#!^TtmdLNVabFj8fnlEnjX{}rl^`p;E zFo<>TTDi3*HYn-R`0f`Spb_~v^z2PHV1wVv4>kQZq}7g_UX0nzDK^<1ruD@gHuV7E z{*1wQ@(KN{=`Pp7x~O;T<#Ezxj#~ZXrJ(Pmj)x()TJFu|i3AS%j?B)i>BCC2&Bh%@ zt^Oi`WG-cEJjP^t3LIQSWjl?bf0##VyXfE%F6oK!Zfe9tBk@g1BtvMz!|58Zcj<)I zZ1$NI%`*k><`dbo*Ca=OmLR6+)SBKbFTTc*YfZpDPZ~9~7BTd9z5Wxhl=0bL=)v7U zd4_}d*VjMfF4n8+Y8^2dh0bGBnO?YLcT+G5_($Kx5<4zEhcmhrF$jAhznlMXkqbe< z{Zo>|R|vf=46YmzwxBd0;MCrDQ8NFhjeRkJG=Iiexfu zu!BP*6eRs%P-?daSS$98V*|L6`GL*YpW6UIn2gd>3jm!ADy%*nt&egjaEm`wy8u@2 zl@5FpRNVMe$Z@OrzT26>WF7A@H{y_y^n7T_#3f;i{Ga0COHQd0m+i2Jwu9WBG6cA) zC%1_XYxYWrmSBqct1R#F;3@PxDIU9fQHnC8#H5&}vv!H&re}*~K9epJX`IDTcIQ8{(4$0Id2*N)s(gqN zN_QNoO-5^OoYLBnor8=BQ%PlR5XEW3LoM`x!Yk^dhixO@|2i(eDVXEAM0Gv&#@mJb zR3;U=uLV_K@@f`dDS0^^w6zv-8sSf<0CqY=m?E?I%Y*+p+T2Uw!mu#euBjW|xZFYv zOE(eob^uy#BG=iRlMN;H+?kOO#09pX82)X5nVNqu%dx80Z}KgVaYH%9O|ywUTk#w+ zPJaX-w1P(AGFj%8h{)Wt?%;*Gyt>6y$J!7S-F97Z$D5Ia{0VRRjXi~z!6+k z=Lq0W0?vK&=FA9Ws~7IXS`1Tfzi!ux9i<|xqmd~54MGjO`y+wX8V#p!_vXgT?4_mtx9 z!pb~U*w*}3H^jB(Yw)FkVgd+S+QSQ8aoniOnzem2NtkYOE2;Lcfmu>S3$hIEiDFcC`My6RuN^J}|Re241>y)XC{+7P-sHV_T8 z#%k*IH%fZI6RCGhaT)%F5vH{TWq!z9LqJDOLZ30^EVvygF(igZ;UTs;HL_dStdnJZ zBB(p>kz`OdG$}{u{n^p3ezuFDS=)jWHh^>sAaYLG$AHocYT}A<31F;uk^Jigij?L9 z)ePn5V{X1kzRvT}l^QB^aVQ54JtnWGYkv9pkH_;%HTANA2bAF7S+%g zGHIOyV(}02dQ;*3fN?M-Apzr_eCSL}TELFP`do7(FExGe*}}nkUix(V6PLYAS%9sx z|6jH)>HpZeejvMz4w)j?cFtCkA=H%r)SpmUt=OzQV@#gOl&7m}l1}8- z8!XB6`=^&TyZ=#lUu`;;hcH}7@^tYNNP8t0Zwtz_7x>XFLP{L>VRJJt=-;e##GbrWDrMe@eKcQ_F-MnO*)o&0& zywe%B(Tu}CKa*Y)u7rzji$)FA&L^N60@B)Ybl%xo?)_XMN-n8m!l%7NB$>s zb16^gj6E+F`v7y9OEg;UiV^tFWF&mNq7F1QXT*2KIA~!4HK*ry8pE3p_%~-|7o1j9 zz3Jy%*4@m>iM2``L<mQlNOg+T@YP2R;Je!EeO()%+K&?gY?k`JGTAzLUF)>L=QRy<+}e{`sN!@XN6T+0&FlGu4vB@BF^6 z#*4-&It}R)g^ys0-KmQ^ZxI|#@Bzqb6RfcVndnO>)X+)F+Yqbky66+HuvL@ zlprJ6tE3(8Pt1`LSHPTi?1912McPEApDyqSHeilUqjLahx=95fE0#s;49oTN?LaLn6 zuaiaWA3k{eO8%49Us`iDRd z$Zh-ub*K}V`tnYFymV&Na}M?U7ofX;DR-Pybec@N+~zM1Fy$3JmE-)q%gaaMJ?CS& z{Jnek4|AyfO13whJs32-GiXmgNilL}N$ytm62UqOit@H%UIWq6=ZJ8A!a9`*n}6li z$O|lf{6~W_6_3@=2*sYNmh8jQ+#rjG2x49%qcM80zg(-Q<Uqf2ueDAKS9WCW$-@Ne+IT3uc9|4ib_@hUJ(@MiZ~pR7;K8~Qn!Gwe%aUu+rz;EAw9j6p&V-8 z%xUmbypA{iEEnXZeTia_^4Dz{BsLGjC$R!v3w*QkH%duzAuVveXDpj-!0pfH>6hbyi+*q5tB=R1hncb>(0sZ_QfdG|IWMOH7=9iGnzH1t*|aWAhhMso%a z^adSfQ9UpA|Fb+#7WJi^3H$A?^a8V1VBYp2PZZ6W4x(e9gc#Zci-~PPbjZNR++Zzc z9-0LPwaJVDJ)shj$NKrAg3u<>4W_la4jJ{CY!F?Opj0FWgK+#0h7hgL=coI8X`4j(ezcKsqH>bUP$3N=t z!`25f=iXpkmaT%LjcpUv*TwoA9@tv>*E~kn*WTCiM61#B9=RE;6M_|w)*OvyKP6Y_ zU2hzqw>l5Hn>q=pMr$`2r6VF*uxVGd80Wc=6hkiBF+|gzxb1hqKD<_94E|mPsAFPJ z{caQ{0CocvqNx37kB*D$wy1yFU0N4Scf#|Z^>Sase+zw~HruWYXgMiTsFuGYxXcP zIC(IGoxG@PRuM~CI`NV&n{<#F2=8*M*U+A(Ey+1V5nlSwV^d@7F_Th^UkrbdB~Q_{u2f<2&3;5Y@2SMJDn@PIt4!kO`y$Ok`t^=@A> zFEK1V?NR@}u66#6aiMS`VO?Qe|24QcOfHB6_RkT0;@3^DLOs<6n^%UKdq~PSbu@|T z<=jPD9?;C&v;V&>EjJg?)0X!BtIeQFhCxHDO%cG0W0JXzV!hSG?J|7r5T^&X-9UMd zD+UplA{*3jwDG53i0G`nqSlSitfk3wZCHUZU`w#TsMe*5YkmS4YKQ|QY?`ZgRHmFA z;UxXyE)+2`e5DN=k7*>_v$y-{oDUs^*k?RP)!hN875$`kBEnu4#W}fWN-u@E zKe6OX+XS(=zUylEW)PVZXSdgNq}7&@N?$_sww^lrVt^+}!mFj}>MTOY_9FDHaC-{T zi}WXQny^g)`;hjwgAmu~L~Z^cE_JdwBaKGPGy7pH{xH8~Gp1e+*H4wfAWcfdNY2X~ z<=MyXTk8?e`cKr4iMoHa;W8IIwmvvpKUgTVwCc-FT3LclczvD`tot?^A6zT@CPbpb zlADA&pUb+>Wv4s5=(CXhz$?Ga^P#0$gUIaZw68fsv#Wj6qDk%nr6EbipQJ1Ys4otw z{axMVgCy3sPJVu${`p;~D^4zHbG*N(ptUzL`g6j$u%$sJ>evm`b-ZQyB-K`ZGQ+-n z9S2FZ3~40}Cu#DN*7<7awpJXD2P?1F}h{ZOU0K z9SJ=(dKE`_K;Jl}Z}P8aDu;Of=(o}_H#RiYx#9fJRox0K&1{h{_R^~AQ$S#Tkx}`~ zR-x|CeeSG7zZ`!OYiuQ7O!&5>{;{pkQJjHUaPl{^J3Ehy2SbDg&CQairA1}kF=I9* z${IV!Hm;q+^4@&!)HmMx)>f+TK8l`x8C7Y@+@o9m!)Ri)++?t#-)&Usy993};ZIM8*Pvw@GEKccEfF!klNuHrF)As)g6Ii@&y{m05;BFeQCNis2iNJR7BFES0~MQyoR9 zHSOETZ-zPSKsV#!U&#&BnLd)yH?8GaGYv~#bWCzoFxkl^CGnogTcC;k{A-Em_uRBa z|LKa1WP5z$k}!aT^vdGjcmN}9B_H6Vw-x|C$zDoZ0MOq*3;#_h^k0!k5ryx&3KWU& zvihY9GM1Qv&lCWdQHteThW%*nNQJfP6p-FnqyKg=u7}ToO|c!w>9up`(=S7fECC)> z3p@8gMWP4iyFxIf!(`3h&C=EyXYK@EBOBsp9{&H_Q|a07W-_ZI_VI9Nv8!MO`1Gt} zW`>dHKI{+pA-E!Fhr#tT`<>6D$!<_b0-?@F{ z9o~E*5g9dULdy8IuKV5s9LAgnJnostXq+b+q^NmD+Y(|kC5kEWlu|yYX+M0)lZ!{90F5@ zlk&iuo!Sf0tlU@Q#gMB=-!t##rBY?vu}HH%esY^0>+43t70_BCq4knt)>0uEJFVtu zL<6s3wJZDTv5eB@)7QLata99Q_kW4VOBoQJxV+ZrL~r4 zk~qzlmpb2uBam-ah?W_+@j?!an@9BNa`()sZ}u_%w8UXa3)wSClJ!fQIa$i7u=yjo zKI)bKJCkW=#wIW`z%x&5q(B8a`s?6P;Zlg)(ARgZyrQ#ZoliUKTulA9g3jL@y?v|E zrXtoA?ueZ|)4xdaFJWM$sawq`yABQZ`FZKo-Lj(A1&r1oyG~HVcccSOTbRz5{Kr67 zo!-{Y2-KWCu#7IQ75&$OmNj~-%GH*}hoUm}*N#k+IyaJQEMW|JMt83c#{0!~zcs&> zP8q;uoIJtVKQFu{sa5S-=C~hTt z!ruy!*v84f2Mbi7gZib0p?d@&yNQn)WZLNxQ>?|P8p@OK(1k%Gczb+9t=!9nyIijM zYN`(sFa&msFcr#@@(B!(zXP~5ymr*C7sYKPxT4t`HP0~Sg%sLGRh&(Pc1M|=Gnhjy zu3{CkBO<%Ab_n$auCzM{A~#(p-ZC8y=yBKKWCF6?sJJ(1Sx#9n?y%tb;>3wDF4?jQ zxTE48C!b{QobUR#P)Dfe*ZG}qZWsV}5R}=E@QStK{vRiK>0im>|D5E#)uR88kDLZ5 zI#ViwJ?Ue#x0<8$#ah-aVUr|c|HT;SwpM0*fvxp#c^^*ly#Zw3?^MVy4Yl<|a)4(? z^tzYf4Vu@=;S4>0W0NF(5PG5%$8d+fZaKkd2}oxU7jse&^4^+^VR-m`gh+8{>RCAY z{!eg9bPJOw;QABtA~1bXK1p4H;5o`3uLU&aLUkt~Cvc&fr3m$XfxMkZgRoSIm$1>n zHx2Vl7ZYJiu6pzw!of)#KF5r)`KL-)ZWpPS$<;IHma-5JzMSRVRKLhBL z>rq~V`|o+F=gSTcmd>GbUtK0rtdNk2R4=nPDJkq1TkgGr?n_+7ZyIP$K3w^X`3R~+ zyR~7Tf9b?+`BTajDHo6&5dmIJ ztY#u?#VV3YJe{s_b~G~5&DUy!f80z5zD4ocn}f?cG*I_Zjr~%7fXeS(di4+K|2l|5 zPG8Xc*gg~Pfjd#UE&)?sBS&K;EAb(x8;9g(S%*2Tv@#x1hpKP!-|_E`_J2*(&}{i( zMExqUJbI2*uKDH%9;L4UNZL(@oDG;khDh1lV;4^-U}T`mqw`5KXJK^V>apVlZEKfG zI=YFw3MR71G% zLY^A0!cNt(gqsyGlf64{nLVEV>@$2}5qrnvaUykEnsXB-C&)q>oh{I#*gX1|HVMT_ zka;}3&}h;H-uBm_3K3Ub0jQ&jO22D;;6pT>zT>O_LFa*2#KyI3htiy(3Kvj%IAV__ zMNZC%X&KRZHFW!E612Yi5A&E+fdC^MDCDedlcHv15KgH zpn8+iSd&q*O%dTnTcusm5ko6y*(#ZEf*q}G5p2M;CuTWEthl!XBZm^Vu`sNK*GH@8 zG+t?kIHbI59xZ|LdQ+{smVVgf(q%c#5T~n!RSnyvY*4^hLGjY3wC!gZ4Wt}=KPH=5Yrj(=>ioOsjL)R*3BK{c+nn|2jUOJ-q$8Ox z9X+-Z3$PmrOpMZ2wjU- zVln4_#m7BCENS%fPkvE=N8TeLQjkgrH5ul%!8}jP)A*q-RChWmv>QTHOfoyt;xcQP zLx*EjVc?O7y-!7~J$ycyC-Tig@9%ohC{6cKEeTMi>h_S@u z0tmDy>mpC!W?Qm&%l7DYN*(}w6Po*l{0^3iH@;N=09s78(K_?E+o|7xbl1O@S!KGg z!ddSIkKpZOQTGkjq29DhvA8=!WO2_~(}g&MqP*#+C;;??Bw*ugjLB=%e6|9^nIySE zLUTB59;S#-Xe&gUy`DnQve@w1v+*Ou_=C{%Z>;kSS9@)4QDJnFG%Ac7D%XpoNm4hC z=W8pDTakf6;BT{^4?8r{_qU96T%u)`Q@I;@f7Vw5({8n+C>@MC173YyL@Sglo0$lS z*OLqXeg1&{0-yA#hd3rT=~74()wbqf=C-CtHl-f?uEQ@{)+7&O(zhCG0aC6aUAO!rY z#5NpKhyqo9LE132h!!(Rk$(9TU>(|Xzq5r1UO2OqkcTkS<&5v*XLn$-#nzSd^c?6g z@&4^F139@7w~8jfm)s@UR~JxwwdekiZQL`ieKPz1M`$W$x}c}slXTd3pf0Inv1s7489fL!1PCk4j-|M;-2x3HvZWS`MtO@so-Lcz>9*k>=licg@2;H zNC*;)c0!GK*Sm1Q<-fBZ?9(kS{aQ#*A|BxF(ExW{f@f7-cAUUO*~{470P;@}`!As( ziD@C~PUL%S+-Cio9de?w!)^xBs%`%2jUf{~g*i`h+}*o%HT#$<6T3#(96^fX;lIor zangUZ;pTZd+Jf(9nO?n6{(R+5M7@?CGRu|hoRMVhUUwS4`sYri^-mkmaN?f6Z#U~0 z;@KB0HD1I<4`zG^!&d4tQ{9#V*NbhR36mr+hqbFlx02C~LOq9>7L^oM*Y5aRMf#rH z_$*cWba5Oh(;dO;*t4Fz9#HhX8CBj~G)4F@C;o=CQp`351yP=T zYwb$ZdTR9xX8t1bYAQCQ@t%;8vCteK@t8*rCZGWFODhon>p61(27wl;bez^`%XG5e z`ZKtYFQ+aHeN`}_)g|MWt`>a#Zc=Z3;Opekh@|Ud=_u=zD_AmbA!5XSd>!a+Cl0L^ z_~rUmeXeHhzMq;cg3f$CZ!c#s(+RzrE{uBRJofZ8|3yd5eUw3TjQT(5AS%R``NBXcP?lMc-`JFK{SpKRxiMJaMB<2)vB+9(A%Q{~1oHJL^p z>wW$CvsCD7Vb7acQj4iAnuIBkY*nE^muk{KH8cWz<#Jt-e%UW{3#x3@xy%Y{Li2k1 z=0oC^Y1d+^y}bq&G+R-t^m!^wLBs%#Pk+>%#&JX}?TmUzHWBPvQ9w;8|6|b-iAT8F zz#6jr0LM6J)fUcOs@{6l5=)Gv~R%$PJ~F-LVXF^-m6E7v%g zJ`2qhqrK2f)ex;(tnSjMZp~cnn*SmuxXFn%8&!&OppGj3h?z7FaZ$A;?k{Y9z8M*Y7!=8$u6%r&j zdtLTUp?m_fSBp(5R>ys!UF7XI=x5J$yYG97-Zd|l{Fz*B=hToS9E2op*su>%j6Ry( zUnAqo0YXyN&$>@Axv4Gk;y*X@Z|;b3=Giy7-3@9zQ@>1I<$$C7zJofiG%fJ&3Jd~g z>>HUc8l~n=;wjXNy^y@djprkJD$oQ*(}> zvb;*dc=<9O(j)tM8-YtnMDQj{A_+uhcD~8rt43m`RimKv+=EpY8S7|v^(Ziy58mBZG40PzhUkuAD=)JeqbyPM} z`C)V-=22>d^RmZfRwV|X@8=}r6IC^w(H4xpu&7Qq71Aq?Ur+y(P|DaOoJrJjWJ?70 z3}+-5!!$+Mcu!(KdF0%%Y}aOhc`sxa52HmkJ4P$4xN|zVIc3pL=smi_k{2?X z)PlF?4@T+uY1QZ1ktqE1bn3VRK-S7~ZJiJ02p&ho6zn!RAfbCtD9`StSfC&6p@%nX z8Z9uOhP}V7maUrMm95_&d0^y)rly*L$$@5+fBS6>Kr-25fNi5+PPWngKa?VgGXWpN z9oR?OSKiIY4S0u%zm9LiHGmk6{tSh%`)zoDQBvvrruTyO#f=E6lJ;MgFXVzy>pzz7 zkpiTM2ABZ&BJd@X?0F8dEevXu%=31|;_Cnoa8j!9QX&}rp8@nVGZ2RM6(FNt>04QA zmS_=b0?}r-a?-PoQ0_<yhMNFwVQN{!uy^>(2IdhTiFUmuyf~q zBdR6?HlI~tqU|Q!moxP{8pJoB$=@#tL_v8bt}gjsikaY(wyO2%@o;zGH?z!#oL5#W z#6|GfxyyU(<{oFCnylt~m}ebH?XnouJAM9r(rLQ{iIRVtC0X;uE&Ya5bN)IPk5Hb> zz}GHpC#m`7u}a#=ixz4bg|rZi$y1@0s_Jz(!g#ngODzfZa%We3WFu>PFN`YcMva6I z$aX7wHI?=8WKm}}mszz$?(pWHL@X-JyDj!s(d`*1I9whqOplUadZmGV$Yi*NGb!Sg zT=@X3acb9!+4Wye{!s$04_-STfu~Oktt>JvonOvJN^r)L9?|Z+?5?3eXr%LXFZGY_t@HsIDFMeHa=$}w z_Cupc6ewU`1Z)dF5YGWgho23>mX*jyuGJ_bKe(JelYwq3_NrWz=dLhwdqx zT~VTPK&mocxGHM;7aISAR)s);L*#Q!ahd=yDhS@azb8Yxk!Tt;ISKt)t}7Y&J+!sA znlsbj8}4a-pR3)VnF9Bo<%xo+S+-qcuQbWSkZS%5-hRZi82!d@1|lqr*5vL}L~-QC zyUpWCMHx%gQ<==Ts)i+6FO5Q(iI7d$R<9N!EM(~VB$04qCU*eqQWPk5M%imzKCqM7 zQ6rri-fX3yzrM_^&yFmrcC`A#)XGhaB+OZQN#dEmp9fh&2oF^z_f>Bi;D>%CT6t7M z{Ow>TWQoHoC5|E2J5q5e-)J{hE;yMjouo-S>Sh(9qbp3p^QQ^mS82t8QG9 zEIvWPvNZ-v=NmR==N-57!Qo2JE}<$&aartS6iSes=AT-Ppskw!!|F3=Pq%p3v zzfGWU6zui1i8#vhd`Fb3=f`?^sUVG+Ij0!Y`t`n#oJ+&`b@v^ii>`j2xDIv(I!{&R zFa}9w{L(kM>p%h8Z3*HgGnLVl?w8`reCR4z-?2f9=1$Hv%-KO4dnJ>svk?c8j-}cNsN(z~h|5-!0 z4hWw+f^<7_J$Qx;Z%J5I?DPz%OZ-1tff?gf`nrj0n#}YcmB$fIOEyC zV_2rE^X4=gIt%_>nM>#_KOAlQ7J=WduzC_N zLSlNhRbph_mA9*EpC8AnT#QfixK-!zw$LrdF++!*py95Z#`@p<(yQo*8(2&7S`E_MURs~84#s18MgCH&~j<)rRD=2r&NHczZJV4#(Pdw z*jU^PtIF!6Vm+Js&pz8zCdJ`4?;(tcb&GU z_k0qdin!Lsai@+w_uXp0cYyMQNbg~vFa~tsG)st3d=M6Bx@#E$vs8uEc^gOA3eJ_5 z();Gdtb`N?&qjqAJy#+m-RUVdeO+qMNq^J&Yn&Hc;yb-ox9uU3d3_4?pY+DPRhcBQ zt*Sjw(CK8edVCiF97%FSw3VQ#J0Iu7^>S+qHn8 z*{H@hr^v9StA>oakOrDI`Ux`37F6x8yi~UMy`P4PDQgOB(;Ft3vY|CnOjshdDO(7Q@W#34{Z!n?RK|GaX7?1A|4h=k>)s88Cs>X&QNj>v z>V4K*sGRs7g={~ob$kJIguq>`!1er+{So{z1xnTx_K(ol2x^dHe2z>APx*m60M z711$us_0ypwW>==T-0Q~ZhZ}*nA`M-1)67Z{5*eDt|C!tRZCUv)p|T1yZAMu*X*MT zc%RiKhk&#SDsE9TFZB_xzi}oQ?An`nN*tp;ZTiBRJ4ccoj#;{lQ2k}|%euW%vj=yZ z^`MT?JPN{8oNb@+WHryM5))Bdvc?w~{HF*qtX(gb8L+JTI+crK=CleR2vMPelNv~Q zP}i4FIMrkhkGkj1%Z?Ybz(LDCzgFajK?-zYZywXNQ8UJ%d=0g)#7?6ow{f6vQZ?sV zAF;qOS8TT$^=;(H|7g_Xpee}BfwI8b0r(FT2Q z?5A%3hMQeFuy^cBY^-*+J0;#BVDL)aJ8xvYDs9}6Y_mw!V-c{tI9eC7?u&O;ezdB@ zQMFtQt{{%Fuxx*O#~p)&u8`0h`Z$t2g+K{M*L}}>eWr={_!|OQb_a1N_sYBJdHx1S zO|-x?8Q>HfGG!oI3d~87iLQ%ZQQoZUQ2M3IS?!gOefU1I1xhL(=}a&gWxf)B?q1qn zANH;WP`7w4YaMt>NiHW_l6{g!&mU_oZ~Va$pO2;sTTPQyih|73dP`kmp3WcP2z_X$ zx*6v$UUlp*mHo!%VaxLj)+%KpkCAtzIsTh?ke(+eCh^PShgokWFZgUv$@VC7p(UVq zN{^mDK=l388ys8$_p_j#HwGCY{9bO3iKj2DI|CR8T&>tBM~s$G&} zot!K4uGzypBXR8-88J%C@1w~NJcdncwbkp-W7BGM6|I~zBB0o&MpoFVvP>z!Z@zQ$S>Vc)UF zElx%QKhUXI#XSnELL57ah>FUa?UnIbpq?HEoQ2|soyZ?XqHGpQz~tkzT$Z+5L$;;) z=3%9+OCFrUD4e$1ao}Cxa+K0PHS0`XGvW!5p_XT~HMU^VCVxVPj z$gtATbZ1<{sxN`C&wnoo!c^DLJ@V?aa|V6P&&f&2$0`5p)rCK?7^AgH5pfDr^! z`}N`_!b^J1g08y1Ga}+dVCLsD1_!w|QV4!L26AHfI5(3)h#71XW>D!HYyEidMtF!> zN^&-%``)ys5Ko}nu6)wP+@_ea6-=J&6aUrY@u8Twoq)czPYpXd=RpTgzc2K~^KvjS z(b*fxtNEYPoS&GH>6_#EXPaS4CLFuap>(eX)vrj;NY?5BQwf+}Q|9x#i3hsarQavm zN*_jq?gLc_kGqx7*sI*B#~9pzna zPJQ|Eu!liDWy^h__HcxWaFJ{_hNAtZvHD-biA#q zN}VJua>q}f)*X}XVSawF+|KxT@c|SGyIaLu07UT%0X{HY9u=Q4r`N{VRKiBi{RBTv zJDApExuD7Q7zhjWg&>sLR_By0H6GOkI3Ipj;v;7iYkS`FMr`5v%&Y+F0cb{D`#u*W+=qfDJ~n@Ju_|h0`wX%? zu^wr)#JcNXnz5EKgGQ;hG@d>plk`t@%deW`pPgBj!=m&%l#&*6Q^!6oFV$F3IixJ( z)^E3SSTCeJ%J`aGUD%7s8x&8OI1PC^zVRVwN$yC2e1eOLAt&$nH1>mKORTnLkd-wi zci?h)yWSnY;cDvZ>=N?w%!4$pWWx>9tjFHFwm_cMl>Ldw_x_MCCCcc@IU$$O;-#OE z%|A~K1XL~6zV9&1wFR^jEzw>rG?T^8*)lzTDSM$Ej$L)`AZe{PWEy@o*xXWEWL%?M zvYD4>B=M*~L}FVyZjH)M0~^d>)MKCr%_PJ>t~XnBUSS{fe18TR@B)%pKW zb(V2ag>AP7M;Zndlp0Dvy1NksB_yR=LYkqZVQ7(Vk?v0E7zR``tdzIp_VI zPxEo+!|Z)u_qzUTtzU)=Zsw-G4BjLPHJ`fk)ogUnkGIRD4UunblN|Y_Q>uN+DFG;7dcPW z@QyMcZII_LYPAs=brV>mKQ>7)5;&Ff2)G&cVBF5wsF)9($VnefKe=e|%*#GMV1M%>9W7RdO!;P1Rn zCW_M`Rl?5 zqnn!4A9i*_(%K&+et!SE!T$kKVD<5WXI-R{QqL*tPV8JaAndnA3Lnw1r(7P7;PpB_ z3lE~306&Tp9opNblhaxKzCNAQ-#E|X6R~+ig3+*!?iuK>HwirKB>VpF)Q4XOtswg+ z9TXFiLF!GJ8DBDd_uThFM-N*1=vFWPnwLiBEM@oAO64ABz5hww-mIBwBJ!DqJDqt5 zu_}XCW1odb$Sy;PwDTNN%Nqn7#7;^PWc(Lh4UM<6djM(mDty1AW>?_ZVK7L{@GV6! z;~HXc0|8vR=>a{iiPv*NU9(5u6>Zu3fr(ry7&itWu@({9ntIM7(!RA;ML{NuokA>U z0?JmtPmBQzMj(VC2x6p9ObU+wjZgX2eF_Q-O0Zpf_cH?^l=o_<3{vPiiHzY4y9>?r zX|eRFs2a7N2aN^cq`XWzNxt3qqG!>6w}11B5C~O}q0P4A>*iDyZUFvq74C2b?2U?e zeYfSHS2tM>Lvn8)Pc?c_EIH%LWDzS8olj4x3LJ)8Dz~iBuEi zak^N9g^6^vD&6LjDk24N?4kRX_}e{KHfrB#F3E#$?#s8RZG~#19V&boE5weoYCWgh z@S{y`T@vlZ@3qt6w`CTTUN%_GHjUN|iPi_$PyR$tu@3qA#-BESy9XbE0?;1o zjyf|e#Wh!@t$FYD>Bz|Ag(wQo}o zQx7}lzLd)bAEij$dIz*<;wa$nU->-5Fe03s)BL?kCw2@S$Gw$49L(a9xU2H3Y2@tX zlS66PWg8~nuc(DoqTQx(N?eE)W!!Q7Q{&Dwm`|bT#9T-RqY=%xHK}s}2}5NVeGv=) zY^~V#pXc@|DUbX^!ZV7GV@g+&%?x+D`%6Gstm9;<>TG0XRrm#Ch%3WE-;C7(xhF-A-#uPtW^{N$OkK$aUN=|@8&0_lTir*@ zyKnpvZwU!r`)=vj-!UZncVXwpGQzckl3yqMO{eodw+tTbtkBuUZLaaHBG+zf{o3VW zTVkXpULxe4&EC+fsZ{$$m@}AGwoAfIV(G=}JAZbW=9K_+=BZ5(g%^CB1dPB?3g13X z^s;?56bw41{StQL9T*IfcA#g$5me^EP!u_S2Sm6VMce}6yfen7+17WB&i|~CaBt7P zH6x8Z_)Z3O2mdCDQ|vGl(fEAv--C-Os4OIaXkrIm%j8Q!duE(SlsHz+QHjA^*|FIWhPXV3H?0W^^e#iQ5ucWZ@&-{+#f{>Md(;+Nu3!K8;1ekS8De4Yt<=r}~aR zn{%tj`?`QK)ZJZ)XCIECj7}4ET_1k8Mk268C}TjA^n;;F<$&mV?S40N!|~wpJaK+c zq;Wa?J)M(nVmkeG_vpQ!MJ^+p$Q4J zFEqA_NzG1V*FoK@H0jZEjb*0HfY*I1IB9M3aD$Zf?C*AvUm5;*+>IQWF>3klrJ*|Q z(|uv50G}7x)JF^`wi8zQJ*fJ+jPNJ!mkC3kET0h*RKEAQ6I@suUcE@VG)!i($ICGC z_LF(xdgQR#biR#~D;FWhbqD7>Ij0{}x6BI0LMwh6nu>H4*o+C$r~1^+ec3{CkB-QT zSJDvEFYQf#_xG}Hc~$qC|92%dr|fOHmv)7B7Pu1>a3HEr%2#F^4ARUv$z1QCoSomK z;+<`{5m+7g_(eSbd)4^`8Ek1Bn?U*pS*Z48fh6-Y#pJj(C87{Z_EWr5jC zcxI&%u7*-j|HxaR7%ye`SdhqF{rNWXxjYiYxMQ{)KPArR)#2$p%&8D@^ZGu|fP`(I zc^Q>h?}{#OvXCxeXFTqE?aqhw8$8}m?+A)cE9zq7N!{|2Z$>$;Nuxltw)p2?c}ihE zL~hz_W#7+~r2@uxcqgu?-bawcuIK2Y_uTblOuK4Om4Gwc*oKckCYz%Zt&J$LDcvsJ zI$H=J`@h9CR}8GoK&jH#Y*fU<-1s5?z)cr?_8-Qx*AR(U+==%ItrclX3z7C!<^w-p zZN%4}1Ma&#FLz$A`QWFIz%~3$;Jn2|ae@Mn^-5-yq^Rs;U)muV1e?)^{|gXNrXD} z_u*7Uh94!6=XL@_U(Nn$@HpRbT#I?%3ve@#goS?*--0`ZIsX>#vD`o~qLP{L>Uza+ z1NYXn4jJ6?Lyo$QjNj*}bh-Ui_*&-5HD>7*DjlYw)2p2sM<`_Iw(?xoV@D3`)9CSjC&j_kP4fkBZe83LNc#j20Tx`uK6;Vg}J2WkT@j}c!) zUzxEr6m^iVI|HR=rbls`$^3zu8N~D%k@tfZsKI@6s1&4)iUNmF!O|(zlfEdNb$CfS z_dIwCIOF?Q5h1|i84MyQ6LV>)I3sU4JI$&u9~nzCTZg|L>T5}EOIA(y8FpQo&t^O9 zVU%^8`X)aBTam|8=h$1U4>ufMZ%`6>gl^C0MD(XsX&toeCBwRkGnJ_3{g`xNIkqqM z>utug*jlcidJgF%(P*aK!9-8VKM+&TXLsTyFcnz2gn)v#yD8;i4m{+{xSzhHcCG?_TA|22oBdgU9 zq%A6C6a~iC<)Ffyon(h!TF>$RoQ8!!rT6u5&Y}+Ea}g|nNZHkrKq{a5nbv2#~#hQOrTulzLV$fB@i#9PgI(_l~_ z)6osXD(6>ZS|1+9BBfhCi&_WTA^nci)i2N6!O`{3X0sV3@op`b^+V_6dCeO{7h2f_ z2gJ=Zuv8bWU?93rOtavT={6tW?`}POd7@t28%mn)$8%Q*sudybu!$e7Lb(eSdT$9> zoY&JlpcW%Kc#vW;uf2@$rB~VuH6C~Y%4kC(pZ^ZObM!gx7f{I9tr1ji0#nE(_7e-s zy?MMW-x82{v`B#mfI2XDqV1Ql&XOGuo#udJ_KH}^7dWsD|w zVKkzENI%e93rxf(`}Iq`Kr`4=oP%FOV!F`g!|lh1!^bs1J&ysxFlGL!^8XS=|AH``49xW$QiE1%xHj@e4h#1cVx-Vr zzwu;o%;qD<)qK|kF;&NoUz|s`b$XQ8x{=_{TEN<^?5}<(GSjYXJuN1qZ)@`nvB*hk zATGW8oPLxwee0mmJBXM|2S}vnhnYJnGniM^U!y;8NUg`9v-H+EYqG$q; znoI%uPk=zK*1w8ki{LMaaSds^d3YGDl(ltVKgM4Ng73$IA|EQKagPKf+S)fo#BOH| zs_jEIG+a+Y#Jjnz1du&lNjuHzF)0+{Q{m4I+_uQC?^-Fteb_N5ya2FDb$xVBDMkp- zdfHRNJW|iQ7j$F$Z3g0o1)D5yjpw(*t=fsgZM^K=G+jU8eYKJ)@$xQS*zk({8QXGk z*8O;p>vs|NF0zyRwPf=e6qbAXYu8Q-P?HZk^*~GQD4PXLSs-Yw)yVo6)<@(G()OvIVaIA_KYJ0TqG;drXy|r47Xq4o5TPtCHSQ^#b8vKY{<*)=r}E60H{9^Oi1FfC z(^1_hK|lR)tTL z>L$mMAZcVA*l$5+HEm}?mLBhvKz&**%A$;^Ozwg+v4qKOC{mA@PACKB7H_>UkT_2BBHysd4+8qct5zBq+U&BxsdxN!F3mMpXe|Cacz;3=lzpq<$Rwx*h+C-mM zP%sBa0(M`!-CwbTu>g7|A3@r#bNIs~GNyiUw$f)l5q`Nhqb3tYVXIzOjCfS<~twVyF z5X;frP(7ys-ny8-=Cc5NV|q3H?hj_B&;1RT#c-wt8D!p^iv z+z+}roZl^o#IN#u#8oT+o7Z1>h^yK5Xx_-*l+A>T+Y6+V<)-oUqi-iFF2;|o>3r{Z zBYvf{)NOiiKa;Khv`@Ja>XA7{Iu7(HSZ14z?>bn~t8K6wR_iF=tS&A&IJyR5^uB~< zrDnnH=bgT&J$7~t#{6_C>Gfn+id9jH;`UJPrYVT2AD=7p!E4;#MlDt_s!Fe5%ZXdN z;illM01eCN4!_f#Z;vS5Ti>9FjmmBkFlD8Q zMv)wcwv+@DJm|M$=nXWfuf@*YUq34jU6?JZUGow@3sF%b_KAxvqx*tx`DAldZNgX`OtJHNCa$!7?1 z;I_=aPxP_SAFMggz-&GgUC(0*%W$rjykF%how~Ruu}2?>+@ae?$Bm^MgU7j6h)nG? zihMjAWhE^}i2{w&yd?`&Mq%<=4+La@xrchTEoSRi{hYu-lOEYhEIw{KW&mzJ7eDD5 z8e7}%8>;iM=%;EbhFkJb-<}7-HSB)C+gB0Wq8~@>u-%Y^Ur1Up4`C;w(xU8V?zSRy zCz3;vy}G{_7$W4L=V$5?Dl)UDeZs95YgpcDg!LgF$aM)eox@2*nkaK4|KWdLX5H!nA zEj1}3zSLafpt{r}bERutPmIY2!lTZYi z5<4CG(_deP5`p|&oqEnhH(;fghBoIczF#x8cDbLHELWYT6FR($3lrDj_->;7L(jhJRYq%}Yh_d>6jd%BM7;4mf z2a%+u#&{6Ic*UYc1(?OE3B>Mb-nmC7CcXg{4KYBW(DZ5N^be|`pS*pN&ynu1P+P#$ zonypss&Yo@xmWeCO#9s_mZ8KJC>#sZUIJ1HGzjZ~h4(lB8ALNsnpx(F0!lJ&HKtwx z=SQpz7#%yd!->!BK7S*SM`8w8WE}s#)YO^|Br zf1XGgtIX5jo6x&5c)J(u&4%2{^Wsq=dVJ%j!5Csk!W0Mb)KW36b=&2Kh+{A346u1% zrImZI-qNG7t)PH5Rx5*Zrr%eL#Tm_?wLqjp^1}ec{pf~hf5wcx;RDiTz9xbb5Mn8r zBXlP<^@6G`245tXEQ1nR^r#a`G&m|S7`kKwU%Fj&YSPjRb2w5(T@W}gkKXo|7dI>! z{*xM81ou`g$QT^5s2Q=Oa0s`1mjb!Cj>_Sqh1&WP6@=YW8F#ceKG*uU%&JleH|L|) zShnT5DXc?Fk98N^hHOpiwCdw)eZuTM`Sj#CYYRzYYNBZ9luci`qOgN{3kEycw|+lc zncBuNn~XZ8E0dG9th+oI&Frz0)6~8;KC!t*PRQ=OUFPZ0Y8?~-BXHdQ1oh_|s$1vw z2u__RcCzkByK{f(w67*y{8U1DUQD4d7ACDDsP z{xf^R=JuVMBi)r5Uu$ls&Y2?Wc{>VV2Vp)>MArMQPRcrtE@lt+P&?OiG&6W|Wh z(&9@M^=#533%5%R1&bu8bhgz*bKC8_tlGfrk=diyw>6l|C|qg~b@e2&xliO_Ap4B| zu%YX{+)I~j@%@D5lK`eh*@Uqaxl4@nnE6_gla*tAkhH65xT%O!%QcgdKI$M6A$zMq zpPG-3Y2QQi*g6Isd2_}iy0`UF@+AtaIxRkT75iTNp>c%tNoH_(>y@*176nGCxmqN1 z`Hijchbi6Q-V+k>-Yxkdjy%CV*-?j>hO9;VoeAYA(0lQ#(jX=`X(@UM=6y~flR^{` zk-!SGIJLF-Z_9}8RiTtB$UTelY!v*_vZ(P3GdC$QKk=%q$P|M(wH^UFUeFQ0|0xWo zJbGi{kvx!z_@b~DM-(wP-Sz9YhUM^wYmt6QDlh1LUiHqD_UP*JX6a)_;W8pMY69f{ zyNMrdGsp)e=U>8M>NE5+@1^E+V0JW8fY2GH{Qb2o0jX;KpbD%Nk;@_4_1}Oh?#ynV z;2_~(PzpEXC~;K20Tp#wSDQZOACBMn_;B00JLlZCl^yoSw@WQwAqL2E^Zn0TXoInT z8@PauUaWUK*x7?CDYV)gBiC4yS*q=dJ+5?U%*Kj~oltqv84T6%o{lMN$GckG>8 z=TUh!8URAmzN+_xcUi7Xta45O?Zmw96ybV3zdJR2AAxF0XY4EnbXDSn28c!Q7FSr$ ztlG|0=aFN|C}|d{=IsyfM80kJ-~x1Q&KA5X;1b1z0hs6rUP2f!rm5ysB@stawJqsa zM%BSwbgv$I=raggFp+jRtDsRLLoeziJ;zXYOt<~osceEh(TnMhmS?4Ujicd&0Oml$ z-gZ}gWRNHKa&G!}C9D#wVIMFDB?NtRI|dA~fU&*)E3goK16by>Mh;Wtb#ol#z2|1G z|Eri}Cf{Is;j&z@8Q*YY)DdMohVy#i2p&xda%6U;)r~~7n4ScOzixC~NT@4UxNz0< zpqeY}YG%f~nDxbPJlY@_F6jnjj@NGFnH1HC<1zH1wSa&okufj<`-|%dEA>P`8BxlR zrXas7R!GS%kEQ9^^($DQE?Yb6Yu3d|2f=?{#Vx-EwIH7kz8py(BCj7=P*Sh&3OOjF ze#I1hUJzfDjw!WDAXsGNkfr0 z3YR=`x(gSdh5LlwQ$Mo*r;wq6&mKs-$|fS7IfEr>VPuN%5!Rn_o-*$;!;zwOnszq_ z^IQr@VO|991if9Tv3<8n*;W?oP@xnfd-zDT&AMyV?Js7TzfX<=oI-6Aa9iaUoZFYjNrzy?tD*I!fi`Yu&}tja z&hcKTV+9#0SU|JRE5sF$Kv_=<8j^si`0pkTbCcEK-OdRq4Butd zN%z>gMEFM2#jo1r0Z~8yNB=431ojy|*Net2E}|fTf-g6bH(Ig11-$_N(_OK;R8__N z7OzmzeV?Y}COv(}uvqTK=p9yNa>-q{0LZ&rVa;Kv%P?Nfg{)gsNsK`}!lQjQ8@+~S z$IERTYIOH8iR`uBF@ZVkW?1I&QS^>g4RBjmR+OfTcOms6ohmA*K`fvAJRrm+H7|`? zGOw1=T@U%sG|HDgc!*v2lYm=1W;r#?@5Z?l4|9%O^Sm7Mc(zY_LnarU7VuR&z9Se0 z+>UnyPWg@oGfzz)G!3`3N~jZJ<7j0g@Uz4Xr~HGgj0y;+UAM2da8zxh%(>11dVP13 z=ab)W1_`4E37p>BKaT6`TNvqyRuL&A6>yK8w$2Kn+d8!<>`VE@CIu4jk?m^pWsw}L zhogZ$hM`o$vlyRKR^G9lL*K(OV5~s`$zXgG$6waEkxP<1G+>JVBcMdR{I7tLQed=t z-oB9~_ukIKqX*ac=-j{&|iz`w-8zu-K!bdw25ZvvRVvID>%n+FiZzBo#jMSoI* zU9Xn(~Pf4&14F*_fi|Uuf>kUmHCeUW=;2TY3^zmv} zN|zt^pa9MH5q><8#3`Uj)V32HD2Gb`qAWX+7YnY2f`E>*-f}t^2RM;Za4Jj6n|j}D z1hN}dc`mq2^#E{Ww%h7@`|YC=aNOm!HGdzB9%}x6YTP{NCm+>3^{N3L`iC~+%NsKm zA6uvS_-82|SQ0aR>jVOC)F(J3J?G0cK3Ng4yoDaK_OU3 zo$`Xh@bd(rEpafQO_@XE3I5O;Xf^!>>>MunYjri=yW>r5p2mVz^+^=&xk#m6BAY>0 z!D|q(>nm}@$U*r{3=8117`w%>dm)gO?3m8Dnbz0G`KfTpjlW2{pxA?}JMP+wu+nW& zl@+|AtVUm`DYL^@Y_|OJ)qp-zBer}>u9jF#S3-6ty4%yjslt3ybD-R^vCnk5!p{|g zoTFUSQEa^W!29P)nxgq!U6i*3hdnK0bpWx=vv$*Ut065V#ABle7A*c4Bha&4vxhA`lAPNlR;)WWagu283 z$lC$ikZ<&PudC@Np+=*51v5jKGr9iq2~%&oDO%8`x7|BI2|(La11jN2Tcoe17^R22 zGmBCG>luL;G2UW|(S}9FCV~ee&qc7m--Jt_e#`>*FH1czyIfk+gskT> zvK)&YH9OHg#KYgC)wgTWP1u?_nQWw&J=jTj^Q9f_zS&hs0ZhT8^~zUN8&e%wO-d4u zdwjV#1SjEzXz?CuTBEOvbz+|t0IY(Ja9_Ss!sVx!ite(uPRhRtr8Q-mS1o%$uT4Wy z<{!g)ujKF@*V2*IRhs>`DJ0-6QN~*TGj9|BT7Eq|48k%(2L1K%+jd!YxXHB}t5)+` zJ)#3vr{3+VEb*I^@Rdaa4c`0sSPf}Kk8S+{cIN-6B_gNaNc5-qhxs`9sA?nJ=(MhP z72I#DfAy=q%UWR?=bJP9nzlEy>UJ%K$Jc4#5a~{z30{3gMDYR$7=Q$%7hWjO=ZBdz^WK+tBB^Y)4BaQsi9{`MbI2{Ik18_@n_6Z}I~?do^`QoTL7fX?OW z`z+N{6HMWodI9C=3}(SovAFXv9+5AN39;jqdBNlsZ_Hw?nZ+VhsEP&HI^ZvFE%o}j zX*xl~&yaqZ68IVAx(wH0@VGm(l6RxyZkautv06p>i6KP|P$bYk_DUp(o8H(yieowO zRaf&RFcf??z|>NUA?3GYft;B|8bAn6{w-r84d3JfR0bau#ZL`LfosNOMWDZAQvr)z z8Q~a8V4@Q0(;5M27ArCFGdRp6P{INjQ^pZUpsW7n?`Is0Lz4p>isNyS;ty^`dX3fn zX~LQw7kiA}w->c|G|b^S;&96sfF?a1_3FgE>xBOg+y(rs7$(gYDy!>EBa%IiBwt5y zRr^r5w+1d{-gmzgc@6>PAz#6J{U8awi1fByBtlXjw+K zjAgfV{7RkrOA-@>Ma#6hO}zNT)*G!UxYwRoGUttYToD_ApHp%-_qExlNtfnB->)m8 zPTPkkI*+TRtgJOB!16$STTC)xE%fBUg{W_|Xz5ONW40lyrhNq12}9;AVjA~n&1L6i$#LF*&*rY&PV0?>Kxij-x9aMDGRx|1(wvVNgAEg=g1 z0a;;}pOjsb<^ymwFhNf@E4Un3g(Z6We_@!yY9C(B+N71o!!QtSEqK|1F&pvl>h=9c z1r>Ij95JpRUz%$Z0^?0_0#Iz};h8DJ>Lq<$_4=%BzPvqGuzBtdRND}OM`AwO-J7x! z51hhU&B~s$v67*lDbiw?&-!+Y|It&kb22`mE9Gss{bxN>4jZ=nUplkVIzgme(SCeU z?xumC?1n$&!|zH-C?)vY@UPZwS2^E`v&7+}ORWCG2U{K^=J0KRzan4Qmkv~)U+LM8 zbs{v82gh~-$R+CZwzrUbJwEDMo)9LgQVF0QDx7}Gz|(fz8u3P9Rt`N~TU#v}{`lZ& zxzKd3VHJPyc|)roOD<&@g$oSw8xnt5xxjdA|x!r@8 zqC2@wx%ZQ(WN)pI?2BIOZvh-HasElT>X<5#sHmDvq$hd#`Lj(>AiVJea2x!rLitm@ zcr)btK=XIt*%(RBPYxak)GqKc8syOHm(2Y|4$wpL4BLFTY^FJO{{kI^;-{~m*Xv1r z-j@r&ogaX)tn3>8MYLq$0*LiHm;=f(7*l1q(di3dxM*lU>PS3-2!*)zv3C9(B*zoiWKO_F&a^#w-aY~-FC+)iiSU>JKWz}12Y3YlNb)v6$K&QF43# zBXBN*+$b2+)$pOTKjk`QT`GhAW<#L25ET_2$4v_bV?P!FOhj;18K1p+RHDQ9>ol<= zMQ=D+sOylF_WN6k6?B0cZkk&u-A{oO7~y6q_Z_Y*J;9&{&(M95M-6#7Kp+5?AMXtA zd!Webv4{p!)5Kn8#pE2A3}fWH6xWJlTWT=rmPc2IYL2`7+a9s=gk`SPGEG{~0j4-> zhS3-owiK1ZdeKA2q6H6e?TSYq!NxX^0~_J@0V||J(SElVZ2+TGmBH9qQ26$Dsq0eB z*OxK1Vd15fy5xc@ks-ONX*bmeQD!GM+K(Ef{tmAM@z_*z1{Z+MRlPl&BMLP9E^EJ#K7JaV|ZHs7`P}K$GokUl#uovl|4-Bj(lKT~-RTuQwG*%^}~S zMs<;L=vMyUEC9c$aeys0*e5!3YA4z+98qB_t3DfvewzEd3sNcrvVwNH<*%oeH+~## zc8&{QBI=oD9*VR1i{bOa8%1+KRJX^cw?e1vA#WLNBW2XL^M|I{iIgiDM9v4U8KhIY zPP}j881$X%y3MtB@AADa<-8FJ{MkdM$7;UgnQ!{!5sukz*Lr*T<8g6Gx&nTpmaXja6qKHv`T%QB<)GLO;}^oV#M-HrC!%{p4vfTkCksAQtaWD zy%%iyO&wFrZVurlnp(h%X~- z>lfbq>t)h@%M}BVR2>5zmIxTCIRyEtQNiP1FnBVDu|MlcrT=SAR8yLW%bFUV00(P& z!|_GOK30F}3Y=<6pJ9Q~CV`?)MWf=>-bv%z zNgCZXp33G=&bM#s44ytLB17p)VJ%MAGD2K2IC^>yV1tkxF>KGBBiz*0^@AE{ffzJ$ zY|h~?>d_+67AldM&5khc^&9y;bS(Ae3eMfrf0^%R?fzdA+5U4qHGbyw-8TMwAlCTQF-NIv|J&- zHi`3y5i|n#Xe+`fUyFa&2t5iNHLXBD**%kXeB@;(w%a6XaL;EK8Dn$33D*Q&enqx8 zQ=s27RP3YQT^zn|MhG1u@DyLv91pG^)<}!VP>%auws1e+6!TuV&02;zSoir}y`h@{ z(p%-LAV*8eHU=$XNzNU9ZmLYLJ^!hKq`7Q+>hPR-dIi+)cDJI%rIO!`X`^$k(Nr6Y zdDp%*Q*xq-9j2Naa$FN=m-HU=o5=?foF`0#N$A`MtIFe{L-U4Yuh}W#y5{gp4XBmD zdPayuCiy(FUTj~_(qX;_z0G{Y%PFJH>jJmvQ*-&a&B*L;)J#Idi!pqz;{!6Yw7MWY zy1x&??a<7Q1b(bw(5ijY{2KGU3$ZDCb?&K)>xT}ozUjGtBNtf{vS$`I`FwdU|BwAJ z{1m+dRRqkCwq9%RE_86Mwe@IT!f*HH{o~~f0xBWOv{s_$YX5XlJVZLiw|AG4Y+>kp zD>LV3WKb_9opJ~Mr^Ew%v67auFImJJUU%?Pl^djbkd8~PN8E<06dneL^3@%@-M>Eg zE2unnZ=z(aK!t|KMl!Jj#Bn*^wP#EE~`O-eM%*19Ntl$f-n6`l!zH+` zxVh(}p35E!1pQ+z;p(x%o1Q)T+OoamSH7{T&5geUiyE9@(P)rVHd+&IPRfEKr> z>~^8N0Mw;C510F()a_@xhM*3CyaxJQtFTB3?*UsRKk9ga5+zAK1?JH^2}f5wKnQIU zy+waTCdt710T49eo*m+t5rk?nWAeO_R``Lbegt%4^lgpgm;piPs#%g~0bvE=S(2Wc zUS-ik!XZP(%(@#WfKFwv$98Blrdx7_<&)&A@T~zd`0^@pA%P&i`8SN~)d&))m~1Zu z!x4Bj&A^DjfVkQR2pLf7t$C81!(9G~U8QQ+6KS0^jJ@LV@J??HZ>m{!Ts&0dz5;@T zz81;P8DO~Cg9Mb;R6-m@@ZwqJ(=wM3be2C*^^{6v43b1qeKy5yVHxizdkQ`thK#9} znVVg=g$yRv6u&gRsdoZm1-g1?C$u$&wnHMBc$s9|m_0wNitZLY$(NuYxvRcA8>onl z?cdf`w~-dXc3Wy33r?d@$2mNg<9AENUsOW2fFp#$m(mP2`R{Vr*2hmB)6+5#u^d!X zO9@)yU%a1@f{DM>-C;Zg2mkMc|2OTi>WumkK$*na8Y+5sCHP2EdpQ?lRPLH-sB=Er zS&7lSjRP>nHbv2{`Fk>i`2%6$UfTTwaq`UycWkTbf|XS>n>gniqvNT#AZ4_gP(7K8 z#0jSefk2Ws5va}gx% zNdD`%;)siH9uT)i`^(I5N4LLP1<*RQ!pfeV+AJm7PwgCd>Ihk1X*+E1*$-unDR;YP zr+HN#6cTSKQyjT8Qr`a2d~7!4(qu{cM?k4aWpGJ>kQ=^YZ^cycv2BN16?87d{^ANQ zev*Qv@|Khh9pQ95+f0sf2|N&7Id~uOhy%ZRCk8*?$<)r9x+%2xa=H~gTHtBh_a2&- z5tLc$FY>a%VG8yQqrtG6C^jod83eZe?ZU=CzLH}Mia&a}-yL_^+M`KZwEU};CFude zJi_=#<)5|^gP{V2JS4bRAtv*m_x}ilZ-(KET_M8iwhufD8=?mL`{(nU@}B>2VL5GI zF&9ASeFctKK276_pVtxe7Uryj)PgUT-1lc|H@Li3LC|jFcoX70ftFQmz#blv2C1gm zW4E*p2Hhzh@AVzVFHLvu3mzO9oCsFhU2Mkkn|;gOOJ~A5|0y@)$Y>>yS@J{#yhVz* z=(7>^J4QM6(ZH><8WuiEcP|DA9`@+H;y`~khEx#s&R^O-=UiMUkvCVAh|v)f5Q=(fY<&+5sS z{R$p7tA<1|^Ks6q1B_0w3oeRa+?3~kG7KqmY|umcdY`5tE4q65Ukfv?a;;Y>9^lmU z&*4JRz7rt{RPs~kIGfPRa`x9YN@8Gkvt#CPF)1=Ew--kY_yPll8cJRClCEon;`_=( zH{MPeXw_p<-ixxsUD6~;tluZB5jXys5MqmL`(fK1pP+#6xq+s&t{M+TyFB|@Bk11l za_rv7nVW(z7hiPBJK7Ppdw-d&<3m_G>OwAAt__W%;$ zD?R`cBcrzUuRO26j;g;D)h*|<;VZASYel5e8@%KDuidL^aSWitZ0Tsumge_)Ww0eO zNy5qzl+-cF+jI;r?m&h<*$GGvYhAeGCYra2Nsyyv!`lFQA6H@~809pK{k3>0#lKZR zTpctdBWoG)>IVVF3;^UEUw`P%0Jw&pq*SJ!=R*SB@7IW2*QgCJi38><5o<-ga&g8? zL&XOp{qySumY9Cyq`VUnMvbNVCn=^Z_xc?#?p`N*y!ShBjOIYa`aWb@w$hb?D)4+| zGIB9amANp)&s;T6#iZl1tA9IqOz;~Q1wJaEW`tWd4wIt#`>0ZxfM(KT|7g7;u8xT+ zdHBhyBU`pnW?Ji^pvC9?b4~g;+pu`f^VD!#IimEZ%J4BtNgU#VZr76<)_|$z1j{Am z(EtqT=H=n$CnW4stEe#7pk+nx8~lmDryt4;)I@RjEM-vL2(`paeg<=BK>~S|-8#)* zv=q+N1RX=yQ)g}#{HxG(vPH}(G7rshv-jzCi8BhE+oj+*P&ZLT$dtA9S1@_x>qQN|Dfg)&5A?-DV$#1t{Z2Ms64XKBmpb@ zBn-v+1Dj+S4&{I2l3d-Lg#kb`6T?w6$p|3AR`m(zF_8? zvV`A8{y8dcs0hHnZ+g;G_-w7tFK4aUJK8BFpFc~a6BX5Oa>Wmq3gd$O5OB!u2Pgz6 z*HnHhfLr&(yr*DPFa8v|vVO^LH!pCDcK~Dpj<`D#Qh9yz1eXr=CGt`(QiqaI$~rpn zk`~7211}AF^Q6Hx7hkJmfQL6<7qYC`v{TJ;L`$2p->PF{rxgYc?T406QzBTSl`87G zAzP*kB4EO`9ntrqovf+sGi?b8C;Er6jxIlKC7y}Blm{Dy2X-CWw@n;Df7-Pi%QOO{ zrY)=HJf=DPIVqU1zT(9wfuj+bpu}B#o_x~m8_HfUr3~MPMuiNq1-^c*@rk0Gs<$qq ze`IDlLw|f!@c%kzTOSc-BgqFuqokx(F@~gc)Y;D2Jt1Nz`Oj!k^uMD81%{VN7*>>> z{dS&%hdLHaHSnDv&d0ht6^)#RuR$CHF7aFAboheUEzDOc)xUa%@>?4}PkK%^v2cSW zG^#W6z%Kd+IyR;YSuFt*LYlfc3a$;1_MxL5jJh&r#grl#nKCTqm< z%w{7dsY0VCvSXPOmMM0Rb@u%r!w_W6=36;eft-6If9>qMy0&phZO=(Ar z`0n^OquHciX5(Y46DD&))*!vJmtt?|>5H-1E zeqpBG%5XX+1K{s}!kGyps$}KIpoxM}BI&N{&s{5UAR^a{r=qe-O8gxyAg};p#kDg> zlX7GIN5uRo zjO9yi*jb1NTT%il(-i3Ef-+2O1nlZ2DY!`R;*3Px##M@=>!E~Ox~h? zyw(957MeI=8^z-@oDNv~)qOd|`y1Adnj<%ZS&=Noz}4|y>>fBcHb}f`LSkU^n zMl638XZqUSn?GHqZUWu^oJb)gE3DUTL2h@h&+J>k+Y127XbFgew|pAxfVOWnURcGb z{9KTjY!9H3&>hBA-uFybnS{Z>VMr9GKz(BY#7|WGrakK=fDTgmdrzO?^*P-UNcyx6 zS^0snGEm{NJGsG|1jnV|*p zg%8GS-7$RTD?v$LMgi#pIr49pCu2;^O+_zQ8S?&V3w32M9c^XBVFu9e)p!U8EMXnN zUuS>Z-*6%xyro{rBz0oW z9((?AD6tshoLyUi#jkZ)ncWfVI=J*VXkz9|hCYjDuNaE+iY+=xPg*MsaB$CUnJHm3 zhL+~Ai;2%C4sOlHPT2gA1e{~jF%TprH<>aS{TueW=ecIm_n?goOO*P$T*1?Q|R!0?H%M4xir$^vq^z6zl<~ zA(7c^>+P1_qUTY+-+s|y`C*xKF%Lx@dYUU47TQ^Km5DdcOHYqxcc+rieGRIok4Mt# z-37$)$<|2E4S%>j`u4R46w-kzFN*A5ReU5TI?}6=O4=>*?u@<1OJb`x`san?t35a*sjZGpnAU{8<|p@+1K5NCL;%f&O^!tV5W23hw@B zvOHiCMfwRA^;E2dq_SJe^67vV_em?B#gn#n8H=1Dq)WPj;iZp-fDvTjgwn@100Tb} zNTB_(jDqvhO;2^S17EyFRuf3BtCTfpF|QO1mKJrm*C^F`9-%^3aX<6JE=hQ;*=B|~ zzoCW3l~{8c1*xk5KjTqTxD`O2r1-qM4T3~Kv7=|a4-QB_nOs;7w$is8g3MtX~EjEkV7MuLR;OHc(~Q^JH6HE*_( zR!^!S3xRwzZxarO?R!0M@`ey=*3HC(MjWVi;V5P7&+mp&6uB9OIZD{@I|Ldcy>C||g%ulqbSb3p4TumNr5GLjZo-xpwe}QIc=kGY?2%#n=#xa@OTy3L z5%j50e-@y?qUD%_Kfj#$M8LGmJ{QOrJOMUw+P47sgh)X(_EEw9JpY>;n-^D|!efg% z$9THZ`0FS!EeHcl_#1O|#I-k`v3fJzll0(7sb?8cOu3lQBFiuT_l#6E-@}Zt1ReC^ zm@oPhr>xJ_=a`o3GuPNm&-e+~iZ|XBR_rgCWG=Gf@veV9uK4D6`&+i{8mMN~h&L5M z7MmN_%yxdh?Qr@zA`v+_$L&Pxx@aGpT$8akxhs}-o1|#Zb9~hIHu80nh$%5wXteO( zi8zwowqYn0g^xCM1T_W#EAWG_@@0YD_kvcF_B-kf{=P&GCwfPiGFma1WrrcAnKUtD%$N zv5RpSD5gAKJg%&SW0fmG)``Q5jS%){ZuZML9QPx#Aw7z80Noio9NevemGpoR+w?MT z*42YMKcCG!<}m20(i{RB^F-$(-iyDhcbT}Pu)HC#l8@0mtYixh9sj1b*3eG{#6c{k zOk@y~*|m*UK|hNFMK3QXl5$5;(%o6nZsYf+Z>RS~Pwczx<;L=QfB+hU{P(+#OV*w& z?C*PCSPU%NS=d*Xdp(c(x1J8oG%5czP4&ax?StgjwY0z2tkj4Xtf*Tg&##pK?psS@ z%s5|IBj*x(&2Ni4++Ool@b`XK_XFEu3R_szJ28$x%kCaCuW^T9u7OLRX+6|* z3(=upn?H`hH0Tyiq#RFBLcr*Jg9w^Vw2nMiNkZa?@f`0(8W#=}l*R4Ss_()zV_$Bp z*KfKK9=wL$@mln$g5EQS7?gLr`hR8PmQ>ao-bD99nzL}{NO^b8p?cBnjf&NaQ;>q6 z?nS1w!TE6TFuvZ?hXF9M{!n|g|7gD-aIg-Mg^f z?83HDddQ)BDCth=MnD?H0BHf~?w$bwr8}ghR2q?v0hI1;2I(HUVc$OQ_w9Ed`xgiN zVCJ5=)>`Mft}}QN2vxPy$c(L%D__6RZm=}{9={u*?-8f%|Ip98(swe)Ez)9}Un^Uf z?{To~6S@keAt2k_zLPU-4dpZ8%gA_I*nJ$QroO>gsA?os@sU)<@61N{nW9O8fK4Z~ z7tBuH)%G)%02o@WM&PL7N)Wl3^|->tw1AE#U5|x8M8Ii5c~}IBWDX3GMl$>h8Y+hT=)Y?*ek`7Z$@)~U`V&Vg$|!%! z|9JlNeI5#5dscm|mJIUG#ndhS5*(Qs5@9t}s_^Db@h`Qu=Dn}{zPkjl^?s`PCosw; zHNBbWl(RE|S1>^fykLYcu$^IU{#Nh;da?nsByN1uE{Lds+l9}*$s-&U2^zi6EgQ0R z-x_>cRQ$k1d0oFN=)loK$`@oK1SOUhpYa)?U`!EdD5`49t%h z^Rmr!JL!ni9MXe~I*Qmx^n08AdZE{X9;(SUr!Ox@2J*>6wLo|AHB=D`tfIM5%}tp7 zsEe30BWKvy?33Rs_{8pka$i!3jKDbhX0b|H%iD>f%it{2o%VbIE)mRG-)2MY&1dt} z@0?nE_e5JL6nltyrHf6UHd2*al>h^3VbmFgCh~{o$*2lA;FY96e3dKhA};8N=i|p| z-pQbpv7pom-)E%@47{G<=t2E7Z9Qvh_NJL(;phP!#+iSYT;SyIO#z{Qg_Y&3-}eo; z0*HA+wmhGTvgG+uG$v5NX zy6j>0qgji%l=@{q4Y1su%fHm+FiOTd=+G(3=z2K%zW`i8i|%K^%y%YKggANvKorf+ z+)ry=g-37{6%LW83*cIidgN;;3~2zA2^&Cgd2LmwPYu+1uwa&3Uhq>%Xp*+18qzHO z%NMRePV8R_zDrG>kI(#*^N>tV67iMhf@v+j1uW$d{_g}oG~O#ejqi4mS0YcI;?6e; zDeLV`7+KEc&nR^(^j(;*8G$ut^a#A6FO%utrk~JR;Y(tWGc05pBq=<|Cnz*Iz*@Z=(q*b9AxX66cg%T7qqoh zQHp=Iww}Ouh`AbRS-q8cTE{tJ>%(h3k*k*6HOtmId^nIw5RLaurxit1yb&9p@^b)R zu&P>U2z6L%w(cb9@nJa%m6@Q?C~i{-!lNZ;dQ#G95QP_x2tz4A5xwbCQiJXV+zjr9 z1{HwSeq$>xSSTdM=V6iBjTjXZG2@-<=7nQXJdt1cI)eCofOo`#Pc6TDkCd`PhHb>s zI*Jo!c(8q|R#JD9a5TOBb`PDFzpgMrKWm?LA*cvY_>9Wy#Tf{Xw@Kor00&9PLF2TN zC3w~Pxv&2ER=`X6&aVR3*D>;WINXo$5e2dJ=tgdCzK%({I2~dj(0%7~X6$)N`_{T~5u`M1*lmw*Srkcw!PpaQsRc;(xSa2_S5*nM2f{C<_! zvchdHBr-pw-%7kOIdxglp-U^j6E)sssmt^Q}VPaJ)>^+ zZWK!i4|_W8bHiX}&tyjKw`gS$Dq-ot?w>I$hm}HcFC*MkaY~%dS!Yo&q z#$%81r~*OVDw2WS_VO9eGdmo*xM(0EFg)qSKpqhj+h8?OSq-{P9+yzvQp7JGv>Aox3}pWnZVJaa?l3yQc$c z2F5~Un>!5W^19!wC@SQ;yg%@c#1C5Gye#U`{l3^RgvGL|SB*fS*An3K+x=eRaQLc3 zn@(6n@_bUyk$5xv&czzK^3%-sM(|YrT)UCEIfKm~Gse3= zVc~)bPENzQ*h(3znfG41f^H#6F$4=&Gk!s;9a-s+tQ>qB98tLz$nSM__7Z(51a>lC zRvUiu7#!uOZ?DEo8Rwat#gT+Me>fTy$tdW?2A3*K$RZT`iO*If)_{hHY*92JW-Y9gB<&5{E;&S127k0Eo`5VF!O7&fwT7HA1UCXiCO zD3eS>a%=!#N+G2$MI z52W7KnwwzO#?n%AxR(0_zY8FCFjf&q^^!0>aTxOnisGzV8SwBnVOppMytt`Rybr7`X1Gj439uB^0PKr7f{qXeLZVuqoA|6^?kvV8VwwRu8dB^<4eNPPgTLmZgVTo!z6*=H_q22lWX!B zWX2Y(yG6?w&tg#fw}o$ASu#^jsake1WO{$yOKtAk@#F!d?%HzT;Pih~Dt_icS2_ z-1!EJm`ott0$dBxMFWnX9f#hcqgt@alD-#idfgu*-TE7z2W@2txu6bw&8(UI!!ojt z+9MokpL5J8FMHJr77uAbh*-XSU(>m}6L`Q*`{*%nY|a6HM0_=I2>$Bvy#vkV3=`nC zPhN_C*YMBcV{Lqa?#++4%W?2dTOZ@$rweF00?vUNK!p!?_JQ{)R~|_#C@7v>aI!dv!+scIfxbJ6WISgnvWkS10UnZlCC&(!P_%UI-cOy1tnm-K_4!#*&zcb|FueIr zUCi#-Cyz)ePJq1zIIZ5Z-LC+at)hKVGtq$V`zk=fayl0u1SoC)#^?4juS5D**WEV0 zK1)&+nu}Vrz#qkHe52Asf07W<@US)9=Ygk`H{Va$reqyoOn&mfnSr=n+Q|<}>Y07yf z4!2d*0puL#|2f(H#}v!u0hnT5G9V>fMewJ8j?cTB|JyhQb9$>ht?ZX?V)YY4u2h}G zS5KvT2L=;=1p`{UezNaVd+je9U+j@|4_zIA?Pb?HdFvOS;8E~Y39tfRd7Uo<DlXFr4+b0u_j#Baf zV~2@Ju+G`AzCv?!wbh#jw-gxbATZ!S6dl)fbc<$%dlwpH?BTG_BuP(378w=remMf#;o`>#^ zu+Ci3ArAS~mbQD1QPF$Tk2CJlL0?uD3Uj84Vof+^cx`Vv&ijOqu>Gvdo^CX!W}t?S z%gbp_GasFIio>LL71$fd;o8UvF+QU!`>l|GK-CVyfC?H81OelV+aoLx#|>xKpY}K= z-Si08u)lB=6nd8JE9ffbN_VG{uFk*7T>p3Fuv5?6+E18d-~h|LZkp0H`kDbl!{ROI-&} zzyx4l9UM(7HmvPZY1AmBj>VS;*ooL!OaY39C)HL@?Iz;^wzig}=Pp?oAw%6TYIo2k zsJYX{43J%iWIA^eRlNzPh{pUP=InGz^3Al#<2%G_)?5gf(*6tT<~;JQTZIms%Umw% z0plI3RigJ2%}z^_nWxw0_|o)dNZooT`hr*8s8c3c=?3J+R z_$bo*AW$;|EyC%3cfzsJ>$_uUdz5tyPJtV>>+yHRC;uGwW=;MNxb%1RIQ0QmW)8pk z;qV&3&wAd*G|a}IBqq8ucW33EqZh~{JEytzQM_c%Sa3CSyY0n3Epk#!IZ}J~Ah~&3 zAtCN>YZZRdEnFT(dZ*?WLieX_0u{XCP#5D{9vVU`UCi={qmdIG>_b6>V5zo^43Eq$rUVT5L zaC;aw{y|eG4K;L7rA_6S!--+brfWVj`ha6ShHdB>u~QBXS?*Ro0@NLiVxyDP=W_G) zsJ0^v6{W8eBu^VSDSbPPRCg5!A8WhRv{h@#~~BPYg=2ReteCb41T#w-cK}pBW^TRy_x2u+Y<|ueD{bEgM(EX+H*go6n1a1+2}$bw3F}y86U+ zW`Hi?B1Q-Bi4-P*|MC9$VQ3xMMVJQAwG2L?w5XezA%U2LOkx;dOLMd=v+EdQ^0=gn z83A$o6wM&FOmzw5w5S0j%CZ9hy=E}6=J3W!Y*HE2+9aGEE*SzEXA34`z(UCW3_!jb z{~{1IdSdAaK=dT^0Z4^8fa%QhOc9vh^2pukxrtY8CsA7d`7KrGcQ5kYsGw!=UPfd2 zp{`iOc0&0?m_oyRnM;jBzaWS2CyRta>*vphbUTsIM-RWsQ|Ii^y@a%L%+HBGO)d$P zyNcP~q}F`*v^vhpaMQidwQ8q$ZFSzyW6&zDRHOIq`KfSDe4*QS)`-up^Q6;eI&$~5 zi@>Po1n{(-r@_7U1k@p!`;lo*V{yRT!=&xabL(Ch;C>T^{+~q3fzr!~Sgm)9w}y>p zRt*BoFk^T{f6XE{ooJ0kaa3Q#G+z<$tvjA(X=*5b$F}byrn~wwGP&}DBMZuxTHVK`G@k83+RH}edd+RbP&pn@- z;}oD$P_rNvD=(=7s;?a$K#>fN3)_Urbd$$KXjDorO}R}bE4F%gIPU}tuty4bokO?a zL?|ChgOqhHE#wo*=uv!3E9o(8@Mv1VK8UahO=?=QhuFWLp2=*(+Art@O&E>PnFw@K z;h@_OHzwM~j+w_O(y!bWxiK1s8ql4|=AGo7^F)O1=G%g~OQPyvp`tlzqeD_2Xlco1 z>Kq${D}##9x4nzN8;A|3^D|nuAIF$2P|gXVWuVDAx&{@r#tXjs@c$!BRsJ)A0Yt)_ ze_p3Djp&LNY>O(_wi&)OP(3+@CqMLx3@OQOack33pT*Wd#FO%Sp9dCewGe$HnygkP zAb4d$@)t!%(5q8c2+Jq4_f6U(pM@>AK~Hf&(j~28?`Z144!nW)D{@A(uLKfM7~r@- zfSUMf)k%o@-4nOP8xZfiwBP#n^!R6VIS3}0Br?jnlL4vyXw${Nn};Y_^i_}>lnPB9 zqqjgmkH)$w^>CpsM~v6~8eQJ;&+nHH6nyYAw!v_Y?H&=)!G8x*!YW9R997Qg)X%LA zBAVu)`q{!SD#Qsv8igzEjJ#f}dq!88=sCQ$LY!0AdXxcpKOvg-Dngf1o!alcf}=A5 zYe(P$ZT#2=v|RH5W3}#QMj;WL>+-IvC^^9JxC-!FYtAbLtdT+#>j078%OdrZzlwH? zV;v1ZtQ1JRXapz7C_wJvYRwI>QtVG;)mXn;ixWFSyFF~K{DYS(8`!kry*E9iNRbyE z4CJA1e2wBuw1|^=vkc^+a*O~k=$LaaAe0WIfBW8^c5dYcn_&B*E(88=-8C;BvH^>y z4~58w+atr}WKO+8Kr?ue`9;FLn3{;F=MIosrw}u%^zP67ECQ~hHNZ<|R%4zCI(O-! zC}EG2zcpe~iU6mmr*Pq1A@hKS&mUOI&-PTzN;}AHzr@R;H_Cm3eM#OW)5)8v#^3!v z)6@xzY2dog?98+1b;VnK?+|qN1&dq3jrotKp#ew4k-DGx`tXKlR3sp)Z@!QA_l_@}>Nm*9j%sgBmUWy}(FPx4{O0x{j> z84#9WmQ6zg{yjCq&my`m-wO-wNBvJA^}xvOMTtu6m@xLAr*5|O^0p!=o3Qib@y7p&Syi=*4E82^m6NvpCUB+0jeD39Ky zwu4Ou$hGUyfiR=J{qbp&{^Qfpq5J3hn82j{Z%$&Fx_cPTjiwMK+mt4l!aN zQ(cea*khF1_`K`~EdCAxvdNyj&NjXEW@YslzMR(f07ILv*+!n+Z!3)QM7|OZn|ez* zwoEz4C&%-wRMPVTItq8sQ*R$&>gkXpb{uc`&s7B=CP_yE#H2ES69!qUx9oRJiO8{z z^eVSdJ59)-0x@bzWH_mR;8j&PaHH3^^sIBbX<|ZU@{B+BIx#)|rW@U~Wo_j0NA%!k z*1}D1LyQUQ)L1NLjow9N=3kljLSsXAqUl_YrCM$MA}g5-3W;zH@-`_s_+hNRSSA0|FqZ* zec0=}cYX6uW$k5lcP4OV(T3WEWub1WU93kKc)O-`v+AZa}W6`)Z}L=D#2WdQdvIK*{_Z@N)*ATIg9S zzbPNEfKq_j;@llMrfkWh#g;GCXESl=cb5UBkfxgCN~Rob%&tPL4YZoIi8Eo#sQM}Cf~V$f&`*lGB_8~ zg%i?me>u#JCr5l_W7J9)=uo6F8+8NhMexi;I$za@$7eRGe~6*tsJWs2{*GO%|Lybm z&vNVPDn-LDOZt{yHhu_HD}AFEgUtn`5L`s-$00L6ml=4VjYuy(99Vtm{gM*gyK5C? zwbMfV^23h!&a_HQ#wi}aHPV=_cpi_{v&1`PNN-e=PG#L{?x@^Awmuyv_h2*0;Ddl| z`a)d_4b^+GEB>a&cK{Sx*IOS(y29Po;_}T1M%U-njMvkAGHgIYkvw}G*wNFn}{m8ET3;-eHN8 z&ChS!74F;GDAnEvG^yRQKF75rI*Ai8m@?&&%!QV92JS|ZbN`kGKa+&+chW+ajH_cI zuTdRqOphAAYv@bKwVX}rV7dhZF3;N^^b&S>tS5#!9s=GI8{z=Wa8j9B=&tZ4Un`sk6 zO-AMR=gbGFs<%Oxy6BTXZ>l{wz$Mf^1qR1g4bSLtOhyS4vzKSQrNvlw7CZKsw|v-O zAex~ynCvORcHG!k&vL@Z5gAmU;D*o$skHN@YvNVTYn8aap&$obiL!bv*#MCObh^t9 ziyYQkr_APDd;-uu_n#4l|5<@|F3tZ1nIM2OtPbo(BCh$brji4|0;Xmr)d1>6>;vtf zaz{myDlw(^ZFLTFHQPpU*BXB!$sgBWKM@wzL-NT7y?gg%YK_pHyMkPR+dd^Jj11?#VrDjF3ux8GP5Pl8#`UW(AcZFJ%NxB) zyTq4mU&GlK%vv(jl6WQdge;flUnlTaj-x2D2s6L-{~5QJ55UyG$ESfXz4xv`&@=U_fO~g)rr-Bp1X#7pPI3TUBKAw z3HmvKo5@0LtE_CT18Rm+=F`2gu{^H?!&O+R0zYbNs-MF~4akx-4}339B|ZXK&j>}8 znC%QN7yr4Gpha7!cXXdeXXw&@HFM_kBJWQ^=iBrpD!0f=gsKp^st{_k}sl-M}@V=mcJdxTkKNVbINurY0%ZUp3Fq0 zx+YXlbekV~(mc{oO|X`moROq7k)yl;Worj4ine|gL)(#OhvD`X#JCGl>e~hP6~?~T z;Ms;)OL{K3ebQ*mW^S*AphzbwyJkR6tq6a~F1xRA?1a1#(*FSUVmQ5@b$CVVzmS&( zj`cK4C)$SIy;}km4O-@hq7}1o*DuB9r)UnK<$HPdJ5&vV8VS(oLbbxzpeB(=)g4(6 zZ=%w9d`1tH>H`m0WGixKx_W+DtmRmB&?XArCfd(5!C@&PFYqZTK`#4O$3oBtmYmcq_l-fBAKzucmWEVKyYCWtzMBTf}sFWg!C- zymuUw$vdMV<=ASnYj>m;WonoYJ>0RKju?6FytH!^?fvA2ToOwa0W5}JgHJHneOKus zFZui#&iYYr0WH7S5@150B9>?SQpZ;gcyDU082Qq`+hwCceWLuC#_D9N^(gS@S*fZ0 znZ&U7l4n{GnW4QTJzY5!My%9!h?q>)@pzP8s7#m)p_?Z3TJT(&agL>le%NAXC0}UthBVlG8u2TZ$k$P6>_gWB)K)%zL6x2 z|Ex!UMBtY285F_;^5S`CX-?~5i3dN{$u8$D=a)7J$$uUti+kepf(aevfX(#Ah1^{D zqH2uNC*JlVGJ+A7v&@5lwsqK_xJj-NXPdJH%~v%iSW&ItS${^|PsS<`^q*ABw)TO? zhWlY+e@ZDLcafc&`Szqc0VY#H8iXdDcm6OIk%-RGo~ptw%io)K^hfsQ*Vot>#cay$ z1cJ(e5`xy)G*kCsI*luc-ZmxA{c8*`%5MS8{bDx+T);S&L`zS`CGSgCWVF>EILu#L zva?$(q%qO}!zEr=Td>YR0NSnH7JK>k5|`oB(cvxgT0WMgyN`P`e)luN)DS{z@w0|{ z+NZ@{L=KGavTi3k(CO-ETCW1}FRCZb-xF%PqM>55nZ+Fh$thOugsPm&j4OZd>v7x0 z78&JLN^&{)E~_&YNACgGafN(KgDqxh#Z53pSR4tb!#Hc-jI>5DqVDXznZ|kpv3nVx zGo>bbFD&T;*Q)EpOFh?m$5#@*6`iGWP&cXl5RJwVh|Y~GF0|U)xc2*L9#|6h{#Q^` zDpXbmR;VpgpMGy=L0E1bE1$a5#bRBLS81|`27=GxrN1%Ez=feti421;Z;4^(UHPPr zFnLB@TWq8>{9XUOQnJ6$Owxcv{!)8zC;Nu@jF$RTFVsR>ph<3K3?Zu(2LWw9T#sbiJ*bHX*c2- zurbic!%+5gkKqGf-cDWpdaewUh!%vM3Lu_Md}MUF>!6%xx#Jqfm6%YA+fTYFJlbL) zg^ymZOCBV%mG|sZqq?Ao^qGfPz}Y4;pfjOl0pe%*r)t6UNZ&@490?XTYq^6%qs<19 zj*)d~XM8SXL*VF>0aL2c4tvar`v7v=VPdT_%87I4(3b`K=!KiA6azdgysn5j^!TkC zn-QC~3NFIHtn9O4oW?w({mzU!(NCmC_c%)y1 z5`1{8y;k%6QuGE>YxQ33a zFmzd2SAr|4%JoiteSC=7ceMS>>O{d9!OB-9!w9ot-J?rB=aS_fkxGjri;B2}!WMQU zwB1TjUkd#AK_*iv4%}8I1`@xVzmxqa>tj?GQ!s9;;QzNE#tg-Bf%1MaiYoWi6=F;V zIiCG{L1bxGVb&M#^7A_t73^O7Xl63?ZJuoX$d#r~ID_aeB|HcuzA4rb0vZKU(QeE5 zB}JpJjbW;Paww||JuL}CsHxA2lmmJX;)k4~texcPXDMz~i!t$}SJCx4eq8qij&Z`ItCX+odaawPZY0`ewp1f2lGc=o*k(Pe;*Pd>tlAlLM zBaLfR-(9Z-Jj-@|k^G$jgWA4HN5e{_*dS9=Bhy)gH=*9~`mZ*x@o45d(Iw%b8^qRx zWTu0$NrBRQI+0lxi#y6dVRW%W^&g5InIqp38-2Eqsh2(2kaVJNN@|Qm*spNWR!4Kv zxrxPf@Q3rQY%pRakkXk*>%_744?V<7MbRjSXYh<6$}3r7H5vYH*+%U=lr5yoVA}m? zjiBwI9Ay3wvDMLkMh@ZI#2#e{a6Y_aJC`j|okNLV)yCNs@4>p*X2q22aboEC(c4!0 zwwcD`i$sklN00obOT_Ti2^>2FyEh2om6@b)Cr-+-Z0g*DwZF-fz)HQFB3j;@HaU^u zzL?GDM2SjeN%w8)1oa}!%1IdPmv0rQ$SzckmnD4#_hg>9VfVM$qLTW?k0qktK51YR zKliOt0EYxlVc7`YMtENPL}Y<8s|XCQ`)ew|S)K=HBcTG3fgTI-eV&{-%`qlAL}(h? z$dj#_su%(q+@9XfH@o7&E`3_x%Xw3|1fbzp9p|xd7!&+^$SyYITUONXD+vJ?c)3MT zWHXs**;=}FbSKPtI3T7^Ht2d2y!-qSXiC$a_i{f2}tXFhvf@{{U(caf24vw>^ ztybXC<&o=K{+QMuzp0&L-Hzw3BI)}?eQT8a_4I^0f-|~WMBbFqHM9n``73RAGp$&xNHdM^D~WxHU<`DU zZFz<{Y+OVm>R_G~H7dUuKpUyHCORHv@Obw{Z%4@Rk9|WF{dIU~2u`!)8>}nW!1B0R zErwUv<r!V>=XE$oAnm#(WK2LSU*VQ>Q@Da&5g+M#yg%Mg50W-o&9?2Ih1jEczD*G$af#eNz|lz^wO6| zp;ZW9gj=d(&~tAhTsU)laHrp4x;ziYO85O|tLU#mKks>;N}Xa)!^byAigTy8W=#cr zL{!{pEj=m-xc(Skn>-`YH+788d>O$sUY8uIETw@_?08pb=kG?T9ElHIeeh>ZS}nrn zIY4?Lj=xD{rh7!F7Gi){a}`hiYH25inMMqUe?s~dQ(9-W6g~i=9Za<&rx|u#uk;Xq zG}cTfElA(T!<|16>2bbTIVr{!zIG3Sw~q5!sYw5*T`ldl*$z zBn;gyY(S+*D@GA5^jx0)l5nJ8?GK*8nm8^){ZAyB9jYO*-}@x ztVy@5H={+}DH>Re4D^<0`(3R->rF}KgnjVM(PaDIxyi||aOjR-+w`fIHNQqA z*IK&l{a?IruH*K|JIT1zFKkFvk{V!sl zrZ0cP!Rfmz0*c}S`mAJ`h_Zkkv| zy&MZJALChqG~-{n3hBm~-0Xlq4|1;WWa2#4b$ONzQHgY8!&Z=+#7VX2wS*Ib#hHyL z3_#CMkLEy4O;SVjJy8z@NrMDPA9E5k8W-fl=w`rV$J=pclgiNW&R-$jSsdMX6x`^9 zSy;63=yG6I0ZZx#8Y_+MJ&Vs6kH+~j%}%2v_)vFN!^9`<56nrTA>iIK=ss5YYl7wF zxBEgta|Zk9Jr1L;1lzzD2;D|n{Q!ZD08eyhG{m=pSU)}EUvD(e;V`=SmS@uS<1F5JWX;$HxJ%j?%bM=F2fsHu zc$G&Vwt+h+F^nknTW3sj&CWy3x?GfqS2cGiVw~~NU`H1d%6Al5(u8xmXxHgtQ@FH> z-`Z0bux3Khk7(WIBt3P+q@H%yi-?qvXV(ZjcY){2Rxqfar{Y(;?<=KZKG)BN+~czC z>25w*AK!GVDk397jdRFfsSORAW1$)5^dgAo_umn_p(A95svNXh;`JZ>3W~XtWDHeo zJ@Vh7^jY`B(0JbXtAJK&Y(s(K%%VQ3!eCDbYzcjJH1aQ_zID6O&KCn*7O9$r3A8D! znBl@0Bdo;Yx^pv}Wu*ZaO=qD?4pUzCJB+{(Zcz&s#TDHA+Tuv))E$8*G{C4LQ5%xL~UBcu3_pJwANR67>-e&qbpf#=mfo)=d~Ut?;&I zNY8+(d%VcXY27QKzs^c}Kf4jH%`i9V&xp={=;<~}iVYV$7q3-IIEqD0GsJ%`U~v8R zymk$-6~?kBwY8fG*=h~sM(3bmH6-}po|fw2(l~3P85WKIc#_-Z0+ucAIqsvQn|+=? z1R>rvoh~VRG>O2U0UeH3rDSpXO4aG+ZOx)lPEz)u`|>>Pcv}+Vw!e2ifcEt4P4VGo z6Hd#huQwr#$Wll5huvyakcV{!Z56vAJp^j85{*OBd= z$@KJtB{9m~v|ju^({3HkQZDG1_Q24t$zIy)+2Z>QjFw z(*gVFqas;CS$V7gno$W6>((VDfLEv+5pWR5V-+X8J^Ry_=xtgE>S!ok?=MZ%zt&k| zIawpZ1bL*iJ8#qWg^b*2JBnt->NP@m|N;N=XKkDa7`nTkMnSsBmO@XnUclFm|bL z)vcq==+?FE-ElL!Fe;VW1*!ad>>vN2l|6APP+jm{ATNOl4fG~XPZtA?Ss_oyU7M~_ zCO7rr99DbAe_0&+Hs`s_0L89xo`&JYL!M=>AH|IS>)d7cFVk9Dv`z`djwfQaOLfNM zXIgb?=e)w|Bd5$`)FLprJ`sXW0JzYF7$Jezk)L{kNMZ|qIL+0wx3@RAT}9_oEYZnz zO7gXOEg(;I;{v_GKtMN%vs0D2%_6%=w>r+0jTr@qU>0C$ozvxvE)+_1Z6e&*H4}-^ z`=f9*_pBjVm`N%B9&c;4PsVHnnB6xG!Z9kOHnJ~gfXR`8PR}mBv$IjADn8y6Zj`FJP}jSU%MU6?u?4)B{Rm&e&J z0vjC8mgpdp=9c!(9jd89m z9cy1NspvggV>wsh528!&YGqLW;yrhvWyO=-&(G~u0Kr@;@aQn4 z1UB`0d}58pPxs)%w)L{lDZuWBp}mE=l~QV6BSg+|XR|W8HQVmFAq0I+^0~9U4$y!z zj~@g4M7$w?ql$p-$XCu+4~4LfmW$r3wqU3r zqZJh70*TSZBubg{P#5M9YY>Nrixy{91eEEOjNIMQeh41lb08hGoW83huL$@QF!}8~ zIEm6bv5|vBFm$~uG}Re4OxW@;`FFhmN{^OfMZ4hhjLFvhl*xtaXGaEpd^7&~N^57Y zqyq0JTRJ|>i|Pysi>VPzSkE`l7E(dfXCyIv(!Atmfb>zGJ^Z5-sl$c>^W)vp%Hq^i zip<;%nS{$fV-!OpCv3E=z(o@c)-MkSMr73DE5!ENSE6CXF=Pl4)&iHAH zA$^5>-5{~&ImnD_`+!4%9OnkfdC011%Ye_cC3LTvhuMZ*pIHx^L6A>|AsAm-7f=ZG zFwS*-#zbWykDGQ?b~_(BgNu}M=K^bq#fW+FV`(- zcQbmuBN~rC=R9Pbng)h|4DYJTCJCeLHtlcs@%$aaBG9yv;tY;tK10O$?*5{agf88j ze`oU}D#-&shbH3l2IrY%(wPmiU^t$Ym<%u@K5b=%NUyuZ8i{%%sjxbiD_I?9x6XPm zKyTYqO?sYIyd^^Iz~IqAA*2;*J(^Wu7+cbe+`l7X4wYPSA3S=cY8^2*v$$wE6D7;V zRj{7rMq5Q}nBX`gFF7aIuwD%Gx2ZwgJ{l+tu=NF$~6IhTB#{sv>F=nQB1;fl3#uW3MBR=oWey>3F5w$FekYcC;?-F3N0 zn#uz&49XhxnmEShVw!ye`^OJ0udmWjLN&ojbC9#X>4Hxz}}|Lx7M8G*fd0~aC= zFhwTH>zBU(JgkmdK#E)RPqstpif z(#yO95T|wiF{UIkRk&IpLMmTN7scbAS&w3%DPw3~^(u>2>qz?LI`pUwMpa5N)qDS(kaW2I1j9L}<=H5@&RNAY#N-c-HDEClA+DJ9KhDCS3R0F)uTD|v{ zyJbqXhsZegsnC!UZ{AOgmr&vG8FW#C)xc-$}7*mW88F3zYP%Z7XzUm%#OdN z-lR5Sk$$zrcDc6zIv)3q|BWiVq80vcuUeEqWs~fK=FhKzp@*u`rm{{iM((5CMYDSG zeHQB@FTveUg-B=3zIk;^u2%?oX~Z1jzB#gBv0&~Qz3!I43~HAv$UGhYVBzN#cP=^b zF7F0*F>(0Ea%=0sQ)W#9Q_{U*AXW0bQuR_r;IAx!aunJhmqA)O(^EW3_p_~wHIES? zEGw@kq=8zY_F@b)xfE$KS z5b*E`YvjrH5@_NNr-ZK4ZY*DKU&o>xH zAGOgB$bM3HQ<;x*>*e62>rjwzrH3^!;$SR)MA0A@a2=kx6h-BajE%h*yw0y&xUN}b zJ9<4bAQ0wmBjHUiSCWkrXrF|hRe3w45GyS09WWY;KVk=$_|yL0IW5RO4LwBE1ir_! zrm$J2!e%-Lg=BH8p^}?-n_|q`H1EA!U?^cG=dgwxN3A(2 zrW7sBm)`|v!--RjbDP-2F$=5{9``j+6rUEIUW-$H(HMH)&gYA}I-7+hrrc?6@`{^e zAc7`jHN6`DXXgAjk)7v%_2N7v~(k+Q>Cg_a4^+evRiUQV_R2{%y?sj zJh9Q}SV#f61~9N0;meaRll?;=Fe>3Fpzo1=rRIJoEL;78s**!?`C8Dw+pznU_aHN2 zMB~_Y#K18My5*HmnpIC<_o&KJuD?hlmdwqpCWC+9YC39S<2TQsFn=xNv~&B0BXRj;s-PzP5w)orAu)!DbK@$ z-V!sN&>V%xzzB+SO<7C3a}F632_}lCwpm*}?K^U8ct7 z)ICjEre%N5sD4kio?-2oSq56xJ_aUJTqoXrZK|zTbf7p+(>XZ{_zA8@uT_^@qe{)I zKe&uYFE)(l^>NG)+8s(%g2Pc{8$!HO+rv*mHV{hT-^v&vd6afZ=XYf+dPc%ol8naP zJIuJ$+m%0(cDL039BPzybP^BaX_jqbBO^rF9tx$7elrszk8%T7QAl0TE8DsZFC(60 zTG&}tAf!^9$QvX)fj?KN?}Je|aLye)-^5moIR3VLJJ@JJN)5uVF%O0=yaGe0>Q43Y z1phTvp9me|149ubcaW!Ri$!!{d_TRls0F8I^pN=Yo+p1E(n8t5K7A-Agtq)* zc0@uXS$mAAMLw`36>e*1SIrs_>9&n`K(;;>{?K&SrYUpJeAVGHA=rT**ram54a*6v zpuKkz^MM8@@s2UyR=rmD1Keyv_SzVjbIM zWlILwc2!~xbg_WHFzOy)BZsMh`Ct%v*8@Zgo3>E%LX=PEp#sQ-I;= zJOIKk+(6CbLAS)oTLjplJ3to=DPJ>{Bdq&)UKy-q=ujP|b*7z}DuHDVv6bs*viKEF zf!!bGu3!nlLMu>2T!r#mnwTW5st@FrtoC$ttV@H@vgjSi*oHDbZaGi0ojuivC4?&O z`emKfDy${lijFyfE!YraPa1D}x>6|9wstaSGOA;z4ZB?#B?EDEICquV_%~Q(MA!Zw zy52gh>GzEuXQLZMdW0gSG%~l*BBBxoh#(S5OEbC$3L-5^NQ;OVv>-i17)XcGFnV;? zsP8l1-_Q5=*U$faU0fGj+w;1gbD#U%=Qulsy$&Vk9%ztBI9e`lBYs2^HF#5)3DrAh zH`m$7gwQB_OWd^DHsXg#LEdcA5_b86nI&5=&SSErP=vAGil=3}@s8S6cSLuwNMWaA zIsN_KrcDO(Uvs+_^lj2NE0?Dt4JIYS>)Wi?V*K|+NAJ*4 zjZwbKHu)6CH)yWP3RuQmBI4$BgBIhXStEYRYg{c6C2U*lI&kr&zyd|^8p4ju64l7> z-@oS?e#YW?wgL6VK&SOb|6gl@1J3lUre6(iZMTNoekBtn z^LLfpbE3CabrYYnf0nG4g5zAXMF@>c`{AJNFXAN1F|(~p&4r&4RM6k(B=aFZ2Yx{q<8X8z^RA*crv zS%=~^N~nVPm1w$0Ko#?JXHm{Qk!S`#&s-ZgQBFp+sQ-ii>cC~5*wq&lkg0Z@6Wr3s zOejZWE%dpODj9~F9oD+_Ji{-F+IL7VmD(4(=4tiYKv{GB@X4T>luYFT4klH)NO z(5pP&Ia>EB1*5Vf`+v2T@n;C>C?cVwdw|rP@usx;S4s6Cka1e@;L_t(f;xB-#Rh9SZEK_lo7EJ$1C?{Q*qgsB?Mjgc7{q zt;upxx%{(n#VEfv%+{j&bw2@V7*sQ8|1r|~KvspG3BPuufcyfjzRTa;#I#X_qJJ+R zj-rhs4xagQV9mrNy;AO)E{jf@oKL5U>H9IGpKVuyj5B02;a>0kOtea2G(>7CCO3i@ z{J>fBa!_~kYYIZ6!AuWzb0)@r^-7)uI#w zsj2Vul3cLLi{BGB8jy!z;_JsS zID9XMal|xW9p_;qSnfvyI=r~SmK$cGDJH$iBWnS{8B-Qw^A2gH07z+>KZo73&PU;E zQp7j3tarbBSW2)FE>eA|s1-8u6vKHGm>)zoiIVkc=_m-YgcWJYF2{oLGJD1=XP`&< zU3on!8i3QoIX=5)SLdRi$tkg4x@Davw{fk`(**>Vr*bhHUboVt9pRFHlUe!a>#UgK zu-23{vYuxhnpj+s;w_Pe60u5y@L+PUgy#8W2!{tO1WhSdDH z^gXb*;3?O+GA|x5t;o*4+hstf-zT%uGHpr|IC%F_psK%T6vOvwh8d&U{aV8~NX;|! zVRuvU$nvqL$$Dqqz5=M60tWv-m21#{Bm`2oWrIVi6B zGj|(BD<~0%EcvsQlAZJ63*3KV+#8G%=1vkflD+5{@BGOkvwdq9 z0OE^J`Dwns!pQ@Cgklq~!Q`mji;mGF>rk z+@z;k?D$#7&Ux9M`4ViL)fxPg&@e_n(f;$e*?ZJdEBzKyR|Xf$I&m2xirYo!pfz=v z*rn%^37Re;C2)7IVIN^0zJ=l_hHWEOv7hhY6WtB+XYM__kB_Kv?A5}n&h5*h5-SNJ zS{k0m7pBQRF`ND9EY@#W=X~I1PnswFdE(E_iNGe~n)fZ4f|_yuicN0K^37WHD)Ozj zbT9ey1bw#|l|b#}=f!NiqotmKUrsJGf!IX7=&ydf+hPs-h{gRC;`-6q(}6VGWvwAA z44{?rE2bVI-g~b>wbN22leuBol)mKop1=Etc*xn7D)XT;9~vW{TsS^!4d+yTpUdK4 z?%Qw+J``|$XV98+anPY}Jc$u2ObjW0DJ1POD|f@Q9w)pXH^1%l<$B6knjkf*=wsHv zvR>--RA`WHQ7-L=xMf=N3)dRIa56w6t$z0K`K@?CA34Sd)ev4rk!L*^|0z$24%)p` zxc%mWOV;Si7!y;_)ALs28NdmP&QX**09f>IvI7D{_VxlRjoUR0AGJR*8i1(mH>7#k{XWp7XM$iTeD8rR zb8^w;#aCEN&jrqHdwQrQzjuL7vmB&tMuBx1kt^mF3v`OD&Lz_BS`tIbu(ROLFIdy0L+s@jASI%K~JS)Nk19;b|M)ETY|gBGj=54zfJyB2en( z`;3R7v|mWo?fomKf7MMfN)J>wmB5Xlp~0s8=Hy=!++0*Q^SUZyv-{Dy8#3`IV>i_u z@$kmuQg{Ad!+6P{3a58|ifR;9on zBJ{B+Avjf77FFl_(%x}*#!Ji z#}zo7kSzkX7_+QDXKv@~dmEnjvWZ^bqJLdG0 z6k!LJvZBZnE9N$)$e<^g!am0x%wN6)L!4cHR|6ykrs6@ z*)X}9D+^-piwCc!E!)yl+<1kRq0V^d#=foq1Pp1362|YVP-x}Dm?Ukl&rL8yzZ7n|xgzo=Qt z@O_j`r$H3xQH(TU$<)i5Lj4X3Lq;NaB=KdUR{ z?z;}z?mp*no;on^MHrNqrz!pTF?t=t$K^!r?i5OGVa~DB?X7|@w*Pd(dZe~c*w6!1 z8g=5qjfYH`OMCX9TcjE)Qo$m?xqR{IJ#EU+NK^JwCZhfr>x4Nu!61ZVVqBhv^G%*r)Suu)Xy-xM8; zVrZj?-%Ik{_wHN}VU2+f{t))86`ELPVMJ+dRu)V(P)V0ZQN5<_n8?^$X+e;EvJ!8? zLO4bYn#n>yB-=+2us{;CUOe8;Q}JLc&ZMA-K`nlA|MTEsZen6$8JPIoDl+fTmozRH z9|IXo3okfKZ!Uc;)g1;)#g4{u`3=0Fe!hK0)&;2v2Wqce)9j+l{}`i9LF}O=1=Ab; zfjCa^BWzK@3dbO!F64^W>Zpv-qO3V7(y5O$YWe`n6mSm#UJEixz~(0qwRo)RW8vDK zq~7cj#xWb)R5xjz zIz1x9Ra~xkwM_dfdOWv`C?U~tgPEV{^}E;PkCtR2JMEUr&V^V{>I6lH(EGj}BJ&v} z*HI6x!-{mP9w{lU&&31|-E_s#;v@%RhxFoX8X!|@lJf=RhlBWBMq@E;io5f>=op5& zPtTLkMfhZ;vhDP1nJu5mq*f$T;R86C7>42P2?EkHoS}rKJga_?lHajE2`2D4$Gmhe z5>T#r2<36J#abpKK1;kTzKLlmp@4p1aQ0p-Y)xcmJO~IN;fi({Ru`7cBx6r(?Vz#` z@7m@d{sy+!-HOSg)Czh#JR>j&Y|Hw9i)VcK@Ut&h0*LPKa%O0PO#s$hD+J|7zw^7r zV{s~`(c>3)hLY!|&zpVTl2^14d~s-HR?%#Mj9O9T&vR6rH?+85_NB4wM;jk+XII^= zl>j%3%&m-V{IIOTkKq_|gJ2H*AKiwDztSY!yafA=Q^=4`mGT!CKCJTMh3dp9Cko`}&X? zQ1n#`A5$N@FN;7h>dZ?0Ay@Ygx98h$Nn2=NqD3L+k}br|gMAnSo!6?CBoAxfM+@1% zCjo)}Yr!@&8EOD6JTn;}==|&18_#1Ez)@xhzgq^%G4_o*HvPnc5oUgt2`9)Z_2%zi zgTv2(qFGscv^DYF%tE-O{}tWQjD}r}1B+s3>6CjMG*RpjS*G>smPpBu0-k-Z=jWn?BNFeShM#ZZfa4;t{g{0D3n4TpEX^0-}5ZByTWD4jN$R;_<-&srGWS64skN@tZ?^JFor$mgQ+U) zzMDS3Cg?Uu;6Hwmgf5k5exxewu^j&*T9Tgn`6yfOA3Kj7Mxv}<%=v9BdAjqUmS1h} z-WH{DfL>`2x50;b=Ow;G`0DM1(Jj32&GoEWvP z$gFL7O3jHYFMBTD<1r_SES!vcfyx{3CWRC+7ogST1`=Ifx}i~>A};mb=^ z|7guk=@T|`YCtBXKaBDVlv0#sTTH5#sRH0chKyb8Xt7+kME-QYi! zIo`*qlo$VPZhKYqZ0Cj|2*|Um81vN1OLKcgSt6ZrkI!c&z6==X3llv6r&(Zn7pPsp z;PX5dO=$sEM)dz!(OZBnUVz0=kir`WdI9+m>16OAYnUbZsnvuw1^gN`j%tnh140YX+$j`r*kgGG*R=0hfi4ryA%4E9SkQ{K&t5^zF-Pbf* zbd`H2Tg}X1ciXywroYkzX2FW8W#XX;6QxoCgCHUeGnksnTV}O5JY;+PTCF>HqnxXfRuRo5;i$mz^Rd9J{ZIwZtq_qKb`kC*<(+Z9W9WmAW?BvHRD$4U&3K z)I&?tzmglJTDCDsXMKxc(BM8?dF=Keg%~fvN7PknsvCaDGd~!nKH)KCnP)br$=fu7 z{5a9?H<6#ie6FI=0~sSp&oik(jZmdFprGr%QJl-*uFbQHc8s%cpg=OZkG@z?Sdqo< zFDL|Drh;|fND1hXXMN|2J+$~eFvaia2>Nz5$)N9GOFQUjBhe(7ftVYG%&$V6SFyw1jNc_`vo5CmIXP5}qvV7)GuE zCZ1omQvPmStmJTudH1(va+n3j&R`gfsM%V=GsDE<&HdI$HHE?@#%9Hc2mUi$ z9IgV~+;o1=;khWIdMs^X&JEW}DGTo--4Gwg9npaUO~@6gJA+I9DG9F?BK{5@Oc8{ zCWFhn)ho=B5m*ShT{1tOA1p(W=}+o_E*Hu1QYN1hD0oH%9UV4ZTX}nwsh%P&F0Y*9 zui!Luy)>P*=lTY9xH%^JkP7NTS09UMD(2-gVag{|e% zU6@v#Jv!01$764aq`!G&Y~1IHS!DjiXgCb;p)4mr?}xYJZP;Vu|53C z6*He+RA|{Hy1p-smnX}kW!*Z`k!k3pm%$x%x^)^9zB$$I+=`v0j8ntJQj0QkW_2Fe zsZ%+gBRIHa-11=~DE5)Te=xZJDE*mq70Z`2op3s+v4M6!pBdsnK+Y!@s=Cs9s~i}+ z;~35UUR{jz-qAi@EUMSDycail>}rFo8B|x}Lm|SMxM2(CGeK+pdRf^_L(5|ZyG{yl zS6v0%xtO6EZ-wN8ookw&=_N}vjKojs@RFjp*Qm&r$ytp}1=b?_x~aVhehE;hA`N*8 z;YlOkjLl$i*|o6B5k?6fHJCUC^R1;Um}2Njz2?tU)Xd$QOlI*Dt0}FY;Ce4&Acoq5 zse0%&J+`-`!4fwO9sCgkTxzjyuh zaH&kbC4TKn*|cijzAPn-!zvrM_MpWIw&(geVV0*Z`x9R&674lSJe@-f zHYd@%!djkLje4gR%xzpZ@9jRQ-)9h95nIpV;EhoVC_jm)xPjaG`9llBI4Wj@f~1_Y z#aEEAT#Cy_m$Gqx*P~_(kQI-=WwsCt58))(h-pzAtv|bybq#E9I{37iW5^vHExM$o zyQ>!Z^74R};s?Xe<^r;;L4hsj!#^w)RCmq^y8P04u^Auhf3YJCDQDuh@?9@mp(h-i zN>Ksq7G;+%`0U7pK*TqAk~~GT&Ih!TdPf&D_rSex{(xe&W~+01)vJEw63Eu6EE}>; z{dQYAq_it=w{&4-;-viE=8klNv@#MAmmcmQe71HJC`jzqYWH>lGZ4_*&2<^@Fd(^G zw|>7#su!5{q_RtyE`MxRCUIoSd)a7*v%KMum{7@Y4cf2#PkE-C6B*|tbTXEbIi7m) zt;bOS8RWW0;O<@;66ivlQ#}{s8A`^bn3V}-q^!}o5hItZ9;!TCVjs7|bqGUyBRrAaKD;%9tI0*@ z$Wq9L6%0Nk&an>-Syl0}5?&3oEJc5^WE!tnSzjrLjlb z6Kou|W#Z750tvpQp?=qO)vJ+3)P&}Z7^YGU$L>_|u~Nj`5^+lDrN#FC@y})(hZo9H z$|rqc;^@^cjNq+qq2%Z+p0Grg?jisk9-6vwufi(YIxnnXFW4KvzjWzd&FNN$})?} zCo>`{MlWK+Z8MKxq7IWkU)TXSE%~5+qnU?2+UzsuEauK9l(7&MllP@|R$at-6W@hg zr)SIL7+Q_s;0#UvfGfwl74_e(ZtZ`59nmg|QO!M%ok8v8R@5J_`~%+A%OzSr?SLZp zi)lU$%#bbinZm#Apr_hUAi*dSfFL6~9KQzC!mQ?6x_Ey}Nc7!LD%nXc9ZUbccy``_ zogh?+_!51?5i!C!fpFHR%5GRv67CC1m6s`FKLJf4?yKbtQeKT2u7+fETb!b%= zuClwzV;O049xJ)_)*JWF~O8Ac6I zmS4^o{(~*1&7tmrPjzSdpP)R(1*>}=hNi#Ps@*YRQnO@ff2mERZPwuNjLoI{am7l4 zf{6uj)4B?1(%y_MtZJ>8xHM4Ot&Ub&eNUg@9gn^B(79goU=30KC1}qp$c9K$E~S|w zYI3@L=k$%K|3*_;Cu-?p$->*x{oaUg-@cVEng-=a6`0ncx-L6Z0Xa^{nud8vRFjvNjdq z8gu}ZAL+{L80H`O#mp4K=OBD8hBoMvqXW{SN?E-RpFbc5-iDDe@e21(?3P#LI+hO! zZ#)oy*mSs2X&6PQf}NUQ@3~|DQQO>mKLIRA&&Vd|^W9!hiDn&I#ny>6}Q9=*b!#V>CgF}e&IH$#RX65iXB1deYe9Nz^~RfF$m zk>N_-3h|;^^#zof$<(NZoSwZMqq)pL?tZ^WZSzOQc9MX70slZR@w_RQ?Uk||^j>7a zEgq*IPu>AT(6RcXcb3p;8=(u*rWkSxMgOB|{yU^$9?6itH#?l~9Z-lBZ3Fv7W0qex zcpNReb zM5XXJ6k)7*vLt`srtr2qXtz;LsN1Vu%LQ{wmD;1twhgP1+uoN>2%vk?K0R4Gb&|^5 z@RzPkio6y46pRhnexTC|+d44Odb}b(cIUF1iRL zZ11%H=Ge%U8rv#RpL9QY+!m0EN}D-rjUzNtIXqoB-XjmTpJ0v6=!;(`#P zq)VUJD*xh?DFsCDLX^|CTE6SxC~m2$he47sHLt%t3r~c@9p2z;G>329(2cm(GQ`RA*Bm)(Km(G*Oe$OvAr%Sr&9!no1xQ zJx9jldzs#O7jtuwpo2EEVNEWO!(#7ydN`p{gzO}7AFs~fQ!W7bzd^~+_aFQxht}|b z+lDikK9L0fohXva%mP$*VIo?Bj8FWiVEdb6l3e##MN z!MMjfH1)~V8D+COO1`Bayz{S;*zuk&)t|JrZ_(bYkl)2%uV27U&~;L#kvpVm(o$UF zf~1-IZ$zNK68yhdri%2!O&@`%n05Ctj{#sDbRB9YY(f#>zgIo+eFID+ep4)RHm&BQH1m0G^BTx}at$fgW=aDqO01RlN z7f6KFC8L9V-fEzhURL6G2eNbWK(J+MsRP5F-%?MLNe&$ttmqlMk}MDt(mskKm6096 zyV`kOk%#ljdzJURUO~3Oj;&5!y63x%&eW@2y)x{SGCn`K-@f5L!c)(!iIsiS1}OE8wvrYaVV=sq5_%FcX>p?c;;t-|Dd z#yC~sdxzx0#TJNh{Mxo6rGUcp&3t2BuU8A_cz0#EVpuc8A?p^Qs3(4Ho@C@6%V3v@ z&bOW2+aro^t^P?Kn*MH9(0kmiJM{syWP}BN6!DK)lA|{(XVy=Sld$w*WHY>xDP`)a zakT8=6N3wS0S$2GOD=v{KZU;x$TZMVa2jGmJ3H8kbcNdun#D^r!Uu3*b7YYZRsZN4 z_(s7c*owC00@hD{7FY`DfJ=KRmF&D~gpfoH%h4Y5={j>D>izNc1>)kv`gbiC4aL8G zJA)wO1BQD)Bu1o1M;ndDHxu1K(nOwMtYQhx6By~6d@G181$VRlfd<3YfA75zv?f*) zj}=v;-z2qD+%(I8%1ShF1x8+p&Hm!GPcJ+dqB~icIO!0+uDn|un_C!kyaeacM45)r z-i+_GJg`bKfzSB<;V^N(_fEmfsr7kbz>59CWwV3Z3u)whf8#ZRA*_<7hO!uR37<3u z@mMT8YH~&e47K1G3Pvuja$sIO*^(pi56OVPfKvuqQ^un21(v$6H)GD^7$Bc#68rPS z1-u;pUlm;4|qfyJ(!U7I5E!0vg)U_IhoP|_y?3RA#RXH9l#TG5} zo`rmto>ypK{mU^#u2Ugw3AoMU22*2{>dv5E9vO7|a;~}<59CTr!dkwdZI&8@oKS(@ zFj5WPHdKYU(TJ+DyM4D2BTv-%)N`Yp+)Nmg#jxBcxh%b`uc<;9_)kk2*zm>DY!!Vusm$$vOeyJ4VxmYcn$p6Sb}5fQsa=%OYmxVPX&wX6%|TF_t?#IGHj;0TM1!B^>L@w?&D1QFv5c<#*pg&tmrhO4s(g zT&n}6jfW|y6VotiC9^VxZ)@k9sD8w$sgn5_m#cdGSk>_~4Hq1TE&K90=?jDmr7qpj ztymVc4K6&EtEjIlNiy~N(Dx8}KF-c;Q|_bf7XIbaiQ*m@;XUP-r)pBks?NK!(H+q` zv`K-^{B37uj2P(l%@w?{;q8Iatv*TYe4tIC1dcv;*Z@@10~}WR6TGv0O18U zg*R1f6nT!CxGkt5=D!87WH<3xkWlNuO1THJpOO#f%(^5@YX*gv;yNt(><+Jvx-|CA zEZ(I{9`&0`vFQa7j<)vXVB0;hd2PGJ7^KE!GF93@snbK>g4Idwf`K#1>!1l8GZjsC z@c{r}MF%t?q+bn+#9vN`@Yj|_bnh(@fD*WKkQ>mtt@O1IAg{Hv_YtUMzku&Zi`*nO zm(Jzg(qvytdy2%oOedO7*NRTp(`#3dToc7)-+OxXk~cf*L^nUL+rX_nk}n*c1N)<` zI+C>ao`2s%#j&N>ipEXk>b&CR=^9~56|>*0-sUL%@SKrYoy>}e%z4*xU5OlxQ`@W5 z$nsl~0rGwix-x{wT?%q=NmQyT0ohos&q1)&xvyPI9o9rcAlTeSY%V>cF<>#+R&QEB zdJZkSE{=R(SB@BmqFPu4hLw@09pyE#on1TY=1ehKn+s;T^h^W+bL?)FK}$iBLnCzL z%%^J~F`c7g4*Q>^46wJ{i}ls0H06)QZSZ7kT}_3*3oGZi(HEItP_GpOxwLD3ir)dy z!Wg6YSIsZD``n@!lOxb{n(*KEC!K9-W<6Rije1L1>_A&ub>lB)qli+(?RBL72V)xCo zCQR@e!1TdV_2wzO*CUy5Ed|jIP0COP(K85hY5hO3v4Pt;3n0?;4##7chD%yA(YdUM z*jD%X7gtWfh4?MA&aP|C(v^!`c3})i8=T+se0^HuF-BU?V9ngWKI~B1AwEKua#ZkR z>Xm!D3@#b@?b~b@LKPl*xv)kyI()f7THK2_p#|L4W~?cK@L^lQ>Rn~Yx5f`!NYqiQ zX7K!5k}Q9Th5g^BFC9;_E(yd`tP$P>I`HJxwO}=u`E;-HT*y9MsA`C4jwT+|irXWO z73n%L;~?S54!r67wQ+dTf%x}ghN%ev-4G;??j5P=mpt25Px2L^fnjB|dopOB!hR!q zI=IrmTXtF_Q(RdX-4i*I&bv^bb#q}a(PZMmjjwikqQkTb6slbB>bW?jvYM0|atB$q zcrKS*Ih@LtYH5V5ZRVE-lWk;^KPsV?4#Nj)vQyU1o$CVHdDX0t)&ZF|DsMcr9CM~B z?%^Xi8P}9r>|Uf2h72)1b}tq^9!dct-#u5#le&e6R&b5rOUWp=TRhv~0;pjEb6E`S z=IxROx`Rq4*a>@kmanZUr}APkJ?~(&BD^zyjjdJ{uF!AJ#eA+I&f3g9+Uh~7jKz&- zy=TviUyX>qpZyOtMeLQiQ82~*t=}I%0(YEH?KJNiXUY6gCtHvv&FyCo*;!6gxnAF6 zoX%g0zB(>_Fxb_LAuXY&$c}?cTH=v$8~+<=SYpqA>Ptfwa|VEYiv>6o|9!yvQqUSb zO}y%kX?+pNIP!Ne>1wnW+f8XVKW+kxWz`J#2PDsk<5Y*AB#Qh1-P*$x&PUa8FUSAw z1A!Zz0}3XWrY*Wrqkt?zr}_BUY?klOt{Q&0kOxL&^R%Z=W1heU5FdJ;a6#Oort7kc z&!bKEtYZAo@JMzPU8hRgdfL_B5mADpX`P>^lRe>SJ%}+SnqVn{9qt~Zlo)X((z9o( zsG{tIa907Wd#$V!G+P%OJGVxehU2U}P|ZFuj!)sWu)aI6!#NibK?qaehF@F=a=poZ z_okE@bgm3XH8d6DzbrFyu`6;Zmw$|x*E(m1_TVUCf$(0%`f`a-pETyiuJ37_Bg6YA zwB)az6rdAtXQ{SP6|^)7pB@w51QMgCGx1dJ_p#skzY3A_(K)sx`ur719~=*1zBoY) zR=OmfRD_#Vd5MLn=lBNh->3W^*D=uI0$T(Mvx^q0%FC0`1!A#<+W*GXIiSC_14aD)~M;>9a5rEwb>S71+1_+;IUF`z*~m2y zk8x3WXd=hOcs<-=9M)f{3?qJM$GOG^!VU&sG>)fDBd}@ z_+Xk2CI|P*ZLlG(=z=YJqq|uA;w!!Ux*+aqamT;i4s)`HU9sQFhcCqo#YpY1fj(GX zc9eHQ@>k&APPOdgp}@nHKF|c+zraPy{A)Vb9%P^_l=bOq1)c5%Wfp+W>WbrV*=t8u zHiQdE56jcLqxAj5Ri=M+?bCIjiw2C^?Hbu9djG!M>2R{HMerg8?uX5Q!uRPc1!`M^ zX-T%kfZvR76mVh>o*vA+I{>s^o{86(JZ1ujS>G^$&AnE6(f>#}pj9=Z07bG&$`R0{ z2Rni;Sn?|)!@~~I8^shX(zJKm!N8j1G%4V%vk}$IQDek1*i`l@6sM-+#-`kP08e2p9gwHO7P#HN8q?MjkFpv*^Ldnva3t}iVP-uK)vwH-tlu4k^ zveju@kNb@k#-dr2u#mHn-zmoyM;Yu%bW)@2zAa^lQAmERK^Bq7tLoVOBmrqC)JA+g z(w{5e{7~%K9s^T9Pv_6ygo`+bw_k-R%?(|GZ3jas14=ws7zO|6h1XmV?pDX`{*$a> z9!RRrX2LxB?=5`(QgAzH>uOK}$*VwK)?2*usCeCc#&F*Nw*~k?!;gx}oZbLNiXWPv ziHo3v{UE%L1ZXf_U!NEEU!{aWM^6EtF(s+Rd5(tRm8uwvZ};C%3=}tFK<^s``;tYX zLd9aR?=>QO!5!?(YRP}PkLx4d$ztQv@=JUP1Ej6T+_a0cLS|ah4V?e^fq-wDlNo$* z=8AXI5h-U7MRSH6 z@g+o|PF~uobsk~T{xvIq0O6;k!;4t-BCRgg$O&_1`;Kw+ux;Tal3f|TeUlF`QqKj_ zmy3Dniy~|9boShll}j!Nl-TJWdaJ}S?-p|T;8Jy9KEZ03vEdSp`gG>oF&pj_l7*}-C)YD${1`E$$ewIL1@Rt!1W zBaK;L=B)z)u-;3EVSAzW_YLNg`L%Zqz2oHA>n6Q9smBjGy@W%kNhqIWI8oa=y1@X$ zJEK8J5WDxCxw=a9eBG@e{eSS`?kyT=C!mxSGKnv;`g|UHczsdtt_y$Hlw#vjdY0~* z(D!J?nvtc3mxoc}Y=t3BS;oKfw+?FAGKi(>ci@H-H;;3Q^VSVvsU@2iyE z{lIwz`|EeSCZAnGwUz#v_x~5FKrs(kz&rf_|EVegT!mX&aFSNi(VoYL3MveF#YMe( zbOb{`o~~&Yi`wGU{DJJ7mHx;VuHp|HsT7WP6-H~9J_Pe2@{4B?WQEkXTy)i9+V;p8h{(gbU0qv1$`I5BVNE1hN$ zDC$$EA5sz9ALh119KP3Fxw1$M$?mND-iS~L1vg2o-eYC4E{cPuN z{5ie6xV++03(_x~ySz>DbbgJ#u~)-Fpa}Gx1^^NL2|m{W-t!{Q^Qzt0Gn%mYlf(K` zg^mm*h2yT%qgb7SZziG)VstR~7^HnkFY|Wt zgR?kqDyAPfKVB0RjLOSqArurIOb?PNM1f$~Z!>SjD9IOgh-`atHKON%C?scY42CYCy*5Aa?RYJKgcHd4wQ5ufmFk zg)u;^$6PALmGEHMK5!-A01|R;^j;^TQ6^!g1*_|oQJMt#(xNK7DPE+C%T-?DBtF_0 z2+m&qU^!@;AKsbKKPXTab_0!Xq*mf$RlE!twBS)h9H+K^6ySEa&aYT7P{^o8r{TxI zzrm^>{1{4IlwwZLj3VeM4YAu!58o}KOaYv=Qdsrkhwear&wA2Yr1{OaYvISov=&{u z_mo>xK7i&!Vg=wz&ugzv7~zBF?U$%fTL}WM;^k4XDRN6jDNzXnwsLRdvyQU;X~TBj^(@Uf7ChxP;KdxL zvKL7`TK4}{s2H+An(6C0EtJd?*{7D4;t{+CZ_nB!yZ~2`Hp8Z)1#moBqR*6_c9E>k z8RYG|BHe?@NkR3FR);3Qg~N~6x+$%UvmGsV=A!7g z9)k9VDZ+LUJ+z80^EJrBe32s6?G|&{uwp3p;;1q)OrqryYAC+dCojzhOw9LF-Z#2B z!(VYA3FQ1SwE_up+wT)ROX>Ya4HhnDVbF9q1hZe&hdcw_m z8^MwmlNse8BWfgRorF{U$QtCj6cd0ztz+tNtzKmXjIu1sPe^<*>TtPK>xeWVZH?Fe zEDjr7b33Wf-LXz}Oa#nCCA6tKe72u7+xP$w-pHHc#|?LZ(Ti!Z4a4xkh_G=8M+w}Y z*q2Gt@ht3t>6nv0$(2rPz_LFiPN{C_qL7gL%b{`N=& z%+(|v!}^-TRxd=iee6iz80;1auSfO@(Fbg^25hGUCc}E}Av}%a)D};CDapOfbl~up zcb*FyH@_JklZh2~$i0i3!;lNpn|?Pgr+8_Z^W4(YEu-zj9lk5UP73T&lnUSYr_hSF z=LLcTvt#Q7>5-lRztnj!)a4w}Y=4ZqU+h+!x&Xzu<)=3*HXCcz-yCPOVx#(lK^X8y zKv)d4NY$+W>@A@boR#VgnC6+d3HZ>*`L6^H0UcH4uDl+c#d@L);)WOVzfkabADbV# zEe_k|r7vGTZP<<~TLnvM+Ig9Q#G9=X*Z25=G<^Y`d6@P`ZUD=rg{d>L9`A+G(`g`RPY!pT6pY428$063A=oOjQ3mU2!?<~=oude-u z()gM^OboHPzxE~eW5$a|z2?J``L1oTABibOyUb@a^I0hBNLtP|$!hU4`qd6YvVQf? z9^h9&_S;#mdeNGB$FiOq3uY&?W@q_rhpV5x7&N;A%+y}l{&M|y;e`rduTwMs{&2}8 zl|CWHpO=zJd7%nEeI|gP7s@BTo{)KT(F9cS2y=*(zL|K) zD}~-jF3NUV37;~yOr8!I$w1g24NW+cuNgbpA^tL3&(@yVM6j~enP9VAey%CG+RAAj z&6=Qwu8Ry^g)N~}zUbsH87Q%0)UFV&mT>sT#^Gb^95$RieX0U&>vkBWJKryupd2rR z^?(y9xp)Y%8_%3m$S$VB2`vuhhBu{9SiZ`?VG^%x=3iR`JOr@IlCj8~{7-1;$W+bp z@o={@l&eO?np|McKSl`%9$i0oIp(Beq4X(OrlG4QYG>EdyflD^t{InBaw?hk-6&|RjvH4ytJYjo;Vw$v zV4pufOPPOInYW!$67XzvH}ig@@o+z1?tPZQ|B<#_@0gJ@as9)?&y4D5xXmLj&0TN# zp*4B%8tE2zdbwCS28`_fzfKu|w7au3c$XiuiN?!nw&q2u|A(rt42ydE!kr<8p=anA zVCWE}1nC?)1p}lT2|-Fa2kAz-B?Xa2Bqb!35J{1c76pdx`{SH@{`a|Gon&L8LKkCv%W_2=G;-X*}L%Yw6QjgZay@6=_XY@!}jN0Y~4DF;QVo z02f$A_3h5*uSHfbc){2|;T&LK-V&(TCb2_or5Vbd?5_xcG%c0|nhUVBlrbV7wUiwc zCUTO`df7ZSyJq7R5p;9hnle2ue;zT;Z-sAJF0c)plm$rB})uaddh$gM^j+Fm^A<7KBZb83BW z9Ol&3ry5iIhe*O!dpt>x2b<|O+G9WWQiuq>6E(3w>hVG2-67hCncCisEyg`WGUE^W zr^=Ckkjk!zAm@fpI_l;s{7HPny;_**#)`;4zJoj0)bCa6c z`9!+1|4l{P9YMF44nR9wN^R=>sl(nD|ED@1zyO7{FW!b4r~PTx`(sSr>iyFtXw$CZ zq$R)jm6mPs=cxtCdo@Xn9rzT;0{vb6G@Gu`Klo-xzP~p)U4!jBajA`9A$b?A>198| z6H5PJ-^eVFhe@Sz zn`^;@SGM5&p&=RaW%Mti-R&K{^)Nu@;u|aP>(J{$OU6de=sx+Irc6w5YWhffLLpAo_lnhGU%o&5cw z@=ec94?N(L&S0S!5%(F1!&mA&%&7grh zR!qW%IN&{zYu!(v*qd94(D+J&_{k6Vh_;+qt<<8b{Rxp&xV0{FCa$iJ%BZ+3&)0!# z;=y-nVg4N8R>kkvPW|T>#KREcK!7;CRXP~xt^Z=W`4G^B)s$`)*b>)#i=f-YWeSEh z?CH1G_`@nDS~e1nOofB4{ZqyPNWfs*PAYnFu@m$9eeta{;a8!ho(;xn@oeXE@~WRu z|H|m_>qL{|TO%ELY#;%dFj(}b1?Ee<&-$^Qsr2Z{@0LX@h}im-=7z7%_O887`>1TH zMEJ(xUAKf`j>c50dH4yWO_mS%mciBVq zAMCg#24D>iq=;9wuxP`@SG^ z9vgep|I-I#@W|N3zlq-jB_9oqoRQ=Z6rG$AiT-TLm1ZCNna&79%2E49xo@V1p0%m` z0eK&lMkui)6~#Cg0pxW@z|F?X_1yloT0*DA6ESQTmux^H+xmVacQ;!Ywz10jzHtFl za!^`Lt zU(n;bEz*D|7R#bk?KZBDMmDhRZ!^lo;X|IR+HzMg7`q$j2cPPEeU;mxW!n}{C!!8? zy5lNfOHOJs4V}cSI<(^5r6p%q95+hvIoT}P3lJtVQV@^H-}M6!6ndD}2H^J+nI&eO zf#(c46s2q1(u%x-z>HKgZR#f?L39qtI;!C>VHUA)d1Z}aK!5FGadUMt?e}Vlby{yN zbhoE_gP$PW$0cIr6Fs`^dAmYj)Zs6};slc}cdAkG!#X(GUQV|RfAZmtJ{%8&S#1d^ z$Ho{=ZZr@8i*bx$JU17Cj>;jTD{5KSCovBW4Z5KTp0%yh$vH9}kltfWvf79%KeXuhl}|vvnnjbAoNQfr9clLTe&7mgU?f9d zqEy8(4WrYatTUZFf?g86vWIUwekbF(Fw1wHNtW#C%Fy=Cc~V6> z=Z$j?r+O%`|1Mf`fc2u$^2zU%HcNwDSsx!JC*N`6cXTg6i*C}5pY?G4{~DGCHvkD2 z;lNJH4z-%P9q=$y;>VY}jHQ~HWK#xKgRU){`TlOVNvHQn6@uR+$UHp}zCm&YPg>yP z>Xm)~;-QDCBo986ps@ku;hFcvpXNr1yo6I;8^0_GPlp+R{q^A62ZmtD`RrfUl34L_ z4A8y#MbmKXDoX9%?60|!5sw}lvdeYfO8HF`#6S;JB3%P-1{7rn$U0*#uP1^mX+>ff zZKjUlivWi45e#WWv|*tPz#ePf#;d4ocoelhl2G8 z1*uDB(mz`>wN|!iT`oMGWhg53=*#kNX!0e6c>pizaj1OPgeIN~I}K%5!f(+Q^ZfdK zE&UAp)$jpBXV>^&Y7NRuAXVXu+A>H7|6tLFce3q(6Ha_c6yAOw(PjxJq|mtesG64> znZYqWS=__N;Fag&ov`f*>)yD6eL=sB;B}h-cF`J;)UrDEC!fthz@NCed=M9z)SuYRuz%x#{e4uO+SYN%sZy49$JILh@^Ho6|Fg zH-&%vq}{}kT+oh+6}YKc>kje0lXc)?(hX!5TA{(V9N$%J?@dN9U2Uo?ucezkUJ3pb zc%dmWNpj}1+XkRJTd>c-lH>1*l_T2d5&3(2Ggb-QYOa4u$1$JI+`k4cX>%_pvek{2Sl(#3V z++yK7H1^HqhO8$7-;MS~COdSq^ZMvL&u2^8jPFm(q=`}lIeQHOv&1Y}cLHQ}~BJz<2sM`3g8=gd@c_0GZc#)A|WQkIwa)kG3v(+f^1+7=5fy0lQB( zu-CNsXsn+FFyOv%N{L!T6>-68*8!c=SfJs}^;J(Ivtl>ELQ(_dN6Oc)7&+d0_szlx z2+FY-h=qL=u!87ZK*dSP?OtorU(r5}*%$=?(l)4^z{eo=n*K zExvzxPj|w4}04nuH`1WC0e&`!NzM@?xKaA z2#YNo`+dGo!&kWou4x;PH7p@Sit!h7i|2705hRfY7Ci7cSz76#qKvRX!I_N!vzmZA zqXK=AvEpG2@v*ach!77Qg9M%F;DD+HT|bGuGs4J^m8Bac9vHLE z!XPR;zup^9Vpbxfv5=n!&DcBMx->j6os`c7R=XQtCGsWVeo*$=RzWapt2_vCVm@F# zsk9bNw;uCp-thHm5P+qoA#)y2D*FxJw;jpY1BAXB_>zBf3GwFU8Qg*p zA?xzNyFZ&?ByxJp>Y>4aYH;|Q^}UXqmp^?%)VN?1m+NEG7F2*|K5}PO5BKD!-+Qw2 z#GjF~1H%~Xq4cRy>(#_@g@R#3iF;AKE_1mrf6`7pb>x#? zfB6eIZ`1ZNGre~H@&)}wL4nh7su?$V&RmaV0wyHjf4@8k<_g|@fKlvbR{wAt0v;++ ztyrB+lOV-*x!infn!>+TwH<#E)9KYgh4LD@&R9geQ164@g3B|&BG#V6t#7ZP#j>ic ztzLiLo|<}of5Zdood$?Q9@uLTukXp6`%KAQ$W3gltw34;L~X_`4rjTV`G$FZjjmYA zrzPG1)SY+!kOqle=4*;cD(GQuWUisr=+P0Z_N4JKyNGljk}@K8_)(4thvRcMG~mx0Dtz`XqD%HS;vM? z?dZ$wBay6a2IfC!d~!Kn0O@uoD)x(73db{VzX6XxewBDcg~c`VSNt2TMRslkQV6^% zPX6>(*U5fx%gV9uag7QSI9tDxtUm-^7lmA<;f(Kn)Mix*LTM+3{D;8P&cm&piVc;G z^dLiD1IB}QG<)+W03#vf)cU8%fm{!1%L7nO?Lp7L{6Ij&`z$EL7Y^(=Tx!NuAnRth48o-3qi+YO030T= z2l)2nSKdWXm<8ws(=ZGM2E%by6#UsIK*KV?tA8`T>#I=l?Sx6pwcsat$1eQQ9{u3X z7GLuZJtfGD0+&hmA*(Lav>A{tIJ4=1;bQhl3=J+;%ND z@~AZOjfWDcM&1+gYv(Y^1UlMo&X;Kz_~kw-A)RLSNVXxBP+e?a=`@S*5urz$;+gVw zuW`AJhhCRy!Q>1S4|&pycOP#{&XQ%N!RBd&G+Bf%Uy!w zrD3O;dHweqB0?w?3+|2wzY7@(0~bzvdrNK>ggqW9*Z`W=kk^c0#-}ty7O>F9R3F&z zamdN*tx}+Pu6{WGGjpkxAt>JvK$AwCF4fPf)&{%yS7m&d-!LcBMp}=hx?b-Hck~G= zKJ}6oHz2~-vJ`lHy;%p^5iTIyA{MO1X_`SkNRNj0%COhQNuzLg9MyB*$RvM%$M(_q zTiYqeMdF@1dbs0zN!a2{%6TKPTih-j2WOpMX6%WDMqp)jz!${@z4%Xh{_6;S%vPb81>fIyTo04y4W$Opps6JGoT_HSGc( zi>aCumxs!(hXVEtR8NR-CN36zcfQ@wtr}NuEG0v5l+Xev zfO$K7$<+Oeh)5lQPZuZz%i@Unr%T(uvUUXE9XGZ+V=V}V*?pEB=7hZq-c^qbDsmyq z#1mq$0JBLhmH_|Tkk&}VAIItz<#3Y38|Z8##XZmMhm;P?GIFuXp|PtO?AQj;kz4|> z*Ff9adj0b@*x+1R%hdM1EWjb~*na>N|F3JTk7YHe1Z4U(gHTjG5v0@COxCjfw>qAt zs0;92s08#K$BEUP-5oE|2vFHe_Z!Yzg(7Q=CEFtMx)MIsO{ zLVB0kJBLP7e@@eTR7(!}h90r2K?S|`qKZ!O09bNcIkJTjk#E20@S#^ksSW`nU1siulz=cG22b4^{iZ_JIGK0+v}C8Yu+&v!bLRCTH)N<{`Ig9FRS-iOkY(_6w6@eAySZ) zTGm}%to#s0=0!pq0UXJ!d@w&|*qp{^CV9YdjW^#UOsro82g_KIO>QOUc?mB{7DYMz z4uKuV^Dxn!N2=g1MpfM53w3L1MY5H1*{Ypa=UH@ak!6~I!A|{D1iujMElzuCKcv4Q zUn1rD8wX#H&!A%WT{!fEa-cYzz&iif{7tg|1c!gE)HBJ`=p>x@Ocp{xx;GT6j6)Sc zdS6|a5g%&$($4eV#@OSU_q@b9K?|++G#|=bKah1!cg$J*kgbFH*m8XbR#J}pKJ3XQmCuSuVd6H6LGE$E%uhj znOI~M%+A~3?%uC=A{<0xqxLK~q&wfG!5Cqb;LD!?5J7z8(j5ZK?I+vs*K7zwbb7J! zPELuJX%p=UPfvkPjPK}&@@fIF1;Kb!m=SNbqbd>`C40NrE9H>`3UAKmGp(Jy2k35= zYw#K_wDtM3xrS$Rke}pGcFnO*o&x89;qP#kb{RCRh&)6-#Ttin-Opt7-DHmYNtb;6 zUlxFCA_WQCd%NF(HnX97YXN296Lo`yR=a--o2=Bzc@sBcC$J0&G|#{FVXkXbv85!& zI@dE&=O&B9*QNVo?8xKS9_h1>O0HpepK!pDJZs_=MLelr^61wCQm8-fdfIF@9qU$k zJ1F9uI_-(8D$_2_ZjY-l5tDOj6QS6Uf~CD1G3K8>a^8cCDScg*THJdUvKZ-Wjx;7!%g}I zU0B6mTg~y?fs{s|po3RSX1663ZMaNh`fU} z?2+BBa2I=6QH~ufoewRA-<>05+#I6sBuLIkKVrNgCH#lIIX*((t1O*dl{i`c)bTKw zLS9GtQYbsMHlWG)SBXq<(|0|*4H)qf>)D<>D_5e5sf42J_v(q2WZegp>FQlN9WP-I z5=n<6i4MgYM``j12&&#CCrFgX_%HERwG+YAY1GAay34Shk&8x6$z59?;$D_GZ{Po* z?o-KR0l9w4;GpCGmQoU>TZ8hU-%=xYrW?{< z{O)e&cUBTEve}D>6H4Y}X6B3%RWTc#FEOBe+O)@(>ug1`15_PW^&;|V&UJ$v%eMfS z-tgRVH(0T|IbQBLiyTvMhyGoBJbS`Wr%0axM;s6IjS5j0uP;=Z1^k1f@ESjpG%3M5 zC$pQsc823|xy#8kI{#)dL@Lo`YOJ(p&_ z2;P7@EpSFXS*Ol{{R(L;H1LnC266&jZrCVEgEUtVTyDLdO+y}u5Cd{4dVo3OI|Dh1 zwK8I?dmmD;D_p1kg@craj(GQMZ0}&!<>UO7{*+Xq&>8evE+}E_U6!w;V+o<!e8h6U;)BQ?Q}>(XnVw; z{gip0oqsL!os00XBX>{ZLj}2DIr;sRE2$k-#_rLyD3ClZWHOWI&5?$o>;2{6MtrIL zFstKdghrPWY#VUVnZ{JY@t5MDJC|Lr)(fjrnY%;q;hMn(-Ws&?4u{}poEmpsbzpM# zSF1?}sq-rn`*#rnWA)w|s#dlF$uyVmbp+D;w4C&(&lY~YOz)KwTnTZ~K1?u3pPo8w zYWm>XmALngH8C4HmSE4{4L;{VA>?3jdT+>Ok4s^cA|I zd@B|R5v>p#K*Nag5Fx8>0Gnmy72~;0;zHu~5kB5e-{0?wHI@PTZmI;vrO`l@Mklb` z^*->Z(iOni9At+H_IJeHR#hoa+V{E%=@x?7DK~Y5VtfEfG3`+^ERh#KSU2uP%NpOK znxbxS8sb(ENVd1H6LhZsQ5#K!vMERytao3Zz)yqAX1oXhfaGm=P7TVMRFn|2o){4G zr&x`T_jY)=`w;Id;n|HJhsW=EzErO*ink>baDavqmIg_2j^yhzo|A6UscRJT-@S2A;uX;OsQDeJUUFgRN z=N>hpSPv5B=gs)Wd?>M$HTFH7N42AGZb4?TOmjyJ*kjh+yck${eH$@#E^hDg6+`{x)aXQ=GDzImrgPB2cBKp!2(^**TOEGg)M^|ZG}E`nt#H2R3~g@3t%dmS>I@RBM@$?-oPn2 zl&ZHLQ28*tt_{ot&r$R)3I9M?;bw@U&+68X6W>{pwp3Zy61`RMR-{T1Q+c}LyN#Ge zE?LEA078W~+SNur5UohlE-JU5UsD!Yh|TdPvO-KSY8*!Z;3%Cwm)!4EW8?am6{*^u zc$TGiEkF4yfn&CL6RPHyxUpJ6l?2v+jzOHkdQnKZFple=$Qxa)DPcP(Dmve?! zZe~v9GTqV2`x(w8Gdsya8J37bE0-6`!7M2YK_A|aR7nA;Q6iH9!gr$-mMXTO0)($& zU;H_??$=E5<$rO~I*db(1M^`s`_$i3Y4mof^T?!%qyM(j_t+wC12L;3T)T0%PhU6^K|7($mOS0++5cImV#&R-sP(r zfBDh8#9z!mfPa@~3P~pq4DUCGfD0%hnirS}@`LSJ=Jm9+JWnt8@AMR%JSUVse@`dj z$w%DCpx&bo>{jl$c6h!y-R!G-F!`R3Dy3`6U83EXYJ5)uyky$Vr@ zBV~B}C&k(IoyRqc?#jgypm82=x&aam39UZIK6@#)XXvpk*V@YWH}QYX5yR~R@`UTIbs%={GrX&h0n+$tyhXJSk;b;ypBaHUxpqJ# zNc>-0ZY80op*jZe~ zC(=*n{}^(dIqxG28sx;itof_*0JtosvFGwOL{ zA{}=U@;giA>sB(3b?3)H67`rROLu3CV4OmIByhK7_}?_ z;5J8|h5)j(0mC9DI|w-_Xi!H22#mrW$G0aPjUI{TnD`06#KrJa zZHXhO(h76plGXHZWFnM-W4Q;<{YqV5nfFe7g4~v(OT*@xITlQhPzYd#o^^`<0_7kvt1M zZ^jdNN4_BcL$5jBs{7j#aO-qy`iFONJ5edC^$r?pP1EIO{-P#gH52X9?VtWZd4Pdg z?i(EFyS@o}5CVTvvjS}>b`3U68-!i;SVIVf^}OvzH4{&XwgnR9=UjV;J&_UMq;*y0 zXoVd?WUm}?J*CW?17b!So~<5i2`;Mjn@qkXFM_KG2g8CPr{w-5AySOGt2W2 z5cQ)PtndLKFsWmlm4qfyye2%y0-68my4s|5yGnUV^?1@12Sy0%rcI7qe2hbz$lj9U zUlD5D(fU(V1sN?fuP#;tbVlL8fZM6TtI_2`rC>*xKbkBF=u97v)31~O*^>`(ae+yC z@$h&d;ADZP;3x1vVHX1J)x;gD$T!jkUAlS)t06zfWcqMEIoh?8^O4uK9U0bU3i$5%zs z%TZ`&Z@xd;`lb@Tmcw+ng}Wt@NIB}dB1d0?^d-A0J>d>A7%JhuD0q2GPz7YKkcIrJY-wh`(Q zRN?-g?58ear9p!HBiVO`GX|4!Dvx$3AS9;j9=jal{80G0%j~k{-OcTPq#bW z6>WSxH^&N9(=xW{&foC_+`J`-lGBB+2beLgj~LKMILk;7{kTe}7!fLV>o<|1_D{=1 z*HxiUqXO>-DCuF`KUTTD3y8Cm1IRwnZPWb!y)bLgy}jV`>{)Ako_zL~}cxH`iOkBTp@KqroNXno^o92%7uPbFxg} z%OGY^+OcK7%-(aK@)_E_xBPI%gij2R9@UY1%)O<=kH0^uX5KIn8-q1G73B{D0b;x2 zlmuv_P@+ocQpCe)!8^B&14Cz2Yp0zG*LbcJ#Q&$@5!jPrUvBK%~+ zf?WdzO;#sOC!0k*6X)Q^0;!&|&_3)@*|vp|tsv$frKbDR2(V{*2e%#13R{}|PQy$_ zFjOC`NSraBG%~i77TySQO;?yTS6tCCufxHSVINBZwjKGJSV@+`p>jmO>j)dD>DN=H z_|pxOL%0YLm85m-O!ajGj)5z0UcXC~e>$g`>y`J>Ne!RUNVT168Dw?`my;Y^(?@kQ zE55T=B(szJ@W-c)9G$7~poUo|*W6>@UT`>H*){Le235NwK}Fa~NQhs8)L4yCPVBud zBDKI6=3+PL7FXo-ZcVd`jY{yff)Nz2oO=IW{l&?gBR{3%e0y+?ZJMkRSwK#qVgwKO z7oP!-B6y-fJV|$3(9JbnZm`VW>R^gU7U*J1MIpG0*Zgy{suU}b^c@poc(_`~k0$QL zzulufaXjD%$ID0xI{N;^QT)$uwazFzjqYS&_r+vHIO0 zJ`dPp%s%<)6^e-rjBWK|(rOEUtiI1)E`6>eWXm&?1#qewfDXK?esk^ebRo4y_|;+xZR!^Ahc<>d?kAvE#9T@vUC?+vD?m&#apU}iZ*1gD@uvC7l!gNDtu z+}Wu~?olUeHTNLp^u+dtp0O%65?RZs{@(F}+RzTv$&)}tRGZeMgh#`Drlg2`<+oWS z2GT=}AlQS7fe=w~Tf#!^UQj%(SgpKHq~E~iN~(Eq9eRmhUqMT%&R+}6akE=o+g@B!x5csi}803mg@cRPY zZLV)Z(eaax86j~50=;^x?HrIEs2lwrHNQ#O7nO6HE1!sKz4$v z8;n>ojJzfoeL}>mE(j`@MSoPHRFC6%Sdhu(gRWF zLesF@Qdr=<-|jd)vs&&R>5^IV$uGM^_g4R+kyzD!JaAY!= zpJrRU`Gd=t$8d(g&~6+Ir|sUF4-HIE0x^sJ`FlPa2a98DYaz)HTEfgQHey_KKZULO%m~5I8(0vaeohx((pfWSxQgz9A1<>E1brmokIh4&lKOZ znx_BAj$mTur}bWCu2)H5BoY+P;{OmYt-2id9V}~F&G3ya zUKRc<(r)J#cY&?Ex+WEv#o*eLpa54?)$UVyk@9i!C3o0@we-varY<|60_(Xd3CCZ_ zurSm_2vGzD2b$+(;oAgsZ+7YaF`xw*U({^!gmY-59}54|8(ZUHUEXbY?TVCyJw?1Q z2T(12=3`8tupwE9y^EE#I9A?*)EWoYYr>6J&k~F&r~)wwV=XGrHYeV(d2mrCc_vAb zQmUhbw<1`jObs6233xwr>XaB7dad;0Md0RCxE&t~88T-aQZZj}WTuL5mvOx%C6ELd9@) zL%%KNA3W9D?g!_8H)}!eKXv7$_=7>koL#Yi9hkmsKL8tnJjNE6tV`E`{H$ipWHg@4 zRJ%1*JA3!|i|0PrN@+n#O>qE#5w-@nyY(zHBp##0y1H;I?qr%cM8VRlZh##rebx6p zB=x4IFMpfeybT1v)WS^>m%#r779}`M0(~ECI39$L2u!er8Ftg%*&p%CHiW>=+Uzjl zy6ZVgMCMC`p+BKcL!4^%7>s2BTHfAvPq>Fck5M7NZN?@soX^Fzgk`xvMO?+zQ-1V~O)AnbkG~Ok;z_-NQisCyBi3(K@kzQ8(4#XPwQDo}bC=24!0kG)`j@GL70RbMnFYxF zJ7)t4-G~LxIRO9iXg7et_jH9|r)NZEIyxU60|QpqP!uQtL`}kb@ss=o2rdf8i~OO; z6*c?p+<*c{y$K5-#^+#vJd1a@jOMS`6*m^)<%SiXSpj|ZD zP6cRlr(1soivR0v5X1U|1EwZ!NTFYTE{1gn03?|aNHVLjp1cKUCqg zh*@;wJW4f^8H!_)?J%51KQDI$S-v>j9A5_VOof}f0rhTG?`W1|b*4;ui(*R}6$ubE zm08}rAox!^TUnN%=QgYA3b}vCzDvmZh50}n@5M+k-l|s|>`U8A0(9^c7(N>@vTiI9 z)G;<~`RaEL>jPP~dv2hwDNIG#0y(cKSvV5?CqIc`p5{J{cxv7qmw4a?lodFXV_z#> z9X4-VhG?3Z6TA@7({YYF&0^_pDeV{(ISM~ETsY;D2`0vo!Y9iEd-zYfuXH{nv-_(d zLl*c=MzFj|oI|HEv9^g98znux&wb8*Po{~@r4a4UOLoCF5VXy*d?&D;-Gz}x^~1M` z?quXkJ_6_}!jpWhYfsB^R6PE>$~LQ->9$-=m!IPNtI-N{(B!aB&Fn-tHbhI?#V29k z^w+^wMIg?pOwDfAx%(OAKc~2k9DEMwy$z1rF94Nx55RFEL>K)JT!9rc4xP^p*^$&y zf13bT40qIrssN_p!goA2AJa*A@er_+X%*Tz`zl;MPg?LoU#Pl1xnM zt<}|Qmpb#TT^ZkjP0QVYgQI#F4x3G4mpx^)!N*QpL=u39RqGb>$Va1r7H{C?3z9+H-^7UuJxQNaAOR@lt~J2DKnO_dO?ZN=v|&jhhLuE8zP%xz zku&}_|M8a%$z$qI6)iO$sf!JR@YwEeFq6E#OmkE>R?Hzh8xbkD<5TRI6vrqCQBy+Y zi68J!i$$2II2Z0bNb~>b3h|I?mLFZ_Z9GV zEMxpoD_M8bkr$^uG49)8r|6)ZdcSC`ztq-TXEW20gvk+YMkX(^RS>$?SO1S0o`;T+ zx-NIs?FwF@(r#GT#NV&67fmz6cIO&@3#F$RTF+d;kWzk=seEqhZt=1fog_|Ft zXBb#e9M+~zutuwqN58sXpn1K@`azo=^%Zww_b<{i^exXB(NLu^3ftyj$fnb3^W*i; z!V}SmaFWV*-0W28^_UK4KOmCkS7zb{7uo2ewmSCZW0$xdN!7Z4RO2V5^zK#EzkuqW_F0fABy z8?-n;@yYos>bmEZ5I8BfCLapf_qnDfFV~S)5Dku`UH;IA$Rp=7_eTY%clv^b&%SV2 zf+GV4X`;~xPFa~PpKUU;0Ue>0k8kz5&ts^=xxtEp#UCg8<~!pa6>-|E zBM7B!I%4;7!pFgIk<9eT`Ydze%c{+6AkGFxV;nhRb?GO(oa%M1d{X<;8m7snx%8Rq zEyePWjgE<_>z!qSQ}E$UA3WL!@rX1RCH}j&#bZGMIMgJod&I}3jbd1bE0x3R5xb=w zh>o*SGljFAmr4j@26c%c;a9wmx?*eyi~a6K$)cFwEGB$N-w-t{DyZUl$V&!(p|(5b z{HDE!PB9{4;*oFP27a`U8%`E2IPX4yM~oDF6#uX5KvKix?g==})O5xE5ScPyl>&G- z3*fYmhL`%#-y*?;x94B({Jy8Cf2k`-zB>}m+WqK>Nux1ZC>$GI3M_-Tp*aSE)YsBX z#)*JVq{eieJ>9s-QQt_qd2j+Zf+^6uo#16;zvgn+*+xE7;C_tRz4-~ksISz8JJ;L5kosZ;y|o{#Q1^@PqXjp7#BGY}OpUW{Kss0eu$j&Ctd{c`(ez)XdVldN;Rkj&u zobhUz#sWMz2WCuzAz(Jajy6K{v7#9?-9`NNrk7SIooYw*q=N?iC|~VpSvF}-BOG|+ zB;UsCs&rq+5~(v{GuJz?pco8+qM=R8+!M{(1U{c-@{OA84j1Ee>LSvwv>gp!Ffj2D z8^}oBvXxj3d&LL&%Lcz!e8a;sXQJ(!5CE8edfoq@O=Q3sXH#X2)I9An6qit;Gw`b6 z6JRMZA+L?2zL?4%bVjv##>@4<3rNlMYq>`9_boE6j>#=P9X?U`(#_BQl%B;3uAyNa zBIN^F8dqq&`u@Pc#H6o2MrwG~6Q9A?ndb4V_w-o6-c;d-;kR>7rUL_d7WT>FyWHTw z4dcd)A^PuRcMU}Z$3Px;`2FSc!kLrAA~KM-H3OEvNQij?xv35f!KJ6U+z1*eZ`Thy zb;GyjpJwCwKaa$^vU~x>gHwipg~CT-z*brxjoz0Uu*7oXI2<6F5Gtr)6H9Ged&@c&Huw22PmcYIWp>l_E1k%3l=;9 zqx=vq%=U;cbF8y@w7dn`v?^>w`Jtl^t@-Cy%9M$}Q-3LmL-H%FGlRPo424aG40Dx3 zQ%LDot+v2WuOay~#kVO5z7+{pl(YkaYg|@va7~Carq&qC+W+-x7{x{_+Kr8mbuAXw z?={!4%K8ikr&ix82}^H-OVMZhGvivhqSr&GF3+PU7yvT21aWvVn$e;f*okX!r>K?- za_mVaAUhh&!E8H<1L+^_nFhC~eOI3*MPjR-DliU(l6%&dqtps{bCDO1>ip4-uj|zO zc<7Sqa`60`*tYBZcDuphy*K~YhAM_7o&f5+0Zd|N^E<>&>^Kgq;^jbIki~M9PS206 zl%8(>MZz`rYkEv2b#z9C9qDU%ji7deUMvjJSgT1+avP-L4|nfFDOf zB9-@mcIVExy6FTEPf6wlxZdu4q8k7su+9|?7gOS)N+A<1J&sf9b zU=iLCLa!*EU=04U8re41+aN=5TFlsR+_NHIl~Wbb3uXDYA%V?09KwrHB)WHd+mhER zq$YJ_Fe$N1{Y*m^`BDf+lT*CRxOS9@F>BKFoNkT-_Hiv>h~it0xceIERdr?j%N0p4q0V3G}-AFu8m9WVbX|>nf&CVkwY(WOqC#J9(+3W z-v>NkfpfY5$OA|g&0U@zu*jK7j;B|TdTTwhDd)+i=Argy8tTY~^Q?~~{}RVY=`r^m zC|W#A*PU#Mfa3Z_tW;P2t|f$QD}Ebo#=(+`0i=xViJsZOVNE=O3KXd0Wx5*O@v}s_ z0U=-^p2;a;QFkQow#)=l6R)nA9Epl!wfrBpzB($(?p+&(4k-!gp+lr3l^D8HkdW?{ z5CN$nr9-6z1St_o>5vj6r5ow)?)vul{^FdozJJigVkyt;{p@|;*L_6*QWL0lRIm}L z@kD`fAl&9^E_I|vc>xCWd;A40o$(Aw_SK>|7*KpY*9C9{8)Z=gvouE`0Qj_m2puV= z13-%YwU03V?FI3i;XYJ|wh7Sl}$OX>Nr{Izn=_~Ihf2Sqy_c;kC(xR%)f|XFxCq8aTR&47KU6MmCAV8WpKd|O4 zW^6o4@{U@1RCc^vzN?-Q%xbs?%K^4esZe~PumJ%FyB-!Dt@Zkgi-v~vR0{=`?RVJj zjsxvID9(8P5BIgNvpF@RIlN%$AF^YvuP2^Q^?5bg3w2~tTli|rq}@C-&@4b%(@$S! zi)%w;aM zh(X)@PTKD$3CB04UN*-T^fSIysW!rFCMYJ9Ug91EW%IrFbKM7Mv=fnMXyREDNdCgr z?YT>aLP)Sr;POOBa)CSv0NkNC7_QgM-bWwrAxD$`dMvkDYhD|g3l8^3W_EDk^%dN0ek(a9GHU^|DnW3Oi>Bx$J?SIH+Xl+h1&|wv18}NUO)pCC zz|&7aBWL=j#>LJIWXO+(;bhCj8Wk&qEo8?$u?uIy*<^3~m?J_UX`v6926h$<4uF66 zxvkYh6({S&TiXI&M!zVM5^_nyz0Sw1MvU=rCA_)Rp=> zx!4mww3eA zhpvonWAwRVp~>U9Xez){U+y5iN@HmvTygjo(y&J1*Wo(IJRX&~CURjDbQvts-F-#t zf;>pv{MMdecT|&QoV+yBGV3fNHZ8MA6P88OCJ&j{G@z2f-JWmlrCZ z#ku{CY_9piU4e9Pv#(Vqjl;gNf?pTyw8Ath&H*_sfj#$xE;J}|)mxh+3!k34Z5?}p zROz$+E}8oRhF4jTFDl81%;Jw`-`F!AY?}RqVA@8l0Lcaa|LmAFIk;F5*fF;P-YBU! z$d?mCZ%>yoEuKO|uE5k}dN1p04{V3up$O;K)}wxL+6ULx(3_jHIeg#CV_Si%NeAF1 z%Q@tpTMb_A{qd$-{#QFw+8E^JwJN(;W~c^yr4MlC5S9FCBpeH4zZ3wAPoB+Uw*2z^ z?J);vBk7+~`d{9)V9-(_tPxi}_7LMig@A8_kFI0oXyS|4GLQLWgiPF((}Xm#aT{(g zw_Yn&BjUn@zzqJU1O_!R7`|6HgKGfoQX;2^t4Rc^s%x2`eO&X^pIJGXAV&0bf*TN7 z0OXIX9GoV8-h!{C9LSne23)BTP7CAxBKnx-RtZ4-jd>^kTFOo-?3&&xLoP72pTg^b zNT^6m`Ki78By!(lxAb6N`SmG%%qyXu^n6r;iQZRVID+|GgDB{#dU_seR|@YQ)=gm=;|YJVe_y;t zRl#t+XnMPisOO7%Ko5BWzK4`+}s}j*` z-1}`b6@(I!g)E$rFyU@iu|tpY$d`vs5PlR(f)lBTV*p{3P~)75r+)nb z3@!`PFnd!Tvrqxcj=H=(VChIi1MGAbL6X{5&syJ?y@6>8pwYIKGIVOfnnEA zAZ=x1G&l+&a==@Fo1#oA1z!K`kcWis1G!x&Pz*6PfcaY@zX;Isnog9OZY<^PrUAHM z0Vpf9+b==#*VjP|sEQ~*E^;u+x01#>QVJnwlWa6pcPxzF`@4}u{gRSWta7g6eadSh zd#Unia)%k_VK!lFc)8S)mUf1!@(vC%iz1=bu^G|rZTuE|j8CQ^o$i>flS9=}rl)l0 zD<97Z6;2;u!Ji1ntSoVO9g>jb(nB##jp)o!t>*3rAiYZuR%!Jo5^cV2MUTgINI|() z#i7^Cu$)p6n+oR|v#R2dYj$tLh&yU1N~u&!XMWQ8N2iX)G~@#dtJLT7dwH56j6Tt* zKO!)Mq>O5fSO*CT=Nuh7s*(qJKgcnfETW4(BzqJK3+8FDEK5eFGOvhdeaB77K_W4N zqG{kte<}Ck;N`a-1i3A1>Ax@gA6fXEU#w8v^x4FVf0maSVbvhr77Nf9lU(U}@WEki z6_&?vYU~4(G-d0Nk`J&#ST>d*;?2VdCPjqUA%eCo2P!<#6yGGChJlKHYRS+g0~{!s zVyKu20ze1te9%tzmea6qo#O&n2NX4K_lU;+@CWUi>G}S`MgxfO3nE&J3p`=!MvxYs zJj@We#*2BtL;nYy-6tfrBNwa0cq41g`5M`;gi#^|_Kz~|46rs<4O~s5`NuFHTlZ;^ zHG3zAy~4WthKsAR#OD%KUABb=8OP@#L-;7+s%pY_KOWE^#*6w*XA zsX4l|J8`^2p^9`w$v z*D+?eMe3*KBXHKXum>{A%P+H{&$%RV(zFiR%no8IleW&gcmjiJVv|ub2)x>^s({A5 z-Wj$Rb?5SLFwK<``H};y=Z^Pw(O-lOdLQ`{j_=n%Wv%N8P#-*JMceAbeF?4?1W|%F8LtdwMFUA)FL8Pq%+qfx5zm3L?@Vax(JF6xeBw z$E`5P#o&UZMc<{UTt$_Sd;3jE}h&W1`^o* zcu&~4OB2&97M1574<4K9tbByrP?{U#_JfU>eu7oNUK4dy!1V4yb>X_``X*pUfEnft zqbG~YPa^Iac&E$K!!i&fLbqifQXzM2q5&~Wjq-{0Gs$SwJZxBq6fuTQ>J7m_2ABib`Z#WzZm@)PEIuJY*g4DeLKt9LSv&m*|JurYOsTAJwz zokg)}Snu!6m__XvDgL&5`zEZ}B%Z_u$ zXIAWQg_kG|w+6I3j_`0=fWJ2@1~<2c;7DbN`Mx?83A&~Azjn#ie;MRVY!w%)W6!+# zwhijwCUxIZ;ob@PcT-?Fhh=gOv;ydf9{V3e5&TE*-30GVaLz{(&I{WAiX#6EoR!|Z zE8UTm=jt0R{Shm6DbIk>04Uu0&VV8F1jT^T^CWcmAjJv#1 z_?Z$mh9|-GhMGSG4PfY0^i*K+%mZtiM6vOabP%Sf6oQF~j!=*S1Q$OT814v;ZWFCg zPQBI3a*mUE z+Pvnp-)o;^US-kK^{u!Spf)q^J~M>mK@U2{;=hW|q z1a|x^32(J9jjJlntqBrf2DpQ17cx5S)!7~}Rki#CLW_G^fuV){@1Gns zG@@@f9yb{~(1J~q>H7!c4B=fx@fNA+#r3au&>C@|FkvPfw6wHb0M7APz^|)xY8yZ< zLLhOq6&S+ib-3Tq(IdBQ0}qLlLtwXCphPy3P|dcc4+t3FjBnTxy4!#!@`whyHd_ z_MM^CqLP0~TcS>sG(qh9iw9cs$&GwLJp^Z^^KlbA865V|ApE#78 z6}!fQF&y+rC9r(UYLa_NH3HMddtGM}(OC(e_BNIf@<@ph66N?vAP1s`zlPGImJzh0 zEHZqRziww-9jH(+Tu@(Y^sKH z=A$hHEW!;Z>F~K8;#iIR^yTKw*pgN)Ju>MOCOUD8b~|V=rP+IUn&0n`+(|zbBPJU! zMNDXN-`M9XByNBCKU+Zza=i<-!r5MV^}ye)zz7j3sdI*ghwTA9W3ysVGZ>c;q2tpO z208UsnUfkw5j|eROack2`uYWnDBb?x2(Np+Cwlhhz5r<32g=MlLX(Rg@7>+Z-EH*B zqT;zT$$#)YosuepI(KEu`=xB3GU~q=~1o1$A1T0dkJMmDzrj z-Vp}%t2iTiuAWl|V8WZCH{8K-a0E}uBs;l}N6LpaTLZ-JF8UWh zdcwU7-_w+_Kj7kb29)}@j@2_&G-?$7A3IemGNdh7=!Hi@?3e6yy%eiPG|}Gs`zl9_ z#Flq6Y~YqrSsx8oM+WmRKamzIA2v4%+mILQNV)a$ijNCD3;naoAkBv??|6vqo6cOh zB(`uwH)pQv*H`wkhe7?Dg~Ut{n}mQ+OPkP)_WM)La5yG3 z0@F;~{lJ@hj4b@jrm0T9Z}fW$4)or+nuzy;!gJRgTK%wxLxb-ehc$_PZ> zztg+BtcY+sTQ{hR_b6it_Mf)E|hZy9T4V3d&XOl1fy3xUi zkjd~E2lssuD`rbD-}4gKWMe(c18#zhq1-m|W})JeD40mW$cRfGVLln^OU+{@?Fl^k z-0wh2-iTf#?k&H7#D0mq{2XwVF&HN>ihpAxK1h0d-XU)H+KRjpP|zM~zWORcFo?+= z*0>K)JpL=?_FVSk`_Zz^GAPlZeK=qQ0edQmbm+X;7H$e85?Zd&J5umqD`*VLJlsA|9v5;s-r-|P%t^=UKP9@tAr#i zfgH@s)h*TcUN;NgPqIe$vld-Lg%?8c{Y96b9uXYy9rdUcJf%^oxR}2)Xv9J#CSP7q z_DCCN$8z|?$gdZkG>Y0Gfqcp!0XVqVeAP3m0^P;zJyC58)BC2=R0u!#=Qq{AL0V5XC$T zEmTncasdp#N09yD^r&1x=Ur{eod^TQHxV}Ipi7iHbPYN!X}Y~c40UaYQ7Er__?nSu z+u9p9;o!;Wp7U%p1Gyw8EmDIfQ3<|rSN7cYkj>1OIXQmFpp5=r9 z`tz72c7DR-p)v60eedrL-Pi-@kuyN4?98jC>>i5BN}FKu%u##%Aw&#;*4cv50GwpK zK2`b6QqQi37n8#m=m|!SD+jaXzHyrZgh?gioBdlRLWJu|2$`{u23I-p5NI`vZvyKM zxwfbV1E5LZ2=dP>M}%Uq2kL?(s-d-yZfgk83Xw_$b5@wc8Z>j0HnUTuE$@1+DKzk) z1zwr(S2cC=Sngp8mBPNzbo$1I5+pGzzCC z>c>APJxiJ760l7&iQ}?lrQOlcA;wpiP16_*uoyiuVZS#BY-&*3@;P3r=POCa(fY`1 z9A}0svto1C(5nalOQj)2D45fdk&`Hti5oPB8#q_)1U!W>Y>_t_H#F5<)u_!>x^1yOhuMEE6nmZ>5M2DZ!|V3^no9`R&!-DEdt( zK(XkkoSTuS`gOActwh$xON{j=!b;;6_Wj}W7Zrvr>v5t0Btfh-c=F5n^c zyFBK;ogSv01kn_jrzl@$Hu%>VH@v%%owkmA)aeqoLTsH*N(lSZadq#2mI0$Qmx^m! zYUn-mlCB^nmuqxGtcq+pN)mZ{wDSV;^?iQ?(UHYF-Vf2s!f8HHd~iqmx9_eNLBBA? z*`>p_qDw(1i`I#=Qb#30jB7&SU`KaqPA5z!_IQc5R~iZFv+56pAyI51W~qC6pSVA%h$w2kuG7 zvHU*Qf#{8YRBxJfI3%oQg{k%A4s=XIz)I@FGu6RPnUs~D?(SB^^cutpnf285?tn4q z7eXvVwZ?Ra@XAHZ#YUNktw8u_V-+wX4|VGkX2GQtC~UXBEk`BtWu~VFl{@DG*nH38 z<)+BzY`Gx~g5(X3g(l7HZK|N)zD$vOsL>0+ELJxVZtCkTX0M?62XkHCq~pxLEOa%A z{6y08g`WdCVc&OTf3=k1 z7!kC>Pgko^KK8K-&t15ydMZoKkBWOOfoAM}`JxWpexFWL7&O$T_a9!W@WEM0q2hyB z1RPN5uv_7?}RGo&X4=~O5 zDHfXmPPqU^QjY58;f!&(W%V2j$o90fuAOvt83exo@SKh}QDhU+d%FQH6O+@W8keP4 zkF3#mOGk5+$f(<1XuMd?-oXdetPp5?wMCjaWLuxUN5{3Pb4Ge+2@JxXc?X-*hLpTlXlo88O`k90&;gQ$H>}im=Iv-wB@TfydT~f>`wLa?!$^2L{?q zD1Gs^37O!mXtI6+BV!TE*0!jAM}o7S<~wKGAhGYVzPE0(C;<^?N@Bx1alY`D7ClkQ zrc0pudA;jrn%U_TAOW)6)wZ<_ccM$dS=Of8Gwh@MtU`=jV}47FWs4uK;^}{x&)BVZ zE3az*yo)B>j%kKTO}RHK_VKI=OkGp6u+6tuC$nnfr>hYM+vndrCmQ&-+&!Oszol-q zhA0h*>yumvtI=TY%SXw1hhbnJE-BwcbYp*HW?Rjr+A*Qz$=9F(m@k1b^!h;XQW-BC7b-CDf?%*&Opu>w6uH;@g}HZ)tl`Ht zm+pnFMdEgXGTbV&512o3<|1--Mi(*8;VKPe*nws^qzC#His`9_KG|SOjr)D?KjcMW zV9o>R63g2=C!v48sm=ls83waZRh#P^#Qj7M2^L@$;R=^Wmd3S_2eRxWNcjoJU_e!i z$W!ZSg!>`rX*=*xI)X)v29LoF!6^fWQanIN-iVSdC#zr1z1iw7v({u=KMSurKo8WzMm~0+{B{=iySssqxp9sVqMbdIwfWT8#fE(vxy%XR)X)Z>| zBY`sA_P%k$5ECIdv+yB35@jC<162|gVB8B|eWA^N)eKYQ*$Gjh!CV|sj|Wn0oh-zR zhWi<8r6F`lbd7X{g!f<^QpsBG9AmEywYF{*f*pGG4lMgikcz`5-ytDJW@w|Y=MtPL3xcmJMv4YR+Q_au=D>@beN zoB;Xr^Fy=#EGp?TsftMa3FI%jEMo0f7LLQ0qsE65u2?+&4P+Y5fO|=GE=yhUHS`fW zzrJ)KMpKr2wtg^*V68KfkH~-5G6u<)6|CjC%IWIgZ^i{6^@jpH6sa8_;M-6SLWHvY z6*QIfyC3&s49a)Olbur?i4ObyG4H2=i8%t4`l41gf@B)2!^dM!bO7@WXCh5j>BMbZ z2`OZD$H(f3iZrRMQ1P`nxY^F5bl=YO`(0IX(w2Y9cKuSWru-;le&DCF%pLR&ioO? zW_+RY$8rHdoaxZh!{9=>-T+6Q_opCDhw=nt=gnRx%gEKHE9B`p_mY&uOae8 z9I*r;xEeMA4}xCjl>KZo-NgBR`5BiS0`L{5{qqGAh_ z$k#i8IGmWkH@=vf(@m*^$`pPNy7*9udOsvR`&tNq z-0mut4i&-9i0I~_l#q!I;|xPgqM}qV#j5l4c0^3EPB9t%`@?=oX;G^=zD0tx0|_y- zH%<646;LT7E@#J)Lp;avz&|A^ji!0daAZ^9-R>su!mu5=Y)~85$ygjORGl9ccU!3_ zHcTcUnf54HV8$GTHmj4-BX>W;aF54WtW!UPy_4$J>ALVC9WnoC;VA6A#N&V>nXg8T7CqY`4JpHB2kFtB`ox)y(pP}w^UyEP|Q4j*3 ziN97NNSJE>^OiOK^?z^K-2ZvY>Lw*mo*{yG-dOoa>8BFoaogX4aYAu5h(N$~)i>L} z2640Bf37&OsbQp_#DU&_1!#>0Z7{9S7j30@%U*MrUu-HOnzL4fZKYw}JgE0ntrdtK zp`hbpf-!^brM|hxI}K6-K17vNme*jwfN+yxfF03;UlWjBN~QY{|6vb)Sx!Hq@=_IE z`B3;$M?e7nwg(uzzTFu9^6e^2h``O$&KT1<15Aw(UU$nva z|C_utDoNa`W{lW@*`P#p+#!=b*|?`Rc9)@+GAhJ@4lj(cJ|X%=Uk57|za~r1BYAgy z7F02;g}`tYAjF; z>Ktnfp@b+0D2GPH67%;TA^A$voGTe#R0LIZdriS4^I`f_ZjUHkuCX&4{u zBOvez0Y^@XKk8XXu%Y+p9B&=0)q(SZuF)-t3%Z$KZ!*uOIAd8Z&|!uGgVrvnF)oAM zS`z>e2fnCf43t}|kq94ej`na?%C{j$d2Eg-WDBRg8d6vQ*RJaL+EWlY6p5}+YFxbw z4vZbj0KIZ6G(VgR&h7D%49=7CUljHgFTc1A)B}L&DS}X-umJ?reA}Rh?=e(m!!Wfu zQvrmuQY{I_U*_k249(=MF*)S~eUc_*BuUK?I05$tdpWM<1A9K7N?--hmbAy+Otf(3 zJdti3HHDyd+Fo{#NYRU54Sq6=tO}Ebt^4*wIwN_TfW38!@&>j~m@P0s zdY!FW)xZ~iu}Kk3dmv_#6h=U@D8=83T>Fm8G7M67!6fL_77+IF&iy|lL<;1~`{2sl zc(EP*cZ6udhUzK%dZAgf^c)LO7R#W{f+;N!pMV#r-w|L=bYjE_d#OW_j`}j4uFTFz?%&bOnY40BJND}fM0d9>37`A3!Q0~tMo^nVO@r5*R@j^0 zziCgd>;Qo9fvV6#Fg$Dtoas0S7C0C_^cTw(GS2d1#zhJ3Pm!0!cCLkyS=18FFUyED zdnJ;>lLgI$`*ved`NoAgIb+Jtqbovv-X;rtPjBS$qT8kGtSsRGDa@=%EgQ+fd`We5 zqu}o%6VL^e*JX6%!OdLCI8@LMCB{P}MiHg^Pj4cBsk^@|8wT)HzbBw-aV*Bp`>@`k-h~XBm$$ zoWX8a1A-l_XWKIO8p4guLR@>rlnK$?z6D=^siU^1}S$(;V zMvsf|u(754$vpjbwgZK2apJJEm z3_CAN`H%@|*R%PwGABPxz29ow*F&JbZ>9bmO)5m7Lo*r3AAzx9VNCf_SBIAo1qCg= z{x&H#*1buG*QIFWPUSQArsY4#N!H1?-n}od(1Vy3yU&Gf=_cwO5R7w}!o%n|eKXy4 zp4+78mh?`kg@Yv~mZM!uVuyg9crn~GXOt}^bZe+=k#wHk3`p@O`e#Y1@OEESp`_q$#tvz^#4AC7F z>xmWRMm-GEiQ-mgttneZ7K;-!ADh#A)AQW|jYeeyrR zeG$kpt;iy*Z_esv=HD7g3HlEW7eXYCAOjl6G=snmte1@!R@onG0XFp(gwpBsaK?gD z_nm}*Qru50U1A+1E3`@&AA+*qO16oN6@}weHw5gkkKKBjXW6 z-Pb2XyB0CW~I(|k|Sf6R8 zdn$cwal*sU$3iDwU*5QU#n^U>G4D3xGW=4bOW#BCA*o0CZbTE`pre>S<-0a}SR943 zkxz{300G_YMJhWE4JLH^wyeZ2qGZgktJsS>M10=yELtRj(wZ^olHRff)xj2J5Zf#Q zLU28M{qCSqO9Go@4!moK!LAUb7DzBqK*w@OeOmRmV=3i>h&-)#HnBChjsici421x^ z%2a5t;iwgu&VSIdQNI745Cb#|L<>1aHYX5d55fA8P@u zvb7|sG(RS-RE9w+c~gHtWh~4od62OV0#0*79>iLj&qz~;Eeiy{CKl4_JT&0&hQk7+ zXJiB2lnvufDjr@EbonrVpWOI9q98WOS{6%6Hx=Z}r3v}Oid1Rxp#c9Kuzv~j=^iF! zm<6^ZJb#qs38%5yGQRY{IEpEK%-J>zNC}bYacvVUR2K9e%Dv%ghUcRYZA3DmS!8%a zR3}irt*a69%#(RK)9$C%{a(|}z96sGVneSe4&#X@Dfsz3X$}CED82ufBqI(~JO;qt zplYn0<@*bLZ%V+e<;n0yP+~HGXL-OMNfY2Eb`OMK4iP;*qMT~wG5-||D3;=ez3Aw} zEJROzYMB+>64^{@16P&1CT|dJ3UGg~`#5J3bgvbtOXt=L5=VCtAk;R@KWKCIP?(qcrp9rkv9N?+_6|M>BkL$ z)c>%PK?*?W`d?g2auqNK`T?DT`R?+;LTHKvz7iFdxz*C}muEv_qa}|6(+*{u%lYXk zAe6TTJ*5m?@*DD}azpxd1C8_-$t|+qF(J$4Tj$vtSkeY?Qx~}|r^D~ZFqg8p4b3kX zL83$gS$lD}9C`#vu=&G9KlYqA6>`)(L&%G7S%Xbh8$UdkK(kydyp^xeQMgJ_PHI^0 z@2F;tRljRS$&fdQbxGL@po_0L#3RE) zD*P|?rh_o^CGeO3%cTBi`UQipsgdDXz!%>l+J;n2-3s_}?{#R^G3Xia0jEu>ZUO*y zThxph0*?A`*pSfIJE#8yqoKM2HvDJ?5Su+jbcl6LAg(7E5ZUu?K=hr7`)q?(z$gjZubNkTjUH?B zffv|Cdrdv!rE1#u8esL+1S@t($wSA9WYpkRAoOtnAmlTaeaDaPrU4w^bzz>oSL z5h$Ouu}X??Evv?rm?xHsblj2CHF);!_(xvy_}+}l-q^puDj7=7h*O{1k}{7Ei21f= zM2LbvZU42*>&{DO^uM`4V@yp(SqlnCDBSgN|BHEO^2f) zgS9|HMkP{)w*{cqXQtsnFrfs2NZ}}S&_Pu2eW_+ODo;noLWL7uv4o9oM zo$hRh^HKtjCm(_8*KNhSvIq!ZcU3#Kr%0^QR|$8AawD(I({~FCpM8nhQXNKH$IlUd zbcvE#z?BAy^kRit*OhH>wqOgKU11e>cHAf5h>g-uY%LB)hxkdrfz<;3iu1drdPCM?!~11ty~c)_qiz0L(@hu?aJ)hmMd(XVK5!A$wk( z?o`>YKna+82{ePXoz$9@fC>+G($)}y2V z>wM)xdvLy_xdCVM8<(5Mh5e7G_*~p278uc8Xq!Lg>mbWd_?hHvd=%rtez z&2G)ien5U=o!%7s<;ZRN7Q67FEzC&2gb`JRDf4J51GCiM;HqC{!K>sUb^lY3%DZ7o zImM0dRl`c?6MOljSNHK1J)mjR@=0yu zJDU^k)r-!3HS5oAfA$v1J)hRKVHr~D{LTzcVB2A$x^{nb<{6I7JA5a_3Va>Dyw$g} zE4aGlGOVlEnxjO*0XqSX1i@rXhWqJcF2Vv0wNx>{cIlLY-Sx}22Z+Q?L?J=K>E>DR zSSS1dhycoU2w zGZC!U`uPu^g%>}@fe;Oxd9#(+Nhm5tT-^~d;jV*2M$sucBZ zH1xK#pnm6-;1AM-tCxU;ly^H;Y-nF;H|n~jU+v^5e!U-5Ps#d>VXu92^xMw$QNM@B z-8a`3KtDF%z5^|5IlvK8AeRNtGs~>gR$>0@KuBC@2&TDCPf(fejT9R`wLhzE97}7v z<+_fh;K%-?R{S)iX0UpU`qQlzHr=jbxdW;^MJIZQ_CG5KRfi(qak|Y&WQrr%KY65L zn!Bd|r49M6?;Ju6PbX4@DIjB`+9*P_*`8^ZHxe@rJaJ@jfqv!`W(fjM35CPd!QlW! z0|vg}11E&KKy5ksSt5`ie%vos+)o;~d)5cD5n*gq2@iF^1I}!Nfphih@6`HbB(!CI z>egp!qAPiLo`67A1WJlY8mIZ@fRsEHPr%yV0mKX8%s*>j>Qv}BUBx+2qKN$DEe==1 z029ga)_6ZcY~gU#?`X+LgfUjAcfZgsZd!LDu^dSOMR>aO-z#>=m6?NdLkAnyzgWR= zCrkOXcdEEzKYilqh_Wy)#O4^-VeV`7}Gb(8(qCa*^< zdw@;I|8z6@gnTk>(64wm39eRQaevyt((mGT{-60uTFCQ8S|pymY|H| zi_0WS9F_#fA^{8<0rBHU7Waa6K?-;?r6EPbv|$QVVT))HWl|5>pyr40JZAM)c%zmr z%$O0cZ9>Le=$}UoRsgHXEit4rgtLBEJ>-!yEyl%@>FL6RMtoG@m0PoHKr44=TxIoJ zU(nsf&W^;dKcm1S~3>+RlzqN{PV2e)`uw7;%`5oY)Z^W1^A5b>B(dxYtpcqLxB&TdNB2=yMNEPl zN4HBHpZbToErQGS2bOvqIyNA&hv8tL`g>^jxK$ zgKAZ_M^+y5yq1~{)2Bsa1(rBmH0q;8(^ZbCz9%cn(_1&<`b*6BiWIWZ^HOp3h@?z_ zB&N!&Jz~C#%B78P45+T=w{*QF7vUZuD1K#lg*eP?R)@^pu?L3V4bsNBBf#~AU* z6-d|#-12hGYzBji&E2@MM8IZvswBEM{3Z70YVL0Ana9~N2svB%bc7EXB!DJU3%eKM zIH?T5T6QMx|EuZ%?=5&5rLl4H>H`rkG+t&*3!hI7^l8HXTs`4jutnISv3XzVIvR0s z`eW~6l7~jE-}p*g|% z#Gk~dk3fJi-S@kzrn~Z;>1qso_gSyC$xMl$z!LKvg&`I^8z(}`*X#a1EGi!@qIrA0 zfllDdG|1F37;5I}pt^5A&YAa1Y7wSvh==|@2&rY8$|S;se+*5E$u`r(X*=X!EA+3` zKwOwm0wZv0v~DT9>|!eg0qv=`qvOwWH7%#VyGLpl>JDl@0Ct>JWU&tO1b`kcVfCA0Sa25*R@J;OR+4T;MOLBUW5eSvjA26#oQ$uh(p{VTm=kcFT88nj z8~yLK{;w~vLCiMSMR;EH%yxobiTdY2?XQ|l+eq~udjd1B^otE@Ycf76khH(z{Ag7T zO~^hLlUGyocy^S?szJX!ChVSHe*|bmFTpWZ0q!y~n{D9}>aLRl8?l>jDNY|3PquDL zyT594_)g<}Gs+J2c;@y@Q09OvL$%6rwyvPkPJgDZvanGn9R3xX-YX$uRTr3PlmS$r z)_z+}ridXO91WZ)nKm){=SJYcO~AeJ8fZKx|J1r6%1wzuuBPiDEz5ZjFIxGqxQ4#w z6U!vd`rBhL-Nyacm)Fam51Ewk()1@A$sz9X;ZxwHcqAH}^4NL`q{eaC59Ng4qkb~dnjo?da-=4vD(#D0 zSGu1AZv^Ef3NX8`pVS$LDFJZAVSm2mIe=D_cNQ1gpOpg<-N`KLIn8Z0@Xa5H#3#?I;oGXW0ahR zymhtr5;~<8;d(sy^hY`2wYIXJ)4=}Q4y3%tJ~D0;8RkP<>WHldp>XZ8u{4fAF0C3Y zN0RZ@8?c(T-zjmH0ZjA-IN5?&$`A+Qa9*@1!0vW2l$}x32*OGcpJ;$NbsfI~%I6n@ zME`oZ|NUwHy{vd4WywPOpe~rUOfpU%O+SlEX}x@E0-Y8g(T z+QEG>H@LnIws<8Vj86eF%+9KQ|K0=Oyzuxb0Cj%e=fxJFAi56O9UMyQoiRpZY4Sz zao4`9yn5(j(prP{JWI=#%O$f;2Wv)&3RJv)b9p?YMjqSZU`&e;{@2>kMo56zt?W#F=o@bz^RHXgeZYt`$MVf0!%s!y^dCk73&*g!L2%{9Ud8hLg54?M1_Fp@3ahxDx>_v zW>6t4j~%IyPD2pb%k1+zt_U5gw=Hu(N^$omUwu zYGM~TC%ZG#OivJ1;%>4QRoMFolsf&-%y?Xcj_Ben(qnJwR(aTTofm?j%hevtJ-_%Ke=axB63-oLy>s<}; z0Cz@~>dXA>nC?>){gRAkrYv7nIq=Nn z-hxlBrhd)+XV&g)vDQ~j?)5^R{*U}U+A^FwGlNABA{4i+4PRkgslIgbYJV-@^v4Fl zPtyMO{5SC(aI1TpS^%w&Kml@#s^jBV_VZ}3l@d8pDyQR&z+RaFQh)o+Z;~O{ySfpR z76z|y+b#K+XQI9y-W2$$cjE}zN7>rilBZ&1*l!~k`;HT(E#RPC%Zq!SfIQPqyBmSx zeY))u;D2F%4LEl0JXydupzixM#ZSQOw*)s{m1_Ev6f=EtGQ(%-Nqr@<(G*Vpllkw0 z*@M2-1?N59FDcu5M5))Qc4e!NrD9F+Eppa+IM2uSp-y3ium5iOB2(lG?Y+xNhvDve z${*o7Q?)%}KK^MWXGGWqqeUxe6txj3x#lMy9_VmFz&+5f7XRdMK8Egh>ypzzVqF>{dm3z+nK7I!6&th@d0<5KJ{T1 z{;qk9@UKdp*J*cFT~jTw;d3`CapK%m)#gZuE)0m$#J z?f!+`$>v;=ECqV-hbTtH2ExxcBt6bH(dF8mUt!b}p%BA##Qh)vkTLAMhukF-z4I+W zDm)Kx@Eq}IBbfNV1{d6v@LJk?Hd9H<8|_PD!2tFE zn8bG`5tq8k(&#^3{bN6)O1nyxbdk|9&o%9Gt9$lS4Jnm&GehiN$d*57J7TXUUgz$8 z-#ppWO|Pp2C48u9DiOW@T6$E+=+*NKS^&$r&Gmewmv(vfh!M}iOU`rd0amqVt|nyG z7QNw+6`8A?&3MfN*hSa-{)nn>2HXGp%=i@@@&5PU22ZIwl&~>96|e(9Vmjlzr9Rr< z33pO1(VtykA@l|$!z$m4hd+8Bj?XGl?dyabulurM#4a)61y|rl6NJei?A-B8o3G9Uqz{zkuI?mWJQ4x_sCK-rK?MP8J*&Lxbote?}_hj<;RcCpjcvWZb z2q8xAf}i?xeQm8gVVA1+wak3*K1qncAtQqYu!g=)8=DWfp9W@gKF{6CHn*!!1oo(X z(RxcNAmgN}4sS}$$?mD`P|o~kT961gKAXz^r|5`?CM`0_Vm{`})>r$&tzB&!XR+De zcDq!Sjo^R_Fpm`-JK338rv#?%2Bj~5cs%vk-JX>)YE^Ldt@yM(b7c*i6D(;w{Aj%& zawb~Ib}qW4ZHMXeS5Tj zWm$-ipHZGpbG`Z8&X&sKxE;Ss=y0l>@g@A^d)D{%aY_wwp_8BLjz6~R;J*@vB^P0; zyoG9{$Y^#aKfc=xW?2ZY3n;s2j5OdT3v!-VJQVS>@H zk&a^24hP$(jv{$o!J__NO`X7W` zz?iI7ticunG4{Wy+%gvAVDl^%JJy~6M+beOag&%cU;)>`8+6!OqUFYwB0ZAa_jN&$ zt7~$7e&9rVj6dCz^?wIxHs@|eOI$ui>kiA73eD!P*#}H6{I%b z4MtaXUfzT5b|YZo@J3?h_HL#)iKz)+?d|(o)rK46nLNgB#FBD_am+xTzs7oKjwhv= z+TLpW@_ntnA(j0{gw_dqGoFlad^mSFGJY$S^H`{P7Lv&&`atOAOd*E4`Sx<~n`^lNxyveEB(_*-t%H!nhKl7))9;*lJzWl;&4BAro55-%HbUOU1{exW4FuhCgv-P&hbK#^LSI)6T_RI&YF>u4Z++|>XTbrw6{3f_ z*z@Ag3l!`8?#@|^^cuIhtp{&1@@U*s=&2av^ds;(9-n!TIpt5gcg^&3uP0t)#%GA< zVdE?#m#FsM4YOCmcmB~Um7a6ON0cXX{?Ys8|3Z(c(T4)eYCNo`4&iL-T;Wg^6 zJm@Q&w;{5JiNeL|t;fd%tnph$8nZDdL9BDi9f|aWP{JZu*mYX8hu#gH%9rC3H9hT6 z1%qq{C(M`Q>+m+ZI`>YJkQMB6&&yj+hVuKLvj25Tl>Mb|CGpOtR+m*-%1ZV+_=ouO z>P!m9r(#8RV!{f@Cq4~BdUoy6e1$zz4;8S0+(e`Zlnl!-Ap+N>m6cBw6brtd;8RZ} zyGgferw3pgeUFS;2EhD>+HK?@-RS$FP;#ro9*+9XzFiLGptzH|<%-N0F>>+PkbOw~SIHxlRM%%e z2jbrtpQX<Lm?#7+SJ#DvzK=m zz%K7@U*5_>!B_~x_YbJa#{zE(E#M^k?v5mAb)EAjK+j9`U4jOV=A2B*QN8a4qk&2C zRpG-U9|AA6->Ac9?yWc{@e|(})R`%PKGJFCXc!_T{tWK?1f%5emIvre-C2+F(D8C- zvp1O0TbS?X*tE3^iawQIg!q6g?K`AMgGpuepC_~Z<|WkNDbd<<4y z5cP(b9Rk|fle>wRO=G1}QheGKTeYpvdT&z(+<39b4lowogmM+CZmpI&{CRoer^T$X z-5OmAUTNP?vePL3ynjESm;i(L2W_Lo3VyY*vq1OBr~7n7+lk)(3yG9 z*lNN8H+Fj-d`m3)jx~3nA)9PslvKpQJ+zDlz9w!%LWkQ4QSUU0&m@nn-q8J)r}JkJ zYh&loavHqM2qt^U=g4=!~^(B#+)mMZhqpBuz5Yr z;F;Z;G(&w~AorP0(x5UnX%_DGEqpojx&$; zl;jks<{Gs+Ss2_Bg;y{*&Z&{45MA~y^(39w*bgUrt3jY_%&(oWtrs~pQJTFmbY7mm zLh`$R_0yDj>9^wEeL47Pw0;g+ztZI~ z$A(>OvsDX~nza$1U#?!@Vd9bIGbg~%NPTZ`q?GFGGoqL3f(Bjz2jY_bg6|Q|p4u$g zw8X%NxM)`{TC#BBXjO=@=&6Pl`j?r|1L-PyB-#9oGq0lh;#ElRT+4CXzgY^HrKvkJ zSRFvcWMIG}C@7c<^}$&NX$s8{t;V{X(-FxK*wa8_GM;`+z^)Z;+>~rnNc9hx9fTgq zL6c65qKsr^r~mY)Hf^}Euy2Jr9w`gzO>am*@5e#M{_$f_;Z1}pJl^o z&dw3I%Ifd{2V#nC`o`@CMd~q?tK$O8#EfQkFTOXYgUNKO7S=;Eh{pE)w9Hf2LOyRtEc#!z;VmO>yb416g-vK&a-YM<+^`8E9;9^K_>wbIH4E@$XU&{>~r|K(m z40Bt~{fTKSBCXCy>JwfjiiKq@&7-O*;K^Z6Yjk;+JCYil-4VrJXf$>A(8F8IAB;58 z*9*es=lJPDsjkbe&sT@ju$5a6guv=?89&;%5vTHB2dCSXM=3if$rMYRFEe!8kvYWLrxuP;{Z zXD-AKAU>2kPi2*G=3Fo-wNqL^<@BH+Ojr%P-WR^jvU_y8ubg7dqz_^X*EWffgN`QP zjx#+ApMiQs(z`uFyIFJ3Yy->NM|Rl7sNG_kHOPFWn(4gk7dsWr!xh}Yr18=UA=71C z^4=9Rr^bcMiH2HFh#X>;47{*ku#N(Y#!yZgMuASb+^S1u^cetO<)_jgXDzOCj*44- za&UfR;Zh1sYA^fU*8{@gvfqRB-QV&(UCHSEin3$7Ma5CAj&*3BT_@f}3$V2mQlSwD z63|E#o5jz)w=L4<=t4PDedB{iUQ-75VeiHU011~#xo~mJaT_oF&N}zx=o7A)e9Cnv znW+%xKkT~NSY5V=NnqT!b0lW6K_fCOGMbs={nVLcHSe`0kpI#bw~ZKPLMt2a<<>KU z+defE+t?kj;cr(|pe3>uHNS0Ui*iQC@W%SgM!p^Ok0Mdc{Pl=A_XCdAu>&Hym`L%s zUAHHaLg6f&{F+oRvguhkj?M!0aqIgIm^{huh5W4#_v72M^vkE5N8Z!g>6bd0 zVci!5*mE8StO~hJgQf?h$%E zK;ol`6?q2ZAmt~?lB!nKKh^<}I-SmA*#~z7a-gOWtWcdAT4krGBdtD&j{{1qpA$gR zb;#g(%Zv8@8wKPiSj5`cHMZ9p-<5sfsw?0*5pPX|+aQRk(`u4K{OdqIc$FBoaVLgyl!&=IhV3a@GV7 zUmDfNyDNp!T^DgJljNye=cikD+x^ve0JacK{T=Yw=#7(maC$!-bCfSzRO3 z5750Qkn@uBaN`@7Y$HDAdAYhiY5U4u^P;Vyw#&vI@|leU1yiF_iJtS9Rx(a_FUU#3 zXo%C)i)}*lqG_U2NI;mdOxkwa48Y8L#ov}{2_{88#0lf<;AOnM(Us)h_ySsd981gc z)7a6=pEWSUO@Yh>U(W{Mc@l~wOJY3ly(_lq63x)ei1DmaO<0y^4|d=?O7Yk52+y`fFy1&5G7 z@v8em{2=#gPqwxp_j9B373Hf<0txoFF0Sn16ZW+O0|=2Bp~Zm}7o*R#*z6bX+LdXz zdc_{?Or48H4zjI|pGJT~vjqfR=+uRBx2e$bZ$Au(c7S5K&>5M$ueh)=j9E53+dxxM zF1P5eClW|ud~^P5d%sZI`BU#gy@rheR`Tpdt^jd+I}W`^6cgIA7ipF2C6*OaVt1ms6F48 z!qoTshW?cKmZRgnCAK}R74=4Ym0HxAiHeuCWDE};RdSw-RI~XWpj>=yMlQqP(apBZ zd*)esV)K>ZOI3kBx|Ox5xOgiw{--*6P2=sESJX4~%g@ao<7moro}8uh2tGWldCNV? zvrS|YW-2JpHz>A*#6JEe$FuObIk`HG&RU>qasZX12Q~5FBd@FCI$16OOK$sx9c`in|mRA{{Bd!uhmUy*&<_I68 zH%g1Yxh1L=r-g?S&8Ccd<_m@jecBgwjR_5}?HaqX)Cr007E|whvKm51#&eo8xT*~I z@0RpXW=!^42qx~}HBU3zdtz~?W|nJ6YR%(lo)GW+G2`o3zU6*6owQ|(+@SJF1<(-W z^0#H^wI0A_U3{^sRZ+JQDZE$YT$q{*iP5XA6Kxr>GQN_U_}jZ=ibv_RUf);dFyLx&VBv@zBF#^Ik6h0s;P<(h8?RmruzS#v&xdOor4 z6-w7hd5hV>R>kip$>Ntref(KS@=D4Q1nTrt0KNt{|VIQ5Euq7n{`j(6@NH5jxKx&sN@{Plql|u=spWwQ$%v(OaKY9s)gx z4Z5o};{Ze6)&ryXcF#7}1EIvucMiN)t}Kr06^*C0ro8`~6CE zrjuT}xb3I947U$08AED&6%-?93Ynu8?d7y@tU~0KGv9uilk)46QgEIF+Tfzmy*u&Q z`$ON(kNPhz_1L>B=~j5;dCtEW@~8{NZ+v+f*mHx;DDHC4q=biaO=q0Q<=z9)-pV*! z)2GG+`3B(EEP&4{Bz%dua+ywe;pHO)M~j8WM@U7GGG}}}&TUX*6aC`j^3Asnd8Wb) zLU0pY`0b+ov~~5aCd_}{X}>crU)Vr(Wzh=Rpa)^vANvEvzu{BG7vEhU>9zh~uNJ%j zj6t_bG=KC&4T#k}eO_hKNsp!&^yG`!pm$Iv!28~_)w^PSrQXuT`lh@oYK4%r~5!r{i)@xFdaj*MA1J$ zuQml%j^z_-J1qDmA8?V!&yT=Fc^=62hOdfg9#p-APp7q%$9blN7OKVoviU}@*k;V{ zo(jV(6Q$^M#*ZUn;Wvl#5iuxg_jc|F$llJfP_Nyn+iL9B;K59(beI4Xd0{Zq!FX@S z_CNw8M2>J~MY&-I9kw6bG>%)E{N2FP2hm_>ox{gsHz4D(Jydd2{Ck}XDk(Rz(_lZZ zm#J6umO1JJXMbs5Y0gSmx`gGeu{Eu@_diB4{rL`GjuT#%6AXh%OKXs?oDafEfsBaqQEFw4rrjz0V;Ep+#^G8XoS<+Ih&A@^T8Hv!*s~D) z(>_i=|4P>}4O4;z1$anM{`rm+SysMVV$|_Qi-}OGHMQjpE%@0*o1dG^(2Pttq7K-?!5NwOfci!xAblNC2kqoS;cuX z752j~=&i)B4D!%D?yj-bFXdn&#d|GHY4>;9`aT%%ZeBOp3W#{+g+#PsoA8< z5L5`-v5TxT(2c_8^%CMZ<35h=R}qS`DT-Co$h-7PHavCm2&UIXyI|Vf8!$X4-0l`k z1z3bmg0jQaD9XlXEtfML5;0$FOd}dZO_a#t+fiELedK{$K6Zk z_WZn8#5EOS;18!vgVK*XC2U6D#t{tNXFm4;-E|qVXP9&Ppz|QVMp-)wj)%wUGR%w^_l@2<%XtZ=0HwG=^;2r zV_Rrijw+L4u$S33D}J6cL%0zV=I{?w!1s4#7rEcOoogtwtRpC#s+yy)YrY&zQ*q8c zntPuDD-ZfKn%KuFrUAGFiBenWTXNMNo$3Op+vM2Q1&0YZ>oL*Mj(ZuxOp5v4WkF;z z9U7hK4EXx1H(g3@abI%7CWD;i<0Huzj#gg(;e;wdu#|lRs?{XIIh)Nx$T>L1L9H|m zxtGsjB}sfF=G65oO!72y)ZamZEXPmzG0LMlX}_I5aPQTc!lMaXOsb$oz1@$pps~hUEw6btc_vc ztRqfCpHuf;=62p@f)eH%Xm>wQNq)ndqS6nSR~A9RsHf7EuT`K$YhN}msz7bqfveIl zu_;oC7SNCW#IIFbJ{F6?TT(_ysgjMuJNaq_x1H`S)dI!X z1l+N)3mTzmPX)qf#N)@nMHW7VH)z<(D&eLD^CW54d<01q>Mxz(HpejX#qBD1?L&J= zEmL`C(4za!uO~K%-n`VHqq}uHS}sZx`)2DZf9l39E*)j==Y8cDbtGvEK#7Wej;*w4 zzK_H)dH^Nbz^H&0NRanRQ5){{#d>2HdE%1#=fh4BPUb>Iw{wOwY%{Kifd)jBb+wu% z+aUX5O;Ow~SO#~FEP%Jr7y)9&Z6`bPF3OSg?eWDbU>Ntr8MZiwFL=)(N#o;w5l;HQ zp)8PnVj%kjJ;|s+I3WHtEF^>Z2viTS`h5mDNOA>Az?(lPUBK1>!xFS?;-=6nvyBB9t{p>H#?j@9V2S^cnQi)C1CC~*N!6bqIyiS6snF{;0rx~UU zEwU0El6GP*VhbNXd7=wz6ZPfOKBurb&c-lGRd#yD=5|Ow`M9{lH82-q1`TCCB-22( zo7tPC3WgvrSno?4J4KGeb8+{=k})55fi9%ji{O@F^r8%xB#m^U*2pt+LMXPpLbS=S(Ja ztP+>&w=K)PD|#f=CuQA!2qZ4L4^HJ!)5h<8Y*6Y{y2J#}4NajvLQ7=Mfx6pfxbdFG zjn}7+akh84yaV^^O~5yXAYXXW?bu-k^rWFwaJqtM1`pD$7~T~&{%lu1B@sz}oniMp zvrgsp(qmv$Az@Oz1&uxKXb5{{K}sNZ4H3BFGTT&t%9jVe6u6JK5SrxAKy4Iq>D zvj-W+{TUfR)*EFl|Ao?A(yq4?(29`(M=^0_;_9M*j%U6xH)p%f-ruWBc#i)P2Ur)h zXTxNa&>}zNLqOyL8?Sty-ia>{#cieVjFuXM{@Y z5Pd%2s3EdfTwHu5{vZKUd+|2UCY=L3=}9FBrlZfDHPAMUhi!OLJ^Av%EZ@j;SC=NQ zAZ`8;m`DhGFf)#bwL z6}j%nt~W?63&oflOgok`ePYI>A5wjEik2;Ox0FN5F}QO81s3gBgGjszVE=xhQ)JDD zpfTX_UV-hw>20u!-=N*m_2V|yO(M${JQ*6qP!QVx6c2xM=mf0Db(0Uwcn8WuhGm~n zPK{+xSr;?JPwRCgO~Rcj_zc;U$M}rwvbRDNv&Ut|9!J$W>a5O^?G(2%70}AeMMnUx zw+K+)PQB6&{>o919x^GzPj>vD-SNjhVX%W(P%Eh7gEsLb4Ma9VN6_{Ian)dvYfdCA zmq2;m4H2~OE(X+HMIhMh3f*yJGPB@)KKN{Q!)$~dB=_^V1@f~lBzWI3|7W>SYw~M-LMqNCtex92mJ3ahd zbpgew7a~enZr&7b&n&&7Nl+rW2a~3yrP)dQL1HRfq_#=EI-WNDer4bs)%p-9L<(Ie z+F4c)0srQvo-19VNVNlykOI)h=_7rO_1og()X(1frdy){M>inV+43dbHkGq%!Jnpv zby2nrLn86Io9MwDcd;u*Qt~>&h0cRD1zzK6Pcs1+6dEvuozZGIe-t6Yj_wZ0;IStG z-V_-yJqJ#ejz`7AM^|e@v!IV$f`MJOs}(R{oe#TasJj^uwLy|Dz$VY94}}`2-Ll-* zu1I#KWYgDn5)1o;lG~XQot%1f(DP_&9T@e2aIS`xv4>OJwDh=5>kJg-yFRN8jCRxg z`cG>y8k-fW`I8Khfij0)ieOmo)`e>0BI}M~eY?_EwjD`7KulEx6`$@sQM2A%^JUI* ztTDBrI4VX^xd<+R;#8BrS*~__W4lhj$5+~){lRo^7wBZ8MjWH^6r?hvKHPRbwMm76 zor^qni}oV>aho9`b(p*RzV>tWua-7{Hi z0h$lGb-nH5olf2I7baeAZ(JhGHmm_srUOZX7%RKZGa!@3e+rrp2UL0dJ+NFpEeJ3@IegWqN0I>e@bYGuD-<~Q^rtmJ)|?hPlc|jT7v1C?m#YYOGI5mntX>40uGRpq;)HRHrfWbA*AZ;0_=)d2pzhbC7X+92QMEsdfTZ`_AmTgymu7vjyy-7QP*VZ7WA&iYayA*sz@c~=20d%H56wiHp>p%sy=UzNv z-Cy~lDM_Y7lf|+vJ=zd>>?NpJ%O!rVrg7>H?*vQg_TApz7}jg{QrfAVlWNl=W0etwdahf@~%l%JYbxT$sufpQ?9K_h8~1k`L&lh-7D9i>9U2Zu8ESv1}G z`x%CZq%46o`oj7|9xc%l+TKL#I?C;@V|~3JfK&#yt_^UhLIX&R`}_*Ih9~wNG!0ou zmhH*Skc)iP!3{))0M@m*H<S7C zxYB=S8vhbjezq6^`ghk+Z0{8f8?ut7Jax-bzL-H2Xn`s|#+a7?uY5@`ku&OZ9^7 zGy6-JwT?{Puj%B6bo1*_jRyThJc50)KUM=Tlm+5+Hxx_wsI;>5%s^LG2o{g6$gWvC zYXE??BA8)dz3!{l9R(j^An#YJ3R0lPWchyP!~DjT6@-uT(C)DEdN5Cmz;z}lsC^-G zah?N0+7>R!Ld{()HpR89O9!MGH|EXk$sX=aF~x%%s>^pP=_Jhk(uFaOGGe#lo{>id#P{_c(G(cieom zSCtnJK>Q~#MZWklkRH{f-_7&hYfKix*I zac=X58t zB_5CMduU8uWNAg}^MUh#idfJH)LKK?yMMJ-FpI7_Utr5{bG#lI=}q>9Q#~ ze(##Ug^ap7Z9Cinkdlm;(=;J``DpkE^WPCbXSQ3#eCw zE>=|}K?{gkJ%u9+tay(%aWgvpr69&L`$VOwT+F9O`plpEbA5) zGi<3=d)yrO_2&iDXe6sb}cv0%{j$*$<(3PCL?FI355@b#< z&&6L3)EPPbl6=#8brZ+(WP&I*t(MjIDAVE|lOTd-rSoqg& zj&}^6u0Btv`p`G|(184E&)}#FJO9rhBL}0*TjcT8IidqO%}Uz$;v<2A^=Cr^=1A8V z)$q@U?IH7Q6xqV4yztwvA0&VNG8;->Wo*bs++t}@T(b|rzz5lzwqsK)$tca)Zd<#( zxRjJcJ+W!J`wgMN53xXg@yt195r#cW#ehzG^*=tq@2Nb90xF2XFZ?2>$Re>n^?#!O zd@O$hS+KGQ2Bg;x7TFs?MuM6gXtX<_P@e)B2+r?F*k``g_TRd@llI)4JAVITn?Xrf z?gOZQ34T}2&45jTGOQRz%0V*}zYCn(eVHHl+8+Z5OJ*==->uoxE}L=L|3!Wn=n)3` zQu9(M<$gRC{8>;LmwGPAs)5t_EMubM!ny4eqg~FXn{LwImX@0p)eEmOYU3DAAOERN z9o12KAHQ!iK>82RX%5XR%Np?12Vog0(aI~<|G!&#ZgKH83EOT{(3Rw&s~V}^OI>{$ z2OSwy;<@0M{Wc5`^ikS?eVd~MRC?UU=a@djA1Gx5lW{5Fb8UQ4|Bepra<|Xqpekx6FY#d0)VE+xg>TjN})>^7-`Ccg2L!~i^4+I521*%VA2lyZ|*Qw==e3i&LcBkU3Z@2)7i(ptX+ zB_YBSA#Gv^=^(n}aEE5aZ-RP$e`5QM9TbGkQP@BBc|gtb$xr@Wu=mA7>h@qNPy_+q)I%fSOJ!O5=!L~u(Jtpk=4 zB7Ws#og0A6-`+;kOh>`fg?R$R9T&+i?J~;H+wAjjJsU1vQr9FAjHgymrv9Q+Yql#a zuVphsgWp#U%Gd=IjMl|X$SAo7ev-oFD{!dnfDv&?{f&GvpCCYc+6CqFRB_sPH5dyN z*s_hQ;QUo9JmyU1D;Ozudo8G0x1`_=;hLu!uY5VrFE`jG;Vu=23}w#O=`T0)5BP7y z#ybEo%pjz^s;~uroQfAD6@w?=2@KrtQ2;m~@`|1xI8s=olSDZ71O4#G9P}nHITODQWMmgyqUdCk z+;KCL_)U@*Z6{<(VS`9Go38wUFXv- zoZmbzFZNv|%KHW=h&1sq-1b~$b_Rm~JxE)x`_z(|OzO9kbq}@4J@sB&)Fr$-uWCd9 ztnQng9!8V%b@qkh&~QwFOXM=W_CQ1E*T!acn(J7%pLOa#29F?5L@BN_ieSkiPo%(* zH}YA~1;oPk`_LPV^cb|d82@Qc9um`SDHA51Ma|Y&_{;XH-iYT-J-Y+>+B|vsv}<$)$0G5kF^Wmf3}zx$bOeonAX@E#(1JCX~OxXsCoJicJc z!7?Eeg;V$GUXt7Ia`aM?=2ggE?;NcfiaayfB-wwc#j!}eef@iaRK#L61eHQCmhJ&I zXIJm1a(DY{(5w6B(0m^P#;E|=h#7(c;=BN`bqZw{xqekd0k?yIRJ_oEr+!#jngztF z0V^n=Uz}+RxD$5k6k<@Im*qSG*nE{CzYjS+I>bBm#2*MY;Rq|ua8Mpkp zhl&zmC>^eCX3qeC6wsifIm0%a6DYq2($gfcOCksMI^UwK^REV0Nsx!<6|E~=?(7E9 zc=%c;+#c9i*bl<}OsG@3mJ0s!;iKpN?>wh?%%gV?k!;H#oa1l^vji@-2W7g${WwVqt;}XE~J2qOEDP2Ab|jmXK}vV zrmw86PkCnM=@putl6I3-jSEt!0tafNPrA>m3Mjw-q~;%6Hi>k-Q7lfi7VB z-;ZRTwH04fxIxX*TL#624(NSEZAUP_jv!9JT0|svBo&hNYwjnV#I7f^3U}A?+gd`CE*mX{HPA71r^j6lFsA%toMaH>#Ltjg%?`2=K@Sd==;C}mhrJFW zAIgw2PpEV#@@x;0%?drutSzvceIIElP+m7N9!*W;GwN6&X5{4vTLfZzsW?4{?jZ33k`1JZ`6$Fd$ymxqecy90tDUilm76gV1jzxY9|5M)k#F@zzAm71$A|Q zTbl2t5UbiNy{?sHq>C1U;)J^|7tyr8C|pR;-u7jSRzJ>tA2ZyXY>!4KWNy@wJx7uk zBs58ajzLJII(Z4(%E-%i5yZRGQt|oRPkAoq8rlLW6gVJ8c{Qtg9bsFM6yQc_0zvbm zRmrneEI2aux@<}Jh$y;R3-$UW$&Z~+tDb%LWu(=x9YB|Wyb~&K#A(9V?v5&DJeTH+ z0i?83-}h{%U)U?ZztmWN`PLWu@&PaSWFkB%Y2aSWYI~qDQ+>-<^~>FC?F^sWs*tyc91+4} ztEb8>ns>KKwZ&G7@%YuJ2i$~|Z_)dtx;c6P<_Aez^N^Pkbb0&^#*<*w|BGdg@IY1B zXYp^L3_;iM;NtuI@m9Kk~QyI1@EPI8U3L>uG<8! zeiEtmN@O}GRRecAPjbcz>c?2ro~+NCe8RONDm7~yg0U0`NYHvHvDL*Zm6iJ@q%%T z9_XD2aueH3hWE!ij8ucwFs&F*JVN4l0G#^}1pshD7W8^cK#VnX?Ko-od`A@d&+2JB zJtGs8)OR?xY)B z$_lAi6A|cet$T{IqJj7iY|lLP$M5>%QUCi28L%c*kgzM50ByA+gA&>d`6vN(uLl}a z5KnbNL}rrwD*P6|4z`8G5bb{+Q!ek72gs}sH=}yD;j#Vyh`kIDdquMMS>UlBDJOeM znm@L-W&sB;;kD`lOsDzB#B1jcrjJosb!6KjGeUURdLU(RvU+>dk=QIJ7FRWl$}7*Bw<=5nfb(%_Wg4h-9kczgj~msw9Zlg@?`#J zA@MD+IVqchwSEyZ{`h12AH(WWdFmeJ`yU_W=PNnR1S|CqmS=y>0}&A@EDf1`d;I6O z`A_ef5(k^JCDC#-L&iTI_P0NQJ&w{!L~L}_uY<~ewiCA)Y|!J*4_ST{Lx2Ah|1R{O zU*o?E{eSk%zdQQ>)FJlqx`#3{(ljTw^`PiRm|YzLLl*MQC2*6GW)oR-~R(7UJF(L literal 0 HcmV?d00001 diff --git a/images/poorly_trained_model.png b/images/poorly_trained_model.png new file mode 100644 index 0000000000000000000000000000000000000000..160e6db9a296ebf265ef17d8fff76acaf07a7bb7 GIT binary patch literal 10314 zcmeHt2~-nlx^_YYq!AePDj-|i7SOG-2(lw|YYUbba4RtE$R>N(1Y}9ljxe?;T4}-# zV~f%jVGCQ>qiMhhLL-KK2@MJomIwl2zlBcE^vvlybNjz@&-wpzeh!>aRbQ&=dza^Z z-sk&np0&1=`effH7z{=VJoWW?3m!SS6H+huvX$^CMZ6ZJ}V7~y-hV&Ck$JVw)k&jZar zeT6+B!FNwG>i7|0{h9UC@cM(9FY)X%-Cu52$8p!=vO?Q04%RQ!sAxh9Z=>^9hA!@b zfyXWikCeWI0i{e&4eG2q#b<#bv%WF$hqq^qOduzS2{nK+*x*M|>T3j~fd@Kz;N@?hor&C*l zT;FiD{i2?EqoeXQnF^(Qsh!45i5)Q&;wt9#7fC8lwlZR=> zdILs<+!X+{&$pi;aH+JYQ*zUR=G!& z5=)w_;ZWhn_^Ybi~(wRWGEhE{6Sz}lKAl zN7Qx`_X#RWR=q`noZlSbUhXURv!ez(Sbwld+vPWe7C*1~^eBc8Y#k6K7h@pcm8^!c zO+h$pyFG2elT`xV0Yl`7#zZ&v0y+=10AD>KG>s40OOzzQ9jQ4-Z&~#cjJPj6tApvlyL!lL%TaFM2>b=`*MGZv_r40{o zf(yFT!I$>jkoJ|Yd40%A3^cgI5tG?RjD>*$@G+u~Q_sWp=TDwwuj^8%$Ru60Wg2r8 z~G65u`_KM7*Ldylsse>X!RQrI{IdO{4sL4#ud^_BX^Q3Zx5R9j-1y?dc3!@ z(5WUpu|Fie9CdlbUR~7tx*6TAR6I4zw}s8Cp@=69<|w=Y;oK8HG3Z*jJNS?@Fq_;- zk^C55J{R&S`MyDLDcOpAn^gschv#p(77bB9GEyzaWWF{=W0P-sJ?)o#`}eq{@a+P< z`#L_O&;Kd#qABpc=TKerlD@p1eSn7Zf%?V8%HYwaw0)~x4nbL0jFz_Y{NMB3e?*U8 z-L<=nPW875!NY#k%)t;R)N#;@=f)fho(Ag+RxnE*yyN#VylK&0>LT5?-0}QLFP;eR zRXm>x_~3mBT@I9@#6cIi57xem`05fv_7&G5&PNB#cN;!N+Uywv(yrnx8k)G%1684o zrL8YsloS^i|2!%J_~^`Z6*%WE>s&8Dfj7oq}Hi0ENt>}Z?_*J#5kvRw?^nM z_xUy4HV7Q(@%WhWl=R#S4$5K;I}G(XM?h(uwYa7~b1QRm@daXqNFCTFqKVZP8Mozf z{}R`9Iu@C{%=?+fzYF*j%(!#X4oE>f*RxLcVavxVB?{y~QI0LVXH$|yvVFvC~$wvJ9B$RLl?!8!>o z{BZqnDXs@w?AbyKFo~FPe5V*18hZHfVY-lsQP3}2j`iku6-*7))o^+=%35of%&kh+ zerxXs{C>Q5Ru;_&1HW0${QUgDHGTmhuT_&3iEB>C&i_&Lw- zb6$RKS14o_Y>*lj%Zna1YT09=7pHu50$avUN`9yduXb80mi+9#($_ysuTvk69KF3e zxqMhG(TbBpnL20MCC5C?*qa-L2rV>_|Ds|Ee7S4qN`?&?YK`rSeTbxnjA2~#N%xY+;&D;Sv8 z1qnG)F-pu`krKosf^YwFOQSEIkDw5`U`qxR5~2($cBp}{#nyu`4?>2?jx+Om^?l zWB{yw!SHl~QdFZ11;uV%dQiAk|0Njk$pN+QEnnhIxGj%T&q6^#w9_y!=+(=xo|ER? zXYFAXu%|?}n3U}k00k~gGnAh{gnIOP`dB~D?#Rk{6xq|i0T=1BxEOuTLl%D3%a)sD zV5JJef#^INs>8RVc5tPxz3ob%nr<_!KsG+(RALqSEvW#g{lvQqbly=bE*y00vgO%0 ze6V9nh|8RHh$!(h0V#h{JU+_Kmb+ANitHg?jB{~*F zR^5JKni2IPrunhj#7nT=b#Vk}z$j*qdGPYcOV$EIxrdRG0vec-0)VR-W3%*jv3hAo ziP~*UxyX|(XJO#&Rceev%+5%@HX2)yKBwwQ18ai05{FFIWB{n=R@2@O@K*iBvatg- zcty07zGCDM?6~H4@HP39cve!uaeWZ}(IeqWl1fbtr6YSWxBCeV03$kqhpSB`{m~RH zkLyr~s2c}F=?TW6g-qHLbnG)APod77IN!6Lkr0Ij%$_q0@Aa#^mjFp;fMhIK zo&F4+N-#RDwQz7qe2wqcHJ?9O)Yr5%n=>JDioAX@ADQf?+yI)7wxaRcbl3rPy6BoI zu}zz=%rg1t^bC*o6?L+T_#);a*N*bwZy8mHTxOo}f)Dgrpf?;<`+^^#y6nX3r`E~| zC3yvCj+Sb0zO_kliHo8JQ_n<)g7!_ou-I@i>JnpKGzATw)eLns)>wZ`siq@K>dXHj zV6zN9-c34E&XjW!RMs1a`;@pxAi`4u;{ucCP_xe{P3iL8kx67^ah|ed$L&PBndAx- zu|>rX@g151&E=VLuFO9-U;gM+@zvIqLtvcPCCnZ14fQW!wtSY{Nt6P7bA6i7@P|l1 zV9HB_7TVcsB+<2{rYh8`JaTjww4ld(7@@OyohAMkBfLMZj9U2ght9=-163-Ub5Q>L zstHZK2BVR!e_7ZDSK3%GOGab~KgTFh8IIzjH^C=sGC0tO3j^ub5&8JE|>IYP;#~{R@^)Q!ZiB| zdj8~`YUzd!=i%)SL$*+GNx7y5+au=hLpz0nm^aMkrQk&W*fBDzrCt53nF0HY$7OZo zT&pWU;$CaM`3~?IOdr!09*OYeeP~zIb*o$7c!HXAq6?e8l32tcj{g-pcu$h4j*|kS|Q>hU(=x7 zin=x7Qz$~Xdvaa&l$it6tYI)~tsL=BXw&>pn}=ve3=Eo|K7IOaQvb^j?VfgYn)g<# zqt|NhtUb?MUXDTzwrF00#Iwi|BAdQb8z8G+J#yeTC{snIm&QE(byg!vpSxS%=*@d{ zhQ!)KyJHn%6a*!Ji}DOfmWYQBB_x}!V3KM+FeX+YFN{anO}E+dMJ~N^IQbU}Ew}!* z3+2!YPVy+gF8ITYjn{~AXp99MaX2f&`vZfj*=G#{_{9K$<(*-WakJxoFdD3%NMGs# z+rW@xf(f8owJMIexx~sTus@DcvML-c9IC5F?uf({ATtnTDb*Qa%QebRJqPE82f*$0 z;gqq2lr}n&boAMl=Tmd(o1Hz=FA}W}Tr(2ns@+6GHBPPSZgXeTta_BT;E~tIGt2tI z^OCFsw#I)#fg_aa7|u74&)Owr@p?m!cR}L>iU|GqxwHlK=D=Cewj!j#|2s<<&^Q7T zHf4Cx@%`P_L?yJQlzk(8_562uaELXbJ2~tf=EN@oqE5ikblWe{cdxk~`(&z{9F1$f z$gMz(l_NhFOtT8P+too>+PTX{)Y%d0p3OK1bz?V`g&kcVul~ORfCd>;S$K?3QZY6+8PvsNRKH(^!vs>cb@E_Mgn@j`4O*0}tZYVN|6EkZQ~GOBT`lg<>rcCf zHc)C+$-SDLlj9v69NhcU1ued6i-AO`U$-XOf;#MYfilMqkAd#`#qu&?<3sN5Wxb*( zsiK(IhcXgl*-{4Rw}0KXoXlVPgnTS|aqG1HP;FEwHP~gTy8GR&2H~wkW;0vnJx5p# zK>hqt=Bc8Qs>96$!8|u`FI-#9tw!zKqF=s`iL_nOL&2MWGvUeqMl0BVbQ)6{*q(h1 z-{j=z=&yfO^46_e14On|=bioG1&w~!x`qzfuXa_|b3FzSU;Ra3p!DxWsDGrg|3t6) z9Yg=WboBqSbo4*;-eXTfkZ8TmRgzok7G8dZATL-PAJ!srt%JCEhL?*N`*A`{$VwPg z2JEc}9dFyyuJhk4i+D9&FiX{asU6!!_}4n%nhviAXaW7qER5Oxf zZtK~e=>XYP+UKB3A5_W^`vJK{x#duJ0&N-FbWytU&!pSmkqW;WTIth=^%^{9se~q@ zl!E?Ic@xgJNfO1uqZTvaMbUcltJVBMzmHnMBZoRWj3a4%0qq6e7PF=ObOK>D_u-Hh zjoljKf9o25b@Tr-<>H^H3hBw=a40oKg98}3 zzjdT_9-0=jxg(~DAeKrVX@4j2j;H=2@rw2o-+wV{;!qjrxim9~>V@zgmEF9rWUl?e zWqr~PMPYtHrT%ZAaARX5TG|Gh3Wi4Q1IAH?v{zO(Me5iB!|NJEe)TzcEmS5&kX>6(&mk z>!wf^e6;khs~NT@VR3*{7TWr~9-#|VP8+j?W5&x$>EU3#d!KyQbwCDWMD-bUF#v_U zEVuI@s@WcgrAlEFPJ`&iwn#x)>6z~<18U!(;^Y^sWfp1MQ1%%1!kscN)nxwrL>x6EpR74^78@w;PRu!6AdVs}K9?~Nto zWlXZJ4L129bV`G`^LZ#mI{KA5)?0OX5Xf65aK1HB5eD#LS)o)@_vca42RSy_c1)aT zBvz0C-pL9?a8?XG4jb{^X(-7g!3j1d-S$VOzQ__?QzVAM5yzKq)X5s|io|>gWl6@| z>xjzFF|NBLUcNIj5OR`I#5&?kcm26@X-u>7UHU;jvV#8dh)XwEK~m8@D&p4eWhLS0 z48vecnTUob6BCUGPnEugqp{7nJe;}28dvaOc%q~@;j=XHI1`RE?{l7- zD_=0LJUr%g8k%-{Z`H4&)7O>JEE%2NE1ipMhzfB$QLydIoUujwt#%QcG+!p}2gC}Q zbO-e>a?Noh>Dq&wB`86CWg=XmD1-VvP=yK(P^@ns!HY|boZzzpErun8yB@q;4d)%_ z^;5jDvKP6_ozJ5_1!p8o6(cV|$AUkvEz&jqdZ`5ppTCIHJQ8z%%8)lMuk`Jz3@e3_ zXUCoK@p8BoKfW}J9i}7WfRQq@1TiysePvbNtUl_Xz=M~QKk3O{yG8bfxZ$0x1~-8s zY&~b9Np45_{Z+gf-n4x$VKrA*q2% zWXLEcivJ3bg}4hB5~IbT@C&d41rOHCL~a*gc>#5M^uB~*C55kwy<=@GET1Z~C+7Ks zRypI<(df%rkzK6jj4Tp@atvQziYN|h*WxU%p4Q}qQlfEA$~&36bG+UUy^B{)y8NDb zyZe3iLb3XSBF~eBcEiXQmiD`0Q+dOb4!75xa?^OyjgI||(IW3{U#;$FznSA6X2}1F zrHf3KcH;G_fQDxiE0rdXvOEh;&#A~Oy)djo3Nx=}zXqbP57@%?%p0|tr2Pa8qzPvYS`$F;U?l3}r!TsXl z?WXle{gKv;D%qdua%S$Ng96c{UFB4ddBM&*N~4R2A3&z^k@dHqq03Pozg{|hdGIvjXO|zXLc(BgC7!neyk-IC!;WcV44|1F zCI$u+a5`_F=C^hvwtcpg5HVNktz&$l|3SX*5sqT9_nuPF9y>#@x^Q<)0yO(>>=9(;>UE^qPc7kyN*U?k_EKd!5yNtH6&2lg+0+*z++S_oEyMzrA8!Brx^v0);rj(!o)1eu-fuaYW52S$ss=nzMncCD{ zn_4R&rR){_i1_a3u*vFDo#L=5&M>n>OM+xH^^;1|MD?tUcbIW!gHlM{?n^V@@3--~ zIF%yht|T23Anbj?I?0}Hk`bH$^uex)G(VoT!e(qj2)>= z%=+f)Thi!xaRp2JZqpr_3vbihH{)WM>nAOuvoYq<1MbY&W5ickQt;dObaYdIIB#n& zz?cw_*%uh(8m2U-h0Vbzn=eKQcY^h@LPcU2oFIK7F=bg+UWuW`dB>^`N+w|pH8|_> zIfK#6(;ZJ@Fv2DFoC4Lq>K5v!Z#*>?-kQKMVnTxJa7xqACu^r*8(h-pVo*3qj2SNc zzU!q{>Yz+y5S$p#pj2 z8m|bm(XHLJDj!=i?Hac?@-lo#UP;+}M)S^r0?BLz$H_CWmWVnUa$$F0OR!MChW8P2 z7g~>PZ7KLj{X*OS%RL4EPX6&fkO}nhCM^2t^Wv$b;%3FUcH3*F-FgbWj&?Qv;;U)= z>S%KZjz6lKE~`T2>ttM^E^T4(?pVd!nE@A0iDL>s#HrBlHl1%aq5mt&@?p=!zjJ;W zkCa^Folx?G60PwGG{Z=#SO3(;#Lqkn2(b*LnuJ6r-t>Hs43ANv@TX;=?|=Nu>5MBz zfA?DDa9mIy)_6?6>Odt&sR|!FjE4eJxPGxJf02o1DxHkE8Mx9&*wK4l>gKF1vup8SimEJh&1qaL><|U!`#rReIAWrqCirhK9 zi+75rz#8J-eymLBGQRlB60_1XNy?HQ{%CAVAQf<+PQ zR+Uc+G*;_X3ldYt#_VD4680kYj#-hDX?Y5eE|~r72Ri9WAHi6l#v9M~4KC{hEN0F7 z$?CWSoQlodO=KnGZBsfzl61tHN}$T!27p2;|B-@Krx$^Lc3Mo?^eQPZwK4}t5*rfB zJP&O$Pxn6ZgablEh)>SGTEfO1j$hQz~~y&xU-*(^@UmOb+BTj{ z`~j>vZOo>bW@5z2p|7dkLuo_SDTajMjSi#x*gK+e`G~T_fXLdx2c2il#3KFSJed|H zY)r_d88$0FewpM5B^4mE-eHV;vUdt*u2{&@ghzPjQl_)!FfqBmckBz#D2&qxYoQ@?fdJQRDGxqgXv0$Nx=`Xtw|0yevSFJ<${ zK%9DI&aL%xpqX)|>u4|QKy%k}A!1KQ8a%_|=?N;n6C>ZH&SJ849cSi(>Fc*DPF)z0 zZ_RzX`ldMVTE<9gQ1r~tk*jTCVafuOiG{)ASQ{qQQ#y=vep4w@>w#ZbL$vVZ@t2>V z^&nj;MZ_E)GXwQSytR$Tq#ks?s}G7WmlT?_ryr0TtU_cgqPs@3?|Gbn6GVok9Ch99 z@DqZuKOjXq)tRH{Tq<+LP`vW`5?XhHODQrs#@_F9?6^5n=0mv5)UiFRZnC%ZJh~(y zD_jxGo^wADm)4<$SrT!!hlbMyFSEvvtR${xutt%|j6`Y9a3#_;chWHT@!S9po}rD* zmTV%(Mn6N+s@e+Wc@YG-MSi+B#}P8XnemV#OuvS12E>3T Mt-mfj?)uGt0-RKW1poj5 literal 0 HcmV?d00001 diff --git a/images/table.png b/images/table.png new file mode 100644 index 0000000000000000000000000000000000000000..479038e3e0bc42addc7fff8ac831f379e2b6a832 GIT binary patch literal 89024 zcmeFZby$_%);>xrjihvUN!OyJrKG!a(cLK^N{4_5EI>-SLAtwHbc1v^lAeeC?XUJZ zzxO@o@3XxwVY#09)R<$A`yTfg)6egfWYAHFP+(wS(B)($RbgOWfM8(YKrfMiZ$h<~ z=U`yaD8UjE@8u*UDBim`T7vB?U|?iFCuzMoUoN=py(y>e0mBj|dgL^aT~Nn6PmDVx+I(=~7ad&tgA+hI#*Sp>3$? zV4P?WPsqC@@cNI|#2TuLHw*;_R>7I8w*VG742FI@7#X914N!JGHQEfd6#4!U~mS|=cY$%j3B3x+ams0=ixIH)y3?!pRo1ma7 zGN4B%?XYClmlUqMD1`iu;%8+dGFALk9`PH+S0I4uOBfy6Lg3m~)p|NC9SlSC7&=9y6xZwT@LI>o6dAF4=^20JnC?x@b^Nvt<`-fzeWR56zMZg>=fhIgPs%hm zl{YU;e}1%1WQfHPeSM+O%D{nQs`2S$+p;GN^G<{vt19PXUqa8IKo?J+n9}ikwy!#k z-29s0*aj4-^dI8>l8`qd>U)uj+s=3-ZWN=qn=!GkH@XNAkQi@`!{D4dDU?g}69}+` ztlKmaNV%+IYhPALZ2I7QT6Dem_0iAwV$D)*`$LF=gLagQzP@|{0Z#em$7(SI;}EfS zI8N=!cJ(-9$s^%tVdEe4ubqN%&0%0Gh^NrJX&8OFD`Mag*OWgYP{`sSOd=`#0 zI@vJW(fy$lYX1TvW_t@|U_YtVhEF>NIXu@{pTCI%+xvU_nI}@uc`Vxqc*MM@tlugn z0X1s1D(-~W@jKVT%CzM*>k4yS!lE&~Pi%Z5c3pur-S}qrmC!kkLzbBjJaG6PxVD{a z#^GCDUXCEm!|3b@Q#`*aW0HxuXo(Do`mP=F-ffH+c8wCzew^X{L~@dA^#O%K28pkI z=i&9WK|QZ74rMCSNl4aNncD7?w1$ZDH zeMxFU(fH|=Y0Mmz(kG#f5CqCsvMdQvxm1LoUdK~b$A`%>s>Y~Orp4=SYHebweytw~_1OkG}x$ve68iT7F1YI>iQ; z$CW3rcEASF2G8bxnyu*ShuReD)cn5wRm1-De)yE*j~nnCZW5mFJTBaW+#WXR(_Z;< zlQrXLlbg2qV224%+3lxb4h2Fxq}a;1$|UE6i9D&Ps;LcY3!5aHqZymo{pp!0vYd<` z!V*oo_Z1%WIA*$U1cvRlIk!c&-M0%~AyGfbyp(1kR1w`c|8yfr?f&3~AV@3d>sGes zH)*klv}d_jHf}%FQV@PHzZ(rrE2|ej$u%64EsZy%_NJDXJ|_0oBcHCHh@H;NYm@r( zAs{n2Tl`aSw{dBQa|oG4es-ow{yI|^^~YstG-`6{_z9+*9O*Hg1(rZf-r@xJ57V|K zjwCiLTq|}<4oi-v-~?k;>#Dv@2;=nBGWW7u5;zT9o*J){J8xGlSiQK7>+0#6eM@u! z-9BMuVNGDc*WuO$RZmrJYU69q=&aO!*SpnKtS+i-v{9__s2{B|bo3uUs&%e>wV=MJ zUn6C2U@uj7U@s*7O4>ULJGO|>y(`9Y$1%lG%j%{b0wy;xvR<|R<5Dxf`(=VzI+N^i zx}%43(WJPGR7SDyP2bx-%f4A9UL{b0O+oRf+m7*$_o(7%dGB1ztEl-m+xe(nw38O` z@@Yc^T6|iCwk@{xX{mZei-PsU$GXQH#}>y{pqFH@WEUV^kcdyC&$jpR#lz6hDD#kQ z!EAM9vKgXTeT@I6{l>`E%Hi@}*SXx){3dkI_HgK`^vr+PYQOJharq9p z7})T>!mZ1X4Phh5La&riV^Pad0$-cpP)1wFNK$uEX-Tg{bH-xJ@JNSPD_sum`f?<5 zKurUPWk?9P%6yg*wfpAgD+_+Tc2?W)=xvF_{A7e5NZ-LEo;;rXBblG0lK0GC)mYVA zb?5iQubn8-%#swAcMk6;^Jwzzj8azS^UM307OhVastM85C78yB``37paosg=G z`T;c{HEe8S#3s!im`W9uV;5QtnwI`#SR!~Pz|4qm>jccu5uL> zdeXnWXrH{yI~vkYvDa48XEO}&4?Bq<-6GmT+=|tdF0<3_(bcHhKiX$39@C5}ocsB) zQMxX_n)7=VxO9GD%T`nixwuT@h5Ct3L7T%sX#f{nH)%_KO)(a}pM?7?CCKB`*rG zP+CHoAVwIejqSCK$nUgA$3?v;y&_Coazl?$pWNO4_K6QU{-p^s5HrF)vRXxOldIpu zSuuTYhP5bR!1-|Dnp&UoeWr*{@4dp1&RBK$XhWtg=)|XW{lidLNL$lGK*e%x%lh}l zo_u+-ly5@49wZHizPEEp?aT#bE@hB5eD~5{KAl%-d~_?j%>!+>hnm-=TJ;x>H>;_E zDNgm9kh_+M`@0+4r-~;t@DtI~)v?%Udr&Cz783;SHH)>6AWV5Z zyqGdl5bP?}6!KtO>RYU>K-J*(z|O%xX>avme}qRr5RN(^8nd(DUzpg<4QBp23xIL= zAY%(jNIO2vjgkrxCFu+g4(3CGiTeion~L=Hu94`QQwwGqU(}!(@Ste6{$}8~B8H3G zytU|Wl_$i84Hs(5w)PevXFzt6)p3P^!KZ!x3oEBea|#0k3jwQZyJ;&b2%0(CvzeGX znp&`V**gKFVPHUBg1|?63pW!AFMB%&S3xgfs(*|S1U^51%}zz}k0EZh!c^Ld?G;WP*8we%q;~~C8hs)I`A)HDr+}4CqZ_0Pft%aPcAk`7b|uS0RaK_ zH=OL8oUFhIR#$HaHxn;b2UqI|s!7x=&Ln&u{QQ-snHf^^b1>dx@Zc*#FD+A}G9} zDG|VQkbotX)q&q|&vOIJ92xL~;Xi&qf6lHjA=b=-ff0j|lN49?f<0V*5j53J)PAPC z*OH?S3tNby`7Pp|3KkwJzTGFpipWpsJu46tQ;8mo?-VaRu(0AV;3kD+Ux^D&Il8eFq^rYzs@w7BvOm~-AL&K+(K4U^z;CcdEzf`NNU@mD{P8Juuo#}G<*BBK6o zXfh0}vJwIUmKY4|U;L2OhJ}M5>$&5S{MD%EYrOPw!T8H(1D;&069wy3VXi1=?XO?s zC52dfqU&Ei*z+y1HG_hzIyFfVW&Um`93&n7?`|1a0fzv>soQ7Z{~IH}#5&z1`D?R@ z!32lmQLLp_XvlQD`kSFaLG(L+H(4)fN?>5eLQ4fvV*YL@0!ZM+-%P3)g$d$IFFLzv z6{o+L`hPq&#oBVg1|X{vWLP|I+0?39U7F zotdU`gA>YMq%&)=HJtSl`;TxQ2^x)%rLs|Js`pv?z{)b`~AmSeF~!FEnTZpB}2L z#>k8=6fTF0G)tLmXG)w&J|cZ1=5sjI-o6@f_o)-O>#-rsn#pzaS(YZi@RA36a|f?bz^%yob^eOtB(h= zlL~n#lys^sgyQ_($qY1K`ssWQJjuYr?S)0h2Sk_42^smG2)sO#u8%HV=zOxb=UX_( zKN*}(5%_06XweVoeh+xO8~832xgprxN9L;#BYZvgvyPGj2mn|JumM5{+4u}0BBvr2 zgSZFv-Ob(?G|CW=YQ2L&p+Qp}x8sWb{&evRY+!U8HR995h4KMe>58jPlSe5D$m{+7 zRH2zan~g-8bTrYHECGffKir+(Z@|C_k?gJ7y7dmE=^qfYX!cONJdPHoXTRIFyPmAH zv~H*FrfL+b(lV_Hc%N^wAbYg}Q-~q*_yTt-$ZF7K+2^1X`PJ!Cl|`g_v8JNO@e*O( z49sqpcu40(vm6O5`b+g6@5Ol?mKcCLH7*6*AAMHydiTuo+T$aOeloB8N(*;~5;WO_93NcIHP-2zC?C3U|=8k;| z65%kYFcueZ+l{;Y*%m$p%FZu1Ec>~E!l+sDwV;OPEdVSZsM;OFv!*0RS^7$JswKna z?|#LKmaL-A>bpiyf4i7cQ?AvG*zJ;BuuZU+;pjmtahltV-_|8^wd252Q=;PGgvMMm;2V}z>eI$v{uly@^xZ~?| zS0Y)z5io}oj5GBm|21)DnLgkau3?Z$$hgvCob{&@0fcw(vlcvS9@lL2B z?bo5D8jhh>hH^_S68y@C7|$3d^nL$7b#P1xGH0% z0_EqHR~~==id{F1FeRNv=Ubv64}7SsT|kg2P0p^Ita_$evgWWyQu5(NclRf4c|ZX9 zZbm}Ds>{7i*>c*6dcGEdse2%Lf5_FaUsPW!P&QcBtb>4zn%dD^%Ajzi%=YACiAi6Ib_futY91bP8Yd zx-DeN5b!9S+BKureDXi<_?;ifOz$dsjsMtNu6M3m+w)4Mv6XH7oDRyWqx2k#7Zp(Sc@fVefj} zu;cSinF@iE>J503rr5&yGdAs8pSCgX}z(=m>ErnH5!3z>;0)@e}aFjJ~$CH!dc)5&DM);6X2_eSJ3 z-MSWOknl|V{=x#c1@rXwNZOG1P6ols%F)PpwuHstCgb^H^J%;jGOlbDBcAp+Y?$AYhEUGr!msSN z*T*Nu{K+@7I9_R4v|+sj!lSM-mNn54m+l|#6RuHyYL{yDRmZssaU^sintXZkA=QIv zg!o+j1{Y0{6r+HK8ZcD)d~*PYD-*cg)KlsG^$~NvuknPd12AuzZ3h;EU*aS1m?QS+ zR0TbcS*#%5mcx&|)o=Bft&0)aaachu3>J<={!|{nPuI)BeqYTRmAZb$hm?U>hO^o` z!%*`amK!zM?pgtag1B%m7k?6oE}bpJW7hNnrb$3A$d%Pt^R!FZJ_eW!*P3>QU zlbuj0kRZ~xO4>d9_1njr)$mLbuAZ6|PXJMwqFVFqXbXPH@0qs(DrLc9T5xFTmBXJs zUTyRh1rWTL}@ym`g|>|vZPu-UL* z2O}k6q-I$b-Pazd_SKG`opB0+QI+q%PWt49SxMJcTlxz3Ek9kR&j{v+SQRm6PQpq;mAVg`l_bHwO znJYbR=ScRGSTkI{bFzDYbT5YWI-#D5Y5BWVqBeMl2Z0u2h?EZADYtTKnCPWya)-U4 zqqLE84;}aUjIAa}9*p*TvXHL-y6 zG;9|OO*)(_Fwb$r$HZ?!6EJz?M)+^XGo`Pstb>^sQ)F7Zj%XG4&lEf%C-HTz9&y zK;3@zRr?X!^+p41S}CIC&T}Y1LIk*rxEOD&p7ArFv|wfjT1E+uEt2~lR?eItx1@B1 z0_(G)^($JxgO_5cOTF|IK~ATk&O(pg1ygni&m4wAe3w8;x);Fhve%`yl-v3 z?IahxR@Cz!i3lo)(J~fYf7Rf~elkK)RXHtOaz=DIMX%iarH?gQk8l|d;;@)sH_U1z zY!1y+ZXDDtQZF1o-x|u9YDNMPuxMj30i2$%~Acaj^0E?3=-P&Hb z-St+7V&q}<7_#rvW}aH=}Vq z|8?X1Hy+#0Hrg5vxPQd!C^$=os#7b2<~F`d!?G3Xw!^BSg!qqUgO;#I&QP>2E1r$J zvp#atJW7C|ISnHSuBGa}A9;d_uoEFmU5RD02dMt`=?h3kJ<`DONkHH(K+n-rouwq$ z+a9XiH|7tHv=puGG(3#^xPH;DHTd6q6cZcxW?tJu^A#m5hwI{y?f~?|<1|bEXfsnn z=+45bR~N;Uphqz}s%3OARfw|>q%X2fJQFi1@dt-DQW3bw_AAZv@%42s+-7Ccd9(B; zE50Yf2Xr$PCS7my$1Zz0kcHr*jC&xpQId?@`+z%EIKkdyOYa%v#b% zLOG~Q>BwG|>O8*nJNZ)Acl7rwRwLi=p8O^cAhU99Zi|^Ce!X5AL-Tw5vo0QwR(%tH zfCOu1=L=yX4YzT7P+Y)^88WrYF(4V*LB(Y-78cv-JAF0pTyls5pnC=2k;d|;MCP!h zhVROI1ViHkWX%7$Mtu>d#spi&NKecIl^`yIjAst-d=MsatrzP`-5pk(`$$#5$X?R% zp#(IN?P_{8OTd)QK$qJd&gHE;Ly@y3!ZCDS#OuH+KXMir?H>}eULUM=gyb|9Pq(Mm zVb?(C%IlY0ks1;-I`ugee2bL@kE4=vLaJ!+NKXuMwY3|Fw?#7_2gBEOfLl zAcMo~BQ<-*gnyGe=2BbWpC2`Z25Z|2Z>VyL=9`51SgU45=WklA#vrFW;QlyD2!Rz8!EEdw=EXkZ*U7O+Xx>d_4XQfUNefse|7a3wiYc z$zZ{j?6sNu@KpujQ1+s3FX+$ zS2?FBHdRgA*NS7}zy+W*-)^VPG-woSvd)(6B761DVEDCHTTgt?{)|H}jktX%F<26` z1CI&9dU7cs*T2(haM_CUsNUlBzn-^J*>f)mxl{tonHl)xE!(6Y{Qx~~TgvY*lRf-3 zq18f3CeVPmaoL-|d*Yc^LtN#uH7G^u3*d9t!1Qn_&ySVv2%Ze*UP2Xb8~N$}0eMtq zbkpsDM0zH6()!L)w%VqeR{wj!r`{M+;s!mVl_mk4)5|d4Mb7nnsk(`sucY;kt1EXb z#VR?{)~l`lU@}i2%O}nBzdD#zb|uE9$bw6^O@E=o=rksL6DnGKDFc}F5kH`PlquYs zSGjF$&&%v)+1KdzdaUKhx1I<8xTGyBqvx>c^K3~np1J`PSbP2P`?D3wqgsU%LXC36 z47ROmIEX(mrVe>d0ydA{x^UV5z{(=;T~bx)!y*4ILNbevDf(E!>;@Q`-#|tItE`1@ zYqACpArJU%ayXgBlZtm*<9IEF^di$|zwoQYE#Oq0e702eI?Z0r!}h9r>$GcyiwEdg z{cT^oZQeU>52t1WiQ;0d-?P*9Xxk( zH^oUU_mChK@J9Bs@j-8u-ZpES)ofTm@my;U&IT}5nDam(P`RB8`nlTg#Zpbb%Q;EC z#8J^QS*&)`{!Fr0Wj^1ESC`LRj&`N#dRb?&Mln9Kz|bqFmri8@{9gxvRm&tUx;P5D zP_X?OJmpca>U~uo{Ai%07tZ-C(SBwCc#mXB?IwFQM_=U=Dpn>R;Y+E2k`io= zUqOy9dNrl?OGLqbIHygKb8?sQIHO8j6?ONN7099+-3_mfmxZ<~u}`Dqa8Uf(xh%xk zwzADN+p7V^WS!mnS}}=E@mpxk$)}ty_yydD=h(A%gYed{AYuqpDUzThk7j*k!`vh>}>dAfn@A3CjHw#h@EHVaV z7Rn8ZgY@@hi_{=Pf?Wa2KYT8Fq@gXAXmTJ6!{pfy^ z)GcZm`SUz@=d%in-frR)^L(lMt=|^lZw(O3nXi3!4f(S)q{O#%iw@OwatG^4B+>)x z`IPMq$w*km{x}unORfjr)H6yokq(b+1+yz&b&*NrLjXJlm*B6}OK3(`w@o2DYaROm zMxHV!+I&k+A+`iQgduFGVS=g)5R(7 zO5pK}wcwEJjUQTY5EYtr#9$0Bo1rf?`NJ>0_M-{Vaix)ZChq}uQ(zTAza{|4B(`?E zq!$deYx#>DUVtANbJT*L9&XDtiTJ1F^oSacgjOs7cI}MYW!tVc7LQH)&WkOC$foUx z-2XD(EHGdc>-18M>$SHtloxHoIPF$7mYmPPbDixJ|TI^(-}QSoy_1p!Y-%- zX;F0USFHXY?VAIMrG{Ln_$;sA70Nqf*egRi>a+L5( zzo*-snVW8q_qmtsk;3;b^gVxzBXB%&aMa6PM}1O0y)pWh@{}3LcCNZ{mBvA_J6>Uc z+?w_pMGZOv%f_^IN`|$b;Op8~eWwn@>yj%QCY@om#TW}lD+Pi8Q;4*DgSNs=ndyg* zDnst#fMnGTs@&GL`rvX7Fu0E?scYX3=PIc|<&MKYAqfD?_EptbDrkK$4FDA+vDmZ- zfGtM8@x*M=4YFH;!cI9e9OtX@zB(^;4qZkgPYo~@q?_gm-)<)M)a<{4ru_VR7EiM0 z1|+*uvD1)Y0z(c~&Lf?Jt1tq?xEEwz?UgJpy-|UCHugw!NdUbY41$I4)`y|udnGKw zMHXtNqsz6uhr|K9>BM<~TlcjLzVqU48}ON=r^kDtqV#-L(7aMKBJTdN4sIGInsVGlE$GqO`zPmk0F3)Y)o*pYL8n!qC)-3 zwjvein9rN)FuV!STzOXH1FTa;KwN57Nl+0);B{PK0Yu-{hr5IFnMZ1_n%FD7j!W#s zn58*{;3!n5jM1Nz0=Y)doPYAW6e=@3j#~nd()x}nm=WHQUi1<>;zEu4FFa@@De{8A ztSpua+KgId>DDZC=PQPTHG+XBEjNRJ`b?Ye9P%~Dm;du*lDFglA7y}h%k z-S;PjcCP71KVY4xELy7zl@1`3ey@W*7RuN7bLI#^T+TSxkcOFs>?Xixr0kJ*~TZh+Sb8#0bhfK-;Ubd12rkHefzi4q4bhAGFN1&>Mn)6!DP z4ItQralB7G{o;{T6w>*?oMoUspK0My?CXTpj|MQT;rFy-QwU5NMdtpkEf42Ig|ud* za3;Yu0j{Aq=SaaUSU}{(r>I8N3a+)C{pgl1_!weSWjvl zCK~xD)@U8Aj+}r{K6WqY_uJ_QK%Qpm7=NKaxF{*%{-AvQ=&^qB{udMYaek+yRXTtA z^?RjE?AEXXWc|-z7l-{B0mTf#=~~3>x`ima32Voss<0hEjbOKYQ1q?6Dqyr1NNQ{}dQ#1Lx1OSI~u_G9ZO2LOPYnH@C6Y~jHP1DoXXaotT zV#3b11-4D^Yw6LCrSXj!;ss38Q^=>VkwV6HiFJXz;EmVf#TSp${ZQ=BbIPAcU57bl zcDw+5FcGIv1Ef*TFrGaw|Ep;&smvcDXWclZ$+U);+L_I~d;}$%qK}t}>7FazhJ3W7 zfbxO$^10IRoybL>^0GDNS}ebO2jW{ceXn67T)D+hf$16g}%8 zb(F83xh=d7W7aC-Ra0_|Ou5--?~EFrh)2>9koJx{*W@!D3w{Oov2hVqAMPfQ2~l!M zCb&Oxcailp*C&~Y@xOoO4{zJi;!XTTfFhWvDR|#e@g`@6ci|%HDaP_GMGhRe)-6`w zk!VO~Cv)W_QXewGNz-+`aU*Un(+&kGnrKw`|LSUW=Cqmmak>sRE_YmQEfasMn8~>Y z?#--mXqDV9JShig*ZV<=Y_QbpD&?yFORG$O53fIGt#Zt3g?v@+Z?^g$_wMUge3)&t zT(^gvh4B?LtBOtP#nSVK08t$8a;nVuXdo&Lms7c2GD$onB0niNW7uaJ#&WRg8-7kU zkYx8dtBeO`vA0~Rs_QO$076>~s09H;-82`u^r!nX4ypG%7b*c;)IvRY-KPBdXnJHm zYJE@d$^6R|9KhgwF4F5{{7)rB`+&OC(cZY?fiJUvrD@OGe5sZKd)d$+6sIz0GV`Q% zK;7(GZ9>8z*#+0%8B9dMJK7gW2>hcn;Xi3_H`|5pNsE<%kUKwl8~Lu19pSrJKwk-c z3)Es>{$b-_<%7~pAc^_3X`f6ymqWn$^ssONsB@JJMEsINbW-gXm3?HWfecbewcMwc zjjHI=rFwjBKq;>e&10XJ5gzi+LbUKzYC-F)SPl}G@6sx@InoDrbh`c4tG$a$B`_k0 z#|WBdKjnPjv4HI|@m(t0`B!h)anns}9JrSxX;dU%^v?rSMG~-XhGy&l+7gN2#W0tI z`~Fm=!jXG?d5XTvXKLk)iGpjObV;azF#>g~ea#snq(|@)-SD8Q|KYMFrm#qvM*2DB zTX3w^Lp4TU^Vpvns3H>a^Xlg&#(b{PY3isR>*=ZA3O79GYkC5<7r*kQW_)(KTlV&d>AZXTBBe(eg6ndj0ud~;a7oK&h5UL zGi2+yYOk}687sYK-UyF`_Q|JT(RFH_#Np@q$J3idK$`5Sr&fJ#Nr1%$B0vxmbvSNM z0M-M*rAH`bhE1q|BWK7!Nslgf8M^Pk{w&*mIfpcC=cD^HdY(AsP52Iw`<;sW2~qOE zi6CR0Mxm$T!YT`c?0p;pgCo(jrCMh-A+exy*?xxxtcFq6wZdB)Eph;iE3d@yQ$=Qc zkH|KcJy+e`phdUcLO?QlyxJzZIg{ZySe3-8$IBh?@cVtW<;eFKiKg4=XUS#XBK9hd z^Q7OqMJ`FRIuKnX8K~eFk;LChw$2t{nIV$2Ac3xaH?Dean&PH<>YiL|kJ!355byn( z_2sjIg9PkZDvJP%nd~OLPV2}+j~s4djQ!E2v;}>4=d%b*PU*~u*w(snP=NSqg^7d` z^@f)}_L}|$a)KQQIf_(>H&=pmF4O)__;=M18|sx`mX&O{)cA@NRbSL>=IwzS?uHU9V4r^2s~Sfx+gyYD?mcxGwXv1C31s~un)!gLGhftL{ZFciGE zvxdH`I^|cJ zw}UDAfK>#@GQZ`&>s6Eh5(g#eJv4SezFqC68d%liihRqs)xJ8UK-pn6us&icM<({i zxozZ-h9!%VuM287*t6V6tq=gO^)!|EzH+0lSNTmXX*l=~BEjo5dN$~hE6>bV7Sf7Aep!DS&uVFBt!|3s09}=T6wq@=CjSJ-D zlV|f+zNG(@!3I?g|i;vm%QbmFt>hLY1M-_HNI zIb8L-7)clF;6Ty_8lMga1>R|;2L5bSa?tr!KsC7}<5M3wtbOsuOn4AzRp|CB#NiUj zO?T=YUu@Vs;9q&$nE=Rigvof~LBWgA28` zr8SmziX5d1JqW3!x7LP*ir-Sa2gi#F0Gjp*EJqcFf}e0lKU2>#&Ep7Z&UdPGb!INk zuNyk3%X7%NpY-82!0SJ;4M<_ttCziX*~(MhdS`kEP66s(pS(ZNPx~#M$5`q343a57 z<&OBkHYuqI{i$kIKjhFsy!3;PnYGNMhHG|%9;oPKDR^wAu%LKNo1;lW(_>@i?(07v z2mn7{{X$}fx_evaxGHksTZbGJu?LnKmhd#~y{&1@+`Hi}tFC<14gusFY9O=jE-W@@ zEc73>*!22|WF;AE|LVC1;*txBmQ4>JbY(!|;e2&pqn7@3H-Ul~vrH6ad`x5&U2KrQ z!OjASK|v}Y-mEB|vm)=y;Z3>Zxg(itH5@(K-2M)dEl$>c#>4+(uN;ChFuBjn^6%RH zf@FZ+JhE)r=k@k~yxQ}D4jhU#!e+tj=fdh=j$Km;3M!CcNcg)ui=6`Pen{m?46pv? z&M&=iDc1I0MVSBHov}c`yL1%eyn8Oi{N+=U0j+C3p;Ux_GwkKR&G>IK{;Mbb+Z+GF zC;tDssQGPwQww@?Pz*Fw8wm`c1sfy#{oIW)#``q+uhw1*Y1c5qJ*6b55^E0(?jXIs z%VZRI=Am*_?N>r_Oq^Na;y?==ovG_t!iqk>K(;K|znm( zPGZtX0E7{_Jx&XdW6BTYw)Rf^Hfic0cEPvlTDVkGI% z*E8j{vp%wgQVv>MWj{WD_;&>pa3?< zTXLplystH6aq%s~*}`Y^%01WV^MkX!gy}QVzXZgY(*pdTCf@@3Sbc8>$7z|(Cz9=} zoNrcLPBY`w*;N#j7B7W>SHyDpmp$WV-; z?`CEfC8MkUD}j6)jzazVFX}}GO#MBWe)B&A3Jj$(hmBZ<>Q7{aRU&FVA%5S#u=V?k zS$t+*^HzNnWMuf2Hr>7>e6vJv(C88A*o7cl+Ofu}mkvADVT6XR-hQ#-dz_%btR={u z>HmaSs75ascZ7e+0&HOzHu~9JDa`fs()vxa4z#!GELOCWkQY3uE<%28;UyyM_|hw1 zhV{vwo8ojbX?3uy^nSBbhi&1@cg!31AWC$!>#?uP$^dHw9RA<7T<)x7ZIAWC^P_ccQ2FMW9 zYCdq(&)a@RU%=@%`7Bxtr#!pRx|jFQi9%HxBg0v476k)b&;w_f4jvT=L8#c64HnB_<*GhpDmT@+Ql6(#E#FNC_|@E%Ufbl6uR`jypF`^`;X1B zB)yrF1=bwR@}yToT7xFgjcWb%51h^Z#Ecdn`Aj38l_NjHTxkjhIIcE5T57{o3%r7* zv!1+(yy-lJEvf{1BewZE=UA3+HHO`xPDmS!EjN6Jng!z`E{@1Mtpb$N+&xTcxzL;{E2Z3*P z7DO2J@_x8^ZK5&SHmXg?Wp>WU5&J#4?vfK;t$|qo*&ubR-xto=plTYE-16P`;ro)%q!O%GO~^B`WRyX%dDtX zSK9U(O#9XC$U?QwxMS|K&M&68b$p2DvVW|;lQ^-=cDUl&cC09Ge@QCWR${DZLffCG z#Y#h~8ofmsGJh5u@9%7<*r!uvwwf$PWbU6diqzwmygC2uT>@?C$BXq^Go=PQ3{q0xv}xt;}37(a*Zs#F0Y=dAuquf{3_)9l*<7Gg!z##@}3 zfni6jK?v!K&Mm4n!u+-9F}R!;!vsgVQkg8xJ2@AnXM$!&Z`(pK`Ic8k$!dGwx!i=8 z=DA5V`bTZ`xD>$be1nEG3=?Q`gG1b1v)`Zjov)31q_#;s1H()6Y@q*!6ElrCf5qOD zoS#BbGrxuhR+a7qNa|Yj;<1A% zURty3vVY4i!Z;S9$z#GzE_2MFzeVYNic0@|i%ocS3@Y9wB@>p|=PSnz?UMb<=>(Wu zLo^kF-xzZ@e_0l1lyB%Mbr@RmnK5oXXa|-3Nx5v#%RYj1w^WlWHHB6_MRpNYcj)O+ zMpu+nhtkF4!gUiGoH<{edR8 z)r^d z41m;EK8I4jvte%gaYh4$ifX?r>_U94ll=g@k9E2ZAAc6jRFt^+?3JiPt0x)TuNL=S z2^9RY`{Q_L2iDC__nWJe+GJYs#qG}xDsVl)ygsCa7k%umtauxS!s&h&FH-3qR`*gd zHQ(b%aPqp7TG`vS_-Fm9Ul&T&Q>95rR3^V%jBs5#P;8xVa1BS}Sq@>-{W*T8X9HIz zn8fNEHC3uNOC(gIad43*Mq-9#&D^Y0Z8^Bq;A*}OZ0=lg*2q=)MF;eL;4nKC-})kZ zk#QKykh{R_FHon%$0u`yew>=T6IX>un zUd!&P4d>1=e(siM8&Xw%^YISonf}|1&$~FO6>si+W!CbdnTy-6WPU|YMMrE{qD{+d{)!9~i;a8=*q7EiTI-y7J3RDkAnBAohW-RjnV zfLmaChAlS9ZcY0VSzwhB#-Oq8tm=w988PzO}Q$cX&b;UwIpwpMS#9r)fiT- z(W<@i^>+dnCDjIvKA)3p54SKyt%3ezKU^X4ZX!6ytJkpJ#eC)jk5wJD+{DTD)r~EH znlaebiH2gQTdj8IPG+&?GJ9V-{2F`Z?v#Aawu%K(CH^j%ndT4qRWvv&w>1lxKBcy#(+1B5`Rh+9-n83MFRR`fE zX>|(&onDv^SWv+vmbd7?`!++TumT7;KCV=FaN@6CpD(%H+7F+omiajEUDwr9Ko2Ku z&F4_L6eNmsHiOyOaF0qq4x|Ap&YY6)h`Z<4hNu1C8Ny@yv>tC~x^epxf_B2m(c%na zMK%~hV{j_w)D1fV?WwB zh1Hh<8;oEtRbl3rgsB5->>mZMD+B+C6dIPkGsix7{3qQ7dI39PNEh?0V(-n8J60I9 z%Jemzey@j<*M7*lKHtgom0t1tp&vNgJv&U=@VEaGpJxIHpfOCZ(aaqJcnMdWS{qW9f8Eteh) zz=>-`$GbJ1Kx1vKA}MR^@-7))H8;4bV`0 zbG4;)*I!tW`n1UP=GEyij3Eqfw14s^&}=~N;j+6Jpt)szPpEk5;Te19{5V&CMC-Yt z4~aPse`*`ZrIatNsc-d&Q7=*(gnG~nHUQl^0`>KE&}02iL|&umVvZ3aQ6_l=8>^n8z0zjlp+2tG>DO?d+w^hBhneY=t@_ z@$6icKsBhh&IBD!9M}QwBnxSKuswhnf-sG3%5~Wdu1ekcQ?5XYL^U8b>u~(J^JmE5 zNeR4a8D73jY4%g%YWVTdx0&I3rbHze*lHbcxqg4XON}Yi&GV_oe16bLUcNqPr-yEB z9>_twcROB?Ebc1|2JQT6Axpv>38;}*Wl!{QUA(EC-AcGlX{4J?4#*H%W&pNMW1P+t z+oZIvre*Ec*)JYS&DcuAL%8yl6NMa3n1~f3HOryM^iv71sN3S-hN0@ES+`$A&)$14 zJk0MH#T}?3d*L%{Dr~cZCQW%QKIQ~GhyzvsSi99$;jN;t7rHMDnwBYr$#xluDij5l z&EX(KU!u}$P`BuPMCp954?pW4-mPGKZ7LwcMW(ag>|k+E=GOLz?Z7Z{#nt4T4oFJt zpp4`JY(oDRd+#09RQGj_3WA8J*Z`@b2uN3Y2MZuwdIzOL=)D(FQR%$|0@5N~TIfZP zUIK*P0!S~RcLI0k`R*9+eZF^m@BRPY-#-o<=7i%u`|P#WTx-s$Xi~gYWXa4Y_s6b- zOoV8}RJLgk6uhw!3Y9;i)Pzt5EBi?@cFk)};K6n>ry0A3tdUQBzv&TvY+Xh6Fti8V zedcqr+Zo9fEZ_2lS%$H(94p0ba=QO>afiL*ZIfEWNl#9gDPSk|GOsMF>YYS?An?xMN>)CDIt0>fKDtq_iRR)KBz0wwC@W`@At>e_M z5A`YNnrxfNn&GIhYwx>bSs-mxy=E2n+(=*v0tPRXVcgSvlItDpeMzII4Xj-C#~)3= zFS#AwgmgeX+17~dCrmj*ZE^3PtVRp?+pQk-GQuJj;iOC5$AL0*Q&v7!x2#Z`Pmz<+ z&n>|4)?$wrvM+N6l%#bItpd>^$bpgNNtGP=pBm2m-MXmxy{*l&0wuvNIxY3^Tup`W zTwR4-vX0c$Rx>m};{&*GrSNB!D)0myd)6uj&4!Sg^Fpab(XY%q9v7qP&8Lv|ng#KD z`I_;59LU2Oop5EDCZ6^*{3}l*n=(47P5Vt^3hzk>@80Xw>Ob2GdyG_yLAMpf)mUgo z=F{1yNXn$vOD&#mVj9i146XJ%-*rN$zF^IZMrEMaf&eA7T-WEKV)UG!AF9D+s9+t( z`j}6iJYwAo)6l-4pS+5PMEe^ta3DpP^Q2&I%=vgP!SIL2#QK!sCKzVF22Gn*aM4G0 z$hHU9{q3tQa1?R9*$Ku+x|kpNKN!YW4@zZdJmGXwOL~4`vFg#Q5pE_N12R6L+?Q9` zBy0RH{bKCu_?Ar6oBb(FpU$4Fv2k^?aWy`ObCu#TU-snCm80dM%e_WLST>%^$h<8_->eYuyA3lA?h1+RZ!@TtEfJ4o=vF}Vrm<_GdI^XUT@SaK z9j^gLB{d}r0eemg{r)zpGUwD)j9XW1C%5G+TxI$y1((VzCPf&lR0ugpf5^AX?^{0C z-zzqdp^fiIFrOL$w6%%+mSWoCdL@|u@73dZ5~OV7=;;^K3RF!=Oyjh155_l=-v`0o z_Sm95LCbR`@4O^k&DhRb4$+GgO`)g7K>=4e-b2CedQTQ@+B)#U7`-OkCY(nXG$}VQ zNGM7>H_M#U@$uVwVL3BQPqxV8_@?q?)U##W?wYDW7BLuMC(S7x&>k%AK8{vH4K<-> zrax@Zrd}=mM$S<&tAipDt9@rF>+5e(-H@(<>K^=m*sCuA7j9O$)v;v=`Zqy7zB}kI z{4L#Hk@shOPVyFTt`2rdj=R1*d}S@_mRrr?aocsWN>F9ul7BsaaIFwsz^nyLJ1K zF#Eb9TTQN7&Rev2akA!jf8mk!o{CWeE~MC{v4^KM9uf@S$eqb^#he}}$4)RkgHO*{ zKj$)PIM30T+S}Ddi_iJ&hh1A@I_H*>i)Y_KJ2|6F%Za~+>=4HGpmI#17xvlm`F%fFzhQs^9*#fiGo_kDIBUviyk=j8% zMz=5JoR+zjlh5_Of`OgR&$h@2xwDSU2-$?9>F@^&Xn*qMN^2Gp@}5ig@u&o@U|&Xf z+6VNN%F9j0Tfl$_{@*nF}Z;QMFw^i_}>qmd^aZ!+&qs5 z45LB{YUIYV3z;m3Ybxr_W{5`AZpR1dAUyZXs~0ldRPd&y!>GF>f3(n^7&>bZB?&ry zG#PJCyBX`;r|9|NMiTeb!{Ndrx8L5Q(?`MxJJgk8H_H5^KfZpGMdza9&h2p( zyF;9Mh3Ojr!cY#J+3VRQURXp;)E@ckJwqy{GG^acNXQ*Eh|(SW>3Rtj*E>ZfaSeZ` zhL~Z-pFaOK5_T& z7cR1Ob}}wPV=5#(22@x19Fu7=zl`5&gpkGE?~aWY&X(`uL=A7w7fzb>r9sV5Fowpk z^`u2#y%ff{5OPN(FA-<2Lz7xiM6TlFFsJOq-9!veIic~Uuxm5Km{4?Y8Ob%lk$dfF zYOQc7Iwwq7;AIiI;^UE=f=80TgVsBl z=@Q)0tB;Zjtx9w>&3i9;OE!jLs5{d9?OfO)LsGn%zs zBgz>GnbVFRpu~q!lJ#6{R$E13T_ZOb9}ancXFoNokIj3hjd}ie%IXNLsPGazyxmfH zf^30y3sG+2DMg3jp;yp{(24oM$U67>=M14eO%jUJe?0kbFDwdXU^Z$wf?0R z1Y5j85luY$Mq&d~NFc;ThKEeiTBdQFzwy7Ql|mo3jVZA+J}jC!=~I_F&_7Zg^U=;& zHzI#?K&x_?c>*!}{N(du>PT;PPWWG|&zT#E>TeH|+P-+%UOHSDpS1s(Q4&HF+_W3* z$|^%uEvKo)n+pOM{U?!^_%rtz*9a4oHXf20<|Ajf=2Iq1ZSaAJlrEC0T`P=A#A)jI zn`*t+Et!kMo+f39C?fB}UlxU<_pOJc)7s8$>MxhpqclnWbPx#JE%X>I%gr?pyyRD; z$S0ZFzb5*~Ya8!mKPG}9gx;3R#-if6EBm>-d1rL%Zp#r`MAItC9@OaVrGS73bCY{L zUbREo?q}$i9pO^NT_gWqWB`l-_Z(*pV3Q+GtqQDupBdem;+P$;I}zILY(j1n&=dpK zi*^lqU9|YdgJ*!8QS6jeyYdS4(H&7nSj_ayAScxFVq&@!;Z>-AQsrM6a(kjSH6lFq zkI?HT9;IJbm;kT)3L9hR_bda^!&<9YnlbmcO4aFk<@IHO!}XbyACw+dziRMyE?VeJ zkhkV%Wo`^RF_4P|C9tnkpq^9w<5_@6Iy*d%>BMJH6nN(>bIG}A{U9OVTOj^b>u&2* zrXK^8$2#n$x8s+%r3`PScob&=Igc0{4!KDODe>>LwS1RaTdO)SEkx$ z$95h5@9pZuA$CpiEZUMxM&8wxw9#@vT<;!zq#*ub%RHGvWx2upM!e>usUadkl7t>E zvBs+Bj<4y&g>)c9~GggtJ>s3 zWv=VwNj%DL-L{Ut-h;HNI#3xki<4L%U!f zOxNi9mXDe^=_S~yoE_W0oOme&v?ctZC9ff=@34(e&d)f_X1Q4db>6`>6>;E)$*|s1 zUDdB?sW~${Jfxoe`jdLPby}tSC(^aK8nqpr9J42%R=*sJ@rYX#blO$u=P2k{jT9tl zFo_ZEE`|AC<H=G@dXC*(dzEYF6Ao4MOm7^~(P-yJV= zZY(gWQ(Q`(UHVA8Ua+%S#5;}VOxuB5CPWE~8&+OiAe5Au^uk+NnyQ!f-*fH}G^5}5 z#^fHl|0+K`d>KJp>U7A&^6qJ|C~raP^5$Sy!U4#ZB{hNA&+kW8xEFqCBz59mmhO&m zj^4y2rrKlt^uWkJrh#WUC*SpF!g&neEj*-Yp-wm(C1D$>zNuHV4!s#GMO5vKJ?-e@ zaF9TSVl5vVOtfV)H6MtOC!VePQt-S^AR`bpcz4g{t^miqg64bWRa6hPg*Qnlce;v= zBh28m^fYD{6sPWW=Dq{us#=HEPc^7xqh3ZR#!JNryp6lBcob30tK823AJgFgoZ{j6 z4KBJszP-!nBh1P8!~!e=nV=fFNJ(lGu8>c9l_NR!)cw*Vk37z~=&ZOhiH5lKr9~3% zkp8iRdn1wLoN?_6`BD3!b5@nN#ZD5rcTZZEy(b^%0(F#Sp(a;hrRULStk1FQak~|( zu1sPk9utMH*+w}SEBD3PN1Yg*&Gj3x`O`_%0-eJQ{^i^>&Wnty)elWP!NHqrLW!dp z<;C;PYLuul=4$`QP|wrX0m^B1_)^I|r^@PHl>rujwPF@XS->~4Kb{`AD;a?)(QL2q z*@<3M?QqfY#=4FszF=t=Mr=-Of@Cbp5Jx-Zw48pm1l^%yfbSECy7r)~HCQ`=8pM;b z=!>m7X4?t#0;@VS9ufzKLPQKVpTVzP)hg7X82&gK)zMSlxbP%N$fU-^k(oz&Ek;@F zzTp!2_E1yVwe)GGVm#$(x9N$B-7%Aht`!v-@jFwy^3@6vh2u#UUG0xZc} z?-7Xd{Gs?7R&90nt98eV&ttV`0Sb?*Rr!m?IQ@$z9_tC5a}X*Z+)p%bTag$Bt?}I{@FqQgbVvgdi_tkQr9c}Zb8vVlfG`!b2|FVmE{rF1z8iyLU;{ z!&ZFw!eEj-vKCWk@P+hjumsu7)%ePAa}rs?zSy%0hq3#g&-qvjis32uR(=RN-5p)( z4L2Yt`MjJwoS&_Ok`8xT>nW!!%knw7q0-Gj!7Kh(T?YsiE>I4o%pnP{STllg~+yiw|U^PII(3m+18lds(7%l z0XeqmZp(Z7)qv~Vtezd(@M5?$o_{)#ufEPa&r17SfDsN+kckG}A{uzX;kec%*q@ACMEk?DA7*x)bFCoXT#g;jR15?A}3d0$J}8+XvDgjBjn6b8CjJ)C|% zfUYN$5b(!`(H8e^N98cjR)1*m68c-NMsrs5?#D-kBz{y$Pj~3FqE(ufQGCMXQM5@+ zn__YY#p^FZ@lt(2+)*-5EB^^ld{JI7mbGsx!?tdk<`DmpQX&;Q|LIbT4eyYeI|^2K z>VJf;ZP`1OuEkRtFDyWFh#q)AXpE$8(+JLv9pNz9TzD!51Xkzc?GJxl_0`!%0)wt~ z>sSboGWTu-EJx8MO;#;kUM9{iXM83xT^nNI_S}8CC!piDH9^KHzd(H}l*_P2v{$nr zYBK8p7GRbDV6F=TdBMTvcGSI56gMvPfE*blqco7I-vzVzl=xDW|I>`JdB83+=G-lB>a)Pd-Y_i!Zh2fgy2A-qm?zWLX03j>; zcWU5$rq_o0avFKu`N)^EmXs!TQn`rhC}pAvfV}tcVXK0~RZ8%yVTwL?$4dPw_p9fK z*oyVeQW@f`6Lw>Z{iMa6cixUSE~oQ0A`mI=CI$dS`1(Q=D^Ao$#j9`uigD4Ql?TI;~H-GflJ&KYL>C-K2Q}Y1EZB|Nl4&!4J4iI;nBFI%iH8M8=(VmgF z#tk6rG#=3_O*jp%^pBB!ogg=N?? zZDou|;ScyNii-*jPCB=RhQWjceR}42MYJ!!vWR@?8y736DOuOt(|Sp?l0=sg#9c?M z-IA2sFy~e`qEpYHU0c@P8>^qIou8G^`__a2%=)HXd(@}*G)5ufW`%s*womGa{>4S5 zyq@o+<0ScD)hi)iXeRs+38YmkkE@eg|j9L)QC9CJpIH)M8)W&k>kC@oF4h_`ICvy1@q0 z2yUN0ql4)$_bE{3ihYrMkP*Q_K#D5dJqB=Fd^MqHu%D2ApXJb4l#)eGQhYdWuBfCA z$hdI(|8U-b&O{tU<6WI`&0>3(9-si@HjqpB=4bs*@3W!H2kImd_iz&^kdo;{-e*d3 zG`#dK66V2&31c8gB8>aS8Hj#yU<>FJ8q=~Vppe5klQYhJ;@#!aVk_DQ*oe$*L$S-` zulKiIwwV@gf;^^l;$BYwDScc2a!yi_)n(L|WvwXPu)zy_@U}|~Zsn+CD6k*(RD4BQdxcYp3@POQlS?F#Co; z)Y)Otd4-te`6>2<`$NAmZXBul?{qvY{Ny<(xPBP;ZNsJX~Paq zGR$^Y{^UkWxN{~s`V#G}6+#wssrkEH(V+WP=^0yh_jj!3!qcLtMX;mu+cn`@-AIXu5C!9U|CKqJ1qA1G zvq2KzZE65)!dd;w@XYgiJY?g=1iK=2+GEhyC@Cv7%vaBSVsw+1X|XGgluTCY=>quGExr^o zs#IMMp`aA7v++p6E~OsLB#>}gnt&rA>F&1vulEha(UlGxG8R*Z#oYq-6Hno3Zl#%L z)41NiJYzSbJI!B19LWtd{ZX=^u2bc2L%rk{RQ>j6-{^?%Dd##)yl}!gTjY2?LpO?P zF_9WDoscX>VbUt1&I$Ljs&5hBd571>*B4Z9um6RhE4xxEfKy$BcBZf5{#&{0mU#7c zx4r2etlr7DUUx9R(`v?DTCS#ikw%jKH^B(kG?Tr%$e?c7!#6 zwZcP%a`>@uTg=*_Yz_C^RoLaZvvyI{xoVQQZF1&!-W8p4OBIO1Tif4ojvE#VX>?>8 z1?ttMp;Tg;Hz+u1X8b_MeXwTHQ^mx|`XiVbke&8AFg-(TmKwJ@4eUHKQCz*{VeN;M zI4Y>yIfba`tUC_ps>uMJJxg~ySD9{n&dphb_@$4heG`%SwRD2M%a5!LSVj5j zX{9X6Ty>0Qv~`mUCzqsqwhtuv{$LH)8Mqp@>naQu{DBacSzH;=xh{2^*5#32YW_)I zlp}Faj(XFMRnVEiDFb=H;ZR2-0sEN;I_i55`UaS`y`xfqD4S}L58*h%HDuVyqenSY zs`htSijoM{g_2*tdma6z2_@0J(e({VKF*lte3%bP@yZ`E%ffQPjT8E;qu<1e{>j+vH7<60DB{^pa4u%3C-Ap}l^Y2}c!o6qXb>{E|9#V^`(+MHf!>Wv2J8`oy z?h{OJ^-?XgBa92iIK0xwufe4WI2_Oafzaz6T6o3V`Cm80n=Kh?o-}`62nj(ZnA{+9 zK{icE)}I7Ba{Fz1b((QjCC6iIrgM!sfCwc!WjwM!a_8olstt4 zM}c_2$tpu*$KWcpqJ5xDCkN>9d}q$OxbqDnE#&cd)c&Ze@qNczod(S=Z!EmzV@IAj{1GR?Y(2G)mzjMRMwc zB3mm=MzrHWQlwOVIyTUBnjeUja}S1w>DGofURAljtv>w+R%I16c93vA8(q5|Q0IH5 zJzn#na)n~+b_DEk`)~-IjKy5m0r&i(PN~H*UcN|tUonh>@CItyb0>0rtrqbsz?Etj06-JPf%LG40hf3Ui9?_QRq2q|l``K5wd@c1tWmNaTQ39FD@6vK_TCM~G5E!%65W0~{*iED21WJu zjB5Dl=zxp}f4`$hS|YE(7cK)UjxB9?&c2=77Y0Qom@JUM)J(rtLg)1hPU-9z2R|Ju z(mbo*$r;w=HtT-XE7@-2Q|fMiG8=@Ky9CE86)!%BDV7P1OjCd~b+9min#SU!)NHVD z-L}+npt-}wqyb1c|GY_cUJcoPCy*>`Rys_@uXzob9I))V3Ld4O_r--Co#(=1O5ueN z?Qt27V!g_ux(_u&Viz9R-3^CFQn>~CXD|XW-v=InsdF6 z1YhHobHnBp5EVsON9VnV`lGFCoOlBR8+)somrTm!u-r^Pb%sKX5|sD5PrjHhUC?`=vN&{l^L{v`cX#LY{l)&@4CwCfkJR3Ejj}(^ z?xH}%>!jJTA-XTbf(vd@mH%Yl#0cr^E?wHM++fFXncnw)wEavRbH`_GfGE`}-0wcw=mr7$FIcH+HjNM4Mj}>gqH_}iId7O`W4U|OL!mQ2}n7LJNP_!Kt}fMqg+T_#uM#~pCzp`dT%n@IJLiit9LgEkq-O( z@IG6~pI5x6cTKja@W`@Q)3skpzQH3q-n#UZUY@F*tex~m*B-gK`<a|;8H|Q>YDZR%jLOW->B#1aId~G&WaK?uvCnCPmoNm8fs&hv21Lil29J;sPQG@hk z^T*QE9_MpmI`iCIKY)-Jzh_cNd|%YCCdXqlMrtAx*A6}+&=T0qv}Vw^=QXh%B@o`A830B z%`m)^4FHx-chIA%@B4aAmi!}>_*))9&s%PN`TECyB)4$HOXD^o>x}_ z_pdu_zJu0)DH;?_dvA(ak%w=V=VlCYU#K%9w`@wEw%=XMIkNoW2kYc39HP*rHr?w_ zU(WJ)_V0G;NhfvQn;ODENSJ*Eo#m_1yCGsD3&~k`n3pX2(2GBEkWh;YA@huC`zh~3 zyzHOZwX#>#uciWB*gT)YA1X}DcSL4$+1|MBvy(^Mk#ADH?B@u7&(Kl7>Odj>aM5gR?4U$OfHZ|a~@l3$a zIBu25LJ=n%X&!&h5y>fEozjaDuZ|zGksA2P7{M0fp>A7Fs!Dx}6R{Z(F z$}nnwV*pi9J))b_8y&Y!KOvW25UX|IIbsWBDaIANE`9fafWzb|PTv&BNC&y7O^sW= z(>sE48q~J!hn2`najN>xFvPGVdbU@+By>L3=E6IpetQ`;T{c9gTWlLs(w#@7;I2Jw0$Hsx|MWgZ1*^1b7Jh*6;GvU!^AGEULISALs$|KzM}G1;`? z3P|nP)anAS$L1@TWY!Zb1BooTKGd4~4>QW%I~(KY||aQyD;2?aU={isk~$7IcvE z^(>tLNc6-g-SXB1G$Fu*Cb|EmQe>>NVlLN*nVqKs&n_)I-X@X(v zI{iC)ygu{+`Jsp}V2X}PWFxD9Ay25*^VZk6%={m(9NZtGWV2s#;bdtaje$eOOU5WE zf;*OpSC+TF40xA(z=s*C^L*ad0Q9F~KILj~_W#$Vfi@%{f15mjE)Cw@R&d^oawoX+ zvl3kCMRJxZj;GwXo;GNq59a&Z*b?Xe&Fh8T0ArS@@5(Prh&^)BqdT79U*}Z-536OR ze(X7(GFM*Gt5a6M79LH8PyLHpD~TWk47WjKVy~B0^sNa zzv32;4igbvBV+uo7BLSUb;Ih z&-n3>57h7Jytxwih1lW3?qNLzHPGgk;!}HT1V#`~b@yVa|Lb9bpE?kL@ls~cXvGQe zRNhfKPnj!$UL+0|MU}tMtDremd%@z{2Cg)(`^ZA~ue+Vi1y_m{9zS>h4Y0Vu`i&iA z_$>s2{sN&hA-BMl8ObbJ#bDaNx6rdI>|cCRQ$4Wn$BWRs3E=@2$&iRTh5*TWLP7sg zy|Jx*ptEFf87ux5T*+hj`vK{{?si)pTnW?kx$#}GiH9)m4f$Qk^bhzcjnvXxtzQ7D zq|*CfPz&&!8%9JIaf6!wwHZn|07=Yd)IM1r41D!g$jpE%XTX)~92@SZV1~ZPUoOoN zTuE8{{(JDh?$(19u+f#-#0kNCWzt8vCn4AA`=5iC>{jNHaSPxC{4~F@`k&YHKdT*V@c)1K&Zev2*rZeEmU{C)e~vyM z9O-4cWw9jxjKfF=@KYWGXxi&eUAMY&1X&L6` z$^b$09za_%MDe0vW5B-$=kfxrGu{BotvM#`;huZe*bhMY-+cbhH_uL>zCO8PG?){` zAd`&KxaHCl^FHL&vni395f%U6REGYyznW^LuLUd{U7l(=1L?$3b<^DJcy6FMm~WMA zrECNAl?8B)5{55$`|HNdp^Lrw2f;6ct|dY38-%#V_xePT`Yr=fo_o>TbIl}Nyg-`M z(NGgm?;bjLb5t($%C7~Z&zA(2BrZ>sIlY1DqyRAL)5GxC4>AH#cZ!F;?_ORu()euu zUhNXCR!nWW#G)^gfH-qsC>38<-5I79XHaLp(@G%#3=m&X+x!X?+W6I?0E`Y*wK%y` z^aFvgWuk~(V@sXHs_))!qDP6@35F8|^@kHVG7)r3Um3!m17FLxc1xW)c?6(GVT!5U z5Tm&${3=GzsGiy>J6_kXm_Nug!5#A+XaJUl+wr9|F(DB%rLA2&@Cz3&5ft zewYSUmVuunpAb~#D8Au~BnBRG0aunW1nT%Y&)6J*+C7w#$2<}I?(U6pl#*G(0j4{> z%W8Y}cOd=nzA`>cW9i9R$mRL61Q)j-SlD&L?fXiCKP+o^AN|Bk+IC%AX!lStB)a*q zKQ>F(hgOK55DcjJ7+x$g8HOwe-5Qa84`!Brv*s5Vuj8cE3luZ5K1vef5%UvH+LS5& z8Z!E`2Attj^gO@-GintDk4WN!#CrlG%U<9x^M1zf%$7l5AQbUw)I{(;zT(}; zv`|FrY5ma*;Erod3@f&Y!SzeVd>X?dPq=-zp3v=}^=x z1N$EeWW6WkR_^Cb=zT;yu>&4LNy4sqw!MD94K-0&{NzsoFlTW48pb!Ok8&3J4sv{oj^N!`Ix*)zl*Pr z;(wKD3+mKCu(-^H(jCe_0%n2-&H{=m)rmcl%ld@#9bPm_EVoOr`Dc8#Fw4|se@TMu z`fg=2$6`=Mc(z$-gkiZUbPBo+&1Fuh%#OsiW={l|oDSZSAfJw?^6zF9rs>NYui|q= z+6~~ZP9T0dpnZ=F9Cl@yCw*1*Zg&Jdmg;_fHBbC?+bq2)**$EjO z0)v2v7~XFBNM?EpOE)7Fc?w`rgiVdQ5ZXG{P1@Ctn~my13MDyrcL(RLf?7QC0Ul+| zpTnvj%hL6Is1fJSF|gNZo=ZvkTsH<8b>^PRJZ83H1poBU2$`1thj<-xN)dzs5NemVdv&BjtEGZ$pBPk2yRr_}9yh0E-&Q7`4y-be|aQSQlL|rWw z=6m%WE(n*JLpa%Mzr&mte@mXdSqEM`5X7|GWNG&vBUrEgLHvpP!507#bT6{a6$kSF z3@u5qJ#8RXSm9i9&gxN+lzn1H`g`pX z7Xydf&%*L-w$jVDLw_F4KeXIiy6$BdtHW<4flLu9^CV_=*!&6Sg~TbMbv^i7OUXGz zv(M5c^ zQU)D2T_kXRb^fOrJtCfxERnN64P@H2Okbr_;jPLIVMJ;-O65C8+~)Sbh>P;NE6@no z=^wKJFkW*O_-b@)io`G}vep)yl^QkrxzV<|Y1wX}**@v47r{O7B-PR!hk z4dKSq;bLPB!RS(6eo>d6vV^7lCo)a#AC?V${UbS_3)L&f&8f@4 zbClxTG8aFd4O*(uGUCaUjwmfWYygI0s1g$yk@#VlH^%C=;OrF?&|$CiC^Li(Ht!Wy z&Tvm;IDq&roq2u==kVTNRmGyXt=XEDQibDsCV?NZLhcLE#*-!LN!^tn!E{|=TzS6I z>uEXlz@j%^p>jI}=X)Ej#bN;0mM_#=e6k4N?&(Lx(2~{&-D<%9f{Kn0}L-87|yqQ@t3U&967?L%XifZvKsDpqVFJ)g)nH z#C34k(3D9!oW|;i5xhRT&&!hVL2AOcUQ}D8D1|-(W~G|n2lVy=5(I18e0WgXl=*`L{z*f3>|*ZGGz7VK96w1BijIW#ewHC z-+GY5%qj0oGfkXv7H5G|HW9r2wrh#<)(`n$`g33Qb18}aWO5dF^Q{g+1lzb@GK|=! z;Wm9s|FXAqa(HtcF>2)RD9&_|+bGnV z`sNGgq>6~IK6G=0t0{}|x!;T?5}Pk-bApkqR2A1Wt_qdq$p*)A&}ky_o@$Rt1cDo! z#MqxwYtWg764I0Uj=2Iif`<@Ka$GsBD<@gpd(i1E76EgcuqqLtZYX~I`raSI2*SIT z-zA3*3i|#gBUq9Pz~N(sJGKw0di*Z39pkaKl;O1f&1Ek2&_N@FwCL#RAXVC&ArU^ z+FwyoCsMJJ51Hz4sVJCW%q;&{_|V}doUKqi2qci4(RrYiZCg35Iqb$qI>^c&NuC}x z87`u>E(7c5IE^Ve_%7N)R9LlIrtd^hC8(feVETfY`%8wH`CAff-gh{jhr2>HG$e1O z&QSZ2;2?Gh7zi9p1U6TO287xsh$x8xV^uN%*1zjx!RIcI79VGR*JlS)f*kDIAQUc# zTeW<-m2bU{N!DxIE3g(LmrmCNA$&wG+6CbAiuftDD0RJy#bLgHenBaZj<@)*?4!?b zh(xpX2GV<@ZJj7?VsZ)_5O12CPxn_f2t`^>VqTic=eHj-*)^%9QQfkyOg>Wa487r@ z8I!|F9aluIQ=??1YN!R61hb%4;8G2t-lpL(SLg@K_zc@hyXgspA|sdljqb5?@D@&6uP-!x0^Gt#nLF}tqkK8U-cz?(ja8Q?$> z3|p@=uEG}aZ87tYrw-&jPIO(YyulH&%&DnALG@JRAXY61gl*ACN2wr4QFR-}1LJ*^ z*Dc%F)%R_V6On4Ww;g9C8iDs^;v=QCnP2a3>8o;iGqL5#w4uSbs2x5AQQl*bT6q-LV zc2F&7Q{X>RDGq|x)Q&9D+mX5c!%}!Jjmdo8NqtHv5p2@Jbm~ROW0UyF;H3R;uQofI zv4y2wtiOSw8}$^pr(Vo>v%RaF1aQ%iY@;tZoB2X*XX$T2k+U|RUt9MH$bB40;wdtpjosFV^_Or z?oWN2iudQwAp+5mw@y5&cejVgIZkK(oY=uEjwchx8^HvVK+ z2^2IiOrQmo1*hcCz*n}5KVGUO7#>$R)ZN=8=Q^)%7^SzF)6Ph?t0IxE44=^lw#7Dd zCR4x!wtaQbu^5!X=7zebFDq$>#eU6n6dpWSRCt~-(!~L#qX_0$-<%u)qCyEG%wpS3 zS4+MZ|Hi8{S}Xa-_7Y@W;?EZQ;((20H7!#2D%8#pICp#m*&ETRcS|qIx!f&I;zRQ% zxz0T?d`80kqw;W`;h<}G#==PA;QPFKf+TcWraQg`JfU= z^TIz05Z~<&?ySH|Kcqhe#qpb^?*SH1LsFBD1D0vsr&NTGb`|UKVVE|j<7?fF3Hqws zTwXz3bp_rMz#=4iJ@)Jg*s!DS0<_bR56M(R)Z#u>ww`ml5B$RJZ*NRi+J7kZOdDoQ z$!V|$uA;x*|HiMKie*vz-cZboi540Egc`Q9Yyl4g&bd|dmIR)?RiROYXvQu}TvA$U zS#t>8-L{e4j2|Zl+wo?BSl*Ad`m5>|{y)qkHry@2%UdFnA%l__H=JemLwzn4j@>lJZ zv4t)GRv_{}n?!#E1tD8MddcfIyqmqOhx_nIuWm@^2JU%%sX$*a3NJGH5(0nbRMQXV&rQQWWx*iPLqQ`odvVmD`P!2)-K zU(|7c#RtivUm0s;+xqtP2TlS8Q@shmf>E@;Ax0is4SjCsiF3__a<|^{_<|aN&P^<0 zk}OgvaR?ToyBdenxRH?esU7?Nuve$YG+iaVX`i!#4I&lSHqD;&0M>9DrE{2_DMSU| zTNatrVveY(QcT4*%Xk$YGU&GO&u1J7IStk%npj|+>6Pg=_UnV0{RTN6?+58vAYBK& zl9a9i;`%!?Q$aS)huQ6%wyT~;)9#a;G8MzqU^xCBU@Z)Vdlt0wiZQQ_bzCL7UEba# zM_O!}7?z>&I9(#XWw}G#_jKXQ-De3sKp4_w6y>WNO!)p4eNhwemNNGbTJ?id*m}{h z`9vapVZ2tVzb-G%CVdqn935+q!=V)MxUq#~Hiy;hgb9;aHwn#60F+UTyOI=p=PL#; z-nGmFX{lnIi5N&r%fQLNJ8F2i>o?=MJdO^c+SlL4l7@9=$N@uaxy4}5Z~u5{%BhI~ zwxOET)z5R(eu}=u0+~>5jr-d^bDt?T#%v}C6K5<7n2H^NSdBKjKs`Xuq9%u$eke^0 z{!A8)(?x)i+;jXZ_4bf&7I2j**-QU2(KQQ-;hsrD4v9P41=;4@gY)yxDGz2}bJBsB zn63s_I!w%IXTv(T`@7%n|C_xY?p<7eSlVq@F{~-R{jSaY#*{lqlLeB zo%|PJ>4(?8f8^JD5Ad?XeNPr zeS0mxc*2n9V4_O3_y^{KghRCDqePvuOOqN~(V%(+&SO)aa5^v5f6}&6gZ0(Ikt5Dy zlUvE*Fro3>%rt49Kop!?haI9dNx}|xu^}WLHO%)j;&aVmh#R+*!G~-5#!5_rKn}^z zotC|u9vF1>wqO&2`?`H4`4+Lq$g3ARRt}Dd1*aWecEH$|Y$dT50GyT6;cFftR0P8& z_16l_k+4(-2ZIkQr3%;8@AU`!PI;>6_2W!G<1{;ciw%(LH4}M>!~j(R6br>)Ak2?r zrQ3@_L=@A+rwy;KUE~Nn!yTp$ZIl)Z;kKBETE}^#z=@MrYxd%7tMV-Qf=?#u4DMLye5K$O| zFoIhl09^58oe~8eyPjy-cYXRGU#j-Jr_TeBHw{c#LsUsnPqaK|l0fkwQS~Z-II0JY zrO@3<5M2ILcXDr00BVcSv4i=|fLtt8bQ}hS+dqA0!9QWiP`iQ4YqB&Vq8uedL$UFd zDSnXw@PX1AE8u4*tqZ*K4iA7oH7|hOyk_dQi6}3*2X(KF@lDsd3tS$zON8pzeb#!R z+kgwy_J-M{yDmXdSDfr#c;1+NTPabEJT-3$z*_>cL7mWL@s%P@4p^v*zj;Kp(C z_F?wO`oYD*fxWWOpyh^nvcR`^o{?QR2>4KBH5?gAEx_qi{WGcYYp!uOJRbA)Okm6+;y-EPNU ze7!so>Gy32~e{=rWf;lxXRJ}mP=aN7b5?%!E8_Qy(-UH|=bhE*meou7syL8FAlhxW^o<$zOjjmzB96(oS;X4g z?!4pYfq_=Q+(9{+v4<0fadS7o>8Pt;e4f&N6=&FDrMV}rM525|U?~_OJQK|C>2~5Y zIW!_Uw>Whs$RQdbcBq}8u&^G&)u0`VK!gvySak6^Sxg844q$INBZlj~@VrwbL2i51 zh;80hT;Bt5%Z-I*?#TBJDs-tT0Fi6SA6*dR5QQ`+{(R#>#ji5_(%kPsKj!UpNl!%$ z5mBHM{v28ZP|DaUEeG6-AgZ3}xho>(^miDyi~X_Pbea3^nTW#z^V3axf5>QD(<{FG zl7e>pxFR9ZoF6NE5BksUU@Aue`a>?V2n2#~(0rXi<@U^*jW^nN0?luLBT7M1(?0&n z@~Zhxi4zYl zhjL<^rf#l-TZ{xik2_ty8AQQ9+}GnXwCE9gjM(jBoBVsMD$lW4LG(F-xgTIyd!Ttj zN$KCC0OjYHkt>Z2rGU`+?yE2aK63`pQ!4-quw?!5O-0NPrbk`ULPR#}_WGph)}Dio zLe{3@Q;ZioZjfn6FI}tHP@3))KM1&pD57Q)TRY%TiAZ2F(5CC*+r8peaG-rXP!}w| zp1k59n9AiPcEBj9*_!bbQ@K;UFn+VqY(*LmSYBA{&-zEzvfgwocqV9 zZmndU+|SFPU1GB@u7Ay!E3mpFtGH_Zd&cg{t|KttblOd0 zdmn|TUR`bODau?{#ZI?>l4QVP@1KMx!7Sd>>tIP=aYP2oaZI;D=657n|_8zY48yMj#Twkb`X{toXicThUWTqAZpX$Jo;VTHO5&)ve|(;4(X z%AeevQX)4rZ2Q$^+c+T*2QnH4JzWHOoHvO4Qcy3@s$l5O@Z{LA7W9eX(T^V~)SFC) z&-A;XK*o*liJ$X~luA8TGurOO*;-9C37myPI;fq_n|SGh)&z`$&jAhu$lV}~e_8MlUnB7DsXDh$r;A(39&<#C9NcmoW z6Jf&LU|f(PzwTY@Q|q>gZ>91GLQDQil5iond8+!CYUQDlO-JP8YS+A5`qjK12Wsic zY2t3^abUq}a#eJ{|8+ICaLB%9>{|&vfbHLz1cFkJ$2~MU9!jP*8vOMjSPo2-3SKs309eN0chP zcY=V@LFqjxB|zv9Ak;g-^WOhC|M%SUe!O4qm;Kv2J4|NQteIKmS?g)CRH6d8HQtsw zi520;XV>tJxjzt)z7?Rp>X{yJhN&a^;H&|;3_aRA0C_N4?&iZktifsZYR_A=@~5>D zehZ8y(aT>@dd~oEcu_-@B}kZg>|HAan9v;DZ;Ad7e~>1N(Z1D8$RHPHO8iN z2nWOKY{c}~R;0Q46o5BgQu+ zHpzn{=GbnUQ(+Q-sI$@8`^dCI+obf_L(_U-bxuOvw6RQ`3@_WSkJ>H&%nSldodm?U zpY3YaIyyepL2-5`1zH!y8;MBqk{XRpbrhMn_6hHg=XLO{zRpYvKlw&hlYvsQ0 zW#d{vuGZ<`4)t2|pEEX-4nlDGR-4Rz{6!znwoCr*#?SQY)7#1ckvhrJAQmSZLS2e- z06B7bI2l*bzyVghAy<~Au1HlYiEclvn|-|(gfQ`#8R0G9nLR&%pI1HJA1A<#22r^u z<@^)?tAzD=l;o|m67eJPGq9r}ioZmlTG7<$Gw#dco>J^L?GLJfkECmw zyb&DEmyD|Bwwux1t#lg%ys;(%bz={3)J+Zn0XNsZnyCcWYesdOdpZGI>gkeVHGPIn z?_JpD47g@~WVL;NZZYjQ`Bl2*cYWUaU^YbKs}A<1PnBS|)3YPi-xxC0Y$&(Ws}@+Q zlM3h_FZl+1-|I=W)yBV4>b(1hpPl4A{c;y(!G^ntM=E{ztbuIh@`oexRDxe$azJiJ zG^%WTz1(~D z_ZgRm7TZEN*zl6?@%tWb8E+XMi27YpHu7IRWE0ORtX>^P=+?{FIq!jY)^0UNf4~)| zX$ANbQ%HaN)lFN+CT!Y+5KA<@{#4%Q+Do!LTk_u^alK>w@ee=^58_vju^w!dGQh<> zHt6VFI`8bKzmZ>vZr+d}XG{G)f~-TP}XfE$zVXPJ!seGuPSb>F*s z2qNtQ9&Kg(X5vdz!}(f{32GASm7h=SYs9oHxz$AF@&8o%l$F5G#2>8YeZi&osBos8 z{458pZ&*} zAY%Yv9fa8*ey(9If}nkqfa~dj0|#7>cFbbvWd}W#m*l8Lvh>2|4s}0{kgGvU*Or6L zjwHSq9~@4ikAX)yIIUXNjKn=MQthyhq+y&rH65Ct0&x-A-V7OpD-Sl8ZhQUbY~)@L z=|M|~M0%ZG(*{U~r3`7(?IgVfvF3lEu+4#05b?eJ5eX&JoIyP<@-`VFtH;o~lN6co)Zp z>V`|6m}lV!MN@h_sW%rbGOFVBIqCgMwD>hLa07ZHTtMJW;0$t)?kiI1s>%f7p+K{T z$v_gC^Hx5aj%+~3YI6>pZ1Lfvp=Ljy3P2`4DPucfyYR3f>qVL`wvZwk*PCHvesT&5 zcU*XQR}eZY>BC@RvhlR@@|4#B=Us|tY`8ou;3*_}SV0Y!RG`@>dJo~$kSv3%6L0r^^FJX$gBAb-u8L_|6!ZT9eFrYMzfi?@ zoFMVQb~Ef>t3LjvHsS(UFS`Q(o@^y*o&O^%XFFi!q^9`r{l7sW|MzeHElpwa0?^V} zJ@$nw|23C?E?N2K&&&bnHvH;$kURkr{SW_$!t#7}6;QbR|Jc(0`(NG1c6NSae*b@x zj$%51(=Lo$75g9Hw3mVs!D1{PmEHbN^TW=A1xur`v-*bae-yY1Sj_!Qed2$X#J`hi z3^sM-<@PAz-~G>j{tWaQ#2HA`;Qm)o^uLj57oeX@Y81bt@E>G-AyaZKuox8%%6~0W z`sd&LyXXH;9sjc=|DQVk_aplMN$mfsI&Pg`x^(IMJjG3t?7z4d)@BF;DdeYGwiU92 z_wMR=D|{p1xclxEd1;e~cKhoO_}95O+}E0z-0_JxbnEl;wxUb-1+@CN^XI_l)knJt|5qmH0hwe`c7&MObDANqc4 zQj580+M-AkglZm$7eaQw|54K-Iz|`1iK{98_lEmp9C%#+pyU$^FT;VCk})P#9D7g6 zCSa=>H2p~epO8Xx;P!QvDDuzhW*8KYAi)|zkpd#nM;<_1dO zZBp>#J1u^uH*MCiHIZN_V(>itxD?Gz{tjEpwQVSftr#d*4h$(Pj6v4sC6NogP~vLwGa1zNo6dM};Pui>{w6tAbW9Jywa#Yq-No=q9;hNLz6?HVF$)a2 zA3!#1m3E2bxq2>Bf-Xk*qk@%a0r`jdTXWI_kZ&LrihaHWK>ek4j*BZl zo`4?swqN=Z zz%{)*Jx+w9hnh-!-k2C0a|iqBCEN(0mEz`iuj6iDslxlczYGIk?Io^I zxK%2Tm;#%uoW3Psw7Phtn5r%vxaG@xGV%dYeut=PkYaZ<$P)V&Itce;*y6#qWPNo~ z16e}4D?j;{F1=?-x(i0g;ddp!_$nSHQ0pMBvBlgUe(612QNY&$XQNgZRPNXpM7(B> z0z|I^l^+!W>uwh-5QNK!hhzp1$@6Vvi8vCh&{{})=Fu)cX zqfmjMN$Yd0NWv4sugkV%gH_a3{<%>)4s_~Swu|z`ca!b`odWt-dIhg`Ana0D*2Sk+ z+BJYO0*0+?L7rF=U8wLQFR(`i_%^qDR%zxAtHIf*#tZnXQ}5J(P67Snng?px<7pA` z_imQu2b=IsTR&9xHC8#IJ}d}TBk+i&JqP#22z1w+ z&8R}-A4PNHZ0y#O|Kswa!79>x|I_RL;0o@22&68Lm1JJ|jmA76Nl$!N?~B<|^8!hR zP`Czi05OE!h?x01gkmn(#8EBP^fu6_!t64tRyyYFBZLfO7GCGs6m99$a+AZ#=PbG_`x}^7nA+ zfWuicYWxS5a@^QnV$uKio|MKOPU|L(dwAw|!4%lSEwNBz7NC>3IypV+Z$tQDdQ9IH zu;-%F1+1aG@fwHh6(Gn*Eu}Qr9ljJq3_QxDZ!MOQvbxwuMAnaLff_4odmRC91^n>t8!T`2n{oLsPnY0A;0I8RT&uI&dOIwC-uaT(%K@LYZu!#cLNB*So5ipzRJdKOzEJQ)rA~tvG*g@i0mEm&f7q_ zsOOc7fufp%RZJUsyw`Q1X}wYOM2zv`yS>;8qT;()x)xYPDt6@;ACH4ogcq^b-67Wl z5}E%h&OwZOr9J2piN#Bet2e*h_;e?n2FsML82V7x)jK>m*$HNuI#EMt2iC2c{r!(?ULVtCVW}mgf6*FK*}|R!y8g zf*&5!zJ)K(kqf6o(}gmt|rAw?kNmVWtYWs~E;` zu-gOR+RWgGFU~)>R9ghK62-27yHgS9G?k9-YpVE=QoNF9Y8Qp&Ol@F*9%pk>@@%k( zr>$kQe}`BBcYKnXth)kJI#$13*EK|dLR|w}QT`~+f`9_3L*g~m-(&0yPIsCsm*$IN ztONiuqI4!MAnU$cCDa50yKsB)_wWh|?gO_{lEj)%|dXy$oO=%L zbE4ojEUN{Ow}3{=%NAFVK+!xXG<;Z~al8 z6iqEL-@~jr=QbA)e!;tr+)&uEjTkOH-hBPC&)S9B23S!2itkWg46{Oi9@(Q7LA&~Q z9(2dweUk+JKMK{Ag{00D8n+);T*i&Q;wi~su#KRcsP%<87?wdqN~U>oQ@uYd@Fg25 z>u_?o8KrV!!WJS}da{%tZTgcsryJoD<==hTiKi-kE>+4^-S-#jd_CJcElu8#*@ToSyva%0Nfah9(m z(kp8`DHrno8h(~>(Ou2zC(#dhyiTaXz*~p1IZbcc>3hvu?zAaA(FldFiTmm+FLW_4 z?jU2uzkg6X?!Lt`m7n`0Adm$Sd)&wZzx2RwjA(0S{pg;`A;sZ*m{)lK@=pHCr?&aN zrtja#AQaX3KL;Ww-0Ysjc*q)(_)2fJ1P`tkH(ai+^LtAWT;sS)=IMWY8dZDEbKi4L z+Mvw0juB0CY8sO)eEIUkH{5jmYd53ncBwGy11X*O5sWgtn~kRlpiy0c%i4I^PwK?< z^jqC9n0303X|hnA(5rfWqbr^v-`@XbBav>}fty(l><15S%zA6WFO!_!UtlfJ#+49V zhcTL+Dd_gj-utda|kK47+7={K=uCyxGe4RrU- z?|OTux_pxI)1BS~MU2mK%TvrQ3SYo$SyRmW!Qp9i#OtS3XVily)svc^eR0l-J+Uue zduGcUC}npoAF}5cb4M_&pLoMnt!HPjerh6y%WQwnR-YCajrCDNcSIco$*P(}T_Zr_ zm-lqilqdBp+zjq$BIgXMI%*##az0#Nj}Bm$MQGq^DR9STAkM}n zryK1ZZGBD98cMM)emMk^j=#?s{kR<`t1A#}?Pj8Ql15dvDgY9RLY}rowk^CqA~_jd zp~X$dVYzSg>mXlxr>o;K9WwW$4_Wf;FS0$)pWD*zk8sngAOAQr5wVE%J?k_ZeF*w! z6uOlon{B!YsCWJdiPdhtv+Q}9oI3QiF|OE9u|H2+mUK;;+n#DY$}6Bao}|a!P#ZR@ z2}w>i?cinyHkO3#_0^HKc{W4!AToMSV6RRxeuq5-mma5rgOp*Lym z5B#T@&7_ZD+$nVvhWYAw>3#-coSNbp3!U+*?#T>KCu99STnzymE4y>6o3jQ!GQ4-x z>mfj4ij5|{WaIZ+xJG?;L|mZF%5^J_Ku=qwX;>Y$CZ--sPkYb<*mW#N6GwC-2XMc; zKxz(Bk_KvwU%FFno6v2b?iOS)v$c4kx1I_>QSSB~Kdc~1yE|6d-oGEk%vTOsHm$6S zS)D$iZnVi?lX1}&+QK;PLbBxXpYVTBF?@5}sQ6tmQr7p%)(kx(T9)$>k;8rFJAOYM z!|BB0cB1%k24o8W1sWx<@#C}G64IF=HLP>go-fPTG@hLtmJMP;P?trs%9ez7=Pj1E zGO|pYTn80b;7NhGaD^w0QThsQ|VGxv( zfqQv>;7+gqcFo=Wytd9#lq{eW`+jY+eIm;z@wSV()mvy0GT(f(P1H*=#p$2ncvM&Y z2i~{yy)EFq^x@OfR!x^S!SE<@B@-7js`m+sa8AL6*oobuxusny(WnTWs)L+UNNax& zvjiDKLO(n_;q8>WV)NRBReQW+w!_)bI^KyJQ;T2vWtJEwa%=3FFnFtxdMU_a>05T> z20c59YIDnpd2S_pt69;bWw-g5F>17E%2RNds-rh5jaH-(Mm?0b7}Bw<9aZ+DN4Hjnht!03Ap+XD zjLL7I#dSx@Ns_jo5vJl$BwBRZW@$}wKxlF?iZhn23z-pM=f8JE#-{~Z(F-Dwj4^__ zySe_LRm{_lwT~hjP$8-1B{hAnp#THkV-NcMCDoQ8$hWZDMB!)cczC^~Hj`X)L41Y= zyKW)kZ$v(k2)E6i9UtH0>N?G+iTiA2lchmS^P>=QH|HEJ~6*+bjWFV;IfrBqIFtKmaNn-nHjKoj-I)T@oS+g@EzML=5tGq>#HoUKb4&x z6D#>9W>noB-{ybI5mtZRSdo1!X8m@?D|lsn!fxwIL9R78-?1t7f_5tUrP{Q00}%XH zBRmj}+1z+g!t}xVYB@s}YB>ql`u+1wwHkHZ^mbs)m?6)80MB_;^cZ&37 z8C5$ZfX1hgYKMtIm6VaId){K+d+z{@L~u#|SLmhHjDTYF<+grFqw2MtF6)e*Y}G!x zwEf`tr2tW8g|oXJvoBN9dXGIi$=b5~gIn&rYr3ilm^_oNv7|xSeH#>W&Ksv`)YLP+ zUKI(r3w)xx6+Rk47CB=}t}wEir7C-0KQ~){`}I#NzIv;rkyuk1#Pq3?y1P>e;Do-Gg^#gm@g8QYPREf z3t3W)-TLCw(VdJxm2Chs?A1xlp}YzV$_o6Ya3f}fjEs)ND`ioNHEx|cjq$rSs4mzG z@9^vw$>AT+A0RM2no!k&AF;svO{-KyjdWBjbwRYOmESjdS)RD1v7`jMm#6qM@Wl3! z*N8_V?O`IyC~}8`>ma&A7!12oD;v1!M5V16L-i7U;yAjwlv-C27V%1GE@->lbzT}b z{b6w!@iosQ#+6?R-d!yv@Es$A`d79|0z6jIL^GeheHymK_Lg;=s;b#PK0qYx{65|^ zz!@e%jrC*%sKyEQbF9E}nG*UBdF zDp8Maf!^5hpb_?A_6kOWFW+H*EW6*p+5nkTGFD{51@IjjX5Lim@5fJPkDE4wn;v*C zyd!2fY3farP}my}qvREGD>o{)9^l0?P1}vwE4uA&e&8yJyTRIjCE=~dOsAQD!eS51 z3xNvbDycUFU07K`Wt_elb)Fc>VaTS`9f`u>rxEW}`!OXUreAmBVra=Z;uqMA}Y z7|_ze#x5~wYrPsBK|g8Kl(jB=bTEN5jWVjAUTwIyW{;cx-0SY_gWpqc%jY)H4-bss zmZ8FyfHvuqWT8rK%aTsRVp=iWsBZeemPqhi%U?l^bWKo+Qq2^KPc9VI@`!9e-}JIL z*|1LAldcoTsl|F4oyDXuRENOvn}M*9(ztu+4oi!4nAw0BE~vYgxhJ6ly14BzZ(^;f zoiH!+nDolYLw<#%SZqp6F}LNJAmV6EMin2s8ZV5@ezpH2!u5S^)ykn`{vb#GV9WC9I zvBlNOx%9H*Z5T``UDB%%4LT%7k*-f2Wv`5v#R6h1!X3Z~*h9DpM~w+Ot;z^yY3C36 zubd}ukBe%UTgmZ7*F}KY>%T%a@x5hob zSzU$;P<1%s-|-vrJw7FeThNKW(zvI`y_wSPeLB|OrP=KJHV|EJK31HzqgWF92vFTB zAw7rZw&o)bssYpOkw2d_-zNN^7%eg`woD*JW@74DmN7k!d4WO?bH*-y<&rQcSwFuC z*u|E5jcni~hXoG@8#e2;gdWhZ>hG(`f1r#PMR*$}3*DEZmE$&PnC1pYCIvB?+4iLK z4xqW+-7o&}0)`Md23713ieY~=S~N>G==J_;ApDE!?11!;o^GMBt@kSaXh~D>lHNBw zEi<1}Rk2N9!2{*E9#l!wU1;M5+h*m*rfY!HdrgcRL`n=|?g`*Hj*k)epVs<=D$&Q)ZDJ_@br~ZzQd0-|wTPM& z<%wkZyAsa0IXTa{-Q$nSS6KO5_9!{x`AWhYzcwuh%T1O)zy?LW+W|9BAPXT>5N&oj zUChNALb1JW6aeEX@aVy;-|Jo^dn^L?N=}N!diIK;E!!3hD;^{2qnodvjA_Rwc)Vd0 z8J3QV=-uwFg6l&|d>4H4r%qISC<5B9fS?-z`$!Hfw?C@NXTQtJIw88JKwG6s_;AWc z;hYm*tj|LNNxNfKZO0X~1){TjANb{gBmGh!J9*#0v065BKiI^)sGTXI?OhBM()8ztH?|FtZKne(SKRuN5TKg4xx<4YCe>q(p zy~6WtNs4%UyZsvd(tc45B0eIm_)79)pCh+*moRR_o8m3jn|TlOp0aV&TXc~6#G^$) zFZh5Q)%cBrX;zeKq;4*x%5KE!@LdMhvmWK8+49|-@t|8jdjyANxdMX7AY6RQjgvTr zihRM7(;BmEWH4E0f0~3A^cuz#HCNow04WJ&yiPKnW9kF|A|%R3yfkY=vU6vr$9{T* zevX8_!Hy>uy*4Z6I|o_G?1K7+K56OaWOAWlGzt|qTPHq4JwqNCn-=!L$-N!o>OH@& zkt^TDTcBD!xe9PLR2zWX$yvN?W*--4VElDVN=6_7kFckgcl7kmmd7_4!4vlf z+b>qPtaf%K&J8zjkICS_4Jmu3r@Vkl*qml{Bsgd3=)EkLQSHP=1>?Ep#irCuNb;PM zs^#dr#6obxdFkx5dC1E`%Me%M8oJ4V$9ocbv}~T89H}>_z=O+$H_AKBd)g3LMe3&o zf1(?J-3`Z z5Ep0-=qcm*dP_5#AxeVA%atpfA4}_{^;>oU!m27no`iCGhs2W<=;t-!qovISxBgTy zt1U9QY}2L|_O_DcS9K?Xj>)kOk8+gMTeJo+f5K=wfqN*o#Ap}1??m_PwKMB~ExEdavN_*n{?#!Evt%#^uV?tdz7J5pY^Hr_nr zQMF>={PiZ6?sTuPck&2CAGxd26el2eUp-lp$0kt3ZE|>1)M=XIcz(v60I7~Y&d?g0@k>T7CbC_r;fGJ zS|0cS*SGGrT~061D~Va^OD5Rs9Qti3%w)p{q9Xg%&jS9E?ivp&zA{xu$Rk77{5SnZ z8`H!?7iwQxEEe#=qlO=HlekA5dSz`E3;Z6~c45=>=BK zDwlkT6+O-6y#Wo!UOs71vNxy2(wc+2fos0)67z`cd<}v)27o_v)Y#zRC#wD8#}2@v zd!Llz^0w+UpZ)mVXz1q7_`JH}$k&lVoe}%t(vag3(QhG@BqMDVJv^fC`(2a0>#~$6 zY-j2}3R@!$1*g|RZLH1#u3CKJ?ekDt{TwA+r}c9@cmA zNx?1N;}?omKWaLKiGc5w{+!wi(t+WJ3uC?fO=BmU;vEVg3zm3q<|^prni56adS#ie zjBz@C@bcHO8b|qzHJ5VV<2}oygE4Wg6$4m8d;z0%ggniURAaH2S@y&1oM%8=T_XE7`b5xFP>*Br|DsFhg z4e~4tfeqf=Pssd)?;x4;jnFt|Rp#8lQPd;V1mZnHw#GvKrH$1=1SHHHMqJFVa5Aqf`Xglf53#ci<=w$XfYm3Dw{rj znN1I6)?`|)iL72?62ILEg2!2#TI$`feD4xFZ#p4i-BW1Xil=`D@nCxOpf)EFAn$Y4^(*Twy-uCfyl~{&Z|q!!@)m!b5T2 zZ2^gE;+XNRL%EIF;|*A-x0HEbhb1z9$kOiFUa^yhK90Ok(^(UWcgVG@CSc&Z2F?H_ zk5PAEq)e<Vj(tHwIb0#vt*4i@z;XRl=E z2WWfuqFo>@rS;-?n|=oeTT?O#P@#8-YBva%{yONEHKZ=u1j$v-eDu~&FVqk8faO+K z5xub$&dHvXedB@4a-!svQ{u?7^Li{vmhQYjz9wGt$Xp95O~Jrbab*v8U{lU|2D}| zk?t~L%3YhTMD$M7DZF|xW$aY}DR8px5@Q?p+UXyW;hV*V&J0-jU%pEUnQNPfsd=X6 z^-A&h-G}=}v0?(hQ{*)(*H&E4t$COyMGYui&0uHAjL&nDCu=tY*Q9+FDWM2fiZREi zwikQFsV^ooo!snuq>#g9lXHUsSqt4k$BheLq5Y#XAW+lLaCW0=Z^++}O{NK5;%4S~ z5DHV;PdyvLxv@oTvbzEb9k=dJ|M|tC_Z8~~>5{e62-|ztyt(GN)E(cGT%mC}<}6fM zY(t)ekN;uu$gJ<4{MeKe3|P#l8s5c^3iUHD8%}n52K=X-R$K}skEe-7>%9QkOIz9z zD?c>de_yN)JzBgJe~w`gQHNKFw0+?fX(HC*`$ZrrvwEH>d8}dvU)up;Z}`VExo%j= zT#YGW4@9S_1rB}SXw_uXduD!8oluhkO4!>go+4Y2TxcqRBp|d34yR2SM0NH*M%L1u zcIa!FSya^a9(q(G>UaC|xj=pTp3zvN7ZGN8UcJb)v6*(MFO5qpS9RNjbrCqc zFp-8{s7c|hgK*H4k<$h@aE7U(tbpMq95hOZI~r>A5G2La9BQs#WY_So5wA)ZP$tUC zMh{}Ljyrf*jP{>pl(8QSiOINasQYj}%?uQtg`Y|roDcFRG$&^O2FzDyUX}4(*yy0a z_pltkHkR3x5dQP-u}~qvr}+#$N4$UhP0eJ87(HI>BPE#olGo=JHi;fod%ZN5;vJif z81N$nj^^t$Kj|}gEvJaQbXD6nCf`5}nn`>lNcIvxSSRbu(|PN%Gb~S~_)C&~$_DpF z+1)IVlDcC%9w<9~6@*hgbYk}KC+poK8xbIyD&b=66wr_#mrps4c@J!&9+nxLfu9DU zvpZYNk=;!P7(%B<_>vj^O9pjSC`UHIbJ;IT{tKPY^ELB9?lxoo>;!U8ulPpgrOWU$ zWd^@27^2#4q@X8J=7$l=|IGHy$mL(6LH)F1eoNe4Fh2gyoRvo;L9~u7yJZTD2_^8O z!I~?B)h0d#q4|hz3MeIyAqPByX0b-8$9HPotyW4dlV5Xah>KmK#P36D>gIw>ibu5<1A zlg;HD+qJl^LS`yx>9C4TzJ11^oO>owRmOFK>MU1@CkY!Ew2)LQ$DsIltbTvA*npz6 zpq}`A1sS#LN3iB>j*l~-Ay8(f-Xgf4v#`up>bmRig&ajJZhiYQ${*plS;RHrdMNYT zYV*Ehy8t!jj2m^e^ec&SH`e3MjPY9hR$@4%6tmAqVzE+iR1o?x=3E3C59v;bi8K<0 zn7vSH7A1Mk&KKBM;NFufbspy@L1w@O(Y?p9Xh&5hUE{LUCAip-HVt@~pNNukiV69z4n5{H(&By+CVlx)x8#WMYPTw{AB>@&b_y z`RAU<_&wE<5*UxsJyjaf9it+-0n_1SbGTbGv>J+FJ3l=x0f)4JAI5D^J!p7v=Cj!y z#wUraF+qMf@t&*kNBJVwrt9QZhrj-A==P>}Y!MufDrh>El86v#wsG-Ualc3eK{AsUdeetoEb zy93z6V~Fp|kx}s&az8UNnr)9GS=GM&qDkp zXOi1}XIkk6dhkS%s`^~H>Fys+28aV1_A*p=1_pZMFJJLE7)YF5$%N1a7}?woYgRj( zYLqW#*e{6x78Oynu=Xc9fKNVPuYD>OM0~_&8s046ylFixtUl}^)b8=KSO0=1KCmStC-*3EU`eUWCAY^fT8Tk1M2p;Sy-eY;p)lbm?laO>9$NFFwe2ml7`VdApMFGxAf8mFdD z^XG&_o_2G#i>q!g7&_-}NxZ;%tRd&&-^*WNl3=Kw8=h$$#J%P>2OZhj9oeZSBE@cYh1)_M_9DxIC+w^DAFLsH)DtDsF7 zgvJyi2^n{a!Rz4r`#UUaS5?$!=&;$DW^201r$z`m`WW!qZZ`OIj(O9kJ1q?iiz&Gs zT1YU_xP)F20bMH88EQ)!PL2vhm@-bHpIg5K6<<3WK8(p2o68NwQ?{+AAl;B(JpP-Y2KsMyvPSYi)o$RuS2FY?eWwndx+&dT)WnfZw($ zPNpF5m0y$6R(Pxp4~fMuy?w0!_4tRoRFF1J>rU8uvO>mnA48Bi$~L|-nWE$)ypqb| z(d?7IyfyVZVZK9ZXT&0)XOKE&;nfh)*N(9wxqWvs7}-<|M3#}jkpKQkQ^5Ocm~30* zoVo@(jM6%VA;?ySM|78`FWin)y&+Vo&QN{<_-i@2x0NdR4&12qM#Os^VbKAdG4v9w zDYmi4s3Wf1vm&@o8@qQ~1e7r85xrrn%sU;aRwJ^^xzgX#zYe-M|A-SI< zlM**Q(^7?YCE1Pk@)z!hgHS}XNq;fL;bje^Kp`kAYGI(+x~ElL7{_Vyq&tC&9drYg zyiaI7_p`FzwKUNB>;z*q`}#YM*A!PXwU7qG#>kL=N->;>iYLDDMdxISxEXXQiw*?? z6|V^9NSR+9P?J?qT4BoO+UFbD3=zUnPpil?$CSJ5wUgg<_dk_6(x0qUMU;w^0qP7f z|I}&EHaGX{MQ|Eo<1#x(Su#`j<0aMH2w2ZvKn|v8!+c56Z)pN~aYYDk72+&E3mXc| z-6&}LA&s$wQlB0}zm;FBR~sn$^_{8*W=1OHinJn2W{Zi(X1{oArdh<*ZC2%jPdpGq zCf-R*sQi3yxm-2c4XM8&l_xENSizajwam5&IJUb?)H>v1aSPQY2zD=(sEShR>T0zi z0hfI%Yvtlb&I~PVAS9$U&rgY(>k5rDvK^t^rvJ*#_i+5a?ID_c!f&}$(&wdLUG(h##T!Ko{!gD@*mHK@VvK4ap^O1#$2K!Z>>%isa@{*fD^Q^s*t$?(RKqQ0@es7GBNEY*5_;mIVHrL+p z3`c!^M8v-TH-_D_)6sei^*pw33>tH;I@EXz4 z>!F1<&DZdvQ;7N{6odj78yjzvM|yy7QqqXM%Fd z@%QLUXFcTGj*wlTjijGm(ley%;Ns|1BT7JEE}!t%+)nt)d8hh|+0m!W0r$~0-+b1b z`52bBKkfN0|8`ayoEEX(cc55X;|6cwHASOxOC^+dgJOvVg{A5MK(a`AN3TO#1OY%f z*Nka;NO_;VBf70);cW!-LLO%70&zeu_w*M(c_e&6d$&nw`v+HcUJ`Q( zs~@-v-WM7*%1JjKlM!k92-=pg<@PkxL{>8#J}7a-U->z2oZAr1tAxLF-lPV~oNn*0 zg(crnD%N_p?7nJ{)wxr`fRAeFAR3eZWuY^Tr_XN<&kPhpLCz*P(1r;xF7Gt! zk|pSE07`3}YkwA7on$PuML1D@9#~nVZ93~f>3x)Un~pcLd`_CLe09M`94x0p7o;7> zy4Phkdkio@4SdaPp85X%lWn_ij-Kf_K>zt3mgP4!S{`uj zj~E$60fNS!o|0x>fbSC8T#u5M73csaf_RRy2Y`XBu(1RalmEQK2=`pz<3gq!3CG++ zrbXi@ywpn&3YXV2Gf_CbLor$ibA{ZDg-TR@;HB8#0WdQa%i<*HVS_cOjPyW{w#f1# zgMt{3PMOa?8nDLqbMn?SPLB^Hh+e^?xN`6*Doy&-1L3ZAqN*F@h}!Q?5k}FuK<* z^uw5&CThI{^av%<3JpiIrH`#HO#W9%j~B5jR(S+RiWJy&`p|B|L)2a z%}L@Q2R>>*np)$O=D;81g2>j$e59H05>HXk%k8gbOcx=g?tlPI_cg6G7Gth*feYwYa+Ny92d zSe@V?rWPiU+dlCzq^uL=Qjye_zx|1EF%k3HxAI%vAiA)Hll1ODyp+uq3WNLhVZM{Q z>L_#1SBgIN{Svu)Kd2(lSb;+v<7yZWQzQFD(Vb7b0z#hYKo zL#CqWKfn6@8h`MlJf}IOXl!P)Nu9xKZ#xh@*-(+TQY0#)LoM{Y5=+MGWn{W~@ETDD z;E`-{q30}asL@@c5-5#{z8N@Gi#2D}QyWpa>Ha^UCZ&PMD8>-wQv#CH!IhN!oZNXV z;LynIlPpe>1R`J~rCEJHT3woY4!q9POHP9ewwjgt_u=THCq8dYXNy1fCZjVD)gNwg zbst`(IIXw02KCiQKfi_Fp(hc3pg~Y)oUPzvpYKO}3yF+^7DKe?cZi&)@Q(?T zRhN;)XvoclzJiiQ7HAVD1VJg~bdJLqw!aZBU!sQS1&9bepy%?~xh2Y$ky0C(uyYRQEex0g_!ILVcm ziGTGRR98Tf+IBHLp+>GR-TgD8wVPVJ`1btuPFarK8DgquP|Cp(@okC~S3z>E(>Ul? zMt}U(U`k~yF!4BWDS}jbC6rZQHP`?I4V+fQ@;)Lq%@wFwZ0`anxz5RQy#2xkq5~3? zDrR}qcQ*7WJ6`UTkFaMym~ioZ2(pXE%`PiGb)6lcMdvkTTTHNFr-J4iWtD2)b;s!k zDA9Y(oe=76_3T+W7a|d{LQxb72`|DHLQ}i|XcpB^U zUqBplre2=cPG9C(=g`h#PtSpze_RYJWFj=`VQ_PTf;Wb6>(zYZ3;l^*EfOwT?m5gE z;c52iB7Gxff)9k1Y8G7RweppbUY^3I4e5(42cnSX7FsiqBc< zQ^x)n5Xx38Zk)(QiaN6BrFTkKoRFr=LV*|9D3Fo#K(#r!M)4kHFCW~5!gGM!D`GA4 z!Y?4)oDnk=;hka~;p1i%m7Fg`z9U6{kvm&7uRj^@c+{w z)2O1XJG!F$i0`=f1hSdr_5Q#?hJ!?0C!zXam?SNc#~+w=n3r#SD@MXUjBXX&8QnkQ zNlAR}*b}0HYIy$1Yp!V%F;u97Na7^vzpq7G`hWr;S&}I7$=^}oG&js=vvGuK1&uk; zS>dK1FVB(V^`dbG<~t(0M)XYX4CSbyC8S8aL5C+qGKHqkmThD!NRMKhKJw_P`7=uC zf*nQ91pIEr9|Tek6cZDEINRuzt-C&1?%JVdQ0>HPv0N#XTGdPu5)WNKu1e3i~ zNwTm#u-rWBd&*$_rJ)8enXq|!{=}@ zFY^*a%dM7wGA=Z496YYp`Z_$>2HN63$u^`t;sIeck+NA}9*%xqfEmiN^NroHQTd$FI9sm*C8sXiQUjZNJQP+mP|e2CV+I`h2JQq-%jZruQd?Y&SxqSalGk8 zuy$P=VDfKL($^!A9%ogvm7;B%#?D^ZpG^0aNv<^dOl_7296aaLD|q+H@ASrQU7~j! zsf6%FXtD6RXNRwvqiLPdwVMOX9*r~FAWuqP$#lfMKc;@d6PD{J#7vrYw!&9=vCL6xsRb$&MR9J7^P24FCz1;5skXVJm?cF8g?(})8cLv9iO%p9(7 zeyKF5uD{Wv)RtHh5P(&fM7CO(U;5i{T^wcqupc0PYFQMDK- zTrzlmBoy`8>NNC?49Je0Y-1#o9(a~vPAFD}QIh#%pM7vT&i0;zx74Uep6>!)wwXd+pa zBH}>OOhL*u;XNye4w;Wwf6f4Q(NE!2a=@!CMPe?szsy_?FjhaUQ5Eu`hJMJVgQD4( zd>=|XfwYS4q-MWG(5ioXf@>?ApmWyum>y$$=uB>SI@NH-(!J2v?_m$@NiwZl>%>X1il3ZTLLPw^y$;it#@T@>n)Y;ptvjQ5TM(ExxE zbI==AAAfHp_T)@-BKg4=-1NH)Lq7ZTfU=~YbM@6P2JljyBMplHIN0^g?}h2}-7eKu{;l1^hx0iznx*QbS^ewC4-eU~5`!oFZxnzChHhpxYL6j3uV+4gk z>=$K1drG*U#L@F2C%h$^Sx*EdSU8@9k(X(!E}mefO<0d}v_CMESfTSs^G@RfmcRf1 zMrxOS_jUK%Y4QAZ#~$6x6A(R(4LEV?-z{0=my0So^r%2z3Z-m7n^;5IxC-zvI&{|T zx2(VaZssk&M%`>#C%JgGJpA;4E^B#fI7e{!5~4RWN!W1mqAVRRO7H^#<^`^k1nBc+C1k z_LD9dm&yn0ra|is(w9%OMvVCMX*R`&3Z8dHecNfDk0e-^G6d*GuQL#%EVttF`q3-@we5g_h#_ZfK3WNYgCQ?!r;`M& zv-+QaO&ad4R9N`Q7!W1h#0Uf33<(#YB|p7%pliOddmFoP%f5-33E@PZtJkFfgZEu8 z^df9w%&d*z1HgWND6N8(`cO}eMezLs?;I_vG zN*8V$ollfc zG&J$El8@W0c0=;CPEEC?==z<1SO4IQy@*i{K)R6fTgagb_37PG57TA2kjXz+k1n@( zy!)l$b5wHB+1zw&`TO(R@^QRM$|N`qd7)`j$Z+2CrRG9I9T(duo{>`eGq1zu-OlTR z;ZweX=L@~mg1x>G_StG_6$_v%9ZZvL&Nc(Cl>&;*k5{A{JT}E&N{1D~0ReWD`S&mg zwj|0cj8e1F^QuP#c|~KYN#$1bM@Oa-XC=XDkpcgUy|)gly6e_PWr+&XQqm|ODM)uo zw}5mh-QA5rh|=94A<`|e07W_$-7URnSRf#9=EA+t`|a=B&$a(L*SW59-ha68c^1F* zn{$pi=9puQ`@Zj6?4^yl$Qxo>!TY#~3X4xLE+gxOBn+}E_^`dGvmoAuI}2X2JjwHE z(-LCq)xDr1Ou!fm+d_DKNM4VHKl@$tyiMCNvD{{dNLS{RR)Q7-=Oa9 zAWR*CLs^wi&+w9?jGOp?(R^2VcP6JueixqOGGc_^h)t0&W}Y;obb*}|aA6j?DfVLO zc%xV+H)o!AL533_$GkpKt_g+?#pPyDH zO|85uC|x|B?)WSKeB{vjs=_@?BY9*XB+z17I#;Z92SP6bEgo^)E6`XQgJ78;VfsHX z262hzW$LCg9eiu^?4$rF+%e=VoWyogq3$!n#}MD3G&uljH}PZ5ZiLI42#f+D z$#{cre1POkSsr7wcozsj^#zGx6sGIhupadG z`x!1zuv-8bUjPQnMB*x|3>gR^?0BG~3SXK-{8kX^0|4_3Vj5X3crKCjf5Wv+>j4a0 z$M6mT^*dx4_LcTu6k&%1aj~qY#^2VAFy9_6i9}0o@_`U26#e4`7i?qkZSn?Ad)0K3Tt@Cai9>% z{Rf~EH0m1Q5@@!+2QT5IibVjqK~AEBKYa2!&!wjuiI()*O5p@}e+vN9x~>D3E0s+)!pPBTgC=1a|?h zUku>-`M#ijc!fTQ+wmSmMaYkyBf+MbR6Z7I;0Yua3IjKzKzoM-u`7qzp?w3Q)dhdo zPOJ|gt-|>kNu-fb^f<@uzq8(o4i@7Z!7>0sH+hzj^dMW0sG~N3LEuA!`CD?4Fy_%Q zST~plBm(nIRymUbk|5!MJ2t=)gO7@VdluabvnP{(ic_C*VecC$yWCym$i4Arg-4sRbqG?@6am08i!jBR(1NpA0z>V8ra*vHO;f2M;ouVC^+_Q}nhbA1GJ-tgz8C7O%Z9W~#ZDPsX+VC^jmguKHA z`wA7a=fG=Ap=k|DlCveOs(fs{r zE!bE{RJ4fT?$NBiPuvY>LTf)5{v7gOL0sSo`6xfl!BPkSlZ+|t`E~Nn3hiG+3arS6 zI6A`kckL@8Z0OAC>NgA)p%}>Bg!C0bACV@-Ub+J8Zx@WB59*d^Ne4(fhOFa`Zs6Ko zwqP|m^wNIuBiT!kBfpu4&=N2TP#_?KI3YI>AzKKg@=!-{gD6`GzA|1ys%GJXNjG6!!109pB6t z2a;C@lYZ@%Dsm7vd@(mpLm4c^CaS3i>aq?Pj?e_QnFQGKxWJ&8NBPa4fq8sWSpFCO zkFpMSH-Ft@vo-LD#QJ&i|6oV>PiBV)Na_xVCQ|_*HQPiUSq8q_0fe9irLuaF=qGTsJtQw9|ykN)^`a-d_stO_3CSscH@ zf{*pOTW2rr=EGv!NCua5I{tP|;Gu48@Mdtzz^w?xKc;}Nf+uYLkO!ro4e-Aw5Wd7IRXpzUu4dDErzx2iw|3zhSv#9_0 z1JL*Yav*;c$MgUFtNyod{sv69Ak`+a^6$j_*Vp=AJ{z@y+^Bybi^qTc@jrgEV->JN z-U&*x8)A`v{FoSZH!{pQyVJV)KYa6|IT(t4sc=uk|2c2}%L@YGJg|C-hZun)|HC)` z%L(5&vw!>%L<>Ai@(S^-f*bSy$EgVnOa((}s6Sy4{67}1Mm7O!bdn z`uBhQ+YtY8w*PI2|2Q@OpEE=T)m>W1TqiBqd>^J8fOzBzysYJ9rb@TQI!CJpIZ_yB zhzX<1@dI#M$-(#BDlAxO+-r^nN;zFvytB9lPqyESy@QMts3dmB()WTQt0@2<#Q+h< zLXDz?(J!hJDO^^MYiuSWp2@_};4+k3k1?GA%_=j*))+t$c~4cCgv7BL=rU;*Gpwh3 zWatAajPV-cZ}c{}p(U+AB92k7&ORQSLO`}R;i*X~e?47stKeP}{=ps>bbNsC*T;9< zOFub`kV;vHX8_GTY^Gqg+7llGD9j7h@;+D!K2Kyd$knbePBvnQNO}nY0$bI#)76Yy zE~Q2-&9lBo{i=Jg2((YhJjG-VwK79tcvbn!LbVD$0x#-CLRpo@!wQp5 zQy^5tVLi$K5{92_=bLnT64@MTaK;POWdP4L1Ha4KF(vbm5ePbRg1HyZ00r^cjtl#!8SAkx0JgDr@fAyV22gFjO zj$2bz1-?L-dYqLqveRKgU726%IJgN+;o+G}TA@164||Nt!RX%qDdEfC^p?i074T8+tC?@d6S~#_`-|wBG`+lt+R`WQqKu zG)_&#si6=+kq`$e8@f2s)+R5vq*`Q-R(t6I@qeJu!B2d-v4`=~Z%#>=UsRd*yVmGf zm5*HQL|4$!otokUEwo6X>)E5j@fio57JjwsS`C~_yP13?GB2bQ-xuB~)+j|0BfrU0 zAl-sTF{he1I`P@x!RDFaTXg_W8dw>2`X-5-=NWW2vG7>lf!jCjXj z;^*<&DA2h)k|VRaINfs)e*YzJlpe>8%KNLSL3;f`R|pPO0{C!GUovOOa-H>9k2lkP zan(SKe!X+p6)w4`f0OTFH+`kYo*`TphR!Ixw2FNrTpG{;moOPkNFhZq&Kab+U|c?34Q*nnElCxmdJ z`l9RBX!ll0?q}x>i&T-9xeEmimbc+Zc`E3dDB4e5vD*pW*F@cwei!aG1SE6oKr|>3 zDM%1ACl@Z30y(D+y&8DPY5p-@Q_y^4J^v&Smdabk{o~_F`N$9{5MH21)`Y|G>E-j} zOpsN=RN>#l9*OwN4Wv4qc zTCOi~iBN}`aqSu_BYwC6p(@?X$g`vML?BM3Ldt7z>((>GBVmW(3uJMMqZ_zhl#>JFdg5qml+l(lcccrBmn66{^==N<>h^ltcMm6EC#us^jcDQEq~^s zg$*Cvz^hi`mZe&`X1x_#yBp>eC5kP6hT>5k(Q1nwD3nAHH`;LJywbJAF5VxtkmoLN>C5>^ja^WL0#qJG&j1o8(tlmQFpE`rz3op(I|Wa}?N6N1-}nt68j#r@=p09qZn29)`S8y?aF~ zL;W4~I3#Biu`-l;lp__cYs7jk@!}e9AIw-p)d;)9Z_hHIUVZVje>fQry=jx1ujfr5 zeh|<;_B!rN_0Q)&Ln+`LH|G;!hI$ z<;$mna~;hl&x72$ThuOh?qZRe8u)l$CU2Vkpwz#u08Xiz;ncIOANgi9kYu`j;C%Ha za(N;KGDStJuzQ_iWX0Ylor{I~D~ljj)U7hk5}xV_nUCIOz62^=BZ?{z)W>+9fO5aY zMxm?%oG`(28Z)R$Z2Zj7D|;Sw`gck&X;d|gpE(9o5h|P9zeiL=^F-b)_;B)8$_OfL zte0GsDj&ZOv>@QNHG1J4J$W6I7gBJA6LTlXlyLA>EYI@|rFsg?a?#t{Eg;ZGY;~m_ z@whnYE(o5x7R9zJzTCac7zQdNfQ{A@$QG5rJNlHi`F%IaV-1874ZRC%B1zu#sCqwm zv?$q%sk6o|vFCZ8kZA>Z3Uu}n+Zb2?Z2LyE^quW{?^Adku+bpNOs|4Xszu6l>+C6x ztu992lboB#I~oS4Tf$642hxUroChloz#*@N?3S$lD6kM3p(`;;2f5}Zj)S>9Iq$P z!3}*MxY^EXZux?l+0Wp!G?vVi`^KPnpRDfq?CkgH77DZHIk^u)H5w180{%QoG;mKg zD_EE~Z{#nLYFX%i`_niWm6#KeZAqs5gEiuLEA1h^<8<56=SY#tjL?ycS0|!7k6WC6 zNy9)Z9DZd;QvMiwQh{Rfvd8Qz2iK%06vnjL4x9!Sq@BXkcKpNqLLjEvs^7>7f3s$D z)%i*oFY64B>u!FypQTcA1>{M`)z4A}PK}Z|%!CB|UALq%n@*Gp$`FNDEm!BvZff&1 zQD%_oUjE6JAMY{rt{byLED|)7eo##cWi9)W_HyO&ix}Z=RG*CO5fY)Mp(V8jt^?)2 z6Qt_8a*Uo;Y15%RTwo+4g9XH6SvC`;)Wv*hBtRxKkxGXtCH zT?+v%K4Aq*uomd%pKFibd^pVW!8)9Fv5+`=uLUSgcp`ZO!3LP|GlFB~ zd-X7yqSy2`DR1vIs+3RADI^>x6{OxCPNvKdKe__D2kPPk^v4ham(S7MsiJ&;ixce9Y5$4t=Z za$|!Y$J7{s_*)`h?j06jy8Y6Aj4D(klY9AkV`b0IzyU+|dAiK^?yIF?R1D9QC8v^l z(jPm-)-wQYOY%a~E{?bD_->p=r!=objLv2xIsbA+=I~*EBe>RN$dV#%V-MU%y=$nhh3!#S5J^-Qn+X8TT82>^A zgkDk?k^vIn*P;?BMBr=0Rc%)?XMs$B1G%7kpY;nr5OoWmzpNI?dL3+iyrEwKD#yw+ zygW3EimyiUmFD*(In$h5m8Zky)@5daY(^`OCUw*p#60N*{G7Xu%iK+s&p!rjqs#f+ z0Lb3%lv9Yr{fZFWEg!b_$=SQ@B=@}C$~-G@ZiWvqG2l_G0x`aQ|8+Q&4g<1@2WE0g znT&-9zZCPcOyr4SRhZC++W^&}B_3)Ano_1wgm<8TW62{@`C*a7575Tce!*Y zK%x5k%*TFmE+}@Y%TCRNH>KZ-stWk}A1Al4i1xXT-lMJ*eL|h4Q7239h@h|$t}#~m z2-nlZTC<;T;ulk*e>`EB)og{Rxg>bAhtKX#>i0Ej=@x`R2d@)yl8B{3+Tlb;_j(BU zYF2oamdx!Wb`$9b_Z@pk7_&aVu%w=&v|El2q3Z5xi}r{?tG1gNKc5}GSQ*7YfsH3bNq-p2_$R?d8Vy*9YOaL(qjJ4?w~5JC75E0KN%S5~35@AJy# zoS@5^BJ&wgWiDPAnYNj0UOO&}_%T#%rLF?BoM}iSSV}m`DS|9f!D3PE)f5TuY2$Wb z28|VI`Sg+RjMo&X2V8>vh7vLc8@%Tuv;h^lhxrf}89wI9h|S1v`?P^LLtvmMV_fPK zksjRUbeC4LRi@Rdv9ja+Hcygl!Os3=X(qQ#0&EB$PKN?x*y4nus9a`O+0O~IP;sCC zthmdxgQLCBQkcniwG=}2Cf{bE8QQ5R1m|tZGVBuQEO78Yfsdl7EHJdBOJ8pdJ~$VB zvLNMSkrHNq`_K z<>JQOYTR&CY@R{5wGdyNJwf+008w9{pV~bkHlTqN$aQY&`bCN?UoBB0Q+ezNt#+ea ztw9(e(!5s_t>BYaNxjH}QedQLFUZydXGO8owwWx?K6TN|3>}-lgFNsTHw!XPEFE5_ zi^^nP!D8tnPjyGc;!mzj#i>bA(v1$@V6c{#((gPaw+1F4AB^~p3L-f3J3|Ow<#H=t z-_xPibwJU$d#Q+VO4j8eYDg2My9jQ#<)xp&^+{X!1ES6zcF!l6f>kF3RwcRs)D=?% z6hOqX1i>QZDleS@mt>3I6@0fK&5-kp8qb5}`8}f@S0^B}=ZQ?4!GONg%8)8xi8mAN zD{2wFi%q_fdgtc$7h(FP#R}nbQ9EN_CH(?3{s8Pw3*pIJXoSPJrMotnpwT~Ae!v@* z9G%ZjYaFH|n2>|xDqXozEqT)XJs3BVw#-u*0JJ_#0}>x(s_u2<7m3+P;*84)VCGoQ zNx5q3rUFJtJ#+&2rmS{a040<_NGP=bsz?I9p)ddas>W*M2{m+=csESUj-loV`=kyi z8NT+L3>9m-&v$A3Vd7Ao)dRy4N7+vCXooxCsGs*9#e?BF3;E5emy41P42>aiCm%?8 zY?JDuHL0wTvW->Mq2#ma5bx`P)AyvuLe9TsyJE|4L)e=3pLcQDinS7zix#+3t5OV`p(SF4Lg2&_j zA8^gh;4tg)6xBj>=!fJFQiXtF1_z!f4lQjU8V%m=PJ4cT6R3`I8J&-Fw26NK(ngq# zWGJw5A={5Zt?$tBn-&Tb5?I2-BTS=hA%z8gLl<21;q!GodsP&Q0@*Z zu=N*9IFqBYp!jTfLGQT^E67n%S`FpAcY`Ld=y2HL2!-N>YKpB(vVeAFw{)vl>erjq z_fBjsn^-i9lR9_PMzbaEG28v>`1Dzr_Ttg28?(ICM4=T1?uQHW*;bb)?k+XR#N`RH zn-S*+a++WOgY3m-eX%@_Ghdw{cD0u30696r^1Nz+3I^2`T2t{|G2{fiOo`9Iza4w|f?M zAdCdE$Kj0cbyhz6J;{Q?1zb09Q{a*z>O+sDK+nsKwu~i^Iz` zC{P5g;0V)ZW{CQG1(D!GF&vnQT!qMI$n+CLa6+xz&i8>gVwDhw<}>q+ix)ltt-99~|HMKDZ%P zIbEP#zaT81{;SaW#%HIADhNv5{Uk5%pZWx0$@;o|Y54a2PtFd*0_&ee1Ml1el3!A= zG4n}hc9dJ}Dx~MR?+Ds#Am02|{;0YW$P0Tc$fJ9gpsn!Uf#3)qMPXtd0@%%;nKpvIJ> zc=)*wMt%)6P?@ZyDV@+vQU*ndah%3u5Hissc}R(keA$`i@daLeBsS-Bgx6KqnsD0X zB;AuWwq1Qoi{)8KOCQxknKAvjldIGiDG~=g}-J`A~dQ{gwKbPD60tIj{ z;JKzSjo@J^N77IFKe55B#*d|KLbYOmZr_}BB4!woO6aj{5OBc3r7DQ?6YXpMGP3j; zN*n8tF4(FtWD{NAbLqWiBRQYrEAP|_Y@h}=ebFVNrBSFxx5jhuU}uTKZG{H87g~kH ztZF8<#)>RDI}b?E-l5J1T>BO6Y$DQ5P87{6_PWPQ4Fr?tCW(R+i3eZ9clLZovKdAq zVJL6uqWb*Ie2x{57G>0A*Oml|`VAew-;vu{ulcmOWHq4J&04sm6RdM3Jxq zQYv92J^`;+>5W&=NfWOJ3o9rsAuCt@r1 zD{!$N^$8L4e_HYVe)QI9??cn^(c_2(PXVV?HrT^D7}z7-emF1i2{M^ zgF$#0AT|sqDV6EdcbB8kEMu;=Pyp9SQ&9Ah+v)B2PVf+%R!K`y_^eGCM}11{Hnezt z4GV^@u6HO3f#{XqD^p&QPJ9#vU=&!)Icyqj$iBD~S12 z%+O42da1z@!&n7|qtUtK;NvA`Af*?!+u@F8+7KwL`zhkvms3mEQE4Jn4kqL@LoGhj zm~P3+f&5dow70z07e;H0wF73P5YL?y$vrsB`p5xv0^&fLnHGITClD4QUv7Im_!@E3yTplH%I z-tOb_dw+?m(W7F3tm6&n>}>*mG~4|vjZX!2R61n3Xe1-tWxCo*&ae71l_vUZAy(iS z**#6M04)Flep~`_BUWJ%uDLF*sRL5k3r~XDKQAUf0kgd7&~nLhOwsIncKGfv>+|E} zN82TreQ&qWcYck1`dLJxV%DrqvCrk=9ZXtt`Bwirg+6H{P4vt0JG%^bc}^G7_E`~t z_HSFBCMF;FRckZB+Ap+2E`0^+hIv!OBm;I1jXSmFJI9}rXSkFcc=+l@Cbldyo+uW9 zy5wksQ2kMEiC!J+mNqT*qGph3bJDEt-NRLo6Uu+5tlSJ(K|L%IX1z39`_L)Rl|h&y z|6}!;Fyi?|vMT9=`A950S?N}ieMNK8TC9v#kP#*ppofCO4m!$)13iWO%YXvF+bopr zH;ERc4ar~k{&G173PTklH0^RG=6@Fck9;!x~z1sW721bhF(pV4X&HUb^+5?1$jGjjlA>b zxinGbVwI=yy>W~tHR2TcJkfc;1&*JbJNh&Y*oBdIV$6UJX0fMv0*i$@$dd1vEX~`{ zX`4e39w`-pYA3VBwyjZ}N0n&;aIl ze$kC-;ZxkN6DigJIoWgb`~6!R2eRp5S7F>bmwDh-x{@ zc^j!6|3J*;A@HVx1?c(yN(B)oW)*isy1h|}F89JhxoE;YIH#7_y8T3LJYX_50o7Et z7jv4|J|M5a!AnE_v>ehsuT?u!Tr0tu_oBi6q^Y~X4tJOF!M`q1ALpSyA$Bw1Oih|W?9A}m z3eMkHTnn%`?88+<6wZPqw~SHBTVN*g0`uLO=q%#AWJiJ=5WnFFxFAP4wzF%?=O{#};Pzs%~FS z?brknIEPs`U0!gt5udaAzt^8y!f)e+yygDs_F)nE)I#kU3zGbBQg|12gm9aRr z2E=35Da7q+&PcXCQ|CJ};SHX!R|Q2pS01hR`GW zu_P^Gk{;Pg#Ci#8CDBXef$yyZ``^NO)Mi9oEyHV#g#D9%Z92LqvN+u~eEg|?$V$o3 zX01F-mzepx>-*X#4R*j`OWW@dJ>1a)QC3O@DgrvUAHvc}sr_Lm?ruaLbn3E~@H3i3gxIxGe1BgX* z;njBVdLG;s7p}$bn6yALZ_jD|`Fala$(>Re?i6UwAN#7o+@E&5Gxt0Iv1x_B{qbCJ&f?GSgY2C&Ht&;d5|<0+(r<6F z?b2T~x#x*VgLu$Pyep3Rj%(MT=lYW5NWWARbFXy%Eb}Y-j{MD86K`R>vh>Y*m6n#8 zI(iHM*L-D^xP|tZ1&x*|OBe>~Ob6AV3qWwUzF0Q;vDNu8C%Ah)&1#uIZ2I_YoN6x= zd?MvGe)p~~c-?dJK3_=f2)~66u54c5d;nL_X*B@FcU)$S7xK7nc#X(Cj@MbOx=o!0 z4VkI2AwK0TuWdJkdgmn%2%`*Ug-$U>4PEqjv*m;Sfbr4bic(IuT)Yu4winQ75CrPJ zp&~kxFa&qn$Dl_D|Hx$i!a~6Cn(hRVvewU1HeCkZGgfyLmUofP);|- z{-^BdALe}!@9GG@=u^@gx;_rm^4prmOk|tZ`+)q!{+mFO=I(Rh&+8T78q@`X4y*KD z(82?&@53P6I1ox9J0JHbJi#2IR3O%O3`$D97-x_HR|kaWW>+)uojxUf<{9&OV>a_l zp^Fz{K1`dTF5cJRj{Ir-Qu;_NW+Py_3N!)%-_wZde|2V2#9I*2^=fUpcDKd`=DCCL zS`MQ(*W&q2j{1P;H>gguW45z^ZkI$b`>NHQUq~{hKHzP_sgVSCFK7M=jr~Ph{I~s- znLr-;Jn?{QYm#vY=P? z-!J&ztjxb>@Sm*a-!}M9`|jVn_#fQY{{wC&%H(2T&Ptr=nb}{k#ecJf|I>i40RZP% z#X#-BKfK+4{wV~hTIr~v{8v!xy4b2hJt%hokDJ#8}}kyVEUu*gQI3%YCLSfzQ5>mXSo z7*%uLjh4DV)0{d;lCP4<2lXJ;QVwH@TF#B25^c6Ud1`uj?p6s8p;{SSl5n=FP{@<) zj!`Q-By>JoCFHDOKwfMyw-?w7O$^m?L#wTPjMOg5D?Cv7>bwd{o8r``;}flWjlA-9 z&Wc2!x+&Yu%`O55jpK#i;m4?aM)?J84ckOn!sc~+nTc}?W3%CS2U4vr=hcxbMyEAl z7i^Y)-pQ%uF+qiXK`J0Yff#>ITdw2f3442CqL;LQ#hMxL#R`l_`Gb~CD=#e!ohom) zS(8k!wd6y^J&V<~yLCV3f(fsPvYwtd`m1X+BpQ)EetY*M5wtkB_dg#o@6TITSLrP* z$RP4aHPr+u6C+(Nhm<~6=P?cL6{yp%*y)f@&_}KH{bY!h8vWtYCQXy8ZZ#2S5#YrBmBoW*objD}@ZMpnD06=z~OWwbpeEmf823Y33;XCeM>VOGq!& zZdz7#q>57|L#Wc^!abSYq(L!*OBEFSSOl0lj!CLkiox}G*Y=aYNu1Durw9LD6XbBP zEt1x?35fzIg_deQpQ((lL#|^{b5o4obi9^zPrzC3&RLl%ifPD3o2=r=rGqir^g{ml2w3} zs-WA>eiKjOwPOL5o{GctDHPcCpLJ2dM{RRvI^O9FE|)#pBR-6pkw?|lTwYn1mxtLT zyPAm}ogd?i$_lNZYu9fciRocV3tLz)ie4V$TaBDk4jm0Xt>cMHH1wxi!@UkC^0P;D zjP7jd2fY30{j2}iz}hci%2-~RmPfqvFI5c5*bl!&cA_*fgB5OcTVG2XDV^09yc!_0 zgDoK7?}ziY&Lb9T3@s^kduY}bJjP@OT_k)ky)nAx4-2*$brrgy52-+>^w8mP%5InH z=hbtvt^7K4AZJZY4I$OnuiIr#J{bx*+!b`_1&MVcCNJ}QLNXs8vO+VqtSGLdWg6u= zl?|R}5}qyZwOl8p!pGu4!M0<|s%G)19e{)~y81o$Xi%neBAG_aq=vlunKc>cL3K73 zsPzLNozA6$EzIR{E=|R)hwDdtKawI0^ji2!NQ|ji_=BPT(XVmb8qwB*Ur4?!+ zuI#EuO+um%y9m&hXx`D(X)u-3z7RfJi7g@X9r$^Ua7cLFCc_u&2{<-T@E@KZDjW_7 zI&|+EH1_X*s#ve=-43+)tVh-b>dGrUOd2bf2eB*f@Ren?E@vEg>O**#SAfbC)a7jx=cKW3LL3318#5uJTfYo@;QNT%vc* zia@cLw2G-gFJq;5xOJIo!YedKdkkO?9*kC6Q%?uhry$kB0Ay{CC%cNEXt9|azCW9c zGmyAjoS3!t;pE|Hiib?S`k6rqWH$W3vlZlTDAW)=J>&Rf15YkZVFkGpBP#r{#r0n` zOAML4j#e=gM8{Ks>*zVQ8bP|nL&OB!?6Lu&nU%Zvo>=}n#(nwvL&B8^!M!+jKtrb; za=*l=#yXEhr|EasL7x*y-80@95L97h(0*~BxLF$z@3H3f#$nk}oh={1hLhF7}C-@Rt;OTB&Xq&JG#=%ZqS`_6QT*Tzc!?R&>KGpqque}?mS{4`Sr5ZtC+ z7?tJ->#5ou9~;Z2X}40G8N&tJ`9CEf(W=)x)1=dUc|vyNUqvq9IhfK3Z-T7L0sKtf z>$aJdoagUzPCg}O9gz>DvHuEiD_7>R{XI>Z^ZU6v&X#7LyoS|qwN>A|qkuaCCVEZo zzQG9-QrBIWdBW0vCLLl!B4qjMPO zp}x<&VhA_V4i4zi%{+d*JIzxlh#23WVb&~-202vb?90cz=NDxyxsnGtnujrF%qtKV z=+6h3z`VbIS>I-*+hJ;KKNHdmthG?spLhx>Y-s-FQKF|C=yUY_Y#8c>|1)if@~t*} zm(k^GbCE`%54+5?c*KsNM?rmo9BpE(R&XZL zq8NTZSIS=hbH~^)wDTAHTN|*9vBYT&@4~Kc{{^>U#y0R&EU};B}b9y)%s>X zNw&dblurmFhx<0Lux%L6JUCyy8?R=gd@e=UjB4Yy=Nh$kd2x6Vo`1UERptqEAgsg; z?zZqr0*F=0pno)(U%h$FXk%gN2Kkmz$-=|>lv5PK#aW`k53pt9k?d(g zRI+AT8WlqB3CjP+$@{LP$O*yCu?7V@>tOz)pTkF?Gs(y=*-pRg$~FZS;s<;PZKf($ z1+7lYE+R;T+;)qCTCGMzBkq@*d9;o+Y))-x7M-SY1`L1-(>uGlE&F6%k5ZRdlV(=K zoOd57cpurb#avxxBqkbp4{bg2=zDwV@U|337}Wb*H`&yW}2t@__1Yuc6UJ!l;Cb@V)OXS0^PZ#9ncHfWD`uKe zJJ(lx*UuZxEn1KM9Kq_mOZ-pg)&|#S*wRp7sx(H487d<7W%64NvHAU`gNqxFJVehe zzY@|aZ@n@%*$F$F4vl{8LS?A_xj{1F5%gA#aPF6*s?5#H;@Od}HJo7+A`iMggi~Va zTJKjn{d$rQP&()~msb}KYWXkaY<$vBtE_9R(f4|T=ZS&kwqUCpywRb8#rfzhn3$Qg zbvUfXHF@C=sD<2{?vBHG(yN5n>fWD_egbAx;vzfSXQnzHa41WI{uG+b{#2wUQe4Z` zA9ZEk&&+X6#km{Y5r$P1Hufg#6<#|Az$eX@2=cC{xv#EGA9&1L`dk4vq6F5zN3Kcu zzH$bik#|Aqn<({Z6I^S4H#0@#p_>AH($;(x3e4g{hz6YSq~mW89aF_B>)KW~VU-Ir z#Tc`yL(?YKx8npsU9QBl%>M9cq{ORQkvql6%$B}RjdPyjGjR=yjKk;T5)e2z@e5sbuLyDUxzS*hP=MyI%<}k{cH)fqZHD^%Tv9! zVQx#m`b{gHB27CRL(O#9ajXtih}~xg`8Wo~%s!Fn8P~zqtMRn70W7!qF>ad)Ie^Sg z?|xDyvu;qWwXt6M+qfpp?PSXRL4ell}gTLe}MyGGHeJu5i*@_9X4+M5Ruk307X$|24G|LtuVu!G`c^Y&a-yt#`q zs_?$&IP~C2AyC$dV=|EDD%bn+;`LD04rmC@l}3EccHY2%b~ntTqPam`03gt)*sDFw z3Lq!e8As3V@6Z`W4q04?(0kN0bCHK@vvrtb(uAh zSeJbuafa0+59kflwgI~2rKt3agK0sCj?<8O$rfRy-waQf5HDSh+Vb$@!_$QT4B>G6 zp~DHDYN>!R3nqEaJM5LCB zOyi+-znADjwea3V_JsUjm*!nk^NqPBjcrbYN*so@!@lv9+NL+NXV3a630R}iGWy#Y z;lxj4@|8%XY6kgTL}QH;iE#2-5Nl+^pD#?ZPfsv>CiO0$M|*yDd+{VA1^lsn>}>HQ zoECDsvtB=j5&dIY8u;m%BlUc5$z0a^5)wS-mh|ng>d)uD9Ux=X*MN=Kr^I?sV_mKM zmAFoms}utx5U-}s^wyoO{e-=1onI~DEj-5=C+eq~XRWb$_Oh&;%daZnTBN@CXP&CC zut++m$_HXLyy>e3o3aE4ppOBaAf7IAIo8{Im$#YPa(%AA6vu|oy|7ijR3>+Mj`e(I z!SxqH6{>LU79i;LCv3mTgI(g0&7Q&fb2h<(U{NEBcB#l(1R!gmkr40gA!P2_odY6G zk@UGBM)(t^TxfiMkjSJmD(Rir^?GLPBMHN(kEl;Wn*YRD4yuP#8#M@>W&f@TInR?~ zOL%(^N0;B;sWW}JKxLsknr%C0g8*V6;6`v+)Y~f&(hY87)mldr7Lc?VU(IY*M(mv) zIzqfw+rblv_9i2%GgH~#Z-dn3p3~o*F3rcDcg|TZs%0`YzVv>G1xo}DcRS1sOiz*X zE{VhWB#+31A5FtqD{1vdZNvV5oa!tGshuaMz+r0}tn0^Tt9PN4t~=2ajAb+f)GJ88 z*^Hbtmvdcw8j!0o@3%&39mo#lsFlt4kHfWv3E7?+>YKyPSZt{-K4D`Bnk%}#P`T~m z-pbv0JELxHT-)&BVP$$d=H-~c;4SkOe;D!>FG{hhEY1JL)^Ubr7nfGp#Ammyb`rzVKYo*0nMoncAS-bwL$IWU;?Z&eu z^4yO!4L{10VPc}5$`!two1^}+4|p~gwl&KSvu@gmvl9`SQ#H@J`ELC)H^Uv>;lGyUwgU2NR^VU&m59Rcb>l<8yS9AI9&l` zVayh@h|}ccpaVd}W`DvkF?DN9g)dSxH8su1x8g@iqvNj*EMywPW>SwLgL8fv+$#3l zlFvws7qE`&?(zD)034^QZkdVgOBv=sW$xs{de=sy*RD;v=2S#}62 z{zh8X7(ndT|$fBQtwGdjMy6ZyH~j?|U-AX^n`b`!6iFVy_9R?aA(x3(nn+;{9Ua zj$oSUMV!iw&Tfd`0xs3UMp|Xe7>PF#Rzszn=M(ibHeq#*pe}|TcHFVF%I6@$nr7uX zHI@`2-XC2ucblB*G8->&$u;fneH?3ojaNjblqxcE?8`t^3%&c~_&KYyoCDfymmST* z!pNa=vhc-7xhX}4T1a8vM$8-vOk1gx%Q`IUeYlU0FpATiUEK8a+V$J^4hhfp`60wQr zQ@2S1*Z;rTyY82$0bHPR4uJx9+#@%=Zu6{F;@lH}83K&VKf@pS`QF z;D<{3T&2~0EQc{aZZr%%5J-o%d^L`lMoA>K-5;$fHeV+&oJYR38 zCx3!Zro8GQmA--^GF1I!V_?S)Au9`6OyI#&QtVJp#`UosJD({CSM%@NJ_?{9F|e}4 zi_3x0dWs|(@7bmkq6kmxnSc-h17N{sMe>_%{4 zutz@oq*;~RZ??H6@%pr7-`4Q+v_Bu%(m2s1zKUKBnI}bG$Z%Ix`>#Ao75XPr#)pn8 zB>l#0y(2quyd(^EQO;&f6tWssWHmYW;Z(>mN^aVbM{@@?Z;|&(JBCTIe;s9`m4MyK z8DQliXx5uD|MEkRaRcsta7 z;#T%+VVj(`rZu6<-H<%8ngL_4PRN&Q!}Z$XOYgp>ha=}vfP00s)C@s2L-ERBriC62 zPZ(@m)r21+M9Ff2xaCTu;l(E1w|nHfIsuV z`JCr-hk(Z2*x#1m@9o(cHvsGw zHuh?se`-i@QANt~33UqsO!X(L9y#YHw~&&fWHt^*#g!_#vadURN7h#LqSAmUpm#OsCQqKTd7od4gxxZQ`AK3SNz~VCj!`*S(qbtsU%!i82csuTJ z%xNk1Rci0jc5S&eJ~Eu+>wM>?ZqDwqWE_ugJQlA@_1Ydq;GY0e+FtzYu&MZhP;}3) zN>4Slw-Q4MM0+&5|A35pj$z{!&w_cQYoJb|9C-d%T1+b}`O(q5*G$hv-$M(~DljxF z3y#NQNC;U+9#H5lDU8pr2Jo(~P~AR}fIi02ujJ49ph+SFnj~c2PsulKH38y=M=GPL z{jP1u{`mAqT!eSup%%UitG8KZQ|xN>zW(8i{5^p*=i(4QxOF$Rvgce8jTpe^f?GDk zt1m-ldNa>Fqt7iiOaaG~ePGQPnGX6sQJOAG3_VHtsI^76An)l%R=?MIw75TAUlDbr z`CGp2fW_2b?=UmU_sFBYO~N4;m5u8BVVUv0`?Hj z9RVmiNZN$}k(+QT_WE83D}unIWb-c@Q@f^259d$D2ws?O1%IiO@?Cu*o1BRl!PB_o z_b7Gpu&PTh)cvN+D`0396#mQO`s8@*p3XFdfR+8#)J(vQ6o^d;iEUG1&NYoL>#Qhx zbeDS;A2@0;0*BplT>TKWj5|Boj;|c-N+ib7ukFaFVF^m~OODaqnlG3L^H7;}opA@4 z$Wrc#PT_dmLwU)I2hw1cE6+eH&^=XtLqfIUg2cus&DDKFle0d*611jM`Z6r5>GqQH zkD7o1XP@5Ziu{3fb`P4C=9G!>-OPPA1D9c$;iuZG9$dSVn8<(u%frjj!>O9f%!4d@ZT3hJRBOZUVHfUVePeT zIQjFck5ybr@D{&{S4UT_fwdd!9$~}tUz;)T3(#h}PN3f&?OJ~R;<+&`I+ zbgl{rd1ch18yInK zZs1ONYWMy-_IO7FRrb6qa4nO^glrHYrmDVC0GWYM0yMuFRby1E8el2IS!9BUjHPbB zB#R#14+wNXl-0-G8$|zDNt?Ao5qwF|G>~4K4$I4mjcC=R&d&FWX?47Ncv#|T3*GXC zwy~`HK^+`o_+sPtL@tIuYeDT5^WJ2yl|pZ{TRuNQyfXS2`C4uC50|7(8WhWkS(yAz zMF9}c97-1r-kg3hWX&v)%#-M5v!9mDCpvPrKq>yxVgWJD$clbKS*uCLp<*!>2N7A0 zek5%4<%^B0#Vcjcu`L$5oGHhQ*!)sgPOO@6?dpN3g0;#Z%MyymeE6gwpqRD`O^7M? zZco>U?6ZjWMZGCPXr!pxQN#S3nadyvzy%lSlbPS@q@tdkztxHtWC6+d!U(WD6D z<2Lm+UhxUwf1yu5H&G@4L2wFLh{|i!T}mw5dZ8M4)=WrAz-&MRSi-3ow01uEk+4|- zdJ=`=dG%K??OBgEXt8V8{_xs`$TYvJK(Pkw1EQlg)2GmZ^a-~NhYItLMX8{$YPgh4 zyv80mHyDgtsc6Zt9O8QALHR$FccTxhlf!aUQjwbor)Cnn8tXohOsa5x4Xc73q12&N z5(=Hhkv<9apXw;YX5Vh&_P;>)ql{mSW`+lw9i3Fk++8OmDhp6wxAGQ(>{it6h^h3nhdPv{Bjz0b_G~ zdvtzQ_e+kXl`0}ABh)Q)#5><>l$CBJ34PZI@uMFGMH)$S*)Yk^0akb#J(FC+=!;k} zEV8~8g;U(buNcnXgo{Jn>nmaRUdWAlUPb7lx-$RVS5K6BTJF)-xWRUw8?0aT#s65l zyxadHO8a1nxYDQk7iv?$m}H+z6xsC5ds)b<($(&&w4+^Vrg;yD7x=Rf1k4)Ie568! z6H}B!k6XPh@~*L|Hb5efZIETPj!I9;sn5JhI9sFH)5T}!&uWLwi2LA}A#@(Rfs z8ejk~uq??u%w{3SWp*hjSI7Cf!Wt2QyhpWcb2ffq$)gg~pBLP|cur96%j>OKh)-+E z@vXMA;h(=RQr5W~K+iH_O^6sqz6NhVS6BC1Y4#DYX1$slH&ANm-BO@ceAOF%%PQ0> z_5pG1#zjZ=8xdoJxG^Q`m%hWeMc@g=%R<9oqT9u4_ZOPqC|!Cg-7o1jtaUmFO!eOE zkMgJDB|mm|94LSA+`asI9k)%T_D7?xt$IM4d4Kkqcs-u;L{25l#!YtAt{8E$Hp`O6 z7x)oZKLz&EfuQ9E^`UBJPah+4wkKj4f%n5impX-|$k}m44^Xmz_Q7voH*O&NPx(ov z%|dk5e}52^{QlOs-jA`$r6n_?T#AXn@e#O*oV`aU`k_lUyD|5JBx<5Y?wHU4vH0V3f!rBR- zN$^=WcQ5;98_ZF}qSci!MIa7O5r##Y7Fc9T*x({3T)iV&+XT+}pQ{GtdKb_rwA5hM z3N9v=c(YuPU8ZNIlZd8gNhWLPE*E5y04c2Lk{4T#vD&!Wq;C&n754JQ?CoscxusAD zVuboxzKW7|#kSQC$|!r4g%qD7SH4li9Ywy%gF#KYN&cSWhq4uX{*jpZ`Ij%h2ouxe zYQOG{WYuRougnE`yy5evtp-pA)-@AK6?L-aPHTolMwm%}d|TyW>Q&9Rv5MQNIq4lE zxeGkmPuyJJ*}9I8oY=%ypJrzi?qGCX$RAeJ0=RM{ryE}QQ_&Ipa-j~yZ5_?mph|#o z-kfW~iq204UuO@M*uU>tK_-mioU7+l0yp0khAbT9Ozd9p?$7PZqm1mU3uXw36)fe% z{g$j9PR_zz?#c~LUS+Pi4r*tverFMSMMtP(Y&lrteF$`Bp4(3nyt3m~S1R)@Wxl6X zi+Mu^v-0H>XDQSF!Ez}!AH+4A1y3~Z%ne3@kf5{jO6xNKT6Z=Z#N_*yoArFCA-EWH zcO-_eEyUU&LH(cDqty+4BB@G2nOiW_m)o=JkL`p-%rATOV;lLA0l!v*(R*X>ML1s` z+4LJx-`<^7NdL#d7VrDB#=uktf3_PC9tQX#CmZZnPSp{R+wQNk@6Ew%1zsG!vgGAF zmGG2K!q&{ND2U{ad@vhFZfc1M0#VZ@_(u_0mzoFYrg65%p`X>bR7K&bjZjgNz2EQ` zb-54429`o-K7c~PwhD?vs!D9%FV|J+jOrKjScgX8rf0$eiV@>3S$!O`%gXfH7+HJ^ z*0Lz;4%)Uc(MoMAz`R=3hCg!dW|iobi7RoLn|t-pk3e=(E0RH|L=DMNm zTBLfq=PY`r7EEI04MAADf?LXy(!;FdD$Q?m`o1DrYGoMxi zXkK;uqyo2BUHXHt=r=q*m*~aT^&#nA@keS%^z5N<3youF{=3EQijWiEN8nkW5s9|X zL>$}|fXd}aO)k}GU@0X#o`fB9SBcm_5F5Ln(iAvxpyjHBl*73;rA6xnhfg)m06=@Lvj36KRu zV-^!Ix2KVGn<iY8ERmDq zC@uD1Gb#UB72Lc9l)fL`O{UJp?~%4RhU`(E(cZLk7<#7f%Q3vfOFam}vR{#m(BECh1QL7|Xfs~^ zneOtJck3Xp*d~RB5dvWCwVe8e3ez8(zEjKjQF>sQ>@~ literal 0 HcmV?d00001 diff --git a/logo.png b/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..d00cd1566cb5a0fb6eaef63398bb0259a4310b77 GIT binary patch literal 1480662 zcmeFaXLuCZnfLAIy53LEM`O?09Sr>gJ&xziH^Zm)mj zJLZ3X=D*+Y-~avpzVn^T|MQ*i{Gadqzickd+_^2m*qDARq_`0)l`b zAP5Ko-3SOj=te^R3Ic+FARq_`0)l`bAP5Kof`IS?Sp$NAARq_`0)l`bAP5Kof`A~< zjezijZY1QdARq_`0)l`bAP5Kof`A|(2naurH6REG0)l`bAP5Kof`A|(2nYh*2navu zMne7y0)l`bAP5Kof`A|(2nYg#fbauZ1A>4cAP5Kof`A|(2nYg#fFRI~fbfHEB;>Ck zAP5Kof`A|(2nYg#fFK|U2tSZDAP5Kof`A|(2nYg#fFK|U2m;**2tVjXLjDQ@f`A|( z2nYg#fFK|U2m*qD@B>)`f`A|(2nYg#fFK|U2m*qDAkd9~@Plq716c!tfFK|U2m*qDARq_`0)l`b(2aobgKi|`uOJ`@2m*qDARq_`0)l`bAP5LQ zkTno!1ln4g8|$hoOY+L{GxF0@GH)cLT|0L@?&!6cgYn1r*nD=!9#|g}y4LCEOz2v! z+7#Xse_~HkYm=yPj092r=v>@lswbVFHeK>~sokK8un!?j~y zUh>(~v)}&n&CsZea1&2OGZH*qV_De z@`l{I$<<|rLK-|yx)cxu1OY)n5D)|efj)zP@Pj@xl>r)vl?|X3xO_4sdf!T@z}^L4 zt)KAP;!mHn@PJWI|1eM_KtsEupZ<}RH*A>r#=eEaAq_FXtFJ_bqG=Gu5TJ!7%?bj7 zfFK|U2m*qDpAZm!;3uH_PBZOotrbN%_fjqQRG015D0GY{#Ce;NDHJQiiIO5(ESR zK|l}?1Ox#=z=#M4KQQ8~7@$uk6VAF>H!q_kIK6M>ft3?BO?hkauqP%D{^#NSzo$fe zeyGX}@856AOTS$_?8(hj-afE$B8U-ui9k$XXn?ttE(ijGfFK|U2m*qDAfN&P;Rhib1on;QxdR@PpnzhhC1Lv$F#W`n!o|FC5u%c1vA;Rikf*6`I5 zvy+rzn88HuScnDv@~>W)`trXRQ^f8Yz3Q?-`rV4JUfezZ%g7yzi2O=2xVDxi!><(S zpdcU!2m*qDARq`lTnGq1c(~^KTMI3?diuc8&2w-mzzk;OlmE~+1n^!oicwGfaL(I* zCS_a1#+g@6g$Pl2$euzOt{@-?2m*qDAYf<&gdZ4sdUWfY9W9vs_Mb*P@%>&TQ1{iY zj(Gh0GvE9VAqu)Jbg4)X5CjAPK|l}?1iVH-_<`3D8o2`E@?%6~)fNaXFf7k-APP4m zr-G56Ea{sdAP5Kof`A~R4-2L-wt!aR)c;T{wKv$Nh~gDUW>Okx7GoHRFvx&VBE13qS6^YUIH6<6ql6^~I~SkcyW(uvM(gL?q0N_12HSq(4sEtx|pc~Mh+t@lAd zJ388%>T6J?low``**N=F;=SYxY|1CchC?r4QKxn<4PQS!c=3p>)88ju0SV4#4*idb z1Al2C-q63_GI*qslrB8x@ARq_`0)l`b&{q%;e$dNjl5OSm z50|e}BqLzgzIp|E?SN%IeiQJl(IcLC zWZwIK+cA4sOvsvylz34m7-aoOHv|DeKoAfF1cAPXfbfIfI;W<(s&cl%Q5dWoF<|@) zKMRz?fLy`o21uW<^_%zhFCTky=i-Y;ciuRE95W|&?R#&0|CYx3vVzR4o0rLcOy)SU zM1(FILz=T?Up|M9Ve~VP1_Y{&eSR?A56K(ZQ<@tQfy(%GX=@1GR_+t~>!RbMGc$HNRul$Fqk1r$1%VkxxE?L+{G3 zgRpNQvD*3YZK;<|AuKo4Rt64_fVONh)mK*#JNCwfNc@K}quM_6W0WZ0y!v~8GB$ED z&wlGqyXJnzjO3@^@ZMu1pqNVIf`A|(2nYg#fFNK91cV}os*>C^lqm5h_MX_jkPuAE zzkJ?rGX+bSGUPWTSv$RNC2rm_K@Z;olo1O8f`A|(2nYgtA|U)gPc-$f3ucgZE$-Ns zxy!$Le(ZBU_Jht~)YCtl_x^uxp7M71`fsqiPft2uS&}as)5@n7HBUuRE?j}=Ohjqj zIBDpdcmL|2K(pgs`01*VgK(7)mY{sTq@*Aq2nYg#fFK|U*dZYNzzz_@e6=!z6<@!A z%TfBFbh5V;6G-7UCK+pBkupfHB-7&1?Nx|^i>Dro*4W4TW4p7 zMX7M^@YVw>Cz1?q^5Eb2l=BHo@b?@`dxC%gK4LpW0rw8lIQxz$z!FxQEshq6#ZjMLRWdk1 zKoAfF1OY)nPXvS?=!vHGy4u^@kl>DOowwra7ky?;WTpkHMhqZJ0U>uXu3r>dpnbx; zzmo_^HI=x0pAFj(vSieXuU_ySQ82TFQG+6PF3L!`B(5ahPo2~t2nYg#fFK|U^lb!$ z9|U@S$!9?F-ss@f*qr!?8Bpz#PoD}|ItE&BFZn`URcW9HE$u%*fCW%nQJj_-2T|C! zXvCsV9`}(ma~De(O!{Tk+k@uiNDvSN1OY)n5D)|efu0BmKj?{vU%#15)n$cP_-vW> zo=^6U`}dpn%D--$JT!9W;#&!)Yb#3pIyz}gB?1ry*2B$LrT-aWNv`R&Uw z_0{EmADlF(8vMLP5D)|e z0YN|z==}%?Kk(xmBJt&?-#E2c?62 zc~cO|y!4cdM|YCQdiL9Y9^U_ZIWv%9 z`)GGddwcu2v#}R1oL5pqYinyxb~eqWTu)Z=xtWquT~+0==H{j*CAHnSe*Ny z^x0LNot>Q}#l`p1(>zwl7z*<99qVC?`FVMFZr}D;!_6Bh)z$Y$M=a!wdo+93u|gfs zbaZqS6&9x5z3aJeDJf;8_g&VQ@rL?(^Tge}>G8(Yn>X58TP=O=Xm59glB+@4-NIMa zfVC&C?y^144Cdx!-@I|7rsjTtKBoIdN=jjYlgYBZkz?lW?wvdFmo6qIUM(*xv%T8Z z)^_RQ1#{?%BCx$F?o}-{WWd*3BE&tx5AFGV_d7l$Wnv zwPMSr4Ib;okL@LmK!t6*;Jw&nLf@yeA0p&`3>Z0F;?wtc&IT}g_sYd3Y8F|VzSJbrA`hIQLEZ`!(P!=(%7ZDmgi)YsS1=z-8+H`wmlv5hqeWvQ=M zn!S`(;K8R)om4n$2SS3av&M)_ot0yLLuLoyyP4Wl(mQSXkH5 zh;WKI9VSh%^3TVewc}*mcq;M)(Aib!=4(q!OI++3puU}&YAJ?zel78;#|3XK5V~(~ za?&-X*tQimUvqO*JO#{`70;%oCTry$4|qYbU?4QMt^4^{_<`>M@9b#5cl`ol-SpS~ zO-E)h?)je*wDS1YxtJ1(6}j)H(HJe5qoP*aia&jH^X!!)2I$B&yNuKRKuQdWfohDI z_IEG%@jMfKddb51${V)3MIk>hvx*DnS1er|e&`?q5j$n>KPkz{r=w0Tnm?CaTK9cJ z9w{v;nLlUNp|JfP>b#zOIsOuI%G%W{PaHdHxA}`?0Tc+5h?WotI^e!GcK>a+r0E8# zj_^Za>({P6as23&gar4ua}_;`m8P_|v>-Y`aoi79^HsKzk@459Sp^GWbV~Zhu03KV zx{%<#ySHrI5OX>TIm_dXwmZ>CMhoW7LBvzuZM$2L%2@+!zALH0B5ofEKfG$iGTTjO zDp@$sLpNBT@S*iiM+SH#{7{vRzK}=q@WC)%8nzX>IkqUDRI{TD?-Ur06VeOAGm7H?mX`tb{96TTg!B_-rS7TrR&4n}}Vi--d6$NdtdLRHEqMRfuwJEloZhfmCix1X`OL(~~bm?ODEY(oh|PU!jg# zJ!&v3R-zjjbKZT|D?4FdNkewGDC7tH+^t=;l0El|3Plc5{3fTTrzz(L2!M!D9{X>R z;?JImVK4Z?xpUU?><=PQE?>Gh>QtmEYZhw_7Fehjd8)3i&U#+qflv7X!Y>lsvc(Id zPoJ{eqIKUr3@Q#D2t{ziTuO;#YFC?`uy1$O=~ug3ST@S}0TLNZf+;}AVmhq#Q;BJ`htoIx=K2*PlV{BD~x z&R_lS+TckXI5q=Lw4Fax7XFy(j1sGOlvV!{D8JF zQZi5C&h02aoHpd~B$Z$&h0+URWGQU!TU}k){?JY9*WSIOVG_gaqagnh>Xj%Vy{;j2P^z%L_y73}=7_uA0V!w$ziKQNg(i;Ih3 zuGkCV0%GYBCQ0m`+iE_jL^(e|!bQD=n2C{+Wkqo&?d~00l>-kBTk4qHD47)V6I4}2 zc|OdGBW~6+T*VRw0rOm3EO%MYD?H#9to2|m$Bsm(UCF!|5-we2!DQS^w=_o$7tY6l zTV|$bX%|4)_lHr@0n6>m`2pPq=kSAJ%vyR{n!>?4EymRID!{DDa+Qh0|6|$WMbH350qo2xTJYvbJN({#ZFu=Z&Iv@HcWW^%>MO-8L7O+ z6!%36_I(5}U^BCX(6t*TzM+@J(eTH=hhNL-eJe|H@4w*tK8_Ff2;2wh(j=DJC{1T1np=%g|e7A}YMsEg3nM zaev0b53taHNGbV;VLKDyzD~Y1Hl( zzCtUR7f+Z}VfoJPKejs9-P<+fh93Y91}#{H;lG0GtaWjE!w*;tZ2sar6TEK^`~H^B zu;gs{fq7CYD-oqJxv}f5tFP_I+ULx&c3oYqt1_Ht*5GqX7cXSe-4t_m$=uI7cUUb} zs^qGq<9P-JiGiA&J#)r#6#*ZAmu;Ijf{9~!yEBx@%F3ka+uaVy7Jk5xJ(U!hG18-@~;d5c7neMEYorq+7#4{7>V)3DX&L!$&QY8qBp=J@!8f~iI+DDKkyPj zhud45o04NAw$1ox{EI)+MQs2xAX^p*mWhckIs*s1<-~miUlWH}tIL8yet>jy{MZrfud(UI9N6OzepOXv za&i)~A?7-mY&!;5u}%#?>G&T|Qi*+$9w`2AXaAm9hMG$Ym>i8!p}!}cy>iyNB_D?S#n3+_VfChJKh z2k2D7LPL;@u*Ft0s9Y;?LAu8;1eKx{ zETEWiD1{>dvbMqjvxY7Iy49<+iODFZE%q(i=ml2)nE&HrWa$zM09o7m)wZ8bk5R(0 zP_1tN7Jk5^?P2yK4j(>*o5B)G9y=Pr3(E0z0iF;tNTe;K4#!!%5I~RhU=`1KznL9J zRxVfd6wr|Ea^elciXsS=LyJA$HayNriHT;1@LfCnLr0v>g75>UuxL8T%$FBt6TWo* z`~R&AGZ^#CqZos;hbzoL(}X;XH?_C5X5GAeYWFg{mvu?3h5~H<2Y-*+yS$>fhqKwk z2yUMqvxOfZSnb}qL+NM7c783@@&n$JSRx~~@Y~ClqQ@Wni10&1p`l|KU_dOKMiRBm z3^i-u2i$@8CSZrcJA1@ zeVY@0uw|1HOjuNia#;1?Gl48-9f&J_zyR5i$EY8_U&KIbc@DJk1D2x2vzI>L|%Nf4nu5atcVJ+$OfR(do!94uuEmy7lK*{V=24`mMuQqR7kGBoW{(ci( zab6RzT;?**Y!6879`+sExtjo1cqRd(<#yKa&TU&4FPQJ{M!R};ZnupGMNe>yVDG^k zrOKhC?HL|tS|sQv?s;G6qBa=yS-g+H%4@0 zEBRoDi{!4BAMhi|hCAE480lmCj~u7`LnsyY{ak^pjUOOC+VX?U%#8VSXNT<%!L?Q4 z=fe4ORy%88#Jm9*qfVVvcss@L#<2QATkVTbmU#T2eZkEbZ%K1Zm5m$RyL@}Y5BBcb ziG7js5mA!eXT&Y6lauXqVY8yHUQWPS z*Y0C6wQ_okXL;Y9NZsjDWD5Kz`jV~>|+{) zuK@AKh(c!FQD8&~7cZJw%l;5MFzvn~!eg3+=D@mu83ikWprqJFs(K1|omwj4?S#!0 z?>a2sSQ~aN+I?km@q4G|w#?EM)V@0}{6Gh6O?6degnU`{#dF?!8{i!}@BRM{UoTm0 zb(olkyb59*!C4Qko;2s3zj&|E!Xsh%S1+6o-!6H%`{cSpY(bu4kJvV>p!<;`xg0$b z!SAi5m_qv^ex)rxk_0)yZ~`AZ6UxUa|zp>$F$?_0XCr zxp!Uul&SBc++hd=_&LSI1&Iu?U15iC19L#CRNua7-3Ue>&5GBgvuJq$~iGBYz+QJSegGs_MN3KebC zA9``@h&d=z0R0IpbD{kI!Vi>Vri?z#Rg}Eain+XTvtGAOG6uXCC!(t&V!?2OB31g>$qtHMnb4uJtwqklnDl#q`y^ znTlmt{M;b|vpI_&spX6+esCuGwC?bzZAh zg&mL40by3Odc|^W>Kw-k{cuM3fhLf70!s7l9oss0)?5GSrL;BTiAPp^{UTn?gs7Cj zrJ80#Zc>B*E;8A-6HjbkK;Tj@4dJ*Qo2AGdi*U$S)V37r4G8c9$fhku(`@x((vC$u zK}eALd;Du^VyitjJDY%)*!B_+()x2pvAMHmu#4?}tVnG*yJ9Sl-zK3^xV=aHF210S zr+e;eHoum;;uoDe8|$K)`=`nFh3tT&fZ0CTj% zv-XXCV*AX-C0>YR;>8dia{`YwAU0ZRu^OHW7mMR0cCLtp_+D=bVj?&YKHrbMV)Ai?bCG9sK0+$=5k`~dF( zGo%EmPrOQ_L>59D!N+RzZXLe$z>y!A*KKJjloB-t#%Zif#81aTaRyRu9gDR>HwVlb z6@ujPV@F8_fB}`0C%R`#woTC0J9loQ^+89dWF=EM&knDSV@JYi6w`ZaZ*}1Z@XMZ^ zb@8pKiJ)iq?xpi~f*uhK!2%JP*KqnJycN0)R|wnHXp07w@R%oDy2Q{3b*1zv=$mz%|U)7k;1G);O9*VKR_0{bL$q{>xjUF8KDxp`kj6y zl!`~k2(z43QbMF71T?3WSWlifc9iHkXby-Ff(?dMim{A^9%g4|B3vNjBTbM%)q11T z1FXEQK@cr9AeUWFP9{bQV}vDOh3)i4>q$muRW`s6;7=%KtXJI}fF2k!SwvQ`gkZ8x zhvR`a`~drHjSBc!qj_9sY`)nC;#-($=Xij|2)3#0Ei+R1oe(F!%g`K@r}E z4iiG^_~^xkA{k&a-D??A9<_3n(P089bFd1=bo^Dv%O97;xAktd_@#peNB$r!;Fj ztjK$FApAfjdWcup6cIeq%N^J;&;EGx)OV<=p|(<07myqg{OfbhR;7lNU0zjkVSe%1 z8HLdk3Qms5JN8*_#0Pm19~MM@T^K#FIBs@n{IZH`n`-VxG?(1yZ0(UrQdOf;*bfMF zwl_od>T}|1(~ef%*i(LWEz@WDlwVm>k+h}i=HA+SCmIW{KnhJA5B4k7_Kg=+U1jOT zqq{IS@-hZ0mUU}J55d+*1Ho0>Z7J^`1o$~6z&D#*{DiV^X!jxX2igU!gK$%@Gd1Do z*AlhHV?Swv-ApQp;1|}R38!a}g3HUx+}F&)#<{`i?RF=TV)%VVZep*NyBw?KBwOU{ znDZ-*jA?hf-B)U3m)5QlgmKgo2-Ls`)3Uq8?kl6S>M+O;fsAHXz|~jFbWolEN>(|@ zt|!*7CJZDB3*bGjOkb=eT^%4TGI6Mmjvfhj)g|kBCKsXJwkl9XW<+F*i9Ss?tR<}n z00mrthNFYsaM;PU7V~%jEC^ymKtdZ~*8%p>kslFwiLFb7B{T}Q1sspzD3K?Q**fI_ z0xQQ_l77Mtc_<(U{2#3tQ*XWMc)(SZQm_-dS>QZYRm23Nd#;uoVy_*fj`cg9>6*2> z%o{ z&<*a5I(ZVkn%yd5HlfjO5VmXLNcdrtB6i)Q5@!5t>=`9bfo%;;F)uNYRB|Id;l-lL z;l{3?-hUN-paMfvZAD4co@HLz6rnbl|H1zp-@c&Wo`-PNc3m@>I-1K;t8a&uoSU6@ zY*<$4;LLq5D*0rGy+~R~-;AnUMGEvQAefZ-eSV@^TIi z&DMyY_XkbUcF#D*DOMmOrRHTr8z$m+VPQXSBc zDvW^uKV`TdJB=)a5sT(HHnxLfqZ~VBr%gDXM08TpC>+J{UdJ=&_pvas?Tqu|u4G0? zl#VsnoAY=u$72duw<)sWi%lGX!GI+k~JhI+7qV=-87w;otH3R$Z#JF$~t ztz~QvXcs}=)%;pYQYXWK;Zc%f+uNNUGYf#@v~_MrAa%9m+(7EIA={J81*33y#lkb0r1ooT-FvzZ;pi@C_|4mm7kt+V8wU>!FywsG5*D$6G?^$MQVLJu{Nnm zJ5qFJa`u5&ok@;Lh(ZwBh2prG)wd3`)!vWipltL~%0~#m_-g91qLKG=BR+J&37pSt z*8Z1@VkT9l>})Dd^1_77M5HWs|F=&6VBGUR(Y~1;F;Rgz!#<4T?(kbE#c@w9IG*!#KcqTezby-2Cf;Mf6m`p7dcPkP%LXJV`hiFR(f$^L*9kXHhaaHO{;R~V+738nqHo`G4IGnnx{1@WN=~B*vh1>&86A} zb1c@1vhI+KZ}G4vv{Qt~zKf~S)^FZVjgOKXYCc{%QoSG`2nYg#fFR&o1cV=W!ne7h z?n1=&C7(Uzjp#ICz%N3Vjk$d}Mr|@=T#)Ot&lI1Xo)t1kvlQv<#-RM;UsR^-YOTuh z1b|%k0RpB@_WiLY$_yUpY<7C^IgbUhf(I7GOu;FgBrux$iet^qi;*Nr_9g*1In;Pk zE*#m>R9~yPCvu}8AP5Kof`A|(2m}@Z;Ro*UH`SCE9osV3n@BHs8!Y^|e@y6Fs&dzq zvuoImRHugI9UbOTLey3O8ITQeJG!GH7GzY#^Xx>RHSSgo+ieS&}>AP5Kof`A~P4+6pu zT;PbqL2*tRVIav|rdd`R^X#MBW_)<#{BgBv13G2uXsx~#ifgfRc~F^WvVwb2Bz#_d zYd=9WT_7Q+bw!}dS`1lU!PKbJBH+G&sZ!0Iu+Ek`Z+hI?(v);2eDjpIy$Eg84?i28 zos!&iZ+as43Ic+FARq_`0)jw55D!wY6MSG5f(NF)793fe$S00RBjsyWgKoAfF1OY*yHy|MVz+sl~Mkaw2 zq2V=WI3Oi5LE+<1>}{&Aaj0Iw3G7euFXe{6=QAnN35URjosB?1tPX z2nYg#fFK|U2m*dbK=?sV$lF?*$yv7a^Jg{N6yb^-vUE(wjd-mxk*TdVzu?p;*8-pu z>0YP8X3>&-Y6RBDys0NJ^37`mOr4E|SAB0V_F`u6fTA-~+Z)Th?(w(S#id<4N0Q|6 zFZ@i~6Vc_d{PfkR{TfW{yzjr%AP5Kof`A|(2nYfi5DXc(R%sC4;wG_@%rcAP5Kof`A|p00e{| z+y~uMS5$^08%6kJ-;T^mbEmvJPGEs)BTWmrsUhwlyNC(Ug~dONs?Dkn7bY zsYehH1Ox#=KoAfFe1w4T1AsM|DvEN#R!t)4iZ*gE=GhleM8C6XkQ?#ija z9*C3X&_)&4wlo%87M9@E%o4Mx@}4(&(6r2c@PN|u^StVI&zn0tJJPPj?VR)J=w}|) z^qBOU@Z!%8t(j6?CVHu!$jUcCKoAfF1OY+7U@#I&0HU_;ZU{iPVX?5y3dSSVBTaizat#gDrW#cgKV)K*@#qO3>D~46%&b8}!_- z$JVGc?_R{lnJ5D^QH1Zpqz|l|AaPIqz6hm3K|l}?1Ox#=Km`I1H$Si>InYcFu$ox( z$>VW{wrGq~)N`IXTkG;qe5J31s8?-WEMa(g;(C&)>Eig>bLf5fTW4ES<@IfPr@!uD zO5|#mX|y)&h~D6u8f&Z0hHYH%(f?|s2+usad*0_l5%iuH9qMauZ$Ec7Rz8A&ARq_` z0tP`K;gYw8DVl#99%6m~IVjA$r8&s~4hI`2y?OIuq*o3H)`>F*x4BG;D_63fG0tOg z^jX>Em9^70Xa5<#;vd0TzX+18p|Ur3;O0UNM- zOs2NFg36R#e$HcIw}kL@Z>`Dk1qkF&%e|AdcfnUkim-j=N7UepzDb?h5D@)= zL3RwK8-jo!AP86x5dDF+pEIp@K@Ku+CT#uYJ#FM*{0l!lv}STush)0@cqaQTTe6)9 zsrhSG@PNFd!?3Kcy1B1DJGP}Fo$Ye1bJC~o!&I!XAffcqlC1qNYlc^s8wqp@hw~A* zJV&_Q99}zh-19%tKoQVAY?}O*Py`>%j#MiM2m*qDARq{6M&RMoADGF(jfAyhU)CVe zeEnFz$%FqHZ{)hlQq7P%xzS{5D!QhNJQ$EluyfBl`bqKG8RS;0O+Q9h&9=Hias@jX zX`eo2>S#r0P@fZ9acv_`-A1q$V`?yP@*V0tO@u5xwsqdb0l(DnKtT~UP8yn?e8G1; zl$r$rK|l}?1Ox#=KrI3f89zXr$w;}RnH&(RC^~p`LrtYxnBA8*nL02;35aN~d!uMU z3Zur6JE1apd(GW&{F$4}QlSfmQZ0~;fQYTOpN^)gwuTbh4|Y>6RhhP*rqY{DB{yt7 zDGmAYmQP*g>FV1D8FJ~xMd(zFzzi%in-wyUL}~7qpVwDSjdj&gdzMdo<@Z`B!sFj3 zamd|7Unx1f9-UMm2nYg#fFK|UJah;=O#Hy2Iao7#hz2R<>;C;_yz&3e9o|BsDBTwc z&IiS@-{>x?2fV`U1Fz*D`;4T)&;?WrRX6w6+&x^Ed5W}ajYU_R%Wm09-_DOK@7c)X zX4$;4D9I|7TMp`T;t>j_-#MsSJsrqFSGq%H&q-r+xAl! zGpR6o;)BoW3Hgy{G;Z+fVkvH=!oBpFReois1wg zC^x8$7tI z=eSZ%mQe5jR8vY9qSxgh&^#$iK6_fjgC_3EUc)aH2m*qDARq_`0{S5E5b%R8a&Svq zC{qF)VH|z?a!b3%tC6BwfCS*yTNE=1@!ul*SEcN#xgAEjh5D@M zhTOQug81f=6bzGEt1{ba^V=Ir@gXp^H!FD-EItSAO%*s9m~ELV(y&%)C`f3?yMS#H zZq-#c_LN^;i&;@&^n|=)pBd9$$Q61n&j$}EJwHzgK6;hu?CeOr6s66I&q5I-FM?ik zA@v9Xf`A|(2nYh&5a{dt0CGU4R&C_Kk^$}Bbzdj1BT#<6OZl!ZvIK%|<{o|*Do`9d z6*WNl)pf|`xF$dX8VfErm)%7Cx5)nf%&Y(fB+4vq$xS6G^||NpH>P6*Wx^V&_i_dN z4g?zReFzri!AR z-SfZDCa3J2Jxs?8Xs+j~@AHGK&>=WjnBy8tX}`!BxjrOz1NRmqaGGlJoQMS5Sh05z4^Kh%c)n5X!4U zA5)xjci*Dn8WJpzdg=#z7k*t`re_L5C)QD{F2aB!_ToRaWmL1kPuSNVKgrIdz#)rSVI9 z1xv^|{7wKfPhj1rIl=OnXMY^FY9h(koX>=u6$AtUK|l}?1Ox$}A<#$pK~qC5S&m0N z{X>7`wG*^^;nyJCdMmDNfflqkmU|j>ufA?-t1mXQgiA}Z558gC znId>m+^oO?4MotLV0r9w|9E8Mtmel0zz#uL7X$gSXXF}KdDDQ{?kdZD30)l`bAP5KoMns^`@dF$q z6C#7ZdG+@yC6Vurf8l45I~MvPJ+jAnhaZ$)T5MP`({snVf@n6E-}X4tzEuFHgp%Bd z4?W|ffMEHe5}XeR$7Br5%@pCp_JwMF5y(C=?bY93ITh;D0K>+BNO~a%2m*qDARq`B z1%bZB4=`r9bLGt3cmJxE9E^VEN8#(fX{f0T$h;6(lRRI(kP!V*XK+x#snM-f83BPV zfQ@1mMp#yVAgqyI1m%XmYwBnVAVfWzHt~ENT02Fp)gQsf=Dq*7+X<(8)+XNs0YN|z z5CjAPLBLlC^dWu#Imo?}wEWBG)slmePd*a5Y)nl>v9Cb(RIka@QI#5OU`f+m=3bH+ z)aRV_G{io4-PGAwcqJ$NUE|JL@Bk7`8wz)x(3V@oER}3{A z>5L#C2nYg#fFRIU5$H4gz+@`TySHibTWZMx`IyLaP+6Q8$Qd?u*4zy@uB7R1|2ioD z#8;hdje$hZ|81K(2^v}$HP*;emK8FvGI^W-v2oub6rrpjbNh@B)utpNwep6EZ%9%E z_wdS9K|l}?1Ox#=KoY*13sVlACzBSlobR70YN|z z5Cl{s(EIs8XGeS7q0Qr-|EVfjgSaS5KYu1Y>AY&hd~ieWjc;n^2Wdxr0ErQ+WSScD z#;N)Y;i_=W6WYPoGrv*na((IpS&D!Hu0A9flp6bW9Ks z1Ox#=KoIEd2=sD(fUUyqgy

{6AGv2IOG=2mh0L>7+qsk4QMVM?dynB=mm`q&=v( zw%H&s`m`HlA+F0jRS-Gc{~&8?u`9S~j!!Z1vT~Sx%DJO+-ua8#hnMI5=0&4Cyk3GJ zw+jM-fFK|U2m%H~pf~dad>sojZ>bJg)W09{#kH72hKZBn#{lro8mKi$`}F$Uec;S(ka*QNHUf zXL1g`O`5R2`Y55=X)L&0dSLDbnU3kWyIO(AvAP5Kof3}lQ9Vbf`A|(2nYg!M4)%_1LB`tJ{df5;4f7P6ysm`*@^875k>+DxI^2W zt#vu!@98TW`n5LlCr1v)Jl|ntz4(NwqqV6xx%}!{WO*x?+52BEI60#9;=+ogE!C-^ zwf9amcJqoH_Q{AFFtx`}dnX_&4##_ZY@du$O=>-4p}_0YN|z5Cl9S z&RW|K-emLAep{V>MKLYkyPGwXRs9Ce>AXzQJt8M58Q&>;tbnfYke>7fedj7|-n+ zrUVqBq9}Lwyw6o-IUMo$_jwzX6=WG^9MTa%KoAfF1OY*y*CWu|_(5xPW9ag+sw4;s zldQF}IL~;KWy1I*`@pMuN`>Cbm6~cGTQ737@eo$pqt4cPtZ~W`R$%LeWlq7VQRP=w z*JVbvR%Lx_@_nd%lonN)RX6tJM(7zLDLd@-j^=8m5E!5wYL()gyK6=dQOW-Q0mXwP zO*6m*N*4qHK|l}?1o{X9y^0^;c93vluc}mNq&ise(PP=ER}45`CR0ac($+pe4!VXA zlzZeOZ1xR^v)eA2I-08*^5ZL#w&tJsl2}Z|XJ;U%Hx^#;zdD3aNwpa#3!}!lSQ0^W z&(CAop&vO1Fc4Q(yWWsSXS|H>S3_g4~D?JW6@KD}aeQTg-V8ALbwbqTtkMG8tGx z@pS*+5_M;yCGbwp;deYFY3Q;tGJeec?!{onzdkDlCuAZN6`UN7he2)n@s^5oQ%AtU zTR|DIWhyqCoCVp_x#y$gpo))~|O+8iVY za}j&_T9fU+$4bnBIU~Qu1GeJYrkcAEjRo=Gh2bOCQ( z(f~XN=x^2{jH}ByWx$B19WAv@#n-D-Log!3cenK7;+i{$h&<|jJR%K9y1T_>YOTsF zJ~P#JX0!Ld(haGpt-iSG#@@W6!)yyUJ!W2N(~r4p%b3?prn;)qy$ioq9lYBAz4fL=Jh$qr%Zqc;GH=8K zdwSCO9?Rpxi91)$Sf(Q{{d!ete(y>fgVAY8PMU@%6c+wKDzbt-fS76R~ zM9yvjQ@7DT7g{Pa8gkEJvtM#yK6Xl7L?I|Q{Qb)0tr)*|wAARj#+9H!3Z(wk&ev#tm7osnX}ia}>v6R8xs3fNmBS#L2P zbY-XLjVc7QuX6U?l_LhIdFuO3fBlbluEttXl7n84fXT!j&#i>$L=y(KhAvf-#1Pg>W3bBY{EQ*6B>uGY4Teh>-SNCUce7b zyirz<8f^Rcx)n&H3va?M?UJN1()0FOZ*@O zW3nJAo_O_pGY0@gd_iRS>V($7v@GkyobRk4p~szYh_Y0)AP z^#T%!Y{#rm>_*gwzw)C@e$pkMKDBqj*D)b${6iG_7(Za6w7$9`>*nRe=&-0g%UJoa zfw}Mf4OguZPkdk9;_2US>~sH!_zZ8@KJz1TQ(lPJ#&cAXn`S_J?6%hCvtb+64e+t= zQl6iKMZ=!d>zVbYp0<|e*su-ShOqe4fDOU$`~X}JubZaI%z$7f@h1$MRn^p9UtAb9 z)<@(3EA_I3mGxQC{-FhqPmGx;RAu7#TamaCksRR^A8gB(eQo+t2t-Ty9r|YKaH4J| z8$@eOE;270IjO~Gk{rnedm3CfThsg z2>Y5$Ci1maByPa1#N~=Is}R2Se>f)lu4?+;(cXUP*lwO^j7Y(&YyTcZtTTz9L^iGEn*KnECOk-Al2_sVp&2Jb2*; zZr&t5y<}{Dz^+hoY=kQ505`>hYo-`hIxtIo$=mE)PhCoO&bEVH7Dfy_HL4~pqP@`& zE}EUKb&Z8rtFG@XikZ}vZtTUJgKyxe09U}as`C1Fw(^M=MB-)qAsX}Jag(m>GEyRp z65hEe9tidc)$l0M!z$VuN?;XKRed`QDgZ6WIsEqhV5K+r(G9I^!>7-llFCi3wfPo5 z1J}Wba9OUZy1Ca)5@r+(_@etkjih8qYRj}V)*o6kMa2$5|9+DO{Tdr>wGBym;~>CR zDTYH^r@g0S-ccmX|KNXaUpZr({(J1n!^;n>(rf>IgephdcV_=OwyixPrlCM@=Lemg zon(GYj6Qf|)2s~>URPyet%@Jm79R7=ql~7~rer*o*8a&Wuyg@`%#Z;;K_Cd1?anG2eSSz7pV7x?C zs!Z8c8ovxyK~-6yFHtQ)dr+d7gOygML&%i()_^5VogFo|513&I9#C?AuB#qmF@=Lg z-my<@0DO=L0X|CRwWiXWu5LH-c|^tX!fbVp2#y~l^V0ey<__qTU_W ztv-ZwA|_SeIfy^4ha?L2yyr#oOBcmXt4i5bdoL2ZDbx%E9m2sF9RvE3t{71F9dxt9 z-k|=G;+9`z5p_=9xf?D@BpGVb+**Gsll+9__e&1 za9Y*&8Ad4wS5Nkx>4IUg>H{4k4<@NBroZ-YYF_@|9rNsu&mG#_TZS+Ez;<%GTuJ`( z@Y-qVN#}HQCFza)fL9iIp4hu5TJw}4zp+IrAjhMh{^7DOpNrTqlQ(cvfLMa?gFwC3 zjLHvqNw6N-Sy28=jDF@v(ZQ>9e7op7CuGMhzp}=SWf2?SBq_s|94WZD^ajy&Fq>(u z&1))7A|xm30hjzBcp!V|#XX0T&RTtX-|2P?fB z(WPl{;@P0@RQkC#45%QB0D`*3y?&^RBE-0&2t+`txqI07>%=L%SPT-oRE5=T|9)81 z8YH-#(-Fx@R|w#9c3|ZM=Lh>3sB7?mH?R1~YT zDCqyaZ8JVJYPJJpvQ8{v>;zjI5!jr^id46aMOU4sB|t)K$iGB5Ae&ok^bN;8HA-$T z1&fxUC<@H!ph$2WJE{ee30EdjMGni@P?~3UCpgN--2|sW(q3D6IxMv&P`+4jY{D90^h%U#r&Ld-iD@=@Y z9$5?B#;!S^CdG!gH2EoJx$uKPy~d2k57}T6cgOz$S2PD)Z zD>cDl8*&t7^>9NGP-5Y^?M-I_cyCv@(_Q0U_?f~VOn%L#zxD@miUzRH(zFT$y0k>| zKlr=C`E@KtkbT@KRkRqOqQVax=gxYD#})w~I%IWYZIw6kV|;!MV?EY->Zr#2yKd`5~Y06s--U%AL6RO_VYc$7+ zr^A$Mjvbf5$R{5m-xGVX1|Pie1IM|uJp)C+e+Y*{Z>-&o%n#THt*I!930>DK)CRUw zbN`qCM?wEYj<$@HcwZ}Mg&zd!ZDufjfC<6*!&}`a#IaqfyhRobd%~~*O)=!CNZO28 zXDj()BUF~KoIs~YaB8QWTL{tfptj(k!srQVD=|cQk^>hfsZJstJfQUAB0?cKO|NE% zarveb<|wCk4ndE~udG$xf-8zZJ*AhHbhb4qugW+j`7J8WNyDDd_C4VKcARt@8 zy_;bxC&Ga|;$Y+gh-&0(yL$S7_r_puW>@%u8*qGj$w>SFMqQM3hunb59|#hxB%L|r zQ-m~EPPm@hw1}SD{XqpMhm#jfyE`#{&gsW&_`v`KJy=xZlle`P~niR)=qpBiT6oF;Q6sW4oIE6bp+7nLf zMe0}hqF_II?z?|2%)DisAxKXg5n$8*?zK4Y4J}4J^#e4@j`bVrjPL^`4=-sgR*f83 zR-jSYX-s~=>x;Z&gj!I(52^&KK$Yq87x@cG?z}VxbMtr#KX3z%PcIpXAD~GLT{=ej zGG}4#ng69hEsIEnR&d#z^Q&9(CGJ1o28{&?cB#HpPA^Fm3Lm5pAhK!lHkCC5vN$dj zBsIf(SsH57VKiP>fgxhv z-DKjND12RzJaN*XU!^4~^6vJ!cT$0B1enl*dp9NyP?7M)&D0aOiXcd;JK@J0gdez> zz8;s%36_5qe|)!w$uSx~Xm4#MyTh_Cp6fBd$G+PKz9Nqi*XZ!tspPuXFjMYt5q{tv zAKzUy3_oaYtlK#0P2~>?YUm3Q2HiUEXs#jkakngH4mw|b`+#0vwV0xlL(Nioui*z> z0Zp-;&p9}>8NDl$lSrAi)?8~(nXCx>lS)Q}(fHL#PV85Knz z%Aag``0w)rQXq73Ak}XKXeIgM>>NIDg{jYuRb7`cZeS-a?$BoC8Pjl7-Z=3MZ5xrs z7;#_jMO$mjkxjFdzyIBrM76x=lP4MjlgMDo7+6~oj_&#c0UhiGvT~@T7yR@dx#{BqR#18<3{AFEk)plxwAVhv-|Ee2%t8VVa9l<7lToAc} zIYYi*Y+z8v;LeS`JjKc`uPiz2=w1cI$ei@*iCuMh<*KN!+f zsxi+;XKO>nwVvMc#L+rAqOHy+N@4epi4IpyCX(fDp7M_J-`KIw{UhOVbZAX__%GayBG57(QQI~%HjN*sD9M&K!^|D?V=vj}cvo0&<{w{fN zQ1RL6O-0vqw|MDjtguMOhSwjMZHlUIhvgj`)?=?fcwj-~@bW8b>M~Cu{-Y6Lce|-1 zg_0zZMzpWIz5_RGa-Z3G6~H5r_nXUa*XP8M9F16~_$p&ZZ?`ROX)8PIHON_CAqw66 zAY^cTR1!lmR5}Ge_%3aK&!aA-Ztkmu)quuNb%Dqijm_$JKLK( znkpHf<0Z#4ovn2(l^LX!CiZ7V;zrz+(Hx+7u$6x~?h{18$`1yiL~(>d=^6Z-EAK&@ zY$3`yG?et+N^3A!IYdj+^dJl>{5d7K4SAOgHi(D3JEr>T@+F@>sc;6B7n|_n&+%z9 zCb*jUL6@QTFBg3HzefI$JZtL9zw7&3R z8TBwC+5=+{wuSFp%c&6lgf!Vg>_^%tVXWPMChIVtmv^BBxd)Z?!aJP<}vqgOclP zRoi$B1mz$949^LeL1(L$U=;4b#CQfe(pY#I#Y1J%R>&C?%8n~I5QQ?`RXgrGsr~Bx z_(f*kSr)%cdp+EVeOlp_ydxhypa{VO3Zur5$j_^419UT{Db?jgE53Tc%}c}f5-*TB z@BF1CCoMqzm1gY`=?U_gR*ov3bhd?iZ?;S5dBf z^Xl)RAY=yIw`lmm)sv2ITM!ex8l4<*pyQA4iQT{MdXJa8qnqG6Mo=&jr;aWp!osYe}~pib+gdyE}1QeqYwHP6HT?_lU$at z!Ys3g4#7rVmrzA6JA#N;kYHGTV0JjjK4X*K0B3@?NeS1GdrmJWZI{S&U7!O*JjF}- zK371m5ILO4KURsjn<%Wj@66m#VsxTF{)4U=Cj~-L%p~{2_jna+uG;kDwtzt6Dz9%> zsJ8J~zn=>rU?#_gD^G`j*ci5IqVZGg`WePRHHXLehKX<3z2|lLijXqx<$o#8z7wdS zxoKCk{s09SQl6Wd4Rs0ouBwuJs7%C$=_`i6sN71x=>i!0+)omtRrn7Dnje_3u^~9C zm!ozH1t(bv#PQuYY3Si~(=Hv`m639(Bsaaftf;x6*6A8(Z)<6&sjMi<$xlzg86s-W zGPuIBFP@zc^b1!_cyk`s!cGi^RZcsj>ZI@kRdDH8IH3H1y+7OtCJp+v!ez*FwrTQP zElmwN0-#G(-9E`fAP41F*J@9Hrnom27lbbVgJ8us`J*5yqX}Y4$R>+0p0)oaTm+EQ z{eX$n;hEZ7%zA}_1fus~*JQRqf-8i*Zt32AXXb?E4~T-P!)ZN%J&DGsF7tF(pMwZf z>V0RhRx%I8D~^dGG&CUu_4ONYJ3TQfVmczwiTvK`%fn$U*7F#cg%!0xW2r&-*S2!2_`I*IbFNH=5dN^6*Bs1Xjupdjm8Ya?hLEn{{nP zx5~`E%@t|pI7q1>*gjzmWzMedb@Jv$f35cRW+qylvrr!cuGy|93k z0NCck74nXLTzqyWuHdy9C!0%CJDRIq)Zp{e7_i|&+|3UL<65CllQ^;zU$Yv6W$q&* z#e2;q8uKgY(_>;Mo7NLcm)`=#573ISu=U!AN7=db^QR+s zEXulh+1FlEyhTyA;nj?*^Y|Bku4-yr6=r95{s({OiczW*h5-XSi% zHlBVPgpc9itWbV+9n*@jKjX?d{0_D^oFV60W6?Ep24nxaDd5#%^_hT#)utWOXY$NS z{|>xENXvX*ix51ZICgpfnUFW*Lg5~JV7+oHT2Uc*gSMCV@)Lk0GWXs8awS&ic%E2~ zxX60hVSR6ZX!!v!!V59X*CsxjqZobmv_dgCApC&7;Zj3jQC$}BsHcClb@~UWOyC^) zu0S`n!QpUqCLtZMQFR%`=%;@ex_m72?xs;UmxLd<0mrA80>lqgDGxBaV*`j7**--= zZRJ*vAR@f_i1OD`>cP=Dx<>RbB_;xeLYNM?~!O{`NeBQsO3M#~`R8oIW_|uOm!Qs&4MXx(OR6d@s5z;!XZ)JW%bJZMvF@ zlWWtC5dNs>%oMEkQJj!}*sN5zv>2D>x~ynC70fZL^fN#*J12Lg*65bsUj%l2!(^GQ zjP9MVwK6I>Kew}`E>J*w(=LMN>d}L3e{9_xiweOTs5RdUjl*O@IgN8Og9>=;2q!J+oWi-YD@II{D^a0JVD~dWVB@o4SK|<;@Za6DsKZE>)1K} zR7LnBv-MHNNisrr69tkR4?v%Ur$Sl6N(_*&O=>Dh!CApeZw%~zY&Q2_ge90=5bo*x zP}o};?SF|p7XATK-&PPkQqCV&zJ(_$1by*WQXBg{#Fw=bAAI^1YmMoz{ek$JO1kHV zG7mXFzeP zFh&(sB39#lQkxOUELe$xMTF0dc%QJTW@m+zUHAZ#R)L7B?E9NK)VOJxI-80TGlK_O zl?Ud7t}M#x>hU-xiHOk9+6yI*vonV8H z?gX!FjN${TK2h9jzZ7&u6uQLipqztm684phY-N{MR$kv(bLVh<_8GD|n?HqDnoDoC zRNOUFhtBq%oh6G|Wl7wuZkgSzJg|J=XZ5+~dKUKf8&*c>447O?6J04i7W%^h+uM%Y z-_NfZc|nz@VKS=_uEp8cBHw+30KfK!)MTpACW$!S#m+2YHS4R(d^0R{wF*B#hqP;s zmP81np88?vvN1~F_9s7JyI+;(ljHj2%=j06c6{6Xmgay39C3pxhDPbh=NEn4-)YYk zo*enaBdbRZR;xk~e&A+ae0s^h{D5a@$E=SPE+wNW56o_&X-CXPH3weBIoYSvqO@{T z2TrpD)$xa^IGNzeZxg=M63-REwl{{jQ3|XV<$4f>=!v9KunP6o1JX6;9r>sra=7_( za%54=Bm%@j9n2mKnNhenwAB{0HI#5rnY87BTR=BCFxS(S`a)kX1O`pW-jefkZ2I{M zHdJ1K5wKfZ8tc`l5FXh!;{&7Z*#!(cUpCAZQF%e8H*piavELZ;?4txt^5yuH)-C*? zwYe#5)g*<&fNe1h;djjZSP9Vn* zhwuXsAb6*Sd1MU`Kvc;L`i&p(w#m7jsCiie0)xVonydp##udOa%v#*RO{7HDFmaY! zMm_a|?K3}C6)8aYL7-;bkNkjV=*cTCc z$Q3zIf1c1uZ;{H)!79mFFBG41v@(LJbhh~~JCEX?dMJni!;V>>D171Y`y94(a=zzzlE8CW#Xu8Rwo?)%--eL)^|uu{+7H*36;*QCTd@+lTYq(cX@If@T9DINa`e zU!Z|VJRRmmC68>K_I|)^$%G#?HPkNDWXwML=^q_lrzio8-}pgYRk=5L#PGO|*f2xY zmbwq0QcqQPc6O4oZPw8LuzQ6n|B7EJKG>exd2n6$!2>M(d*m;Ez;E^0u#E~=5Xu80 zir^39Uo4!r*4a{9esvv&ANXxz92B?=a;$x$xLKW0pBq<^wE2M2{CKtaY$Z3a2qb#m7dCDZ30en2vhJ6B^h6IR^j$#zhh zpP^(#1}THSBx>&p5l=j_ZrrQwt>)Oks1Ra8R@)U&{uKk2{VT==3I|KO4>>=;xai>O zDaxnJwj{gH36cAhOrL-F0b|+kg}n`7)?z|?*|vl^%0OZELd6oD?etlWClC1z-l$3@ zkut&$6auAtF~9Hw6ld4tjw)oEDEe289B2g319QNljFZ_1-y}ya(PoH1sXP2SRA}m~ zy>}e9;i{W@#^peIt-cj1z2scWNNL+F+1dU>o#)2 zUT?^|LWDo*G z5JDnKAfiAh=bU4A@%^e>G_8)es;jEIrQ*>uQ+?~!t$WYCRdwEb&Uuf#N1wLQp@3^} zAd{XBt;fUT`zCd04kt`| zg+B?~g=2gF#M^7%cR8k=`JX*QV5DRCs0^{H*fH%l!iOCP2}f(jA9PQA0I)-6Pu#bD z_Q!wqJ>x#kj(hbdf<`_A@PX_o_24FvF+Mu%;}mLg%F!LhFTcR=$W&IB6)qn5l8@2( zIE4*QkffHbn)o2_`BK+{{`i1(lzAf=ZeJgZ#c_(A9b%T0rq56}bYEA&^EY(RHCXrK{*}0cUMPA1tZ3y4n_R5m}l% z-wa4rH-&4bDR8M~ zqn7%8Wl6q^cv_n3H%{#5Qd#^b4ojC$#JIF+*w5~R514&&ev!)P=*C%#zIs8>lILw6 z*=USiFMBe17^rxgD8;D89r{{SWLe7M5D&|=T3Y1Z zMnx8%n;yWfG5+Sc<(HSsX}oCa>?D)QRAkK%!44F_Rlm6;y&>-cbWhc{_W%Xpf-Oy& zQ*?TKLENC61N{gN&=di5wQs>-0siF`wXy5W9Swd(ZJ4yOnYR)+zT(L`qOp z@p={9!F0cSfF)fYA7I#Stk1odM#Act#UmGf`Asx^WCFf@sof@5g>?_irJzhMW6?ScW zhZM9)GQ0XL4e~${rC*Z7@c~#I_u%Z? zS1uioI=FV~+A;4;eoHjzk<0A3|CAkaKK>hw1A=Q$Z+yUD%L}vASwv(9n-Blg+)yhx zme8!GT61S|dCf-6A0jd?)ptRqocGzYBDc`HPFqX!nZ0Y=m$cs!hA{v0pbbH1e89wt zzrQEE{`26n0HbJE-;R;JYi!yadQj+wB|EKW2R?wsNKGPTIfCH9v#5>-p z`EGh>ZEGYi9vRJ=imuh?oUOfoxGH@|`PJ2+sNypd$p;{lJ3U@1Pqx<$#{ph%jR_%P zoF=gXmex89Ax<}vld?4xr-sqW;7eYTlObrxdASb??gA^9MKMGqY;c zn^WHYjp})EpDB9@^kPRh&+#Tw_j0}Qft>l^@@a3q^<9qLD{8?|_dbVL31L9__ix~; z=Xb+@d4jt%!`6nMYaZDztdxgf^D)-T9+Bm7JP>u6yjmY zPNQ<*145|_;)f~oh9VNX{0@#uc5sk;s6V=J08UCy-3p&Wl;|fuLb>N{K0+}SsT)d@ z7Z#tL0%;HK{Mmcoc2bZP?Bjd93SubYS|0zs;jvEOg|rXE(O@3n$SSu{-eDVhKm=MMhw{`xunP0+YqnfqUb!yyfKXMq#yT4VmgQzz? z;FSVNr{A7?tT6JWAEci@s^0=LtYvI?IFET8qo2Z_Jtn{XYc|&XcGbiOenq5H1wHWr z332wXoZx4TJbn!fd;Yr_LClE;n`vGWd1xI?kdf0iHjbwT_P-18AB+4T4;O~;ZO_utip6AJ z&{+a}0T4>%haT63OCgU71cWTK;D`Y=xi~dH zZqO6;hiu7brzqQq4^G$RyIR|toO&Kvc5#uA)+TQXUnxu&Yrhs<5-n8|-u&Q6!u8G= z1}sfga`13zdP9d{U^gkrN|P59pP2-S5PE&5ZSlw6K`;y1wSK&<>?(ip*~zlLpS%El zUsm>0*UM`DttfQ-+Kj_66yc=bke}RGc)6+MMsxYyma0s$8N)csAAJCnkaEtoe~*8Y z2%){9v_AWE*~KNGlP9zJxIgMjfG@QfM;_lKu>VWe=CYfBW~ZJ+#_qfSB;PE~$sk5S zq(S#O_`ncfT3M3k`!1TFWvSY8|uUpJ2{I2;Je`S=UjRlrawt$eknfM zd355(qh9$T&WC;nZsG&KBGRdXZuo%LHff0jR|=0y!tRwi4be}tc;A=bB_h{J@p%P3 z2(NQL7lz7dslB1hx$`;u-*2sT$X&D~hL){j-muJV&) zLe}@|i_rH`_Voc$kOh_3WE=vxI8UhRV>y84_8zS!5t^)$#A%&6BlBEMv9{D{bql@Q z!Cn3A-nD`+CH5;X$M4p=OI^5qJ^?6ns>$wc!Ki<&uP*m1qPCVManCXL*~hE>Ow4M( zchR;&Sl|O@u%^6-5bo2vSMHiOcf51NzgozJ=HTAmT0|-M_k9tdRnT+lAV+gW? zAp=M~bI@@*Ydzs)Ja{Ar5ZvqB|6Ve^jQ4*sBTdfPj_hyjP!qLqVt8xSL+@9F+!;EooX2Z#i?mbJT2r)gDgOMt>C;FK6n!jKJ4m%$v)y~4`~942J1a%w49 zhj>gw*e$r%O!ypcu%HC521`EL-WSiG6FU|OegfR95x91I>wJ+e;l=du=EV^KcrjsB zYOFUj17;}W10Iw5>WT+xNzhM5FBrP`>z7n}h`CRziV_SJY#*w467|Oi)sx;-!_I^e zXy=?kB5OPJ>tI_d%DSUsTDgSu(FxJZ{f^PZ2YyAQQw5#y0c;_;_ldv}SvBkqY?{(v zr}6o0R%)v&C{3Dc3(b8JaT->}12i)^a>7|o!Sqdt2ayB!>$I6uAw4%bi6`#e?- zg+lhQEG@O2Sw&-IR?$n#@Y#n=h^_zPb5lv!&=~~mtIa%KpL32NgXZ$vt<^bLS$uf- zgu+Ol^g)tZYx62oH;|0%@iaYIpW-Db@3=WVX*S>^3@3#rMs)6gyx3YQ!iEjEt+i$Q z?5{-LOVq(VwjfhDnkQiKcBuv=siwSmX1_lRirS?b{$2Q{mKBI@T0phGc5GjlM#O(Y zz>;?6ppo(qMSNh(SU|jS^3fdx-{8+Pw)c<4WvEk4ROwxF2dhgmtUEratzv6a#lSIH z1)a)W!_{70UZgGnh377Q+XBBmG4X+45$RMxAAA6$#3Cv9+zff{JEUFLX?)(B#Vx0# z?BZe0it46+2 zoO4gz4CsvyNbI3bFJ|9dFg2LEfg5}kavszbvv|*e9AZ;P1W}Ds&jS3=YsSU7RJ*yx4MWEDR_1e^fStTHSO;(inVg=}bRK z5G-y*PL=~X&T$qhzq*Ei00$JP%Q^)c4{WSN zSD-t0d7dRCNQ6AzQ)EJRRmnwsjpX2f$wJehppu+UIseG#F6)gL@7nue!_`OrCZa2a z-cJAcHq?Enx(Xy@R<%i>slImU;7Ac6d#p32*MDW-R`wo7Nm=muvmRR$DI62|qlf7! zhRt5c;DZiiaCFmb$mj*h$VKECcpW;kaneU{j;Wp${qaGCx?$q4m3juZ%r5c|>(1xIbV6FZmaG&nEKdIbj<4~kBW(RRz# zOCK~V#$Dab<-_KS64eVu+p(+5zC2F)oxy>eCs`YQe1Xwe+gmzC3}nWUicW?CH?~&Y z*hauaWg4(xBL`SMzzVoL!2;A)ThL9QfL9U9#6h>&pjQkLqI#94z+|QIKh|5-jjb;D zfCnf4$QQ(KYkV_(nnT}Dh*~c4cA^fx&-oA1_322LZ53DXyI0PtRyNtqUpMYOrT*qj zYtq5Zg460=jg8%ilXV zz<3b-Djw_pS_rN4?EYuRzU!*5+4h&oXMht9B&H+*uDO4Ne7{cBNP+v2PI;0sX;_-8 z+iLSrY@z%lL>4+Apa5wA7q{r^U6fA+&cxrj@@pG*Wv>kh4(&TRUUpuo8h#s@!8LB}L8;^0)l zelYK|XH+Z+6Cd~$T9?BIikyqEL4zlZTGhV50sFJ~dgJk8RA)4}kJR4MSbWWgl88nL zStbz`IS2YVSA!d;`u1K;Hp^tgKtpLu1=$LB+VuW zoN!{m3Z$VRu%^;}4&TFtU%f!43MKdK zs7pRu*!kVt6fD8uad`a<757zfNf7Y?KnllsY%PnvQnTkPC`@(Lh#+CN^mO!!hFT5C zw)Msbs@o_2;KC7K9D^!WR1hy|sI8jv&i|^IapJUNmyh$?bJM@buZVQ2pt*mM&AEuM zbdklv%K$oZokr%?th@=!=C#*N*r>>=o4eeu3fTgfS##0E9SP2yH8nrSQIXL8s6#?B zl~7#)86)ujK^d%;4Fg*UfFO4mZcaEX6`dZ3zdW1WBoe@bNcI#ex`yWoIl{Ex%MRJe z(W7IsqtUIr!%tFt`l;EK6-~r$=jWb|)X%F7l3| zj_G2gXbSk46LTmiTlZ?H45~vnfhKsQj8zpXNl%EThH$C2qFB**)m07}J^&olR>p0a zH}TC-2|~870f6|FcYhnbaQMv&$4O|RPO2_fsn*}e^!l+&Qyzb!7vl%zzJ~plkob?J z-yYix$3oa}M~JC>E|MAk!uJS#@jGM_ANUoKP8GDq2R7%TRW7T*+fUiKNSMLSMF7^e z#@4D#TvON~CGjk}s=POyo7hx*9WG4SY2E1`ygd-*%TC-;y*%hOHg6pA<>KPvbWtcD z%4r*9W>)XR@it7%BoI=zR%iPi9w7@Batu^wH$b)Arc|ec#2$S)6UoAK0Y&?&22)2OrqM!PfZ@_xccm!KZL2 zf+ckGl>QgvqG~Hj#AWEWrr!7fzZ!M<4~9Me-Mvdk`|W>NRN#?Ei&M8|%=`y_<<_d8CUU)ELkzMXgE^TLy(*c>MlR?VHg zIKRXH4);AdX^T#c_N-OesbHcaN)l&=#p6gP5duoO;(*nTkwzjMmyz0X4Aj_@56f;s zIcGbP4_{hNb^&6xZOMnz)Iw4 zB@ma3CXt-ao<9 z?{v&6Jt990zz6F5YKA=f9RhSbE{w1%&+3#F!Fo z?FR~-i!L16B0fs!Ik5q-NsVU8p0!8a#JLc)2#1lrmGr_DW zS%F7hy`=0Qz{h{1BGKzfXl08SNRyKf-#=P)D@u+SNLh&PS$JYN1_qY^R0NnGH;A2R zk`R!o7zL1|V{!^M$r4Oabi;d-#JJ$12fGpB!O2ey)|S>fFmc}D&+IEaJLYwK=d>iU zB`aTkisSL=bU-@pPG0v=>h27LCUTIPIL=xg+|k64)Gvl7SR9iXo5vG7AlofTg9b zAa0P$eA%eCI_=uCPRJOMe|)gLChl{1h*79jF9|5g+5dq{H|#%onn+&};`St^E=KV? zv?q(zYA!;g9UxcQ*+Z(6l)*5H!WcMd0t(C3gjn_6fL(R``!u4fR1L-lstXK@$cl@V0G4X*hQ|W#eP4NLQp%uekb6El&fAV~guhP9c?j?i{u*Xg40PH9p zl@VmGP;qT7@f;AK+8l>k+~>tC z36=!pD1^JQF0-5y`wqb(E?oi*;9|#azO8aZ?%_`~1i`5PB^Tzpbi?s8XJ21#?b4r6 z`zh{Xgxkr|Z+eAV|3j@mO$~K|tWX|53MdN?(vmb7l+BDW_miF;?;=o$)60*uZ(q@% zC*GSd5+4AC3F%lh;&p+se@l-#vL8{e9|H?^%^Q4r_saX%5}O;1;0e?lAMgSp%vhbo zMo0b#!-@9=5;kX=8|pSp>ZeW!09InW{SMW{2YyAQQw2@&L2YHpD6x<~Hg}Q_`{(yU z2Z0U~=XZzRq2EDv%o{lMvsdo>kJP@nYCznt`VZx0v)OwaDl1>OP?6g-dLuvRYR*Qaxp@|sWF7v#!wMxcQdQiLaJLFiq&Zfd=XZTcpZXL zO?pHa#F-dTnhf_24|(o8(F=wKZprX579;TiQpK}KwL!&QK7u89(Gb2%lwr)0kwm53 zPdy(<@I^SE*!=)VPSy`Mr?$!SmToTUJV62)m;O``p2IVa5~ zdWN_VuN?;>6kIAw7$>g*lBS&+LxjKA$_h?MEEpe=J%q@BWi|9@QqVQAs)}5U;N8T{ zR;=OfSPS>|opT5Kc<1{*1=HcRgne2Gj+rIx=H$12<@=`I&a&S<`R!kq=INNY(=dDh zZeyQXwJ5xa$Xhw0V~=p&r~lYE=_5kTlaFl6ypf_wG6NNBLvMT_^XX>Z^d<`5<-oP2 zgI>|wjZKBn6kQ@Cq;rRSkJQ^){0TQs`dH+4CO#06k{)%m!v};I?Oit3+gflg=M~~V zI7hP9X2y%eA-ik7I+VyEmog{P-F?IcH{@UN_$Sk>X2$bZb8mn3-F;OzccLE=_e;_R zVn<67XOO3i5Q>7h!SMf(z8DOlKFqi?a1kFecO-0;NMje6>LCgwk|aX=TnU z7*EekB9z2eeX(=El;SfU$&~ELoC#rhU#A@1Vjc8f3$1p=&{v(`PTr3Bn(baR!heh1 zvId(&MOk;pz4}vc((_%;P9hp5Y>^rY51nG)%JIJM>*Fj8l)7&38io&8;rmvomxB)x zIiEsYIMlBi`DV=Gk$4c@ybwp6xmMO7)vH2pd_c$Qs>)R7+rT8rCrtI|LgB)erh0tF zoL7SQF&31go92j&!o&w6QqrT2cK85ayjdUppUCRKnfJtY-@$$o`U|_;4h<-X2LyJO zrYveGxTqqb7@tk9vNTt>HI$G@pr!IY-W~AI;Ftl7uwjT@mDe|eA<9w~5o3V{M=k-3 z6S)Wbb6>I?YdCOrnb~x%yuP(Q`-~iE+^&r&UyoHOyV#c(lZ7?oT4L&%{iOOlv12hw zmjIybQSO{Oh|Q@D6F;>7ZJhj(TsUuV?DDY()=b8de&O)e>*o$*&L&wBgetoF3Ft9= zziqN9Uwtdeu{N+sk&@caRg$%({0<=14iPxONy*P8{!Yu?xEp6$xWQIb$08 zU#E606?tnx%|GkozlQsMpT8+pc^*xWlv^TV^jK%u^Z%LNC+YQ0RV#^3|Hg>1^(D$`N8i^aKwCt~6ozgRNp6%tMy+cNj^iI|)_SA%6L z@VE*Lzz2BWuNwK5vslEBVc|`PUhc8y;ZaCjOGU9dhF7G-vw8dC36YVS_&`KTdeqSh zAJ~{pVXqc>IH;C)FU`kjh!8II9{T7(4N<$9?z<@zYO*F^3_!d0(c1t|p$mf{+8atq zdDc>Xk6Z!-k=oL|9U>aQZh?@^4X3QMwX zUA}s9?};6YNTj)b{QG=-$d|+hjkxnH%z5Kp`zcVBaJcmoK43rVsR$H;EMDnRbZ4+Ad3394JJvnI#Kggd5AB%ip~Y=H#h;e^*hYecEkwa5fU$?FH8vX*WmX|xYsek@Bc6!eb%G8VOSx04HyNleDrs(UDf}D-2y?_Em1drXNVBpJ8+1AZLCwIw5J6L zd;#W?zC=%nsBas({Aus~UT`6u+qYi*ox13is0qnOcZdkkV;#1O_AVc%hiu@}yM5`@ z(C5DE@xFcwL5<74>4hS%N8gOW2e@o4_*@M^zq@cSs7!wQH@ro$<6e%B&VP^|boU{@ z^I`x#V2x#@Cc2ADumq;8`)TL>4kR=ykp5xIv`+*_>QW7qxqL`(!Eu@RKu}PcSJMa| z@RV$t{ISat@c5J04E`bB$03nfDfltTq*FdOJ#_sdBndwy^5r@-L|+F{5oDBWtqnDe zSi%y0KQ)nr89U~DJ$JyCyS7)d0(r+JcDBXc+w;C z4)s^i6&WHtB*!>W3;Y2QS}WDZVak!x_Q+>X$l!4gNviw~`PxK5jDo>vP!%;NdciP} zWyUuRW_%59*|nPBAzJ+POCkdFP^V{)@vr?fFXM(zB5ACzSvn}f!+izz6}W2DD?hw* zS(m(-2H*oW?GUV>ZOog9Z1KiFgo6n0&6Hz1bM9P&^k1jR(!5y%@WCS+cdY6V1Y3;m zM>=6p&E@IbAiDy0E}ept*xSnST|Vre-#fBlhI4~Hj!k^vLpZvg(g+_k*40dS{pY?{ zg#9ev*lVY~^HfOIntKNwYDI7kWQBShu>!gZKETH9uHWc)eniAr62>-{-3;({8eT3N z42p6t$M0s-5EmePHbj<<)^%i(4fZc$SB$@OJgO}Jp@suArYVvkccj6P$xRi;%}P>R zZ63(L4iQQcXQ~cYW*t_fZuGMVW#|Bh?#K1HiN**=(OqzjAX-IafuSo+eB+m>oQm4- z+LhTEx|I^I+Te$a1shBHd8eSo@PMmzf%q2V(y4m}-~*hCk`8SVS=ip{5EnwoG5(pE z=_#1m!fquSfe#)%A_QUW*uLIm=(ijd+kkxC8qb|15t_4Zocd9NyzgB(BiJhw9|#Ic z^J-e)12n#e=@PpkfOtX;fOymtf@4F6l!m>vb0p& z7-_r;0q#k3K!|I+wP0{L>!dg*gHIL)1JyxIg3C;>8XDi^w|-65)|8_=!V4uxmKG9R z%TG#FWJ%I&#Zw7Hs4KKX1i6L8=`EERiW?zQpw&{Fd0gm$jfx<228a-9jz%m?+~;9j z7Fjd+q~lJYLQq}x5_XfJ2@nyT$2y~4{sAt``U!{0tu8B?`Qe{E-rav;&mNF64)B&1)|5XG57!+mV9Kp|Fz`BWFV?@>VOdUi{TJbd62J%S$TQb+0Pv+{YG%1JM1b;^*m%Xc!3j|=za#pTMMc2u zTXic6A3`-9*6kW`mQ$SNk8Pf-TSvmIVLVuHI8n_J1d$yM{(AeX;6DcYndKd*ZvDa;M@dk0XsJgy2jOZ{udw19zP8#x(Lc-l!lIp62cQ zn`IXl%W0gYU`GBsOAId*L6%eAV0c_OU)!CJ+ge)$bKW>VXpUo)Q2hvk9P`5ayd?Mj z_&!4Jua3Ss4tOod^h(7V(<|wX4^ZMrY^yG)i$%WRi{~^SvSUUJJ1_??@(p$p)H=EnNyg+ftoE{g{j$JN36 z;%I>nc-0AlXH03>E4{4?NwO3tP8V0_HLi(TeR5>DyYSkN;X%WrTqf`_S%1!~J&2TLs+kVOP_39(BhD zr1pJ~?rlWA%h}!yZ(jb#Q)L)F;7gI7bTkl^*}kPtD8u8vhv@$;?d|ujo>gs^V&M^i zO5C9$@~bX@5AYv@64>{1=ke^2XTP&y!iT|H4FTf=z7iy`wLPsgkZ*`NgQLGfwwA!9%2U43h}>h&XE=nN6$K;r&2cVophcNwW9jD5TU z1;9ba11qo9iqs8_g;!K$9t>!_o-W22cHC<}6Ipm;Wl7`CE`SdR z=bqW`FDm55dveF@fr`YXVdcQ_fz_IPR46!ytv6PdkG|s%gZsa7MMGRA@m>=`)5Pha zoKo1c+{lxam*kKb5U1wuzM#7mL1_Xt!L}Knt9DFQ@fhiFNe`GMw$J(s6G#ZUoDs=i zk~GJT4{9?GdtM&mrJW%Hxw|XUHbH|b(g66N_nrur z01B_3+NWvR9mi8M-#{@^$xf+bKKl8DTr=bw^Zpt`(@aPdbEXj2`OY&QaezK7^ z_1)j5ojs_xSk$%8N3gOakI#A_8-6yc;oquC@)h+V-0=apiuA0wQz}{y_R73@f*A1@ zFg{?PB6`74k#XbIcyyC5q7@X|Uv zwN*(6H!c49WsxNj`gM4pVFI~$YzM)9p)li)K7bEOQx@9r!K?LIryb?$4?01FS4dD; za(-q*{sq*3-)+(p0;Cne0+-651f1eX5?*~frm^5+Yju{j)o44rrM>m|HlaMIIE4Dl z;Nn|aUF0n4CppPgYYND4*Sv3xlm(j>H!s9-Uv=*s42mm9ypEreR(;kTA3*FHAFX1r zKsU5ht%e!gc8tUasL$YCLRD1A+;IsWO60T4zI8dca`SL^NkW(h*GyLZ1lh+({vj3G zZn)!v)|Mtnf*rH0=m2Bhm6I_ZX2g)9fbjw5u-P9Anbmm3`lhn8wl%mY4hH>{86xL| z;2yEx6@YV5&c63;Qi>p{oZyD9-)7ZSz^AA<`yRXm6V!$RDtc}VtIP*;@>{30f%hJ+q`a@5|QXqJ@-aU2^1eD~*4K7KXQE_b@ zmazKl(_{-LXLxhj?bezcOH+lSzz83Gc0a`y&)qAhMHUrGF^&Y`OZwQ!N|QcB zL|h*0jOq1XSw<^CFt%3^1?sUsB86B($>*p-Rvs_W9Uru{!r3e`F4sD?Bp)989Cn39 z;sb;Od_2B&o~t~)xY>BCh5`=T3q;@{C2gK}LQ+&`L$eQ-H|O*Z{#cr?I2~tr;{!>8 z2TXMa$Tatq9qm@@)->NY_;NC6} zVb?1;vG0^$UJ3Q7WbquWtsy>ee*Cjy`s5uNkbm^6g7~2%04K*o`Q;Ur*SA#P*$ZwU zeWAu!!A9CA=%S9QNXi7knd*Agz)~cEQ2nH{QM6{vyT*2 zg@F>{<-0r9)`qOzh9^HD^5FbTLZf~6EdIK582hAKXMC>uK_2nq_ivm(s$F+PTjFa~S)2zu znaZA%C8f{LvEmVy`9rJ}10ai;M z6XRjD^L(-sfF)z!$_d0yJNl;Xz!rJ%R~5zsS*oqgXZNmEabJAe=Y969^N0*S=AA>Z zg=*sgNO9w&j|}d!^X&q|2P~hsEkXu0R>z(tqnz*TevHbKf8=vPH9@OtxM#qi;@+9i zFOi*#_RG#i*gqNzgXXcw3yjD;LB&eNBOX$hu#6WEeChhxL&1G*vpD6%#Tkc~eJ%Zq z9E-jKA}m4~cRXlWF|QY&ol<=(x~Vvoyn6rzaFV6Dx<2P@&Vhc8YK9$vTJjEmN@#S= zy#uY)If%s3eRT&=?(JPRMr6J5+CIE~y1KiB`&B5Og_*Z-5E2oTd!29o@$Cg)Jm1`C zbbN_j>?CYBvT>GsuLMhmKKI=Nt0!wRgL>lw8>3F4I>t?u(~Xlq4uxHi07Y#)K0s*Y zh1mSja|b+q;qcaArB)`!DDy`0*6E+C3#@ev#D0ML$eBGV^Ynx-J|NDY z^*N0KUDYd zM1a}CF@u40MHVgZ`_-e~^8a{r#TuX}u#t$AJl28d{hUH}Lk*<}xGBiIHMaLpJoe3R zq3l5Y{{O2g)gX_R?)c!*BlOC#s$d+(ev*8Y6$sInX*fHYH)T9NUq`K2wIKCSsq&DsBA?)RW+d>%TkY@?+e}e!Z-#7JkHcasWDz`xg#x6I=iyizHm?@co?D_xC}D2mr)_i##lP;RBY7B(>J& z6D|C3S0{*I=o8vGRLJ|S$)?Z`8YP)<$=a@NsbdQ+%g+=c=#bq)-}zsyT+!9_HYisi zqKcy2sqd;JX_58o5B^wPUKEth+i%+1+_YoP*Q#GN?4?3dA9()_zy}y<77u(;-AHkl z-oI)BoeX@WL2Mx?_<->?)K(FSr%v*&SM`)>wxi|`xsiCpn4l1t+(;G~zkT7H0e^Sx zOlPG|@GNgj9P@4^$E#im;fN2=jz}bjQ@x;++^g{=S~c>`;F|FQ!v`!_OzrL?b1MM| z{StGPzXc)@c4%Y>0`3#drQt_wiWu9Q%4O%Gs9pi(&h#%3!_cy4p8jPyB7 zFP9<0d%wSSdSB2UU&-23dQ)F~!1PN}OI2o=Km=@QGT~C~gQKb~f|!HZuoGF6IMLTs z6#IBUy5uQ7dgl*p5|NL`I(#e+u9*^C$?)QOa6JiDagROpTZq>OzLbHxd>DWaFz(_F z<#$9LEAW0JndznDQ9*mZX|YOzg%7YqK1@$h4Wr#>gjGkf@%^hN67H#AY6>~pAp0Jk z{%c0RJ>o@`4~To`;jh`dbc~{e$u5&0cKCotFYV016~kV0mxg!=CMYtrx`@Kyp8?h){e+&ea?ae-Y$Z zBuK*2RH;I|MBc6)^RD|`yO*F~K1d6{bn7Z);&h1wlg7d?o_CjqP>H;a`17I=NX*N| zI*t=UefG3riYN8;bAe_gGyor_6oJP#A?*2kPmugNj|Q^m^}gyMRxA_kY}DkO;#6{>=;!T;RCc{ zC_NMRt)J6BFzX9%%h!Ld6&r#>l1dK(!Uv+6lX=tZUo}anYiPa?;~fY{aeSwL@ZuP-(NA22q_N(O?W zgt6g(4`dKS#C~P!`nEd76r_B053QZ*KGE(aWKm`(Js9&Iw0oj&-Z+0mb*vrca+0rx zg0hJfB=yXG)dL}x4iFijf@T0d0NK}86p!!oGxyaiSi(q`eG_@*#O}tr>Yy#V0B#&a ze1Py9YAbgy8lj2*zVmz$!Gp$4Py#d==#OkwtCkQCV@-Kc#_Q%|x~ z-`)*v5lL%}?^I)L6|qtxliq#mu*Ay8iS{U1Yrcw@JCd?5w`{+lw2=3{*C?* zrZ$dDL~iqpC`zNor>r3JrpVI8BY4%wH;fQ_XxszeWV}gLv$C*7#HK`=$ zK48UK+S~73PJr{uw|E0N%h!h}z;)yLV)#70dnFkFfeU!Og2nCA#0xDmJq0uXAJL__ zDA>cWJ?xx22%6zhFaI!*Tl>D2NdB0`Bbyp(1AlT=;{(}%@xdQiv6}zkLV=J8!90I( z6G`9JPxxTwhksUWl5~+I5gWS~4i5$Xi-7P!yC8QBSxLpgEvregw6OPQfEq&lL3?AE zC5j~WvLJ47?tzcsmI?gHQ`7?cM+D5M4()S!2)fcwdnl2?546`1&D;%5KL*_gK2$L@=du6oIUFq zAN&z>DQ2V%6Z;wSw`JO=>F1BAlXKAV0o}$AE&0f{39tW;i!inS*|P^K`MBOc0WM%0 zTl!68$23j&aQU!T2^*T(?=LJ`%y@xsaQp2%OJ&oP0a{Vys>TO{diEfN!1AHJHUC>S zq!&Vl#*lCgZRH83;VA>vsax~fUKId7;NfEx_+2TyO6LrCT4Aqop~)>u7^hk<5WEl< z{@Mp|3i}q+>XOt{lAg8u)$*&W4ekd<$$MAMs3-IF6zS)8@q|kS7CE{`;EtAx<`fv6 zd$502bgzok4T>%dq%uiLh>gd$P4E#5ay1x@j(*i#rhuai#cjbC&xtI&?n7aOnu!M; zB!wbkaj(M{53_ry`LLsOsHXQ}j4*&6-8f72qht&|pnIf*JHBnc`=o?R2|Dk|T}#!; zITY{#J!h^@MJ?0EhbI)-0hVDsY8~vq9^EuM5Zk0baVj{k79X(x zl6C8{$UBCQ!?u}UDCkm0Rf(^<{tzLe;KXoClghLm$_Ewb6(p=JyS##3V}o-Z*tgpN z;UY8MJ?pT}*;6Pl%nEdlg|CO~t03-cFmCzf6~Y&3P?7NXnv6p^`{dl+Vel6fS$uYC zd!y(x&bMf%7(agZp)kTtC4Soi)z3BN@>9E(X|VD%ZGsICytY**f@aeY0ynry)OE@* zd|)>rsJ4`-o^-7)>;m|J71C5+du+>GG8t$kmXK`+!lLCvdZQewdoDa))qU^*ZmaV@ zd#0i&+oK$eFI0~YtQU?5IW{t4wI2sVAVO4R)s1b6oRp29CC43MZDi}V^uj!Y;Ux;f zzLgVDfkXDS6bc<9&ITzN7R4u%0iPTNJ}A4m$gx6G&ZQpoLot>%uX zbBo=HPGmVjVU%=evoQh>;$7GqfaGMxhkp{0iF+MPYXrCkHw&mY>8V!I?ZX`Y&+p;x z?X7X&<*ILu%^tUI-;KMRh2rMm+G*}n6BZ?110V1Z5k-Ncde?>sfCDzk$P4DO0t5Wn zP4EG)O2U#;j_nLkTpC`k8Xs7#2gQg0iJu`vM{SpF5JBc%*D-@@&c41i_x6VYM3AiY zS*OV#*IXhT?5$Sr&eyTgmXUgHY_A`O#rGtbog}HyYd_We?dUug&c~9at@!L@BGpS0 zr#qJ$b8Ky`!>av7(Dfo<+7i5X7WOhD?!E+N!S1W+BY{}pV z5rKH9V@tyeHD<^Pg-pnSFi;Zxcr!U(#psO02XxO)WTb7nE)UbKgS&T^!3WHO3=wK7 zPV880M7XjJbKzsgQS;V~e-Bn470-g-OS%I-fFg`+8THkoez1Oprbz|W_`uS>`0JN^ ztQW^A5_R(~46L)Hip?s$Fc+#8b(#nc`+0{y@qIb|)bPMqS~Q^J3T&`mu9m<_x1oJC zIG`F%p7Z-RU^jG3sCnR90z;qwSEv)c%%YaX-~*d_9vQSW9+E^3GOQQso=QWn0!5vh zCMbP4`N)y$dzLwiyB*o_1ltVLYCQh8FP0T%`n7A1r{s(PAhPbe@o&`quG1Y8-e; z*WBID?qTKit)v~!+5e%(Y7|nlGHsL6oJv}Z&VL(3CKHC5duRapJU-fe|>g68*FI?ITt)E0!R20wZ_kU`~ z*aL#YoIBT)4$63ZfR_=3tm;ic#_mTurlafO1C~l#OA~J9?68I%TyxBe{eX`h3A*>K z7#|4Nuis~Wk5lvtnLXpman< zlqAkXxuy^JYop85J~&!-X_=hn$&+6MehB54mcy>9QJ=MHMgp~v^T0?ZOS%pUJhEY? z%PYbB=~n`52M`db)!ch)2YgVKz7xN@AgB4WB}E8*##1?Pr|h;jVLF$$wlu98@uuHd zrUGULV|>Y+yJy%j8YQklsv|1#wOcwkLQ&=$!-nR3BN*yo&=8q!k9GJCvM=x4pvbZD z_<&yVKEIU`KkdCgcpOM*7IsN|AkRg6+uh3vWOq=Vb1>-hMLIBY0G!#gx~{5BWX-Ft z(}nQ?-~c0ZdeSk~!qN3Yb@)J%fQur_6BGQ7Szl>50!w3g#kKX~5CL}h`s~v#9k4W4 zH56Q|NL^oeVmP@3T+jxDF!(Yxm)~)@DwsbdYwi8R*?ZqMlGao<9^_{VroaLqA~)tj^LyipOh<5fSlXm%+_wuk<}?F^u*UBY?TC%^q`rM>|{!3WF*YnyakVFVGnDn4K? zz~7kX$$K1*?6Z(}ku>y*9|x+*?kA93}lw{BiI9~) z!Fd4@e+ zYjB~QGdX@JVW@UPh%tAE+~e5hIU=)c)^V2rkN)BH`qB!?sme0rS@x`6W0r)EyI5Q6 zvF+(fBH-}>7cb;hP<3;ck0Cft5zKj9jP4)hC1kgL9K%s}z)PNF9+TeurTf|zDZz1K zR=>a0RhFu|yTMoC?-8?Pl*qU|)*-<|{Pu;4`W!5LKqtcsB6MMVATJn6B5&Y@Lt9pl zdXvotkE<)x3Q_8Czl6F?!whJ?pPep=4@SQ9{q3{93Qe~n$8@N~2Ub?J$g;%(m2z~4 z<8E3VKr~c&W1IWdzq_)4QqWdg;N!khdrMPkI*LQ#sZpI9j3|g7R-bzgFAg7<8*z%9 z$;GKSKGkQPGU9gjdq`4MNj{m{MP}Ko<1PVq6`_5vD)qJY0-a6xZu63C_@Gblskew# zt}Q4$Im-PR43QE{iRG7v_XXJ)87w+z_Kom4{R%jt+<>! zR}Zb5HmCpJLOCLVkJ{MYKY_UN>Zw>G)1h}Ue1I6?xIM6HBK{fTZ;YVSREH0&R`y0+ z-jN=E;$4+-?VKJXvozO~rY!WkUn$!Us{BWa0s@*!t`nSG5I4xF&4~OXU%(d>+|&s4 zjf7}9``@=T8Nr%qpDf;3XJS@)oKv$GT%8<~-$jpK7pX1pHt%ImY zc$P$-4qR)<_bZ|eb=4FISWr?=@5lNpA_Vt3sGK|J4iXV{=+t3HdGaPIFU9#L+ImpNf|mt^AsSE5ljgvVxi)<8sx4OL$%)_{K{8g9f9xywCo%XX5Wyb*Mo=>1 zDG;Eh6Kpe#s8JGkmUH+e!6AaCl?NH!);q{acS7TN_@~RxVg;6god5<&=kZz znQ;*Nc-20lBCBrh^l+h{A`(9pR^N>!D8WvH+QEBTo$cp3txsE9>++8dB<+EvrB3U% zy|xD<0ai|tm$zBRw*+{#32tKgOkXVz9)Wq23W1(79Z9(z47y>WshWNlfDRA0U zmla-1*hhAO6~p@&Y2zW6FTRD_XMK5k_llgm*94ce=Fg*}!SKZgd?45?SvT&zbFpi6 zO%dUcm9__}@B!9m;w$_<`pAY=rfq-STa#TH(l)Zg?pfD}iY!S|>6rsROjAi(`IXgn zZg+T3X{x#GmU|!cD#4+<;37jSySzfLTe!C?NxYWEzxFe~^J`Y{F9BN$E#&DgW=%?n zj3Hcx6@p5xNrPH6BIoMJ+1Jdn4OrQ5tV3vz!XP+^gdws@M2t4;4d4q z1-k@zQZ5|cs?)5&zJ>9O6;hS1JxiGCJ_Ff#OuRggox+2RtRv?&NuDn_CLMeGMCg{iwC~QwzX=5iboMCE$r_2z%em4Pp~_e63*^j8@pm0 zvGn978`JB*l*-ekK9~RtD1pcL#m8-(cjZJ3kAJ8c|H1_y$Por_{fbzPn8hQRCY~ex zwgw-s3w{5u3LiAoRJg1%k3V^@Y?}PBzWwiLU23h)B13>jbt8Mvn*kFLNsu5_-PoRg z^h>sD$-P{keTHnzIuDJTW@g8{k$315*p+m?*OTTUe_uPcug3{B3spz}zJgUF-+Urp zO^+l?OYXt`1ld$vTdQfq0W}7$Ex)?j8A9m%iCVT}R6=mHaxuLq@kBazDw6@xc62DUlKG-#Pu!_3?-S)4VGKCRal1`Z`lCV;YBT%ezaku*sa5n`-6dGE;n`I;96?3J{jENx*N@fR z(TJ-giN#ZxbtgS3j=gDShfV5r7>>f9$J>}TW$#4BCr2cR~<#CwP|L;o%y|Q7#2Rr8u zKDc%&5eAtzQW|P2jaUi#-$MmHkfh?Ad!1LG=a5v;)SjiI^&f-n4w6Jl)zcX4l-r9HOSk45I! ztRpCaaj*WQu~rvuT6XFS;=U$CrYw1Z`&0(21V-NKyZhXq#Nd{Y-K6$`Xc~LINU_Vt zip*~pOQCFOZ^yOZRMc{He`ofr3HL2CRAZD8b;IW>n*@sdK6-4?-b{{HahKD(SKYg6 zXs{7jxis(o!}N31%kx*Q)3VnEI(cP;HS>h&|g0hA|1uShzy<$B`bhc_=mQwj@% zF`W$XE(AanW!)w3cS!xgXPkES(DieNu@kVVP*YJ7YIc_Z#m?o*@d1vCS+_2Wd^y=U zJ+g6D;C&Qq0j;DmZL_-$qJqN6`yFLNLdBKU5RQUH$g0-fSmC{LAZKJJZm3nkA`N*- zfi$G(T6PcwncqbgfLX^bfnm>oSEo<9?8$R#G$6A0>|{j~t#4(?3f-3blNj8Rte8F` zsZi{aK}kHmZNA6?hWK8m$<=p`%+^f_m=Z80U`oK0fOiR~!UyR|$3(uIkhkE3<^A5; zpJ}fzwz&Xx_HkB8VdS-YL?qPQ+h1^e2)w7|SJ#k+!E063CnRf)jRXcD0^h3YW|UqC z2{^GyB9m*@5tjhOCWkl7P&yYP^>K15PMk(q47t8V>KjxC3wU*QaM6I<-6KHTxMK-Q zfSsW82R4dKG5*nM;TeuACj3Qr7i0-Z>#2PA8$x19S zjs%^wg8(RuymcOGBbbFs&d2wwO1fc}(^cV(_xrkdUG_e4bNf0J7#TbW@4sO;-jApZ@ z1WXB-5-=rTN+2i_P=ODu)`aNgB41AM!R?Eu3?3Gmb@ACrofVTnDU7@fL29kZtxVm> z7Jt#1iH(JqH6t~G)-*o_wYbpp~5}91Hjv@(=Xr{ipO!GOzrw$7i ztDRhank_#qddW_G{;`3bAH&X8J!9d5E%@N5_{d=Kf)QS1ilMBD-@Zt^WwWL!0aF5| z1WXB-5(s?>D8~m@tM$N|$s%9QA(_Pdk9x% zyT2|wAz-2;`7Y>I5VgxnU(D-mwFRDUtV1c0CE2&Hh|H{6N2vs$kI1}!LGwwIV{Wc* zWvSp?uWPit(w^h^RF<;H`56rAaYXK+{+7ma@ln8Ilb>;2WR{0K`<(;&^T~+!+^lIz zz?6U~0aF5|1Ok_U8hl`hUNBVb%lR)AMLB`@QE3YVZNf6-tdGbPMm2i%gxl3UJV7`@ z-k|}cTqfhO(hhg3FG(#G8PJ-_M5=LvVKM4-R?i>onG%vOGP7nKr4nG5Ipyef&1aA0 z0X&uQ!S2`eTj46Y4REQsyWja44B|15fBBVFibi2il_fIE1efeyG+a^RW@S?XrUXn0 zm=Z805aJS0g%3!)E%@cEEYTr$*RM!r6GEDE6oQSy=$zl{R9CQvBj9C}6Wh1)`j)o( zV)acyYkFm+tV~5kmS0t-)Tq9x{X%@M;hPefS+kB(37|zDTr)Mm339)jg$HM+9UnB6 zTz9V!v=Yfme}ae!oNvuj3FcNRisptoky$qJfl|Sm^-T$w5-=rTN+9$lpff(Gt1JzQ z3~tb+HnByoCE5m{X%q3ax#By07Zy>{&>EBe*8+I+_u0}kMP zpa1!@N;O}zzK8?{_v|sd|KGHqL^2H&T(seX-nAKrv~NFv7Kz2l+5dr&P{6~zq9O>B zZd1iTEQk+aab7p>y#VB7UTR9<5x$*y8P~~NP1f$^Lwl18chOfbtQ_%1)chf5W7igE z-!o+tpag(f)ujc=hqvurI);Syi@$z({%6mSMtIA#PmXU}a6dJ%>m|1eP-5ogrUdlG z2j2;zfURv!g(pWiREC@bAL0{jKz}UFRTbCP;SXMTVt9SdSw%OswAADu{mRzoh}?r8 zDY`cBp^-C|?Cc`iu31Ng1dwf8OH<&})Tsriu8LDxFu2$gsNCsPuzwJjQ%LT%Aejy9 z_a%;}HZxA0B*gK-n$d5oyM=j`DFJr08)~broQMHsl1sz&#nQ6}gmPP^eR?DDXiHPQ zDK2#qVC#z{hPxLI8{g+=t`dIwTLg!}>YccMW4NdORwo?uDpLa9B%lHxSS;(uz32Xr zxtGA~;qA6YluK4r1BZHo0u@MDfT9jtnySh!E#;1RM?R~$e?*j6MzYrDoXd)el>1E1 zhVwHO-8AsZ&5iZ$lW3M`C4u4p{9bKkN#N7esRcQj{T>S@E2GX#oqg;FCO%LnVe=}$L49@k;q^17z4r$nD-G|&IsN~J zb-{!PD%K3(;8NVKC4*iW-1FPsgp7T6+^av`vvf>Z{zDbFFfTDB&?P0H3Lh*T9O3Ob zb1n}uK6vy959pkIvM;}^Kt=az$kU!+(#xWd!wAYQE(RjdfvWVK?Tr;)YCb8pwl_Os zCQ$cqG@XVy$Nqm$qDag##$hP1CyZfZ78elqN4Q9u{=m zQBH_9MV)7neb_Bc4HMt^h2J$`;)8%zN%y`O&-b%?*LpA;JpC<~g=bS>|NC;c((-YCDay0tpndu0L@B=}w&DQ5u|jfGcy)z|tQJ6WZ9 z4?Mm#%|cBiFzlcIntwlC^LcA;D7E2(h=TZGS~nh0dp7&QoZ#Sts7PF!u&e|!0Pw-2 zw|?b!>e<^}IlNCGH!`p7o)RGDfCyyYmILSI$4bLx-i$>MUoCvpYAZ@MPWs4MjJ}R# zE5d)LojD+W3$vyvfi5foJ@Em)enFO;taRT%*S0HA#fb)Quu5%pg(ZnI$z*^%pd@Kd zbJ;B~0+CZOmzQ)QZ%1DYg>bD z%@DBivF42j(x4oFaNChIe0^&l(9JpxUi)J8#poGn8U0VYB;e(z%*cl1B z@Nn88b6JN1b!dPJn!~_`AhlLKggQy?fQ>_`vEX9oK1gj1CG}Ye5TkbBm=15K-i7z?SM_sZ;`dreM_5d`6)OvacLivkVSs_dOPCOI`Nfw{=GYk0G`FMp)oV z&d<^$6@(~0==tqgAN`+iQJ7~<3Aji=PSAb-hKOfTr}s?H9^?D`ys|jgr8V=XM+r36 zRnPzYxlRHU*yS4W;=f;v+vTxAv(S`4w~|0t#|MvKHMe_KFnW5)i%@zq@9?L# zKFBGN>#|M~ozPZaL=v~!`$x(yF3CIC-$jkGB|k_ova2ROQ2H5BTA#hYE2s8oKBrQ9 zOHS;&te>pieJss2nzygALCM-&E(cB<_!p70uP@YLejNFP$7A9HVNsbC6-$7i*>n5W zD}9GhfB1|4b}b=R@%_5r1z1_|m{nvvuulgs>K${w?tTI@M{G*KRRUceA3Ty;Dj(SM zG@*1i7G8FhfC0Z@Qo4VXC`?kVxF)+Sa2mE2a-tx|+ND zUorKSIg+5MkT5PrkR5eB zftVvQC7@IST^}Dj!o?`>@F%iX5*2A|i1L%kfMl`!%1QzeM3tkcNC3o>>-9fkw4*clcQvO5dCW1!+0atjJJD9R!hyj1ENq^Er7sg05Ygd z+eD&rxRSheMs>NU{oo(pUij4us_$Z6*gYj6+YgqGR`(i-+cLL%3Qf_dZT5q+DkO~k zfb7bO?qyasCD0`$peH^Edj5ls8I!CHdFSogN=|HF_+ElDlaka}e9i6(BBDCsk7Q}7 zHLR;9zp08ZiK0v3H!aBYMqs6Wp1}vjwg7mdl&f!t0zJA!l#kt{A+pX@)WQ4CW;58{ zSag-}Z1uA9d8HseK$}=K@=c#DnI}yNxJrQd12P{ddV$z04}am`uAJ09jLEfs;r|

NWf~f=H5$V z&%o~j>r?^$qSt<=Lz+dAE{9*8#=0szg*pjPjK3)Ph>@w1!cVYfkGqKkRN;dS6FwAq z=0XP_ptC@UE-U78+;1>9U)meX97)jp0EMW?^2;lXT!xsuQFcUT)~usK0>fYUUVU}B z<`XJe+e%Xw+SYbtY0@0c+gH}01RX$T-k|}0*0wTC@R$UN#0Dou)Mmz6nyZ!dN>%OV z#(EL@NfRHalCF8tqvpoCb>rVx^d=ed+;?`)8D!=^5L`X&tu5zb*C{d~kc4i*=g(E@ zu#qF!XS13qfzXkF3VdL-Y@hX|$XhLR@Bu8RRX3w-I#fjQIfJvLb((Cnxm-6kQ!mO? z1bUXGxvJCkdj24r%=p)SDl)TST?YgG%zl4fJn*Fz!(LlEuJ4xVpRFDHF2{?$dU3`F ze-cp%)eV1a@1NjQp!o!Xeao+|vEzfnlOr{6Ur~d2#FZw`_p+WJtNCidLGjtivO|$% zRn#Tbm75#tL?+tA2dX99%`dcCEDx?JYs!n( zj_oTb;Xyrn@Rq)EA{4wd#Ybt@G$o*y1oXuR{{l;cUOiXTuAGD*-LAIe9QY8IZADjW zSXs7Y*rG{AbSMZ}Yablb@b12wvb43LHH*GV1q`(z)fBK`?k7)!299rCa4liqy(?!P z-n^9mARS{piHaVkUnD);)suUVZJxV%>VSElK0|#C`#-qnx7n8REq`@qSy7eOx7wDI z3@Ft#qRCZYU&4}on#Up_^es644Q2qs@3Uj8z# z66g*R&>0_8mluVI6s@gfbCr_~;Md<$9W@qaq69hg#bVdR;*Xw|%CN zWk^HC*?^{oKKn0A2S*&;IQz!=qo4sYJ@{CYZ0eQeXWqOJcXZR7MFU?{WSjOe7IvAp z&G^E{eN~?VA5`0IW4m43}r&=%p6 zVy0iE$d==kxWMv*~D z#s^Wo$XXn<36?C5e9m^&$@hP=qF=+O!kFH&)e^ULzPC4MIF|E4AU^HD>Ph!g6Wdyq z5#8VmghhdCu{s1k_94&y%dt(f^_WKxXKluz4mF$<%1xDe+{I6ulGIwARdi~!`(g%; zqup1gZ3I17S~_VrFp0@|1NX|r0p9<}iu_(f-UUA$(BX7rUA4%(GqbxF4cFoRW|Q4Q z0zicNnu_GZ+g6Tv!;>MQ$H(IX>FM4FWDAy+>WPEnQz;aU709so`ajwY9H}Qco$(pr2NdU8D_U$W2H_hHOrT^luUz+#n zKjwe-%(8DHx6b(d#E!*g%z-DFDJvsxsj@it?A|rI<_=yqq}PHko}1JEZ{$f{KmPqg zYp310bPDsivKGzSrUbgW1eD_gw8+EjXNY|{pMt_IWF#oHl;5>!A`!WV2Ixnd?svS_ z*81E7ANtUVTu$Ze|FEUvp5JBzuYgWe`0$p<%!YoQ5iflouaCTp>spA#ntL~O$E>dc ziAW$h8jS?r84oQ;*81E;`v#Ma`c4tOp-DbdFOSDLs8M02{PA^&m0~YKOEr3 z`SOnAsEGWyLG2A?j(Zt)z*~;_5?SX^%9#0V4V#y)eIqQmrFoh6uAaS_6nFE&@dwwF zDvELp3&`)W$o1vaITb*nMF76glktK=K*`jr{px;4L zeeKxZ9xSjT(;Yf>hX3<>`&Nu+|5qzP$-Bu#IeV9lQ5%lX119~Z`WmhJ)2SWV@&Bq_ zp++mO&r0ZYR_7mt`V&%+z2{9Q?H-SyzECPPm*4TP+DKNOM5k*zJq202`_w*&(|H7* zo3~mmsA(cgnkA7Cz1(vvW~nIwQv#+0ObM702u}&9zz34`@`)IcFDEV;7vpw?j$GKR zEIv0?Rz{*Ct8NCbW0JKl>!dfG$YZ(eWs$bgfIwwztZT-+BQm)mTZdIg_RHGJ5{(z0 zOqEx>ZRVFgg512xkPEjEHCOx^_85xu9;M8cBkOjR*K9H~qIDa9%9g}M0^qy5ABqTx*J@Q5(RW5=xzasgf$9(5w0g%P>?KScS`HC7oF7@vI=TjV0^LGLMDVI0 zg%{5V{5BBjb#6f8Uy$`aUO5rD2R_oc_0G*%+gqFoi?U;0FTcD}H3g}h-0i`!$DQvW zFABQxfDyO0G_4x>rr%c_6-K`F{k9g**&RAd&irLcz?6U~0aF5|1j0rF>hOW3eSDvv z`~7%=4`zS-w-6JB)KZm+qYf%b&{$4o{-OjIok-cwsL1k5OWPYObdqg-P36>gf9H38 zL#o2q-an}-$=69BuFXmk_Zrjd$9^TiBQWi~KQz=D-$75y%(YJh zWFDCkFePA0z?6U~fi58dRrrAY)7kz1Ch+n6*7(;#?&C?y)(!;+mecg@#?K;3R#p0r zPC8MC2_Yiy$mh5}Ra{$Fk-DM$((=-zxllZ2?|I9;G9KTRX`8LB>N5lT7&tCQ%oq|542Z}}LJ=BMyaUpMYOzr!aaV$ZTMn%~`}L8-kZC-zzE zMa9?ikA2l~qv+mc7ncSC4(Jt7rZnYA90M(bIc!1r+H_fUE5wUT6o^8Xz1sTyS@m7a z3rz`_5-=rTO2CvrXi7jOKClQH--kZ`-Im7skQ%xz1YwR%$B8I7{*59oMok979Xnzm zoIH#0(u&(e_*2~vm@9D5IN<@cE1A|@#4QfOivMPQ*|}T(vo}dWBaPe z+WnfEIAOo{mN2|MEIKu&<1SIXSgtB#4xH{q&z(t-hzcq^F+5l~51jh-2$PS93ndh7 zO9w|dUuYhi5-=rTO2CwWDS<8^0d@GmYS}U8Yro176;RxYv+sqLoXD{L*yWkcR$Y`S zp95yoKlk8A&YC_t9X11R+7|YPmdXd!_x8)$SyV6Q3*lm_e|Sm{##8(&77u($WQs$f z4g{iQ1|^*?H5Ltgv8}b)cT<6%b-@RX#c6@J*|`OoA_+jy zvG(K$n8~d*8l)Kr@8 zP>AFM8*sW|L&F3K4#W&YUp#{IlNwXN?jF#H7_wG zU`oK0fGGh}0)a?C9X^n(7vpw0K9W8TP%zIQ+!RO$^|%&)?Yu(+Y+8xU#YhJi9dF%6 z&96+|@L0RIWpX|-0-qvp^%~kL(buuKNRUID!A(BhYz<)N>RL&jncOR1*BB$gS z;J&{Pe7s6qfC6)7zrT1B0t8TV2RyBJWU{@_;De%*qaNdf-k8Ufj>SiPyxpqr>>=z~ zZa*rr;KXoz-h9+oaEjyyH65AVXdGlyeLF_M<+@cR{^r7wZQf?qxqR63-%UESS+|au z4Vw}$C16Uxlz=IL;7C9vK9KIGo_GFEdOOBH_uyIs5;iFl9w7*&N%jzgS7aBXiVS7f z2T&VmQgEzes}~xjoC6;=D%}0I8xqPcEzREhIBq#AqWJX0*6OSP`sLwLtHqMIe?#aK zo#Mu``0JNE3_$0iw$_&ALtpi_@`pV4owIw_=-h>l=3VeX_3b@c-Iv9N!%xos_if-H zBLB!24TYK+t7yDF=bRnZ@GQU@;LXKOtKkT?L-OP!8--Hf4gcr&ZeKhp*sNL2lz=G# zQv#+0ObLXG1XSSz9NsI6a=d9q&gE#Aq!|i1VMx~MJFy*#NmOKInqd|WImpvNMM>B} z)vYMNigNjoz_y%g^A3ON7zJcUZS_UUoAQ2zB-KkJe| z>&L(EQ6MaP2)=474N99O~N%O#RbG}YJCSC>OAtn{zC zOelFDui~bL+HUgK+)x+vHAA3Jb7Or_1de4_=_*oOzqFvSu15FK)z^@pQE}gtKSb(o zQBz)o1XyesWrM!nymf$&8c9FVsoERMaM1`lySBG}8egswA3P#{RfOLI-;YIKy7lqOO(@5h1!-T`C_}sJ(MLVij*~LW~ zj2-8n>MRFgkxZ6#D_UE!FB#UHnbgtk-F=#hQ#I(e7EKUYvTR5%k2C91IP&EmHa7-e z&(dPhq0$D%8`SxN%v+eK)6O2eaCqyvwqQ zsbt*n`C5AXIpOu6hoA&4O_gllcjzY3 zuWA)<>3gIsH!>X9ZW@t$uzz#eE#LM1pJo50^k(V#S$3NQ-0>`JYnygS5hSU)ylCN9 zFL<2U5Ge$M&i?qX{$-_g4L)u}7`O`oyt3en=M6I+Ff7<`OH&ru7c(IOC5h7m9xDc_ zveM-Fjt2yOEp}J}ZnjecEYyx*`zSJhd}eKH>~uPKKS+Kc@^WM0O@8|~!Ruz%xiiW_ zby>lK>lffeIJRY8^ul2qCiYu8C}QS^eTTFgeFYZoEd{A=d@FB{gI^Rs_e9F zJ%J!JRGMH=tcH)Cc%8Dy54=R8%Lz7_igVJE&c+C>dicLIg7!fah$F}^A#?ya%pZpqbUkCN2%XxmzIh*szM*(d?G_s;TpzQ;iQIngRiQAhqJ}{AgW}CG-<*J#)NQj_gfwVyxVvEh;~L zLMWa^UX@Ek9$+0y-|;H-JN(3nnUuVWsXW1U>ZTc=nfWy~?71J}n5=SmDsPjj%Ztch z>LC^qc5R&YsR5h^?!5*d01#b^8Pk;eRi($&R+Vx9ha$&Xm9v>@9{Ns~cmQi31t+t8 zV;<)snfxF##ba81{<8X5vCbGSfo{W}|Iyq5&tNjVc{ZlLM!mbW;Jb*8;rje*5YCbjFFtS-h~iTy z(^F|1+$q@Ia2HdH53t6@tP@J{0R_U%vxmYxPOtVQd*!|Tt_8v-skT`mz1st_Iz5^) z_q<(Ss5yhxLp-KR6IN#I>dV52&QlhZcWkJ=xn8G!vM@`oEOF>u zJy~d~aux;e8YFAwNn0{^zXe3Vt4^~#^$#DSG~oj<^cj7(`9zkJ&oaDS*oX`+Ani&J zMY-+U!5*C%{``-Tl6H-V)&xE%yRp&rl1tyw$KI?eRzR|o>o@o4U`JI^S$q3cr=Jk* zgu-&|!O6B>g=bBqWizwKHqZB%S)V^;{<|aF6pp)#76%y=WTp^oym`iFI1%}jr+z0b zeBdox3m|N zYViU70lBF{(OmeGuATUS_B{`|#+JHL_XQ#o&*oeTxmKSQ$UIPvP)s&tztAa#=2PvTBfynagm@V-C%wa&)<6U`GAxp&FlSnZ@$NRRGal^WxI zDZIyooo|@-slS!xejYfOo~#)gM0iK7U+Y9!73ZeIB1fX@v9J8vU4VuiTlm0R)D}MQ zmWg#H>=NKpPD+BUv%XBdaZaNE&9--&obU0$ku+N`cdbvsF-bHIe%w@^rr)d5gf*+i z2M-@M)K-b4I33iz+q8H8X2PMfUNUw%SYe%UDX@&4nuMyQc~_~k#NqydpLNxPqng+6 zQ6bScmG}0smK~{VrZ-pTdK6IiQ}!}SO`7$QNg0)K_P7!ot!`*a@4~q#;rK51S1BNP zR{tlA_bhVu+#4UjTcCJQO*ME~rrR6=!*Y_;1+9&`W$u*h4JCKlfXL3*#reaP4oXFN zqHVtU@SpCJ>+g7UkDrAF4yqVbm~J7vef7;Vhp_GO&G#op1I}Ccz+1=`KJb=_b;cwT z81nSLemCqDJb1N(2y()r+#`b&00QrD<>*&RuPzJIyEHt_hJX+7IU!q>$by1Jh?F4V z8KD1G(W-J{2D+~o;DQc`PNl}O`?AlE1AiEkD@%sTX~(h;$Pl6U(n2gH{>7l+ic>ER z@2B41dULQSzf@aUreHiOi%P^oFZ}YQ_MUX_Hn#V_U5(R>wODDtJn_Ny-Zh!06jeer z0GKjkhXXF#h)EvXT%`@H^w|wMjB!GK^lVYNN50a@-OgvzK~G{C!Z6T2xli~Gf?=O) z+PnW5w6-o=fOkda-D@P-Hv_?X|oqhW}bs5oYi!obR(yr0rhkkJNH2l^T*QL=7%yozOgY7R@rW{aEw<9JwYv21$g*_+cGYunG ze0Bp9SN_TIH0M~HD}9y;%SqhiGj3mX&1`@J+{spc{dQP7Y4%15?W(CH2zkYrzIrDn z3NS(Lmn?kXE)D0gg%7-CVx2LS1PEOvX!%O)4hSnleCd(32;#FgHP6d1Abvh$=NmOy zXF}{u1l=A2KHytQ`VNr=#kcg_{`F>)iX&!tsmId5Ct8*7w!gtSjR$?%$45!m&RFKJ zxen*;t&J6Tc9GEt-n8;t+oYC;4wu#afMv9-Xw!^=dZZ~ASxW)R(52ZQcgNXT-N;1l z!pW*AJN4U7o^*8ss6;|jBiYcr`{{)bdXXB)yO{4YxcU?)yJC_-vDIm@zDsI%mP8Pa zDEb~`^s37oy(pL4v1b0GVW@!T2xo!fe#45g8Epf zHi^jjOqUfcV@IFzq)j-d3Eiu@kYvY@=6volcK6kk2t;+C+HP!VYTUi}Yms-FmAuGX z)}X6e$Tl0lW$#=k<6>hiA2KHV}u z^O|rCpUm>`B7l2k-n8`Nns`q+7!htR9r3Ej>>FGL=W(_#n;Pmg7dVlt)a>F!0~{MdxN4km8x%mfy0;&z-GjZtO6Dei~N< zLpE`7A}iKPUgR+=JaPElEpU&^@e{fsB3^CFSopwOo)$jvmWg%7oD#rDzii~|r3G0Y z?;P=;eAk@pQ{MWXqBA(e7M?LtHg0hVs4E!?K6v;LKU1L;Mo)Z?0M3@?Msn`;7 z{A)f|ha5;eIrKo{)`m(lj8Z>@XyiB5YZLZopc@axnL*6uer5+?*1ooNljnZvQ zuV0+nwUYc=0T7y0(Nx;E8=7)aG39+kloAFj^F1qT`9fR$Ki*_gDw< zzVndgK1g;sj|EuOR`Q~DsY+69Raxwo1ruKT_W%+L?q?!(V!+c`AP5hry0Fect$h*BFShE`LnY`hpdVNis@O zfSU9Z&W8@3=caNUgUS63-`{z5J1)d*7JHjLM%;$HW{Qdzti8Fu_~HUT%ATn4z@g5)Zb1GH6$8}imJsoQ z-F_l^smPjQS8mJ9FLWA&+G^QV&-J@xY(2|wZB^&3&(>|p)n#(cxGJ5VYK-O;TnLiX zSelX-HxiQuG`ZUGrrB|`F=x0kR;x7=-#>p~Ly>a6c4rtinG;B33Hh3HkyGLN$^A{@ zR^*y-@ImRdmF_ES5J3AXA#kbrHq9Syv1(e18Xunw z=7&35k@xE0OAHFjmCE32uJ`2M^TVcWu;zl-A<#?CW=ZpkZA1Q?8)@?lt z;>YXLippA>>T5~2?V9cY2g9HH(cP;jRW{REZX;YjZtJ2^J$@EIP$s!#;REl9u<(Jm zOsq2|mjG@GQ{VY(NnVEXm#EZSQ<#0Azx!8G=`q0vr0`I;XRN%#rnn(;c z^iz>##YeTgNJmmu74n1l@)Ma^e55?4tWb6s^s zSz%6o`W?8jt{jWTUt;z6_a?sa2UjPZw-X;#njg+MbAMA0J}5dj(|sjl6~Kb!SzfY( zR^8k%qq6pYXefS_iP$bW`^oY%RU&B?aA|&~D>;>G>U|#IP6N%dr+B;4ZxX?t*}Imk z6F%i*wv!e<@SYJ1A9%~eI%9qbuuFGzlbQ%&NI5H#w}(KX9F?`VpEj8-Bj-yIGCpW+ zZJGD^^CHU%$L$-Z51L9eC|2%TmG`kzixFoQvp3h0Dd>>~)Vn4l-c;jtb_Vxz=yq{I z(ULb!u3D%$+_=WMLRt22CI4rWK>#TtB71ZSK&$%O~z%F?sK@i8z)JNwa*^ z>%an!2vvU0`|P>1d)JWM#)Pve%e}R!z(GgczJM_d93So8Til8ue$0yGNufs%^Rl=h%80tdN8I}=4_?4r6u9`u8D8_UPN4~ z%kZd<>G^Z=U(6Zs^y0xiar47M89jf*{uPtl!{m-b-jfw4_jmO z{NV=wZJ#@o6wB)R9MSjyKhN)mzYSoI0E;z|?)%I>n^_d+D)I3u{vRW~D`@CU%SeK1_ji(rx?lBe>KVeLp)&GAh zRAe5JFd-D=#g1@&0Tmr&?0A*^RKB%A-Xopsa>)3=Zg1VSM2Jy{iQT)@Tpk5M@c}C+ zb9Y~YIZ>~IPCT)f)u~4ynR2YVsO&=n40G!a+Bc5^qyvUR3m*>+dDEOt5agM3HfHU_ z_XQK*s(3>fc?-K0yxwkKibH+ykfC{gf)Bi3dxRg8w87a)3RI_`Xm=|jcaS6O0B#H; zM?qM0d)&j0S6j^F$l21|1X2`PTIeRb7JqG|+)ULLFZ>5LFMRXC{}YjwiZZwmfIJot z?gbP$5&a$3zT^wXQg58YUASxD-00nw>N7e% zQ*v^%a)SRd?W_-WNZ~oCW7IgS*^GCtsKeeJ{^k$Gl6Xx?YfYuNYDs}jKn7^Jce^e4C_h~JrmO`(11!HITl zRp>p`tp+*6QeNCB831X=o965-FUx|=dwZ5n5X^lmvUrRy!*Zqn_!Oy2n4sIl`KTE6 zKRafi#|w`fz4iImShOv5C6y@$+gGNO?ZD8m14o~sO)k9gsFQM_mk8$eFG@mvkY#Ktf4)h$jk2iya*m1L0eVe|65`FCKk~f+sKHOA0tJM;1yIBM#}7 zknsU5%7lxsrxtWwQ-EML@MK6G*7RmEe838d$~iQUtS|PaTHo!jRIlbm(MDsPK&@TQUeUed5@eBRkKSvTp!h=^e9xO!!VwGC50PKeuSTAw2KnXd zW$-8a;qu|8ZuLDkGglb z{rFL=vJ8NZ3}Sn?{gM_(>^2rkqY zi@L2V!Oobrn9L7xXtRcJA7Os|@-Np;`jBeFvj6TbY6~B@OT(DsE{G2hEYDH$#ba{^ zJT3CV@mYqaMzwZq%*+OEMK&a)-(54IpU=^WoCF}A-M21qD*>+J3XaNOp0qXp#Mk&w zcz-?dzh%?3@a&AL)R>l>fk5;4`D5)k*G}N>b*1qoRKX} zrzR8JTb&kHmv=?}%e_=_XJ`J2u^sM`xf5)r8D^l4xMGzb@uq3NF^Vz;DBQVdG;zyj zMhR?Z%pLeF>6Kx8!*Cx+YNom-Gmf3?u>9IVZ97(Q7T~p4bYZT+VF$9by}_P(Z0*Dk&C_$kdLpaOskb!q80_9{)Js3b&ERD8QhX5&8%2PI zEPN0^I67VGn)m==0uipq?_(2Ostsd;fd(R?5W5OU zXedgqN;!y$9Y(19ljHHYM!_pOKf5e(ZFTzbrpiohohm}?u<^HRfe(1Ip5DF6dlh@1 zVZ#U|(XgnYVB!qOkLF*=Le0tC+Yf?e{@8X0G`JL>HZ5#>@5Txf5yJ+SLu*5M8)cQu zn>MvspKSQJ8zr4POkgJqz-%-LE@W`~VqCb~8v@Uf->Z^Li|q+d{ViRR8XX(nRKYvX z=zq|n6`lXq^_a-scg44i?u7sLni}fo4Sde~edT?IrF$~^JO4Fx+A9rp)#Ur~7Kn;7 zPKTnHbu&pbtW&VDifOR$feN98cuSYX2gt3lu7JEjf|pN3pECM16Oye^`h~N~Vct5hmo>A9p{uf4$j&xP=dlU(;O~ zAF$r=5gOm;w<50{?=s{2{3aq|;{q-!IqGZv7cY8`PUH;PQd4gdG->_QQ36`v1G?8( zUq|){ky!;s;BBhoh{UTVCs|RFfMVt8q!Hv6;zBRX5$}a5N=o+XjFTC=-e71B-n3Pu zqSUWr5ES1_I7M6nK}s|F{Uek(C6OiPU4|B6%H1&alh`c_?p}>Io2nuvd8xI&y!he* zF>t`N_Aa}=J}j^mXV04S<8Dt4seeBe8>11W@Flw#v&DOnc%P9st=|4CtJjEbnWhc! z6HI~&2Ss@cMClpg&%PV>%FQ!}Ok+ZBm$HQq+GSzXQCG$X$e8cW*4cxUK19y)XvgFN zGHRmqYNxrWk*xxC5+F~+sa-4e>X}uqLjoG%1K#&rW_>9#&lr~pNHc}>NzR*l*-dRx zhy(n1ap2+&UxFzHsH7A2md4U+E1c|tP&ky|+GcOoR}XSTFF!~)zI)$_Nq8a?;;y&f z5vELdYRI8T5KLnHKI~X11xkcuqOvgYl_zZh%n2=ETTjw8wA7b|WdP)hC^$8xy`Qoh z+qAIs#Al;q6aguUyt{@x{n+MjKKEHkCqCKQ+!Viaxd&;Wh`2n;V0u|Ux;Q?7XOKW;kHA=dV+V;n)%|ikj;R9Z- zSL1dFF75HJ{*F9(9vun8Pd3dT9BWrw{OJ2i3*cJ~wLln#6Ka#P6G;B?(a!P8ylMCL zqS=L7tHAwiB4pi7ynMulOY)`}pDp~V2NWt=85Ia*!m_n!a8D8_9^NpU%=J09pjzbIo?GCCgN-?^7{2C z1CKP;7xBerl~f@Cjqm}!(B*~MfEJ|e;5`o4h@9k zpm-zUuVb)LGH+U1tdV1JdNRN^i3b{NleRfS)=v6h$jztudsp#vVqIw|mk{bA(_ZTJvmRd_e?M7Wriq;jVa!TyCDF>6y=(jlMDRRV zA2yMS;yfiS8(r4I2S!W$;lr+u4<0@whJXM#!RN@m7@xx9+ZGu=Wtz9xSYNYa{s{M> z2_ExSSvB@;&HH0j=q>@x@WDgec;|g4lmo;hSx(WIiZ9M{*IYC>wndRq*ImGob&NJw zaeD{pCmo`Y^-4!XtCqZJq5_emn#!`G?E4RHUL-d1Ld<43365@@Lu@mD(ep=apEr!Z z=y}6-EEp-DTsh^~rnx6#@qA&++`VM1 z@l&RGixAhxZCm6qI+33QGr<$5d4H@5-6fzMK42$K^h?{l+ni6H3VVnex^Uj{G47g+ z2FK+8xxCn2z!7&$WOCuTnJ(2b_sCcE1!hawB9R9PyQK54p|(2WgdDWP1b;M@r`2Yi zDNl|j+&%Z$P<(_`u1{M}5}*ccQI`TlCTE`ZKr`t(`n1#)>(ZR^O8Gtu?rIEq=KH`< zY58T@96nlgUMG;a}h z-AhMp9-|ZaNhIs^_x`SVf2<1KC7>NXV6*9dqNt^Q#PdHc$hz;|5#x`+2U!O`QmJ$K z3s$i8s<^$=__1i&q9iqzrMC0#+M*y0X(+ymff-Ot%u>ht3#c=Vq%s|-~4wgnnM;G`G~?6l_kQVoCpM|aJ{{Vp)R zP>X=V1;LX`O6~`wdz$e2e-Kv`YCjCQ-@*rmh`B=}7CrzU>{~w3{izW=#=BrZN}x__u$IF9T$Y-fj9t983C3Bbfs1t6=TLVCGGs7jqXDeJZAfWY=mL#c~@v!Q+xo8&f1CZi%c(byWqjXnH!w_V`#)^!(yepL{2TBuH7o47& zb7){YAXBpB+ULm6T~rJBFn-iTPLw1p_w1gn7i8VWcgAOnP4%^csWWh*Uoqw_pOtjh zlYF-itePtFGWS^qi7g)Tas(kN3m+K2k}Z4yE%}-W{d_(_flmV5x6JGext2jlG3#ap z9<0x+>@gD%X8fY_hcL8mAs6(zx*KH@Qc@%GmLm`07$u(t!_*PdYC(*AzU; zh1Je1!UICmFf+`iBIhD<>5<0A4Ba-Y54BZg-+b`j-tTR}Gvs=@ar&TPy$!t~3m=3o zL!~uX_y7Xosqg$%@R@QiHtg9S>{=YbnNVCyg$z!xAGr@r@R&51-wo^Ss>eFeLjs!O z180^~@=%J*Fz_#S>q0%oBvhwlCkeYcg)6{aod+KvL=P_`C$)0on%0I&AqiWB@X>f= zCy=ub-P~Aoem0TDg1iMTyq}<;XCM?gvf*3f zr%c-xdCz3ty*8%TFM^KOy8srHjnfBc+aIeo4+&_D4<6!Tv|{v|-jnHl1{b5b1D@s) z@#v8;KhaKv@3INrFKwYS z-Mfu_`B(Q6PDQ{t-MVPu12g0qd_U3wRqd?o#A6qZ; za6f6V$R(+vXhf%`iGQI z-FKVFNj#&W!-*`(SopyB`RcOxfXK_7`!^u~B}u2cr)+f8&vH^D*pr#Ztu#N2jQC_R zP$z+rFa0FpL}Vi*IPVzaHZ*W(KwjKPEHM}c z%5H3^ytl6=<3wHlwWf-6;yHj9L5D!Dt;)N5RR=JWR*TF?hCwCBlf*PWDb7qKO)P2&wU9sH#OkC2)*fu7yhqG2|V$=(LH|-#&WOLI@VkQ+T#Od zE=F@cc`^(xMv}cc?U+yfCFGM)IGAfbOW~~$T{!Rf=#G+!%G&=C)K|d4@b=B9*2zLz z*;JW{^B6nhP)vgY3rRY3WDp9kn`ELgcE6R~0S#<)pn>@Mf*af}8wMnmZYqQ_kQvmi zE#JOIc(~=n3}n6v;wR)D9pbWKWbEoo&RQcNon)`gx!{|&L1uFP!l)?=)Q;s`6hJz> zkS`tCrtZ5fvn3DdjjkP_esf;xdidb~YpAUX?_YUg&V<+gUByZp@xtQ?C&H1lIfS(< zBZJzi`-x``teU3UIOmkrkf$FbrZKbl92{6+Zrk zOryq)bTxc{eQ5v6DdGLwy=3gj7k|>}@d3Veh1vHL(LYB_?xS4e1HD2&~L zn3$5wi@`BKgrW;`YBEph1z{z7ec?@ieoziKr|>X2yUPT|uKg<}3u+}@EpriqYOJrB z-tX^%^6@A(s>jcABhxLqtKkEWiHoeC5n(^zJyV>MmVDtDRIp^)nf~5?sg5@An4Ph` z|E(Z1#r>UT&SRdb@}k`PiD%F5UAukW@HwA8gNEcMV=C~MdcqK6NwN3 zJ-Vf~m>7ckf<&KyKn@+)^A0#N|HN1*y-E{SR@|~xryhaStg$qurLNdWKYHR1NE_uN z;@8#_e>NBe7)U_RCAf^M=sBShZ0_S0MG$peegf5MyMF8~4diR`TqKVkD;_#Vp>2!G zYm=(Wil)9TlyjUM%v~*W5kR@RyhzZv;_+=~vxk&)kwTd4v2rYY;4zzK{%Kl#fD;i; zFF<4xm$FyB`J2yYfAXa25L};AAUhY0elx7xvL26)=TE{52w=K>Delznl>`}JGJy@n z=UCL89Q@?J%3Vnnj+gt(nr56pjklD+cYet#;ACg;<) z_pZ&o=)VUMdBqW^yaP8CPZ2pF0xsufhD06EK<25+l>KE%oAEIth9Ea~xYI(wt~US( z^MKP?NDd@UIY3IHhT_}J)wv$~@*S}>EGWTYJa9!kc&-z^G~zk1KCuNn?_FG^9MJ=Iu0fBHy`{z_2I`}*-YK%V$@4N zH6imLk55HW?t`R@S7UcT%&=+3z&W2jtlmE%r7CrKx&bl9m8 z*haTERySAYHJ06%Z3A9tAbbBucnUGyBx;poiI0!MufOE#vhrJ7iCSlqz0FxjZ6L9* zJjDvi;lAhTbI0{beE5gB43PmztdPNb~@K zfg@Gbt=UaY4Rtucdc1;s|Lopv{Hwn$$;;5J?MSEyU+HTn_xKh_K(&Qia4Sx~btw`? z>7$PpK2SI5VY$l;_yAKuO+`t@?JL(#>^`=6-sYK~FZkj`L7hjn(AZ36JKiL5xw5gO zw#`^_a>sH^1xtqYp7iD)v~r{JDJ6`Q)86~9;+zLQo?+{h))LSQAIL678>bKSIm6y3 zN51%Ye)=7)$L6~}JVOW}?x=0K$9ZaWZ0pGev}QZAzK3G?S@J%mpYX@kh4x2|&$8=l z*&`-I7O(vJ{6r8#L-C!a3R3r!>(O1Z`ZU)R$ZkS~H`wbZ+bCSYkc+`9fEfVWfC~-a z{4V<_8bT{r z5-KY0>?FvXC~JtFt20i7glOq%?qw(Na__DCF)O5@^lk`!4)s>BV{U2^iL`0#<$)KH(FemD7IENKgf zuUy(ayHyUwEDF*H~;nemuXI@4-GANR_2>WQdOV6zW= zjHMy(*f0zwm#P zFLt>QIFc7_`*yIq90ZS1UM9Wy#~>46;>#935S(Z;6f+nfpv*v8kZ~vB@)29ix>@Td zfAsAqPwM166F|K9)$Ch7skyN}ERPXyhTI3qi6{3GSFv^0mkS5=(A!wzEsCMfe1F5# zj|m_Piv+r0qq^Y(WZ6(xgBPCnB>Oniz1#G6|Ff=2mn~-ZStY{^St{EVu1A`SK4+rP zSZi|#MCe2i0f3cxsv}*RCqD2eO#FHB;zpr_R;3=n&!oOENhS!ZD|Y@hSLF}_-B_Lm z0+5XXITuh}ffRs%@|&9o55^>b`%3SPcBc3cJ(ij?5$B2_1L2y)#JB<%dd=cn-OOp^7305AsN z_kxQ(kiumT@YP}zMjEHfkPHZ}uWPpuz)KuifWUp}cLWFNwqAKB##G+hi`m1ylvc+u z7L+Egc8M4NF|0liIRMv$psge|SLNm(|Jqf9p92UO-q)(nD(WG^De2r{6n~L75*t;A z*UwhbN~GU{gV2(py+uUiQD(?fk3k6=xx=^cfyacJ`KR9a0HruDE%|!EsZN+qQVav`=S#_)kG!5S;{td2-_G|8ec)-pGB! zL}JhN#0L*0sW3Zr3?mu!(|9SU~koQoZ+dA6hnk=JaQ|F0?w9PUP1<0 zJ>ibjQj_nIyjG5KI5!jGgyx$3K!PA~YUw>9r31n^$JE=RvSU6ARF%%x(0ox~Mcze& zp6E9AV5vB9El~s?F7Jm7Xn3TTfUTnzI-;bU@LRn*GDsABd_t`Z0u}=8F;YU<; z_sWT5TjsBw_yLRs;Z=&Avml2Zyz=XdF`JEfT$-C2Gm@{I+O-mrM0lPJ3oHn{hC{KH)B6zFtF329_?EE5 zMmDj&hDj1kkbR(k-tjTT7v`4T+*JMG7>SASN9ru{Y@bO+RFickH+GmTTeuBkhXa80 z;xcP*_95UE>xZof1AjAX z!t=Z!N51zq+q{oCda(M<*tv{pe~q=TzDDnk~chyty= zf6&Y%0pgNJoh&;4t!}cCRZI4x@h>9zD3}2LFE+9pijrhjvdHxs3MOBBb3H-VPLkw| zUE~y+LnO9AMiD%1%hUX1rou1i185-}e}l6RegbD)Ufc+vHt+>AgYYtl;@)5~(Cd0j zbK{N$BmI4XJkAe$?uQA-ck9&^bJyEgS3{Vwhd@MrBDAyn*O_~8fqG}*1Cd!aNf~YN z0eoI}uf{u(ff)=2E+OMqL+t0tv;Q0d^dL1e73F5|WPsS*}+s3&vpySR0S zogpBotb!N7#pvEXy@V;VDSTOaZ8c=Y1S*3Gg7+ulOGqSWs<^ucNR-C#4-J5fA&6s- z)76k;*f7_btDpFxS#tz|dX6Kjoq ztKifmqGXJxYbIe4X=s(tR|ffsjFc|yFugx~z;m`euV5yXZ)4JNr zS@UHD*|A#}&gdtU)y+sL0gvFDyAm6%GdzmiH7M(Q{L833~nx>fUYYJAbVz z)mnX)_1VLLl^4UVq63y(`3`3%Bj#71HZaCi+}W*%#2_uGxE-xeuT5Di@x3MYiZ3l< zRS=3?ny?~V3j?3A@>|>Vm{V7s>DznbKxObW@ct<;%prZU*vG9KNxgGYZyMZ5^E9VE zKKYsNQ+dPMRl`a8IHAD4EUKt!o2O<475gx$9;FX5pSktuiV&9w!mChH+aRLJ^*>)Ot~X=_6zhc*C% z0qX%CHv(3RThIPMW7VIlt+Umj%V; zUX1-dQofjHAWC~;;RE;CH2HCe_<(o9tqVuz4tT~?!<6;nH~z47_MjW559%IpV3)xG z53FEps4;?ah9a+-(C@;*O;*5x(l?kM^*D1xCU5Vh zhd!&mPFoZKpM>2;TsVTgxei9Hj2(T{kKKPT2bplH?#Jk{(#=+ znfNTMq1Q&>gKea1?blLYX5d`FiB>x2)2Bt=Jd_#v;^VNs8`wS5HPzHmzk1wzg5q*7 zhHL18FJCgherm0P`bxkMe83PO=U((xl;9IN>0=&gsj5rIir7Og%>716E~1+%CZ- z$){$?(3iFPP_t2+eNf-TETL$`IG*ElQI~gx08uk9J2KDI6(7JaU z@#5noP1><=6z`m(oCk&(kLzkG3CT7?)CC;%&@zKm@F&l@cioCZHsPDoD15-sNpw1+ z-#-K&O}^E)&TA3MC`oY71}AsbX*XQ3TG`j=D^j1DbKktRv6`5G@}w=qa2O;>TU7q> zF%IXe8WTP=s=Fj}Bj+a+o|%Cg6+8#zh_yGFWq^Jt(iEg83Xc37j{{>byRpFl@W)mZ z?-1T3BJUiwE@poCKV3GhscT8|mA-szyNJZR%itl9b@!U9s>nL%YWRTXV&C#f;r)a3 zN*xcEI(*R7PX8N%nR3%1KTAsDnRnEzM0ZyM#9&dGJ$@ zO?m6jE5`KQzkCvIA_n+V1(%Ce!jA+D#0Pe}{kUzh;6sK9;k#k4Xz=t%t))JQVYSzK z1eK!z#WHrj#=d!N_Bne~t)JO4^fam~*(l-8ElpgT7dwK?LIFCj>QYqZo_DF4KL`)J z$hl-%u84BJ3NkwwV5-xP%iPH9p&uVplX(i2JjgwUU3OSCoYZWprc%)ZB}XAZzpV4% zBsL_Lj(An@g~MjnvCZ>z?otF)kD8o$CqYnX9>pS>Lb+$=cV=>;5h80e`a|b>vB4N$T@PeKG z-hZtc`_A5F6E7X!nw@gP07mGrukc9kfPwhn;X|o3KWqG}zY|<~!=C*CPMuiTr_z*i$YzJvIB#K=zkiH9MTIzOBo^0S@xx zC)5|3D}yH3rTEf9m)Lbbu=OfDGhJ7%G}M7>C-(4B5_#LO8!_>X-xuekshQi(c8^4Q zX~A3)9S?HRxetkw)+E$_Ld^MOBVHh^~!{obrlGI$4Q<}I2ks>aH)=+ZCcgb*_mF#u7mos+0 zu3!d*7qh=Q3BRbxI-}c&B|L=|4th!ORf9Kf^nww(btb|pMvs{M)}IAM=TVFhgo2EF z5jJ2)cP)Hi{Hz&<5AdtG7_-FyhGaD2vAuuo)QAtPntI{Trqr9~&EP_V>XmW(>X=@? z@OWS~|B2d$|I+M_pMYCp_mZzq?_P}?RY`7o7=e-T3%k>_Xe>Se#*=lIR9=Fsa>&!) z56y%iHC1Hz(@;!)z6~W@-%y)%hEZs>fld^3Ykg^Bd0Ktp4HPt7;L8%%p!gG80KYWh z1sDdh4}QW=j0fx~v#nowZ$Bk*2!ZC;jn){oH@oQkw`tp=luA-2IVim0?-^pGjU{(! zl*+RYeC((kPo#HHvBSc?>#v_e=OueX@vWi@b3q3DA!ifjs=|>h|HRiyCo$CWa-i}E zopPNzjR%5hi{NA&|LSkCcMDBu7bw)!Sif%4M}n_tk7Br2$M0Aci9)jQf$_6u7(T$& zP&|F2$C4KK*=_jqKlBmD=WJ2C5 z4Xp!F=*UIqW>(zUS(kU29ro6SNZ0oS*?@1jRJ7kaJ{^6C9LWUfg6#QU~lwMHl9UXU*Gs;>jkw z5&{Uj!zI*#i!qxm<3R_ZDEWalk)L*3Wd_9V-SDr7M1~^^A1GNP+LSd0A2in2Zk+b1 zhiK#a@(nLVpj583m^N8#2;HE!FY1k=dHzXe1IsGnh<97|6i4$RI;NZhe!9()9R4EqmS$YbaV)t{spHe7oMG&A3vUB z&JZZzFL)T=AuDyg|9 zAJXQ6Q{KD&qeEVVPx!l zLt~qYBvqCaeEZ3hp5L@5eA~^3JZ%{dd@PxU+Nv4-{w^p(k79B#$Nb?D=WcA_10U-^ z=TipY1NI|J^D{&DyLaxDll+H#{U@WpOG!AbQYX<_q&};!uc=z}RZoxSRK?F>&$T6I zJ-TrY;noP&XLHucP9uSE-~**51Z>u)cdt|<@=l5me5zXhPex_#>xX7dn$qgjBQP1D zt7^XAA+BLe?WxKgZwepaGA*aYl{4Ob*Vn)bgawY&sL1;UGweQ;0Lv zEFy*X$Qn1H63%d6Mp|;&wBP{Wq84Z^JZ8tppR$Y5-8~8=9H=6a__RkJB=24scSc4q_i@=m^0Jm~>sfei zmKr2vOpoQ*>DzM3Rm05&?Jbh+_2f9r7@CZjFJV!3DuIHJK5M>h2Cl1?@xY(h3Glvk z;i&3-F9>$s*p*dB28u_f+`6UK2U5zc=BKNEuW|uwRTl}fGZK6@1=>W zYjZD|AT6kb7ZVV{r4Kr*V`y#md0ms~i*(h=jSPhY!gqp$ z{NrDn2)lF~gGA!r!lZ&zlU$P$t^>TA?9JMcNVDs`f5jBnmo3PFWjyG(Bs%_*s>_R~ zz5Aa*Waw=?XgkwwOwV5=UySWor>TEMB0gZ7?f&(1>gI?{v|$gXH2@zp)K)JY@tQgj z0S@MU_S~)WM-(d_W?JbWq$3+3gQQLve-KcWi^@9CzvRky`;)4SNJ1#91Gi$HtC5HgflT%%o(#oZZnzb}8t& zPLay|2gS*nG~L=*U6pbm@Azn99bju9y21cADvzGasfzB$kR$fdf{6mM)MUha6bt)L z@FK~kKn9o%T$!vM^*L-0LV9!`O$g)aYpXU+`$Y89XBiKIEl0cEo{@Zoh(uA5df5_C zE>7)Q87ay|MB)R7L!G(_8u8-eDG8^7tpa_o>x~cC_Xh*1lMmGEn`R7*xG;O~39GBF znEKA&R0sh&bP_#49pPQ4b*76*Abj`$0rT+fTr@^}<&Jpa@f)WPDwr8bs>`_$b`8j& z4%njD5ym&)oW@Ye-b!XxrzmjGugkltU>*Y&#jyvrHE5qRcE6PyI|5Z*gQQFWTXeff zs-g<0DV(W_oTJO!)fXMyc$nhWs}6^(hvw?M+U&FCH#b2{Z60LMwiu#cfq z7lsYw09!`!#d(-F+5#hdIr+HyZ~Otl>NS~XyoIaa3^`3p3l|URCH@-0vpzrLu7W1I zWKp*M;XG0urOb2?+{hMW`mG4aWfY<^4*KEKhEY{c-OV=_@K2VCGo8L zsKt+o&rp*RCABZj8Bk)H(d8_?EMvGi+*iz^T^sK(^PflKh)Cmvk8$k`2qy1wXp)& zdX-&Yr%P`MS}uP8S#jp>w=(y>S9Wc6Ls7E!h6GwEO@U^v1N3xoJ2#d+&}Cd=l_KGW z;^fNv2l2Ktt--+KNdzB+;%r736S}8(PE*t(5*AjLge{a^Y$nZ8sK(1|5r0(`)W`D*Nrq0jsv=z?_?;0wQF;mDR|A#9J^ zd%>A$9x6#E`zeR}7F;*~BE=6L>NHvS0Gf;QbnCF3P8DAxD5hl^HO&nPlAUk|tP~#Z zIuJV(`k>pO0#%G)n<_F$pj38aJ>xaG!NB9`BY#m#wR&wG{b<+XuLWNn6dUovk1eBl zpvBbj8t|*EFz1^OL@6cwO~i=jf4qOi=y8Hy0ux$IwE<-|#`iKOnrM?tWHbS7imXMs#)IiT7 zg0V}mVE}xKuPlKgyMvokWUXggPr#Pv#EJdprBRxfv2ak2z+XAHtKG)*`o-N&@y!>L zkT#`|b9qtj{Li0vlVlKLYJVk({8%;iox4{~hH=l@pHLzcAHY3cT~;*djX(I4dEoQ7 zer^8dv!;f6e`3+~yx#bL1Sl27d5kfz5PV)8`s@#OEe>=1wkE=_uc?IP&F2^cpJYp5 z;g>za8=<0!1guI_OTZlXfbJ7YwC&rk0xwwit84`xUO!9ZJHwuDe*6S4oz650euxU4 zt!K$q1p(WtSBeHV;+a!$-8m6t8PcG_pjF7>2a;kbk*UFZArWqkV^7e&gj}E<7L;6Bnio4Vs2@@Kjy_rYKfUmIKq<|xrpSL&PyqEe0W#*x)(^!Lm? z@5oc&*svy0pryuVw4@|c1>{^{YrgE}Mrf#u&d(`4Gd(YEq)%kvs4xol=H}W$odk^U zO;cqyh7h_G7#0u@!5HaG{)sV#=VpRt%5QBWiBnzf<;Jr6jU{)=Z`lyLUh7a5%$1WD zWu8_cI=j6U>;JeuqHM{sD@ETw=G?!jqAlwdB+yV-vsJwk+OBq?bl?m#^_{<-h+Yc! zuX#d1BNrdAwMM3Xbqb(!I!O6(`%;|o>)Zf*0E7430next4jyqA4sAAGEZVjReB8Zc ztU3t{d-ey>3r1Kb1Z`&|f@(7jK0s!C^N*~bE$&K5$rYpf)>Q{b`1a;{wopx_8EMuT zhv$2wtT{turP5=C&_{@Uc~jzU@L+F_yFyA`@CUF1>!6(69|9$RMx!+$o&yu z$+a{$T|Ty5odnocfm_SGvNbVDe)Fmg!W}Rgk39xOGT3E3vXr} z=&ys06LvqPsO*CS(7S^R!2~7Hd<)OcknzFxmus`n8`&cwmN6Tk`?swDTNIxA6}O`s zO72Q64WvA(dT`WNY(bFug)N!5gwO|q^4?sPLw3^Itg{d@6IhUUe2hCSGp;zYdEoFD zWGIr&0}0Dz^FUfGD5t6X0sRm93TKg!2iH8003*WnONHpzFpb^1P@M1pSAlt-JzrLs zt)eaK7MBDN`{~`Q#7U}ysw8M1<6imomYJVljoVpKtUia8tB0W+M6UgSQ4?~%W`ar| zk~UrVDg3@(NH}h&-;K{TD)76#+wJRK zzq}s5&)~(@DVu|>ckApy;wD~^Iij|SZ~S4$!co^w?#)lX6Rzx15seSfg0I9zhnQmu z7(MNsznzR;n)e_%=w^c^%i92afN=#H*xc;E7gd1<#b8FE-EAw(JQ zC-N}*EHmVp@2?*J-h&(GS!QABztw2CBw#XpfEb#a8n?|E;&Yw)Jjv%}{gnQYhzAuR zdK`Kd2`|H?5b4#fttaEc`Vv$E;V(c=q1;Qd9B_*|H!BSNadf~(g3@-UmmmfMk4c1l zqC9D9UCu?e{u_$#$bThw@b_=3$aMWRmfpjBMH~PW1y!j>;Ev{&(!|y5<`dZf2mq$Y z=7GKMk=6-_!1nHcWarz*!zM3pHgDW8yz=2iM+DGJfE2Tr6kb8NkGL{T|`TT*6Vo4(n z9-q~mUJ@`LKEQ@hkeMP*h{`G^71@dHO9Xr;rRK`)yx0+8(}~n7p+P&$E_Qu^NfV2A zT)I+oO@5k<{qd-rLjyZrGU}I1aCTEui12dG;m`9=e4T%Cyz>vuxA5GoM}ISkeE|pL z9Ql#}h>TrtI*HZTJ(tY`vBL|`Oq0z6H#cJ6!skjh57ZQBNN7R+E-+caDNjPTpo>b+ z0&*@XW3}5`5AYWHe{9eCjk=f-#mM0q5}JkU!}w6 z#5sWi5b(h2X_t>h!*7+AbcrnXML7@9O;FH60?PhI#qNsT9-;9E&N0a*gk#a-kA_d- zJ5S1fUwwYFW#$*hZHsT5IsjHHE69Q@3{Q6d@>6rg7<|y&*l=v~ya3}BxkN0&jDG(( zx@qpcgj1yZHCy(rz|!ZLrQ4yJmmI5toUgaeAH`uQLZMP%L0MNlBw#{(;CNMEJhXY( zbK<0b-6p>Nd!7J~!TIi@qRrw=%| zdO8x|$ueO0G(jRMi@GMj{OWYcl=y(LViR05@qPD&8TgnjkHv#~vCR=&PLiDjmU%L> zZa5Tq{Tj9PWGA|zDB0wWMg#%mJ90_knS;|y@cGiIgk)!@zVP%^oghNS&Ns-^gt1CC z4_sbUesfb5=7F3Glvs2U!Ul z8j*F6t)28iLv2L51Sk@Y@r6ludT`Bjd{F|wmQ8Y%eg+j$|F!q79U{nlHI!v zd+tXD44)<-v0w)MkI%ZIiv-My4^Rg(?_8Vo<{yJE(nrp87^e3u9fvV7xS(V!LIU|= z^izVuQ?o4!@Ac~R<0QigE`%_ZVAq(vW8{OL2 ziNbA(JhIL_NI}P9Sb>aPeM_${128F_XZU+BAGIk+YxczVhCTa3a-b@0$SN-`0W=OA zv7_gYFh4}-I`}|VgcHw9eB<{fSNB5fo>F|ks>UOMxa$zx4cG0V;{znX*6E4u-)U?@ zc(gmKw`44QApU07u%wCc0i(pBa_NXy#g`tNhJ+*LqzZcK$$PA2*Vj53yA0Ek3}`6b z)(g*;iaWa+%i$g}TV5lHME|l^4;gIYCu+Es)m23b9Y~TzCIu*oTbgVhxV8$}%I1NB z>*OeHZ8VVwi@mA3`oXc>*kK|gGOmmbmX1%z$OKP=(rIF2H#_BqqJ#wm6D}R`8XMe7 z+p@|ll7JH;>{u{jR1fv}BgJ3us!Mhqe8BWIH`Ws!!jM&q%ltR0zz2>P-S`MKA!vdR z2<#^(RfL)lEPSBo&8$^nbK?WPKliVnRpwqLa3E-$jOhN0Hd#Q>XKU&LdMS5 z*uU1p4+LHWcDJk2jy)6o2GN5E# z{x#V=5cWR%94$UYRXOEJo7`E|f{e>;9Xd;W6D zuCuU7FuCua?kAq{DJ1Kpwi4hKO=ivgD<(rSAwEY2m+VsbfceGC2-h!6Xa>vKu;x_Y z1H{r;SF>aOh)CQ(*90FR0iqDj?pqg$5h@lw(DuD8Sev==0fWHH2&0&iTt>JS{2+GA z{FY{60xA5^OYfClU(4>W9w^|2uxJ z#pQ;pB)mkm&p$qzg!pn&%pI>ORrFltX}aXfcVxH>Te2XprAWq2@_^Dqqz%=V*L8zW z5XW2ONV)1GUY)tiJ~WW&sL493G+Doq!@#GA1h?2W6lwPq&WRZaIA(w_#IYJ7tt(I3 z!ZB49oSK+@Xh3LAN^%}k@-@lcZjxPvK$;rrj&4?v&=d^?f?pD+V0BQ@oOO#D2}lz3 zGes(v4~B-~UwCe2`K_&lUjU9}{!n5D7@|&yk{PjHWd0YZug(Y)^__vyzMX)8p7aF)`>#F7wU~?Ag-C6yg z5T7i=N_I7Tz~u57f%2Esu!afQ$cEJ61H=MLMDm4W5f`7K9X^m31}x=dX*F`bLT}5$ z2b#aJMJkL0e86r8%s({ zZYhYLgaH8mbdp&%m8aXAwMp?$$Kd0Ir?>Ln{?co!i9UtJ0dJ5;>X?tcZ;wml6D7M& z<=uVM6Xu|V_7LTsC6_}=%iunDs*h2PG19n;3$p=12_(64*P2z=uj7sQ6jfvrj?Ol{ zd;k3%r$_gZK~KU;6n{ar9b*rmwmK~q!smihlQ4sUef`xBu>o-gB+$S~B;W%E z2k3=MQxTU6%EIzdZwN6Wcu9{cbel`6xsg7UjcV zJd~92WO+?js3!mcnR{i*wzfZ+Nn(0)b$+Pz>U=+t5e!;*Znntm# zxW7n=wOx~Sy5i1G)PEe1Ac!WyoWH^|GjJj*xv~`ZB%*m5O76hR7Pz*+SJ@K46M*Me z$yck}m|nlQba-pvnyst4N&r-seg7s&jTBjZl+3a+HfCqdT@xQL(Xu9Z=FpO%FGrj| zN#G?B3O?Z70$CUwXAuMuw8aN3jHZTKl0z!unhZQ6dSA8hfv)duf0aiFK9E;*WBtyB zqZGa8NMl0I^iZ4)01CJRp%&r4U-jUK94O%SM@mbQ*wp5nHvkj(oIn}JRDokoJDfnK zWbJ#uUCDK6yFL!&z+fDfppp((Py#BdBSg6edTUEbc^ta0&g{zk@v~W z|D@*H!pggQKvzL$Jaczn>_%wr^+h+eGKbh(8d~Z~nrrg$LE^8uG8@vj5HUf!xXG#>f)Apu$cDl3ZHx^Uj-&%w5;x8fjDf0xAv%s*Cy2RF_` zieNUQj>yFMD-#MnKqh=Q%L=n22qI{X50C*t?8mmuj}(Yt;e&9z%O6G#KH#A)$;(hg zpvv2Y7fJli6>Ot~MY@JHN=BWgigfTw(fMy>S8*Sh;L+x|>yj-BKCiMc1tkD%+Cr4W z&XUG1TVu6LV(i6N-rH-~#Hnb=5sG{RAGQE~K91oK8~kp;smW~jv!M^rRnb;hZb8S7 z+qQ^LqCf4x`#eZu!Iv-ceh5p4twy~iK&F&Cmyd6sI|PjQLSe!d|E#5U^oGaD^ztf`BuRVeR^8i0oD6X^-#$mX(i8 z9F0ttqB1!YIc`+Ct>>dYdm%qZ;#g;FFoqDmgg!=X)>CYECLG_b=ou&2XyWU?zjgkI zS;y2x`{i`xxNvCG>T&Oemmr~w;{(Fh>U8#+F4$V9dx>{u{z z>?^-Evhyn1(gz>NG5{jLBRT!O|5DK_BX6} zI2Vp(&H7V^+w88p<@Tt2#;v;t-(%&_o*cCTawHANaeU}!ZJrJH7a zrs!$L{eV3z(t0V7Oyn1BZKx!BW$~p&f*wZ%1QcIhT$_Eqwb6j|kWy1+rc*1&rKdXm zM7ZRQB?I65ww^@ysV@>F-!`?gu@R86G$-bB>_#;iCkO>Fv~wCYh9U`1 zvLe28KFB0A-86jw?*xr{VO67x1lZTfypupkxmC!8Q5Fpv;qWc!Ymm|KlQuU!UwKL z*vNwj#0Oyh!pxKfUn*lc0V41MD9*u)rfdBJCE#&HwwbK`AGGa~yFw6r9IydBfM{o# z(5gk4U`~}p31`jR{g&LNHWwq~yqnznOC$vO{T-4aGWl~g9KY_>X?-l44N6m>(D2B> z>Y7T>RqoLt2Of{GF+U>^A2`?Yoy#YbVqKQl_PIl`CmJJKGqoa- zZKf(U21+cE97i%WSnLSmT1ic#U-D5oMES(mPCXYFqfm0?hazgo#T=A#Js5Ra;+jyZ z()wNr+Oq2OIAV-_W-x`E15PwNj>tnrh_%+O8&@BnCO*zvW`3b4VG(|V)875t?Tg{( z*E3F1ouVZ*?@t*LMSg*S6h1tF9I7C!K?a3tJ~Dw&0Ca|X{H@bsvc zej18|4Zc@%eBhK1uqox*X^bnRK^ghtPYfPZfaVOq2Tln%4GE-&STVZq*xn`z%dqf) zk4ISlQ;~@ekPCqS%-%JM7!i2>hCTPAy~`%lR+i~6SrfJ(L5W3c{wiPk8NjdTeJ~_`u)%JD$E`D20!0p0{PzmrTL9KEDm1sG8)G zPWZqnB?n44b9mjXr6XUP()Uja-%D!vIf6>nFnr*Y04M>LN$AkmOn85KzrT-o@$sNN z)VqL%5BxpCx}J|%e1KG7MA-A)SfzVU!=L*R5ze8IBIr6H`d1F)Zbrr3Jv? zVqhFB#NJ7YWHN*J3FS#!fihZ=83YrOuGgj7s`7)Yrz>?e8T!l*_ADLWSg#E^xvnF$ zDi10Fl2&0rx_jj$TRwZ2PQVd#*@)M^{q!j;#F}j5TKFL76aW-p4Py#U?OJJ@Gx)pV zeP(|6KjZuSR_TMOx1Q*%UsrtKlof#*nRl;UjMqSy-ZKM3_LQKLE)KcveQ>-3b00xmx1AR${r37X_0`);|UG? zlTY-jvF}uLMMpuyr^xUITUwgSi*hpWTuVBCoyG;=60n7}EEnw{Dz1VBO^Y zO8>Ub9u#yOD9B{HR9dsMJla#Iu}LEb{LnL!uUwDce|q=oLu?3M*&$=&naI3z$65$|CGhEEeK$Gk-jG!>nf#YPa!yesgyJ`cBWA7Im$- z!}}$0&4O3$t&Q#eGq$L_*x^J22;QqnF%rQ#S;pXjKrz>(PIZ;Yb0H%(Th5U|9VbF2 zyC!g?GG#v*pCXIQAh0L^=r{;{{qirp9?w8FdSVpVS!Qc5aOKw3&Ljac%+ys^ptq95 z9~L~Nf2H|ZBGPDSZcACRL^! zKvzZfiW>4R49+MxGtJc^mE%|AT}-btlD)p*nzMCw=ffA`D@Tu$W2*4<)D9>OGJ}Jk z7GIcKoq7aAi(WzqQ@yRtO_vUD!(^}Mu_Y#X@|%B5JZWlz>o7^wYSxl~B>_tUmIN#b zXeNQk#|MZ4Gr-B{?{G3zs%uPr=daMNS`Yyl;y6^7pHP~(Cilo!E}tKl=I(KjvGa|h zbF)aT(^6X$%2H(0yyBM4t@5axLj!dRhxYC#=%h4Zx!k&~Co$XJ1@u3I(V!B-iIS^J zv-b9L$pL4loWoxfUs?#6K}%h+{@pOT1^mquVTSU!u+Pzw%=fP^v zl7J-vO9GYzED89QK&QY53=L}|NiYcGQKWIO9f@z!y{qxQh12!UN-YhwITuP2mZP7h zZHsbgtiBGSP-%;=ED4EEO|sYJUF}f0tygKnD*ckGx=$(L&`weTLLUsZTR1vlZ>k|L zX<6dhoS1_Vv&{^;SLL-ERFe;_#jDQFvJ5Dz$*vZhzRoj@oxwbazEX2z>F`v0q zS3d_XJ~fr0%Pn=K9h_>m^?=41ONQFM3*RT%8KZMh8PR>3Duq0hg=-H~kkqBn&z0TW zn0s`vD??Fwbf3JqkpzJQ8i-O3bblmYBiJwP)}{Ghyr2{ukTin`NsA{rk|*ElyCnfj z0+s|U2}FzpIuSk~5}`CdW6gwqN>z`qy8p|vk*|^PH)3YZkd8vUT$6bU;^piE{r!N0 zw&(=>VH}~$+Z#*nk`YKz?D${9H#x`*#sU}W3vQSr!D`?^sJ{w0$i9Db`KZ^GKB0r3dW`3~B+rUZ zQ!jk$PD=uo1S|O_`nemK#L&;Hw2m>hhI~h-NM!r3>2ua7S|Xic}Xko z?3P J$c%%I@^Z|_XJqPWsFK7T_r$z<{+lUdAUlF653l1wt+oFp1Gi4N|&#+ay4 zvk4+9h=>Zf;)05b8w$z}B8vh7;s&xQ0t(8$?>jWj(sjP4=}3@8>4oa*?#I*T*j-fB zz4!OtI_Exh-zCnzr9rI^9fh~cS3NC17;=0CeESkQyCmKkr?&Rw6hVu?t>%EUJogbc)zmZiYnI4TTL^fx{`h zTo|+n;S0*D%g-!{tgO_QGf*Gk2*Lu8*r&bb!SHt@hQ%6nn+vY?zQjjL*Y@iB!@5w- zldvVAR0cWW5KP!AP$>gML|5I~-BZkgm`yC@;wJKd?^S!kfx$rt|-qd?mn8 zN6vne011!)36Owc5->)6081d_X#2WLS0cdE8MPT1i!kJDRux{(@G6b8d{!FN zo~p~KZf&Kv6&H}D-LoN$Hy+hri2+$MCScFaAQj_aoSSYF1R+dto=u#BC zWXPpGR`<#UzFEnopX={=$|{CRaHI@zcbe!7 z)PeQXF_E5ona$LAX9q_{0wh2JBp_V^#;Xs&T-MSUcG5``i7)M&9i@?%pLr+}+ zzC%q9L(5}rpIvqNae|}vs?7cgjs!(>UUZ)Yd;frj$A2<|XHMk}r-n?Qrrd~@f><~& z4e}|8mzAd?M-aS{e*08EXe&)bg#%P;C=Ofs_=c*6ke_wc&|@6#UocOwE6`e!P@jIT zEZSP-yo7-5(#SQnsmGPY4CKwjy_d0^hdKvYNwFGaEBfWLQS1NvCzd)emWjY|kN^pg z00|f#0i)IjFh^TUW3c*l)0DdiV@DxNd&bSnitcX1GplGlR=VpvsJ(N1z`A>oWj@x+ z$llYK6$B3-mB$gbA+WDd8e#F|nthOKdryF)PC>wYy!0;)Sw8TCf(=-bqZN21_5I)t z{^Qu-emB=vA7BUwUqJXVvM?c0tE!$sf!{2oXsx?@T3O7XOD38%q|*=_{L-$6X;9}t zB@Tj*Zf2-WnU{BOd^FOd&-O|b`iGb?L$yfZb*fF(vq1Je@ zM#c+$yxcDcnA^LMAL>iK->izOc6DiIkO{T^o(GD84Rxj{$FVK3RIS0PPDZ*?#2&X4 zU9U?!TOMOu;6F#z+k$|3*iflYhd))C7Oqel^hiRNbjsUPq60L@A%=$z&uP$MTZ#h- znUh^10TLhq5->diCZG?H{idn55)xs}gqN@YQR{hLT6J+ zy((_m%WODHdpPFzRu3M|`6F}=mi7pM7$$^XS%8s34;6~T$=h0Pg?czH{z$C{O?C3xFJJa{w!qUm)XjOE1W14cNPq-LKm-CNp%1`OXsoS3 zVj^TPRe#ws%5L^s*Md&8H8+T05QA=_CvG_jNqc&W13z9q_w(wJ&`-#ehOD5cq)P zorTWE;+n*RL-_kkNE!U9U65fZ{0FT4`<7}z=>n8yLtsH`;WY$I)FvNA)d%br^pOP^ zh%$jIiWwmCxuenKSG9rwN505&`)sC-(LfwnO!z%=pi&%2{^@21Nq_`MfCNl}fXV0s zSW_ht&N!^lNFqFkoGPIw92#qeR~FbLX3tQAL~5hDy1S>~awGlygPtCm6^E{W&p{}ABxx&^>eoYf` zF#g5UTb7pRqYxhdkpKyh011!)3Fx1IDd_{yhD4|;&ee1m;W^7MUPka_bxEH74JY{? zprRSd0APLHZ*eWqP#9-w#SDg;aXqp-AMrg_U%jG%IKVS? z#^L+&{H&qw&*LOO0wh2JBtQZp6EHD-0J^_A8ab}C{NfK9EN4&#)@%3bvb_5u8_E!y zQ*_Ilaxa%$HkYy{7=GUh0~c1uJEOvy2^KRLYWgAGqP!r>Ymd3Q<&jm7-r6q^b6{Rs z^k}I2^Ee5R011!)36OyJ1WZpKfU!y<`0lgPAn7UAHRhkc0C$L@>^tI{%ivlRgznao z`0{9Lc;B`&oy;bK%4y}sc=Kv!$E!I@y>I;<>@oS6iNJ+;dt_oNY1i32z$ja(0T zXA&R*5+DH*AOQ^sn4~`F;iSxH6O>*s2)3D;8u?X>_GYl?$@RQZzxNPq-L zfCQvKz;yKi=tCk@1|GE8VD@JX);K7Qfa+=SVV=x;`s|4;2&g7j6~D*eBmzRL>odK( z<&DoCqv@O>2rZ3uH-b;^{(hVW4-PItsDJPgR!BCT8N-p1011!)2^bgwlhy}HTcJ{G z=m|&7Bm!Q8ZkqL0`01TBWd#OicRh4h=xi>nyzVG9-=U}UML$N<)+;_xASMqiJHXr|I#B4BF>_Y zNbSIz^9Tu$011!)36Ow92v8sN7(&+480ooh%l!8=lL)KFjy_^F`)=IDPI(kG1=b-N_lFM3Bq5}@CnXc(GG78UE)Vck*Pv6_}I|+~g z36KB@kbu+(P#-+D2$uFYFS_qs`l-gtAIHTXT?;(U8q1G~4)MRBKv}WE3yTL`m`mcI z_muJ&ThwnDVgM$07(PV})#Wihha47tsOi%&dgszlZiTobs@df5alj-%0wh2JBw%O+ zs1N#B4DJ)y132)@Wb6lMwhpqMI_BcBEyWMh`rMUY`x6klI~p>53jF6tLJd65Q`Fm; z!oUTxvXuUvHr3xqVp?!N+26%_y+&dDc#h1+jdodWb|*F%w=z|V95)G&011!)2^bOq z>Vqe(g&2Z|sn?EgTx2o+Ma?7vsw14RU6gh$R4!|M^4|RQ8v#W}b4|)IDW)^>o?3l- zzo6*;t*@s0O@QBBN^~HSm}*wx08bE}BRoxbrc9S2M@|AHKmsH{0)|F_`e1;?;7w7Q zn{jT(PnwlRz?ulDPvL8H#mj|xjRw%|Js@%#Xn6Uw;CYSOEoJAN$5NjF)H95@M(011!)2^b;)>VrY8CJ3n9q;Y8k)q2Wm z(jSr6=wa%0)=(RiG0IqX)aUng*JF^P3b721Rf+tdpNDqSRx};kn4~8~mOJnWjGrKm=`CpCSpJF57z|WI!g`Q>5^5B>S z1?mzPg)Hs${nzi8eBbHl&){7(jicB+YpSid7IeaS)kJNkz5Tp*E}z-WJf@~GYdA_0 zAOR8}0b?UTeehI^cFJYfgHG&OF<#@f5^AW~&iK13Xqg2P2ErDE?uM*DX#^rDor@Hm zrW-Ya`276L#K1!~Hq*vvJmC?kuxI6XR99vm(}A;{M@WDKNPq-Lz#s@vA3V!USTtqa zig2@8pmD@9mRbl}K5n}xDblC8zWP}Wn%v*J+Z!ulH|clhK-s$Yl&XZiCP%+#z&#mE z%i_a4UDwUlI20N49Cg#&HZIJ#b(yJ(OmiY})FeOxBtQbjL4f*T7(&b^nwh=eDo3qpJ4y`tbH`jrUzKGR!@u0PQ+)A)gCgY1+zzXR)S zXTGV;^hUse-~M%sMmCLE!%>m|36KB@7&8ItgW*~ie%X}~XPvh#`attFRL@2ND$v6F zf^nOD!6Tn&eTG+__f$Pfgo3~Y-LksAy)ydmaCoaK$-NqIZ2wP_wAnU5y$~eqiaNKi zxxUKip>cpDKmsH{0wiGc1gHP;Vbo0VNzZ_IoLj1BcU(r;e!-2S7+h0jz%8NPD|Ev6<#`gV183}}Q0NPq-L zfCNZ@1PqS=^?{l;Qx#Ag#E*R zA`uWEU3c%Sk&^8{ECdI@3nH|Vgf-Rys8xx7M+1oy4WQ=$VJYbw<5h_PLv=xi&GwbhS4@S7#8 zyk~4c2aE?(x4x<*F~a+#-8YCO)@JrX;BJ}!Ziw5~no^dN8vvRINPq-LfCNaukO@#9 zXllK-=6a+))!NrcxshN$_nm-)*7t8;X>V)Rv^z#|ouFtdPc8_UE4D=NHY<&?RCLLV z0^$&Z5QMho1~?S??zOa=^_Diu0N1K~if)Ctx3@M8(H;+z011!)36KB@7%Bnk11&74 z@-^~s`a!F_MvvW%c7Hz(<=6`DCo8(Uwdj;#Un+FTtKxTytPk>irZwe+8#cJ7_8yS| zx%cA3PB?1sP^2u3JneO_-RAHqViMD*Qs*B@fCNZ@1W3S82~ZzsX*oe?s49*0+_!V- zr&_*~#pP=z{Ql_rImm8QS@cNDei`cJf*`NSDhmEqM2TQl9J<0-GZ#U^mgPT)3vfGR zIo;y(7qpzB$Z-S}d*%EA)L1su3C4bt011!)36KB@Jc|JJ!LtYr=kItwdpGXl3EQu= z3|dw#-!_>2#lvY;YHUzLb@^~wH?nh3QMo?TTeMuK1%5Ldvo9DKLktI@26dIiNl||8 zTbHey{F;`^0GC^R^~y=RCHJm}Gf$E6%@&S`1W14cNPqP!F2n>&E+f||vW<$dh2TA<^4c~^R`ZA;r27a5&@n?-^*(rNSlQky@N7nuB*CtJuL8$ z&9;T_Yd-^V2c$W2wVH*pAM!S%Qc-GP<*6h<0wh2JBw%6$s1I~)aIDetGZXy}tlzd! zt4hngi#zNk>|FXu@X^hg@e!>}CR5;7P&DOSE(}^UauNYIZ+aA_Yy0czeuB{2RG%3i z8F*-;(~^JpP9AN(VB$fZBC}S0W|E#p#b!x>1W14cNPq{bBtmLb*7L!OSspyi|XPh4)iBRA_w?4y5=r;V4zdgzT$#E|p-?nS{ z*xm`F(&KnidFwOp+A zUXHx;dw-Z1c527{+tH@rafHZ#hD_h$kY&2vMJVu}Q+wy6p%*+*c@seyKs6$*5Rwb^ z&J%6E;66x$8hXN^EH`t+9uD4^1W14cNPq-LK)M8|4@THF9qnyMZREaX*#@&eYqM(W zdo5G~)`Rdk!kuf&3rBbadcM7)Ti%p&3H8f#l+nnnC}de(+L>;7qn-z*Me|SwHDv{e zKn^^-QHRO^wGB|o}c1bgS?akNPq-LfCNaufC*3^h+sTHz$!k{!x^vs z%|Cy>?@C{r?<)6j?>!btk-im$4~@90njmzwm8VoEx@ftPkncUUEZVv`H^Ojt4!XNK z%ku6gMtFPeTCJ-HWYr{u=-l_?mr>{T*BHCv6yb?y6C^+aBtQZrV9*4p55zK`qPq*O zASgVmlLV;035&6#HqCnLtiy`y7fuyr-!b0Y^g?%g1D5ucH?|jtEYI^YQ_JHB6_QKB zf2dB_FRMxy%iub0r&BINZEaLKJH2J8?aViSn*crax3&2Rp}A%LdzhII5@Wi%yL8-d z-i`!FfCNZ@1W3Tp2v8r0YB2%D43GfzafIXOz3PbZO)6TNjh8>WmR}#alX&grwRo#lwz*9YKLfpmcnaYZ8hTcR7Wkrm8h|% z9Lh54+`c30=U7d8b)e}rKQeX{=HY4k?=UBu>y35J=*SYh4GE9{36KB@m<$2x1JO;5 z6<<|x?iDYW!)s@*{qkka7k7ibIJTVl(%w}Qk>nCiM~IF#RxffzXREB@ZsWs{y1VXG z341Hz?8{^A%42NGqSoS59=i$K4Ar*}Ko&IRgv)Cm3JSw}Esn^Q;)nNcU-m+-Tm%_d zeEx!Nr^?!|Ucn5E_CAQ&DEdRd21$SfNPq-LfCQvVfcijBwt>45+(j}bcuAN%gJ%1nqd*1e^tA?DvmfCNZ@1W14chCzV( zU>J}_`jocjdbk522ddrdw?;xGAaAAZj5kp3>XQ3TB*iRwlun^A(l#Cb{UHmAv+t%v z2Zo(=I<{e+&9v7?Vh$h(*?#Uj$X%Ko<%dek!|xu?Bmoj20TLhq5->Fa)CbbAIJ`=b z1NB9VwNde0@9$*^^FeS`49p+6m?PS$v7CFZ(0B00qcWV}c+H+-w%w&wF-BBv5vgi@LkF=Q` z*ea+f$hw~pb^XFgf0qreYiDkr^S>jf2~>Ah#Th8QiKq;;F&?ia0TLhq5+DH+CO~~4 zZR7W#It8w+hZ| zTfS@g*tK8&&q&Jx+#kxoVbO;wsr011!)2^cZ~>H|Zt9#jI}=EsM5p4;)$ z&ZVE|zFxu*S^-PWEj^nG$dDT2b2v37FemL+O<6%lyUY-sV!G&j^B?@)lt zh6BG$w)*Oo-W8$(1=DA479Sso?pSyAT-v%xlNBqdxQ8v@YIIo&;%Kp2H$F^Jxbi=Fj z?BuH@kM1>8mvwb^7zD=Qce1NP4zD2;n1duj{eU?CV;7Ft!Q*SsiqEa5{B^`>57^zo zz7FatqgVp+)IPdIsVOF05E%eO*u6f9Leg z$D%nM4O|YxzXh+(_x|t&Dl5Pf2{}{aLp{=OT*^zo4ab|Nx=O?HN0PUh%mxCU{?u?F0{}Rfu7>ocIS(7qI;$!gKvvw;2Bdw2R~7kN5xd)iLY&o=!htse9?n z?pVJgH-b;chkM?=8k}+Sa#m6dlK)`AUQv*ZRWQ7j@M*5EZf|Yw{U9E=9~!x=rT4Gx ztxe5!Rk*6Yx~#UMsJtKxcgxGTjf}17H!t0Zy?`)pvQ;h`-?aUN40^B2m`y>Z^MEY-L_)W1^H$5KC{>X5+DH*AOR8}0TUrWePE=9 z?&|79bOI`KdF@_}6gQh@zNyV}mDh?xKpA*E{crn!o^*cKYS^wQ`z{J980ie&ZV$Vr{1W14cNWh2*P#+kvafcY%6GFj! zs{Pz|^q3oUL>J)Fyg5R(?dQD%r!P1WakpTINy@_{KmsH{0wh2JdLux6pf~jTZx})$ z_g?(Xi|&DkZS`2~OPZ^A9rtSNC{$A0{rxy_Ms2m5A?`V8H|a#A|7U$`d|PO6Fkt})ro=x8Mh*?oIl{b#{wCI92b8iwG62`Ua&taA*)WB14EE>wVLJa zyyl9R3lgk?GeeF|@DbyXNq_`MfCNaufCx|@7?80<>8h-?sqjHcQlxL_3CFVzE8qs> zu;{~elm4ia^|C44WZk4!9lrkXp!rm!XbnB-loaJx_#hQjMX??mApsH~0TLhq5+DI> z2~ZzsOVDVqM`dPI8OynQGcm#&1(1>c=-7sNsMTdV;|<0u^c6a*$2|`w@ErmluifTg z1!8dAs;??B+R4FzkpKyh011!)2^cQ{>I37otxiWKAXuR^CmprAuKFEC0W$Zk%amIS zU;oQy>KId#3#hS-O3QE@0s(M9^u|^HqwpO9A5hXMcHWExNPq-LfCNZ@1jHsleIPb* zV`vZY3bhqQJzEPt(cXuGk8bwd{-c}Cg8e^DGCsx7s|NP}GWqz%Mdx<>bn%#djIS#k zhd`jNqKNSX#xSQj1`;3v5+DH*Ac4mOs1F{K;QyKv5QOIX>ax81*(q^}5x*&hW7hNW zhJDxa&$cf3r_Ho6YbN}@uUn1;zpt725;g|5Eqs6X^06-FQ=U)*k-jKfR-XT$rJ+W1 zP`r`^NPq-LfCNZ@1SC&@`atp~GRO}0D2CFU3}o?yOHx9(C$@@V~ zhOv%|Ken6w4=l+M|GawaXb}{{>T#pjO@0k6Zl3eD(>EWhbb#B&g&vM8{r0azNOp|R z;oFzar{4%i00Gs2LC!sPngmFI1W14cNI*LR)Cbz}r=#c%Z~x=8g%gYt4s3=vr=>KB|J!s>GO$BjSWhP4jAflC-y?0 zlVh@yV)8Q+i?Z%im*yi86C#HhC}5cLg1sgI5+DH*AOR8(l>qgDsJPh}36KB@kN^pg z011!)2}qg%^?{_#!_JWa36KB@kN^pg011$Qs064FM8(aWg*fCNZ@1W14cNPq++O@R79(&l03NPq-LfCNZ@1W14cNI+Bq)CZ#CW@98k z0wh2JBtQZrKmsHnX#&&-k~R-JM*<{30wh2JBtQZrKmwu?pgs^4Hya}X5+DH*AOR8} z0TLhqNfV$xkhFQ&IT9cN5+DH*AOR8}0TK|E0QG^WxY-y9kN^pg011!)36KB@NSXlk zfuzmD&XE8KkN^pg011!)36OxO1gH;0#m&Y@fCNZ@1W14cNPq-LK+*)L43DsDDL0wh2JBtQZrKmsH{0+J>`eIRM`uyZ6p0wh2JBtQZr zKmsHnDgo*PQE{^|5+DH*AOR8}0TLhq5|A_j>H|rehn*t<5+DH*AOR8}0TLhqQ3+5V ch>DwykpKyh011!)36KB@kbtBK{O))E4', ''], + list(range(len(human_vocab) + 2)))) + inv_machine = dict(enumerate(sorted(machine_vocab))) + machine = {v:k for k,v in inv_machine.items()} + + return dataset, human, machine, inv_machine + +def preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty): + + X, Y = zip(*dataset) + + X = np.array([string_to_int(i, Tx, human_vocab) for i in X]) + Y = [string_to_int(t, Ty, machine_vocab) for t in Y] + + Xoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), X))) + Yoh = np.array(list(map(lambda x: to_categorical(x, num_classes=len(machine_vocab)), Y))) + + return X, np.array(Y), Xoh, Yoh + +def string_to_int(string, length, vocab): + """ + Converts all strings in the vocabulary into a list of integers representing the positions of the + input string's characters in the "vocab" + + Arguments: + string -- input string, e.g. 'Wed 10 Jul 2007' + length -- the number of time steps you'd like, determines if the output will be padded or cut + vocab -- vocabulary, dictionary used to index every character of your "string" + + Returns: + rep -- list of integers (or '') (size = length) representing the position of the string's character in the vocabulary + """ + + #make lower to standardize + string = string.lower() + string = string.replace(',','') + + if len(string) > length: + string = string[:length] + + rep = list(map(lambda x: vocab.get(x, ''), string)) + + if len(string) < length: + rep += [vocab['']] * (length - len(string)) + + #print (rep) + return rep + + +def int_to_string(ints, inv_vocab): + """ + Output a machine readable list of characters based on a list of indexes in the machine's vocabulary + + Arguments: + ints -- list of integers representing indexes in the machine's vocabulary + inv_vocab -- dictionary mapping machine readable indexes to machine readable characters + + Returns: + l -- list of characters corresponding to the indexes of ints thanks to the inv_vocab mapping + """ + + l = [inv_vocab[i] for i in ints] + return l + + +EXAMPLES = ['3 May 1979', '5 Apr 09', '20th February 2016', 'Wed 10 Jul 2007'] + +def run_example(model, input_vocabulary, inv_output_vocabulary, text): + encoded = string_to_int(text, TIME_STEPS, input_vocabulary) + prediction = model.predict(np.array([encoded])) + prediction = np.argmax(prediction[0], axis=-1) + return int_to_string(prediction, inv_output_vocabulary) + +def run_examples(model, input_vocabulary, inv_output_vocabulary, examples=EXAMPLES): + predicted = [] + for example in examples: + predicted.append(''.join(run_example(model, input_vocabulary, inv_output_vocabulary, example))) + print('input:', example) + print('output:', predicted[-1]) + return predicted + + +def softmax(x, axis=1): + """Softmax activation function. + # Arguments + x : Tensor. + axis: Integer, axis along which the softmax normalization is applied. + # Returns + Tensor, output of softmax transformation. + # Raises + ValueError: In case `dim(x) == 1`. + """ + ndim = K.ndim(x) + if ndim == 2: + return K.softmax(x) + elif ndim > 2: + e = K.exp(x - K.max(x, axis=axis, keepdims=True)) + s = K.sum(e, axis=axis, keepdims=True) + return e / s + else: + raise ValueError('Cannot apply softmax to a tensor that is 1D') + + +def plot_attention_map(model, input_vocabulary, inv_output_vocabulary, text, n_s = 128, num = 6, Tx = 30, Ty = 10): + """ + Plot the attention map. + + """ + attention_map = np.zeros((10, 30)) + Ty, Tx = attention_map.shape + + s0 = np.zeros((1, n_s)) + c0 = np.zeros((1, n_s)) + layer = model.layers[num] + + encoded = np.array(string_to_int(text, Tx, input_vocabulary)).reshape((1, 30)) + encoded = np.array(list(map(lambda x: to_categorical(x, num_classes=len(input_vocabulary)), encoded))) + + f = K.function(model.inputs, [layer.get_output_at(t) for t in range(Ty)]) + r = f([encoded, s0, c0]) + + for t in range(Ty): + for t_prime in range(Tx): + attention_map[t][t_prime] = r[t][0,t_prime,0] + + # Normalize attention map +# row_max = attention_map.max(axis=1) +# attention_map = attention_map / row_max[:, None] + + prediction = model.predict([encoded, s0, c0]) + + predicted_text = [] + for i in range(len(prediction)): + predicted_text.append(int(np.argmax(prediction[i], axis=1))) + + predicted_text = list(predicted_text) + predicted_text = int_to_string(predicted_text, inv_output_vocabulary) + text_ = list(text) + + # get the lengths of the string + input_length = len(text) + output_length = Ty + + # Plot the attention_map + plt.clf() + f = plt.figure(figsize=(8, 8.5)) + ax = f.add_subplot(1, 1, 1) + + # add image + i = ax.imshow(attention_map, interpolation='nearest', cmap='Blues') + + # add colorbar + cbaxes = f.add_axes([0.2, 0, 0.6, 0.03]) + cbar = f.colorbar(i, cax=cbaxes, orientation='horizontal') + cbar.ax.set_xlabel('Alpha value (Probability output of the "softmax")', labelpad=2) + + # add labels + ax.set_yticks(range(output_length)) + ax.set_yticklabels(predicted_text[:output_length]) + + ax.set_xticks(range(input_length)) + ax.set_xticklabels(text_[:input_length], rotation=45) + + ax.set_xlabel('Input Sequence') + ax.set_ylabel('Output Sequence') + + # add grid and legend + ax.grid() + + #f.show() + + return attention_map \ No newline at end of file