-
Notifications
You must be signed in to change notification settings - Fork 174
/
demo.py
executable file
·223 lines (185 loc) · 7.75 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import time
import string
import argparse
import re
import PIL
import math
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from matplotlib import pyplot as plt
from matplotlib import colors
import cv2
from torchvision import transforms
import torchvision.utils as vutils
from utils import TokenLabelConverter
from models import Model
from utils import get_args
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def run_model(image_tensors, model, converter, opt):
image = image_tensors.to(device)
batch_size = image.shape[0]
attens, char_preds, bpe_preds, wp_preds = model(image, is_eval=True) # final
# char pred
_, char_pred_index = char_preds.topk(1, dim=-1, largest=True, sorted=True)
char_pred_index = char_pred_index.view(-1, converter.batch_max_length)
length_for_pred = torch.IntTensor([converter.batch_max_length - 1] * batch_size).to(device)
char_preds_str = converter.char_decode(char_pred_index[:, 1:], length_for_pred)
char_pred_prob = F.softmax(char_preds, dim=2)
char_pred_max_prob, _ = char_pred_prob.max(dim=2)
char_preds_max_prob = char_pred_max_prob[:, 1:]
# bpe pred
_, bpe_preds_index = bpe_preds.topk(1, dim=-1, largest=True, sorted=True)
bpe_preds_index = bpe_preds_index.view(-1, converter.batch_max_length)
bpe_preds_str = converter.bpe_decode(bpe_preds_index[:,1:], length_for_pred)
bpe_preds_prob = F.softmax(bpe_preds, dim=2)
bpe_preds_max_prob, _ = bpe_preds_prob.max(dim=2)
bpe_preds_max_prob = bpe_preds_max_prob[:, 1:]
bpe_preds_index = bpe_preds_index[:, 1:]
# wp pred
_, wp_preds_index = wp_preds.topk(1, dim=-1, largest=True, sorted=True)
wp_preds_index = wp_preds_index.view(-1, converter.batch_max_length)
wp_preds_str = converter.wp_decode(wp_preds_index[:,1:], length_for_pred)
wp_preds_prob = F.softmax(wp_preds, dim=2)
wp_preds_max_prob, _ = wp_preds_prob.max(dim=2)
wp_preds_max_prob = wp_preds_max_prob[:, 1:]
wp_preds_index = wp_preds_index[:, 1:]
# for index in range(image.shape[0]):
index = 0
# char
char_pred = char_preds_str[index]
char_pred_max_prob = char_preds_max_prob[index]
char_pred_EOS = char_pred.find('[s]')
char_pred = char_pred[:char_pred_EOS] # prune after "end of sentence" token ([s])
char_pred_max_prob = char_pred_max_prob[:char_pred_EOS+1]
try:
char_confidence_score = char_pred_max_prob.cumprod(dim=0)[-1].cpu().tolist()
except:
char_confidence_score = 0.0
print('char:', char_pred, char_confidence_score)
# bpe
bpe_pred = bpe_preds_str[index]
bpe_pred_max_prob = bpe_preds_max_prob[index]
bpe_pred_EOS = bpe_pred.find('#')
bpe_pred = bpe_pred[:bpe_pred_EOS]
bpe_pred_index = bpe_preds_index[index].cpu().tolist()
try:
bpe_pred_EOS_index = bpe_pred_index.index(2)
except:
bpe_pred_EOS_index = -1
bpe_pred_max_prob = bpe_pred_max_prob[:bpe_pred_EOS_index+1]
try:
bpe_confidence_score = bpe_pred_max_prob.cumprod(dim=0)[-1].cpu().tolist()
except:
bpe_confidence_score = 0.0
print('bpe:', bpe_pred, bpe_confidence_score)
# wp
wp_pred = wp_preds_str[index]
wp_pred_max_prob = wp_preds_max_prob[index]
wp_pred_EOS = wp_pred.find('[SEP]')
wp_pred = wp_pred[:wp_pred_EOS]
wp_pred_index = wp_preds_index[index].cpu().tolist()
try:
wp_pred_EOS_index = wp_pred_index.index(102)
except:
wp_pred_EOS_index = -1
wp_pred_max_prob = wp_pred_max_prob[:wp_pred_EOS_index+1]
try:
wp_confidence_score = wp_pred_max_prob.cumprod(dim=0)[-1].cpu().tolist()
except:
wp_confidence_score = 0.0
print('wp:', wp_pred, wp_confidence_score)
# draw atten
pil = transforms.ToPILImage()
tensor = transforms.ToTensor()
size = opt.imgH , opt.imgW
resize = transforms.Resize(size=size, interpolation=0)
char_atten = attens[0][index]
bpe_atten = attens[1][index]
wp_atten = attens[2][index]
char_atten = char_atten[:, 1:].view(-1, 8, 32)
char_atten = char_atten[1:char_pred_EOS+1]
draw_atten(opt.demo_imgs, char_pred, char_atten, pil, tensor, resize, flag='char')
def load_img(img_path, opt):
img = Image.open(img_path).convert('RGB')
img = img.resize((opt.imgW, opt.imgH), Image.BICUBIC)
img_arr = np.array(img)
img_tensor = transforms.ToTensor()(img)
image_tensor = img_tensor.unsqueeze(0)
return image_tensor
def draw_atten(img_path, pred, attn, pil, tensor, resize, flag=''):
image = PIL.Image.open(img_path).convert('RGB')
image = cv2.resize(np.array(image), (128, 32))
image = tensor(image)
image_np = np.array(pil(image))
attn_pil = [pil(a) for a in attn[:, None, :, :]]
attn = [tensor(resize(a)).repeat(3, 1, 1) for a in attn_pil]
attn_sum = np.array([np.array(a) for a in attn_pil[:len(pred)]]).sum(axis=0)
blended_sum = tensor(blend_mask(image_np, attn_sum))
blended = [tensor(blend_mask(image_np, np.array(a))) for a in attn_pil]
save_image = torch.stack([image] + attn + [blended_sum] + blended)
save_image = save_image.view(2, -1, *save_image.shape[1:])
save_image = save_image.permute(1, 0, 2, 3, 4).flatten(0, 1)
gt = os.path.basename(img_path).split('.')[0]
vutils.save_image(save_image, f'demo_imgs/attens/{gt}_{pred}_{flag}.jpg', nrow=2, normalize=True, scale_each=True)
def blend_mask(image, mask, alpha=0.5, cmap='jet', color='b', color_alpha=1.0):
# normalize mask
mask = (mask-mask.min()) / (mask.max() - mask.min() + np.finfo(float).eps)
if mask.shape != image.shape:
mask = cv2.resize(mask,(image.shape[1], image.shape[0]))
# get color map
color_map = plt.get_cmap(cmap)
mask = color_map(mask)[:,:,:3]
# convert float to uint8
mask = (mask * 255).astype(dtype=np.uint8)
# set the basic color
basic_color = np.array(colors.to_rgb(color)) * 255
basic_color = np.tile(basic_color, [image.shape[0], image.shape[1], 1])
basic_color = basic_color.astype(dtype=np.uint8)
# blend with basic color
blended_img = cv2.addWeighted(image, color_alpha, basic_color, 1-color_alpha, 0)
# blend with mask
blended_img = cv2.addWeighted(blended_img, alpha, mask, 1-alpha, 0)
return blended_img
def test(opt):
""" model configuration """
converter = TokenLabelConverter(opt)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
model = torch.nn.DataParallel(model).to(device)
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
# load img
if os.path.isdir(opt.demo_imgs):
imgs = [os.path.join(opt.demo_imgs, fname) for fname in os.listdir(opt.demo_imgs)]
imgs = [img for img in imgs if img.endswith('.jpg') or img.endswith('.png')]
else:
imgs = [opt.demo_imgs]
for img in imgs:
opt.demo_imgs = img
img_tensor = load_img(opt.demo_imgs, opt)
print('imgs:', img)
""" evaluation """
model.eval()
opt.eval = True
with torch.no_grad():
run_model(img_tensor, model, converter, opt)
print('============================================================================')
if __name__ == '__main__':
opt = get_args(is_train=False)
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
opt.saved_model = opt.model_dir
test(opt)