forked from GanjinZero/ICD-MSMN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
executable file
·208 lines (169 loc) · 7.93 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import torch
import numpy as np
import json
from model.icd_model import IcdModel
def create_all_config(args, train_dataset):
word_config = create_word_config(args, train_dataset)
combine_config = create_combine_config(args)
decoder_config = create_decoder_config(args, train_dataset)
label_config = create_label_config(args, train_dataset)
loss_config = create_loss_config(args, train_dataset)
return word_config, combine_config, decoder_config, label_config, loss_config
def short_name(path):
return path.split('/')[-1]
def short(x):
if x.startswith("["):
return x[1:-1]
return x
def generate_output_folder_name(args):
word_lst = ['word', args.word_dp]
if args.word_frz:
word_lst.append('frz')
combine_lst = [args.combiner]
if args.combiner == "lstm":
combine_lst.extend([args.num_layers, args.rnn_dim, args.lstm_dp])
if args.combiner == "reformer":
combine_lst.extend([args.num_layers, args.rnn_dim, args.reformer_head, args.n_hashes, args.local_attention_head, args.transformer_dp])
if args.pos_embed != "none" and args.combiner in ["rac", "transformer", "fastformer", "reformer"]:
combine_lst.append(args.pos_embed)
if args.pos_embed == "axial" and args.combiner in ["rac", "transformer", "fastformer", "reformer"]:
combine_lst.append(str(args.axial)[1:-1])
if args.layer_norm:
combine_lst.append('ln')
decoder_lst = [args.decoder, args.attention_dim]
if args.xavier:
decoder_lst.append('xav')
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
decoder_lst.extend([args.rep_dropout, args.attention_head])
if args.att_dropout > 0.0:
decoder_lst.append(args.att_dropout)
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
if args.head_pooling != "max":
decoder_lst.append(args.head_pooling)
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
if args.act_fn_name != "tanh":
decoder_lst.append(args.act_fn_name)
label_lst = [args.label_pooling]
if args.label_num_layers > 0:
label_lst.append(args.label_num_layers)
if args.label_dropout > 0:
label_lst.append(args.label_dropout)
label_lst.append(f'est{args.est_cls}')
if args.term_count > 1:
label_lst.extend([args.term_count, args.sort_method])
loss_lst = [args.loss_name, args.main_code_loss_weight, args.code_loss_weight]
bsz = args.batch_size * args.gradient_accumulation_steps * args.n_gpu
train_lst = [f'bsz{bsz}', args.optimizer, args.train_epoch, args.truncate_length, f'warm{args.warmup_ratio}', f'wd{args.weight_decay}']
if args.optimizer in ["Adam", "SGD", "AdamW"]:
train_lst.append(args.learning_rate)
if args.rdrop_alpha > 0.0:
train_lst.append(f"rdrop{args.rdrop_alpha}")
if args.scheduler != "linear":
train_lst.append(args.scheduler)
all_lst = [[args.version], word_lst, combine_lst, decoder_lst, label_lst, loss_lst, train_lst]
folder_name = "_".join(["-".join([str(y) for y in x]) for x in all_lst if x])
if args.debug:
folder_name = "debug_" + folder_name
if args.tag:
folder_name = folder_name + "-" + args.tag
return folder_name
def create_word_config(args, train_dataset):
word_config = {}
try:
padding_idx = train_dataset.word2id['**PAD**']
except BaseException:
padding_idx = None
word_config['padding_idx'] = padding_idx
word_config['count'] = len(train_dataset.word2id)
word_config['dropout'] = args.word_dp
word_config['word_embedding_path'] = args.word_embedding_path
word_config['dim'] = args.word_dim
word_config['frz'] = args.word_frz
return word_config
def create_combine_config(args):
combine_config = {}
combine_config['input_dim'] = args.word_dim
combine_config['model'] = args.combiner
if args.combiner == "lstm":
combine_config['lstm_dropout'] = args.lstm_dp
combine_config['rnn_dim'] = args.rnn_dim
combine_config['num_layers'] = args.num_layers
if args.num_layers <= 1:
combine_config['lstm_dropout'] = 0.0
if args.combiner == "reformer":
combine_config['rnn_dim'] = args.rnn_dim
combine_config['num_layers'] = args.num_layers
reformer_config = {'reformer_head':args.reformer_head,
'n_hashes':args.n_hashes,
'local_attention_head':args.local_attention_head,
'pkm_layers':()}
if args.pkm_layers:
reformer_config['pkm_layers'] = tuple([int(n) for n in args.pkm_layers.split(',')])
combine_config.update(reformer_config)
combine_config['pos_embed'] = args.pos_embed
if args.pos_embed == "axial":
combine_config['axial'] = args.axial
combine_config['transformer_dropout'] = args.transformer_dp
combine_config['layer_norm'] = args.layer_norm
combine_config['dim'] = args.attention_dim
return combine_config
def create_decoder_config(args, train_dataset):
decoder_config = {}
decoder_config['model'] = args.decoder
decoder_config['input_dim'] = args.attention_dim
decoder_config['attention_dim'] = args.attention_dim
decoder_config['label_count'] = train_dataset.code_count
decoder_config['code_embedding_path'] = args.code_embedding_path
decoder_config['ind2c'] = train_dataset.ind2c
decoder_config['ind2mc'] = train_dataset.ind2mc
decoder_config['xavier'] = args.xavier
decoder_config['est_cls'] = args.est_cls
decoder_config['att_dropout'] = args.att_dropout
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
decoder_config['attention_head'] = args.attention_head
decoder_config['rep_dropout'] = args.rep_dropout
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
decoder_config['head_pooling'] = args.head_pooling
if args.decoder in ["MultiLabelMultiHeadLAATV2"]:
decoder_config['act_fn_name'] = args.act_fn_name
return decoder_config
def create_label_config(args, train_dataset):
label_config = {}
label_config['input_dim'] = args.rnn_dim
label_config['num_layers'] = args.label_num_layers
label_config['dropout'] = args.label_dropout
label_config['pooling'] = args.label_pooling
return label_config
def create_loss_config(args, train_dataset):
if args.loss_name == "ce":
loss_dict = {'name':'ce'}
if args.loss_name == "focal":
loss_dict = {'name':'focal', 'gamma':args.focal_gamma, 'alpha':args.focal_alpha}
if args.loss_name == "asy":
if args.able_torch_grad_focal_loss:
disable = False
else:
disable = True
loss_dict = {'name':'asy', 'gamma_neg':args.asy_gamma_neg, 'gamma_pos':args.asy_gamma_pos,
'clip':args.asy_clip, 'disable_torch_grad_focal_loss':disable}
if args.loss_name == "ldam":
loss_dict = {'name':'ldam', 'ldam_c':args.ldam_c}
total_label_count = np.array([0] * train_dataset.code_count)
for i in range(len(train_dataset)):
label = np.array(train_dataset[i][2])
total_label_count += label
loss_dict['label_count'] = total_label_count
loss_dict['rdrop_alpha'] = args.rdrop_alpha
loss_dict['main_code_loss_weight'] = args.main_code_loss_weight
loss_dict['code_loss_weight'] = args.code_loss_weight
return loss_dict
def generate_model(args, train_dataset):
word_config, combine_config, decoder_config, label_config, loss_config = \
create_all_config(args, train_dataset)
if args.term_count > 1:
assert args.decoder.startswith("MultiLabelMultiHeadLAAT")
assert args.term_count == args.attention_head
model = IcdModel(word_config, combine_config,
decoder_config, label_config, loss_config, args)
return model