-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample-spiral.py
43 lines (34 loc) · 1.12 KB
/
example-spiral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import math
from dee import Dee
# a generic function that makes spirals
def spiral(offset=0):
a = 1
offsetR = offset /180 * math.pi
phi = np.arange(0, (3) * np.pi, 0.1)
x1 = a*phi*np.cos(phi + offsetR)
x2 = a*phi*np.sin(phi + offsetR)
dr = (np.diff(x1)**2 + np.diff(x2)**2)**.5 # segment lengths
r = np.zeros_like(x1)
r[1:] = np.cumsum(dr) # integrate path
r_int = np.linspace(0, r.max(), 50) # regular spaced path
x1 = np.interp(r_int, r, x1) # interpolate
x2 = np.interp(r_int, r, x2)
result = np.column_stack((x1,x2))
result = np.delete(result, 0, axis=0)
return result
# generating two spirals
spiralA = spiral()
spiralB = spiral(offset=180)
# and concatenating them to form X and y
X = np.concatenate((spiralA, spiralB), axis=0)
y = np.array([0] * len(spiralA) + [1] * len(spiralB))
# training the network
# three hidden layers of 10 neurons and 2 output layers
network = Dee([10, 10, 10], 2)
network.train(X, y, epochs=15000, learningRate=0.001, batchSize=20)
# visualization
network.visualize()
network.plot2D()
network.plotLoss()
print("Play with the network parameters to get a better result")