forked from TensorSpeech/TensorFlowASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_librispeech_trans.py
56 lines (44 loc) · 1.95 KB
/
create_librispeech_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import glob
import argparse
import librosa
from tqdm.auto import tqdm
import unicodedata
from tensorflow_asr.utils.file_util import preprocess_paths
parser = argparse.ArgumentParser(prog="Setup LibriSpeech Transcripts")
parser.add_argument("--dir", "-d", type=str, default=None, help="Directory of dataset")
parser.add_argument("output", type=str, default=None, help="The output .tsv transcript file path")
args = parser.parse_args()
assert args.dir and args.output
args.dir = preprocess_paths(args.dir, isdir=True)
args.output = preprocess_paths(args.output)
transcripts = []
text_files = glob.glob(os.path.join(args.dir, "**", "*.txt"), recursive=True)
for text_file in tqdm(text_files, desc="[Loading]"):
current_dir = os.path.dirname(text_file)
with open(text_file, "r", encoding="utf-8") as txt:
lines = txt.read().splitlines()
for line in lines:
line = line.split(" ", maxsplit=1)
audio_file = os.path.join(current_dir, line[0] + ".flac")
y, sr = librosa.load(audio_file, sr=None)
duration = librosa.get_duration(y, sr)
text = unicodedata.normalize("NFC", line[1].lower())
transcripts.append(f"{audio_file}\t{duration}\t{text}\n")
with open(args.output, "w", encoding="utf-8") as out:
out.write("PATH\tDURATION\tTRANSCRIPT\n")
for line in tqdm(transcripts, desc="[Writing]"):
out.write(line)