forked from All-Hands-AI/OpenHands
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_infer.py
318 lines (272 loc) Β· 10 KB
/
run_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import asyncio
import copy
import os
import tempfile
from typing import Any
import pandas as pd
from datasets import load_dataset
from evaluation.benchmarks.aider_bench.helper import (
FAKE_RESPONSES,
INST_SUFFIXES,
INSTRUCTIONS_ADDENDUM,
)
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
load_from_toml,
parse_arguments,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
# Configure visibility of unit tests to the Agent.
USE_UNIT_TESTS = os.environ.get('USE_UNIT_TESTS', 'false').lower() == 'true'
SKIP_NUM = os.environ.get('SKIP_NUM')
SKIP_NUM = (
int(SKIP_NUM) if SKIP_NUM and SKIP_NUM.isdigit() and int(SKIP_NUM) >= 0 else None
)
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'docker'),
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.11-bookworm',
enable_auto_lint=True,
use_host_network=False,
timeout=100,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
keep_runtime_alive=False,
remote_runtime_init_timeout=1800,
remote_runtime_enable_retries=True,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
# copy 'draft_editor' config if exists
config_copy = copy.deepcopy(config)
load_from_toml(config_copy)
if 'draft_editor' in config_copy.llms:
config.set_llm_config(config_copy.llms['draft_editor'], 'draft_editor')
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series,
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"\n{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}\n")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
with tempfile.TemporaryDirectory() as tmpdir:
file_path = os.path.join(tmpdir, f'{instance.instance_name}.py')
with open(file_path, 'w') as f:
f.write(instance.signature)
runtime.copy_to(
file_path,
'/workspace',
)
if USE_UNIT_TESTS:
file_path = os.path.join(tmpdir, f'{instance.instance_name}_test.py')
with open(file_path, 'w') as f:
f.write(instance.test)
runtime.copy_to(
file_path,
'/workspace',
)
logger.info(f"\n{'-' * 50} END Runtime Initialization Fn {'-' * 50}\n")
def complete_runtime(
runtime: Runtime,
instance: pd.Series,
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"\n{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}\n")
obs: CmdOutputObservation
# Rewriting the test file to ignore any changes Agent may have made.
script_name = f'{instance.instance_name}_test.py'
with tempfile.TemporaryDirectory() as tmpdir:
file_path = os.path.join(tmpdir, script_name)
with open(file_path, 'w') as f:
f.write(instance.test)
runtime.copy_to(
file_path,
'/workspace',
)
logger.info(f'Running test file: {script_name}')
action = CmdRunAction(command=f'python3 -m unittest {script_name}')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
exit_code = 1
if isinstance(obs, CmdOutputObservation):
exit_code = obs.exit_code
logger.info(f"\n{'-' * 50} END Runtime Completion Fn {'-' * 50}\n")
runtime.close()
return {
'test_output': obs.content,
'exit_code': exit_code,
}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, str(instance.instance_id), log_dir)
else:
logger.info(
f'\nStarting evaluation for instance {str(instance.instance_id)}.\n'
)
# =============================================
# build instruction
# =============================================
# Prepare instruction
logger.info(instance)
instruction = instance.instruction
instruction += INSTRUCTIONS_ADDENDUM.format(
signature_file=f'{instance.instance_name}.py',
)
if USE_UNIT_TESTS:
logger.info(
f'\nInstruction to run test_file: {instance.instance_name}_test.py\n'
)
instruction += (
f'Use `python -m unittest {instance.instance_name}_test.py` to run the test_file '
'and verify the correctness of your solution. DO NOT EDIT the test file.\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided '
'to you AND NEVER ASK FOR HUMAN HELP.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += INST_SUFFIXES[metadata.agent_class]
# =============================================
# create sandbox and run the agent
# =============================================
runtime: Runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance=instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=FAKE_RESPONSES[metadata.agent_class],
)
)
if state is None:
raise ValueError('State should not be None.')
# # =============================================
# # result evaluation
# # =============================================
return_val = complete_runtime(runtime, instance)
exit_code = return_val['exit_code']
test_output = return_val['test_output']
errors = []
test_cases = None
if test_output.find('SyntaxError') != -1:
errors += 'SyntaxError'
elif test_output.find('IndentationError') != -1:
errors += 'IndentationError'
else:
test_cases = test_output[: test_output.find('\r')]
test_result = {
'exit_code': exit_code,
'test_cases': test_cases,
'errors': errors,
}
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
metrics = state.metrics.get() if state.metrics else None
# Save the output
output = EvalOutput(
instance_id=str(instance.instance_id),
instance=instance.to_dict(),
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
args = parse_arguments()
dataset = load_dataset('RajMaheshwari/Exercism-Python')
aider_bench_tests = dataset['train'].to_pandas()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'AiderBench',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
# Parse dataset IDs if provided
eval_ids = None
if args.eval_ids:
eval_ids = str(args.eval_ids).split(',')
logger.info(f'\nUsing specific dataset IDs: {eval_ids}\n')
instances = prepare_dataset(
aider_bench_tests,
output_file,
args.eval_n_limit,
eval_ids=eval_ids,
skip_num=SKIP_NUM,
)
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
)