forked from shiming-chen/CDE-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
101 lines (83 loc) · 5.82 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""General-purpose training script for image-to-image translation.
This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and
different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization).
You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model').
It first creates model, dataset, and visualizer given the option.
It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models.
The script supports continue/resume training. Use '--continue_train' to resume your previous training.
Example:
Train a CycleGAN model:
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
Train a pix2pix model:
python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA
See options/base_options.py and options/train_options.py for more training options.
See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md
See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md
"""
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
import numpy as np
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
epoch = 0
time_used=[]
#for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
while total_iters < opt.total_num_giters:
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters(total_iters) # calculate loss functions, get gradients, update network weights
model.get_fit_and_mut()
epoch_iter += 1
total_iters += 1
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), int(total_iters/opt.display_freq), opt.display_freq, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, total_iters, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(total_iters) / dataset_size, losses)
#time_used.append(t_comp)
#time_used_arr=np.array(time_used)
#time_mean=np.mean(time_used_arr)
#time_std=np.std(time_used_arr)
#print("time_mean:%.3f; time_std:%.3f"%(time_mean,time_std))
#print(time_used)
if total_iters % opt.score_freq == 0: # print generation scores and save logging information to the disk
scores = model.get_current_scores()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_scores(epoch, total_iters, scores)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(total_iters) / dataset_size, scores)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
if total_iters % opt.save_giters_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(total_iters)
epoch += 1
#print('(epoch_%d) End of giters %d / %d \t Time Taken: %d sec' % (epoch, total_iters, opt.total_num_giters, time.time() - epoch_start_time))
#print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
#model.update_learning_rate() # update learning rates at the end of every epoch.