-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bert.py
224 lines (173 loc) · 6.43 KB
/
train_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
from bert_torch_dataset_creator import GPTweetDataset
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from Bert_SentimentClassifier import SentimentClassifier
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
from collections import defaultdict
import matplotlib.pyplot as plt
import logging
logging.basicConfig(level=logging.ERROR)
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cpu"
#Constants
RANDOM_SEED = 42
BATCH_SIZE = 8
MAX_LEN = 100
class_names = ['negative', 'neutru','positive']
#Read and explore the data a bit
pd.set_option('display.max_columns', None)
#df = pd.read_csv("Data.csv")
#print(df.head())
#load pre-trained model
PRE_TRAINED_MODEL_NAME = 'dumitrescustefan/bert-base-romanian-cased-v1'
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
#Let's split the data:
#df_train, df_test = train_test_split(df, test_size=0.2, random_state=RANDOM_SEED)
df_train = pd.read_csv(r"train2.csv", encoding='utf-8')
df_test = pd.read_csv(r"test2.csv", encoding='utf-8')
df_val = pd.read_csv(r"val2.csv", encoding='utf-8')
#df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
print(df_train.shape, df_val.shape, df_test.shape)
#Create a data loader
def create_data_loader(df, tokenizer, max_len, batch_size):
ds = GPTweetDataset(
texts=df.text.to_numpy(),
targets=df.Label.to_numpy(),
tokenizer=tokenizer,
max_len=max_len
)
return DataLoader(
ds,
batch_size=batch_size,
num_workers=0
)
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
print(type(train_data_loader))
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)
data = next(iter(train_data_loader))
print(data['input_ids'].shape)
print(data['attention_mask'].shape)
print(data['targets'].shape)
#bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
#Create an instance bert model and move it to gpu
model = SentimentClassifier(len(class_names))
model = model.to(device)
#We'll move the example batch of our training data to the GPU:
input_ids = data['input_ids'].to(device)
attention_mask = data['attention_mask'].to(device)
print(input_ids.shape) # batch size x seq length
print(attention_mask.shape) # batch size x seq length
#To get the predicted probabilities from our trained model, we'll apply the softmax function to the outputs:
F.softmax(model(input_ids, attention_mask), dim=1)
EPOCHS = 5
#Training using AdamW optimizer provided by Hugging Face
optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=total_steps
)
#Loss function is CrossEntropy
loss_fn = nn.CrossEntropyLoss().to(device)
#Helper function to train th emodel for one epoch
def train_epoch(
model,
data_loader,
loss_fn,
optimizer,
device,
scheduler,
n_examples
):
model = model.train()
losses = []
correct_predictions = 0
for d in data_loader:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return correct_predictions.double() / n_examples, np.mean(losses)
#Training the model should look familiar, except for two things. The scheduler gets called every time a batch is fed to the model. We're avoiding exploding gradients by clipping the gradients of the model using clip_grad_norm_.
#Let's write another one that helps us evaluate the model on a given data loader:
def eval_model(model, data_loader, loss_fn, device, n_examples):
model = model.eval()
losses = []
correct_predictions = 0
with torch.no_grad():
for d in data_loader:
input_ids = d["input_ids"].to(device)
attention_mask = d["attention_mask"].to(device)
targets = d["targets"].to(device)
outputs = model(
input_ids=input_ids,
attention_mask=attention_mask
)
_, preds = torch.max(outputs, dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
return correct_predictions.double() / n_examples, np.mean(losses)
history = defaultdict(list)
best_accuracy = 0
for epoch in range(EPOCHS):
print(f'Epoch {epoch + 1}/{EPOCHS}')
print('-' * 10)
train_acc, train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
scheduler,
len(df_train)
)
print(f'Train loss {train_loss} accuracy {train_acc}')
val_acc, val_loss = eval_model(
model,
val_data_loader,
loss_fn,
device,
len(df_val)
)
print(f'Val loss {val_loss} accuracy {val_acc}')
print()
#Saving to history
history['train_acc'].append(train_acc)
history['train_loss'].append(train_loss)
history['val_acc'].append(val_acc)
history['val_loss'].append(val_loss)
if val_acc > best_accuracy:
#Save the model
torch.save(model.state_dict(), r'SA3_march2022.bin')
best_accuracy = val_acc
plt.plot(history['train_acc'], label='train accuracy')
plt.plot(history['val_acc'], label='validation accuracy')
plt.title('Training history')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend()
plt.ylim([0, 1])
plt.show()